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LLST OF? SYMBOLS

a = radius of cylinder =

= speed of sound ratio of specific heats, C/C v

Cp specific heat at constant pre.;suire = density variation
= logarithmic decrement

C = specific heat at constant volume

Dirac delta
d = boundary layer thickness

f = frequency 
(cycles/sec)

bulk modulus
h = Planck's constant

S= azimuthal coordinate
k = eigenvalue

thermal conductivity
1 = characteristic length, approx. mean

free path = 5r)

L = length of cylinder A= coefficient of viscosity

m = azimuthal index V-= light frequency

n = radial index - acoustic impedance

0 = on the order of 1= 3.14159...

p = pressure variation 0 = density
= longitudinal index

= entropy variation
P = pressure

= temperature variation
Pr = Prandtl number

= phase angle
Q(co) = resonant frequency divided by

half-power width L)= frequency (radians/sec)

r = radial coordinate

S = entropy

t = time

T = temperature

u = velocity

z = longitudinal coordinate
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SIJRSCRi IPTS

h = thermal

1 longitudinal

o zeroth order value

p .- oy -- atIonal
f-onst-int pre;sure

t - transverse

T constant temperature

V = viscous
= constant volume

.-L = perpendicular

I parallel

SUPERSCRIPTS

o=special case for k. 0,ork 0
0 0

= non-dimensional quantity

= vector quantity
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The Photo-acoustic et'ff,-t occirs wht2 n a clop,- d b, im of lijt shin-

ing on an ab:sorbing -as produces tound waves. From the amplitide of

these waves one can Inf.r the caLL;orption :qjectraim of a k:,own :;sUaple, or

detect trace -ases in an unk o wn :;a=,ple. .hile the nl:nal strungth is

inversely proportional to the sample c-iamber volume, in some cases it is

advantageous to design a large cell as an acos;tic resonance chamber, and

modulate the excitation beam at a natural frequency of the chamber. The

resonant amplification factor Q(W) depends upon the system losses. The

dominating loss mechanisms are the thermal and viscous boundary layer

effects. By rescaling the local coordinates, one can include these los-

ses, neglecting terms smaller than the boundary layer thickness, simply

by modifying the boundary conditions for the non-dissipative wave equa-

tion. From there one can derive an equation for Q(W) applicable at all

sample chamber resonances. This equation will be useful in evaluating

the relative advantages of resonant and non-resonant photo-acoustic

spectroscopy.

An experiment conducted with a Krypton/Argon laser shining on a one

atmosphere sample of dry air with .5% NO2 enclosed in a cylinder resulted

in amplification factors less than those predicted. An analysis of the

data, and the results of later experiments at lower pressures indicated

that the unpredicted losses were probably due to imperfect cell construc-

tion.

81 7 28 031
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Chapter 1: 1J' T.])CTION

Tn 1830 Alexander Graham Jell i1:;cov-red the photo-acoustic effect

,q'hceby light energy is converted into _:oind. jie found that intensity

-iod-ulated light focused on a solid :;u b,'t.,,rce ,-nclosed in a ,;miple cell

produced audible sound. Later, both 'ynlhll and "'ell otserved similar

results s hining light through sample cels containing gasses and liquids.

The light energy passing through a rotating light chopper is periodically

a? ;orbed by the irradiated molecules, and rereleased as heat causing a

periodic pressuire pulse, or sound wave. The energy absorbed is greatest

when the light energy (hV equals one of the energy transitions within

the irradiated molecules.

Fifty years after Bell's discovery, Viengrov used the photo-acoustic

effect to construct the first gas concentration measurement instrument,

and to record the first absorption spectra. When he tuned the incident

light to a single wavelength, the intensity of the resulting acoustic

signal was proportional to the concemtration of molecules in the sample

with that corresponding energy transition. When he scanned the light

source across a range of wavelengths, the intensity of the acoustic sig-

• saple.13
nals corresponded to the absorption spectrum of the sample.

In recent years, the development of lasers as sources of intense

wavelength tunable light has revived interest in the photo-acoustic ef-

fect. Kerr and Atwood'4 (1968) conducted the first experiments with a

laser illuminated optoacoustic detector measuring the weak atmospheric

absorption of laser radiation by water vapor. Kreuzer 15 performed the

first gas concentration measurement with a laser illuminated optoacoustic

detector. The increased sensitivity of Qptoacoustic detectors due to the

I'



use of lasers has made them useful in measuring atiiospheric pollution

concentrations in the parts per billion range, and gas ab;orption coef-

-8 acuti1etco
ficients as low as 10 cm-

* One may also use the optoacoust c detector

to determine the energy transfer rates between vibrational and transla-

tional degrees of freedom in Cas molecules by monitoring the phase lag

between the iodulated light and the pressure variation.

