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‘ 1.0 INTRODUCTION

The alloy Ti-4.5A1-5Mo-1.5Cr (CORONA 5) was originally developed for
heavy section, fracture critical applications. The attractive properties
exhibited by the alloy have led to studies of using CORONA 5 for advanced
fabrication techniques such as superplastic forming (SPF) and diffusion bond- |
ing (DB). One such stud_y,1 indicated that the CORONA 5 alloy is a better i
candidate from both mechanical behavior and possible economic considerations
than the Ti-6A1-4V alloy. Two important cost factors in SPF/DB are cost of
sheet production and forming temperature. Essentially all Ti-6A1-4V is pro-

duced by*a hand sheet process because of the limited cold rollability of this

alloy. Production of sheet by a continuous strip process as is used for com-
mercially pure titanium would, potentially, enhance the quality and reduce the
cost of alloy sheet. CORONA 5 has been shown to possess good cold rolla-
bi1ity1 and therefore should be a candidate for continuous strip processing.
The referenced work also showed that CORONA 5 could be superplastically formed
at temperatures below those used for Ti-6A1-4V, a factor that is also econom-
fcally advantageous. A further potential advantage may be obtained by heat
treatment of CORONA 5 to higher strength levels relative to Ti-6A1-4V without

requiring a part distorting rapid cooling rate.

The objectives of this program are: (1) to produce fine-grained

CORONA 5 sheet by a process amenable to sheet-coil processing, (2) to demon-

strate the superplastic formability and diffusion bondability of fine-grained

-

CORONA 5, and (3) to develop post-forming heat treatment schedules that would
result in tensile yield strengths on the order of 1035-1105 MPa (150-160 ksi).

1
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) 2.0 EXPERIMENTAL PROCEDURES
; 2.1 Material Processing
F Two heats of CORONA 5, a standard oxygen material and a special Tow

? oxygen material, were processed during the program. The standard oxygen
material was obtained in the form of 3-in. (75 mm) thick plate. This
particular plate was produced during a previous NAVAIR Contract.Z A
description of the standard oxygen material is given in Table 1. The Tow
oxygen material, a description of which is given in Table 2, was melted and
processed to l-in. (25 mm) thick plate by TIMET. Both heats were subsequently

processed by hot and cold rolling to 0.070 (1.8 mm) thick sheet.

2.1.1 Hot Rolling

The two standard oxygen COROMNA 5 plates were hot rolled to hot hand

gage in two stages. Plates were first heated to 1750°F (954°C) and irmedi-

ately rolled from 3-in. (75 mm) thick to 0.5-in. (13 mm) thick in 14 passes
without reheating. Total elapsed time from leaving the furnace to finish
rolling was 1.5 minutes. Approximate finish temperature for each plate was
1300°F (704°C). The material was then reheated to 1650°F (899°C) and rolled
to 0.145 in. (3.7 mm) thick. This rolling was accomplished in 5 passes with

an elapsed time of 40 seconds for each panel.

The low oxygen material, received as 1l-in. (25 mm) thick plate,

required only one stage of hot rolling. Before rolling, the as-received plate

3
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was cut into three equal pieces. Heating temperature for this plate was
1650°C (899°C). After attaining a temperature of 1650°F (899°C) the plates
were rolled in succession to 0.170-in. (4.3 mm) thick hot band. The rolling
was conductea continuously in six passes for each piece within 33-40 seconds

to a finishing temperature of 1250°F/1300°F (677°C/704°C).

2.1.2 Cold Rolling

Following processing to hot band gage, all material was cut into con-
venient size panels for cold rolling. Panels from both heats received a simu-
lated strand line anneal of 1400°F (760°C)/5 minute/air cool. Annealed panels
were descaled by grit blasting and then pickled in nitric-hydrofluoric acid
solution to remove oxygen contaminated metal. After pickling, the panels were
inspected and any surface defects were spot ground. None of the panels were

edge trimmed.

The Tow oxygen hot band finished at a heavier gage than the standard
oxygen material. In order to give each material the same amount of final cold
reduction, the low oxygen material was cold rolled to the same gage as the
standard oxygen hot band. Following the 16% reduction, the low oxygen mater-

ial was annealed 1400°F (760°C)/5 minutes/air cool, descaled and pickled.

