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ABSTRACT

Trade-off models are developed for siting inventories

of repair parts by Naval Supply Center (NSC) which must sup-

port a local Naval Air Rework Facility (NARF). Two strategies

are considered; siting at the NSC with direct delivery to the

NARF and siting at the NARF. Three direct delivery alterna-

tives which include both scheduled and unscheduled delivery

schemes are modeled when siting is at the NSC. The measure

of effectiveness for all alternatives is the expected total

costs per time period. Cost elements include delivery costs

and production delay costs. Algorithms for solving the

trade-off models are also presented.
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I. INTRODUCTION

In the consolidation of wholesale supply support

between the Naval Supply Centers (NSC) at Oakland, San Diego,

and Norfolk, and the neighboring Naval Air Station (NAS)

supply centers, the question of supply support of the local

Naval Air Rework Facilities (NARFs) is of major concern. ElI A

goal of these consolidations is not to degrade service to the

NARF and hence the question of whether special inventories

should be located at the customer's site is raised. One obvi-

ous advantage would be that the response time of the supply

system would be quicker because the travel time would be

shorter from the on-site system than it would be if the

material were held at the NSC. The transportation costs and

customer delay costs would also be less. The disadvantage is

that additional costs are incurred in maintaining these

on-site systems.

The answer to this question of supply support lies in

the results of a trade-off analysis which seeks to find a

balance between the three cost components mentioned above.

Such a balance may result in all the inventory at the customer

site and none at the NSC, or all at the NSC and none on-site,

or some at each location. The purpose of this report is to

develop the models needed to conduct the trade-off analysis

for the all-or-none situations since they correspond to the

current philosophy of the NSCs towards NARF support.
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Figure 1 suggests the details which should be con-

sidered in the trade-off model. The element denoted as OSIS

is the on-site inventory system.

A/

Figure 1.

Branch A of the figure represents the alternative of direct

delivery from the NSC to the NARF. Branches B and C represent

the alternative of a periodic replenishment to the OSIS from

the NSC and direct delivery as each demand occurs from the

OSIS to the NARF, respectively. Branch A deliveries may not

be immediate upon receipt of a demand in contrast to Branch C.

In fact, the most economical approach may be to delay delivery

until several demands have been received.

Deterministic Demand--To develop a basis for understanding

the more complex probabilistic direct delivery models to be

presented later, we consider the case of deterministic or

known demand. Suppose that a truck has a capacity of n

units of an item. Suppose also that CT is the cost of a

trip by the truck from the NSC to the NARF. If the truck

makes a trip as soon as the NSC receives and processes a unit

demand, then the cost of shipping the unit is CT. If, how-

ever, the truck waits for k units, then the shipping cost

per unit is

2



C T

and obviously the cheapest unit cost occurs when the truck is

filled. That is,

CT

n

However, while the truck is waiting for a full load,

the units waiting will cause delays in production and these

delays will result in extra costs to the NARF. To model these

delays, let us suppose that a unit is needed every t units

of time because of the repair schedule and that the cost of a

delay over t for one unit is C If we wait for k units

to be accumulated, the total delay cost will be

cD  k [k-l1 iD (2)

To confirm formula (2), consider Figure 2.

k k

Q)

r 3
S2

0 t 2t 3t [k-lit time

Figure 2.
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If we wait until k units have accumulated, the truck

will not leave until time [k-It. The first unit demanded

occurs at time = 0 and is delayed [k-il' periods of length t,

the second unit demanded occurs at time t, and is delayed

[Lk-2] periods, the third unit is demanded at time 2t, and

waits [k-3] periods, and so on. Only the k thunit doesn't

wait. The total waiting time in periods is therefore

[lk-lI + [k-21 + [k-31 + -- + 1 + 0 .(3)

The sum given by (3) can be written is a short form as

k [k-i 1 (4
2

and when we multiply (4) by the cost CD per unit delayed

one period we get formula (2).

The average delay cost per unit is then obtained by

dividing (2) by k; that is,

CwD [k-i]

2

The total average cost of shipping and delay can now

be written as the tum of formulas (1) and (5):

C(k) = k-3 + --- . ()

Equation (6) can also be viewed as the average cost per period

because demand is a known function of time.
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Random Demand--Equation (6) was derived based on the assumpticn

that one unit of a repair part is demanded every t time

units. This demand pattern would correspond to a repair part

which is replaced in every component undergoing overhaul. If,

however, a repair part is needed only p percent of the time

in such a component, where p < 100%, then such a part may not

be demanded every t unit of time and we must therefore con-

sider minimizing the expected total costs per period. And

since it may not be desirable for the truck to always be filled

when it makes a trip, we need to consider some alternative

delivery strategies. Those which seem most appropriate are:

1. The truck makes a delivery at the end of every N

periods if there is at least one demand during the

N periods.

2. The truck makes a delivery as soon as demands have

accumulated to a specified number K not exceeding

its capacity n.

3. The truck makes a delivery in the (N-l) s t period

following the first demand received after the last

delivery.

Alternative 1 corresponds to scheduled deliveries.

Alternative 3 is a variant of scheduled deliveries where

time = 0 corresponds to the time of the first demand. Alter-

native 2 corresponds to unscheduled deliveries.

To compare these alternatives, we need to develop

expressions for the expected average total costs per period

5



because the time between deliveries may be different for each

alternative and thus the number delivered over a given time

interval can be expected to be different. Chapters II, III,

and IV present the derivations needed.

Another set of models are needed to complete the

picture depicted in Figure 1. These are the models which form

the basis for comparing the expected total costs per period

of operating an on-site inventory system with those costs

derived in Chapters II, III and IV. The derivations are

presented in Chapter V.

Chapter VI combines the models from Chapters II

through V into a structure such that the trade-off analyses

can be made. Included in that structure is the impact of

constraints imposed by time standards and truck capacity.

These constraints are derived in Chapters II, III and IV for

the direct delivery alternatives. The final chapter, Chapter

VII, summarizes the modeling efforts and the results of the

analysis. It also makes suggestions for model refinements.
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II. ALTERNATIVE 1

Introduction--Alternative 1 assumes that a scheduled delivery

will be made of all the units of an item needed to meet the

demands which have accumulated by the end of N periods. If

none have accumulated the scheduled delivery will be cancelled.

