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1. INTRODUCTION

The problem of generating ordered trees was studied rather
extensively in the recent literature (1, 2, 3, 4, 5, 6, 7]. As in all
problems concerning the generation of a set of combinatorial objects,
there are three major aspects of the problem. After defining a certain
linear ordering over the set of combinatorial objects that we are
interested in we need to (i) design an algorithm for listing the
combinatorial objects one by one, (ii) design an algorithm for determi-
ning the rank (the relative position in the linear ordering) of a
given combinatorial object, and (iii) design an algorithm for generating

a combinatorial object when its rank is given. In most cases, there
is an additional consideration, namely, to choose a suitable way to
represent the combinatorial objects. (For example, the subsets of a
set can be represented by subsets of integers corresponding to the
elements in the set, or by 0-1 vectors, and sd on.). Therefore, we
are actually concerned with the listing, ranking, and unranking of a
chosen representation of the combinatorial objects. Furthermore,

a chosen representation might possess a natural linear ordering (for
example, the lexicographical ordering of sequences of integers) which
might or might not be consistent with the linear ordering over the
combinatorial objects that was defined earlier. In this paper, we
study listing, ranking, and unranking algorithms for k-ary trees when
they are represented by permutations of multi-sets, by sequences of

O0's and 1's, and by sequences of integers.

A tree is said to be rooted if there is a distinct internal
node which is identified as the root. A tree is said to be regular
if every 'internal node of the tree has the same number of sons. A
tree is said to be ordered if the subtrees of each internal node are
ordered and are identified as the first subtree, the second subtree,
«s., and so on. (Thus, two trees T and T' are isomorphic if and only
if the first subtree of T is isomorphic to the first subtree of T',
the second subtree of T is isomorphic to the second subtree of T',
«+., and so on). Throughout this paper, we consider the class of
rooted, regular, ordered trees in which every internal node has

exactly k sons . For brevity, we shall refer to these trees as k-ary




trees. The level number of a node (internal node or leaf) is defined
to be the length of the path (number of edges) from the rvot to the node.

We define a linear ordering over the set of k-ary trees , <, as
follows :

Definition | : Given two k-ary trees T and T',we say that T < T' if

(i) T is empty (i.e. T has only a single node) and T' is not
empty, or
(ii) T is not empty and for some } s i s Kk, Tj = T; for

j=1,2,..., i-1, and Ti < Ti where Tl’ T2’ cons Tk'
T;, Té, cens Té denote the subtrees of T and T',
respectively.

Figure | shows an example where T and T' are ternary trees.

T ¢ T1T°

Figure 1




2. PERMUTATION REPRESENTATION OF k-ARY TREES

A binary tree with n internal nodes can be represented by a
permutation of the integers 1,2,..., n [1,2,5]). The general idea is
to traverse a binary tree according to a certain order and label the
internal nodes in the order they are visited with the integers
1,2,..., n. The tree is then traversed again according to a different
order and the labels of the internal nodes are read off in the order
they are visited. We thus obtain a permutation of the integers
1,2,..., n which can be used to represent the binary tree. Knott [1]
and Roten and Varol [2] studied such a representation in which we
traverse and label the internal nodes in post-order (left subtree-
right subtree-root) and then traverse and read off the labels of the
internal nodes in preorder (root-left subtree-right subtree).
Trojanowski [5] studied such a representation in which we traverse
and label the internal nodes in preorder (roof-left subtree-right
subtree) and then traverse and read off the labels of the internal
nodes in inorder (left subtree-root-right subtree). Figure 2 shows
an example. For the tree in Figure 2(a), Figure 2(b) shows the labels
of the internal nodes and the permutation according to the represen-
tation used by Knott. Figure 2(c) shows the labels of the internal
nodes and the permutation according to the representation used by

Trojanowski.
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Figure 2

Trojanowski [5) used a similar representation for k-~ary trees
where a k-ary tree with n internal nodes is represented by a permu-
tation of the integers 1,2,..., nk+l. However, such a representation
does not reduce to the representation for binary trees described
above when k = 2., We show now a representation of a k-ary tree with
n internal nodes by a permutation of a multiset consisting of
(k-1) 1's, (k-1) 2's, ..., and (k-1) n's*. Such a representation can
be viewed as a natural extension of the representation for binary
trees used by Trojanowski. Suppose we traverse a k—ary tree in the

th subtree* and label

order root-firt' subtree-second subtree - ... k
the internal nodes of the tree in the order they are visited. We
then traverse the tree in the order first subtree - root - second

h aubtreeH and

subtree ~ root - .., - (k-l)St subtree - root - Kkt
+ This can be viewed as an extension of the preorder traversal

of binary trees.

