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I. INTRODUCTION

The problem of generating ordered trees was studied rather

extensively in the recent literature [1, 2, 3, 4, 5, 6, 7]. As in all

problems concerning the generation of a set of combinatorial objects,

there are three major aspects of the problem. After defining a certain

linear ordering over the set of combinatorial objects that we are

interested in we need to (i) design an algorithm for listing the

combinatorial objects one by one, (ii) design an algorithm for determi-

ning the rank (the relative position in the linear ordering) of a

given combinatorial object, and (iii) design an algorithm for generating

a combinatorial object when its rank is given. In most cases, there

is an additional consideration, namely, to choose a suitable way to

represent the combinatorial objects. (For example, the subsets of a

set can be represented by subsets of integers corresponding to the

elements in the set, or by 0-I vectors, and s6 on.). Therefore, we

are actually concerned with the listing, ranking, and unranking of a

chosen representation of the combinatorial objects. Furthermore,

a chosen representation might possess a natural linear ordering (for

example, the lexicographical ordering of sequences of integers) which

might or might not be consistent with the linear ordering over the

combinatorial objects that was defined earlier. In this paper, we

study listing, ranking, and unranking algorithms for k-ary trees when

they are represented by permutations of multi-sets, by sequences of

O's and I's, and by sequences of integers.

A tree is said to be rooted if there is a distinct internal

node which is identified as the root. A tree is said to be regular

if every 'inter'al node of the tree has the same number of sons. A

tree is said to be ordered if the subtrees of each internal node are

ordered and are identified as the first subtree, the second subtree,

..., and so on. (Thus, two trees T and T' are isomorphic if and only

if the first subtree of T is isomorphic to the first subtree of T',

the second subtree of T is isomorphic to the second subtree of T',

and so on). Throughout this paper, we consider the class of

rooted, regular, ordered trees in which every internal node has

exactly k sons . For brevity, we shall refer to these trees as k-ary
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trees. The level number of a node (internal node or leaf) is defined

to be the length of the path (number of edges) from the root to the node.

We define a linear ordering over the set of k-ary trees ,' , as

follows :

Definition I : Given two k-ary trees T and T',we say that T < T' if

(i) T is empty (i.e. T has only a single node) and T' is not

empty, or

(ii) T is not empty and for some I 5 k, T T! for

j = 1,2,..., i-I, and T. < T! where T, T, ... ,
.i. 1 2- TV

T;, Tj, ..., Tk denote the subtrees of T and T',

respectively.

Figure I shows an example where T and T' are ternary trees.

Figure I
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2. PERMUTATION REPRESENTATION OF k-ARY TREES

A binary tree with n internal nodes can be represented by a

permutation of the integers 1,2,..., n [1,2,5]. The general idea is

to traverse a binary tree according to a certain order and label the

internal nodes in the order they are visited with the integers

1,2,..., n. The tree is then traversed again according to a different

order and the labels of the internal nodes are read off in the order

they are visited. We thus obtain a permutation of the integers

1,2,..., n which can be used to represent the binary tree. Knott [I]

and Roten and Varol [2] studied such a representation in which we

traverse and label the internal nodes in post-order (left subtree-

right subtree-root) and then traverse and read off the labels af the

internal nodes in preorder (root-left subtree-right subtrfe).

Trojanowski [5) studied such a representation in which we traverse

and label the internal nodes in preorder (roof-left subtree-right

subtree) and then traverse and read off the labels of the internal

nodes in inorder (left subtree-root-right subtree). Figure 2 shows

an example. For the tree in Figure 2(a), Figure 2(b) shows the labels

of the internal nodes and the permutation according to the represen-

tation used by Knott. Figure 2(c) shows the labels of the internal

nodes and the permutation according to the representation used by

Trojanowski.
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Figure 2

Trojanowski [5] used a similar representation for k-ary trees

where a k-ary tree with n internal nodes is represented by a permu-

tation of the integers 1,2,..., nk+l. However, such a representation

does not reduce to the representation for binary trees described

above when k - 2. We show now a representation of a k-ary tree with

n internal nodes by a permutation of a multiset consisting of
s*

(k-1) l's, (k-I) 2's, ..., and (k-1) n's . Such a representation can

be viewed as a natural extension of the representation for binary

trees used by Trojanowski. Suppose we traverse a k-ary tree in the

order root-firt subtree-second subtree - ... k th subtree+ and label

the internal nodes of the tree in the order they are visited. We

then traverse the tree in the order first subtree - root - second

subtree - root - ... - (k-1) s t subtree - root - kth subtree++ and

+ This can be viewed as an extension of the preorder traversal

of binary trees.