Probabilities--We assume that only one unit of a given repair

part is needed by a component undergoing repair. We also

assume that the probability that it will need to be replaced

is a constant denoted by p. Therefore, the probability dis-

tribution of the demand for x units cf the repair part dur-

ing an interval of N periods (during which N components

are repaired) is described by the binomial distribution; that

is,

p(x;N) =(x (1-p) , (7)

where x= 0, 1, 2, ...,N.

However, for this delivery alternative we would make

a delivery only if at least one demand occurred during the N

periods. Therefore, we must condition (7) for at least one

demand before we can talk about the expected shipping and

shortage costs. Equation (8) provides the needed form.

p(x;N, x>l) = [ p (-p) (8)

where x = 1, 2, 3, ... , N.
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Cost Elements--As with the deterministic model presented in

Chapter I, the costs which will be considered in this and the

other delivery alternatives are the costs associated with

delivering the item to the NARF and the costs of delay asso-

ciated with not delivering the item as soon as it is demanded.

Let CT represent the round-trip costs of a delivery.

These will include the costs of the truck and driver from the

time the truck starts being loaded at the NSC until it returns

to the NSC. CT will be incurred each time a delivery takes

place. If, under the scheduled delivery scheme, a demand does

not occur during an interval of N periods then we assume

initially that no penalty cost 7 is incurred for cancelling

a delivery. Later, we will incorporate that cost into the

model.

The delay costs are costs incurred at the NARF as a

consequence of not having a needed part on hand at the instant

it is needed. Two elements need to be considered here. The

first is a cost, denoted by S, which is the cost associated

with putting the component aside. This could include putting

it on a shelf in a storage area and documenting how far repair

had progressed and what had been ordered. The second element,

denoted by CD, is a time dependent cost which we will refer

to as the delay cost per period. This element might include

labor costs due to work stoppage, inventory holding costs,

and costs associated with a repaired component not being avail-

able to a customer such as a fleet squadron. In the initial

8



formulation of the expected delay costs we will include only

the CD element.

To develop the expected total costs per period, we

must first develop the expected total costs for a time inter-

val of N periods, given that at least one demand occurs and

hence that a delivery will be made. We have already identified

CT to be the round-trip delivery cost. We must now deterriine

the expression for the expected total delay costs. This will

be the product of CD and the expected total delays.

Expected total delays--The delays are a function of the number

of different configurations that demands can take over N

periods. For example, if N = 2 then there are three possible

configurations. The one where a demand occurs in the first

period and none occurs in the second results in a delay of

one period. For the configuration having a demand in the

second period and none in the first, a delay of zero periods

results. The final configuration when N = 2 is a demand in

both periods. This creates a delay of one period for the

first period's demand and zero delay for the second period's

demand, resulting in a total delay of one period.

The total number of configurations where exactly x

demands occur is

Snx =(Nx

As a consequence, the total number of configurations which can

occur over N periods and which have at least one demand is

9



N N [NJ= N
n= En E 2-I (9)

x=l Xl 1

Theorem II-1. The expected total delay time for Alternative 1

is:

ETD(N) - N (N-i) p (10)211- (lp)N7 '

Proof. To determine the expected total delay associated with

the n configurations given by (9) we first consider only

those having exactly x demands where x > 1. The probability

of each such configuration is:

x N-x
P(x,N) = N (11)

1 - (l p)N

The number of configurations having a demand in period

< j < N is

m = N-i (12)

It is important to note that m is independent of j. Those

demands occurring in period j will have to wait until period

N for delivery and hence each must wait N-j periods. The

total of all delays for those configurations having x demands

is therefore:

10



TD(x,N) = Z. [N-z =j=l Ix-I

= Z (N-j)Ix-1 j =i

~ N-i)

N- 1 tx-l- (13)

From (11) and (13) it easily follows that the total

expected delays over all x values is given by (14) which is

identical to (10) and the proof is complete.

N
ETD(N) = Z TD(x,N)P(x,N)

x=1

N(N-l)p N [N-1) pX-1
N x c-l p)N-x

_ N(N-l)p (14)
2[1 - (l-p)N (

Expected Total Costs per Period--In developing the expected

costs per period, we must consider a cycle which can include

not making a delivery since we stated earlier that Alternative 1

has a scheduled delivery at the end of N periods if there

is at least one demand during this time interval.

Theorem 11-2. The expected total costs per period for

Alternative 1 are:

11



CT[1- (l-p)N] NCD(N-I)P [£nEl- N 3 (15)
ECP (N) T N + 2 -(1-p5()p)

Proof: We begin with time zero and assume that at least one

demand occurs in the first N periods. The total expected

costs over these N periods is then made up of the delivery

cost, CT , for one trip and the total expected delay costs

which is the product of C and equation (14). The cost per
D

period is obtained by dividing each term by N. The result

is given as formula (16).

CT CD(N-I)p
S+ N (16)N 2[li- (l-p) N ]

The associated probability of at least one demand during the

first N periods is 1 - ( N-p)N

Next we assume no demands occur during the first N

periods and at least one occurs during the next N periods.

The expected cost per period is then:

CT CD (N-l)p

4[1- (l-p)

The associated probability of no demands in the first N

periods and at least one in the second N periods is

(1-p)N El _ (l-p)N ]

12 4



The general formulas for no demands during (k-l)N

periods and at least one during the last N periods are (17)

and (18).

CT CD (N-l)p
kN +  " (17)

2kFl (l-p) N "

(1-p) (k-l)N [1 - (l-p)Nj (18)

The expected costs per period over all k values is

therefore

k O CTl CD (N l)p _P k l N l _ )N
ECP(N) =+ N (l-p) N[I - (l-p) 

k= 2k[l- (l-

= N + 2 kl (-p"
k= 1

The summation term of (19) can be rewritten as follows:

1 (k-) N 1 1 kNk (lp)N k-1 k (l-p)
k=1 lp k=l

a k
a k 1 k

= 1- Zn(l-a) , (20)

where a = (l-p) N . The series sums to the negative of Zn(l-a)

since a < 1.