4+ This can be viewed as an extension of the inorder traversal of
binary trees.

k-1

» We shall use the notation (1,2, ..., n} to denote the multi-

set consisting of (k-1) 1's, (k-1) 2's, ..., and (k-1) n's.




read off the labels of the internal nodes in the order they are

vigsited. Since the label of each internal node is read off exactly
k-1 times, we obtain a permutation of the multiset {1,2, ..., n}k-l
which we shall use as a representation of the k-ary tree. Figure 3

shows an example. We shall refer to such a permutation as the
permutation of a k-ary tree. We shall also refer to such a represen-

tation as the permutation representation of k-ary trees. For a k-ary
tree T, we use p(T) to denote the permutation of T and Py» Ppseces

p(k—l)u to denote the elements of p(T).

P(T) = 223443 /ii5665

figure 3




We have the following definition :

Definition 2 : A permutarion m of the multiset {1,2,..., n}k-l

is called a tree permutation if and only if the following conditions

are satisfied :
(i) The (k-1) n's occupy consecutive positions in .

(ii) The (k-1) n's appear either to the right of the leftmost
PP

n~] or to the immediate left of the leftmost n-l.

(iii) The permutation obtained from 7 by deleting the (k-1)

. . . k-1
n's is a tree permutation of the multiset {1,2,..., n-1} .

We have now :

Theorem ]| : The pzrmutation of a k-ary tree with n internal nodes

Lo . : -1
is a tree permutatinn of the multiset {1,2,..., n}k .

Proof : Let T be a k-ary tree and x be the internal node that
is labelled n. We note first that x can only have k leaves as its
subtrees. (Because x is the last internal node visited in the root -

h subtree traversal). Thus,

first subtree - second subtree - ... - k'
in the permutation p(T), the (k~1) n's must occupy consecutive

positions.

Let y denote the father of x. Either y is labelled n-1 (as
illustrated in Figure 4(a) OY the internal node labelled n-1 is in
a subtree of y that is to the left of the subtree that contains x
(as illustrated in figure 4(b)). For the former case, if x is the
root of the first subtree of y, the (k-1) n's appear to the immediate
left of the leftmost n-! in p(r). Otherwise, the (k-1) n's appear
to the right of the leftmost n-1. For the latter case, the (k~1) n's
always appear to the right of the leftmost n~1 in p(T).

Finally, because the removal of the k leaves of x from T
yields a k-ary tree with n-- 1 internal nodes, condition

(iii) in Definition 2 follows immediately.




oy p—————

Jabel ofF % : n [abel of x : n
Jabel of y : M-t label of Z : n-1
a (b

Figure 4

Theocem 2 : There is a I-[ correspondance between the set of
all k-ary trees with n internal nodes and the set of tree permu-

tations of the multiset {1,2,..., n}k—l.

Proof : We show first that for two distinct k-afy trees T and
T' p(T) and p(T') must be different. The proof is carried out by
induction on n. For n = 1,2, the statement is obviously true. Let

T and T' be two k-ary trees with n internal nodes. Let Tl’ TZ’ e T

k

denote the k subtrees of T and T;, Té, crey

' ! i = v = t = v
of T'. Let us assume that Tl Tl, T2 T2, N Ti-l Ti-l and

T, d Ti. Thus, p(T) will be of the form

Té denote the k subtrees

BT 1p(Ty 1 ... E(Ti_l)l T ...

and p(T') will be of the form

E(T;) i BﬂTé) R R(Ti-l) 1 EﬂTi) | e




where R(TI)’ R(T?), e E(Ti)’ B(T;), R(Té)’ cen B(T{) denote the . !

ermutati ¢ y .
permutations of he subtrees rl, r2’ ceen T, T;, é""r T'

We note that p(T = T! ’ = T! !

