
AD-AIG2 180 MITRE CORP MCLEAN VAF/ 51

CANDIDATE R&D THRUSTS FOR THE SOFTWARE TECHNOLOGY INITIATI GE. (U)
MAY 81 S T RED WINE E SIEGEL 6 R BERBLASS F1962 9-817-C-OD 017N LAIFE T- 8180116NL

o CANDIDATE R&D THRUSTS
FOR THE SOFTWARE

TECHNOLOGY INITIATIVE

LC

"ge

•8. DT C

Department of Defense JUL 30 1981

May 1981 _

~~~DISTRIBUTION STATENIMlx T  D

* Approved for public reteQ30
Distribution Unliir Itedi

81 7 29 010



CAN DIDATE R&D THRUSTS
FOR THE SOFTWARE

TECHNOLOGY INITIATIVE

Department of Defense

Ma 181JUL 0 19810

Prepared with the Assistance of the MITRE Corporation

Samuel T. Redwine, Jr.
Eric D. Siegel Accoision For

Gilbert R. Berglass NTI GRA&T

DTIC TAB F4
1hncnnounced 0

Foreword By
Joseph C. Batz___-
Office of the Under Secretary of Defense Distri'Lution/

for Research and Engineering Avalibilitf, Codes~
r(Electronics & Phyica SciencesPhyica Scencs)Di~A. Special



SECURITY CLASSIFICATION OF THIS PAGE (lhen Date Entered) -GREAD INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

CANDIDATE R&D THRUSTS FOR THE SOFTWARE 
Final

TECHNOLOGY INITIATIVE 6. PgRFORMING ORG. RPORT NUMBER

. MTR- 81W016E
AUTHOR(.) .... .a".. 0 NUMBER(.)

Samuel T.iRedwine, Jr., Eric D.jSiegel and / F19628-81-C-0001
Gilbert R.i Berglass

9. PERFORMING ORGANIZATION NAME AND ADDRESS II. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

MITRE 8920
1820 Dolley Madison Blvd.
McLean, VA 22102

I1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Office of Electronics and Physical Sciences / May 1*81

Rm 3DI079 The Pentagon 1i. UMBE Or PAGES

Washington, DC 20301 xiv + 202
14. MONITORING AGENCY NAME & ADDRESS(f different from Controlling Office) IS. SECURITY CLASS. (of this report)

Unclassified

15a. DECL ASSI FICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for Public Release; Distribution Unlimited

17. DISTRIBUTION STATEMENT (of the abetrct entered In Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

Foreword by Joseph C. Batz, Office of the Under Secretary of Defense for
Research and Development (Electronics and Physical Sciences)

19. KEY WORDS (Continue on reverse aide if necessary and identify by block number)

Software, Research and Development Planning, Technology Base, DoD Software
Technology Initiative, Productivity, Reliability, Maintainability,
Technology Transfer, Computers

2*4IAfTRACr (ctimmt o a , i ft sf*i y and Idenify by block number)

This document is the first iteration towards a technical plan for the DoD

Software Technology Initiative, and is intended for review and comment. The
background of the Initiative and DoD's historical difficulties with software
are covered. Tentative candidates for R&D support are discussed in the sequenc
of their potential for significant incremental payoff -- short-term, (less than

4 years), medium-term (4-7 years), and long-term (more than 7 years). More
. detailed discussion of the candidates and a list of ideas tentatively rejected

* are included in appendices. Reviewers should comment usinx the questionnaired

DO i 473 EDTIONOF INOVOSIS OSSOLETE / /

SECURITY CLASSIFICATION OF THIS PAGE (When Enters



FOREWORD

DoD's software problems have been identified and reported in

many previous studies. Expanded computer utilization, encouraged

by extraordinary hardware advances will amplify these software

problems by an order of magnitude over the next decade. New tech-

nologies, new methodologies, and new management approaches must be

found to overcome them.

THE SOFTWARE TECHNOLOGY INITIATIVE is a joint DoD Tri-service

effort to pursue the rapid transfer of proven technologies and the

development of new technologies to obtain major improvements in

software productivity, reliability and maintainability. This docu-

ment has been prepared to lay the framework for the process of

identifying, assessing, selecting and initiating research and

development thrusts to solve problems common to all services and

DoD components.

It is recognized that individual service efforts are underway

to address some of these problems from a service-unique perspec-

tive. The objective in the Initiative is to seek out common ele-

ments and attack them jointly.

The proposed efforts and research activities in this document

have been compiled from recommendations in published reports and

from suggestions submitted to DoD in response to recent public an-

nouncements of the Software Technology Initiative. As described in

this document, candidate thrusts may appear abstract, especially in

areas where experience, knowledge, or capability already exists.

However, it was intended that thrusts first be defined in a generic

way in order that we not initially bind our approach to specific
capabilities and implementations with which we may happen to be

most famil iar.

iii

FMIUM PAGS FUMEDr 7L4



Potential efforts must be prioritized according to the prob-

lems they address, and defined in much greater detail before deci-

sions can be made for additional funding and management support.

In the process of prioritization, considerable thought must be

given to the magnitude of the problems each effort addresses, as

well as the impact the expected results will achieve. Selection

will ultimately depend on the potential for reducing or eliminating

recognized problems. Specific well-defined targets with scheduled

milestones must be estalished to create a supportable program.

No claim is made that the potential thrusts described are

all-encompassing; therefore, recommendations for additional thrusts

are invited. Knowledgeable constructive criticism of the proposed

thrusts is sought. The report itself provides a basis and mechan-

ism'for such comments and recommendations.

Responses will be evaluated by the Research and Development

Technology Panel of the Management Steering Committee for Embedded

Computer Resources. These results will be used in updating the De-

fense Computer Resources Technology Plan, and will serve as the

basis for establishing DoD-sponsored research and development pro-

grams for the Software Technology Initiative.

Joseph C. Batz

Office of the Under Secretary of

Defense for Research and Engineering

(Electronics & Physical Sciences)

ivV'i

t



EXECUTIVE SUMMARY

The Software Technology Initiative (STI) is a new Department of

Defense initiative aimed at order-of-magnitude improvements in DoD's

capabilities to develop and maintain software. The key themes of the

Initiative are productivity, reliability and maintainability, and

technology transfer.

The need for the Initiative is evident from both the history of

DoD problems with software and projections of tremendous increases in

the importance and cost of software to DoD over the next decade. For

example, the Electronic Industries Association (EIA) forecasts that

32 billion dollars will be spent by DoD on embedded software in FY

1990 alone.

The STI was first proposed by Dr. Ruth Davis during Congres-

sional testimony in April, 1979. Responsibility for planning for the

Initiative rests with the Office of Electronics and Physical Sciences

under the OUSDRE MRAT) and the Research and Development Technical

Panel under the Management Steering Committee for Emibedded Computer

Resources.

R&D to be performed will be managed through the same DoD organi-

zatione that currently administer such efforts but coordinated under

OUSDRE with the services, agencies, and laboratories, the Ada Joint

Program Office, DARPA, the Very High Speed Integrated Circuit Program

W (VHSIC), the Advisory Group on Electronic Devices (AGED), and the DoD

Computer Security Initiative. Plans are being formulated to estab-

lish a formal mechanism to obtain inputs from industry and academia

in the subject areas of information sciences and software technology.

Increasingly lower hardware costs, the maturation of software

engineering, and the introduction of Ada and the Ada Programming

v



Support Environment make this a propitious time to launch an Initia-

tive to reduce the cost, time, and risk associated with software

development and maintenance, while increasing the utility of opera-

tional systems. Both new and existing systems are targets for

improvement.

Approximately eighty potential R&D thrust areas have been iden-

tified. Of these, forty are suggested R&D candidates for the STI.

They are orgarized according to the time (under 4 years, 4-7 years,

over 7 years) when their principal benefits will begin. A thrust is

an effort to provide or apply a technical capability involving

hardware, software, documentation, procedure, management, or educa-

tion.

Short-term candidates emphasize technology transfer, standardi-

zation of software environments, tools, packages, workstations, and

preliminary results from thrusts whose main payoffs occur later.

Candidates with short-term payoffs include identifying and transfer-

ring techniques and competencies of superior software personnel,

establishing the framework for an integrated software support

environment, producing reusable Ada packages for common usage areas

(e.g. graphics), and rapid prototyping.

Candidates with medium-term payoffs emphasize requirements and

design methods, integrated software tool sets, and personnel and

management improvements. Examples include data flow techniques,

intensive advanced training for software personnel, and acquisition

management support systems.

Long-term candidates are directed at problems without currently

available solutions. Multi-computer system design, intelligent sys-

tems, and synthesis of techniques are emphasized.

Although the set of candidates may change, as planning and coor-

dination proceed, a sound technical basis exists for the Initiative.

Special emphasis will be needed to ensure successful technology

vi



transfer and human engineering, because widespread use of the results

within DoD is essential if the payoffs are actually to be received.

In addition, provisions must be made for continuing maintenance and

improvement of Initiative products. In brief, the technical basis

exists; with adequate R&D effort and proper attention to technology

transfer, the Software Technology Initiative will achieve the needed

major improvements.

[.v

~vii

II



TABLE OF CONTENTS

Page

FOREWORD iii
EXECUTIVE SUMMARY v
LIST OF ILLUSTRATIONS xiv

1.0 INTRODUCTION 1
1.1 Background 1

1.1.1 The Software Problem I
1.1.2 Timeliness of the STI 5
1.1.3 History 5
1.1.4 Relationship to Other Efforts 9

1.2 Definitions 10
1.3 Themes 11
1.4 Candidate Lifecycle 12
1.5 Document Organization 14

2.0 THRUSTS WITH SHORT-TERM PAYOFFS (UNDER 4 YEARS) 15
2.1 Introduction 15
2.2 Candidates 15

2.2.1 Technical 17
2.2.2 Managerial 19
2.2.3 Personnel-Related 19
2.2.4 Continuity-Related 20

2.3 Chapter Summary 20

3.0 CANDIDATES WITH MEDIUM-TERM PAYOFFS (4 - 7 YEARS) 21
3.1 Introduction 21
3.2 Candidates 21

3.2.1 Technical 21
3.2.2 Managerial 24
3.2.3 Personnel-Related 24
3.2.4 Continuity-Related 25

3.3 Chapter Summary 25

4.0 LONG-TERM CANDIDATES (MORE THAN 7 YEARS) 27
4.1 Introduction 27
4.2 Candidates 27

4.2.1 Technical 27
4.2.2 Managerial 30
4.2.3 Personnel-Related 30
4.2.4 Continuity-Related 31

4.3 Chapter Summary 31

ix

4: ~~~NRMAlO PAGE EA~O



TABLE OF CONTENTS (Continued)

5.0 SUMMARY 32

A. DESCRIPTION OF CANDIDATES 34
A.1 Technical 38

A.1.1 General 38
, A.l.1.l Integrated Software Support Environment 38

A.1.l.2 Ada Package Sets for Common Usage Areas 41
A.l.l.3 System Dictionary/Directory 43
A.l.1.4 Set(s) of Tools Covering Entire Lifecycle 46
A.1.1.5 Software Engineer's Support System 49
A.1.1.6 Programmer Workstation 52

A.1.1.7 Useful Measures of Software Quality 55
A.1.1.8 Multiple Representations of Software 58
A.1.1.9 Earliest Possible Error Detection 60
A.1.1.10 Configuration Independence 63

A.1 .2 Conception/Feasibility 66
A.1.2.1 Rapid Simulation 66

A.1.3 Requirements 69
A.1.3.1 Rapid Prototyping 69
A.1.3.2 Application Domain Expertise 72
A.1.3.3 Data Validation 74
A.1.3.4 Built-In Testing 77
A.1.3.5 Forgiving Systems 80
A.1.3.6 User-Oriented Requirements Interfaces 83
A.1.3.7 Complex Knowledge-Based Systems 87

A.1.4 Design 91
A.1.4.1 Data Flow Approach 91
A.1.4.2 Self-Interfacing Software 93
A.1.4.3 Predicate Approach 95
A.1 .4.4 Exception Handling 98
A.1.4.5 Distributed Functions and Resources 101
A.1.4.6 Suitable Communication Interconnection 104

A.1.5 Programming 108
A.1.5.1 Transform Software to Improve Quality 108
A.1.5.2 Formal Verification of Large Systems 111

A.1.6 Testing 114
A.1.6.1 High-Confidence Software Testing 114

A.1.7 Operations 117
A.l.7.1 Facilitating System Evolution 117
A.1.7.2 Impact Analysis of Proposed Change 120

x



TABLE OF CONTENTS (Continued)

Pag e

A.2 Managerial 123
A.2.1 Acquisition Manager's Support System 123
A.2.2 Software Technology-Compatible Acquisition 127
A.2.3 Technology Transfer in the Software Area 130

A.3 Personnel-Related 133
A.3.1 Superperformer Competencies 133
A.3.2 Intensive Advanced Programmer Training 136
A.3.3 Programmer Laboratory 139
A.3.4 Personnel Independence 142
A.3.5 Improved Education About Software 144
A.3.6 User Programming 146

A.4 Continuity-Related 149
A.4.1 Voice Replaces Text 149
A.4.2 Built-In Training and Documentation 152

B. OTHER IDEAS 155
B.1 Technical 155

B.1.1 General 155
B.1.1.1 Presentation and Manipulation 155
B.1.1.2 Rigorous Documentation 155
B.1.1.3 Conflict Recognition Among Representations 156
B.1.1.4 Exploratory Systems Applications of VHSIC 156
B.1.1.5 Military Information Utility 156
B.1.1.6 Multiple Classes of Service 157
B.1.1.7 Standard Real-Time Operating System 157

B.1.2 Requirements 157
B.1.2.1 Rapid Derivation of Requirements 157
B.1.2.2 Transform Informal to Formal Requirements 157
B.l.2.3 Requirements Languages Translation 158
B.1.2.4 Weakest Possible Requirements Description 158

B.1.3 Design 158
B.1.3.1 Derivation of Software from Specifications 158
B.1.3.2 Very High Level Languages 158
B.1.3.3 Component Tailoring and Interfacing 159
B.1.3.4 Publication of Standard Designs 159
B.1.3.5 Data Structure and Abstraction 159

B.1.4 Programming 159
B.1.4.1 Code Skeletons 159
B.1.4.2 Graph-Oriented Language 159
B.1.4.3 Generating Assertions from Requirements 160
B.1.4.4 Transform to Satisfy Physical Constraints 160
B.1.4.5 Man-Machine Quality Improvement Team 160

xi



TABLE OF CONTENTS (Continued)

Page

B.1.4.6 Application Generators 160
B.1.4.7 Reusable Software 160
B.1.4.8 Actor Languages 160

B.1.5 Testing 161
B.1.5.1 Static Analysis of Software 161
B.1.5.2 Generating Test Data from Requirements 161
B.1.5.3 Generating Test Data to Violate Assertions 161
B.1.5.4 Testbed Facilities 161

B.1.6 Operations 162
B.1.6.1 Construction for Future Evolution 162
B.1.6.2 Modification of Large Systems 162

B.2 Managerial 162
B.2.1 General 162

B.2.1.1 Model Contracts for Buying Software 162
B.2.1.2 Maximizing DoD Rights to Software 162
B.2.1.3 Multiplying Expert Effectiveness 163

B.2.2 Conception/Feasibility 163
B.2.2.1 Quick Look Feasibility/Evaluation 163

B.3 Continuity-Related 163
B.3.1 General 163

B.3.1.1 Completely Captured Software 163
B.3.1.2 Multi-person Machine Mediated Programming 164
B.3.1.3 Totally Visible Software 164
B.3.1.4 Systems that Never Forget 164

- C. SOFTWARE PROBLEM AREAS 165
C.1 Technical 166

C.1.1 Flawed and Conflicting Standards 166
C.1.2 Inappropriate Constraints 169
C.1.3 Poor Definition of Goals and Measures 169
C.1.4 Faulty Design 171
C.1.5 Incorrect Selection and Use of Languages & Packages 172
C.1.6 Poor Use of Implementation Tools 172
C.1.7 Inferior Testing Methodology 172
C.1.8 Unsatisfactory Product Evaluation and Follow-up 173

C.2 Managerial 173
C.2.1 Weak Project Leadership and Coordination 173
C.2.2 Poor Monitoring & Prediction of Schedules & Budgets 174
C.2.3 Unsatisfactory Project Control 175
C.2.4 Flawed Methodology for the Acquisition Process 175

C.3 Personnel-Related 176
C.3.1 Problems Finding and Keeping Qualified Fersonnel 177

xii4!

-S -- -. . -.



TABLE OF CONTENTS (Continued)

C.3.2 Unsuitable Competence Measures 178
C.3.3 Poor Exploitation of Personnel 179

C.4 Continuity-Related 179
C.4.1 Ambiguous, Unclear, Incomplete Communication 179
C.4.2 Slow, Outdated Communications 180
C.4.3 Lack of a Project History 180
C.4.4 Poor Phase-to-Phase Continuity 180

C.5 Bibliography 180

D. SUMMARY OF SOME REVIEWED STUDIES 183

E. EVALUATION CONSIDERATIONS 187
E.1 Benefits 187
E.2 Cost of R&D Thrusts 193
E.3 Types of Relationships Among Candidates 193
E.4 References 194

F. SOFTWARE TECHNOLOGY INITIATIVE QUESTIONNAIRE 195

xiii



LIST OF ILLUSTRATIONS

Page

Figure Number

I Software and Hardware Costs for Embedded Systems 2
2 Typical Thrust Lifecycle 13
3 Short-term Candidates 16
4 Medium-term Candidates 22
5 Long-term Candidates 28
6 Summary of Candidates' Tentative Status 35
7 Problem Areas 167
8 Theoretical Calculation of Benefits 189
9 Software Lifecycle 190

xiv

1P,



1.0 INTRODUCTION

The Software Technology Initiative (STI) is a tri-service, DoD-

managed program to achieve an order-of-magnitude improvement in

software productivity, reliability, and maintainability for military

systems. Innovative management and engineering tools and techniques

will be developed, and proven tools and techniques will be introduced

into the software lifecycle throughout the Services and the partici-

pating Agencies. The goal is the development of a standard, coherent

set of capabilities to support and enhance software development and

maintenance. This document outlines the need for the STI and begins

the process of choosing the initial R&D thrusts for the Initiative.

To that end, DoD software problems, potential thrust areas, and any

existing or proposed tools and techniques to manage the problems are

described. Chapter 1 contains background material, definitions, and

themes.

1.1 Background

This section presents background material on the need for and

the history of the STI, along with information about its relationship

to other ongoing Federal efforts.

1.1.1 The Software Problem

The principal reason for a Software Technology Initiative is

illustrated in Figure 1. The annual bill for software is rising

dramatically as more computers find their way into systems and equip-

ment. For example, DoD's bill for software in 1980 alone was

estimated to exceed $3 billion [DoD Annual Report FY81, Jan. 29,

1980, p. 2451, and Figure 1 shows that it is forecast to exceed $30

billion a year for embedded software in 1990. The indirect costs of

software problems and schedule slippages are far greater than the

figures show, because of the impact of faulty or delayed software on

systems in which it is embedded, and because of the coritinuing high

maintenance costs for software--especially for software with a



00

4l 04

00 0 c4
C40

oW z(f
0 04

00

00 -U40c

0 rum
ULI

0 Co

0 (j

Figure 1. Software and Hardware Costs for Embedded Systems



problem-plagued development history. Many software systems have

grown so complex that it has become virtually impossible to use

existing methods to predict the costs and schedules of software

development and maintenance projects.

Costs and schedules are not the only driving forces behind the

STI. As software has become an increasingly large part of military

information and weapons systems its reliability and availability have

become crucial issues. Software systems must often operate in

unpredictable and hostile environments, on battlefields, in combat

aircraft, and in ships and submarines. Systems that must survive and

operate in such environments are of significant importance; software

failures may adversely affect the outcome of conflicts.

Unfortunately, software often doesn't even arrive at the stage

where its reliability is tested, because failures in the requirements

analysis, specification, and design process have left it in a state

where it simply doesn't work or meet the need for which it was sup-

posedly designed. Without a successful Software Initiative, The U.S.