In most photo-acoustic experiments the sample cell is a cylinder;

the laser shines along the axis of the cell; and a miurophone converts

the acoustic signal into an electric signal. The resulting signal ampli-

tude is proportional to the gas absorption coefficient and the incident

light intensity, but inversely proportional to the chamber cross section-

al area. Sensitive acoustic cells then are usually as small in diameter

as possible. Practical considerations of aligning the laser beam and

accommodating commercial microphones limits typical cell diameters to 25-

250mm. However, in 1973 Dewey, Kamm, and Hackett demonstrated that in

some cases one could enhance the acoustic signal using a larger diameter

cell designed as an acoustic resonance chamber, and modulating the exci-

tation beam at one of the natural frequencies of the chamber. In many
Jo

cases this resonant operation is better than non-resonant operation. For

example, Shumate et. al. 5 used a resonant optoacoustic detector to meas-

ure water vapor absorption of carbon dioxide laser radiation. They

needed a large volume to surface area ratio cell to minimize the effects

of water vapor adsorption at the walls.

This paper provides a rigorous treatment of the problem of pressure

signals produced by a distributed heat source in a cylinder. The results

should be useful in improving the interpretation and design of photo-

2



acoustic experiments. Sps.cifically, they can help in judging the rela-

tive merits of resonant and non-re.-;onant cells. The results of the ;inal-

ysis -re general equations for Q(t and phase shift governing all the

resonances of a cylinder.

In most current photo-acoustic spectroscopy literature the emphasis

is on laser light absorption and relaxation mechanisms, with only a sim-

ple analysis of the acoustics portion of the problem. Often the acoustic

equations and boundary conditions used do not include any dissipation, or

the system losses are determined experimentally without regard to their

origin. 2 . 4 . 5 . 9 While a non-dissipative analysis is adequate for predic-

ting the approximate resonance locations, the results give physically

unrealistic infinite responses at resonance. Some major sources of sys-

tem dissipation are;

1. Losses due to the compliance of chamber walls

2. Dissipation at the microphone diaphragm

3. Losses from wave scattering at obstructions

4. Free space viscous and thermal losses

5. Viscous and thermal boundary layer losses

6. Relaxational losses.1 2

A sufficiently rigid cell wall material can make reflection losses

due to the compliant chamber walls insignificant. Dissipation at the

microphone diaphragm is similar in nature to that due to flexible walls.

Consideration of microphone losses as energy dissipation alone however,

is insufficient since the energy lost at the diaphragm is closely linked

with the ability to detect the pressure waves. For a microphone with a

small surface area compared with that of the cell, the loss is minimal. 1 2

3



The losses due to scattering from microphone mounts and In] .(t C)rt:; ,tc.,

while significant, are dxtre mey lifficilt to predict, and the C:ell de-

si5n should be as -.::ooth as po-.3;ible to minimize them. The n-xt ;,:crOn

will :how that, for typical cell dimf-nsions and pressulres, vin;co s and

tl .-;ral lo:.:3es in free :.pace are neg ligible comp.Lred to vi.,cois and tlhir-

> al ]o:i;. in the b.- indary layer. Rlaxation losses occur because of the

finite en,,rry transfer rates within the absorbingr molecules. 'ihe beam

.'%orilation rate mist he much slower than the vibrational relaxation time

of the g:as to :min imize these losses. Accurate predictions of dissipation

due to relaxation effects depend upon precise knowledge of the energy

transfer processes, and are not included in this paper.

Chapter 2 demonstrates that one can include the effects of viscosi-

ty, thermal conductivity, and compliant walls on an acoustic wave in a

problem simply by modifying the boundary conditions. Chapter 3 derives

these boundary conditions for a closed cylinder. Chapter 4 solves the

resulting eigenvalue problem, deriving equations for the resonant frequen-

cy, the Q, and phase shift of each cylinder resonance. Chapter 5 describes

an experiment conducted to verify those equations.