R ') n( l)y B(rz) E(rz)) e ey B‘(ri“l) =R(Ti_l)'
If Ti and T' contain the same number of internal nodes, by the ' i
induction hypothesxs, p(T ) # p(T ). If T and T |

number of internal nodcs,

contain different

i must be less Lhan k, dnd in p(T) and p(T")

B(T ) and p(T ) must he followed by a 1. Since E(T ) and R(T ) do not *
contain the integer I, it follows that p(T) # p(T' )

We show now that given a tree permutation? of the nultiset

{1, 2, ..., n}k-l there is a corresponding k-ary tree T such that the

permutati n of T is equal to m. The proof is carried out by induction

on n. Clearly, our claim is valid for n=1,2, For n > 2, letgb(l) de~
note the permutation obtained from¥ by removing the k-1 n's in 7,
By induction hypothesis, there is a k-ary treejL(T) such that the
permutation ofﬁ%{T) is equal tcj%ﬂﬂ). Ve examine two cases:

1. The k-1 n's occupy the rightmost k-1 positions in 7. Let ¢
denote the integer at the immadiate left of the k-1 n’s. Clearly,
i the kth subtree of the internal node labelled ¢ in g%(T) is a
4 leaf. Thus, we can append a subtree with k leaves to this leaf to

obtain a tree T.

2. The k-1 n's do not occupy the rightmost k-1 positions in
n. Let C denote the integer at the immediate left and d denote the
integer at the immediate right of the k-1 n's. Suppose ¢ > d. 1In

) .
this case, all the appearances of ¢ in 1 must be to the left of the

k-1 n's. Consequently, the kth son of the internal node labelled
c injzﬂT) is a leaf, and we can append a subtreec with k leaves to
‘ this leaf to obtain a tree T. Suppose ¢ < d. If d is the 1tn
? leftmost appearance of the integer d inn, then the ith subtree of
the internal node labelled d in N(T) is a leaf. Again, we can
append a subtree with k leaves to this leaf to obtain a tree T.

In both cases, the pernutation of the tree T is equal to xm.




Theorem 3 : The lesre prophical (rderine of all the tree permutations

. [ . . . , .
of the multiscr < },2,... u s vonsistont with the linear ordering
of k-ary trees 1v Det.ult

Proof : Py inductinoon 1.

We present now an alporithm tor listing all the tree permutations
. v k=1 . . .
of the multiset t1,2,..., o It s shightly stuplerv to bave an
algorithm that lists all the permutations in the reverse-lexicographical

order. Thus, the first permutation in the iisting will be

nan..(n=1)(n=-1) ... 222..111.., and the iast permutation will be

T, ..222. .. (=D (o~ (u=1) .. .nnnae s e s

1. Initially, let = = ann...(n=1){(n-1)(n=1) ... 222...111..

2. I{ the (k-1) n's are not in the rightmost k-) positions of

S.
M, i.e. ¢ Seee 00N Si"" change ™ to ... 1 pnn ...

3. If the (k-1) n's are in the rightmost k-1 positions of 7,
and the (k-]) (n-i)'s are in the rightmost k-| positions
in ffonL of the n's, ..., search for the largest m such
that not all the (k-1) m's are in these extreme positionms,

i.e. 1= ... mmm TR where £ m, and change n to

s..s, nnn ... (n-1) (n-1)(n-1) ... (n-2)(n-2) (n-2) ... (mr+l)

(m+1) (mtl) ... mmm ...
4. Stop when n = 111...222 ... (n-i)(n-1)(n~1)...nnn..




3. RANKING ALGORITHM

We show in this section an algorithm for determining the position
(rank) of a given k-ary tree in the linear ordering of k-ary trees
according to Definition 1. We show first a reduction scheme which {s
the basis of our ranking algorithm. CGiven a k-ary trce with n internal
nodes, we remove the IefLmost* k~1 leaves of the tree and then reconstruct
a k-ary tree with n-1 internal nodes as follows: lLet y be the leftmost son
of x in a (not accessarily k-arv) tree.  If v has lewer than k sons,
remove v and let the sons ol v become letftmost sons of x as dillustrated
in Figure 5(a). !/ v has more than k sons, say m. Let the rightmost
m-k sons of y become the second, third, ..., (m—k)th, (m—k+l)St left-
most sons of x as illustrated in Figure 5(b). (In the examples in
Figure 5, k = 3). Now, suppose that the leftmost k-1 leaves have been
removed from a k-ary tree. 1f these k-1 leaves are at the same level,
we apply the reduction step described above to the father of these
k-1 leaves. UOtherwise, let Xy decote the internal node which is the
ieftmost brother of the first leaf that was removed. Let X, denote the
father of the (k—l)St leaf that was removed. Since there is a path

1 T let xl. x2. xz. e e ey xi—l’ i

F between x and x x, be the sequence
of nodes on this path. Applying the reduction step described above

to xi, and then to x and then to

(-1 xl-Z’ . ., and finally te xl,

we shall obtain a k-ary tree with n-1 Internal nodes. Let T be a k-arv

tree. We shall use %T) to denote the k-ary tree obtained by the
reduction procedure described above. Figure 6 shows an example.