may find itself in a vulnerable position. As stated by the Software

Methodology Panel in What Can Be Automated? (a computer science and

engineering research study sponsored by NSF, edited by Bruce Arden

[MIT Press, 1980]):

"... for the last 20 years the United States has enjoyed a
commanding lead in computer power; the U.S.S.R. has had much
less. However, Soviet programmers take their work seri-
ously, with the result that they are relatively few but
highly disciplined, while the United States has a great many
undisciplined programmers .... No matter how good machines
are, they cannot make up for sloppy programming. It is all
too easy for poorly conceived programs to waste machine time
even faster than hardware technology can provide it, and to
end up with software systems which are beyond intellectual
control and responsible management because of the lack of
discipline in their development .... We could then face a
software gap more serious than the missile gap of some years
ago." [pp. 795, 7961

t



A critical shortage of competent software personnel aggravates

the software problem. Although the number of programmers, about

240,000 in the U.S. in 1980, is growing, the need for programmers, as

well as software engineers, designers, and analysts, is growing even

faster. Competition in industry for software personnel drives up

salaries, which will attract more people to computing careers; how-

ever, high salaries in industry entice personnel from lower-paying

positions in universities and government, resulting in fewer profes-

sionals to train new software people and government's greater depen-

dence on outside expertise.

The STI approaches the personnel shortage problem on several

fronts. Principally, it aims to increase the productivity of exist-

ing personnel by giving them better training, hardware, software,

procedures, and management. It seeks ways to identify or create

superior performers, and to increase project productivity by finding

better ways to use people, by standardizing procedures, and by facil-

itating the re-use of existing software. Ultimately, it seeks to

change the composition of the software team to highly competent

software engineers assisted by automated, intelligent, tools in a

friendly environment.

Like other major initiatives, such as the development and stan-

dardization of COBOL, the impact of STI will reach far beyond DoD.

Indeed, whereas the standardization of COBOL was an excellent step at

the time, it is now necessary to move forward to avoid outmoded prac-

tices and languages.

Other nations use modern methods to develop more usable systems.

The Japanese Government, recognizing that software is critical to the

success of their industry and that Japan currently lags behind the

U.S., recently started a program to encourage software research and

development. [See Electronics, Mar 27, 1980, pp. 113-136.] By inac-

tion we may open a critical software gap between this country and

4



..

others that is just as severe as the gap in some industries between

our aging industrial base and more modern plants in other nations.

Appendix C discusses current DoD software problems in more

detail, and appendix D presents summaries of twelve important previ-

ous DoD studies in the field.

1.1.2 Timeliness of the STI

There are a number of reasons for a Software Technology. Initia-

tive at this time. In the past few years a number of efforts have

begun to attack the problems of software development and maintenance,

and it is now widely believed that the field of software engineering

is poised for significant consolidation, and possibly for a major

breakthrough.

Now is an especially propitious time for the Initiative. The

adoption of Ada as the standard language for military systems intro-

duces a new software environment, as yet unpolluted by inadequately

defined, poorly documented, hardware-dependent, or unstructured

software. There are no large numbers of poorly trained Ada program-

mers. If the Software Initiative is successful, its ideas will

engender software applications that are more reliable, less costly,

more useful, and more timely than most software is today. If the

well-documented military computer system failures of the past are not

to be repeated during the next few years, it is imperative to act

decisively to integrate and disseminate those advances that have been

made piecemeal over the past few years, and fund the research and

development that will result in a major improvement in software pro-

duction and quality.

1.1.3 History

DoD attempted to organize the field of software engineering

research by running a conference in September, 1973, in Monterey,

California, titled "The High Cost of Software." The conference was

5

r~"1
I'= l l l II ': -T '', T - .



sponsored by a Tri-Service Committee composed of representatives from

the Office of Naval Research, the Air Force Office of Scientific

Research, and the Army Research Office. The conference had the

explicit objectives of "providing more precise description and meas-

ure to those problems of (software] cost, reliability, and error."

[Research Directions in Software Technology, Peter Wegner, ed., MIT

Press, 1979, p. xi] It was the hope of the sponsors that they "had

initiated a process which would expedite the evolution of software

development from the art form it largely is today to a discipline

with scientific rigor and its own well-defined structures and formal-

isms." [Ibid.]

The conference did, indeed, start such a process. A "Software

Management Steering Committee" was formed in December, 1974, at the

request of the Director of Defense Research and Engineering, the

Assistant Secretary of Defense for Installations and Logistics, and

the Assistant Secretary of Defense for the Comptroller's Office.

Representatives from all three services were included. The prime

focus of the Committee was to be improvement of acquisition, develop-

ment, and maintenance of weapons systems software.

Starting at the same time as the committee were two parallel

research projects, one at the MITRE Corporation and the other at the

Applied Physics Laboratory of the Johns Hopkins University. The pur-

poses of these projects were

"to identify and define (1) the nature of the critical
software problems facing DoD, (2) the principal factors con-
tributing to the problems, (3) the high pay-off areas and
alternatives available, and (4) the management instruments
and policies that are needed to define and bound the func-
tions, responsibilities and mission areas of weapon systems
software management." [DoD Weapons System Software Manaxe-
ment Study, A. Kossiakoff et al., Johns Hopkins Applied Phy-
sics Lab, June 1975, p. E-51

6



The studies began in January, 1975, and were completed by that

June. Because the allotted time was so short, the researchers were

restricted to reviewing ten recent, major, DoD-sponsored studies of

software development (usually "lessons learned"), reviewing the

software design and management of a number of additional Amy, Navy,

and Air Force projects, and interviewing industry representatives.

Nevertheless, the studies were excellent and provided a good founda-

tion for later work.

The two studies were delivered in July, 1975. In March, 1976,

the Software Managment Steering Committee issued the Defense System

Software Management Plan, which was followed in April by DoD Direc-

tive (DoDD) 5000.29, "Management of Computer Resources for Major

Defense Systems." These documents were a start at integrating and

directing the software research underway at DoD, and at modernizing

the management of software projects.

Part of DoDD 5000.29 established the Management Steering Commit-

tee for Embedded Computer Resources, which then established the

Research and Development Technology Panel. The Panel published the

first Defense System Software R&D Technology Plan in September, 1977,

to cover the period FY 1978 to FY 1983. "It provided for the first

time a common structure for all DoD software R&D programs. For each

of twelve technology areas, problems and issues were listed, existing

and proposed R&D directions described, and recommended funding pro-

files presented." [Defense Computer Resources Technology Plan,

Management Steering Committee for Embedded Computer Resources, USD

(R&E), June 1979, p.1 1 Since then the plan been updated once: the

second edition was published in June, 1979.

Meanwhile, other across-the-board studies were conducted in the

Federal government, as the software problem became increasingly obvi-

ous. Some examples are the study done by the Software Acquisition

and Development Working Group for the Assistant Secretary of Defense

7



for C31, published in July, 1980, and the 1978 "Federal Data Process-

ing Reorganization Study."

The concept of a Software Technology Initiative was first intro-

duced by Dr. Ruth M. Davis, then the Deputy Under Secretary of

Defense for Research and Advanced Technology (DUSD(R&AT)), in her

testimony before the House Armed Services Subcommittee on Research

and Development on 5 April 1979. The concept progressed towards

realization over the last two years. The Report of the Secretary of

Defense to Congress in January 1980 concerning FY81 and beyond

stated, "In FY81 we will begin a major new initiative in computer

software technology." Primary emphasis was planned for FY82-86. In

FY80 the planning for the Initiative was assigned to the Office for

Electronics and Physical Sciences, specifically to Dr. David Fisher.

After some preliminary activity, a DoD Workshop on Software

Technology was held at Fort Belvoir, Virginia, in May, 1980. It was

aimed at providing a common basis for planning the Initiative. The

first day provided background presentations, and the second day con-

sisted of four parallel working group sessions on the topics: High

Pay-Off Thrusts, Planning Strategy for the Initiative, Mission Area

Orientation, and Technology Transfer. The workshop produced a basis

for the structure of the Initiative and a set of preliminary goals

and thrusts.

The Software Technology Coordinating Committee, formed to pro-

vide direction and oversight to the Initiative, made some progress

during its meetings over the following summer. A draft of a

management-oriented Program Definition Plan was distributed for com-

ment in July, 1980, and an announcement appeared in Commerce Business

Daily on 30 July asking for qualification statements by 31 August.

Over eighty qualification statements were received and reviewed.

In an effort to reach a wider audience, especially the academic and

private research communities, the announcement was repeated in the

8



December, 1980, Communications of the ACM. Approximately forty addi-

tional replies were received.

During the fall of 1980, comments were collected on the July

draft of the Program Definition Plan. It became clear that a major

difficulty was the need for more technical substance in the Program

Definition Plan and in STI planning in general. As a first step,

work began to identify potential technical thrusts and to compile

what was tentatively called a "Technical Development Plan." The

Technical Development Plan evolved into this document, the main pur-

pose of which is to begin the process of choosing specific initial

R&D thrusts for the Initiative.

1.1.4 Relationship to Other Efforts

The STI was originally visualized as falling between basic

research aimed at long-term payoffs, such as might be supported by

DARPA and the National Science Foundation; and the more short range

efforts that comprise most of current DoD software R&D. In DoD par-

lance, it was to be "6.2 and 6.3 moneys rather than 6.1." Payoffs

were to be obtained by ensuring that the results would be used by the

Services in their systems; therefore, the results would have to be

practical, cost-effective, and effectively transferred to the users.

Although the details of the Initiative are still evolving, the origi-

nal program's intent remains unchanged.

R&D efforts under the Initiative will be performed through the

same DoD organizations that currently administer such efforts, but

with overall management from OUSDRE. To be effective, the STI must

be funded substantially above current levels of DoD software R&D

funding. Realistically, however, the extent of additional funding

will depend on the quality of the proposed program and the expected

impact of the results.

The Software Technology Initiative will be conducted under the

auspices of the Research and Development Technology Panel of the

9



Management Steering Committee for Embedded Computer Resources. Coor-

dination will be close with the Ada Joint Program Office, with DARPA,

with the other DoD Agencies concerned with software development, and

with the military services and their laboratories. Liaison will be

close with the Very High Speed Integrated Circuit (VHSIC) Program to

provide coordinated and integrated thrusts where appropriate. Coor-

dination will also occur with the DoD Computer Security Initiative.

Plans are being formulated to establish a formal mechanism to obtain

inputs from the industrial and academic communities in the subject

areas of information sciences and software technology. Other ad hoc

activities will also be used to collect inputs from a number of dif-

ferent perspectives.

The details and boundaries of the Software Technology Initiative

are still being defined. A revision of the Program Definition Plan

will address the organizational and managerial issues. This document

primarily addresses the technical aspects of the program.

1.2 Definitions

A thrust is an effort to provide or apply a technical capabil-

ity. A thrust may involve hardware, software, documentation, pro-

cedure, management, or education; many thrusts involve combinations

of these. This document deals with candidates for thrusts. Other

topics, especially those furthest from implementation, need addi-

tional research to define possible concrete results.

Candidates are categorized according to the period (after ini-

tial funding) when their benefits will begin to be realized

throughout DoD. Benefits from short-term candidates should be real-

ized within 4 years, medium-term candidates within 7 years, and

long-term candidates after 7 years. The estimate for each thrust is

measured from its starting time, and assumes that research and

development are supported at appropriate levels through the thrust's

lifecycle. Almost all thrusts produce preliminary results; success-

10



ful thrusts continue to produce results until superseded or subsumed

by other thrusts' results.

1.3 Thines

Productivity, reliability and maintainability, and technology

transfer are the primary goals of the Software Initiative. Improved

training and automated support increase productivity, thereby allevi-

ating the critical shortage of software personnel. More complete and

less ambiguous requirements, more accurate specification, better

languages and translators, software verification, and improved test-

ing techniques are essential to increased software reliability

(therefore, system reliability). Modular software, better documenta-

tion, complete capture of project history, and methodologies allowing

for change are needed to permit new requirements to be implemented

and to take advantage of new technology. Technology transfer,

without which technological innovation is meaningless, requires

training for software personnel, managers, and contract monitors.

They need to understand the benefits from the use of new tools and

procedures.

Standardization, complexity, and human cognitive limitations are

key issues. A standard programming language, a standard operating

system interface, standard practices, and standard tools can make

software interoperable and people interchangeable, but standardiza-

tion can stultify innovation. System complexity can be reduced by

partitioning problems into smaller problems with clean interfaces;

however, there will always be problems whose decompositions are unk-

nown. Problems for humans to solve need to be scaled to human cogni-

tj tive abilities. The need for concepts to be packaged so that only

their behavior matters is obvious. Consider how little needs to be

known about a complex computer and its operating system before the

computer can be used effectively. These thoughts motivate the selec-

tion of thrusts for the Software Technology Initiative.



1.4 Candidate Lifecycle

The individual activities will vary among the candidates because

of the diversity of products (software, hardware, training materials,

management practices, regulation revisions, etc.), and variations in

the beginning level of understanding (identified symptoms, understood

problems, known solution approach, existing prototype, etc.).

Despite their differences most will follow the general pattern in

Figure 2.

In well understood areas, the Problem Definition and Research

stages may be bypassed. In other areas, problem definition, explora-

tory research, and evaluation of potential and feasibility may need

to be performed. Research prototypes will be built and tested.

Where prototypes or products already exist, they may be used in the

experimentation.

The Planning stage prepares for the following stages. In

Development, production prototypes lead to more knowledge of require-

ments, and operational integration and performance problems.

Development of candidate products will require careful engineering

and management, and will usually pass through the normal development

stages for the types of products involved.

For each product, either in prototype form or after development,

a formal evaluation needs to be performed to establish and--to the

extent possible--quantify the improvements provided. The evaluation

may also lead to revisions.

A technology transfer strategy needs to be established early,

and packaging and auxiliary products or capabilities for technology

transfer developed. These might include training materials, instruc-

tors, publicity, coordination with other candidates or efforts,

arrangements for pilot demonstrations, portability and installation

aids, and regulation and standards revisions. Substantial efforts

S 12



STAGE 1: PROBLEM DEFINITION
- Agree on Thrust Area
- Detail Problem
- Develop Detailed Research Plan and Preliminary Development,

Evaluation, Technology Transfer, and Maintenance Plans
- Issue RFP for Research
- Award Research Contract(s)

STAGE 2: RESEARCH
- Identify/Generate Solution Approaches
- Design and Implement Research Prototypes
- Experiment with Evolving Prototypes
- Evaluate Results
- Prepare Requirements Description

STAGE 3: PLANNING
- Plan and Coordinate Technology Transfer Strategy
- Develop Detailed Plans for Development, Evaluation,

and Technology Transfer
- Update Preliminary Plan for Maintenance
- Issue RFP

- Award Contract

STAGE 4: DEVELOPMENT (INCLUDING TECHNOLOGY TRANSFER ITEMS)
- Production Prototype
- Design
- Construct

- Verify

STAGE 5: EVALUATION
- Demonstrate and Measure in Field
- Evaluate Results

- Revise if Required

STAGE 6: TECHNOLOGY TRANSFER
- Outreach within DoD
- Assist in Introduction
- Follow-up

STAGE 7: MAINTENANCE
- Transfer to Maintaining Organization
- Incorporate/Replace with Improvements

Figure 2: Typical Thrust Lifecycle

13



may be required to launch a developed capability and to achieve its

widespread and continuing usage.

The developed products will become the responsibility of some

organization to distribute, maintain, and improve. In cases where

the STI is continuing to work in an area towards even more advanced

capabilities, improvements may be an STI responsibility. At each

stage, and within some stages, there will be a need for DoD to make

decisions on the continuation, direction, and funding level of a can-

didate.

1.5 Document Organization

The following three chapters contain descriptions of research

and development candidates for the Software Technology Initiative

identified from a study of the professional literature, the opinions

of experts in the field, and responses from industry and research

establishments to DoV's requests for information (Commerce Business

Daily (July 30, 1980), Communications of the ACM (December 1980)].

Within each chapter candidate thrust areas are grouped according to

their relevance to technical, managerial, personnel-related, and

continuity-related problems. Chapter 5 summarizes Chapters 2 through

4 and the goals of the STI.

Detailed descriptions of candidate thrusts are to be found in

Appendix A. Appendix B contains short descriptions of topics

excluded from the list of candidates because they could not be asso-

ciated with specific capabilities. Appendix C defines software prob-

lem areas, and Appendix D summarizes earlier efforts to define and

attack the software problem. Appendix E is a reviewer's guide to

evaluating and selecting thrusts. A reviewer's response question-

naire is in Appendix F. Reviewers are asked to use the questionnaire

to comment on, evaluate, and rank the candidate thrusts.

14



2.0 THRUSTS WITH SHORT-TERM PAYOFFS (UNDER 4 YEARS)

2.1 Introduction

Short-term thrusts will obtain or expand capabilities already in

operational use within commercial or government organizations

(including elements of DoD). These capabilities may need to be com-

pleted and re-packaged, but do not require further research. The

general term for this process is Technology Transfer, which means

putting already known technology to work throughout DoD.

There exist a number of techniques and practices generally ack-

nowledged to be beneficial to the software process that do not need

furthet R&D, but rather internal DoD efforts to ensure that these

techniques are being utilized to the greatest possible extent. A

technology transfer thrust will produce the necessary implementation

plans, support tools, and training materials. Structured program-

ming, avoidance of assembly language, avoidance of vendor-dependent

extensions of standard languages, modularization of functions, accu-

rate documentation creation, and monitoring by management of program-

mers' adherence to standards are all immediately available, benefi-

cial concepts to be exploited. In addition, there are a number of

medium- and long-term thrusts that are structured to produce inter-

mediate, short-term benefits.

2.2 Candidates

The tentative set of candidates with significant short-term

payoffs is shown in Figure 3; detailed descriptions are in Appendix

A. The remainder of this chapter discusses the short-term thrusts in

general terms.

It is postulated that small groups of highly competent software

engineers produce better systems than large groups of mediocre pro-

grammers. If this can be demonstrated, it will be useful to have a

15

M1



-- Technical
- General (Across Lifecycle)

Integrated Software Support Environment

Ada Package Sets for Common Usage Areas
System Dictionary/Directory

Programmer Workstation
Useful Measures of Software Quality

- Concept/Feasibility

Rapid Simulation
- Requirements

Rapid Prototyping
- Design & Programming

Predicate Approach
- Testing

High Confidence Software Testing
- Operations

Impact Analysis of Proposed Change
-- Managerial

Software Technology-Compatible Acquisition
Technology Transfer

-- Personnel-Related
Superperformer Competencies
Improved Education About Software

-- Continuity-Related

Figure 3: Short-term Candidates

16



mechanism to identify competent and potentially superior programmers,

and to provide them with productivity-increasing tools. Several

thrusts are related to this thought.

2.2.1 Technical

Software engineers need the support of good tools. An important

thrust would be the development of an Integrated Software Support

Environment (ISSE) for compatible tools to facilitate software crea-

tion, debugging, modification, and documentation. Editors, language

translators, change-level recording file systems, system dictionaries

and directories, and data bases of standard software modules are some

of the software components of an ISSE. As the set of tools expands

to cover the entire project lifecycle, the ISSE will evolve into a

software management environment in which a project's entire history

is captured.

The basic hardware component of the ISSE will be a workstation

incorporating multi-media input and output devices. (The usefulness

of color, graphics, multiple displays, and voice need to be investi-

gated.) Workstations will be connected to a system that permits coor-

dination of the efforts of several groups working on a project. This

system will be a repository for implementation notes, convention

descriptions, common modules, and software that exceeds the

" workstation's capabilities. Networks of processors could become

operational within the short-term time frame. Eventually, as the

products of the Initiative become available, interconnected worksta-

tions and processors will have access to local and distant resources:

data bases, computer peripherals, and expert advice via conferencing.

Measures of software quality are needed, as well as tools to

evaluate the quality of software products. A thrust could produce

measures of software quality and tools to evaluate the quality of

software products. The results could help to evaluate programmers,

choose among several alternative packages, provide incentives, and

17



ensure minimally acceptable quality levels for contractor-supplied

software.

Simulation of the major functions of a system will lead to

quicker feasibility determination and better performance require-

ments. This is especially significant for subsystems that contain

separate processors, in multi-computer networks, because of the large

number of available options and the novelty of these designs. More

rapid, more accurate simulation languages and techniques need to be

developed.

Another potential thrust is the development of a capability to

produce prototype versions of variations of embedded systems rapidly.