I,

.1
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"he a t.rr-te ic: .: ;oUj, .,:.l '. ,f l't ior s in a i o nd w:','e cocre-

onr o h d Wt.i.tr ra. In a .t.; with fite t~ra

Iic' iv- ty, i. ..uter . h h 1 -cat r .ol - di' f -o A:.to the

ol or r -.na, ,- . the ,, ,:: :,-nin.r the mpliti'e of

'he .0,] nd ;;ave. i:0 frluid v,,]oci ty "'hich ;-C.'ini OnLs .n ,co-itic wave is

:pro[,ortlonal to the gr'irit of ir,:;s;re or t.,mperatire. Viscosity tends

to equalize the fluid velocity alon, the wave, ,nd to deintensify the

sound. When a pressire wave strikes a wall whch is not perfectly rigid,

the surface reflects only prrt of the qave n y nd ab:orbs the rest.

'The ratio of the prean ire to the normal fl-lid velocity at a point on a

surface is the acoustic imi-edance of the surface.

One can describe the acoustic behavior of a fl-iid as the sum of

three waves; a propagational wave, a thermal heat diffusion wave, and a

transverse shear wave. TPhe thermal and transverse waves will be negligi-

ble outside of thin surface boundary layers, but they will account for

the majority of the wave power lost in a small container like those used

in photo-acoustic spectroscopy. The thermal and shear waves appear be-

cause the propagational wave, although it dominates the acoustic behavior,

cannot, by itself, satisfy the boundary conditions for temperature, tan-

gential velocity, and normal velocity. Since the viscous and thermal

boundary layers are very thin, one can consider the power loss to occur

at the boundaries, and can include the compliant boundary, thermal mode,

and shear mode effects simply by modifying the boundary conditions on the

propagational mode.

For the small disturbances associated with acoustic waves, each of

5



the variables describing the fluid state consis;ts of an equilibrium part

plus a -mall time varying acou stlc part.

rressure: P + p(x,t) Tmporat,,re: T + z(x,t)

Density: to + S(x, t) :ntropy/unit mass: S +.r(x,t)

Velocity: (x,t)

The linear equations governing the wave motion are:

(1) t o 7 " t = 0 Conservation of mass

(2 t-A -Vpr t&+ ti (V- L&L -,.\, (\7x Conservation
(2) St __>zv £xof momentum

(3) T Continuity for heat flow

(4) '9 Equation of state

(5) (Second law of thermodynamics

where,

S= coefficient of viscosity

= bulk modulus

thermal conductivity

Cp = specific heat at constant pressure

= ratio of specific heats, C /C
p vIt

Any vector function of space, such as -, has two parts: a longitudi-

nal part 'i for which 7 0 , and a rotational or transverse part

6



Ut for which V 0,L O • Since V K ( 0, one can :erate the

Navier-Stokes momentum eqiation Into two equations.

(6) , Vt

The conservation of mass equation becomes

(8) o"z =O

Fquation 7 defines t' which is the shear wave mentioned earlier. The

shear wave is not coupled to any changes in fluid pressure or temperature.

One can use the conservation of mass equation, its first derivative

with respect to time,

_ . . .

and the definitions of and r- (equations 4 and 5) to reduce the system

of equations above to two equations in two unknowns, p and C.

u( t o) 1 s h l

Equation ii expresses the longitudinal velocity- in terms of p and "d.

-* ' : I t I i I ' ' " . ..

7t



t
One can also write these equations in terms of characteristic lengths,

each on the order of the molecular mean free path.

7::.

(12) //,_ = -~ o A '-

These equations represent two kinds of waves depending on which

equation (13 or 14) dominates. One can find the equations governing

each wave by considering separable simple harmonic motion,

k2

and solving for the two solutions to the resulting quadratic in k2.

(16) 6,W C-~ CJ 2~t .3

One solution corresponds to nearly adiabatic motion; the propagation ve-

locity has a real part equal to c, and a small imaginary part correspon-



ding to the energy loss terms in I and 1'. This is the ,ropa.ational

mode, and it is governed (to first order in 1h and v') by the following

equations:

I

(1?b)

(17c) - __. I -'/ p

The other value of k2 is large and complex, indicating rapid attenuation.

This wave corresponds chiefly to heat diffusion. It is the thermal mode,

I' and is governed by:

kz _ ') C

Aii
4&

S(18a ) 
(18b ._.

~The plane wave solution for the thermal 
wave is

4 -co

9



The thermal boundary layer thickne.;s then is on the order of .

('9) -

For the shear layer

A ;X19i - L

The viscous boundary layer thickness is on the order of V

(20) -

Therefore, while the propagational mode decays as exp(

the thermal and shear modes decay as exp(- and exp(- ,X).