Let !

ky-y~ kx-y-2z
N(x,y,2) = k%_‘y—_': xxz 7)
we have: y=z y
Theorem 4: Let J be the set of all k-ary trees with n internal nodes
and with the level numbers of the leftmost k-1 leaves being Apsdys weey
e
ak—l' Let q%(c7) denote the set ol k-arv trees obtained by the reduction

i

procedinre desceribed gbeve,  Then

; .
The left to right order of the leaves of a tree is defined in the obvious

wAav,
Sede
{ Clearly, a,- a, < ... - a .




and with the level number of the leftmost leaf being

a -1 or larger.
k-1 2

(ii) There is 1-1 correspondence between the trees in ' 7

and the trees in%@).
(iii) For T and T* in¥d, if T 71", then @(T) <R,(T').

} 4

|
o

&

£(f) is the set of all k-arv trees with n-1 Internal nodes




! : Figure 6

the level numbers of its leftmost k-1 leaves being 8y 8gpecny a_,:

We note that the level number of the immediate right brother of

the (k—l)“ leaf (which is either an internal node or a leaf) is alro

k=1

-4



o ' - "'"'""'""""""—w " L
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Thus, after the removal of the leftrost F=1 leaves of T, the {
level number of the leftmost leaf of the remaining tree (which is no .
longer a k-ary tree) is at least a - According to the reduction :
procedure, the level number of the leftmost leaf ofﬁ%&T) is at least l
- !
a1 l.

It is also easy to sece that any k-ary tree with n-1 internal '
nodes and with the level number of its leftmost leaf being a, l-' or :
larger can be obtained from a k-ary tree with n internal nodes and i
with the level numbers of its leftmost k-1 leaves being Ay 3y, ere, ‘
k-1- |

The 1-1 correspondence between the trees inij'nnd the trees
inR,(2J) can now be established by showing that IU/:/Z\?, ("a)l
It is well-known that the number of k-ary trees with n internal nodes
and with the level numbers of its leftmost k-1 leaves being ajs Ay,

ceer @y is

k-=3) - (n, a +1 k-3) (*)

N(n, a k-1

k-1’

and the number of the k—-ary trees with n-1 internal nodes with the

level number of its leftmost leaf is ak_1~1 or larger is

1 N(n, a,_,, k-2) (**)

) iV
It is a straight forward computation to show that (*) is equal to

ﬁ (**)_

Finally, because the reduction procedure does not change the

relative positions of the subtrees, thus if T < T', thenﬁZ(T) <5&kT').

Theorem 5 : Let T be a k-ary tree with if internal nodes and with
’ the level numbers of jtg leftmost k-1 leaves being 31y Agsenes a -
Let Index (T) denote the number of k~ary trees with n internal nodes

that are larger than T in the linear ordering in Definition 1. Then

k=)
Index(T) = N(n+l, al+2, k~2) + I N(n, ai+l, i-2) + Index (B(T))
i=2

v ——— ————— .




Proof : Index (T) is equal to the number aof k- ary trees with the

level numbers of its leftmost k-1 leaves being a

, A

e P e 3
that are larger than T in the linear ordering, plus the number of

trees with the level numbers of its leftmost k~2 leaves being
. st
81, 35, ovey 3, and the level number of its (k-1)

ak_l+l or»larger, plus the nuwber of trees with the level number of its .

leaf being

leftmost k-3 leaves being a,, a

e see, @ , and the level number of
ad 2 k-3
its (k-2) leaf being a

l *
k_2+lﬂf larger, ..., plus the number of trees

with the level number of its leftmost leaf being al+l or lerger.

According totheorem 4 the number of trees with the level numbers of

its leftmest k-1 leaves being a,, a

v 99 that are larger than T

a
' k-1

in the 1linear ordering is ecqual to Index gz;cr)).