13



When (20) is combined with (19) the result is (15)

and the proof is complete.

Determination of Optimal N--Because N takes on only integer

values, the use of finite differences is appropriate for

determining optimal N. Optimal N is that value of N which

satisfies the following relation:

ECP(N-I) > ECP(N) < ECP(N+l)

Equivalently, optimal N is the largest value of N such

that

AECP(N) = ECP(N) - ECP(N-1) < 0

Unfortunately, the algebraic expression for LECP(N) which

results from using (15) and taking the difference between

ECP(N) and ECP(N-l) is just as complex as (15). Therefore,

a numerical evaluation of (15) for a range of N values

appears to be the most practical way of searching for optimal

N.

Penalty from Cancelling a Scheduled Delivery--Suppose that

the cost of delivery includes a penalty cost n for cancel-

ling a scheduled delivery (because no demands occurred during

an interval of N periods). If no demands occur during the

first (k-l)N periods then k-I cancellations will occur. Since

the cost for each is 7 , equation (17) will be modified to

that given by (21).

14



(k-) C C D(N-l) p
k-- + +  (21)
kN2kl (l-p) N(

The expected costs per period over all k values is then

(C T 701- -, C D(N-l)p F-Zn[l-(l-p"'Q
ECP(N) = + .2 JL J .(22)

+

The impact of introducing 7 can be easily seen by comparing

(22) with (15).

Delay Cost Independent of Time--Suppose that there is a fixed

unit cost S associated with putting aside a component until

the needed part arrives. The total of such costs during an

interval of N periods in which at least one demand occurs

is the product of n and the expected number of units being

delivered. The expected number of units being delivered, M1

is given by (23).

N (N) Px (1-) N-x
M = xN-2. x=l rli - (l-p) N

E(x)

[I- (l-p) 
N

_ Np (23)

[1- (1-p)

Here E(x) is the expected value of a binomial random variable.

The total expected cost over N is then increased by

the product SM V Formula (17) is then modified as follows

15
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CT Sp + CD(N-)p (

2k[l - (l-p)N (4

and (15) is therefore modified as shown by (25).

T CD (N-l)p -Zn[l-(l-p) J

ECP(N) N + 2 + N (25)

If the time-dependent delay cost CD is negligible

relative to S then optimal N will be infinite since the

S term in the left bracket of (24) is not an increasing

function of N.

Time Standards--Time standards have been established as upper

bounds on the average time allowed a supply center to respond

to a customer's demand. If T denotes this standard in

periods then the expected delay in periods per unit delivery

is required to not exceed T.

Theorem 11-3. The expected delay per unit under alternative 1

is

UD(N) = N-1 (26)

Proof. Equation (13) gives the total of all delays for those

configurations having x demands during N periods.

Equation (11) gives the probability of each such configuration.

Dividing (13) by x gives the total of all average delays per

unit for those configurations. Thus the expression for

UD(N) is

16



UD(N) TD(xN) P(x,N)
x=l x

N(N-1) p N 1 -- l

2[1 - (1) x=l xx-

(N-i) N fN) x 1  N-x(1-(p)N ] lx=1(-p2 1- (_)Nx=l xj

(N-i) N
N,

2[1 - (l-p)

Cancellation of the probability terms in the denominator and

numerator results in the right side of (26) and the proof is

complete.

Setting up the time constraint inequality; namely,

UD(N) - < T2-

and solving for N gives

N < 2T + 1 (27)

Inequality (27) provides an easy way of determining if an

optimal N is also feasible with respect to a given time

standard.

Truck Capacity Constraint--When CT was introduced it was

assumed to represent the round-trip delivery costs incurred

by one truck (and driver). As a consequence, it is appropriate

to include a constraint to represent the capacity of that

17



truck. Let M represent the maximum number of units of a

given repair part that can be loaded on a given truck. Under

alternative 1 it is possible to have a demand during each of

a sequence of N periods. As a consequence, N units would

need to be delivered. Therefore, N < M is required to insure

that all possible quantities demanded during N periods can

be delivered by the truck at the end of these periods.

18



III. ALTERNATIVE 2

Introduction--Alternative 2 assumes that a delivery is not

made until K units of an item have been demanded. Delivery

is assumed to take place as soon as the last demand occurs.

The basic assumptions spelled out in Chapter II with respect

to cost elements and the probability of demand for a repair

part also apply to this alternative.

Probabilities--For Alternative 2 we will be interested in the

probability that n periods will pass before we accumulate

K demands with the last demand occurring in period n. This

probability is described by the negative binomial distribu-

tion [2]; namely,

p(n; K) = n-IPK (lK n-K (28)

where n=K, K+l, K+2,....

Expected Total Delays--As was observed in Chapter II, the

delays are a function of the number of different configurations

that demands can take over n periods. When K = 2 and n = 4,

we get 3 demand configurations. In all three, the second

demand occurs in the fourth period. Thus, the first demand

can occur in either period 1, 2, or 3. The delay is zero for

the second demand in all three cases. The delay for the first

demand is 3, 2, and 1 periods, respectively.

For the general case, the number of configurations,

m, having a demand occurring in periods 1 < j < n - 1 is given

by (29).

19



In-21

m = (k-2 (29)

Equation (29) differs from (12) because the Kth  demand always

occurs in period n for Alternative 2. Again we see that m

is independent of j.

Theorem II1-1. The expected total delay time for Alternative 2

is

ETD(K) - K(K-l) (30)2p

Proof. The total delay associated with the configurations

having a demand in period j is m[n-j]. The total of all

delays for K demands during n periods is therefore

n- 1
TD(n, K) = Z (n-j) K 2  (31)

j=l

We see that (31) can be rewritten as

n-2) n-i

TD(n, K) = K2 (n-j)
j=l

- n(n-1) (n-2)
T (K-2)

2 K-l) (32)

The probability of each configuration is

P(nK) K (1 n-K (33)

20



The total expected delays over all n values are

obtained by summing the products of (32) and (33) over all

n > K.