A prototype exhibits the functional behavior of the target system

(perhaps a subset in a simulated environment), though perhaps not its

real-time characteristics. Prototyping is especially useful for

those parts of systems that interact with people, because it provides

feedback to the system designers on the suitability of the interface,

and also because it gives the system's future users valuable early

experience. Recent progress in rapid prototyping for ADP applica-

tions engenders optimism that the practice can be transferred to the

embedded systems area.

The possibility of including assertions within a program about

its status at various points--sometimes called the predicate

approach--has been discussed for over ten years. Although no com-

piler prevents a programmer from including code to accomplish this--

and even to compile it conditionally on some switch--it is rarely

done. A formal effort to require assertion predicates at critical

points (with or without new language constructs) should result in

more reliable software, as more logic errors are detected during the

software development stage. Also, experience with the use of asser-

tion predicates will assist efforts in automatic software verifica-

tion.

18

C



Recent theoretical and practical advances in test data design

could be applied to DoD use. Software tools to record the scope and

sophistication of the coverage of a program's logic paths by tests,

to facilitate early testing of system components, and to analyze test

results could become operational in this time frame. Better test

data combined with better tools will significantly increase DoD's

confidence in tested software.

Software that is used regularly changes; at least, the demand

for change increases. The benefits of changes need to be weighed

against the costs, but the costs may be difficult to measure without

extensive investigation, because there currently is no accurate way

to know how much software is affected. Means to measure of the full

impact of changes will require many years to develop; however, tools

are available to help programmers see what modules have to be looked

at when certain kinds of changes are proposed. The usefulness and

possible enhancement of these tools need to be investigated.

2.2.2 Managerial

Programmers are not alone in needing support. System acquisi-

tion managers and program managers need to be more aware of the real-

ities of software development: what realistically can be expected,

when, and at what cost. Those responsible for defining software

requirements need to be up-to-date on evolving possibilities for

hardware and software. Procurement standards need to be developed so

that software obtained from contractors meets specified standards of

quality, production, and format. Managers need metrics and aids to

evaluate contractors' performance. Thrusts in the management area

will produce needed tools and training materials.

2.2.3 Personnel-Related

Competencies and attributes of good designers, analysts, and

programmers need to be identified so that potentially superior per-

sonnel can be selected from candidates or produced through training.

19



(Potentially inferior personnel also need to be identified.) Aptitude

criteria need to be developed and refined. The technical and organi-

zational skills needed to work on large projects need to be defined

and taught effectively. Schools could be encouraged to try out and

evaluate new training techniques.

The talents of superior software personnel could be better

organized to increase their collective productivity. Instead of

dispersing the best people among various projects, it has been sug-

gested that they function in groups to define and structure projects

for others to expand and implement. A thrust could examine this pos-

sibility, test it out on a pilot project, and determine its feasibil-

ity.

2.2.4 Continuity-Related

In the short term, the problems of maintaining project con-

tinuity through staff and requirements changes seem to be matters for

project management, rather than R&D thrusts. Until more automated

tools are developed for capturing the history of a project, managers

will have to ensure that documentation is kept current, that teams

take responsibility for team members' contributions, and that

idiosyncratic practices are either prohibited or completely docu-

mented. The ways people are used, treated, and managed could be

improved with a corresponding improvement in this area.

2.3 Chapter Summary

The specific thrusts that could lead to the capabilities dis-

cussed above are described in more detail in Appendix A. Many of

these projects are ambitious, and some will yield only preliminary

capabilities in the short-term time frame. Although it is important

to produce useful results and to establish momentum, it is also

important not to settle only for what now seems readily attainable.

These pioneering thrusts will set the tone of the Initiative.

20

t W I F = I ... 1 " " .. .



3.0 CANDIDATES WITH MEDIUM-TERM PAYOFFS (4 - 7 YEARS)

3.1 Introduction

Medium-term candidates are designed for areas where preliminary

work indicates that major results may be expected in a few years.

Prototypes should be ready for field testing and use in the late

1980's. Many short-term thrusts are continued through the medium

term, because they will continue to produce meaningful results. New

medium-term candidates include those that depend on results from the

short-term thrusts (e.g. transforming software to improve quality)

and those that have a long gestation period (e.g. forgiving systems).

3.2 Candidates

The medium-term candidates are listed in Figure 4. The

remainder of this chapter discusses the medium-term thrusts in gen-

eral terms; more complete descriptions of the individual thrusts

appear in Appendix A.

3.2.1 Technical

Work on the Integrated Software Support Environment would con-

tinue. The overall design would be completed, providing the frame-

work into which support tools (packages, etc.) would be integrated.

Results from thrusts dealing with the creation of compatible tools

covering the entire software lifecycle, thrusts to create standard

Ada package sets, and a thrust to create a system

directory/dictionary enhance the ISSE in the medium term. These

tools will ensure that development data are compatible throughout a

software system's lifecycle. The work on programmer workstations and

on measures of software quality would continue; early results from

these two thrusts would be augmented as experience is accumulated.

A thrust to investigate multiple representations of software

(different notations and different media) would show results in this

21

tm



-- Technical

- General (Across Lifecycle)
Integrated Software Support Environment

Ada Package Sets for Common Usage Areas

System Dictionary/Directory
*Sets of Tools Covering Entire Lifecycle

Programmer Workstation
Quantitative Measures of Software Quality
*Multiple Representations of Software
*Configuration Independence

- Concept/Feasibility

Rapid Simulation
- Requirements

Rapid Prototyping*Application Domain Expertise
*Data Validation

*Built-in Testing
*Forgiving Systems

- Design
Predicate Approach
*Data Flow
*Exception Handling

- Programming

(Predicate Approach)
*Transform Software to Improve Quality

- Testing
High Confidence Software Testing

- Operations
*Facilitating System Evolution

(Impact Analysis of Proposed Change subsumed)
-- Managerial

Software Technology-Compatible Acquisition
Technology Transfer
*Acquisition Manager's Support System

-- Personnel-Related
Superperformer Competencies

*Programmer Laboratory

Improved Education About Software
*Personnel Independence

*Intensive Advanced Programmer Training

-- Continuity-Related
*Voice Replaces Text
*Built-in Training and Documentation

(* indicates new this period)

Figure 4: Medium-term Candidates

22

tU



time period, as would work on configuration independence (system

operability in different hardware and operating system environments).

Standardized internal boundaries between modules and layered design

will facilitate software system modifications.

Work on rapid simulation and rapid prototyping will continue.

Study of DoD application domains would reveal areas where program

commonalities can be exploited. Work on data integrity would create

better methods for dealing with incomplete or corrupted data.

Built-in testing would improve system dependability and availability,

because software would incorporate advances in methodologies for

self-testing before and during operation. Work on forgiving systems,

tying in closely with other thrusts, would create systems more for-

giving of errors made by system components or by humans. A parallel

thrust on exception handling will support the work in forgiving sys-

tems. The result of these thrusts will be more robust systems, less

likely to fail in the event of problems with input data, the environ-

ment, or their own behavior. [For example, failure to provide for

synchronization of the back-up computer with the on-line computers

delayed the initial Space Shuttle launch.]

As L consequence of the rapid decline in digital hardware costs,

the desire for distributed applications, and improvements in the

capabilities of microprocessors, high-performamnce embedded systems

will be based on multiple processor designs. A thrust is needed to

develop the expertise to use these designs effectively. Current com-

puter languages may not be adequate to describe the processes running

on such systems; therefore, investigation of new process representa-

4 tions, such as the data flow approach (processes described by data

transformations, rather than control sequences), are necessary.

Results of the data flow investigation in the 4 to 7 year time period

will facilitate software creation for these new architectures.

23

....................... ...........................



Another new thrust is tied into the short-term thrust to create

measures of software quality. As that thrust continues, it will

become easier to reward producers of good software. In addition, it

may be possible to create software packages to transform existing

programs into forms with better software quality scores. The

transformation package will make systems easier to comprehend and

maintain, and it might also find previously undetected errors in

logic. This capability will benefit existing systems, as well as new

systems.

Knowledge obtained from the short-term thrust dealing with

impact analysis of proposed changes will be incorporated into a

thrust that will examine the evolution of large-scale systems, look-

ing for methods for making changes to such systems (especially unan-

ticipated changes) easier.

3.2.2 Managerial

Thrusts dealing with technology transfer and the acquisition of

software will continue in the medium term. The results of these

thrusts will form the base for the development of an automated

acquisition manager's support system: a knowledge-based system used

by managers to prepare contractual documents, deal with contractors,

and monitor projects.

3.2.3 Personnel-Related

Because of the rapid turnover in personnel and the problems one

person has in taking over from another, due to faulty code or inade-

quate documentation, it is necessary to investigate methods for

improving and standardizing software specialists' work. It is also

necessary to investigate methods for reducing turnover and its

impact. Thrusts whose products capture project history, enforce

standards, and implement standard software support environments will

help to ease these problems.

24

PCi



Educational materials to train persons responsible for software

specification will be produced, and more effective means of identify-

ing the qualities of superior software personnel will come into use.

A laboratory to study the behavior of software personnel could iden-

tify specific good and bad habits, and try out new techniques in a

controlled environment. New tools and procedures resulting from

these experiments will make it easier (faster, less expensive) to

train better software designers, analysts, and programmers.

3.2.4 Continuity-Related

Two thrusts in communication show promise of results in the

medium term. The first, the use of voice input in addition to text,

will make capturing information easier, if staff personnel prefer

dictating or other verbal devices to typing.

A greater impact in the area of communications may be obtained

from a thrust towards the use of built-in training and documentation.

Training aids and documentation built into systems permit users and

maintainers to learn through use without fear of destroying the sys-

tem in the process. On-line documentation and tutorial, step-by-step

instructions help assure accurate understanding on the part of users

and maintainers.

. 3.3 Chapter Summary

This period could witness changes in the software development

process: automated tools could supplant today's manual and semi-

automated procedures; small groups of software engineers assisted by

- these tools could do the work of today's large groups of programmers

and analysts; and software products could be more reliable and

timely, and more closely resemble real requirements.

The medium-term candidates emphasize the areas of software

tools, personnel improvement, and management. Because many of them

are interrelated, there will be a synergistic effect: success in some

25

4 I Jl



will enhance the value of success in others. To assure this,
integration of the tools and other products needs to be a high prior-
ity concern.

-2

i4

26

'I

• I



4.0 LONG-TERM CANDIDATES (MORE THAN 7 YEARS)

4.1 Introduction

Long-term candidates are directed at problems without currently

available solutions. These problems are:

o how to build reliable, intelligent systems to augment human

decision-making (knowledge-based systems),

o how to use networks of large numbers of special- and
general-purpose processors effectively,

o how to integrate existing tools so that their users are

conscious of a single system.

The following sections discuss the identified long-term thrusts,

whose major impact is not expected to be felt before 1990. Break-

throughs in any of these areas might, of course, produce dramatic

results sooner.

4.2 Candidates

The long-term thrusts are summarized in Figure 5. More complete

descriptions of long-term candidates are included in Appendix A.

Many long-term candidates are expected to provide useful preliminary

capabilities in the earlier years of the Initiative, as discussed in

J., the preceding chapters. Even after the primary efforts have been

completed, continual monitoring, evaluation, and refinement of pro-

• 4 ducts from earlier phases of the Initiative will be required until

products are absorbed or superseded by new products.

4.2.1 Technical

Intelligent (knowledge-based, "expert") systems could assist

software engineers by providing application domain knowledge, by

automatically handling low-level coding chores, by checking for

27



-- Technical
- General (Across Lifecycle)

Integrated Software Support Environment
*Software Engineer's Support System
*Earliest Possible Detection of Errors

- Concept/Feasibility

Rapid Simulations
- Requirements

Rapid Prototyping
Application Domain Expertise
Data Validation
Forgiving Systems

*User Oriented Requirements Interfaces
*Complex Knowledge-based Systems

- Design
Data Flow
Predicate Approach
Exception Handling

*Self-interfacing Software
*Distributed Functions and Resources
*Suitable Communication Interconnection

- Programming

Transform Software to Improve Quality
*Formal Verification of Large Systems

- Testing
{None}

- Operations
Facilitating System Evolution

-- Managerial
-- Personnel-Related

* Intensive Advanced Programmer Training
Personnel Independence
*User Programming

-- Continuity-Related
Built-in Training and Documentation

(* indicates new this period)

Figure 5: Long-term Candidates

28

- 1 '" -"F ' '• y " - - '- - - -c""



common programming pitfalls, by verifying assertions, by locating

relevant standard modules, and by coordinating the efforts of several

design teams. (The possibilities are endless.) Ultimately there

could be one "expert", which uses various application-domain data

bases, human-interaction data bases, and individual preference data

bases, as needed, to interact with systems and users. The structures

of these data bases are unknown, as is the magnitude of the effort

required to create them and maintain them in perpetuity. Knowledge-

based systems will be integral parts of the evolving Integrated

Software Support Environment that multiplies the productivity of

software engineers.

Knowledge-based simulation systems will help designers construct

more accurate simulations. These systems will use knowledge of

available hardware and software modules, standardized techniques, and

extracts from simulations of related applications. Analogous systems

will assist in the construction of prototypes and in the evaluation

of prototype results.

More widely available education about computers and software

engineering will gradually increase the sophistication with which

users determine and define their computing needs. Automated require-

ments languages will help persons responsible for system specifica-

tion to define complete and unambiguous requirements for new systems.

Knowledge of costs, capabilities, and good industry practices will

need to be incorporated into these systems.

Design techniques proven successful in earlier phases of the

Initiative will be refined. Data flow techniques may evolve into

data-directed design and programming languages. Translators for

these languages could generate modules for execution in distributed

computiaig systems, using special-purpose hardware, when appropriate.

Languages could support the incorporation of assertions, perhaps

assisted by systems that recommend places for assertions, or even add

29

"'* 7



and check them, automatically. Standard, parameterized components

may be available; component-tailoring systems could connect com-

ponents by appropriate interface mappings.

More effective approaches for dealing with real-time problems,

such as interrupts, data exceptions, faulty hardware, and inter-

process communication and coordination will become available as a

result of experience with various alternatives in earlier Initiative

phases. Formal verification of the correctness (i.e. conformance to

specifications) of programs (especially, standard modules) will be

better understood. Metrics for software quality may lead to systems

capable of reducing complexity. (It's possible to envisage an

interactive system suggesting alternative constructions to the

software engineer's first attempts.)

4.2.2 Managerial

The management of the software process will be more automated,

with most of the decisions captured for analysis by systems that look

for potential sources of trouble. Reports of project progress and

adherence to schedules will be more timely and more accurate when

this data is available in the computerized system.

4.2.3 Personnel-Related

Automated assistance will multiply the productivity of software

engineers so that fewer people are needed for projects of comparable

size and complexity to today's projects. In some areas, systems wil

progress to the point where users construct programs themselves in

cookbook fashion, or in a three-way collaboration among users,

software engineers, and intelligent support systems. Advanced train-

ing tools and techniques, systems that forgive mistakes and point out

the correct approach, and good human engineering of systems will

decrease the cost of training the next decade's software practition-

ers.

30

Ttt



4.2.4 Continuity-Related

Software projects have to survive changes in personnel. Pro-

cedures must be developed through which replacement personnel can be

brought up-to-date soon after assignment to a project. On-line

diaries, change histories, accurate documentation, and automated sup-

port systems will help. The problem is to capture and then to organ-

ize all pertinent project data. The capabilities to accomplish this

will evolve continuously.

4.3 Chapter Summary

The view of the software world of 1990 and beyond, described in

this chapter, is certainly optimistic, and probably sounds fantastic.

However, there is no more reason to suppose a limit to the capabili-

ties of computer-based systems than there is a reason to suppose a

limit to human capabilities; both will evolve continuously. It is

unlikely that more than rudimentary successes in developing intelli-

gent systems will be achieved over the next ten years. It may be

that results will always seem rudimentary as human capabilities

increase, applications become more complex, and new problems come

into focus.

Solution of the computing problems of the future will depend on

effective use of knowledge-based systems, realization of the poten-

tial of multi-computer systems, and integration of tools provided by

the Software Initiative into a coherent system.

31



5.0 SUMMARY

The preceding three chapters discussed thrust areas and candi-

date technical thrusts. In the short term, the goal is to acquire

existing capabilities for DoD use. The medium-term goals are the

improvement of capabilities already acquired and the obtainment of

additional capabilities to fill in gaps, with emphasis on the

integration of capabilities. In the long term, the goal is continued

development, evolution, and integration of advanced capabilities.

Short-term benefits will come mainly from technology transfer,

early results of thrusts with principal payoffs in later periods, and

standardization efforts. The technology to be transferred already

exists, at least in prototype. One important exception involves

identification of superperformer characteristics and practices.

Short-term results from research in this area will be applied to

practice as rapidly as possible. Preliminary results are also

expected in such areas as rapid prototyping and rapid simulation.

Standardization efforts include the integrated software support

environment (ISSE), programmer workstations, and standard Ada pack-

ages.

For the medium-term, the emphasis is on completeness and

integration of tools, and on personnel and management issues. Com-

plete sets of compatible tools will be developed, and capabilities

will be added to the ISSE. Personnel training and organization,

along with improved acquisition management support, will have signi-

ficant payoffs.

In the long-term there is hope for synthesis of techniques,

effective use of multiprocessor systems, and the incorporation of

application domain expertise into systems. Automated software

development expertise and application domain expertise will be avail-

able. Advances in digital hardware design and decreasing hardware

costs will provide the computing power for the automation of func-

32



tions now performed manually by software personnel, and for new func-

tions.

The underlying themes in Chapter 1 persist: the goals of produc-

tivity, reliability and maintainability, and technology transfer; and

the issues of standardization, complexity, and human cognitive limi-

tations. The technology transfer and human engineering aspects of

the Initiative need to receive early attention and major emphasis,

because the benefits of technology will be lost unless organizations

are willing to acquire its products and people are willing (and able)

to use them. Technical products must be designed and presented so

that people see a direct benefit to their work assignments from their

use of the products.

We have some understanding of the software problem and a sub-

stantial number of ideas towards its solution. Although there is no

single obvious path to order-of-magnitude improvement, the technical

basis can be organized for an effective Initiative that will increase

the utility and reduce the expense, time, and risk of software pro-

jects. With appropriate funding and support, the Software Technology

Initiative will lead the way to major improvements in productivity

and software quality.

it 1 33



A. DESCRIPTION OF CANDIDATES

This appendix contains individual descriptions of the thrust

candidates mentioned in Chapters 2 through 4. The intent is to pro-

vide basic information for each candidate to help reviewers evaluate

its potential contribution and its appropriateness for selection as

an STI thrust. Reviewers may want to complete the questionnaire

(Appendix F) while reading this appendix. The format for each candi-

date is:

Description. The central concept or goal of the thrust, the

motivation for including it, its relationships with other
candidates, and its benefits are briefly described. Bene-
fits are entirely qualitative, but mention some of the con-
cerns noted in Appendix E. Narrowly defined candidates and

those aimed at enhanced utility may have low ratings on
expected cost savings.

Some Relevant Research and Products. This section gives a
general indication of the state of the art for the idea. No
attempt at completeness is made, but notification of any
major omissions is welcomed.

Remarks on Rationale. This section is included for some
candidates where additional explanation of the underlying
motivation is thought to be needed.

References. The references are entry points to the litera-
ture or recent examples. They are not exhaustive, but often
a reference will have its own extensive bibliography.

Figure 6 lists the titles of candidates in Appendix A, and Other

Ideas, which are in Appendix B. The titles are grouped under the

same headings used in Chapters 2, 3, and 4, as an aid to the

reviewer. Page numbers for each candidate and "other idea" are in

the Table of Contents.