One can see that in a photo-acoustic chamber, h = 0(10-6 10-7), thata

the thermal and shear waves exist only in a thin area near the boundaries,

but account for most of the system losses. For typical photo-acoustic

frequencies and chamber sizes the attenuation of the propagational mode

is negligible, and one can assume all the power is lost in the boundary

layer, or since the layer is so thin, at the boundary itself. Further

analysis will neglect terms of order 1h and retain only those terms of

the same order as the boundary layer thicknesst dr' dh, -fi' {h and

larger.

-i10



Chapter 3: i.OJNDA.AY :,,'D1i()N3

Consider the cylindrical configxration .shown in 1.'ure 1.

A

L

y

x ~- Fig. 1

The propagational mode equations are now

(21 a(21 b 2(9

(21-d (21 e) - -

If the boundary surface is rigid the tangential and normal velocities

equal zero at the surface. In the case of a slightly flexible wall one

can assume the surface is one of local reaction, with acoustic impedance

3 to account for a nonnegligible velocity normal to the wall. Tangential

velocity would still be negligible. The heat capacity of the boundary

material is usually much greater than that of the fluid so the tempera-

4' ture variation 'rapproximately equals zero at the surface. Therefore, a

J

i 11t "
' I I I r 'i i _ , _. . = _



reasonable approximation to the true boundary conditions is:

(22) L4 -l D

at r = a, z 0, z = L.

But the propagational wave cannot meet all three of these conditions

and satisfy its own equation as well. One must add enough of the shear

and thermal modes so that the combination wave satisfies all three condi-

tions. A discussion below of the r = a boundary will demonstrate how the

other modes affect the propagational boundary conditions.

Assume that the thermal mode has the separable form

2- 

(23) --- 't=i~ a =

The substitution r a - dhx rescales the local coordinate normal to the

boundary, and enables one to eliminate terms smaller than d
h

Phy.;lally the so],ition m ist deciy with positive x; so bi = 0. The ther-

mal soluition sho:ld jis;t cance l the tenperatire fluctuation due to the

propa 'atlonl wavw at r a.

Thin i; 1 i .pl that



(25) -

The thermal wave has with it a corresponding velocity _ALzi9 7r. The

2
and z components are of order dh, but the r velocity component is not

negligible.

(26) LA

The shear wave will cancel the tangential velocity due to the propa-

gational wave.

(2?) 7)x L/A' L

Letting r a - dvx and dropping small terms, and adjusting constants to

cancel the e and z components,

S - ' C C- - t o t)-

LJ,

/

The rotational velocity t is not coupled to any changes in temperature
t

or pressure, but it does have a component in the r directi n which one

finds from the definition of u't"

(29) U e iS N:.)~2~ K
A . , .

The thurial, shut-, and prMJ) LLatlonal components of the normal fluid

4}



velocity together must satisfy the uj -p/ boundary condition

Solving for urp results in the true boundary conditions for pp.

( 30 -L LJ_ 12.Jk-

at r = a

The three terms within the parentheses correspond to compliant boundary,

thermal conductivity, and viscosity effects respectively. Assuming the

elastic boundary effects are small (-L- OI ),equation 30 is simply

the non-dissipative 0 boundary condition with small modifications

to include losses. Since thermal losses are caused by compression which

is related to the normal velocity, the thermal effect is equivalent to an

additional acoustic conductance. The viscous term is more complicated.

Since viscous losses are related to the tangential velocity of the fluid

just outside the boundary layer, the viscous term involves eigenvalues

from the other two orthogonal directions. In non-dimensional form, using

the conventions below, the r = a boundary condition is

-l-

- -- )L. -- vC / 10

at r 1.

a#



One can find the z = 0 and z = L boundary conditions in a similar manner

using the substitutions z = L - dhvy at the z = L boundary, and z = d,vy

at the z = 0 boundary. The z = 0 and z = L boundary conditions are:

(32) 2

at z= 0

"-2

(33)

Lj

at = L .
a

The boundary conditions couple the different modes of vibration to-

gether. The eigenvalues for the radial modes appear in the longitudinal

boundary conditions, while the longitudinal and azimuthal eigenvalues

appear in the radial boundary conditions. One can resolve this coupling

problem by using the zeroth order approximation to the radial eigenval-

ues, which comes from the i 0 condition, in the longitudinal boundary

conditions and vice versa. This works because, while the modified bound-

ary condition,; produce a change of order $1h/a in the zeroth order eigen-

values, this in turn produices a change of only order lh/a in the other

boundary condition:.