4 This can be viewed as an extension of the inorder traversal of

binary trees.

We shall use the notation (1,2, ..., n)k - I to denote the multi-

set consisting of (k-I) l's, (k-1) 2's, ..., and (k-1) n's.



read off the labels of the internal nodes in the order they are

visited. Since the label of each internal node is read off exactly

k-I times, we obtain a permutation of the multiset {1,2, ..., n k- l

which we shall use as a representation of the k-ary tree. Figure 3

shows an example. We shall refer to such a permutation as the

permutation of a k-ary tree. We shall also refer to such a represen-

tation as the permutation representation of k-ary trees. For a k-ary

tree T, we use p(T) to denote the permutation of T and p,, P2 ...

P(k-I)n to denote the elements of 
P(T).

2

3b

() 2-Z3 41493 ii S6 OS

figure 3
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We have the following definition

Definition 2 : A permutation n of the multiset {1,2,..., n}
k - I

is called a tree permutation if and only if the following conditions

are satisfied :

(i) The (k-I) n's occupy consecutive positions in n.

(ii) The (k-1) n's appear either to the right of the leftmost

n-I or to the immediate left of the leftmost n-I.

(iii) The permutation obtained from n by deleting the (k-I)

n's is a tree permutation of the multiset {1,2,..., n-1kl

We have now

Theorem I: The permutation of a k-ary tree with n internal nodes
k-Iis a tree permutation of the multiset (1,2,..., n}

Proof : Let T be a k-ary tree and x be the internal node that

is labelled n. We note first that x can only have k leaves as its

subtrees. (Because x is the last internal node visited in the root -

first subtree - second subtree - ... - kth subtree traversal). Thus,

in the permutation £(T) , the (k-I) n's must occupy consecutive

positions.

Let y denote the father of x. Either y is labelled n-I (as

illustrated in Figure 4(a) or the internal node labelled n-I is in

a subtree of y that is to the left of the subtree that contains x

(as illustrated in figure 4(b)). For the former case, if x is the

root of the first subtree of y, the (k-I) n's appear to the immediate

left of the leftmost n-I in p(T). Otherwise, the (k-I) n's appear

to the right of the leftmost n-I. For the latter case, the (k-I) n's

always appear to the right of the leftmost n-I in p(T).

Finally, because the removal of the k leaves of x from T

yields a k-ary tree with n-- I internal nodes, condition

(iii) in Definition 2 follows immediately.

iI
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Figure 4

Theocem 2 : There is a 1-1 correspondance between the set of

all k-ary trees with n internal nodes and the set of tree permu-

tations of the multiset {1,2,..., 
n}k-

.

Proof : We show first that for two distinct k-ary trees T and

T' 2(T) and p(T') must be different. The proof is carried out by

induction on n. For n - 1,2, the statement is obviously true. Let

T and T' be two k-ary, trees with n internal nodes. Let T, T2 , ... Tk29 "'

denote the k subtrees of T and T,, T2, ..., T denote the k subtrees

of T'. Lt us assume that T TI', Tf= T2, Ti_ Ti_ I and
T. # T. Thus, p(T) will be of the form

2(T I) 12(T2) I ... p(Ti 1 ) I y(T i)

and p(T') will be of the form

p(T;) I I p (Tj 1) I p(Ti) I "
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where p(T1), P(T2), . , ) p.(T), p(T)) denote the

permutations of the subtrees T' ... T T' T; TV.

We note that p(T (T; p()' .... , P(T = p(Tj).

If T. an( TV contain the same number of internal nodes, by the
induction hypothesis, p(T.) # p(T!). If T. and T! contain different
number of internal nodes, i must be less than k, and in p(T) and p(T')
p(T and p(T.) must be followed by a I. Since p(T and p(T) do not

contain the integer I, it follows that p(T) # p(T').