34



Appendix A Appendix B

Payoff Periods

Short- Medium- Long- Other

Candidate 
term term term Id eas

Technical
General

Integrated Software Support
Environment X

Presentation and Manipulation X

Ads Package Sets for Com-
mon Usage Areas X X

System Dictionary/Directory X X

Set(s) of Tools Covering
Entire Lifecycle K

Software Engineer's Support
System 

X

Programmer Workstation K X

Useful Measures of Software
Quality X X

Multiple Representations of
Software X

Rigorous Documentation K

Conflict Recognition among X
Representations

Earliest Possible Error
Detection

Exploratory Systems Applications
of VHSIC 

X

Military Information Utility 
X

Multiple Classes of Service
Configuration Independence 

X

Standard Real-Time Operating X

V Syst em
Conception/Feasibility K KXK

Rapid Simulation
Requirements

Rapid Prototyping 
K X X

Application Domain Expertise 
X X

Data Validation 
X X

Built-in Testing 
X

Forgiving Systems 
X X

User-Oriented Requirements
Interfaces 

X

Complex Knowledge-Based Systems X
Rapid Derivation of Requirements

Figure 6: Summary of Candidates' Tentative Status

35

I..



Appendix A Appendix B

Payoff Periods

Short- Medium- Long- Other
Candidate term term term Ideas

Transform Informal to Formal
Requirements X

Requirements Languages Trans-
formation X

Weakest Possible Requirements
Description X

Design
Derivation of Software from Speci-

fications X
Data Flow Approach X X

Self Interfacing Software X
Predicate Approach X X X
Very High Level Languages X
Exception Handling X X
Component Tailoring and Interfacing I
Publication of Standard Designs X
Data Structure and Abstraction X
Distributed Functions
Distributed Functions and Resources X
Suitable Communication Inter-

connection X
Programming

Code Skeletons X
Graph-Oriented Language X

Generating Assertions from
Requirements X

Transform Software to Improve
Quality X X

Transform to Satisfy Physical
Constraints X

Man-Machine Quality Improvement
Team X

Formal Verification of Large
Systems X

Application Generators X
Reusable Software X
Actor Languages X

Testing
High Confidence Software Testing X X
Static Analysis of Software X

t Figure 6: Summary of Candidates' Tentative Status Ccont'd)

36



Appendix A Appendix B

Payoff Periods

Short- Medium- Long- Other
Candidate term term term Ideas

Generating Test Data from Require-
ments X

Generating Test Data to Violate
Assertions X

Test Bed Facilities X
* Operations

Facilitating System Evolution X X
Construction for Future Evolu-

tion X
Modification of Large Systems X
Impact Analysis of Proposed Change X

Management
Acquisition Manager's Support System X
Software Technology-Compatible

Acquisition X X
Model Contracts for Buying

Software X
Technology Transfer in Software

area X X
Maximizing DoD Rights to Software X
Multiplying Expert Effectiveness X
Quick Look FeasiLb-ity/Evaluation X

Personnel
Superperformer Competencies X X
Intensive Advanced Programmer

Training X X
Programmer Laboratory X
Personnel Independence X X
Improved Education About Software X X
User Programming X

Communication/Continuity
Completely Captured Software X
Multi-person Machine Mediated

Programming X
Totally Visible Software X
Systems that Never Forget X
Voice Replaces Text X
Built-in Training and Documentation X X

Figure 6: Summary of Candidates' Tentative Status (concluded)

37

L~77



A.1 Technical

A.1.1 General

A.l.l.1 Integrated Software Support Environment.

Description

Emphasis here is on consistent tool interfaces and expandability

of the environment and tool set. Potential users include program-

mers, analysts, designers, testers, and managers. The idea is to pro-

vide growing support for all phases of software development and

maintenance.

A framework will provide compatibility and synergy among tools

and among workers, and will anticipate open-ended improvement and

growth. High levels of availability, reliability, and correctness

will be needed for acceptance by software workers and for the

development and maintenance of high quality software.

The integrated software support environment will evolve from or

incorporate the Ada Programming Support Environment. The environment

needs ease of learning and use, good visibility, effective communica-

tion among users, usage statistics to allow evaluation of environment

elements, support for all DoD approved high order languages, support

-for multiple versions of software, portability, and the ability to

support itself. Canonical representation forms will be standardized

to aid in compatibility among tool sets.

Human interfaces require excellent human factors, with flexibil-

ity for growth and for use on varying hardware configurations. The

interfaces may need to vary with task types and with individual

approaches to problem solving.

38



This thrust is related to the ideas of a set of compatible tools

covering the entire lifecycle, a software engineerIs support system,

a system dictionary/directory, completely captured software, multi-

person machine mediated programming, totally visible software, sys-

tems that never forget, a programmer workstation, an acquisition

manager's support system, multiple representations of software, and

other thrusts resulting in software tools. This thrust provides a

framework for products of other thrusts, and so increases their syn-

ergy, ease of use, and technology transfer.

The greatest improvement potential exists in synergy among tools

and in cumulative improvement in productivity aids. Other benefits,

including the minimalization of retraining requirements, will derive

from standardization. Of course, the tools and facilities offered

within the integrated software support environment will provide sub-

stantial benefits themselves, and it is difficult to differentiate

their contribution from that of the framework. One might, however,

estimate cost savings as an enhancement of some reasonable percent of

the benefit from the remainder of the Initiative.

The benefits of this thrust have potential for the entire indus-

try including all of the Federal Government. If the proper balance

can be struck between standardization/compatibility and

growth/innovation, the environment will continue to contribute for

many years.

Some Relevant Research and Products

The Unix Programmer's Workbench (PWB) and Maestro are examples

of commercially available programming support environments; active

efforts are underway to design and implement the APSE. Software

tools and software support systems are active areas of R&D. Most of

the responses to the July 1980 CBD announcement mentioned tools, usu-

ally specific, isolated onea.

39



Remarks on Rationale

A layer of structure is needed between the APSE and sets of

individual tools. The layer would support languages other than Ada

and provide standards for combined/hidden invocation, data base

structures, management of multiple representations, etc. Within this

environment, different sets of tools based on different methodologies

can evolve, and yet preserve a significant interoperability.

References

Buxton, J. N. "An Informal Bibliography on Programming Support

Environments." ACM Sigzlan Notices vol. 15, no. 12 (Dec. 1980), pp.

17-30.

Buxton, J. N., and V. Stenning. Requirements for Ada Programming

Support Environments ("Stoneman"). Arlington, VA: DARPA, Feb. 1980.

Graham, R. M., chairman. "Proceedings of the ACM-SIGPLAN Symposium on

the Ada Programming Language." ACM Sigvlan Notices vol. 15, no. 11

(Nov. 1980).

Hausen, H. L., and M. Mullerburg. "Conspectus of Software Engineer-

ing Environments." In Fifth International Conference on Software

Engineering, pp. 34-43. Los Alamitos, CA: IEEE Computer Society,

Mar. 1981.

Riddle, W. E., and R. E. Fairley. Software Development Tools. Ber-

lin: Springer-Verlag, 1980.

Wasserman, A. I., ed. "Special Issue on Automated Development

Environments." Computer vol. 14, no. 4 (Apr. 1981), pp. 7-54.

40

_ ,4, | , k -', - .. , - - -. . r . . ".' , - -- ,- ,.,- -_



1I

A.1.1.2 Ada Package Sets for Common Usage Areas.

Description

One of Ada's major advantages is that it permits the development

and use of standard software packages. Such centrally-maintained

package sets would avoid effort duplication, yielding higher-quality

software. Standard packages will influence new Ada programmers by

presenting an approved set of interfaces and a programming style they

can emulate.

Many functions can be included in package sets. The first is an

integrated set of message generation and handling packages. Several

packages can be prepared to deal with the ARPANET and AUTODIN network

interfaces, while other packages can provide standard message genera-

tion and formatting facilities for inter-user mail, free-format (nar-

rative), and formatted military messages. Packages can be provided

for database management, text processing, and sort/merge functions.

Packages for use in embedded computer systems should receive

special emphasis. Signal processing and navigation algorithms can be

standardized in package sets after approval by a national verifica-

tion procedure. Packages for graphics could contain routines for

line drawing, manipulation of sub-screens within the output screen,

character manipulation, three-dimensional object manipulation, shad-

ing, scaling, etc.

Packages would follow ANSI, FIPS, or ISO standards. A central

group will be responsible for the coordination of package development

teams and the standardization of interfaces documentation, etc.

A significant improvement in programming productivity in the

relevant usage areas could easily be the result of the widespread

availability of standard, reliable, well-documented, and easy-to-use

41

CJ



packaged software sets. In addition, good programming practices

established for the code in the sets (enforced by strict management

controls) would provide standards for programmers. It is estimated

that moderate cost savings would result.

Some Relevant Research and Products

Proposed standards already exist for certain usage areas such as

data base management and graphics. Attempts to find other candidates

for common software packages are already underway. One example is by

R. T. Chien and L. J. Peterson, Optimized Computer Systems for Avion-

ics Applications, which describes significant commonalities among the

kernels and algorithms used in radar, communications, and image pro-

ceasing.

Remarks on Rationale

One of the primary benefits of using Ada will be the exploita-

tion and the fostering of commonality among various embedded computer

systems; thus the emphasis on rigid definition of the language, port-

able compilers, and special language constructs for packaged

software.

References

Chien, R. T., and L. J. Peterson. Optimized Computer Systems for

Avionics Applications. AF Wright Aeronautical Labs, Wright-Patterson

AFB, Ohio, report AFAL-TR-79-1235, 11 Feb. 1980.

Ichbiah, J. D., et. al. "Rationale for the Design of the Ada Pro-

gramming Language." Sigplan Notices vol. 14, no. 6 (June 1979), Part

B.

42

I-

"I



A.1.1.3 System Dictionary/Directory.

Description

Commercial data dictionary/directories have grown to include

information about the entire system as well as data. This capability

can be extended to include the information required for a complete

and rigorous description of the system. The system

dictionary/directory will become the organizer of all official

knowledge concerning the system. It could also provide a system for

maintaining unofficial notes and comments for limited periods. As

the "memory" of an integrated software support environment, it will

provide a framework for completely captured software. The Ada pro-

gramming support environment data base capability can be used as a

basis for implementation. The thrust will examine the potentials for

the system dictionary/directory, determining the best ways to organ-

ize, manipulate, and use such a database.

The thrust must investigate methods for extending the database

to include languages other than Ada and code in existing systems.

The objective is to design a comprehensive, understandable system

dictionary/directory that will include all needed information about a

software system, regardless of the languages used or the system's

history. Manipulation of the database must be a powerful and easily

used feature, and specialized interfaces should provide for automatic

.i data input to the database from tools such as language processors,

linkers, and librarians, within the integrated software support sys-

tem. Capabilities should be provided to ease the transition to the

new database from previous automated or manual systems.

Because of the importance of a system dictionary/directory, work

on specialized versions will certainly take place. DoD must ensure

43

10



that dictionary/directory systems be able to accept input from

languages other than Ada and from systems that are already partially

or completely implemented; otherwise, a great deal of the value of

having a central dictionary/directory would be lost. If the

dictionary/directory does not hold all system information, non-

standard, isolated data files will again be built to fulfill the

need. With all system information in an easy-to-use database, how-

ever, a strong positive impact on programmer productivity will

result.

It is estimated that low-to-moderate cost savings would result

from the implementation of the system dictionary/directory alone,

without the additional tools in the integrated software support

environment.

Some Relevant Research and Products

Limited system dictionary/directories, such as Datamanager and

Data Catalogue 2, are already available, called "data

dictionary/directories."

References

Buxton, J. N., and V. Stenning. Requirements for Ada ProgramminA

Support Environments ("Stoneman"). Arlington, VA: DARPA, Feb. 1980.

Curtice, R. M., and E. M. Dieckman. "A Survey of Data Dictionaries."

Datamation vol 27, no. 3 (Mar. 1981), pp. 135-158.

Pedersen, J. T., and J. K. Buckle. "Kongsberg's Road to an Indus-

trial Software Methodology." IEEE Trans. Software Eng. vol. SE-4,

no. 4 (July 1978), pp. 263-269.

Rochkind, M. J. "The Source Code Control System." IEEE Trans.

44

- - .-



Software EnM. vol. SE-i, no. 4 (Dec. 1975), pp. 364-370.

Wasserman, A. I. "Guest Editor's Introduction: Automated Development

Environments." Computer vol. 14, no. 4 (April 1981), pp. 7-10.

44

45

t.

.. .. . . -9' . . '  -

$4" " "i r' 
'

I -= - ," '



A.1.1.4 Set(s) of Tools Covering Entire Lifecycle.

Description

In addition to ADA programming support environment tools (com-

piler, debugger, linker loader, editor, run controller, and confi-

guration manager), sets of tools with carefully defined interfaces

are needed to cover important features of each part of the lifecycle.

Included in such sets might be simulators to simplify feasibility

analyses, requirements languages, software specification languages,

design languages, static analyzers for all languages used, formal

verification tools, testing tools, change impact analyzers, and

optimizers. Management aids for planning and control aids must also

be included.

Developing more than one set of tools is a possibility, with

each set based on a different methodological approach to software

construction. Because this would conflict with the desire for stan-

dardization, it should only be done if methodologies are found with

important, but incompatible, advantages.

The ISSE, the APSE, and the tool sets available within them

- should provide for: (1) a high degree of meaningful visibility into

the system being supported, (2) a means for effective communication

and coordination among all concerned, (3) easy collection and dissem-

ination of information about the system, (4) efficient use of human

I" resources, (5) assistance in improving system quality, (6) an

appropriate diversity of views of a system for different purposes and

audiences (for example, among the views might be control flow and

dataflow), (7) a model of the system's performance or economic

characteristics, (8) abstract or incomplete description and incremen-

tal development, (9) prototyping, (10) easy backtracking and modifi-

46



cation, (11) natural technical and managerial review points or mile-

stones, (12) multiple versions, (13) usage history and statistics,

(14) support of all aspects of software including documentation and

test data, (15) facilities for expanding or enhancing the tool set,

(16) high reliability, (17) good performance, (18) an easy in-

migration path, and (19) an acceptable cost of operation.

A tool set should reflect, aid in learning, and encourage the

use of its underlying methodclogical approach to software. It should

conform to ASPE and ISSE standards and conventions, encourage good

practices, and prohibit bad practices.

The tool set should be easy to learn; built-in and self-teaching

training and documentation should be included. While a good

production-quality tool set will be oriented toward experienced prac-

titioners, attention should also be given to the role and training

needs of novices.

Many individual tools have thrust candidates of their own.

Nevertheless, an effort to ensure development of compatible tools

would result in additional moderate cost savings throughout the life-

cycle, in addition to the obvious benefit of reduced errors and

greater continuity from phase to phase.

Some Relevant Research or Products

The tools in the Unix Programmer's Workbench (PWB) have a crude

compatibility deriving from the byte-string nature of all Unix files.

Any tool can read the output of any other tool, but meaningful pro-

cessing is a different matter. Maestro, another tool set, has clear

compatibilities and incompatibilities among its parts; however, nei-

ther Unix PWB nor Maestro contains the full spectrum of tools one

would like. Some other tools sets of interest are CADES (ICL), USE

(UCSF), Gandalf (CMU), and DREAM (Univ. of Colorado at Boulder).

47



Formal verification tools and methodologies for systems development

that may or may not currently have software tools are also of

interest. This is an area of active research and development in

universities and in industry.

References

Buxton, J. N. "An Informal Bibliography on Programming Support

Environments." ACM SixPlan Notices vol. 5, no. 12 (Dec. 1980), pp.

17-30.

Buxton, J. N., and V. Stenning. Requirements for Ada Programming

Support Environments ("Stoneman"), Arlington, VA: DARPA, Feb. 1980.

Graham, R. M., chairman. "Proceedings of the ACM-SIGPLAN Symposium on

the Ada Programming Language." ACM Sigplan Notices vol. 15, no. 11

(Nov. 1980).

Osterwald, L. J. A Software Lifecycle Methodology and Tool Support.

U. Of Colorado at Boulder, Boulder, CO, report CU-CS-154-79, Apr.

1979. (NTIS accession no. AD-A076 335.)

Reifer, D. J., and S. Trattner. "A Glossary of Software Tools and

Techniques." Computer vol. 10, no. 7 (July 1977), pp. 52-60.

Riddle, W. E., and R. E. Fairley. Software Development Tools. Ber-

lin: Springer-Verlag, 1980. (See especially Chapter 1 and I. Nassi,

"A Critical Look at the Processes of Tool Development: An Industrial

Perspective.")

Wasserman, A. I., ed. "Special Issue on Automated Development

Environments." Computer vol. 14, no. 4 (Apr. 1981), pp. 7-54.

48

"Tt I: " ' ' -" ' ' " - ' . . ' - . .



A.l.1.5 Software Engineer's Support System.

Description

The Software Engineer's Support System would provide assistance

and advice to software technicians and managers in the forms of

intelligent reminders, prompts, elaborations, implication derivation,

verification, warnings, and technical suggestions. For example, it

could point out alternatives for implementation or suggest a similiar

previous effort from its records of prior projects. The system could

function as an administrative aide, extending the user's ability to

trace ideas, or it could perform common tasks with little direction.

It could replace some functions presently performed by programmer

aides, managers, quality assurance personnel, technical writers, as

well as by the key software technical staff. It would embody what is

currently contained in manuals and other reference materials, guide-

lines or standards.

Different application domains and different solution/approaches

will require different knowledge, and different functions will

require different procedures. Because the scope of such a capability

is unclear, its development will occur through a number of intera-

tions of construction and experience.

The Software Engineer's Support System will function in part as

a tool set manager, deciding when to invoke tools and interpreting

the results of their use. It will provide a way to propagate the

best practices, allowing less skilled individuals to learn and pro-

duce better products. It would also provide continuity through per-

sonnel changes by providing a semi-intelligent interface with com-

pletely captured software.

49



The Software Engineer's Expert System offers significant

improvement potential in the cost and speed of technology transfer of

new skills and knowledge, which would otherwise be difficult to

learn, and the quality of products produced by less skillful person-

nel. Other improvements might occur in productivity, in thorough-

ness, and in the ability of individuals to work alone on some tasks.

The advantages of a "second opinion," particularly when personnel are

not experts in an area, might be similar to those claimed for medical

diagnostic software.

Since such a system will take a long time to develop, and since

its detailed characteristics are uncertain, the benefits are diffi-

cult to assess; however, moderate cost savings can be expected in the

development and operation phases of the lifecycle.

Some Relevant Research or Products

The Programmer's Apprentice and Spadee, both at MIT, are begin-

nings in this area. Barstow's knowledge-based programming effort is

also relevant. Much Artifical Intelligence (AI) research is also

relevant to learning, reasoning, intelligent support systems, and

representation of knowledge.

The methodologies underlying set(s) of compatible tools covering

the entire lifecycle will provide motivation for some of the support

system's behavior.

Remarks on Rationale

Large software and computer-based systems are among the most

complex artifacts ever attempted. Computer-based assistance in pro-

duction and maintenance of software is a necessity. In the long run,

automated intelligent assistance will be required to produce and

50



maintain a substantial number of large systems, because large numbers

of talented personnel may not be available.

References

Barstow, D. R. Knowledge-Based Program Construction. Amsterdam:

North Holland, 1979.

Miller, M. L. and I. P. Goldstein. "Planning and Debugging in Elemen-

tary Programming." In Artificial Intelligence: an MIT Perspective, P.

H. Winston and R. H. Brown, eds., vol. 1, pp. 317-337. Cambridge,

MA: MIT Press, 1979.

Rich, C., and H. E. Shrobe. "Design of a Programmer's Apprentice."

Ibid. vol. 1, pp. 137-173.

Rich, C., and H. E. Shrobe. "Initial Report on a Lisp Programmer's

Apprentice." IEEE Trans. Software Enz. vol. SE-4, no. 6 (Nov. 1978),

pp. 456-467.

Rich, C., H. E. Shrobe, et. al. Programming Viewed as an Engineerina

Activity. Artificial Intelligence Lab, MIT, Cambridge, HA, memo AI-

M-459, Jan. 1978. (NTIS accession no. AD-A052 307.)

Wilcox, T. R., A. M. Davis, and M. H. Tindall. "The Design and

Implementation of a Table-Driven, Interactive Diagnostic Programming

System." Commun. ACM vol. 19, no. 11 (Nov. 1976), pp. 609-616.

51



A.I.I.6 Programmer Workstation.

Description

The emergence of inexpensive processing power and memory allows

programmer workstations to be provided with significant local capa-

bilities. Advances in graphics and displays and in the understanding

of human factors point to many potential improvements in the

programmer/computer interface. Multi-media, multi-screen stations

with various input devices could provide a powerful interface. One

example in this direction is the "Spice" Workstation proposed by

Carnegie-Mellon University.