Material from both heats was given a final cold reduction of approxi-
mately 48% to 0.073 (1.8 mm) thick. After the final cold reduction all ma-
terial was again given a simulated strand line anneal of 1400°F (760°C)/5

minutes/air cool, descaled and pickled in nitric-hydrofluoric acid solution.

4
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Throughout all hot and cold rolling, the original plate rolling direction was
maintained for each material. A limited amount of testing was conducted on

each material after processing as reported in Section 3.1.

2.2 Tensile Tests

The two heats of the CORONA 5 material containing standard oxygen and
low oxygen contents were tested at elevated temperatures for superplastic
properties. Tensile tests were conducted at temperatures of 834, 871 and
899°C (1550, 1600 and 1650°F). The testing included step/strain-rate tests
for the determination of the flow stress as a function of strain rate, and
corresponding determination of the strain-rate sensitivity exponent, m, as a
function of strain rate. The test procedures utilized here were the same as
those reported in Ref. 3. Properties established in these step/strain rate
tests were for relatively low strain levels of less than about 0.25 total
strain and therefore, subsequent tests were also conducted under constant
strain-rate conditions to establish the influence of strain on flow stress and
on the m value. The test specimens, on which the constant strain-rate tests
were conducted, were tested to failure so that the total elongation under

superplastic conditions could also be established.

The tensile tests for the evaluation of these superplastic properties
were conducted under vacuum conditions through the use of a specially equipped
Instron test machine. The heating was accomplished with a five zone furnace
so that the temperature gradients could be maintained within about +2°C. The
Instron machine was adapted such that constant strain-rate could be

5
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established through the use of the variable speed motor connected through the
drive train of the equipment. This variable speed motor was controlled by
programmed electronic profiling devise (Versatrac). The test specimens used
in this test consisted of the 1 in. gage section and were a "dog-bone" con-

: figuration which were pin loaded in the end sections. All test specimens were
machined such as the long transverse orientation was coincident with the ten-

sile test direction.

2.3 Forming Tests

The superplastic formability of the CORONA 5 materials was evaluated
through the subscale superplastic forming tests conducted on the sheet ma-
terials. These tests involved the forming of rectangular and cylindrical part
configurations. Both the low oxygen and the standard oxygen materials were

evaluated although the majority of the forming tests were conducted on the low

oxygen materials because of the evidence that these materials exhibited the

. best superplastic properties at the elevated temperatures. The forming tests

RN

were conducted utilizing tooling machined from an iron-base tooling alloy
containing 22% Cr, 4% Ni and 9% Mn. The gas pressure application was con-

trolled in such a fashion as to attempt to control the strain-rate throughout

the forming test using methods such as those described in Ref. 4. These ana-

lytical techniques, utilized to predict pressure as a function of time for

strain-rate control, have been found to be quite good for specific configura-

S e e oy e 7

J tions such as the rectangular pan sections and the cylindrical parts evaluated

> in this study. 1In these forming tests, argon gas was utilized both as the

6
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forming medium and as protective gas cover on the sheet to be superplastically
formed. This technique, used throughout industry for several years, is re-

ported in more detail in Ref. 5.

The forming tests involved varying both the forming temperature and
the strain rate in addition to the alloy composition. A summary of the form-
ing parameters evaluated are presented in Table 3. The forming parameters
utilized in this study are based on the tensile test results established
through the evaluations described in Section 2.2. Some of the parts formed
during this task were sectioned to provide tensile specimens for the post-

forming heat treatment study reported in Section 2.6.

2.4 Diffusion Bonding Tests

The diffusion bonding of titanium alloys depends primarily on their
elevated temperature flow properties.s'8 The analytical models of Refs. 6 and
7 provide excellent predictions of the pressure versus time combinations
necessary to achieve intimate contact along a diffusion bond interface and
thus complete bonding in Ti alloys. The material property considered in these
models is primarily the flow stress of the material as a function of the
strain-rate imposed. Since such data were generated under Section 2.2 of this
report it was possible to predict analytically the diffusion bond pressures
required as a function of time for the various materials and temperatures of

concern.

7
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In addition to the analytical predictions, an experimental evaluation
test program was conducted to verify the diffusion bond parameters for the low
oxygen heat material at 871°C (1600°F). In these tests three different bond
pressures were evaluated as a function of time. Samples of the sheet material
measuring approximately 1 in. x 1 in. (25.4 m1 x 25.4 mm) in plan area were
diffusion bonded under conditions of vacuum of less than 10-4 torr (13.3 mPa)
at the temperature of 871°C. These samples were then evaluated
metallographically for quality of the diffusion bond interface and for evi-
dence of porosity at the bond interface. The diffusion bonding parameters
were chosen to bracket the predicted bond pressures required in order to

provide a verification that these predicted parameters were correct.