We show now that given a tree permutation 7T of the multLiset

{l, 2, ..., n k - I there is a corresponding k-ary tree T such that the

permutatiin of T is equal to _.r The proof is carried out by induction

on n. Clearly, our claim is valid for n=l,2. For n > 2, let0(7) de-

note the permutation obtained from1 by removing the k-i n's inr

By induction hypothesis, there is a k-ary tree_(T) such that the

permutation of(T) is equal tcr(7r). We examine two cases:

1. The k-1 n's occupy the rilitmost k-1 positions in 7T. Let c

denote the integer at the immediate left of the k-L n's. Clearly,

the kth subtree of the internal node labelled c in %(T) is a

leaf. Thus, we can append a subtree with k leaves to this leaf to

obtain a tree T.

2. The k-i n's do not occupy the rightriost k-i positions in

7T. Let C denote the integer at the immediate left and d denote the

integer at the immediate rig)- of the k-I n's. Suppose c > d. In

this case, all the appearances of c in T must be to the left of the

k-I n's. Consequently, the k son of the internal node labelled

c in'D(T) is a leaf, and we can append a subtree with k leaves to
ti I

this leaf to obtain a tree T. Suppose c < d. If d is the i

leftmost appearance of the integer d in T, then the i th subtree of

the internal node labelled d in T'.(T) is a leaf. Again, we can

append a subtree with k leaves to this leaf to obtain a tree T.

In both cases, the permutation of the tree T is equal to n.
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Theorem 3 : 1he ., d..ehic,-1 rderinp of all the tree permutations

of Lhe multist,' 1,2 . s i,nsiS ttilt with the linear ordering

of k-ary trees ir. Do(

Proof : y indt,,'t ,n . r,

We pre:;ent now in ,,l h i , tor I stin!', al I th tree pvrniutat ions

of the multiset ti,2. ... .-, It sli;htly si:tpler to have an

algorithm that lists all the p)orm,,tations in the reverse-lexicographical

order. Thus, the first permutation in the listing will be

nnn..(n-I)(n-1) ... 222..11.., and the last permutation will be

III . . .222 ... (- 1 ) (n-I) ) . . .nnn., •

Listi neAlgor ithm :

I. Initially, let ; = nnn...(n--I)(n-i)(n-I) ... 222...I M ...

2. If the (k-I) n's are not in the rightniost k-I positions of

7, i. -. . . nnn si.. , chanp, - to ... ...

3. If the (k-1) n's are in the rightmost k-I positions of T,

and the (k-I) (n-i)'s are in the rightmost k-I positions

in front of the n's, ... , search for the largest m such

that not all the (k-1) m's are in these extreme positions,

i.e. n = ... nnm F. where F e m, and change T to
-I i

... s i nnn ... (n-i) (n-i) (n-i) ... (n-2)(n-2)(n-2) ... (r+l)

(r+1)(m+1) ... mm ...

4. Stop when 7 = l11...222 ... (n-i)(n-l)(n-1)...nnn...



3. RANKING A RI.(;O)R [TlHM

We show in this section an algorithm for determining the position

(rank) of a given k-ary tree in the linear ordering of k-ary trees

according to Definition 1. We show first a reduction scheme which Is

the basis of our ranking algorithm. Given a k-ary tree with n internal

nodes, we remove the leftmost k-I leaves of the tree and then reconstruct

a k-ary tree with n-i internal nodes as follows: Let y be the leftmost son

of x in a (not ;ccessarilv k-irv') tree. If v h.is fewer th.in k soits.

remove y and I et tile oii. o V et'0li' Lome Li'llc l !Oells Of X a1s i I I u [ Ir.it td

in Figure 5(a). v has more than k sons, say in. Let the rightmost

th, - l) st le tm-k sons of y become the second, third, ... , (m-k) h
, (m-k+1 s  left-

most sons of x as illustrated in Figure 5(b). (In the examples in

Figure 5, k = 3). Now, suppose that the leftmost k-1 leaves have been

removed from a k-ary tree. If these k-l leaves are at the same level,

we apply the reduction step described abo~e to the father of these

k-l leaves. Otherwise, let x1 denote the internal node which is the

leftmost brother of the first leaf that was removed. Let x. denote theI

father of the (k-l)s t leaf that was removed. Since there is a path

between x and xi, let x1, x2, x , . ., x , x be the sequence

of nodes on this path. Applying the reduction step described above
to x., doand th tn to x 1 2 ' ., and finally to x ,

wp shall obtain a k-ary tree with n-I Internal nodes. Let T be a k-arv

tree. We shall use LT) to denote the k-ary tree obtained by the

reduction procedure described above. Figure 6 shows an example.