The number of trees with the level numbers of its leftmost k-2

leaves being a,a and the level number of its (k—l)St

gt tees Ao

leaf being ak_l+l orlarger is N(n, a _ +1, k-3)*, the number of

1
trees with the level numbers of its leftmost k-3 leaves being

d leaf being

81y 3y, ey A g and the level number of its (k—Z)n
ak_2+l orlarger is N(n, ak_2+l, k-4), ..., the number of trees with
the level number of its leftmost leaf being a, and the level

number of the second leaf being 32+I0r larger is N(n, a2+l, 0),

and the number of trees with the level number of its leftmost leaf

being a]+l orlarger is N(n+l, n]+2, k-2).

Theorem 6 : Let (p,, Pys +ves p(k—l)n) be the permutation of T.
Then Py» Pys +vvs Py, are the level numbers of the leftmost k-1 leaves
of T.

Proof " Let % Xy, -++y ¥, _, denote the fathers of the leftmost

k-1 leaves of the T. There is a path from the root to x,, to x

l’
to X . 3as shown in Figure 7. In a root—first subtree- s~cond

20 e

subtree - ... - kth subtree traversal of T, Xs Koy voes X will

be labelled exactly with the level numbers of the k-1 leftmost leaves
of T. Furthermore, in a first subtree - root - second subtree - root =
ces = kth subtree traversal of T, these level numbers will be the

first k-1 labels that are read off.

* Note that the number of such trees is indcpendent of the values

of 815 850 ces Ay




Figure 7

Theorem 7 : Let (pl' Pys =+o» p(k-l)n) be the permutation of T.

The permutation of JikT) can be obtained as follows :

(i) Remove‘pl, Pys =+es Py

(ii) The remaining p's retain their relative positions. However,

their values are changed as follows : for | < p s n

PSP

Pp <P SDP,

P2<PSP3

p is unchanged

The rightmost p
becomes p-1, the

others unchanged

The rightmost two
p's become p-1, the
others unchanged v

g




76

‘ Pp-3 <P =P, Py2 <P 5Py Pp—t <P

“es The rightmost k-3 | The rightmost k-2 {all p's become
p's become p-1, the p's become p-1, thﬁ p-1

others unchanged others unchanged

Proof : To simplify the notations, we prove the theorem for the
case k = 3, In this case, the theorem can be stated as : Let (p|. Pgrees
pZn) be the permutation of a ternary tree T with n internal nodes.

The permutation ofJﬁkT) can be obtained as follows :

(i) Remove P, and p,.

(1i) The remaining p's retain their relative positions with the

following changes in value :

PSP Py <P S DP, Py <P
p i8 unchanged | the right p is changed to p-I both p's are changed
the left p remains unchanged to (p-1)'s

Figure 8 shows T and,z(’l‘) vhere the subtrees are identified by
the letters A, B, C, ..., L, M. We note first that in traversing T
and labelling the internal nodes in the root-first subtree - gsecond
subtree - third subtree order, after labelling the internal nodes
with 1, 2, ... Py» +-+ Py a8 shown, the subtrees A, B, C, ..., L, M
will be traversed and their internal nodes labelled in that order.
For the treez(T), after labelling the internal nodes with
1, 2, ..., Pys +ov» p2-l as shown, the subtrees A, B, C, ..., L, M
will also be traversed and their internal nodes labelled in that
order. Now, when we traverse the tree T in the first subtree - root -

second subtree - root - third subtree order, we read off the labels




P, P8 D, B(B) (p,~1)eE(C) (p,~1) B(D) «vv (py +2)

Z(E) (p,+2) L(F) (p,*1)£(C) (p +1)HE(H) p, L) ...

where ve uses8(A),.8(B), ...&8(H),8(I) to denote the sequences of

labels we read off from the subtrees A, B, ..., H, I. Note that the
labels in5(A), &B), ... B(H),B(1) are all larger than p,. When we
traverse the tree.ﬁ‘l’) in the same manner, we read off the labels as

8' () (p,~1) L' (B) (py~1) £ (C) (py)=2) £ (D)... (py +2)
L' (E) (p+1)L'(F) (p,+1) B'(C) p £'(H) p L(D) ...

where ve usesd (A),8'(B), ...,e8'(H), £ (1) to denote the sequences of
labels we read off the subtrees A, B, ..., H, I. Note that.5'(A) is
exactly equal to.B5(A) with each of the labels’ in«&(A) reduced exactly

by 1, and so on. Comparing the two sequences of labels, we note that
the theorem follows immediately.