2.5 SPF/DB Fabrication Demonstration

As a final demonstration of the potential for combining superplastic
forming with diffusion bonding of the CORONA 5 alloy, a fabrication demonstra-
tion was conducted to produce a truss-core sandwich configuration utilizing
the low oxygen heat of the CORONA 5 alloy. This sandwich consisted of flat
sheets of the CORONA 5 alloy in which the center sheet providing the material
for the core of the sandwich was 0.029 in. (0.7 mm) thick and the two face
sheets were the outer sheets of the sandwich were approximately 0.070 in. (1.8

mm) thick.

The stop-off pattern was applied to the core sheet using techniques
that had been established for the SPF/DB Ti technology as reported in Ref.
8. Stop-off material utilized in this case was yttria which was applied by
silk-screening method as described in Ref. 8. Three sheets of material were

8
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placed in a die at ambient temperatures and the die was used for both dif-
fusion bonding and subsequent superplastic forming. Capillary tubes were
inserted into the two ends of the sandwich panel prior to the heat-up of the
material to facilitate superplastic expansion subsequent to diffusion bond-
ing. The tooling was then heated to a temperature of 871°C (1600°F) for both
the diffusion bonding and superplastic forming. Once the temperature was
achieved, the gas pressure was applied to the bottom side of the layer and
forced the three sheets together providing the pressure for diffusion bonding.
The diffusion bonding parameters chosen were 400 psi (2.76 MPa) for a time of
75 minutes. These parameters were chosen on the basis of the experimental

results conducted as discussed in Section 2.4.

After the diffusion bonding cycle was completed, the gas pressure on
the bottom side of the panel was released and the forming gas pressure was
introduced through the capillary tubes between the sheets of the CORONA 5.
Introduction of gas pressure between the the sheets initiated the superplastic
forming portion of the cycle causing the face sheets to form into the sur-
rounding die cavity. The strain-rate during this part of the forming cycle
was controlled at ~ 2 x 1074 s-1, a strain-rate that was found to be nearly
optium for this material in terms of generating a high degree of superplas-
ticity. This fabrication test, based upon the parameters established from the
tensile tests, forming tests, and the diffusion bonding tests, was a demon-
stration that the parameters established in the previous tests were adequate

for establishing the SPF/DB processing conditions and parameters.

9
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‘ 2.6 Post-Forming Heat Treatment

A study of the heat treatment response of sheet both prior to and
subsequent to superplastic forming was conducted. Tensile property evaluation
of sheet material included the following conditions:

1. Cold-rolled plus annealed (CR+A)

2. CR+A plus simulated DB cycle [1600°F (871°C)/2 hr/AC)

3.  CR+A plus simulated DB cycle plus aged [1050°F (566°C)/8 hr/AC]

4. CR+A plus formed

5. CR+A plus formed plus solution treated and aged.

Heat treatments were chosen on the basis of Ref. 1 and ongoing heat treatment
studies in a companion program.9 Due to a scarcity of low oxygen sheet mater-
ial, heat treatment studies for this heat were limited to specimens removed

from formed pans that correspond to conditions 4 and 5 above. Small "dog-

bone" tensile specimens were removed from the sides and bottom of formed pans

of both heats of material. The tensile axis of the specimen corresponds to

the long axis of the pan and the sheet rolling direction (RD or L). Specimens

i, had a1 in. (25.4 mm) gage length and a cross section of 0.25 in. (6.4 mm) by
% sheet thickness. Specimen thickness may have varied due to non-uniform

—"‘;
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thinning in the pan; a mid gage-length thickness was used in the stress calcu-
lations. A1l heat treatments were conducted in a vacuum of 106 torr (0.133
mPa) or better and the specimens were wrapped in tantalum foil to further
reduce contamination. Following heat treatment the specimens were 1ightly
pickled in a nitric-hydrofluoric acid solution prior to test. All tests were

conducted at a strain rate of approximately 104 s-1,

11
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3.0 RESULTS AND DISCUSSION

3.1 Material Characterization

The scope of the program did not allow a significant amount of mater-
ial evaluation, however, a limited test program was conducted to determmine

basic sheet properties.