15



Chapter 4: EIGENVALUES

The modified boundary conditions (equations 31,32,33) can be applied

to the nonhomogeneous wave equation in cylindrical coordinates which gov-

erns the propagational mode.

-=

While the forcing function K(r,t) is arbitrary for the purpose of finding

k) it is commonly expressed in photo-acoustic spectroscopy literature

as- I) ,where Q is the net rate of energy release into the ther-
6- t

ma-l mode. 
6

(34) (7 C i)PC

One begins by solving the homogeneous problem for the system eigenfunc-

tion,;

(35) v7n k O -

The azimithal solition is

The cond itior (),., (o): (%@j2T 'iMpAien that m is an integer. The radial

solitlor. R is a liner:r combination of e 'L finctions J (k r) andn r

Nm ( k r). The co-fFiicient of the N (k) term mi.;t eqia] zero since the

probl ,,: mi;t have finit,, ;o1 it ion; in thef boj nded re.;ion, and Nm(kr) is

sin.TIlar at r 0.

'ihw i. E . b jirt a snal] p-rt ixbatior. of order -,ThIa from the

ri:,!(d, n, tv[k::,- ,: , nori :'o: , ct w: el&,,!Iv,. J :;

"-I 16



where for m = 0

k = 0.000, 3.832, 7.016, . . .r
0

for M = 1

r = 1.842, 5.332, 8.536, •
0

for m = 2

= 3.054, 6.706, 9.970,
0

for m = 3

k = 4.201, 8.015,

etc.

These values of kr appear in the longitudinal boundary condition at i = 0

and -Z _ L
a

The longitudinal elgenvalue k and the corresponding eigenfunction Zz

are small perturbations from the 0 boundary condition values.

k = where p is an integerzo  L

Applying the bo~indary condition, the values of and a to first orderin-ilh/a are

(38a)
!L

(38r) ,

Both and )',.are ;jndfin,:d for k = 0. The solutions for k = 0 are

0 0

17



(39a) i

For p 0

0 - o 2

Z- jyl V-
Forp= 0

The k = a values appear in the radial boundary conditions at r = a.z L
0

At - I,

where, ,12 / 4k" -- y-
.* L -( .% - £L (, : 4 - •L ~ i~ I - ~ L

i. toaprxaeJ and
By using Taylor series expansions around kr to approximate Jm(kr -)

d- - r 0
at kr + . , one can show that

r, 0

(41a)"- - L

-~2 2This is undefined for k m which occurs only at k = m = 0.rr
0 0

For k rm 0
r 0

(41 - '
* Ikb I Z I(i) I I



FOr k/ 0

J

For K=0

0

(42b) R4 (
"'he - , q, and Z ei~rerifuictions corresipond to azimithal, radial, and ion-

g itidinal standing waves as pictired in Figre 2.

AZIMNJTHAL RADIAL LON.JiYJDiNAL

L

~t 4 2R

M =012. n 0,,,.p 0,1,2,..

Fig. 2

* ~ . i~, ~)K ieA,,)

The next step in a complete solution is to express Qin terms of the

4- eigenfunctions.

However, that requires knowledge of the absorption characteristics of the

gas, and is not within the scope of this paper. One can get some very

important information about the shape of the resonant peaks, and the

phase shifts through resonance without knowingB n

V 19



System resonances occur at 2 = Re(kr2 + k2  while the finite imagi-

nary values of and 1, keep the resonant peaks from being infinite.

One measure of the sharpness of a resonance peak is the Q(t,) at reso-

nance. The acoustic Q(,i) is the resonant frequency divided by the peak

width at the half-power point. For a system excited by a single laser

pulse the rate of signal decay depends on the magnitude of the system

dissipation. Q(2) = 2 where is the logarithmic decrement or frac-

tional amplitude loss per radian of the signal. The acoustic signal amp-

lification due to resonance reported by Dewey et. al. is proportional to

, 2,9

One can look at Amnp/imnp near resonance by definingqas the zeroth

order resonant frequency plus a small perturbation of order fl/a.
h

(44) - 1< -K

For kr 0, k 0
0 0

42_

(45) A -., .... .

in mo.-t photo-acoii;tic cells the walls are sufficiently rigid to assume

0 (/a ) .  in such a ca-;e
h 1k , -- , Cj' ')(J,, .? - K, )