ETD(K) Z TD(n,K)P(n,K)
n=K

- n(K-l) fnI K '2-K
2 (K-1 P(1-p)

n=K

- lK n[ 3 ~K 1 )f~

K-1 fK+x-l)K
ZKEx + K] K- x1P

= - CX fK-l K lpx=0

2~ [K + 0 K1X P(1P)j

_K-1 K(l-pj K(K-l) (4

Since (34) is identical to (30), the proof is complete.

Expected Total Costs per Period--Under Alternative 2 a

delivery will be made as soon as K demands have accumulated.

This will span n > K periods.

Theorem 111-2. The expected total costs per period for

Alternative 2 are:

ECP(K) =CT 1 fn-) PK (_P) nK + CD (35)
n=K

21



Proof. For a specified value of K, the delivery costs per

period are

I (n-l 11pK (_)n-K
ETCP(K) CT  E r K-lP(l -K (36)

n=K

Equation (36) results from summing the product of CT/n and

(28) over all n > K.

The expected delays costs per period are obtained by

first dividing the total delays for a given n (namely

TD(n,K)) by n and then summing the product of CD , that

result, and (33) over all n > K.

EDCP(K) = C E TD(n,K) P(n,K)D nnn=K

(K-1) (n-l K n-K

= CD -p- K (l-p)
n=K

= CD (K-l)D 
(37)

Adding (36) and (37) together gives (35).

Determination of Optimal K--The use of finite differences to

determine optimal K does not result in any relationship

which is less complex than (35). In particular, the infinite

sum in the CT term remains. Fortunately, however, bounds

can be derived for (35) which can serve to reduce the number

of K values for which (35) must be evaluated in searching

for optimal K.

22



Theo' .em 111-3. The expected delivery ccst per period for

Alternative 2 is bounded as follows:

CTP CTPK TP< ETCP(K) < C-T 
(38)

Pr0o_'. Equation (36) is, in reality, the product of CT and

the expected value of 1/n; that is,

Jensen's Rule [21 therefore allows us to obtain the lower

bound. That rules states that

< Ef
E(n) - E(n3

Because CT  is a constant we can write

CT
T 7 CTE F = ETCP(K)

The value of E(n), when n has the negative

binomial distribution given by (28), is, from L2Z,

E(n) K (39)
P

Therefore,

CT  CTP

3 (40)
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Equation (40) is the lower bound of (38).

Next,

1( 1-1 KK n-I n-2 K n-KK-I lp n [ K-1)I (1-p)
n=K n=K

< z n-2 K -
n=K [K-1 P

since

n-i n 1
n n

Then,

nK K-1J R'K n=K [K-2) K-

Therefore,

and hence the upper bound of (38) is (41)

CTP (41)

When (38) is combined with (37), the bounds for the

expected total costs per period are easily determined to be:

CTP C [K-] C Tp CDEK-1]

2 < ECP(K) < 2 (42)
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These bounds can be analyzed using finite differences to deter-

mine their respective optimal K values. Theorem 111-4 and

its proof give the results.

Theorem 111-4. The value of K which minimizes the lower

bound of (42) is one less in value than the value of K which jl
minimizes the upper bound.

Proof. Using the approach of finite differences we know that

optimal K for the lower bound is the largest K value for

which

C(K) - C(K-1) < 0

When we evaluate this difference we get

CTP C D
C(K) - C(K-1) - K(K-1) + < '

which can be rewritten as

2CTP

K(K-l) < 2c (43)
CD

Similarly, for the upper bound

CTP CD

C(K) - C(K-l) (K-l) (K-2) + < 0

which can be rewritten as

2CTP
(K-l) (K-2) < CT (44)

CD
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We see immediately that (43) and (44) differ by the

fact that K has been replaced by K-1. As a consequence,

optimal K for (43) will be one unit less than optimal K

for (44).

Conjecture. The value of K which minimizes ECP(K) is either

K* or K** where K* minimizes the lower bound of (42) and

K** minimizes the upper bound.

Although computational experience shows this conjec-

ture to be true and intuition strongly favors it, no formal

proof has been yet been discovered.

Modification of the Expected Costs per Period--In Chapter II,

two modifications of the basic expected costs formula were

presented. The first was the inclusion of a penalty cost for

cancelling a scheduled delivery. Such a cost would not be

appropriate to Alternative 2 since it is an unscheduled de-

livery strategy. However, it could be argued that CT for

this alternative might be appropriately higher than that for

a scheduled delivery since the need for a truck will not be

known until the Kth demand has occurred.

The second modification was the inclusion of a fixed

delay cost S per unit demanded. Under Alternative 2, the

total of such costs is merely SK since K units are always

delivered. The expected costs per period is then modified to

include the term

S 0 1 (n-1 PK (JP n-KSK Z n [K ljp (l
n=K
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Thus (35) is now

Co CD CK-l)

+ Sl00 n-l K n-K + D(K1
ECP(K) = [CT + SKK 1P)iip- p

n=Kn

The bounds for ECP(K) are modified also. The lower

is now

CTP CD (K-l)-- P- + Sp + D
K 2

and the upper is

CTP + K CD(K-)

K- + K-1 +  2

If the value of CD is negligible with respect to S then
the value of K which minimizes the lower bound is infinity.

The value of K which minimizes the upper bound is also

infinity. Therefore, optimal K minimizing ECP(K) must also

be infinite.

Time Standards--Again denote T as the upper bound on the

average delay time per unit.

Theorem 111-5. The expected delay per unit under Alternative

2 is

(K-l)
UD(K) = -1) . (46)

Proof. Because K units will always be delivered we can get

the expected delay per unit by merely dividing the total ex-

pected delay, given by (30), by K. The result is (46).
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When the time constraint is introduced, we get

UD(K) = - T

Solving for K in this inequality gives

K < 2pT + 1 (47)

Truck Capacity Constraint--If M is the maximum capacity of

the truck then it follows that K < M is the capacity constraint.