Microstructure of the as-hot rolled hot band is shown in Fig. 1. In g
both materials this structure is relatively fine and grain elongation in the
rolling direction is evident. Fiqure 2 shows the microstructure of the stan-
dard grade material after a simulated stand line anneal. The anneal did not
produce a significant change in the hot rolled structure; the microstructure
of the low oxygen material after the first cold reduction and anneal is shown
in Fig. 3. The 16% cold reduction produced a significant amount of
recrystallization in the low oxygen material. Microstructures of the two
heats after processing to 0.070 in. (1.8 mm) thick annealed sheet, are shown
in Figs. 4 and 5. Both materials exhibit very fine grained structures which

cannot be fully resolved in the optical microscope.

Mechanical properties determined for the simulated CORONA 5 coil
sheet were monotonic tensile properties, bend ductility and Olsen Cup forma-

bility. Results are given in Table 4. In general, the strengths are higher !

and the tensile ductilities lower than typical properties of Ti-6A1-4V sheet.
The CORONA 5 sheet also shows a substantial amount of strength directionality.
. Room temperature formability, as measured by bend and Olsen cup tests, is

better than the Ti-6A1-4V alloy. Since this material was to be
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. Fig. 1 Microstructure of as-hot rolled CORONA 5 hot band. (500X)
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Fig. 2 Microstructure of standard oxygen CORONA 5 hot band
after a simulated strand-line anneal, 1400°F (760°C)/
5 min/AC. (500X)
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Fig. 3 Microstructure of lTow oxygen CORONA 5 af&er cold-rolling
to 0.140 in. (3.5 mm) and annealing 1400°F (760°C)/5 min/AC.
(500%)
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Fig. 4 Microstructure of standard oxygen CORONA 5 simulated coil
sheet)after processing to 0.070 in. (1.8 mm) thickness. ‘
(500X

40um |

Fig. 5 Microstructure of low oxygen CORONA 5 simulated coil sheet
after processing to 0.070 in. (1.8 mm) thickness. (500X)
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superplastically formed and hence receive a high temperature thermal exposure,
the strand line anneal tensile properties are not of particular importance to

the program. However, if material were to be used in the annealed condition,

modifications could be made in the processing to reduce directionality and

increase ductility.

In order to ensure that no interstitial contamination had occurred
during processing of the sheet, oxygen and hydrogen analyses were conducted on
the finished material. These results are also given in Table 4. Results

indicate no oxygen or hydrogen pickup occurred during processing.

3.2 Tensile Tests

The results of the elevated temperature tensile tests in which the
flow-stress as a function of strain-rate and m as the function of strain-rate
were evaluated are shown in Figs. 6 and 7. As can be seen in these figures
the flow-stresses for the various materials and temperatures evaluated vary
from one another only marginally, although it appears that the lower flow-
stresses occur for the low oxygen alloy material. It is also apparent from
the Figs. 6 and 7 that the temperatures of 843 and 871°C are better suited for
superplasticity for this alloy than 898°C where the flow-stresses are higher
and the strain-rate sensitivity appears to be somewhat less. In reference to
Fig. 7 it appears that the m value is increasing as the strain-rate decreases
to a strain-rate of approximately 10-% s1. For other Ti alloys it has been
observed that the m value reaches a maximum and then decreases at lower
strain-rates, and therefore it is likely that the maximum in m for this

17
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material occurs at strain-rates lower than those evaluated in this program.
The strain-rate sensitivity exponent, m, continues to decrease as the strain-
rate increases to strain-rates of about 1073 s-! and above. In some cases the
m value appears to rise slightly at strain-rates above about 5 x 1073 to

1072 571, 1t is considered likely, however, that this increase is primarily a
result of a rapid strain-hardening in the material at the very high strain
rates rather than an increasing m. This is likely to occur since the material
tested is exposed to the lower strain-rates first and then exposed to higher
strain-rates at correspondingly higher strain levels. Thus, any strain
hardening would result in higher flow stresses in the material which could be

reflected in higher m values.

The results of these tests reveal that the low oxygen content mater-
jal exhibits somewhat lower flow-stresses than the standard oxygen material,
v and in fact the lowest flow-stresses and highest m values observed were at

1600°F (871°C) for the low oxygen material.