(46) ,(2 > ' 7)

wh'-.' -
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Viscosity and thermal conductivity shift the cylinder resonances to

higher frequencies. The resonant peak occurs at

(47) z (Q0t (_.. D

To find Q(Lo) one needs to solve forli/ where A r ,r

'/i I A,, n , To first order in lh/a the resonant peak is a

parabola and

(48) fy 112jD !D,

Therefore the width at the half-power point is 2 50'12D and the formula

for Q(tw) is

(49) 12~

The phase angle as one passes through resonance is equal to the arc-

tangent of the imaL-;inary part of Amnp/Bmnp divided by the real part. The

solution for the phase angle {f is

(50).

For the sp cial ca ;e-; when either k 0 or k 0 only the formula for
r 0z

D chan:-t:

Fo r z
*0 0

• ('A)

V V
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For k 0, k 0r z
0 0

Some literature sources refer to an acoustic Q(uj) which is measured at

the half-amplitude rather than half-power point of the signal. The for-

mula for the half-amplitude Q(j) differs from the half-power Q(LJ) by a

factor of i/5.

Another formula for Q(cj) developed from Morse and Ingard for the

m = 0, k = 0 radial modes is common in the photo-acoustic literature. 3 "2
z

0

(53) L

This fonula is usually adequate, since the first radial mode is the most

strong-ly excited by the usual beam, cylinder configuration. When equa-

tion 49 is put into the same form as 53 for easy comparison the results

are

(54)

3 .

22 t

Kr the r~pts of the first derivative of
0 the m L1 order Be-;sel's function
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Equation 54 reduces to 53 for m = k = 0.~z
0

Equation 54 is more general because it is valid for all the system

resonances. Current research requires this additional flexibility. For

example, some multipass configurations which bounce the laser beam back

and forth inside the cell to increase the effective absorption cross

section may not excite the first radial mode optimally. Angus, Marinero,

and Colles observed the spectrum of NO2 operating in a small diameter

cell at the first longitudinal resonance.18 They achieved an amplifica-

tion factor of 50 without suffering from losses due to a larger cell.

Koch and Lahmann detected small levels of sulphur dioxide in air using a

first longitudinal resonance.16

2)
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Chapter 5: EXPERIMENT

To test the applicability of the results presented in the first

half of this paper, we devised an experiment to measure the values of

Q(W) and phase shift through the acoustic resonances of a cylinder.

Figure 3 summarizes the experimental set up.

Laser Chopping Sample Microphone
Wheel Cell

Chart Lock-In
Recorder Amplifier Pre-Amp

Fig. 3

A visible laser light beam was passed through a rotating chopper

wheel, and then through the sample cell. The resulting pressure pulses

were detected by a microphone. The signal from the microphone was am-

plified and tran-mitted to a lock-in amplifier. The signal was synchro-

nously detected by the lock-in amplifier which was referenced to the

* chopping frequency. During the experiment the chopping frequency was

steadily increa.sed, and the magnittude and phase outputs of the lock-in

arplIfirer were plotted on the chart recorder as a function of frequency.

The linearity of thIs system was prteviouly tested, and it is assumed

that the siln;il plottred wa.; proportional to the pressure changes in the

cel 1.
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We conducted our experiments primarily at atmospheric pressure, and

room temperature. We filled our cell with dry air and nitric oxide.

Before each experiment the cell was pumped out overnight with a vacuum

pump. We filled the cell with 1 to 3 Torr of NO, monitorirg its pres-

sure on a Bourdon Gauge. Then we filled the cell to one atmosphere with

dry air by passing room air slowly through a liquid nitrogen trap to

condense out all water vapor. Upon contact with air, NO reacts to form

NO2 which is brown in color, and a strong absorber of visible light.

17Figure 4 shows the absorption spectrum of NO 27, and the locations of the

oi'tput lina from the Spectra Physics model 171 Argon/Krypton laser.

Krypton Laser:

5682 A

N A 'PION5309

V', v" 4825

AgnLaser:
~ 5145 A

'4k L

Fig-. 4

Wde usrd both the Ar-,on and Krypton laser tubes during different parts of

the experiment. The dif'fer(cncc. in waveleng-ths between the two lasers made

no differce~c in the experiment, since we were concerned only with cre-

atin;, ernoii:'j- sigruLL to measure q(eo), and not in the absorption mecha-

We 7L0 j r1it a .riel and Kjaer microphone (senritivity 4.95/dyne-/cm 2
4 2
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midway along the axis, flush with the side wall of the cell. A ramp vol-

tage applied to the chopper wheel controller increased the chopping fre-

quency linearly during each run.