A programmer workstation provides an interface between the pro-

grammer or software engineer and the computer system. Workstations

are interconnected with centralized computational and data base

management facilities. Their modularity in both hardware and

software allows them to be modified to suit programmers' needs and to

keep pace with the latest technology. Standardized features and

interfaces of the workstation would decrease the retraining time for

programmers assigned to a new project.

Considerable research is needed in this area. The hardware con-

figuration of the workstation needs to be investigated to find those

configurations combining low cost and modularity with high programmer

productivity and ease of use. Workstation software must be specified

and developed. The software must lend itself to modification, porta-

bility among hardware configurations, and rapid installation of

varied sets of software tools and communications systems.

The current high level of interest in local area networks is a

contributing factor behind the interest in programmer workstations,

52



and it should be relatively simple to interest groups in human fac-

tors research and standardization.

The largest improvement would occur in the effectiveness of the

man-machine interface. Other benefits would include enhanced

response time, reliability, and flexibility, along with ease in sup-

plying uniform software support. The net cost savings for the works-

tation alone should be low; however, the use of the workstation with

the integrated software support environment should increase produc-

tivity significantly.

Some Relevant ResearchlProducts

Many types of programmer workstations are in use, under develop-

ment, or under consideration. Examples are: the "Spice" personal

scientific computing environment proposed by Carnegie-Mellon Univer-

sity [Proposal for a Joint Effort in Personal Scientific Computing,

August 23, 1979]; work at the Xerox Palo Alto Research Center's Com-

puter Science Laboratory on programming environments [see L. P.

Deutsch and E. A. Taft]; the paper Personal Development Systems for

the Professional Programmer by S. Gutz, A. I. Wasserman, and M. J.

Spier; and the Problem Solving Environment discussion in the descrip-

tion of Project Quanta, submitted to the National Science Foundation

by Purdue University and the International Mathematical and Statisti-

cal Libraries, Inc. on November 14, 1980.

References

Computer Sciences Department. Proiect Ouanta. Computer Sciences

Dept., Purdue University, West Lafayette, IN. 14 Nov. 1980.

Deutsch, L. P., and E. A. Taft, eds. Requirements for an Experimen-

tal Programmini Environment. Xerox Palo Alto Research Center, Palo

53

1'1

- , ,. =- .i , -l .- - ----._,,



Alto, CA, report CSL-80-10, June 1980.

Gutz, S., A. I. Wasserman, and H. J. Spier. "Personal Development

Systems for the Professional Programmer." Computer vol. 14, no. 4

(Apr. 1981), pp. 45-53.

Wirth, Niklaus. "Lilith: A Personal Computer for the Software

Engineer." In Fifth International Conference on Software EnRineering,

pp. 2-15. Los Alamitos, CA: IEEE Computer Society, 1981.

454z

' " " 4 : ' "l - , , - ' . .. .. ..... -_-- w, 54



A~l.l.7 Useful Measures of Software Quality.

Description

Software metrics are needed to provide quantitative measures for

important characteristics of software. The set of metrics must not

encourage loophole exploitation for the sake of optimizing the

response of the measurement system.

Software metrics have a number of potential uses. Minimum stan-

dards could be set for acceptance of deliverables, and incentives

could be placed in contracts based on software quality measures.

Competing designs or products could be compared to select the best.

Metrics may be useful for predicting maintenance costs, reliability,

portability, performance, and utility, both within intended applica-

tion and elsewhere. Metrics can direct automatic or semi-automatic

improvements of software quality, and aid in the training and evalua-

tion of personnel. Thus, metrics can be used to specify, judge,

improve, and predict. Measurement should be automatically performed;

however, consistent measurement by humans is acceptable, if it can be

used effectively.

Measures of merit will derive from a composite of more elemen-

tary metrics. Flow of control, data flow, semantic integrity, per-

formance, and style are usually the most important categories of

metrics. Trade-offs in system cost and characteristics will indicate

the relative importance of different metrics within a measure of

A merit for different systems. Composites will be needed to avoid the

loophole effect. "Engineering" or empirical measures are expected

within the time frame of the Initiative; subsequently, measures based

on theory may be established.

55

V.



This thrust contributes to many other thrust candidates, includ-

ing those related to management (especially acquisition management),

software tools, training and evaluation of personnel, software qual-

ity improvement, maintenance, and verification and validation.

Metrics developed in other thrusts will contribute to this thrust as

well.

The greatest benefit could result from the assurance that

acceptable quality software is being acquired. Many of the benefits

of this thrust will be indirect in the sense of deriving from appli-

cation in other thrusts. The chance of research and development suc-

cess is fairly high, and the technology transfer penetration percen-

tage is good. The net expected cost savings are moderate.

Some Relevant Research and Products

Software metrics is an area of research and development increas-

ingly active in both universities and industry. Cost, complexity,

and reliability have been the three dependent variables of greatest

interest. The characteristics measured and the types of modeling and

experimentation performed have varied. Halstead's software science

approach is currently the only general theory that attempts to

explain a wide range of phenomena. Walston and Felix at IBM used

statistical techniques to analzye large bodies of data concerning

software projects (but not the code) and to determine the effects of

various characteristics. RADC's collections of data are aimed at

.Jd similar work, as well as at investigating and validating models.

Code measurements have been used in combination with real project

data or in controlled experiments to study the relative predictive

power of such measures as Halstead's and McCabe's, and such simple

measures as lines of code, e.g. Bill Curtis' work at General Elec-

tric.

it

56



Remarks on Rationale

Measurement is the beginning of engineering and science. Many

engineering fields were successful for many years on limited theory

but effective measurement. Likewise, useful software metrics can

precede the existence or acceptance of a theory explaining software

complexity.

References

Basili, V. R., ed. Models and Metrics for Software Management and

Engineering. Los Alamitos, CA: IEEE Computer Society, 1980.

Bowen, J. B. "A Survey of Standards and Proposed Metrics for

Software Quality Testing." Computer vol. 12, no. 8 (Aug. 1979), pp.

37-42.

Fitzsimmons, A., and T. Love. "A Review and Evaluation of Software

Science." ACM Computing Surveys vol. 10, no. 1 (Mar. 1978), pp. 3-18.

Halstead, M. H., ed. "Special Collection on Software Sciences." IEEE

Trans. Software Eng. vol. SE-5, no. 2 (Mar. 1979), pp. 74-128.

McCabe, T. J. "A Survey of Industrial Software Quality Assurance."

PRC Corp., McLean, VA, tech. note PRC 819-3, Oct. 1978.

McCall, J. A., and M. T. Matswmoto. Software Quality. vol. 1,

Metrics Enhancement, and vol. 2, Measurement Manual. Rome Air

Development Center, Griffiss AFB, NY, tech. report TR-80-109, Apr.

1980.

Ruston, H., chairman. Workshop on Quantitative Software Models.

IEEE, New York, NY, catalog no. TH0067-9, October, 1979.

57

7 -



A.1.1.8 Multiple Representations of Software.

Description

Different representations of software can facilitate different

considerations or manipulations of software. Just as different

mathematical notations provide convenient tools for different types

of problems or aspects of the same problem, different representations

of software could facilitate different aspects of construction and

maintenance.

Pictures, sound, and animation offer new ways to perceive and

new chances to ensure that subtle errors are found. Various media,

including graphics, text, and voice as well as static and dynamic

representations, are all possibilities. Representations can be gen-

erated automatically from one another, or two separately prepared

representations can be compared for consistency.

Rigorous documentation becomes a possibility as operator's,

user's, or maintainer's "manuals" are automatically generated with

guaranteed consistency. Requirements, program code, and other

representations will be involved.

Most of the savings from this thrust will occur in the develop-

ment and operations phases of the lifecycle. The savings will be due

to faster error detection and clearer understanding of the system on

the part of maintenance personnel. Savings are expected to be

moderate in the affected phases.

58c'



Some Relevant Research/Products

Softech is working on "living documentation," which incorporates

multiple representations and methods for maintaining compatibility

among them. Intermetrics is interested in notations in a variety of

representations, and Hughes has done work with graphics in the Design

Analysis System (DAS). I.P. Goldstein has done some AI work on

recognizing conflicts between representations.

Some commercial and academic tool sets incorporate multiple

representations. The Maestro programmer support environment automat-

ically produces Nassi-Schneiderman diagrams, while computer-aided

design and manufacturing efforts provide examples of multiple

representations and multiple manipulation modes.

R&D difficulties exist in generating prose and in automatically

converting between representations.

References

Riddle, W. E., and R. E. Fairley. Software Development Tools. Ber-

lin: Springer-Verlag, 1980.

59

M~m- -2 n -



A.I.l.9 Earliest Possible Error Detection.

Description

The cost of repairing an error is reduced if it is detected soon

after it is committed. The goal of this thrust is to supply theory

about the points at which various types of errors can be committed

and detected (or equivalently, their absence verified), and to con-

struct practical methods for verification and detection.

An example in one limited area is a syntax-knowledgeable editor,

which informs a programmer of syntax errors when he is entering or

changing a program. Errors can be detected in all aspects of

software including requirements, design, and documentation. Ques-

tions to be addressed are: Where is the earliest theoretical point

at which verification could be done? How might it be done? How

could it be automated?

Studies have shown that the cost of fixing errors detected late

in the software lifecycle is large. Benefits accruing from success

of this effort are correspondingly large and would appear in the

development and operations phases of the lifecycle. Reduction in the

number of residual errors should also occur; however, some effort

would be needed for the detection.

Some Relevant Research/Products

A number of efforts have been undertaken to check statements of

requirements and designs for certain kinds of errors. Most prominent

is the University of Michigan's PSL/PSA, which has been extended or

revised in a number of places, including TRW, Boeing, Hughes, and the

Army's BMD Advanced Technology ater. Other efforts have been

60



undertaken at High Order Software and at Computer Sciences Corpora-

tion.

Research in program proofs and other aspects of verification and

validation is relevant. This thrust aims for a systematic basis for

understanding the ultimate limits of error detection, and a mechanism

to approach those limits.

Remarks on Rationale

The longer an error goes undetected, the more expensive it is to

correct. For example, a design error which would cost one unit to

correct during design may cost 4 units to correct during unit

programming/testing, 9 units during component testing, 15 units dur-

ing systems testing, and 30 units during operations. Errors from

prior stages make up the bulk of the roughly 50% of the development

and maintenance costs caused by errors; the next best thing to never

committing an error is finding it as soon as possible.

References

ACM. "Workshop on Formal Verification." ACM Software Engineerin&

Notes vol. 5, no. 3 (July 1980), pp. 4-47.

Buda, A. 0. et al., "Implementation of the ALPHA-6 Programming Sys-

tem, IEEE Transactions." Academy of Sciences USSR, March, 1975, cited

in D. S. Alberts, "The Economics of Software Quality Assurance," in

E. Miller, ed., Tutorial on Program Testing Techniques, COMPSAC 77.

Long Beach, CA: IEEE Computer Society, 1977.

Deutsch, M. S. "Tutorial Series - 7: Software Project Verification

and Validation." Computer vol. 14, no. 4 (Apr. 1981), pp. 54-70.

Miller, E., and W. E. Howden, eds. Tutorial: Software Testing and

61

'S



Validation Techniques. Los Alamxitos, CA: IEEE Computer Society,

1978.

62



A.1.1.10 Configuration Independence.

Description

Configuration independence implies that an application will run

on various hardware systems and with different operating systems.

Changes to the implementation of the application in these different

environments, if necessary, will be accomplished automatically.

Typical constraints on the portability of software are memory

size, word size, operating system incompatibility, programming

language incompatibility, and incompatible utility program libraries

(including sorting routines and database managers, etc.). Software

will be more portable if standard languages without dialects are

used; if languages compel explicit specification of the range of

integers and the precision of floating point values; if virtual

memory is provided; if a standard operating system interface (at some

level) is defined; and, if libraries of standard, portable, utilities

are provided.

For each different operating environment, an automated mechanism

should indicate whether a given application program is acceptable to

it, and what special cost (e.g. multiple precision arithmetic) would

be incurred by running the application in this environment. Alterna-

tively, for each operating environment, a mapping to a standard,

"virtual" operating environment and a mapping from this standard

environment could be devised. Other possibilities for achieving con-

figuration independence are language processor features that recog-

nize the need for multiple precision arithmetic and generate the

appropriate function calls where needed; standard interfaces between

applications and hardware, especially for interactive or real-time

devices; and a system design regimen in which configuration-dependent

63Ci

1.!



software is isolated into application-independent modules (therefore,

replaceable by existing equivalent modules in the new configuration).

To establish configuration independence, the boundaries of

hardware and systems software must be defined, as well as methods for

dealing with changes. Layered designs to provide stable layer inter-

faces and application generators to tailor the application to each

configuration are both approaches to the problem.

The principal benefit would be the ease of transferability of

software between systems and the consequent savings in software

development costs. Configuration-independent software could be

implemented on a variety of modular systems. As a result, hardware

could be chosen to fit a particular system's projected workload,

rather than to accommodate some equipment-dependent or

configuration-dependent software. It would also be easier to take

advantage of improved hardware designs. The real savings come from

not having to redevelop/convert to run on other configurations or in

other environments.

Cost savings are expected to be moderate and to appear primarily

in the development phase of the lifecycle.

Some Relevant ResearchlProducts

The National Software Works is an experiment to construct

libraries of transportable programs, and to standardize some operat-

ing system functions. The efforts of ANSI to define standards for

COBOL, FORTRAN, character sets, etc. have been of great assistance.

The ADA effort, the ADA support environment, and the Military Com-

puter Family (MCF) common architecture projects are evidence of what

can be achieved in the interest of portability.

64



Remarks on Rationale

Software is so expensive and the required personnel resources so

scarce that to spend large amounts of effort and funds to change from

outdated environments/hardware to new ones is a waste when achieve-

ment of a measure of configuration independence is possible. On the

other hand, the hardware and environment must provide for change in

some way, if new technology is to be exploited.

References

Collica, J., M. Skall, and G. Blotsky. Conversion of Federal ADP

Systems: A Tutorial. National Bureau of Standards, Washington, DC,

report NBS 500-62, Aug. 1980.

Ebert, R., J. Lugger, and R. Goecke, eds. Practice in Software Ada-

tion and Maintenance. Amsterdam: North-Holland, 1979.

65



A.1.2 Conception/Feasibility

A.l.2.1 Rapid Simulation.

Description

Alberts reports that more than five years often pass between a

DoD system's conception and the start of its formal requirements

definition. Capabilities are needed for the rapid simulation of

newly conceived systems to judge their probable throughput, error

rate, costs, etc. Rapid simulation will assist in early conceptual

understanding, and speed decisions concerning implementation.

Rapid simulation of a proposed new system or of a proposed

change to an existing system will speed decision-making while reduc-

ing risk. Relevant performance and cost-effectiveness measures will

be obtainable. Expected values and measures of risk and sensitivity

usually must be supplied. Both hardware and software considerations

are relevant; however, because the simulation of software is less

well understood, R&D efforts will emphasize software issues.

The specific requirements of a rapid simulation capability must

be more clearly identified and understood. Integration of developed

tools into DoD practices must also be addressed. Tools must be

developed and validated to give decision-makers confidence in them.

The tools may vary with the problem domain and the basic technologies

utilized.

The most significant improvement potential exists in the time

required for analysis and decision-making during the conceptual

phase. Other benefits may occur during the design and operation

periods. Significant cost savings are expected from earlier and more

66



complete predictability of results. In addition, the time for the

conceptual phase might be reduced, resulting in considerable benefits

to users.

Benefits will also accrue to organizations outside of DoD that

wish to simulate similar systems. How widely useful the tools

developed will be depends on how customized they are to DoD-unique

situations.

Some Relevant Research and Products

Substantial activity is being performed under the title of com-

puter performance evaluation (CPE). Most of the emphasis, however,

has been on hardware and systems software performance. CPE work is

just beginning on applications software. Serious developments in cost

estimation methodologies are also in their infancy, but some software

packages are in existence and promising research is underway.

DoD information systems and software are often large, complex,

and difficult to evaluate, especially before construction. This

uncertainty leads to long analytical and decision-making activities

that delay the system. Simulation of proposed concepts is within

reach to speed up these activities. Rapid simulation will be useful

for comparing alternatives during design, and for evaluating proposed

changes during operation.

References

Alberts, D. S. "The Economics of Software Quality Assurance." in 1976

National Computer Conference, AFIPS Conference Proceedings, vol. 45,

pp. 433-442. Montvale, NJ: AFIPS Press, 1976.

Computerworld. "'Crystal' Clarifies, Predicts Software Performance

Problems." Computerworld vol. 14, no. 52 (December 22, 1980), p. 43.

67

-i

I -- "' ' - - -' I .. - -- ' - -- . .. ., .. .. . .- - ' o- . .



Myers, W. "Conference Report: 1978 Summer Computer Simulation

Conference." Computer vol. 11, no. 10 (Oct. 1978), pp. 70-74.

Schneidewind, N. F. "The Use of Simulation in the Evaluation of

Software." Computer vol. 10, no. 4 (Apr. 1977), pp. 47-53.

68

amm



A.1.3 Requirements

A.l.3.1 Rapid Prototvping.

Description

Since requirements are often difficult to formulate when similar

automated applications do not exist, a quickly constructed prototype

of a new application can be used to derive the full system require-

ments. Rapid prototyping will alleviate the problems users and

analysts encounter in trying to specify fully the requirements for a

system. Rapid prototyping can both reduce the time needed to produce

requirements, and improve the quality of the requirements eventually

produced.

Rapid development of quality system and software requirements is

possible with the use of prototype systems. To provide a useful

rapid prototyping ability for DoD applications, processing functions,

data collected and stored, and user interfaces need to be identified.

These may vary among applications and with user tolerance and imagi-

nation.

Questions to answer are: What can best be entirely ignored in

prototypes or handled without concern for details? For what require-

ments issues is prototyping a suitable aid in defining answers? In

what language or other medium should the prototype system be

represented? How should the prototyping process proceed? When and

how should prototyping be terminated and a production quality system

produced?

This capability is related to very high level languages and

requirements languages. It shares description requirements with

69



rapid simulation tools. It differs from rapid simulation in that its

output is a functional subset of a system; rapid simulation produces

numbers from which feasibility can be determined.

The greatest potential exists for quality of requirements. The

principal increase in quality will be in the improved relevance and

usefulness of the system, as well as reduced errors in requirements.

Other benefits may include quicker development of requirements and

better mutual understanding between users and developers.

The level of technology transfer penetration is dependent on

software acquisition and development practices. There may be no net

cost savings in the development stages, but system utility should be

greater during the operation stages.

Some Relevant Research and Products

General data base management systems with simple but powerful

interfaces are making claims in this area already; e.g. NOMAD. Of

the responses to the 30 July 1980 announcement in the CBD, seventeen

claimed competence in the area of rapid prototyping, and eight had

actual projects or products.

Remarks on Rationale

Rapid prototyping is promoted as a solution to a major problem:

users of a system who do not have experience with similar systems

find it difficult to conceive what they will need; therefore, they

cannot evaluate alternatives accurately. By providing similar,

relevant experience, prototypes help users think about systems

requirements.

Learning from prototypes is an established technique in hardware

engineering. In electrical engineering, breadboard and brassboard

70

AA



prototypes are common. Software systems should be developed analo-

gously.

References

Dodd, W. P. "Open Channel: Prototype Programs." Computer vol. 13,

no. 2 (Feb. 1980), p. 81.

Gomaa, H. and D. B. H. Scott. "Prototyping as a Tool in the Specifi-

cation of User Requirements." In Fifth International Conference on

Software Engineering, pp. 333-339. Los Alamitos, CA: IEEE Computer

Society, 1981.

McCracken, D. D. "Software in the 80's: Perils and Promises." Comu

terworld vol. 14, no. 38 (Sept. 17, 1980), pp. 5-10.

Zave, P. and R. T. Yeh. "Executable Requirements for Embedded Sys-

tems." in Fifth International Conference on Software Engineering, pp.