Expected Number of Periods Between Deliveries--When comparing

Alternative 2 with the other alternatives it will be useful to know

the expected number of periods between deliveries. The formula

was given earlier as (39); namely,

E(n) K
p
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IV. ALTERNATIVE 3

Introduction--Under Alternative 3, we start counting time from

when the first demand occurs after the delivery truck has

returned and is again available for further deliveries. We

then wait N-1 periods after the first demand before we deliver

again. The basic assumptions spelled out in Chapter II rela-

tive to cost elements and the probability of demand for a

repair part also apply to this alternative.

Probabilities--The probability of x demands in N periods,

given that the first one always occurs in the first period, is

p(x;N) =:x- ( 1 )N-x, (48)

where x =1, 2, 3, ..., N.

Expected Total Delays--We start counting delay time from the

period when the first demand occurs. If we deliver N-! periods

later then the total delay for the first demand is N-1 periods.

The delays associated with subsequent demands occurring in

periods 2, 3, up to N, are a function of the different con-

figurations of demand which can occur. For example, if N=2

then two cases occur; the first has a demand in period 1 and

none in period 2, the second has a demand in both periods 1

and 2. In each case the first demand is delayed one period.

In the first case, no subsequent delay occurs since no sub-

sequent demand occurs. In the second case, the second demand

incurs a delay of essentially zero since the truck leaves

shortly after the demand occurs.
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The total number of configurations having exactly x

demands during N is

nx N-i (49)

The total number of configurations for a given N is then

N IN-11~ 2N-i

n Z (N-1 = 2 N (50)

Theorem IV-I. The expected total delay time for Alternative 3

is:

ETD(N) = [N-1] (N2) p + ](51)

Proof. The number of configurations having a demand in period

2 < j < N and a total of x demands over the N periods is

m = (-2) (52)

where x = 2, 3, ... , N. Obviously, m is independent of j.

The delay for a demand occurring in period j is N-j.

The delay for demands occurring in the first period

is N-i and equation (49) gives the total number of configura-

tions having x demands. The total of all delays for these

x demands is
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1A
N-l N - 21

TD(x,N) = x-1 (N-i) + j=2 x-2) (N-j)

= N-I'1 (N-i) + rN-2) (N-1)(N-
x-lj Lx- 2 j 2

= [( (N-1 ) ! N- (x-l) (N-2)
• 2" 2 ] -lj 2

+ (N-2)x I(N-1) (53)
+l 2 x-lj)

The probability of one configuration having x demands

in N periods, given that one occurs in the first period is

P(x,N) = px-l (l-p) N-x (54)

The expected total delay is then obtained by summing

the products of (53) and (54) over all 1 < x < N.

N
ETD(N) = TD(x,N) P(x,N)

x=1

N rN L,4_2)%] (N-'1 x-1 N-x

x=l I

N N  N-1] x-1 N-x

S- 'x- p(l-p)
x=l

N-2 N (N-l] x-i

+ -- x j x-1 (1-p)N-x
x=l k~
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= + -- Z (u+l) N-1 pU(lp)N-l-u
u=O i

N + N-2 N-) + 1

(N-l) + N 
p

The proof is complete.

Expected Total Costs per Period--In analyzing the expected

costs per period we consider a cycle whose length is N plus

the time span in periods between the time the truck becomes

available for a delivery and the first demand occurs.

Theorem IV-2. The expected total costs per period for

Alternative 3 are

ECP(N) = ETC(N) Z(k-+N P(l-p) k- (55)

where:

ETC(N) = CT + CD (N1) 2p + I. (56)

Proof. Equation (56) describes the expected total costs

over the N periods. Now, if the first demand occurs in the

first period after the truck becomes available then the total

cost per period is ETC(N) divided by N since we deliver in

the Nth period. The probability of a demand in the first

period is p. If, instad, the first demand occurs in period 2,

then the average expected cost per period is ETC(N) divided

by N+i and the probability of the first demand occurring in
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period 2 is (l-p)p. The general forms for the average cost

per period and the associated probability when the first demand

occurs in period k are:

ETC(N) k-l
(k-l)+N and p(l-p)

The expected total costs per period are the sum of the products

of these two general forms over all possible k values. The

result is equation (55). The summation term of equation (55)

cannot be written in a closed form, however, bounds can be

stated.

Theorem IV-3. The expected total costs per period under

Alternative 3 are bounded as follows:

ETC(N) P < ECP(N) < ETC(N) min (-Znp)l (56)

froof. We can write ECP(N) as the product of ETC(N) and the

expected value of the reciprocal of (N+k-l) where k has a

geometric distribution. Now from Jensen's Rule L27 we know

that

1_ E _ 1  (57)
E-(N+k-1) < LNq +k -l)

Next,

E(N+k-1) = N-1 + E(k)

= N-I + L
p

_ 1 + (N-l)p (58)
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The product of the lower bound from Jensen's Rule and ETC(N)

is the lower bound given by (56); namely,

ETC(N) p (59)
1+ (N-l) p

Consider next the actual expansion of the bracket

term of (55).

E 1 p + -- p (1-p) + 1 p (l-p) 2 + (60)
EN+k1 ~N+l p N+2

When N=1 the right side of (60) reduces to

P + _p + p(l-p) 2+ p(l-p) 3

p 3 +-4 -- --

=Pa + I-+ a
a3

= P [-Zn(l-a)]
a

= [-Znp] (61)

Here we introduced a in place of (l-p) to simplify the

middle two steps. When N=2 we get

1 1 1 2
p + 1 p(l-p) + 1 p(l-p) +

4+

= . [- Zn(l-a) - a]
a
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For general N:

NZ - n(l-a) - Z (62)(14+k- 1 Nk=lk

Equation (62) can be used in place of the infinite sum for

computations of ECP(N).

An upper bound is suggested by (62); namely,

N - Znp]
(l-p)

However, (61) provides a tighter bound since 1 - p > (l-p)N

for N > 2.