We used an exisLing acoustic cell (a = 5.207cm. L = 9.2075cm.) with

large glass windows entirely covering the ends of the cell. See Figure 5.

preamplifier

SAM-Emicrophone

r.i bber
o-rinGD

aluminum
414 cm block

c.2075 m.

gas window

Fig. 5

Suich a configiration made it difficlt to distlnguish between window

ab.-sorption and gas absorption signals, bit again we were concerned only

with having enough signal, and not in where the signal came from. The

large window: enabled us to move the laser beam around within the cell to

varioi:,ly excite and siippress different modes. Specifically, an off cen-

ter bear. could excite the azlmithal modeos which were not excited by a
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centered beam. Shining the beam through the cell at r = .63a suppressed

the first radial mode, since r = .63a corresponds to the first zero of

the J Bessel's function.

In calculating the expected Q(c)s for the various resonances we

assume that the concentration of NO2 (<.5/) was so small that the dry air

used as a buffer gas determined the cell acoustics and dissipative param-

eters. Table 1 lists the necessary physical constants for air at one

atmosphere from the Chemical Rubber Company Handbook of Chemistry and

Physics.

Table 1

1.40 C .241
0P

Temperature (C ) 18.3 21.1 23.9 26.7

c (m/s) 342.2 344.0 345.6 347.3
P (gm/lt) 2 o -6 1.212 1.200 1.189 1.178
K (cal/gm cm (C /cm)10 60.81 61.27 61.74 62.20

m(micropoises) 182.0 184.2 185.5 186.6

Fp .8514 .8512 .8509 .8503

lh/a 1.081xiO -3 1.088x10- 3 1.094x10-3 1.101xiO -3

Appendix A lists the mode shapes and frequencies of the 30 lowest natural

frequencier.

We did not observe all of the resonances listed in Appendix A. Many

were only weakly excited, or buried under the strong signal of a nearby

re:sonanre. The odd hartm.onic.; of the longitudinal modes were especially

difficilt to detect. ey were excited by the atteniation of laser power
as it pa:.sJ throu:h, the absorbing g.a , . Even with a strong absorber like

NO2 the odd lori-itidlrial harmionic:; were mich weaker than the radial sig-

27
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nals. The location of the microphoe at the midway point along the axis,

a node of the odd longitidinal harmonics, made detecting them even more

difficult.

The calculated and measured values of Q(c.) for the ob.served resonan-

ces at one atmosphere are in Table 2.

Table 2

Mode Qcaic Qmeas meas/Qcalc

(1,0,0) 533.1 383.4 .719
(2,0,0) 549.2 363.3 .661

(0,1,0) 1135 572.1 .504
(0,2,0) 1543 438.6 .284

(0,0,1) 503.8 412.1 .818
(0,0,2) 714.2 577.4 .808

(1,1,0) 1279 567.6 .474

The signal to noise ratio for this experiment is probably on the order of

100:1, and should not cause any error in measuring Q(o). However, there

may be some error in the measuring of Q(cj) due to uncertainty in fixing

the base line of a peak from which we determine its half maximum. This

is because so many of the peaks overlapped with peaks of other resonances.

Graphs of the phase and amplitude versus frequency for each resonance are

in Appendix B.
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CONCLUSIONS

The results for the longitudinal modes were quite close to their

predicted values, while the azimuthal and radial modes were not. Some

possible sources of the discrepancy are:

1. Rough Surfaces - With boundary layer thicknesses on the order of

10 3 cm., slight surface roughness could have seriously affected the

results.

2. Compliant Walls - While the cell was bored from a heavy block

of aluminum, the glass windows which acted as end walls were thinner and

less rigid.

3. The Microphone - The microphone diaphragm was 23.8 mm in diame-

ter, and much less rigid than the cell walls. The mounting of the flat

microphone was not flush with the curved walls, which could have signifi-

cantly altered the cell geometry.

4. Volume Losses - The theory in chapter 2 predicts these losses

will be on the order of 10-3 times the boundary layer losses.

Rough surfaces would increase viscous losses. The windows were

smooth, so we expected to see rough wall losses mostly on modes tangen-

tial to the side walls, the longitudinal and azimuthal modes. Since the

radial modes suffered the greatest losses beyond those predicted, rough

surface losses were probably not the major source of error in this exper-

iment.