Let

N(xyz) = _xz \ x-y- )

we have: kx-y-z x-y

Theorem 4: Let C be the set of all k-ary trees with n internal nodes

and with the level numbers of the leftmost k-I leaves being a,a 2 ,

a k-V* Let %j(%7) denote the set )I- k-arv trees ohtained bY the reduction

procediiro described .iov,.. Thi :

The left to right order of the leaves of a tree is defined in the obvious

wa v.

Clearly, a - a2  .... a k-I.

-~ ~~~~~~ a2 . .. . .. C ! . . -I i



(i) (G.75 is the set of all -ayrv t re'os wiih ii-I t nt flnl dess

and with the level number of the leftmost leaf being
a kl-I or Iarger.

(ii) There is 1-1 correspondence between the trees in

and the trees in% ).

(iii For T and T' inV, if r T' , then ('T) (D(T'

T.. 71j1

7Fi gre 7

Figure 5



Figure 6

Proof Let T be a k-ary tree with n internal nodes and with

the level numbers of its leftmost k-I leaves being a,, a2 ,..., ak I.

We note that the level number of the immediate right brother of

the (k-I) t leaf(which is either an internal node or a leaf) is a3o

ak-I.



Thus, Pfter tbe removal of th., left:most .-I leaves ofT, the

level number of the leftmost leaf of the remaining tree (which is no

longer a k-ary tree) is at least akI. According to the reduction

procedure, the level number of the leftmost leaf ofAT) is at least

a -I. i

It is also easy to see that any k-ary tree with n-I internal

nodes and with the level number of its leftmost leaf being ak-l-I or

larger can be obtained from a k-ary tree with n internal nodes and

with the level numbers of its leftmost k-I leaves being a,, a2, ... ,
akl"

The i-i correspondence between the trees in and the trees

in%(',) can now be established by showing th~at L j:J
It is well-know¢n that the number of k-ary trees with n internal nodes

and with the level numbers of its leftmost k-i leaves being al, a 2 ,

.. ,ak 1 is

N(n, akl, k-3) - (n, a +1 k-3) (*)
ik-i

and the number of the k-ary trees with n-I internal nodes with the

level number of its leftmost leaf is ak-l-i or larger is

N(n, akl, k-2) (**)

It is a straight forward computation to show that (*) is equal to

Finally, because the reduction procedure does not change the

relative positions of the subtrees, thus if T < T', then.q(T) < (T').

Theorem 5 : Let T be a k-ary tree with tl internal nodes and with

the level numbers of its lcftmost k-I leaves being a, a2 ,..., akI.

Let Index (T) denote the number of k-ary trees with n internal nodes

that are larger than T in the linear ordering in Definition I. Then

k-l

Index(T) = N(n+l, a +2, k-2) + E N(n, ai +1, i-2) + Index (O(T))
i-2



Proof Index (T) is equal to the number of k-ary trees with the

level numbers of its leftmost V-I leaves being a,, "2f . ak

that are larger than T in the linear ordering, plus the number of

trees with the level numbers of its leftmost k-2 leaves being

aP, a,, ..., a k-2 and the level number of its (k-1) s t leaf being

akl+1 o ,larger, plus the nuimber of trees with the level number of its

leftmosL k-3 leaves being al, a2, ... , ak- 3, and the level number ofnd
its (k-2) leaf being ak- 2+I

kr larger, ..., plus the number of trees

with the level number of its leftmost leaf being a1 +1 or larger.

According totheoren 4 the number of trees with the level numbers of

its leftmost k-I leaves being a,. a, ..... 1k- that are larger than T

in the linear ordering is equal to Index (*(T)).