295-304. Los Alamitos, CA: IEEE Computer Society, 1981.

71



A.1.3.2 Application Domain Expertise.

Description

Excellent systems are the result of computing expertise coupled

with application area expertise. Identification of commonalities in

DoD applications can lead to reusable software. For example, iner-

tial navigation might be found to be a common function across a wide

variety of platforms and systems, or radar and other electromagnetic

sensors may have similar target information extraction functions.

For each commonality, economies are possible from software genera-

tors, standard software components, standard designs, or capture of

application knowledge that can be re-used.

The complete taxonomy of DoD software functions will allow

better judgments concerning proposed standards. The relative impor-

tance of different types of activities and software functions will

help guide R&D investment.

Application knowledge is one form of expertise that will be

needed in the knowledge-based systems planned for the long term.

This is true (although varying somewhat) in software tools for con-

struction and maintenance, and in application systems themselves.

Other efforts that could benefit include user-oriented requirements

languages, standard Ada package sets, and high-confidence testing.

This thrust would aid recognition and exploitation of commonal-

ties and the task of setting the overall direction of software tech-

nology R&D. It could also forestall duplicate investigation and

analysis across the many thrusts requiring application domain exper-

tise.

Most of the cost saving benefits of this thrust will be received

indirectly through other thrusts; therefore, its direct cost saving

72

,i .1111.. ..



I
I

benefits are estimated to be low. Most of the benefits will occur in

the development and maintenance phases of the lifecycle.

Some Relevant Research and Products

The Ada requirements development demonstrated a substantial

amount of commonality among embedded systems at the programming

language level, although this does not imply commonalities at the

functional level. Function lists have been developed for C3 systems,

and efforts such as COMTEC-2000 have tried to factor in application

area needs. Avionic commonalities have been studied by Chien and

Peterson.

References

Barstow, D. R. Knowledge-Based Program Construction. Amsterdam:

North Holland, 1979.

Belady, L. A. "Evolved Software for the 80"s." Computer vol. 12, no.

2 (Feb. 1979), pp. 79-82.

Carlson, W. E. (Chairman). Defense Computer Resources Technology

Plan. Washington, DC: R&D Technology Panel, Management Steering Com-

mittee for Embedded Computer Resources, USD(R&E), June, 1979.

Chien, R. T., and L. J. Peterson. Optimized Computer Systems for

Avionics Applications. AF Wright Aeronautical Labs, Wright-Patterson

AFB, Ohio, report AFAL-TR-79-1235, 11 Feb. 1980.

COMTEC-2000 Study Group. Computer Technology Forecast and Weapon

Systems Impact Study (COMTEC-2000). 3 vols. HQ Air Force Systems

Command, Washington, DC, tech. report 78-03, Dec. 1978 - July 1979.

73

I'J



A.1.3.3 Data Validation.

Description

The validity of data stored and reported by computer-based sys-

tems is a key factor in their acceptance by and utility to users.

Currently, the editing or validation of input and stored data is

without an underlying theory, and is elementary in practice, consist-

ing mainly of type checking, range checking, simple comparisions, and

arithmetic relationships. Data validation could benefit, if viewed

as a problem in which existing automated decision-making methodolo-

gies could be applied. The intelligent application of these tech-

niques offers more powerful abilities to deal with complexities and

uncertainties.

The objective of this effort is to develop and demonstrate sig-

nificantly better practical, automated techniques for editing input

data and for validating stored data. Automated decision-making tech-

niques, including Artifical Intelligence, will be explored and proto-

typed. Techniques and methodology for applying them in practice will

be addressed.

The primary benefits will be in improved data accuracy and

increased user confidence. Cost savings could be substantial, but

not in what would normally be thought of as software expenses.

Rather, savings would come in clerical and user time. The cost sav-

ings in traditional software personnel expenses will come from the

rationalization of the input editing process and possibly from

resulting reusable software. Benefits will occur in the development

and operations phases of the lifecycle.

74

t
I-

t



Data quality is an important determinant of overall system qual-

ity. Because of the lack of research, particularly by academia, the

potential for fundamental improvement is high.

Some Relevant Research and Products

What little research that has been done in this area has been

performed in the last four years, with most published in the last

year. It has concentrated on simple descriptions of the problem, the

possibility of using first order predicate calculus to express the

traditional edits, and the potential for avoiding customized program-

ming. None of these methods offers fundamental improvement in the

quality of data stored in computer-based systems.

An active DoD leader in the area is the COPE effort at the Naval

Research Laboratory.

Remarks on Rationale

Poor data is a widespread problem from which no computerized

system is immune. The effectiveness of automated systems, and user

acceptance of them, is open to significant improvement. In addition,

rigorous reseatch will be encouraged in an area with deep problems,

but high payoffs.

References

Bernstein, P. A, B. T. Blaustein, and E. M. Clarke. "Fast Mainte-

nance of Semantic Integrity Assertions Using Redundant Aggregate

Data." In Proceedings, Sixth International Conference on Very Large

Data Bases, pp. 126-136. Los Alamitos, CA: IEEE Computer Society,

1980.

75

t



Lee, R. C. T., J. R. Slagle, and C. T. Mong. "Towards Automatic

Auditing of Records." IEEE Trans. Software Eng. vol. SE-4, no. 5

(Sept. 1978), pp. 441-448.

Necolas, J. M., and K. Yazdanian. "Integrity Checking in Deductive

Data Bases." in Lo&ic and Data Bases, H. Galliare and J. Minker,

eds., pp. 325-344. New York: Plenum Press, 1978.

Taylor, D. J., D. E. Morgan, and J. P. Black. "Redundancy in Data

Structures: Improving Software Fault Tolerance." IEEE Trans. Software

Eng. vol. SE-6, no. 6 (Nov. 1980), pp. 585-594.

Wilson, G. A. "A Conceptual Model for Semantic Integrity Checking."

In Proceedings, Sixth International Conference on Very Large Data

Bases, pp. 111-125. Los Alamitos, CA: IEEE Computer Society, 1980.

76

t7 -



A.1.3.4 Built-In Testing.

Description

Built-in testing capabilities can be based on suites of standard

test data and test results, runtime checking of assertions, or com-

parisons of results for different redundant processes. This thrust

will create software capabilities analogous to built-in testing capa-

bilities in electronic hardware.

As computer systems and software packages grow larger, it

becomes more difficult to guarantee their correct operation. Built-

in testing is one way of ensuring that incorrect operation will be

detected. Tests will detect not only errors in the original design

but also those added during program changes.

Several test methods are currently under examination: asser-

tions, dual program comparison, and standard test suites. Assertions

are statements inserted into code to cause the state of designated

variables to be tested during execution to ensure that values are

within expected ranges. Assertions can state the expected relation-

ship among variables as well as their individual values; for example,

an assertion could state that the items in a list must always be in

alphabetical order. Through the use of assertions, the programmer

can ensure that unusual sequences of operations or incorrect code

changes will not result in undetected failure of an important rela-

tionship. The use of assertions is still new, however, and it is

difficult to determine assertion statements' optimum placement and

content.

Dual program comparison also can be used to detect errors in the

original code and later modifications. Two groups of programmers

each write the code for a function, working from the same specifica-

77



tions. The two resulting modules are executed in parallel, and their

outputs compared. Any discrepancies in the outputs are flagged as

errors. Because the code in the two parallel modules will probably

be different, the probability of detecting an error resulting from an

unusual combination of inputs will rise. Costs appear to be higher

for this approach; it is necessary to determine if the greater proba-

bility of error detection is worth the higher development costs and

the extra complexity caused by the need to synchronize and compare

module outputs. Higher costs may be offset by increased reliability

and fewer system failures in the operational stage.

Standard test suites are sets of test inputs and expected out-

puts that could be run as background tasks during normal system

operation, at start-up, or when the "test" button is pushed. Tests

are selected to check all important hardware and software functions,

and are used primarily to detect failed hardware or erroneous

software "corrections". One use for test suites is the detection of

surreptitious changes to software and hardware.

Various methods of built-in testing will be investigated, and

their relative advantages and cost/benefit ratios evaluated. The

primary benefit lies in the area of increased reliability. Until the

testing discipline is more fully developed, the methods developed by

this thrust may be crucial in the effort to produce more reliable

software. This thrust will also assist in the on-line, continuous

reverification of computer security mechanisms.

Relevant Research and Products

The use of built-in testing is common in electronic hardware

from the integrated circuit level up through the systems level. Use

of assertions has been widely advocated but less widely attempted for

real-world embedded software. The use of permanently maintained test

data suites is also fairlyj;common, but arrangements for "push button"

78



retesting are unusual. Redundant software has been used for some

critical applications such as nuclear reactors and the space shuttle.

References

Geiger, W., L. Gmeiner, H. Trauboth, and U. Voges. "Program Testing

Techniques for Nuclear Reactor Protection Systems." Computer vol. 12,

no. 8 (August 1979), pp. 10-18.

Miller, E., and W. E. Howden. Tutorial: Software Testing and Valida-

tion Techniques. Los Alamitos, CA: IEEE Computer Society, 1978.

Panzl, D. J. "Automatic Software Test Drivers." Computer vol. 11, no.

4 (April 1978), pp. 44-50.

7

I.

V .

t



A.1.3.5 Forgivinz Systems.

Description

"Robust", "fault-tolerant", "user-friendly", "fail-soft", "high

integrity", and "humanized" describe systems that are attractive and

safe to use, despite mistake-prone human users, ubiquitous residual

software bugs, inevitable hardware failures, and adverse environmen-

tal events. Although this candidate area will pursue solutions for

all four types of problems, the emphasis will be on those caused by

user errors. The goal is software systems that avoid disaster and

help users obtain their goals despite any miscues.

Other types of systems, particularly human organizations, will

be investigated to learn how they achieve their robustness and toler-

ance for error. Theory will be sought to aid in designing systems.

The repertoire of techniques and approaches to provide forgiveness

would be expanded and systematized. Among the issues of interest

will be ruantitative probabilistic judgments of reasonableness, pred-

ictions and quantification of error consequences, redundant data and

software, back-up and recovery, algorithmic robustness, and human

factors.

This candidate is related to the high data integrity and built-

in testing candidates, and other candidates related to reliability.

Some Relevant Research and Products

A number of time sharing systems contain defenses against common

user-caused disasters: for example, double checking that the user

really wishes to have changes to a file ignored, cr to have all his

files deleted.

80



Fault tolerance for hardware failures has received considerable

attention, as has system survivability. Redundant software has been

used in such applications as nuclear reactors. In an interesting

effort by the Jet Propulsion Laboratory (JPL) for a Voyager mission,

ground commands were checked by the spacecraft to ensure that poten-

tially damaging maneuvers were not performed. (An override ability

was available to the ground and was used at least once.)

Natural languages and human organizations have been investigated

from a number of perspectives, some of which are relevant to the con-

cerns here; for example, the importance of assumptions, context, and

pragmatics in the handling of exceptional conditions. New analyses

and interpretations are needed.

The principal benefits will be increased user acceptance and

confidence in systems and a reduction in major operational disasters.

The development of systems may be more difficult, but their opera-

tional utility will be enhanced. The results achieved can be applied

to software environments and tools, as to well as application sys-

tems. Benefits in predictability and reliability will follow.

The applicability of the results should be wide. Reduced costs

for software development are not expected, but maintenance efforts

may be reduced. System reliability and utility should be enhanced.

Remarks on Rationale

Blind obedience may have its value, but can easily lead to

disaster in human organizations. Yet blind (or at least myopic)

obedience is a principal characteristic of most software systems. If

persons with this characteristic would be unacceptable for most

important tasks, why should a computerized system with it be any more

acceptable?

81



It will probably be a long time before systems can be built that

have the speed and accuracy associated with computers and the ability

to save us from ourselves associated with intelligent and considerate

co-workers. Nevertheless, much improvement can be made over prevail-

ing practices.

References

Glib. T., and G. Weinberg. Humanized Input: Techniques for Reliable

Keyed Input. Cambridge, MA: Winthrop, 1976.

Hayes, P., E. Ball, and R. Reddy. "Breaking the Man-Machine Communi-

cations Barrier." Computer vol. 14, no. 3 (Mar. 1981), pp. 19-30.

Hecht, H. "Fault-Tolerant Software for Real-Time Applications." ACM

Computing Surveys vol. 8, no. 4 (Dec. 1976), pp. 391-407.

Ledin, G. Jr., and V. Ledin. The Programmer's Book of Rules. Bel-

mont, CA: Wadsworth, 1979, ch. 1, pp. 2-17.

Morgan, D. E., and D. J. Taylor. "Special Feature: A Survey of

Methods for Achieving Reliable Software." Computer vol. 10, no. 2

(Feb. 1977), pp. 44-53.

Rasmussen, J. "The Human as a System Component." In Human Interaction

with Computers, H. T. Smith and T. R. G. Green, eds., pp. 67-96.

London; Academic Press, 1980.

Shneiderman, B. "Human Factors Experiments in Designing Interactive

Systems." Computer vol. 12, no. 12 (Dec. 1979), pp. 9-19.

82



F AD-A10 180 MITRE CORP MCLEAN VA F/G 5/1
CANDIDATE R&D THRUSTS FOR THE SOFTWARE TECHNOLOGY INITIATIVE.1U3
MAY al S T REDWINE, E D SIEGEL, A R GERGLASS F1962881-C-000I

UNCLASSIFIED MTR-81W00160 NL



A.1.3.6 User-Oriented Requirements Interfaces.

Description

Requirements languages describe what the software system must

do, completely and unambiguously. To be used readily and to provide

confidence that the statement of requirements is correct, the

language must allow a natural statement of the requirements in terms

that specifiers and requirements certifiers can understand and estab-

lish as correct. The need is for descriptions that are both natural

and rigorous.

Variation among different application domains within DoD will

necessitate a number of different requirements languages or dialects

to provide natural requirements descriptions for different domains.

Application expertise will be required to design requirements

languages for each problem domain.

Requirements languages typically are not executable. Compilers

constructed to make them executable with acceptable efficiency are

often called Very High Level Languages (VHLL's). Since requirements

languages are not acceptably executable, an executable solution writ-

ten in a programming language is prepared. The executable solution

must be verified for agreement with the requirements language

description. Formal techniques must be used, if rigorous verifica-

tion is required.

An interesting and unusual approach to user-oriented descrip-

tions involves construction of an application model to which informa-

tion system functions could be related. Some functions might be pas-

sive (e.g. observing and reporting on inventory levels); some might

be replacements in well understood roles (e.g. replacing postal mail

by telecommunications); some might address the less understood roles

83



(e.g. intelligence fusion and prediction); and some might be new

functions. This "model of the world" approach is often used infor-

mally as an aid to communication and problem solving by user and

developers.

Major improvements in the accuracy of communication between con-

ceivers and developers, with corresponding reductions in the number

of errors in requirements and the number of deviations from require-

ments in the final software are expected from the success of this

effort. Only the first of these benefits will derive solely from the

requirements languages; the other two will require additional tools

(requirements language analyzers and formal verification aids) to

reach their full potentials. Benefits could also accrue during test-

ing and operation. Testing would benefit considerably from having

formal requirements from which to generate test data. In the opera-

tions phase, maintenance of the requirements along with the rest of

the software would create a baseline for verification of system

changes.

Moderate cost benefits would occur in the development and opera-

tions phases of the lifecycle. R&D success is uncertain, because a

number of different languages and dialects may be needed. The tech-

nology transfer penetration percentage will be only fair, because

even good formalisms are avoided by many persons. Despite the low

probability of R&D success and the fair technology transfer percen-

tage, this thrust is still important, since it is a prerequisite for

many other thrusts, including Formal Verification and other attempts

to produce high reliability.

!.

84

Ik

t



Some Relevant Research and Products

Various problem-oriented languages have been developed, for

example, COGO in civil engineering. Specification languages such as

SPECIAL, GYPSY, and INA JO exist in connection with formal verifica-

tion efforts. The specification language ANNA is attracting support

as a partner to Ada. W. Martin at MIT has built a question and

answer system which defines requirements (and generates systems)

within the domain of inventory systems. Computer aided design (CAD)

systems have some analogies to this thrust and often use graphic

interfaces/notations. VHLL's have great relevance. A recent effort

to respecify the A-7 avionics software is a significant research

effort relevant to this thrust.

Remarks on Rationale

Describing the problem/requirements in a natural but rigorous

fashion understandable to users who can certify its correctness would

provide a firm foundation for system development.

References

Arden, B. W., ed. The Computer Science and Enpineering Research

Study (COSERS). Cambridge, MA: MIT Press, 1980, "Special Purpose

Languages," pp. 589-602.

Heninger, K. L. "Specifying Software Requirements for Complex Sys-

tems: New Techniques and Their Applications." IEEE Trans. Software

Eng. vol. SE-6, no. 1 (Jan. 1980), pp. 2-13.

Ross, D. T., ed. "Special Issue on Requirements Analysis." IEEE

Trans. Software Eng. vol. SE-3, no. I (Jan. 1977).

854s



Thurber, K. J. Tutorial: Computer System Requirements. Los Alami-

tos, CA: IEEE Computer Society, 1980.

86



- OOO..... 
i

A.1.3.7 Complex Knowledge-Based Systems.

Description

Knowledge-based systems use highly organized knowledge bases

(linked data structures) and flexibly incorporated inexact logic

(heuristic rules) to deal with complex interrelationships. These

techniques allow systems to solve complex problems through deduction,

inference, and interaction with a user. Although knowledge-based

systems are becoming larger, the most successful systems have dealt

with well-defined, limited problem domains.

Knowledge-based systems could support all phases of DoD opera-

tions. The problems are to define appropriately limited domains, to

organize knowledge about these domains, to construct the heuristics,

and to find a hardware and software architecture on which these sys-

tems can run effectively. The ultimate goal is systems able to

operate in various complex domains and across domains.

A system that can interact with a "user" (e.g. software engineer

or logistics commander), make inferences and deductions from the con-

S text in which the user is working, and draw upon its "knowledge" of

standards, conventions, rules, capabilities, and similar problems

encountered previously has obvious utility. These systems are some-

times called "expert" systems, because they give the kind of assis-
tance (at least in theory) that is expected from an experienced,

knowledgeable assistant.t4t

This candidate will explore means to provide automatic (artifi-

cial), intelligent support to DoD in various operational domains.

How to "scale up" from current capabilities--whether, for example,

some new machine architectures would help--is a major problem; also,

87

4; " ' I : + ' I + ..l '''" : ' ' ' " . .. .



a substantial effort will be required to collect and organize

knowledge in these domains.

The potential benefits are immense, as more human expertise is

built into systems, and systems acquire the capability to make infer-

ences and deductions in broader, more complex domains. There are no

bounds on what can rationally be hoped for, although the mechanisms

for achieving significant capability are largely unknown.

4

Current Research and Products

The first successful knowledge-based system was DENDRAL,

developed at Stanford University. This program used heuristics

developed by chemists to propose and verify the molecular structure

of a class of organic compounds from mass spectroscopy and magnetic

resonance data. The heuristics were used to select a few candidates

from the millions of possible candidates. The system performed

better and faster than the expert chemists who designed the heuris-

tics; it even discovered errors and omissions in the literature.

MYCIN is a blood disease treatment program also developed at

Stanford. Heuristic knowledge obtained from expert diagnosticians is

used to suggest diagnoses, recommend further tests, and offer treat-

ment alternatives.

DENDRAL and MYCIN were carefully constructed for limited, well-

defined problem domains. This was necessary due to the absence of a

general method for organizing the knowledge and rules of systems.

The use of "frames" is a promising approach to this general problem,

first suggested by Minsky. A frames system may be described as a set

of interrelated templates, each describing part of some known type of

situation. The templates describe the essential characteristics of a

situation, but omit details that might be unique for a particular

instance of that type of situation. An important point is that a

88

4"



frame may contain defaults and procedural constraints for its empty

details; thus, the data base itself can contain the heuristics that

would be invoked automatically whenever data is entered or accessed.

This type of organization, which can be used for both information and

rules, provides a structure for handling larger, poorly defined prob-

lem areas.

Remarks on Rationale

Knowledge-based systems are seen as one of the keys to the solu-

tion of the complex problems of the future. The prospect of

automated human thought processes, even automated inventiveness, with

vast and organized memories seems farfetched, but the potential

payoffs are enormous.