Compliant windows would show up as additional acoustic conductance

for waves propagating normal to the end walls. These were the lonitudi-

nal modes whose Q()s were very cl.ose to their predicted values. Compli-

ant window-, were not likely to be the major source of error in this ex-

4 ' r i -I . ;----, -.., . .



periment.

Wave reflection off the flat spot on the side wall and the scat-

tering off of the microphone mounting would undoubtedly have the most

effect on the radial and azimuthal modes. The radial and azimuthal modes

have the largest unexplained losses, so the microphone was probably a

major source of experimental error.

One way to verify that the unpredicted losses are due to imprecise

cell construction, and not to an error in predicting the fluid mechanical

losses is to conduct the experiment at lower pressure. This raises the

relative importance of the fluid mechanical losses, without changing the

scattering losses, and should result in better agreement between predic-

ted and measured Q(c,)s.

We measured Q(4) for the first radial and first azimuthal modes at

one-half atmosphere, and meas/Qcalc improved from .504 to .562 , and .719

to .766 respectively. The small improvement was very close to that

expected, but still within the bounds of the experimental error. We

needed further experiments at 1/4 and 1/8 atmosphere over a wider range

of resonances to confirm our hypothesis. However, the laser source broke

down before we could take anymore data.

In future experiments one should take great care to make the real

cell match the theoretical geometry. Mounting the microphone flush with

an end wall may solve the scattering problem. The experiment should cov-

er a wid4 range of pressijres, and possiblyr use more than one microphone,

th' ; provldin.- access to modes with a node at one microphone.

This paper provides a need-d method for predicting the acoustic

quality of a given rue;onant photo-acoustic spectroscopy cell. It presents

a ' " "I I! " '



a rigorous treatment of the resonant responses of a cylinder to a dis-

tributed heat source by showing that one could include viscous, thermal,

and compliant boundary losses to first order simply by modifying the

boundary conditions on the nondissipative wave equation. The results of

the analysis are formulas for Q(,)) and phase shift through resonance.

This paper also presents the results of an experiment conducted to test

these formulas. Because of their sensitivity to small changes from the

cylindrical geometry, the formulas failed to accurately predict the exact

response of the system, but are still useful for comparing the relative

advantages of various experimental designs and cell configurations.
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APPENDIX A

The Mode Shapes and Frequencies of the 30 Lowest Natural Frequencies
(r =5.207cm, L = 9.2075cm)

mn th e azimuthal Index
n =the radial Index
p =the long-itudinal index

-I + e. -
2

1 ~ (m,n,p) f (18.3-26.7 CO)
r z

1.777 0.11860 - 1886

1.842 O:OA3 92 - 1955
2.559 (1,0,1) 2678 -2716

3.054 (2,0,0) 3196 -3242
3.533 (2,0,1) 3698 - 3750
3.553 (0,0,2) 3718 - 3772

3.832 (0,1,0) 4010 - 4068
4.002 (1,0,2) 4188 - 4248

4.201 (3,0,0) 4397 - 4460
4.224 (0,1,1) 4421 - 4484
4.561 (3,0,1) 4773 - 4842

4.685 (2,0,2) 4903 - 4973
5.226 (0,1,2) 5469 - 5548
5.317 (4,0,0) 5565 - 5644

5.330 (0,0,3) 5578 - 5658
5.332 (11,0) 5580 - 5660

5.502 (3,0,2) 5758 - 5841

5.606 (4,0,1) 5867 - 5951

5.639 (1,0,3) 5902 - 5986
6.143 (2,0,3) 6429 - 6521

6,395 (4,0,2) 6693 - 6789
6.407 (1,1,2) 6705 - 6801

6.416 (5,0,0) 6715 - 6811

6.564 (0.1,3) 6670 - 6968
6.658 (5,0,1) 6968 - 7068

6.706 (2,1,0) 7018 - 7119

6.786 (3,0,3) 7102 - 7204

6.937 (2,1,1) 7260 - 7364

7.016 (0.2,0) 7343 - 7448

7.106 (0.0,4) 7437 - 7.543



APPENDIX B

GRAPHS OF PHASE AND AMPLITIUDE
VERSUJS FREQUENCY FOR MEASURED ziESONANCES

The amplitudes of all the peaks are normalized to one.

The frequency is given in Hz.
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