: The results of the constant strain rate tests at temperatures 843°C,
¢ 871°C, and 898°C are shown in Figs. 8 through 10 for the low oxygen material
‘i and in Figs. 11 through 13 for the standard oxygen material. These data sup-
}1 port the observation that, particularly at the lower temperatures, the flow-
stresses for the low oxygen alloy are somewhat less than for the standard
oxygen content material. Some strain-hardening can be observed, particularly
¢ for the lower flow stress materials at the various temperatures, and it
appears that the strain-hardening is greater at temperatures of 871°C and

898°C than at the lower temperature of 843°C. A probable reason for this is a

fire-
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difference in the grain coarsening kinetics for these temperatures that in-
fluence the flow stress of the material (as has been reported for the Ti-6Al1-
4V alloy in Ref. 3). The data suggests that the optimum superplastic pro-
perties would be observed within the 843 to 871°C temperature range rather
than at higher temperatures. For conditions where long exposure times at high
temperatures are necessary, the low temperature (843°C) may be preferable to

the intermediate and higher temperatures.

The results of the total elongation tests at the various temperatures
and strain-rates are summarized in Table 5 and are shown graphically in Fig.
14. These data indicate the optimum superplastic temperature is approximately
871°C and that superplasticity appears to decrease substantially above this.
The total elongations observed for the CORONA 5 alloy at 871°C exceed approxi-
mately 500% tensile elongation. However, even for the lower temperature of
843°C, total elongation values of 400-500% are observed, and this ductility is
sufficient for superplastic forming of a large number of structural com-
ponents. In Table 5, the strain-rate sensitivity exponent, m, is also shown
and it is apparent that this value correlates approximately with the total
elongation measurements, a characteristic that has been reported many times

for superplastic materials.

3.3 Forming Tests

The optimum parameters for superplastic forming sheet materials based
on the tensfle tests discussed previously are 871°C and below to 843°C. The
superplastic forming of the CORONA 5 was conducted within this temperature

27
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CORONA B LOW STANDARD
OXYGEN OXYGEN
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600 |- v v - 10241 -
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ELONGATION (%)
|
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TEST TEMPERATURE

Fig. 14 Superplastic elongation as a function of temperature at various
strain-rates for both heats of CORONA 5.
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range and for the higher temperature as well. The rectangular pan configura-
tion was the configuration used to demonstrate the formability at temperatures
of 843, 871 and 899°C. In addition, a cylindrical part which imposed the max-
imum balanced biaxial straining for superplastic forming was formed at 871°C.
A deep rectangular part was formed at 871°C to demonstrate severe forming
under plain strain conditions. (See Fig. 15 for an illustration of the forms

produced).

Forming of all of these shapes proceeded without difficulty and the
resulting parts verified the superplastic formability of both the standard
oxygen and the low oxygen CORONA 5. The series of superplastically formed
CORONA 5 test parts are shown in Fig. 16. Strains that were developed in
these subscale components are at least equivalent to and in many cases exceed,
the strain levels encountered in many of the superplastically formed parts
produced from the Ti-6A1-4V alloy. The rectangular components shown in Fig.
16 were the superplastically formed parts that were subjected to past forming

tensile test evaluation reported in Section 3.6.

3.4 Diffusion Bonding Tests

The results of the analytical predictions of the bonding parameters
are summarized in Figs. 17 through 19. In Fig. 17, the predicted bond pres-
sure as a function of bond time is shown for the standard oxygen material for
the three temperatures indicated. For the low oxygen material similiar plots
are shown in Fig. 18. It is apparent in comparing these two figures that the
low oxygen material would be expected to require somewhat lower bonding

29
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pressures than the standard oxygjen material, although the bonding parameters
required for the standard oxygen material are sufficiently low that it should
he possible to use gas pressure diffusion bonding. For the low oxygen
material {Fig. 18), the bonding pressures appear to be minimized at 871°C,
while for the standard oxygen material, bonding pressures appears to be
minimized at 899°C. A comparison of the standard and low oxygen materials for
temperature of 871°C is shown in Fig. 19. In this figure it is apparent that
the low oxygen material requires much lower diffusion bonding pressure than

does the standard oxygen material at this temperature.