References

Birk, J., and R. Kelley. Research Needed to Advance the State of

Knowledge in Robotics. In Proceedings of workshop at Newport, RI,

15-17 April, 1980. Washington, DC: National Science Foundation,

1981. (TIS accession no. PB 81-132 557.)

Buchanan, B., G. Sutherland, and A. Feigenbaum. "Heuristic Dendral: A

Program for Generating Explanatory Hypotheses in Organic Chemistry."

In Machine Intelligence 4, Meltzer and Michic, eds. New York: Wiley,

1969.

McCarthy, J., T. Binford, D. Luckham, Z. Manna, and R. WeyhranLh.

Final Report: Basic Research in Artificial Intelligence and Founda-

tions of Programming. Stanford A. I. Lab, Stanford, CA, Memo AIM-

337, May 1980.

Minsky, M. "A Frame Work for Representing Knowledge." In The Psychol-

ogj of Computer Vision, P. H. Winston, ed. New York: McGraw-Hill,

89



1975.

Pylyshyn, Z. W. "Artificial Intelligence." In What Can Be Automated,

B. W. Arden, ed. Cambridge, HA: MIT Press, 1980.

Shortlifte, E.H. Computer-Based Medical Consultations.: MYCIN. New

York: American Elsevier, 1976.

Winston, P. N.., and R. R. Brown, eds. Artificial Intellizence: An

MIT Perspective. 2 vols. Cambridge, MA: MIT Press, 1979.

90



A.1.4 Design

A.1.4.1 Data Flow Approach.

Description

The Data Flow concept perceives a system in terms of data under-

going transformations, rather than procedures transforming data. The

distinction is that data, not procedures, play the central role.

This facilitates application description in an environment where

there is no single control stream, e.g. a multi-computer system. A

typical Data Flow graphic representation shows data flowing among

bubbles signifying data transformations.

Multi-computer systems employing microprocessors hold promise of

cost-effective solutions to time-critical problems, but it is hard to

orient an application to a multi-computer environment. Because a

Data Flow description is not unnecessarily sequential, it appears

adaptable to the multi-computer environment.

A Data Flow description of an application is a useful tool for

explaining the operation of a proposed system to its potential users,

perhaps because it deals with data, with which the user is familiar,

rather than the procedures of the systems analyst. Furthermore, a

Data Flow description is another representation of an application,

which may provide additional insight for its proper implementation.

The relative value of Data Flow among the various approaches to

software, including the functional and predicate approaches, needs

investigation.

If it facilitates the adaptation of algorithms to multi-computer

systems, Data Flow design methods may be a way to realize the

91



increased speed, lover cost, and smaller physical dimensions (for

microprocessors) of these systems. If it helps designers to describe

a proposed system concept, it may reduce the number of user-requested

changes after the system becomes operational. If it helps systems

analysts to understand the system, it may reduce the time and expense

required to correct problems and effect improvements.

Some Relevant Research/Products

A data-oriented language, VAL, has been developed jointly by MIT

and Lawrence Livermore Laboratory. Some scientific applications are

being programmed in VAL to determine its usefulness, and there are

similar projects elsewhere. There is no evidence that any kind of

data flow system is currently in production use; however, the possi-

bilities of multi-computer systems with many asynchronous processors

are only beginning to be apparent. Data Flow design has been used as

a descriptive and analytical tool in commercial software organiza-

tions for over five years.

References

DeMarco, T. Structured Analysis and System Specification. New York:

Yourdon Press, 1978.

Denning, P. J. "Operating Systems Principles for Data Flow Net-

works." Computer vol. 11, no. 7 (July 1978), pp. 86-96.

Dennis, J. B. "Data Flow Supercomputers." Computer vol. 13, no. 11

(November 1980), pp. 48-56.

McGraw, J. "Data Flow Computing: Software Development." IEEE Trans.

on Computers vol. C-29, no. 12 (December 1980), pp. 1095-1103.

92



A.1.4.2 Self-Interfacing Software.

Description

Software oriented towards functions that can be manipulated and

combined with little attention to their interfaces is convenient for

a designer. Some languages are currentiy oriented towards a particu-

lar data type and offer this capability for one type of data: e.g.

arrays in APL and lists in LISP. For software in DoD application

domains to acquire this capability, the ability to interface with a

variety of data types is required. An automatic interfacing capabil-

ity built either into the individual functions or into related tools

(such as function builders) will allow the designer/programmer to

ignore interfacing details without penalty and enhance his produc-

tivity.

Functions and components will be needed in suitable types and

aggregates for application domains of interest. High level functions

will provide the greatest increase in productivity. The first suc-

cessful functional programming capability will probably be based on

either a deep mathematical treatment of the function concept, or on a

substantial expansion of "generic" function definition capabilities

in present-day languages (e.g. Ada).

An alternative is a try/expose/fix programming method in which

the original programming is tried in a functional form, interfacing

difficulties beyond the machine's ability are reported, and the pro-

grammer supplies the required fixes. This is a variant on interac-

tive component tailoring and interfacing.

Moderate cost savings in the development and operations phases

of the lifecycle could result from this initiative. Software design

93



and change time would be markedly reduced, improving programmer pro-

ductivity.

Some Relevant Research or Products

APL and LISP have relevant qualities, as do the UNIX operating

system and the Consistent System developed at MIT and maintained by

Renaissance Computing, Incorporated. Interest is increasing in func-

tional programming languages, inspired in part by John Backus's 1977

Turing Lecture. A conference is scheduled on the subject for Sep-

tember 27-October 1, 1981, in Portsmouth, N.H., sponsored by ACM,

ASIGPLAN, SIGARCH, SIGOPS and the MIT Laboratory for Computer Sci-

ence. Research in denotational semantics may also be relevant.

Remarks on Rationale

The functional approach is one effort to provide a powerful con-

ceptual approach and notation while diminishing details. It could

revolutionize the way software and hardware are built.

References

Backus, J. "Can Programming Be Liberated from the von Neumann Style?

A Functional Style and Its Algebra of Programs." Commun. ACM vol. 21,

no. 8 (Augus. 1978), pp. 613-641.

Henderson, P. Functional Prozramming. Englewood Cliffs, NJ:

Prentice-Hall, 1980.

94



z

A.1.4.3 Predicate Approach.

Description

The predicate (or axiomatic) approach has gained currency as a

conceptual tool in software construction from a wide variety of

sources. While alternative ways of thinking about programming are

starting to receive attention, this approach still occupies a favored

position in current programming research and development thinking.

The use of predicates (logical expressions of the status of

data) to describe a program's state before and after a procedure's

execution has been recommended for a decade. Many programming proof

techniques and suggestions for computing program structures and

styles have resulted from this approach. While formal proofs of pro-

grams remain realistic possibilities only for small programs, the

impact of program proof efforts has been in the better understanding

of specification, design, and informal verification techniques.

Structured programming and the use of assertions are outgrowths of

research in this area.

Tools and training aids need to be developed to aid the technol-

ogy transfer of developed results. Much of what is needed to make

the predicate approach relevant and to put it into wider use is based

on existing research results, rather than new research. Most of the

benefit will come from tool development and technology transfer.

Expanding the use of predicates to documentation and to guards

for data bases (descriptions of integrity constraints on data) should

also receive R&D attention. Predicates can be used to validate more

than just program logic. They can be attached to data to describe

constraints, used to test for the commencement of execution, or

attached to documentation fragments. The full power of the use of

95



predicates throughout a system's description, construction, and

maintenance phases has only begun to be exploited.

The relative utilities and weaknesses of the predicate approach,

the dataflow approach, the functional approach, and traditional

operational techniques need to be studied. For what design aspects

of what system types should each be used?

This thrust is related to formal verification, rigorous documen-

tation, transformation from informal to formal requirements, design

publication and code skeleton use.

The greatest improvement potential exists in the areas of

increased reliability and confidence in software. The net cost sav-

ings is estimated to be low-to-moderate.

Some Relevant Research and Products

The programming and programming languages research in the 70"s

revolved about the predicate approach; names such as Hoare, Dijkstra,

and Wirth come to mind. Work on formal verification is also related.

Textbooks are available to translate the predicate approach into

practice. Two examples are Software Development - A Rigorous

Approach, by Jones, and Structured Programming, by Linger, Mills, and

Witt. A new programming language, "Prolog" (in Kowalski's Logic for
Problem Solving), largely consists of predicates written to be satis-

fied, rather than procedures written to be executed. It provides an

interesting alternative view of the problem-solving process.

96

VI!



Remarks on Rationale

This approach has been one of the most important wellsprings of

improvement in programming during the last dozen years, and it should

not be ignored as a producer of additional, useful results.

References

Brown, F. L., and H. Broy, eds. Program Construction. Berlin:

Springer-Verlag, 1979.

Jones, C. B. Software Development: A Rigorous Approach. London:

Prentice-Hall, 1980.

Kowalski, R. Logic for Problem Solving. New York: North Holland,

1979.

Linger, R. C., et al. Structured Programming: Theory and Practice.

Cambridge, MA: Addison-Wesley, 1979.

Yeh, R. T., ed. Current Trends in Programming Methodology. vols. 1

and 2. Englewood Cliffs, NJ: Prentice-Hall, 1977.

97



A.1.4.4 Exception Handling.

Description

Exception handling has been a problem in very high level

languages (VHLL), and other attempts to construct software using a

high level of abstraction. Both the theory and practice of handling

exceptions or unusual conditions needs advancement. Simplicity and a

high level of abstraction, goals for most attempts to reduce complex-

ity and increase productivity, make it difficult to deal with detail

and exceptions. The aim of this thrust is to decrease that diffi-

culty.

Research directions include investigation of: (1) the types of

errors that may safely be ignored, (2) the use of implicit mechanisms

for handling errors, (3) the problem of obscure computational flow

due to high-level, but poor conceptualization, (4) the incorporation

of exception handling into main control flow instead of into a

separate program section, (5) the use of interactive "conversations"

to define program details, (6) the incorporation of computing and

application knowledge into tools, (7) the problems in constructing

layers of abstraction within a VHLL, and (8) the benefits of expli-

citly confining a VHLL context to a restricted problem domain.

This thrust shares benefits with very high level languages,

user-oriented requirements language/interface, transformation from

informal to formal requirements, and forgiving systems.

Major increases in the usefulness of very high level languages

and other high-level tools would occur as a result of the success of

this effort. Most of the impact of this thrust will therefore be

indirect.

98



Some Relevant Research and Products

Exception handling in programming languages has been an active

area of discussion and controversy. Many newer languages have

devoted particular attention to the feature; for example, Ada has an

exception handling mechanism. The extent to which exception handling

convenience outweighs the resulting obscurity of the computational

flow is unclear, however.

The concept of levels of abstraction has been widely used since

the late 60"s. Appropriate methods for moving between levels of

abstraction to facilitate handling exceptional details, however, have

not been widely discussed. The whole concept of fitting exceptions

into the problem solving process has received only limited attention.

Remarks on Rationale

Exception handling is a key stumbling block in the path to wide

use of very high level languages and tools, and it may be a key cog-

nitive strategy question as well. This is a thrust with significant

potential for advances in both practice and theory.

References

Goodenough, J. B. "Exception Handling Design Issues." Sigplan

Notices vol. 10, no. 7 (July 1975), pp. 41-45.

Goodenough, J. B. "Exception Handling: Issues and a Proposed Nota-

tion." Commun. ACM vol. 18, no. 12 (Dec. 1975), pp. 683-696.

Hammer, M. and G. Ruth. "Automating the Software Development Pro-

t cess." In Research Directions in Software Technology, P. Wegner, ed.,

pp. 784-785. Cambridge, MA: MIT Press, 1979.

99



Liskov, B., and A. Snyder. "Exception Handling in CLU." IEEE Trans.

Softvare LM.. vol. SE-5, no. 6 (Nov. 1979), pp. 547-558.

Luckham, D. C., and W. Polak. "Ada Exception Handling: An Axiomatic

Approach." ACM Trans. Prograiain Lanstuages vol. 2, no. 2 (Apr.

1980), pp. 225-233.

Winograd, T. "Beyond Programming Languages." Comun. ACM vol. 22, no.

7 (July 1979), pp. 391-401.

100



A.1.4.5 Distributed Functions and Resources.

Description

Significant improvement in cost-effectiveness and performance

can be achieved by assigning system functions and resources to

appropriate processors in a computer network, and, within processors,

to software, firmware (microcode), or hardware. Thrusts in this area

will produce techniques for discovering software functions to be

implemented in higher-performance media, for evaluating the costs and

benefits of doing so, and for designing high-performance systems

using asynchronously operating, intelligent components. The goal is

innovative designs for embedded computer systems that avoid pitfalls

previously encountered in single-processor computer systems.

Functions can be implemented in software, firmware, or hardware.

Increased performance of firmware over software, and of hardware over

firmware, must be balanced against increased circuitry costs and

reduced flexibility to accommodate changes; however, reported efforts

to build VLSI compilers that produce masks for chips from computer

programs may moderate the costs and risks of compiling directly into

hardware. Simulations and performance measurements on prototype sys-
tems can establish the optimum processor and software-firmware mix.

Software monitoring tools in prototype systems can help to identify

functions requiring implementation in faster media to obtain neces-

sary performance levels.

Solutions need not be confined to single processors. Networks

of cooperating special-purpose and general-purpose processors will be

used to construct high-performance, special-purpose systems. Modern

microprocessors and anticipated microprocessor developments enhance

this approach when tasks are essentially composed of independent,

101

V.J



concurrent or sequential parts. Simulation and prototype performance

measurement can help to determine the required capacities of each

stage's components. A stage can be implemented by a special-purpose

processor or by a general-purpose microprocessor, depending on the

capability required.

Microcomputer networks can be used to reduce or increase redun-

dancy among several, otherwise independent embedded systems. Intel-
ligent peripherals (e.g. peripherals controlled by microprocessors)
can be shared among network users to reduce redundancy, or can be

used as back-ups for local peripherals to increase redundancy and

survivability, as desired. Standard (hardware and software) local

network interfaces need to be carefully studied, and the requisite

operating system functions incorporated into each network host.

Different combinations of software, firmware, and hardware in

single processors or in multi-processor networks can satisfy a wide

range of performance and size requirements. To the extent that stan-

dard microprocessors or special-purpose processors can be used, the

need to program and support a variety of computer systems can be

reduced. Networks can also reduce system cost and size by allowing

functions to be shared among independent systems.

Some Relevant Research and Products

Techniques for locating hardware and software bottlenecks are

well known; work on high-level microprogramming languages and VLSI

compilers is intense; development and standardization of local net-

works and communication protocols is proceeding rapidly; and R&D pro-

jects to build prototype special-purpose multi-microprocessor systems

are underway.

A number of research projects are currently underway. There

have been several studies of possible uses for sixteen-bit and

102

4



thirty-two bit microprocessors in computer networks. The California

Institute of Technology has developed a "silicon compiler" that gen-

erates chip layouts from functional descriptions, allowing special-

ized chips to be built rapidly. The MITRE Corporation has a project

to construct a secure packet switch using multiple, identical, pipe-

lined microprocessors; and IBM has reported on

hardware/firmware/software trade-offs in the design of their 4300

series processors. A bus interface standard exists in Mil-Std 1750.

References

Berglass, G., C. Hisgen, and E. Siegel, Multi-Microprocessor Designs

for a Secure Packet Switch, MITRE Corp., McLean, VA, tech. report

MTR-81W00086, Apr. 1981.

Chu, W. W. "Special Issue on Distributed Processing Systems." IEEE

Trans. Computers vol. C-29, no. 12 (Dec. 1980), pp. 1037-1163.

Kleinsteiber, J. "IBM 4341 Hardware/Microcode Tradeoffs." In

Proceedings: The 13th Annual Microcomputer Workshop. Los Alamitos,

CA: IEEE Computer Society, 1980.

Mason, J. F. "VLSI Goes to School." IEEE Spectrum vol. 17, no. 11

(November 1980), pp. 48-52.

Van Dam, A., and J. Stankovic, eds. "Special Issue on Distributed

Processing." Computer vol. 11, no. 1 (Jan. 1978), pp. 11-57.

103

44



A.1.4.6 Suitable Communication Interconnection.

Description

A variety of physical and logical communications methods are in

use. For example, there are minicomputer buses, local networks, and

long distance networks, as well as semaphores, monitors, and rendez-

vous mechanisms. An overall theory is needed to provide a means for

selecting, constructing, and modifying communication interconnec-

tions.

The Internet Protocol (IP) at the frame level and the Transmis-

sion Control Protocol (TCP) at the packet level are the DoD standard

low-level protocols. Higher-level protocols need to be defined and

standardized so that disparate devices and independently written

applications can communicate. When these efforts are successful,

hosts, and users having terminals with different capabilities, will

be able to communicate. (This will simplify the procurement of dif-

ferent types of terminals.) Applications will be able to receive data

from other, unknown applications and transfer data to them. This

will facilitate the construction of software from standard com-

ponents.

To realize the full benefits of computer networks, devices,

applications, terminals, and users must be able to communicate with

one another. Efforts in this area will build on the standard Inter-

net and TCP protocols to define and implement virtual terminal proto-

cols, file transfer protocols, and command language protocols.

A virtual terminal protocol (VTP) is a mechanism through which a
logical terminal communicates with another logical terminal, an

operating system, or an application. A logical terminal can be an

interface between a virtual terminal and a class of physical termi-

104



nals, or it can be an interface between a virtual terminal and an

application's conception of a physical terminal. A VTP uses an

abstraction of a real terminal, called a virtual terminal, which has

a well-defined architecture, character set, and function repertoire.

Logical terminals map the characteristics of physical terminals to

and from the virtual terminal architecture, using the VTP. With this

approach, each device needs to communicate with only one other device

(i.e. the virtual terminal) to be able to communicate with all other

devices in the system.

One approach to inter-application communication is via file

transfer. This approach has been implemented successfully in the

UNIX operating system on an elementary level. Complicated issues

involving character set and file format transformations need to be

addressed. If standard components are written to take their input

from files of specified structure and put their output onto files of

specified structure, a standard file transfer protocol will facili-

tate the combination and recombination of these components in new

applications. Standards organizations are interested in this topic

but have not defined the problems.

A common command language protocol would facilitate the transfer

of applications and human workers between systems. A user would only

need to know one command language, mapped by the common protocol into

a virtual command language, which the receiver would map into its

command language. Command languages are substantial obstacles to the

transfer of programs and programmers between different systems.

The computer system of the future will be a local network tied

into a larger network. Processes (i.e. users or applications) will

be able to "advertise" for resources in the network, compare bids,

and accept the best from a resource of appropriate capability with

the spare capacity.

105

9. I : I Ti ' ' . ' . . .



There will be a number of benefits in all phase of the life-

cycle. Increasing devices" abilities to communicate at high levels

will reduce the amount of software that needs to be rewritten for

different environments; virtual terminal protocols will simplify

terminal-to-terminal communication and terminal-to-host communica-

tion; file transfer protocols are one way to achieve the capability

for standard software components; and a command language protocol

will simplify the transfer of persons and applications to new

environments. There is general agreement on the need for these

higher level protocols, if not on the specifics. It will be many

years before standards can be defined, but it may be easier to accom-

plish something in the more controlled, more narrowly defined, world

of embedded systems, than in the international information processing

world. Once standards are defined, if they are good enough, the

potential cost and productivity benefits are great.

Some Relevant Research and Products

Some research has been done on virtual terminal protocols, but

it is premature to look for products. Most efforts are under the

aegis of the International Standards Organization (ISO) and the Amer-

ican National Standards Institute (ANSI).

References

Green, P. E. Jr. "Special Issue on Computer Network Architectures

and Protocols," IEEE Trans. Communications vol. COM-28, no. 4 (April,

1980).

Hill, I. D., and B. L. Meek, eds. Programming Language Standardisa-

tion. Chichester, U.K.: John Wiley & Sons, 1980 (particularly

Chapter 11, "Operating Systems Command Languages").

106



Kahn, R. E., ed. "Special Issue on Packet Communication Networks."

Proceedinits of the IEEE vol. 66, no. 11 (November, 1978).