The number of trees with the level numbers of its leftmost k-2

leaves being a,, a2, ... , ak- 2 and the level number of its (k-1) s t

leaf being akI +1 orlarger is N(n, akl+1, k-3)*, the number of

trees with the level numbers of its leftmost k-3 leaves being

a, , a2, .... ak- 3 and the level number of its (k-2)n d leaf being

ak_ 2+I orlarger is N(n, ak 2 +1, k-4), ..., the number of trees with

the level number of its leftmost leaf being a and the level

number of the second leaf being a2+Ior larger is N(n, a2+1, 0),

and the number of trees with the level number of its leftmost leaf

being a1+1 orlarger is N(n+l, al +2, k-2).

Theorem 6 : Let (pl, P2 ' ... , P(k-I)n ) be the permutation of T.

Then p,' P29 "'I Pk-, are the level numbers of the leftmost k-I leaves

of T.

Proof ': Let' x,, x2, "... Pk-I denote the fathers of the leftmost

k-I leaves of the T. There is a path from the root to x, to x2, ...,

to XkI as shown in Figure 7. In a root-first subtree- spcond

subtree - ... - kth subtree traversal of T, x,, x2 ... , xk l will

be labelled exactly with the level numbers of the k-I leftmost leaves

of T. Furthermore, in a first subtree - root - second subtree - root -

... - kth subtree traversal of T, these level numbers will be the

first k-I labels that are read off.

* Note that the number of such trees is independent of the values

of a, a2, ... , k-2
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Figure 7

Theorem 7 Let (pI' P2 ' ... ' P(k-I)n be the permutation of T.

The permutation of %(T) can be obtained as follows

Mi Rem°ve'pi, P2' "' Pk-I"

(ii) The remaining p's retain their relative positions. However,

their values are changed as follows for I s p s n

p P, PI < P S P2 P2 < P  P3

p is unchanged The rightmost p The rightmost two

becomes p-1, the p's become p-I, the

others unchanged others unchanged
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Pk-3 < p 5 Pk-2 Pk-2 < p SPk-I Pk-I ' p

The rightmost k-3 The rightmost k-2 all p's become

p's become p-I, thl p's become p-I, th p-I

others unchanged others unchanged

Proof To simplify the notations, we prove the theorem for the

case k - 3. In this case, the theorem can be stated as : Let (p1  P2 ...

P2n ) be the permutation of a ternary tree T with n internal nodes.

The permutation of.QT) can be obtained as follows

(i) Remove p, and P2.

(ii) The remaining p's retain their relative positions with the

following changes in value

P 5 Pl Pi " p S P2 P2 < p

p is unchanged the right p is changed to p-I both p's are changed

the left p remains unchanged to (p-l)'s

Figure 8 shows T andS&T) where the subtrees are identified by

the letters A, B, C, ..., L, M. We note first that in traversing T

and labelling the internal nodes in the root-first subtree - second

subtree - third subtree order, after labelling the internal nodes

with I, 2, ... pI' "'" P2 as shown, the subtrees A, B, C, ..., L, M

will be traversed and their internal nodes labelled in that order.

For the treeQ(T), after labelling the internal nodes with

1, 2, "..9 p1, ... , P2-I as shown, the subtrees A, B, C, ..., L, M

will also be traversed and their internal nodes labelled in that

order. Now, when we traverse the tree T in the first subtree - root -

second subtree - root - third subtree order, we read off the labels

as



PI P2'4(A) P2.' ( B) (P2-1)J(C) (P2-i)s$(D) ..* (p1 +2)

E() (p1+2).4(F) (p 1 +I).S(G) (p1+I).4(H) p1 ,(l)

vhere we useg(A),,*(B), .. (H),4(I) to denote the sequences of

labels we read off from the eubtrees A, B, ... , H, I. Note that the

labels inh(A), AB), ...,S(H),,A(I) are all larger than p2. When we

traverse the treetT) in the same manner, we read off the labels as

4'(A) (p2-i), (B) (pZ-)A'(C) (p2-2).A'(D)... (p, +2)

.,€(E (p~t. ' )(pl ).S'(G) pt.V"(H) 01.9g(1)..

where we use, (A),,S'(B), ... ,4'(H),AV(l) to denote the sequences of

labels we read off the subtrees A, B, ..., H, I. Note thatC'(A) is

exactly equal to4(A) with each of the labels'in-4(A) reduced exactly

by I, and so on. Comparing the two sequences of labels, we note that

the theorem follows.'immediately.
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With the results in Theorems 6 and 7, Theorem 5 provides

imediately a recursive algorithm for determing the rank of a tree T viten

the permutation P(t) is given. We show an illustrative example : Given the

pLiutation of a tree to be 2234431155, we want to determine its rank. We

have

index(2234431155) - N(6,4,1) + N(5,3,0) + index(23321144)