-
N




mcr)
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With the results in Theorems 6 and 7, Theorem 5 provides

immediately a recursive algorithm for determing the rank of a tree T when
the permutation p(t) is given. We show an illustrative example : CGiven the

pu.mutation of a tree to be 2234431155, we want to determine its rank. We

have

index(2234431155)

N(6,4,1) + N(5,3,0) + index(23321144)
42 + 33 + index(23321144)

index(23321144) N(5,4,1) + N(4,4,0) + index(221133)

7 + 1 + index(221133)

index(221133)

N(4,4,1) + N(3,3,0)
1 + 1 + index(1122)

index(1122) N(3,3,1) + N(2,2,0) + index(11)

1+1+0 ’

Thus
index(2234431155)

42 + 33+ 7+ 1+ 1 +1+1+1 =287
Since there are 273 ternary trees with 5 internal nodes. The given

tree is the 186th tree (273 - 87 = 186) according to the linear

ordering in Definition 1.

4. UNRANKING ALGORITHM

We show now an unranking algorithm which is the reverse of the
ranking élgorifhm. Given index(T), the unranking algorithm will

determine p(T) based on the following results :

Theorem 8 : Given index(T), the first k-1 elements of p(T), e

Pp» Pys +ees Py, SN be determined as follows :

(1) Py is determined to be the smallest integer j such that
index(T) > N(n+l, j+2, k-2)




(2) P, is determined to be the smallest integer j such that
index(T) - N(n#+l, pl+2, k-2) > N(n,j+1, o).

3) P3s Pys o5 Py is determined recursively to be the
smallest integer j such that
n-|

index(T) - N(n+l, p]*z, k-2) - & N(n, pi+l, i-2)
i=2

> N(n, j+1, m-2)
form= 3, 4, ..., k-1,

Furthermore, index(Q&T)) can be computed as

k=1
index(T) - N(n+l, p;+2, k=2) = I N(n, p;+, i-2)
i=2

Proof : The proof of this theorem follows directly from Theorem 5.

Theorem 9 : Let RG?(T)) denote the permutation of (T). If the

first k-1 elements of p(T) are known to be Pys Pys «- then

+y P ’
k-1
P(T) can be determined as follows :

) Place Pys Pys cves Py in front of the elements in p_(ﬂ('l’)).

(2) The elements in p_(Q(T)) retain their relative positionms.

However, their values are changed as follows : for 1 < p € (n-1).

P <P Py SP <P Py S P <Py

: p is unchanged The leftmost p The leftmost two

becomes p+!1, the | p's become p+l,

others unchanged | the others unchanged cos

)—hﬂ U TP




T
- g S T

. ——————— -

i et —

Py © P S Py Py—2 % P % Py Pk = P
the leftmost k-3 the leftmost k=2 | all p's become
p's become p+i, p's become p+l, p+l
the others the others
b unchanged unchanged

Proof : The proof of this theorem follows almost directly from
Theorem 7. However, we should point out why the word 'rightmost' in
Theorem 7 is changed to "leftmost' in this Theorem, a fact that is not
obvious. Note that the sequeuce obtained from p{T) by removing the

L]

first k-1 elements Pys Pos evs Ppoy has the property that all Py-y S
appear to the left of all (pk_l-l)'s which appear to the left of
all (pk_l-Z)'s which appear to the left of all (pk~l-3)% and so on.
Thus, the operation which reverses the operation in Theorem 7 is
that stated in this Theorem.
As an example, suppose we are piven the index of a ternary tree
with 5 internal nodes to he 87
Since
N(6,4,1)=42 N(6,3,1)=130
we have
P72
Since
87- N(6,4,1)=45
N(5,3,0)=33 N(5,2,0)=88
we have
p,=?
we have now '
index (Rp(T))=87-N(6,4,1)-N(5,3,0)=12
Since
N(5,4,1)=7 N(5,3,1)=25

we have
t

P =2
Since

12-N(5,4,1)=5

N(4,4,0)=1 N(4,3,0)=6
we have

P,=3
We have now

tadex R(R(T)))=12-N(5,4,1)-N(4,4,0)=4

di



|
.
|

Since
N(4,4,1) = | N(4,3,1) = 5
we have
Pll = 2
si I )
nee 4 = N(4,4,1) = 3
N(3,3, - =
we have 153 3 (2)) ! N(3,2,0) = 4

we have now

2
index@AE(T)))) = 4 - N(4,4,1) - N(3,3,0) = 2

Since

N(3,3,1) =1 N(3,2,1) = 3
we have "o,

Pl .
Since 2 - N(3,3,1) = 1

N(2,2,0) = I N(2,1,0) = 2
we have

"e o l'