Inspection of (60) suggests another upper bound. If

we keep all denominators at a value of N we get

p [1 + (l-p) + (l-p) 2 + (1-p) 3 +

P *(63)

The advantage of (63) over (61) is that it is a de-

creasing function of N whereas -Znp remains constant. When

p < 0.368, (63) gives the best result. However, when p

increases to 0.7 or 0.9, we need N values of at least 3 and

10, respectively before (63) is preferred. Thus, we can state,

in general, that our bound should be

m -inpl (64)
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And, when we form the product of (64) with ETC(N) we get

ETC(N) min (-Znp)

which is the upper bound of (56).

While (62) is not difficult to use when N is small,

the summation becomes tedious for large N and hence optimal

solutions to the bounds should be valuable in narrowing the

values of N to be investigated. As in Chapter III, we have

not been able to prove it but computational experience suggests

that

Conjecture. The value of N which minimizes ECP(N) is bounded

as follows:

N* < N < N**,

where N* minimizes the lower bound and N** minimizes the

upper bound given in (56).

The relationships for determining the optimal values

of N for the lower and upper bounds are derived below.

Theorem IV-4. The optimal value of N which minimizes the

lower bound is the largest value of N which satisfies

2 
2CTP

(N-l) (N-2)p + 2[(N-2)p + 1] < C (65)

The optimal value of N which minimizes the upper bound is

the largest value of N which satisfies
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[1

2C T
N(N-1)p + 2(l-p) < - CD (66)

Froof. For the lower bound we want the largest N such that

ETC(N) -ETC(N-l) [ I.r3-p ] < 0 .(67)

The difference in the CT  term is

CT l+(N-l)p I +(N-2) p

-CTp(

[+(N-l)pj[l+(N-2)p] (68)

The difference in the CD  term is 1D
CD 1 N P+i] p(N-2)[IN 3P+1

D 1+ (N-l)p - +(N-2)p

(N-l) (N-2)p2 + 2(N-2)p + (69)
Ll+(N-l)pJLl+N-2)p] 2 (

The sum of (68) and (69) constitutes the left side of

(67). Upon cancellation of common terms and movement of the

cost parameters to the right side, we get the result shown as

(65).

For the upper bound we assume that

min [! , - znp} 2
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for the N values where the conjecture would be useful. We

then want the largest value of N for which

ETC(N) pETC(N1) [l< 0 (70)

The difference in the CT  term is

C TP [1 1 1C CTP (71)
N-p) N N-1j N(N-1) (l-p)

The difference in the CD  term is

CDP [(N-) [(N-2)p + 2] - (N-2) ]+ 2]
2(-p)I N N- [(N-3)p+

CDS2N(N-D)(P) [pN(N-1) + 2(l-p)] (72)

The sum of (71) and (72) constitutes the left side of (70).

Cancellations and rearrangements yield (66).

Modification of the Expected Costs per Period--The inclusion

of the penalty cost for cancelling a scheduled delivery is

not appropriate for this alternative since it is not a sched-

uled delivery strategy. As in Chapter III, it might be argued

that the CT value would be higher for this alternative than

for Alternative 1. It might also be argued that the CT

value is lower than for Alternative 2 since the time at which

a truck will be needed is known as soon as the first demand

occurs after the truck completes the previous delivery. Thus

a reservation can be made ahead of time.
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The second modification was the inclusion of the

fixed cost S per unit demanded. As with Alternative 1,

the total expected costs ETC(N) over N periods is the

product of S and the expected number delivered. And for

Alternative 3, the expected number delivered, M3, is:

N r N-ljpx-l N-x
M = Z x (l-p)

x=l

N-I [u+l [N-1),u (l-p) N- I - u

u=O u

= 1 + E(u)

= 1 + (N-l)p (73)

The modified form of ETC(N) is given by equation (74).

ETC(N) = CT + S + (N-1) I + Sp + CD  (74)

The lower bound for ECP(N) when the S term is

included is:

PCT + PCD(N-)[ 2  +
1 + (N-l)p + Sp (75)

and, if the value of CD is negligible with respect to S,

the optimal value of N for this bound is infinite. A similar

argument results in an infinite optimal N for the upper

bound. As a consequence, the N minimizing ECP(N) must also
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be infinite. The reader will recall that this was also the

result for Alternative 1.

Time Standards--With T being the time constraint in periods

we again must have the expected delay per unit such that

UD(N) < T

where UD(N) is the expected delay per unit.

Theorem IV-5. The expected delay per unit under Alternative

3 is

UD(N) = [(N-2) + p-J) (76)p (6

Proo. Following the arguments in the proof of Theorem 11-3,

N
UD(N) Z TD(x,N) P(x,N)

x=1

NN (N-2)] [N-) \-1 N-xz -2 r x-l p  (1-P)N-

N + N -2
= 1

S 1 (77)
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Now

NE[!= N Ep (1 -p)N-x
x=l

=1 N FN x( 1 N-x

- p (78)

p

Substitution of (78) into (77) results immediately in (76).

In contrast to Alternative 1, substitution of (76)

for UD(N) in the time constraint does not provide a simple

expression for N.

Truck Capacity Constraint--If M is the maximum capacity of

the delivery truck then the truck capacity constraint is

N < M since it is possible that N units will be demanded

over the N periods.
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V. ON-SITE SYSTEM

Introduction--An on-site inventory system is an alternative

to delivery. In comparing it to direct delivery, it is appro-

priate to develop the comparable total expected costs per

periods. Therefore, an expected costs model for the on-site

system must be developed for comparison with each of the three

direct delivery alternatives.

A basic assumption of these models will be that suf-

ficient inventory exists on-site to meet all demands.

Cost Elements--A fixed cost per period is assumed to represent

labor and related overhead costs. It will be denoted by CL

A delay cost is also appropriate since it is assumed

that the on-site system will not be distributed to each re-

pair production line but will instead be centrally located at

the NARF. This delay cost is assumed to be a fixed cost per

unit demanded and will be denoted by s.