- 42 + 33 + index(23321144)

index(23321144) - N(5,4,I) + N(4,4,0) + index(221133)

- 7 + I + index(221133)

index(221133) - N(4,4,I) + N(3,3,0)

- I + I + index(I122)

index(1122) - N(3,3,I) + N(2,2,O) + index(I)

=I+ I+0

Thus

index(2234431155) - 42 + 33 + 7 + 1 + I + I + I + I = 87

Since there are 273 ternary trees with 5 internal nodes. The given

tree is the 186 th tree (273 - 87 = 186) according to the linear

ordering in Definition 1.

4. UNRANKING ALGORITHM

We show now an unranking algorithm which is the reverse of the

ranking algorithm. Given index(T), the unranking algorithm will

determine p(T) based on the following results

Theorem 8 : Given index(T), the first k-I elements of p(T),

PIP'2' .... Pk-lcan be determined as follows

(1,) PI is determined to be the smallest integer j such that

index(T) > N(n+l, j+2, k-2)



(2) P2 is determined to be the smallest integer j such that

index(T) - N(n+l, p,+2, k-2) > N(n,j+1, o).

(3) P3 ' P4 p " Pk-I is determined recursively to be the

smallest integer j such that

M-I
index(T) - N(n+I, p,+2 , k-2) - Z N(n, pi+I, i-2)

i-2

> N(n, j+1, m-2)

for m - 3, 4, ..., k-I.

Furthermore, index(T)) can be computed as

k-I
index(T) - N(n+l, p1+

2 , k-2) - Z N(n, p.+I, i-2)
i=2

Proof : The proof of this theorem follows directly from Theorem 5.

Theorem 9 : Let p((T)) denote the permutation ofq(T). If the

first k-I elements of p(T) are known to be p, P2' .. ' P
k -I' then

2(T) can be determined as follows

(I) Place p,, p2' .... Pk-I in front of the elements in p*T)).

(2) The elements in p&T)) retain their relative positions.

However, their values are changed as follows for I ! p ! (n-I).

P < Pi P1 :5 P < P2 P2 p < P3

p is unchanged The leftmost p The leftmost two

becomes p+1, the p's become p+1,

others unchanged the others unchanged ...



k- < k2 Pk < k-I Pk-I P

tile leftmost k-3 the leftmost k-2 all p's become

p's become p+I, p's become p+), p+i

the others the others

.. unchanged unchanged

Proof :The proof of this theorem follows almost directly from

Theorem 7. However, we should point out why the word "rightmost" in

Theorem 7 is changed to "leftmost" in this Theorem, a fact that is not

obvious. Note that the sequence obtained from p(T) by removing the

first k-I elements p p2  k-I has the property that all

appear to the left of all (pk- 1-1)'s which alipear to the left of

all (Pk- -2)'s which appear to the left of all (pk-3)s and so on.

Thus, the operation which reverses the operation in Theorem 7 is

that stated in this Theorem.
As an example, suppose we .re given the index of a ternary tree

with 5 internal nodes to be 87

Since

N(6,4,1)=42 N(6,3,1)=130

we have

p1 = 2

Since

87- N(6,4,1)=45

N(5,3,0)=33 N(5,2,0)=88

we have

P 22

we have now

index (T))=87-N(6,4,1)-N(5,3,0)=12

Since

N(5,4,1)=7 N(5,3,1)=25

we have

pl= 2

Since

12-N(5,4,1)=5

N(4,4,0)=l N(4,3,0)=6

we have

P2 = 3

We have now

Index D(A(T)) )=12-N(5,4, )-N (4,4,0)-4

, .... - .. . . . ... .. AMMO I ...l -l -l i ' .. .. .



Since

N(4,4,l) - I N(4,3,1) - 5

we have

since 4 - N(4,4,I) - 3

we have N(3,3,0) - I N(3,2,O) - 4
P'. - 2we have nw.P 2

we have n index (((T)))) - 4 - N(4,4,I) - N(3,3,O) - 2

Since N(3,3,I) I N(3,2,1) - 3
we have ,,,
Since P 1 .