2
we have nowi .dex«‘ﬂ(«(ﬂ('f))))) = 4 - N(3,3,1) - N(2,2,0) =0
Now, we can assemble the permutation of T as follows :

the permutation ofSZGqGZG?(T))))) is (11)

the permutation of MCQ(T)))) is (1122)

the permutation ofJ%ﬂ?CT))) is (221133)
the permutation of.ﬁkT) is (23321144)
the permutation of T it (223443)155)

5. THE 0-1 REPRESENTATION OF TREES

It is well-known that a k-ary tree with n internal nodes can be
represented by a éequence of n 1's and n(k-1)+1 0's. If we label an
internal node with a | and a leaf with a O and traverse the tree in
the order of ‘root-first subtree-second subtree - ... = kCh subtree,

we obtain a sequence of n 1's and n(k-1)+} O's.
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We shall refer to such a representation of a tree as the 0-I

representation. Figure 9 shows an example, It can be shown that:

1101000001001000

Figure 9

Theorem 10 : The lexicographical ordering of the 0-] representa-
tions of k-ary trees is consistent with the linear ordering of k-ary

trees in Definition 1.
The ranking and unranking algorithm presented in Sections 3 and
4 are particularly suitable when the 0-] sequence representation is

used. We :.only need to note the followings

Theorem 11 : In the 0O-! representation of k~ary trees, for

i=1,2, ..., k=1, the level number of the ith leftmost ‘leaf is

equal to the number of 1's in front of the ith 0.
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Theorem 12 :

(i) The 0-]1 representation oféZ(T) can be obtained from thkat
of T by deleting the first k-1 0's and the rightmost | in front of
the (k-1)5% 0%

(ii) The 0-1 Trepresentation of T ctan be obtained from : '
that of Q(T), when the values of a;, a,, 3y

adding in front of the 0-1 sequence representation ofﬁikT) a

are given, by

sequence consisting of k-1 0O's and a suitable number of 1's such that
. . .th

a, is equal to the number of 1's in front of the i~ 0 for

i=1,2, ..., k=1,

Indeed, the ranking and unranking algorithm described here is a

natural extension of that for binary tree due to Zaks [6].

6. THE LEVEL NUMBER REPRESENTATION OF TREES

As was pointed out above, the level number of a leaf is defined
to be the length of the path (number of edges) from the root to the
leaf. By the level number representation of a k-ary tree we mean
the sequence of level numbers of the leaves reading from left to
right., In [3] and [4] listing,ranking, and unranking algorithm for
k-ary trees were studied, where the level number representation of

k-ary trees was employed. Figure 10 shows an example. It is known
that : ‘

. . t .
* Actually, removing any of the 1's in front of the (k-l)s 0 wiil do.
. . t
However, the rightmost | in front of the (k—l)s 0 corresponds to

the internal node that was removed in the reduction procedure in

Section 3.
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22332/ 223933

Figure 10

Theorem 13 : The lexicographical ordering of the level number
representation of k-ary trees is consistent with the linear ordering

of k-ary trees in Definition 1.

It is quite clear that our ranking and unranking algorithm can
be applied to the case when the level number representation of k-ary
trees is used. To obtain the level number representation ofi?%r) from
the level number representation of T, we need to identify the leaves
of those subtrees that are moved up in the reduction scheme.
Conversely, in the unranking algorithm, we also need to identify the
leaves of those subtrees that are moved down .to recover T from.ﬁRT).
Since suéh a shep is conceptually very simple, we shall leave the
detail ed description as the standard " exercise for the reader" (Hin*:
The subtrees can be identified by carrying out a sequence of "left
reductions'". By sleft reduction we mean starting from the left of
the level number representation, replace the first occurrence of k

consecutive level number qq...q by q-1.)
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7. REMARKS

We show in this paper :

(1) A new generalization of the permutation representation of
binary trees studied in {5]. Our ranking and unranking algorithm are

also different from that in [5).

(2) A generalization of the ranking and unranking algorithm

for binary trees studied in (6] when the 0-| representation is used.

(3) Our ranking and unrankiag algorithms for k-any trees when

the level number representation is used are also dif{ferent from
that in (3, 4].

The author wishes to thank Mr. P. Ramanan f{or many helpful

suggestions.
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