Since these curves are established analytically, it was the intent of
the experimental study to verify that these curves provided a reasonable indi-
cation of the bonding parameters for this material. The low oxygen heat of
the material was selected for the diffusion bonding, and the bonding study was
conducted at 871°C and for times that bracketed the predicted times for bond-
ing. The experimental results are presented along with the analytical pre-
diction in Fig. 20. In this figure it can be seen that the experimental
results suggest that, although the predicted curve is quite close to experi-
mental ohservation, a modification of this curve would more closely represent
the actual results. Therefore, in this figure the dotted curve represents the
experimental results and more closely predicts the diffusion bonding parame-
ters for this heat of material. These results do not modify the conclusions
that relatively low bonding pressures can be used to diffusion bond low oxygen
COROMNA 5. The diffusion bond interfaces for various bonding parameters (pres-

sure and time) at 871°C are shown in Figs. 21, 22, and 23. Porosity at the
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,.f. Fig. 21 Diffusion bond interfaces as a function of time for low
oxygen CORONA 5 bonded at 200 psi (1.38 MPa). (100 and
A 500X)
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oxygen CORONA 5 bonded at 600 psi (4.14 MPa). (100 and
500X)




| h
’l' l::mkwgélslzr%t“e.lg}ﬁtional

ience Center

bond interface can be seen in Fig. 21 for the bonding times of 75 min and 180
min. In all cases, the diffusion bond interface was virtually indistinguish-
able from the surrounding parent metal in areas where there was an absence of
voids . This indicates there is no contamination or other deterent to achiev-
ing complete bonding other than lack of adequate metal flow at the interface.
Thus, CORONA 5 is diffusion bondable and should provide bond qualities com-
parable to those of Ti-6A1-4V.

3.5 SPF/DB Sandwich Fabrication

In the sandwich fabrication study, the results of the superplastic
forming and diffusion bonding studies were combined, and a panel fabricated
using standard SPF/DB techniques. The parameters used for sandwich fabrica-
tion were based on the "best" parameters identified in the tensile, forming,
and diffusion bonding studies discussed previously. The sandwich panel, shown

in Fig. 24, was formed without complication. The core in this sandwich panel

was well formed into the truss core configuration as can be seen in Fig. 25,
where one end of the SPF/DB sandwich panel has been removed to reveal the
interior of the sandwich. The core and sandwich configuration as shown in
Fig. 26 also illustrates an end view of the panel corresponding to the section

shown in Fig. 25.

The diffusion bonds of the panel were examined metallographically as
shown in Fig. 27. The diffusion bond appears to be of good quality, although
there were some areas where some microporosity was present. The source of

this microporosity may be related to entrapment of argon gas used during the

40
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Fig. 24 CORONA 5 expanded sandwich part.
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SPF/DB processing, or it may be the result of a slight temperature drop during
processing that correspondingly raises the required bonding pressure or time
to achieve full bonding. The minor amount of microporosity observed in this
diffusion bond is not considered to be a significant problem in the SPF/DB
processing of the CORONA 5 since a minor change in the bond time and or bond
pressure would be adequate to eliminate such microporosity. For manufacturing
of CORONA § SPF/DB parts, it would be advisable to utilize a somewhat higher

pressure or longer time to compensate for such variations.

Through the series of tests conducted on the CORONA 5 it has been
shown that this alloy, when properly processed to fine grain sheet, does ex-
hihit significant degree of superplasticity at elevated temperatures. The
material can also be diffusion bonded and can be SPF/DB processed to produce a

range of configuration such as the sandwich panel shown in Fig. 24. From the

data generated, it is apparent that the optimum temperature for superplas-
ticity in the CORONA 5 alloy is about 871°C although there is indication of
substantial latitude in permissible processing temperatures. At temperatures
above about 871°C, decreasing superplasticity and increased bonding pressures
requirements may be necessary. It appears that the low oxygen content alloy
is superior to the standard oxygen content from the standpoint of superplas-
ticity and bond pressure requirements. However, the standard oxygen content
alloy appears to be adequately superplastic and diffusion bondahle and

exhibits no critical deterrents in SPF/DB processing.

The indications that temperatures above 871°C result in decreased

superplasticity and increased bond pressures for diffusion bonding are may be

45
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related to a combination of factors including (1) increased grain growth
kinetics, and (2) proximity to B-transus temperature. The latter may also
relate to grain coarsening since it has been observed in other alloys that
grain coarsening increases rapidly as the B-transus temperature is approached.
The ratio of a and B phases should be approximately one for optimum super-
plastic properties, and temperatures at which the larger volume fraction is B8

phase may be less desirable for forming.