Alternative 1 Model--In comparing the expected costs of the

on-site system with the scheduled delivery alternative, we

need to evaluate the expected delay costs over the same time

frames as were used in Alternative 1. If we have k-1 inter-

vals of N periods before a demand occurs then the probabil-

ity of such an occurrence is given by formula (18). The ex-

pected number of units demanded during the last interval of

N periods is given by equation (23) and the expected total

delay costs are

42



sM = sNp (79)1 [1i- (l-p) N

The expected delay costs per period over the kN periods is

then

1 sp (80)
kN k[l - (l-p) N]

The expected value of (80) over all possible k values is

determined from

Sp E 1(l-p) (k-l)Nrl - (l-p)N]
[i - (lp)N] k=l

00

EI, (k-1)N
k 1p

Znisl - (l-p)
sp (lp)N (81)

Finally, the total expected costs per period for the

on-site system, OECP(N), is the sum of CL  and (81); namely,

OECP(N) = CL + sp ),~ (1 -p)N] (82)

Alternative 2 Model--The CL term is again appropriate. The

total delay cost is now the product sK for one delivery

cycle. The delay costs per period, where n is the number

of periods required to accumulate K demands, is
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sK
(83)n

The probability of n periods being required is

given by (28).

Combining (28) and (83) and summing over all possible

n values gives

n-lk K ksK Z p 1-p) (84)
n=K

And the total expected costs per period is the sum of CL

and (84); that is,

CO 1 (n- 1] pK ( _ )n-k
OECP(K) = CL + sK Z nK-l: pl-p . (85)L n=KnK-

Alternative 3 Model--The expected number of units demanded

before delivery under Alternative 3 is given by (73). Therefore,

the total delay costs are

s[1 + (N-l)p]

The number of periods between deliveries is (k-l) + N so that

the delay cost per period is

s[l + (N-l)p] (86)
( -)+ N

and the probability of the first demand occurring in period

k is p(1-p) k- The expected value of (86) over all possible

k values is therefore
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+ _~~s]. + (Nlp (j .... + )k...,. .. .

k-k
p (1-p)s~l + (N-l)p j'N +

k=l

Finally, the expected total costs per period is

OECP(N) = CL + s[l + (N-l)p] E N + k - f (87) i
k=l
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VI. TRADE-OFF MODELS

Introduction--The first trade-off models to be presented

below compare each direct delivery alternative with its asso-

ciated on-site model. These models include the special con-

ditions where optimal N and K are unity since

they appear to correspond to situations under which an on-

site system seems most appropriate (i.e., having an on-site

system seems better intuitively than making a direct delivery

every time a demand occurs). Finally, the models incorporate

the time standard and truck capacity constraints.

The individual models are then combined into a com-

posite model which is designed to resolve the question of

which direct delivery alternative to use if direct delivery

is the optimal strategy.

Alternative 1--When comparing the direct delivery costs given

by (15) with the corresponding on-site costs given by (82),

it follows that the on-site system is preferred when

OECP(N) < ECP(N). When the cost elements are introduced into

that inequality, the result is that

C < [cT~l-l-,_P N] + 'CD(N-1) -2sI Zn~l-(l-P)N]J (88)L N 2 (lp)N

Now (15) is minimized by a certain N value. However,

the right side of (88) is minimized for a slightly larger

value of N because of the (-2s) term creating a savings in

the delay costs. It is this latter value that is appropriate
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when considering the trade-off between on-site and direct

delivery.

To have N = 1 minimize the right side of (88) we

need to have the latter's value be less for N = 1 than for

N = 2. When N = 1, (88) reduces to

CL <[CT -s 1[-knP1CL<ICT- J I 89)

When N = 2, the right side of (88) is reduced as fellows:

IT -2 CD F-_____2-Ll (i- ) 2 + - s

,2 p)-p) 2
2 2

= CCTP C DP ,]-np( 2 -p)T - p + 2
= C P sp- CD] Zn(-p),

= (CT -s) + 1 CD - p3 p(2-p) (90)

Now (90) is larger than the right side of (89) if
I i]91

CD > CTP + 2 (CT - s)[Znp(2-p 1

Therefore, if CD is large enough that (91) is satisfied and

CL is small enough that (89) is satisfied then an on-site

system is optimal. If CD does not satisfy (91), we must
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[7

compute the right side of (88) for several values of N to

see which value minimizes it and then compare CL with the

resulting minimum. If CL does not satisfy (88) or (89)

then the on-site system is not preferred over the direct de-

livery strategy identified as Alternative 1 and the latter

should then be considered for use.

The initial step in this consideration is to deter-

mine the optimal N value which minimizes equation (15).

Next we must consider the effect of the constraints of time

standards and truck capacity.

In the derivations of the direct delivery models the

time standard T was assumed to be measured in periods. In

reality, it is measured in hours or days. Therefore, given

a time standard and the production schedule we can convert the

actual time standards into equivalent periods.

We can combine the time constraint given by (27) and

truck capacity constraint as follows:

N < min{M, 2T + i} , (92)

where M is the truck capacity in units of the repair part

in question.

If the on-site system was not preferred based on (88)

or C89), then the optimal N determined from minimizing (15)

must be tested against (92). If it does not satisfy (92), we

select the largest integer value of N which does. We must

then test to see if CL satisfies (88) when this N value

is introduced into the right side of the inequality. If CL
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now satisfies (88), the on-site system is preferred over the

constrained direct delivery strategy. Otherwise, we use

Alternative 1 under the constrained value of N.

Alternative 2--The approach in developing the trade-off model

for Alternative 2 is similar to that described above for

Alternative 1.

The general conditions for which OECP(K) < ECP(N),

where equations (85) and (35) respectively apply, is given by

(93).

ln-l, K( n CD (K-1)
CL < (CT - sK) Z n K-lJ -p + 2 (93)

n=K

When K = 1, (93) reduces to the inequality given by

(94).

eL < (CT - S)[ .onI(4

The right side of (93) when K = 2 is

10 n - 1] P 1p2n -2 + C D(CT - 2s) 1 (l-p) n +n=2 nl-

o CD
= (CT - 2s) Z n=2 p2 (1-p) n-2 + -

T ~n=2n

= (CT- 2s) - = 1 - )P(lP)n- 1 + CDT1pn=2 n)2

(Continued)
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= (CT- 2s) P[l~ i p- - P o-znp - (1-p))] C

= (CT - 2s) + 2._++ D (95)

The conditions under which (95) is greater than the right side

of (94) are expressed by (96) and correspond to K = 1

minimizing the right side of (93).