2 - N(3,3,1) - I

we have N(2,2,O) = I N(2,1,O) = 2

we have nwplp", - 1.
we have now i~2 dex [(T))))) = 4 - N(3,3,l) - N(2,2,O) 0 o

Now, we can assemble the permutation of T as follows

the permutation ofq(-q(Q(.q(T))))) is (11)

the permutation of (q(T)))) is (1122)

the permutation of 9V(,(T))) is (221133)

the permutation of.9LT) is (23321144)

the permutation of T it (2234431155)

5. THE 0-1 REPRESENTATION OF TREES

It is well-known that a k-ary tree with n internal nodes can be

represented by a sequence of n l's and n(k-I)+l O's. If we label an

internal node with a I and a leaf with a 0 and traverse the tree in

the order of root-first subtree-second subtree - ... 
th subtree,

we obtain a sequence of n l's and n(k-1)+] O's.



We shall refer to such a representation of a tree as the 0-I

representation. Figure 9 shows an example. It can be shown that:

I / 0 0 0 1 0 0O O 1 0 0 0

Figure 9

Theorem 10 : The lexicographical ordering of the 0-1 representa-

tions of k-ary trees is consistent with the linear ordering of k-ary

trees in Definition I.

The ranking and unranking algorithm presented in Sections 3 and

4 are particularly suitable when the 0-1 sequence representation is

used. We only need to note the followings :

Theorem II : In the 0-I representation of k-ary trees, for

i -1, 2, ..., k-I, the level number of the ith leftmost 'leaf is

equal to the number of l's in front of the ith 0,



FV

Theorem 12

(i) The 0-I representation of (T) can be obtained from that

of T by deleting the first k-I O's and the rightmost I in front of

St*
the (k-I) 0.

(ii) The 0-I representation of T tan be obtained from

that of qkT), when the values of a,, a2, ..., akI are given, by

adding in front of the 0-I sequence representation of.q(T) a

sequence consisting of k-I O's and a suiLable number of l's such that

a. is equal to the number of l's in front of the ith 0 for

i = 1, 2, ... , k-I.

Indeed, the ranking and unranking algorithm described here is a

natural extension of that for binary tree due to Zaks [6].

6. THE LEVEL NUMBER REPRESENTATION OF TREES

As was pointed out above, the level number of a leaf is defined

to be the length of the path (number of edges) from the root to the

leaf. By the level number representation of a k-ary tree we mean

the sequence of level numbers of the leaves reading from left to

right. In [3] and [4] listing,rankiag, and unranking algorithm for

k-ary trees were studied, where the level number representation of

k-ary trees was employed. Figure 10 shows an example. It is known

that

* Actually, removing any of the l's in front of the (k-I) s t 0 wiLl do.

However, the rightmost I in front of the (k-1) st 0 corresponds to

the internal node that was removed in the reduction procedure in

Section 3.
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Figure 10

Theorem 13 The lexicographical ordering of the level number

representation of k-ary trees is consistent with the linear ordering

of k-ary trees in Definition 1.

It is quite clear that our ranking and unranking algorithm can

be applied to the case when the level number representation of k-ary

trees is used. To obtain the level number representation of.(T) from

the level number representation of T, we need to identify the leaves

of those subtrees that are moved up in the reduction scheme.

Conversely, in the unranking algorithm, we also need to identify the

leaves of those subtrees that are moved down .to, recover T from.5(T).

Since such a step is conceptually very simple, we shall leave the

detaile.d description as the standard " exercise for the reader'! (Hint:

The subtrees can be identified by carrying out a sequence of "left

reductions". Byr-left reduction we mean starting from the left of

the level number representation, replace the first occurrence of k

consecutive level number qq... q by q-l.)



7. REMARKS

We show in this paper

(1) A new generalization of the permutation representation of

binary trees studied in [5]. Our ranking and unranking algorithm are

also different from that in [5].

(2) A generalization of the ranKing and unranking algorithm

for binary trees studied in [6j when the 0-I representation is used.

(3) Our ranking and unrankiag algorithms for k-any trees when

the level number representation is used are also different from

that in [3, 4].

The author wishes to thank Mr. P. Ramanan for many helpful

suggestions.
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