In summary, CORONA 5 Ti alloy can be processed by superplastic form-
ing and diffusion bonding at temperatures in the range of 843 to 871°C. These
are temperatures somewhat lower than those normally utilized for the Ti-6A1-4V
alloy (approximately 900 - 920°C). While this alloy can be processed at lower
temperatures and appears to be very promising for the SPF/DB applications it
should be recognized also that the Ti-6A1-4V titanium alloy exhibits compar-
able superplastic properties at these lower temperatures. Comhined with the
heat treatment response discussed in the following section, the SPF/DB
characteristics of CORONA-5 make the alloy an attractive candidate for SPF/DB

parts.

3.6 Post Forming Tensile Tests

The tensile tests conducted on superplastically formed material are
summarized in Table 6. Included in the table are data for standard oxygen
material (R52071) which had not been formed but was tested in several con-
ditions. A summary of the strain accumulated in the specimens during super-
plastic deformation of the pans from which the specimens were cut is also
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included in the table. The designations e and ey represent respectively,
strain in the sheet parallel to and perpendicular to the long axis of the
pan. The orientation for e corresponds to the rolling direction of the sheet

and the tensile axis of specimens removed from the pans.

The tensile specimens from pans formed of low oxygen material (V5834)
exhibited strange behavior. The as-formed material had yield strengths that
were considerably less than their ultimate tensile strengths. The specimens
removed from the pan that experienced the greatest deformation (Part No. 4, er
= 100-140%) had the lowest yield strength (probably as a resuit of low initial
dislocation density and increased barrier spacing associated with larger
strains and longer forming times). When material from the low oxygen pans was
solution treated and aged, the yield strengths of both pans (No. 1 and No. 4)
were comparable. The maximum strength levels obtainable by heat treating the
low oxygen material using only air-cooling is in the range of 825-860 MPa
(120-125 ksi) for yield strength and 930-965 MPa (135-140 ksi) for ultimate

strength.

In contrast, the standard oxygen material exhibited a potential for a
strong heat treatment response as evidenced by the 1105 MPa (160 ksi) yield
strength and 1170 MPa (170 ksi) ultimate tensile strength of the sheet exposed
to the simulated DB and age cycle. The ability to achieve high strength
levels was further demonstrated by the specimens cut from an as-formed pan
which had yield and ultimate strengths of 1033 MPa (150 ksi) and 1134 MPa (165
ksi) respectively. The greatest strength levels in the high oxygen material
were obtained with some loss of ductility. The ductility could be improved by
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a slight reduction of oxygen levels, or by optimization of heat treatments.

These are potential areas for future research and were not part of the present

program.
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4.0 CONCLUSIONS

The CORONA 5 alloy is more amenable to coil sheet processing than Ti-
6A1-4V, CORONA 5 can be cold rolled up to 48% in the laboratory
without edge cracking. A relatively low temperature short time

strand line anneal can be used between cold rolling cycles.

CORONA 5 has good room temperature formability as measured by bend

and Olsen Cup tests.

The alloy can be SPF/DB processed using the same techniques as are
used for Ti-6A1-4V. The optimum temperature range for SPF/DB
processing of this alloy is 843 to 871°C (1550 to 1600°F).

The alloy exhibited the potential for post forming heat treatment to

the 1035-1135 MPa (150-165 ksi) ultimate strength level.
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Table 1

Standard Oxygen CORONA 5 Starting Material
Supplier: Crucible
Heat No.: R52071
Section/Size: 2 pieces 5 in. (127 mm) wide x 3 in. (76 mm)

thick x 3-1/2 in., (89 mm) long

fxi Chemistry: Weight Percent

M Mo Cr Fe N [ |

4,4 5,1 1.46 0.20 0.065 0.011 0.183 Bal.
Condition: As Hot Rolled

Table 2
Low Oxygen CORONA 5 Starting Material
. Supplier: TIMET
“ Heat No.: V5834

- Section/Size: 1 piece 6 in. (152 mm) wide x 1 in. (25 mm)
thick x 22 in. (559 mm) long

5 Chemistry: Weight Percent

% | M Mo cr Fe N 0 Ti
. 4,77 5.00 1.55 0.07 0.004 0.085 Bal.