D (12p)2 [ TZnp - (1-p)] - s[(l+p) (-np) - 2(l-p)ij (96)

If CD satisfies (96) and CL satisfies (94) then

the on-site system is optimal. If CD does not satisfy (96)

then we must find that K which minimizes the right side of

(93), evaluate the corresponding value of the right side, and

then test for the value of CL If CL now satisfies (93)

then an on-site system is optimal. Otherwise, direct delivery

under Alternative 2 should be examined by first determining

the optimal value of K being that which minimizes (35) and

then checking this K against the constraints.

The time standard and truck capacity constraints under

Alternative 2 can be combined as

K < min(M, 2pT + 1} (97)

where M is the truck capacity in units of the repair part

in question and T is the time standard in periods. The

feasible value of K is the largest integer value satisfying
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(97). If it is at least as large as that K minimizing (35)

then the problem is solved. If it is not as large then we

must proceed, as described for Alternative 1, with introducing

the constrained K value first into (93) and testing for CL

If CL now satisfies (93) then the on-site system is preferred.

Otherwise, direct delivery under Alternative 2 with the

constrained value of K is optimal.

Alternative 3--The general conditions for which OECP(N) < ECP(N)

when equations (87) and (55) are introduced are given by (98),

C < ~ ,~P 1 lN-2 k-li
L CT + CD (N-1 T p + 1J - sC= + (N-l)p (98)

When N = 1, (98)reduces to

CL < (CT - S) I_ (99)

When N = 2, the right side of (98) is

CT + CD s(l+p) P( k-
k=l k+l

L ECT + CD - s(l+p) P [-Znp - (l-p)] (100)

The conditions under which N = 1 minimizes the right side

of (98) are obtained by comparing (100) with the right side

of (99). The result is:
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CD > CT[-1P) +2n + -2p24n 1 (101)D T -np - 1-p) np - (1-p)

Therefore, if CD satisfies (101) and CL  satisfies (99)

then an on-site system is optimal. Otherwise, direct delivery

under Alternative 3 is considered further.

The time standard and capacity constraints for

Alternative 3 cannot be combined because equation (76) for

the expected delay per unit is not a simple function of N.

As a consequence, the unconstrained optimal value of N for

Alternative 3 must be tested against

N<M,

and

1 I
(N-2) +- PT

If the constraints are satisfied by unconstrained optimal N

then the solution is direct delivery under Alternative 3 with

this value of N. If the constraints are not satisfied then

we must select the largest integer value for N which satis-

fies the constraints and re-examine (93). If CL satisfies

(93) an on-site system is preferred. Otherwise we use direct

delivery with constrained N.

The Composite Model--The goal of the trade-off analyses is

the determining of the best strategy when all three direct

delivery alternatives are considered together (the composite

problem). This is done by first obtaining the best solution
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for each alternative's trade-off model and then comparing

these solutions.

Obviously, if an on-site system is optimum under all

three alternatives, then an on-site system is the solution

to the composite problem. If, however, direct delivery is

best in all three cases then the optimal solution to the com-

posite problem is that direct delivery alternative which pro-

vides the lowest optimal total expected costs for the given

CT , CD , and p values.

Now suppose that one alternative's trade-off model

gives an on-site system as optimal but another does not.

When the two results are compared, that alternative favoring

direct delivery is automatically preferred since it was pre-

ferred over an on-site system when it was considered by itself.

As a consequence, if only one direct delivery alternative was

found optimum under the individual trade-off models, it is the

optimal solution to the composite problem. If two trade-off

models favor direct delivery and the third does not, then it

follows that the optimal solution to the composite problem is

obtained from comparing the minimum expected total costs per

period for the two models favoring direct delivery.

53



VII. SUMMARY AND RECOMMENDATIONS

Summary--Trade-off models for deciding on where to place in-

ventories for a given repair part needed by a NARF for a cer-

tain aircraft or component rework have been developed in the

preceding chapters. Two locations for the inventory were

considered; at the NSC and at the NARF. Splitting of the

inventory between the two locations was not considered in

keeping with the current philosophy of the NSCs towards NARF

support. When the location was assumed to be at an NSC,

three direct delivery alternatives were considered and included

both scheduled and unscheduled delivery.

Expressions for the total expected costs per period

were derived for all alternatives to provide a basis for

comparison. The total cost was assumed to consist of a delivery

cost and a production delay cost for direct delivery. For the

on-site inventory system at the NARF, the costs were assumed

to consist of a labor charge and a delay cost. Constraints

were also developed to reflect the impact of time standards

and delivery truck capacity.

Unfortunately, the complexity of the various expected

cost expressions did not allow for optimal solutions to be

derived analytically. Therefore, algorithms were developed

for using the models to resolve the question of where to site

the inventory.

Recommendations--Further understanding of the models should

be obtained through parametric studies. Some of these are
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well underway and suggest that between the direct delivery

alternatives the optimal expected costs per period differ

little in value. Additional studies are however needed and

are being planned.

As more of an understanding of the models is obtained,

refinements will undoubtedly appear appropriate. In fact,

the chapters addressing the direct delivery models contain

some preliminary refinements in the expected delay costs ex-

pressions which were motivated by the parametric studies which

have already been done. Additional issues relative to delivery

costs for scheduled versus unscheduled delivery have also been

raised in Chapters II and IV. The question of what is an

appropriate delay cost to assume for an on-site system also

needs further study.

As was mentioned earlier, the models have been restricted

to a given repair part for a certain production line at the

NARF. Expansion of these models needs to be done to include

multiple sources of demand within the NARF for the parts.

Finally, an interesting additional expansion which

also seems appropriate is the case where two or more repair

parts are forced to have the same decision variable value in

direct delivery; in particular, the same time between scheduled

deliveries. This would correspond to a more realistic sched-

uled delivery scheme than one designed for each part.
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