ﬁé . Condition: As Hot Rolled

L %
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Table 3
SPF Forming Study Schedule
Part No. Heat Temperature Strain Rate Configuration
1 V5834 (Low 871°C (1600°F) 2 x 10-% s-1 Rectangular Pan
Oxygen)
A 2 V5834 871°C (1600°F) 6 x 10~% s-1 Rectangular Pan
i 3 V5834 871°C (1600°F) 103 s-1 Rectangular Pan
4 V5834 871°C (1600°F) 2 x 10'4 s-1 Deep Rectangular
Pan
5 V5834 899°C (1650°F) 2 x 10'4 s'1 Rectangular Pan
6 V5834 843°C (1550°F) 6 x 10-% s-1 Rectangular Pan
' 7 V5834 843°C (1550°F) 103 s-1 Rectangular Pan
8 V5834 871°C (1600°F) 2 x 10-4 s-1 Cylindrical Part
. 9 V5834 871°C (1600°F) 1073 s-1 Cylindrical Part
X 10 R52071 (Standard 871°C (1600°F) 2 x 10~% s~1 Rectangular Pan
o Oxygen)
. 11 R52071 871°C (1600°F) 10-3  s-1 Rectangular Pan
'3
1S
>
"VJ
.
-
N
3
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Table 5
Sumnary of Tensile Elongation Test Data

Heat Temp (°F) > (s'l) Elong. (%) m*
R-52071 1550 1 x 10-4 420 0. 90
(Standard 1550 2 x 1074 480 0.72
Oxygen) 1550 1 x 10-3 190 0.36
1550 5 x 103 >195 0.42
1600 2 x 10~4 5510 0.63

1600 11 x 0-3 320 0.55
1600 5 x 20~3 205 0.52
1600 1 x 102 100 0.50
1650 2 x 10~4 340 0.68

1650 1x 1073 >370 0.56
1650 5 x 10-3 180 0.48

1650 1 x 1072 120 0.45

V-5834 1550 2 x 1074 500 0.74
(Low 1550 1x 1073 320 0. 62
Oxygen) 1550 5 x 103 380 0.57
1550 1 x 10-2 280 0.58

1600 2 x 104 5380 0.81
1600 1 x 103 >340 0.65

1600 5 x 1073 - 0.63
1600 1 x 10~2 260 0.70
1650 2 x 1074 300 0.64

1650 1 x 10-3 300 0.57

1650 5 x 103 160 0.46
1650 1 x 102 140 0.42

*From step/strain rate tests.
1550°F = 843°C
1600°F = 871°C
1650°F = 899°C
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Table 6
Post-Forming Tensile Results

Forming Forming Superplastic Strain
2 Heat Spec Condition 9.2 9 e RA Temp Time e ey Part  Spec
No. No. ksi MPa ksi MPa (%) (%) °F °C  min (%) (%) M.l o

V5834  305-1 As-formed 122 841 162 1114 28 6 1600 871 102 5 35 1 3051
V5834  305-2 As-formed 121 834 137 946 9 7 1600 871 102 5 35 1 305-2
+ STAZ

V5834 308-1 As-formed 78 538 132 910 13 10 1600 871 180 5 140 4 308-1

VS834  308-2 As-formed 124 855 138 951 8 10 1600 871 180 0 100 4 308-2
+ STA2

R52071 . CR + A3 149 1024 154 1058 14 20

. R52071 - CR+ A 150 1034 166 1062 10 17
B + Sim pg4
v ‘ RS2071 - CR + A 160 1100 170 1169 8 8
o Sim DB
; 8

. R52071 301-1 As-formed 128 880 146 1009 6 7 1600 871 20 10 50 11 301-1
. 6
- + STA

5
[ RS2071 301-2 As-formed 137 942 150 1033 5 7 1600 871 20 10 30 1 301-2
> + STA6
RS2071 306.2 As-formed 150 1033 165 1134 4 13 1600 871 142 14 52 10 306-2
“ + SYAG
. Notes:
s - (1) See Table 3
e (2) 1525°F (829°C)/4 hr/AC + 1000°F (538°C)/16 hr/AC
4 (3) Cold-rolled and annealed (see Section 2.1.2
i, (8) 1500°F (871°C;/2 hr/AC
- (5) 1050°F (566°C)/8 hr/AC
(6) 1550°F {843°C)/4 hr/AC + 1000°F (538°C)/16 hr/AC
'
'
{
e
.
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