107



A.1.5 Programmini

A.1.5.1 Transform Software to Improve Quality.

Description

Given a useful set of software quality metrics, transformations

could be performed on existing software to improve the qualities

measured. This would be useful for reliability and maintainability

characteristics enhancement.

Algorithms and heuristics intended to improve the structure of

code or to turn unstructured programs into structured programs have

been suggested; these are known as structuring engines. In addition,

transformation methods have been published that transform recursive

programs into iterative ones and vice versa, and improve program

robustness to prevent abnormal termination.

Human intervention will be needed in the quality improvement

process. Bad errors probably cannot be handled by the transformation

process, and real-world information may have to be supplied. For

example, naming new modules constructed by the transformation process

can be done more readily by humans than by machines.

Existing systems might save much of their maintainance costs

through the use of a transformation tool. However, the cost to apply

the tool, particularly the first time, may be substantial. In any

case, such a tool will probably only apply to a few widely used

high-order languages.

The tool could be useful in training and education, by showing

how programs might be improved.

108



7 7

Moderate cost savings are anticipated, primarily in the opera-

tions phase of the life cycle with some benefit in the development

phase. There are two major R&D difficulties: lack of good metrics

and lack of a good library of transformations.

Some Relevant Research and Products.

Software metrics is an active area of research, and many metrics

currently exist. What is needed is a comprehensive framework for

metrics and a consensus on their relative merits.

Transformations research is active, but most of it is focused on

program speed or memory usage optimization. Transformations to

improve the structure of programs have been suggested, however. In

their book Structured Programmina, Linger, Mills, and Witt describe

an approach for breaking apart a program into prime subprograms that

then may be transformed.

Remarks on Rationale

If the quality of existing implementations could be signifi-

cantly improved, either automatically or through a highly productive

man/machine team, then very substantial cost and reliability benefits

could accrue. The potential for applying the results of this thrust

to existing systems, thereby reducing high maintenance costs, is a

big plus.

References

Balzer, R., and T. E. Cheatham, Jr. "Special Section on Program

Transformations." Trans. Software Enar. vol. SE-7, no. I (Jan.

1981), pp. 1-39.

109



Basili, V. R., ed. Models and Metrics for Software Manarement and

Enstineerinst. Los Alamitos, CA: IEEE Computer Society, 1980.

Kernighan, B. W., and P. J. Plauger. The Elements of Proixrammina

Style. 2nd ed. New York: McGraw Hill, 1978.

Perlis, A. J., F. G. Sayward, and M. Shaw, eds. Draft Software

Metrics Panel Final Report: Papers Presented at the 30 June 1980

Meetina on Software Metrics, Washington, D.. C. Yale University, New

,o. Haven, research report 182/80, June 1980.

110



A.1.5.2 Formal Verification of Large Systems.

Description

Areas related to this activity have been investigated for more

than a decade, but the application of the results to large systems

has been limited. Formal verification of large systems is a series

of transformations beginning with specification, proceeding through

design and implementation (coding), and resulting in assurance that

the implementation corresponds to its specification. This does not

indicate that the system is "correct," or that it will never fail, or

that it will never produce incorrect output. Questions concerning

compiler and hardware/firmware validation are excluded from this

thrust.

When reasonably mature, this would be an important technology

because it would be known (with high probability) that the implemen-

tation was at least consistent with the stated requirements as embo-

died in the specification. As ancillary benefits, the methodologies

being developed appear to be leading towards the creation of

integrated design and implementation tools and towards the develop-

ment of automated techniques to point up various deficiencies and

omissions in specifications. Furthermore, it may be expected that

improvements in documentation and reliability will result along with

some reduction in maintenance complexity and expenditures.

Moderate cost savings are expected in the requirements and

development phases of the lifecycle, with larger benefits in the

operations phase.

$111

i'~



Some Relevant Research

Many projects are documented in the open literature. The DoD

Computer Security Seminar of November, 1980, provides a good measure

of the state of the art. The focus of the seminar was on "trusted"

systems; this thrust differs from large system verification only in

that certain "security" constraints are added. The three days of

presentations showed that the problems are exceptionally difficult,

that the work has not progressed rapidly, and that large system

verification is far from realization.

Remarks on Rationale

Testing can only find errors, it cannot prove their absence.

Formal verification proves error absence, albeit in the limited sense

of agreement with specifications within an idealized environment.

Formal verification activities are key generators of increased under-

standing and new techniques. Even though formal verification of

large systems is not yet possible, semi-formal methods derived from

this work may be useful.

The DoD Security Initiative is active in this area; this thrust

will provide additional support for reasons other than security.

References

ACM. "Workshop on Formal Verification." ACM Software Engineerinm

Notes vol. 5, no. 3 (July 1980), pp. 4-47.

Cheheyl, M. H., M. Gasser, G. A. Huff, J. K. Millen. Secure System

Specification and Verification: Survey of Methodologies. MITRE

Corp., Bedford, HA, tech. report MTR-3904, Feb. 1980.

Kreig-Bruckner, B. and D. C. Luckham. "ANNA: Towards a Language for

Annotating Ada Programs." ACM Sigplan Notices vol. 15, no. 11

112



(November 1980), pp. 128-138.

Linger, R. C., etal. Structured Programmuing: Theory a&nd Practice.

Cambridge, MA: Addison-Wesley, 1979.

Yeh, R. T., ed. Current Trends in Programming Methodology. vol. 2.

Englewood Cliffs, NJ: Prentice-Hall, 1977.

113



A.1.6 Testina

A.l.6.1 High-Confidence Software Testing.

Description

Despite the increased importance and use of other software

verification and validation (V&V) techniques, testing is and will

remain for a considerable time an important part of V&V activities.

Methodologies leading to high confidence through testing are impor-

tant. It would be useful to know quantitatively what level of confi-

dence is proper both for new systems and for existing systems that

have been modified. The keys to this problem are test data genera-

tion methodologies, reviews of large volumes of output for correct-

ness, and the development of an understanding of probabilities

applied to software testing and reliability. This thrust is aimed at

"correctness" and performance, with the goal of producing justifiably

high confidence in software.

Various measures of coverage (i.e. fraction exercised) related

to underlying domains (such as input data, program code, function

types performed, classes of output, potential interactions, require-

ments, and past errors in similar products) are available for sys-

tematically constructing tests and quantifying the results. Avail-

able theory' concerning the amount and type of test data needed to

verify some software functions exists and could be developed to cover

others. The objectives of improved quantitative coverage measures

and the development of a set of testing theories for individual func-

tions covering much of the relevant software provide fruitful areas

for R&D.

114



These or other systematic approaches to testing that result in

high or quantifiable levels of confidence will impact software qual-

ity and allow better planning and management of testing. A method of

high confidence testing will provide a rational basis for the testing

aspect of the government's acceptance decisions for contractor-

produced software, thereby benefiting the entire relationship.

The developed methodology could also result in tools, e.g. out-

put comparers/scorers, and test data generated automatically from

requirements and designs.

There is potential for improvement from accurate knowledge of

the level of risk involved in the use of software. Improvements are

also possible in the planning, management, and process of testing.

Reflecting the importance of testing, the expected savings are

moderate for both new and existing systems.

Some Relevant Research/Products

Code coverage measurement tools, called profilers, are avail-

able, and some are included in commercial compilers; for example, IBM

360/370 OS/VS COBOL. Other coverage methods and measurements have

been developed.

Theories for test data to test linear comparison relations,

linear transformations, and sorts have recently been developed. The

mutation approach (systematic perturbation of code to see if test

data reveals the change) has led to progress in developing test data

patterns that reveal likely errors. Information has been collected

on comson errors in some data processing functions.

The concepts of testing to violate assertions and redundant

software could prove fruitful.

115

t
'S



Remarks on Rationale

A number of recent developments in testing allowing systematic

and rigorous approaches make this a promising area. Testing is an

existing activity in which improvement should be fairly readily

accepted.

References

Chandrasekaran, B., ed. "Special Collections from Workshop on

Software Testing and Test Documentation, 1978." IEEE Trans. Software

Eng. vol. SE-6, no. 3 (May 1980), pp. 233-290.

Deutsch, M. S. "Tutorial Series 7: Software Project Verification &

Validation." Computer vol. 14, no. 4 (Apr. 1981), pp. 54-70.

Howden, W. E. "Completeness Criteria for Testing Elementary Program

Functions." In Fifth International Conference on Software Engineer-

in, pp. 235-243. Los Alamitos, CA: IEEE Computer Society, 1981.

Miller, E., ed. "Special Issue on Software Quality Assurance." Com-

puter vol. 12, no. 8 (Aug. 1979), pp. 7-42.

Miller, E., et al. "Workshop Report: Software Testing and Test Docu-

mentation." Computer vol. 12, no. 3 (Mar. 1979), pp. 98-107.

Miller, E., and W. E. Howden, eds. Tutorial: Software Testing and
Validation Techniques. Los Alamitos, CA: IEEE Computer Society,

1978.

Myers, G. J. "A Controlled Experiment in Program Testing and Code

Walkthroughs / Inspections." Commun. ACM vol. 21, no. 9 (Sept. 1978),

pp. 760-768.

Myers, G. J. The Art of Software Testing. New York: Wiley-

Interscience, 1979.

116



A.1.7 Operations

A.1.7.1 Facilitating System Evolution.

Description

Much of the software of intcrest to DoD is within evolving

long-lived, large systems. Planning for and handling changes

throughout a system's evolution will be difficult, requiring provi-

sions for known future changes as well as for unexpected changes.

Much work remains to be done to facilitate the evolution of

large systems. Research usually focuses on one facet of the total

problem, thereby failing to uncover results that could aid the entire

lifecycle. The goal of this thrust is to examine the entire life of

software.

Research is needed on: the environment in which software sys-

tems exist; the ways in which the need for changes becomes evident;

the methods by which changes are, and should be, proposed, evaluated,

implemented, tested, and accepted into the system; and the relation-

ship between software and the hardware on which it operates. Longi-

tudinal studies following large systems throughout their lives and

intensive studies of the human factors involved in system design and

maintenance will be needed.

WModerate cost benefits will accrue in the operations phase of

the lifecycle due to improvements in handling system changes, as a

result of this thrust. Some minor cost benefits will probably also

appear in the development phase. This thrust could also benefit

existing systems, although it is not clear to what extent the results

would be readily applicable.

117

1.'



Some Relevant Research and Products

Software maintenance is just beginning to receive serious

research attention, despite the large sums being spent on it. The

Navy Research Laboratory has an experiment underway Lo redo the

avionics software requirements and design for the A-7 t, erhasize

the capability for ease of change. While ease of moditicaLiiln s- one

frequently stated motivation for many modern software techniques,

actual research on modification is almost nonexistent. Th -ain

tools in use are aimed at software configuration maintenance and con-

trol.

Remarks on Rationale

Ongoing, broadly-based research on the evolution of large sys-

tems is needed now and will be needed in the future as systems and

system design methods continue to evolve. As it is quite difficult

to perform accurate retrospective studies, research is needed to

examine the evolution of systems currently under development, efforts

that must continue over the many years of data collection that will

be needed. The work must start now to build the data base that

future researchers will depend on in their search for ways to obtain

major improvements in the field of software engineering.

References

Donahoo, J. D., and D. Swearingen. A Review of Software Maintenance

Technoloay. Rome Air Development Center, Griffiss AFB, NY, tech.

report RADC-TR-80-13, Feb. 1980.

Henniger, K. L. "Specifying Software Requirements for Complex Sys-

tems: New Techniques and Their Applications." IEEE Trans. Software

118



Enst. vol. SE-6, no. I (Jan. 1980), pp. 2-13.

Lientz, B. P., and E. B. Swanson. Software Maintena-nce Hanaltement.

Reading, MA: Addison Wesley, 1980.

119



A.1.7.2 Impact Analysis of Proposed Change.

Description

Given that a certain (software, hardware, operating system)

modification is to be made, then an automated answer is needed to

establish what will require changing or investigation for potential

change. This voul, include not only code but all aspects, including

documentation, requirements, test data, and personnel.

Sometimes "minor" system changes are made that result in major

headaches or system failure; at other times "major" changes are not

made, because of the fear of such headaches, when the change would

actually be small and safe. What is needed is an automated method

for determining the ramifications of a proposed change within a

software system. Static examination of code modules could reveal the

effects of changes to code elements and module structures. Current

impact analysis practices are generally poor, usually depending on

the judgment of a programmer with no time to track down all of the

necessary changes, or unaware of some of them.

Impact analysis is critical, however, if management is to con-

trol the update and maintenance process. Calculation of cost/benefit

factors depends on accurate determination of the costs; accurate cost

determinations are difficult to make manually when many proposed

changes must be examined.

This research would attempt to determine the best methods for

performing an automated impact analysis and the scope that such an

analysis should have if it is to be practical. It would also define

the data needed from other systems in the integrated software support

environment.

120

4 , ' I - I " I i - ' X . . .. ''- - = : - -' - .. . . ..



Major benefits will accrue from the development of a dependable

automated impact analysis mechanism. It will become easier to

predict the effort involved in making changes to system code, because

the estimator will have better knowledge of the changes to be made.

The probability of incorrect or incomplete alterations will be

reduced, and the efficiency of the programmer making the changes will

be higher. The productivity of maintenance programmers will increase

markedly. Estimates of task sizes will be made more accurately, more

completely, and in less time. Moderate cost savings will result from

implementation of a system designed to examine high-level language

modules.

Some Relevant Research and Products

Software Research Associates of San Francisco, California, mark-

ets an Interactive Semantic Update System (ISUS) for FORTRAN that

performs static analysis of changes to FORTRAN code.

References

Software Research Associates. Examples of Interactive Semantic

Update System (ISUS) Use. Technical Note TN-749/2, March, 1981.

Weiser, M. "Program Slicing." In Fifth International Conference on

Software Engineering, pp. 439-449. Los Alamitos, CA: IEEE Computer

Society, 1981. Yau, S. S. Self-Metric Software. 3 vols. Rome Air

Development Center, Griffiss AFB, NY, tech. report RADC-TR-80-138,

Apr. 1980. (NTIS accession nos. AD-A086 290 thru 292.)

Yau, S. S., and J. S. Collofello. Performance Ripple Effect Analysis

for Large-Scale Software Maintenance. Rome Air Development Center,

Griffiss AFB, NY, tech report RADC-TR-80-55, Mar. 1980. (NTIS acces-

sion no. AD-A084 351.)

121



Yau. S. S., and J. S. Collofello. "Some Stability Measures for

Software Maintenance." IEEE Trans. Software Eng. vol. SE-6, no. 6

(Nov. 1980), pp. 545-552.

l.

122



A.2 Manaierial

A.2.1 Acquisition Manager's Support System

Description

The specification and acquisition of software is complicated,

requiring technical, contractual, and managerial skills. A

knowledge-based acquisition system will provide the breadth of

knowledge required, as well as additional assistance, review, and

discipline. Contracting officers, their technical representatives,

weapons systems program managers, and software subsystem managers

would benefit from this assistance.

A mar ger's support system should cover the full acquisition

process from the initial problem statement and request for proposals

(RFP) through the software system lifecycle. The acquisition manager

must be familiar with existing as well as proposed DoD, Federal, and

particular service or agency procurement and lifecycle regulations,

directives, instructions and circulars. The thrust on improving the

acquisition process (making it more consistent with the realities of

software) should help this effort.

The manager's support system would enable the manager to request

complete documentation or specific information. The system should

help the manager: 1) formulate a technical statement of work for a

proposal based on a problem statement, 2) monitor the RFP process, 3)

evaluate proposals for meeting technical, cost, personnel and manage-

ment requirements, and 4) monitor the status and progress of the

123

I"I



contractor's activities for the lifecycle of the system being

acquired.

Knowledge-based system techniques could be applied to develop

the data bases and procedures required to demonstrate this support

system. The initial support system could be evaluated by use in a

DoD agency before propagation throughout DoD.

A major benefit of this support system would be to improve the

performance of acquisition management and contracting. Another major

benefit would be to decrease the acquistion process time, and there-

fore, to shorten the time from problem statement formulation to con-

tractor selection and actual software system operational use. The

net estimated expected savings is moderate to high.

Some Relevant Research and Products

Using the results of the thrust on improving the acqusition pro-

cess, government documentation, and knowledge of past procedures to

modify or redesign techniques and procedures for the acquisition pro-

cess will require considerable insight and creativity. Few new tech-

nological breakthroughs are required although results of ongoing

developments in software cost estimating requirements and specifica-

tion languages would be benefical. This R&D effort may also result

in fusion with management tools with which an acquisition manager

should be knowledgeable.

Remarks on Rationale

Comments are usually made that it requires years from the time a

problem is stated before a contractor is selected to work on a pro-

posed solution. Also, estimates of cost and time required to develop

a proposed solution are usually low. The acquisition manager should

have a support system that will decrease the time required for

124

7.t!



contracting (recognizing that the decision process may still take

considerable time, because of the number of people involved) and pro-

vide more accurate estimates of cost and time for the acquisition

process.

References

Digman, L. A., and G. I. Green. "A Framework for Evaluating Network

Planning and Control Techniques." Research Management (Jan. 1981),

pp. 10-17.

Jones, V. E., chairman. Final Report of the Software Acquisition and

Development Working Group. Washington, DC: ASD for C31, July 1980.

Logicon Technical Staff. Management Guide to Avionics Software

Acquisition. 4 vols. Aeronautical Systems Division, Wright-

Patterson AFB, O, tech. report ASD-TR-76-11, June 1976. (NTIS

accession nos. AD-A030 591 thru 594.)

McCosh, A. M., and H. S. Scott-Morton. Management Decision Support

Systems. New York: Wiley, Halstead Press, 1978.

Merwin, R. E., ed. "Special Section on Software Management." IEEE

Trans. Software Eng. vol. 4, no. 4 (July 1978), pp. 307-361.

Mish, R. K. Software Acquisition Management Guidebook: Series Over-

view. Electronic Systems Division, Hanscom AFB, MA, tech. report

ESD-TR-78-141, March 1978. (NTIS accession no. AD-A055 575.)

Nunes, S. E. "Engineering Management in Government Contract Work."

Computer vol. 14, no. 2 (Feb. 1981), pp. 86-87.

Putnam, L. H., ed. Tutorial: Software Cost Estimating and Lifecvcle

Control. Los Alamitos, CA: IEEE Computer Society, 1980.

Thayer, R. N., A. Pyster, and R. C. Wood. "The Challenge of Software

7
125

I,



Engineering Project Management." Computer vol. 13, no. 8 (Aug. 1980),

pp. 51-59.

Winston, P. M. Artificial Intelligence. Menlo Park, CA: Addison

Wesley, 1977.

SAE Guidebooks - Avvlication and Use, ASD USAF, Wright-Patterson AFB,

Ohio, ASD-TR-80-5028, 1980.

I

126

V.4



A.2.2 Software Technology-Compatible Acquisition

Description

While progress has been made in DoD's ability to contract for

software, a number of technological truths concerning software are

not always reflected in the acquisition process.

Many technical attributes of software and its development/

maintenance have potential impact on and implications for the DoD

acquisition process. These attributes include (but are not limited

to): (1) small, elite programmer teams can produce more than large,

mediocre teams; (2) correct requirements are difficult to establish

initially, resulting in significant risk plus much "development" per-

formed as maintenance; (3) changes usually are frequent; (4) simpli-

city, elegance, and rigor are essential; (5) software is often the

highest risk in a new system; and (6) the same software may have many

representations (source code, object code, design documentation,

users' manual, etc.) and may exist in several versions (releases,

configuration dependencies, and different "fixes" applied).

The relevant aspects of software need to be identified, and

alternative approaches to acquisition need to be generated and

evaluated in this light. Pilot efforts at procurement will be con-

ducted to explore and validate approaches. Publication of model con-

tracts will spread the developed practices.

Potential for improvement exists in the decreased frequency and

importance of surprises and in the reduction of conflict among the

organizations and persons involved. Improvement should also occur in

the utility and maintainability of the systems produced. The poten-

tial cost savings over the lifecycle would be large if the effect of

127

f _77-



such an acquisition process were to cause program managers and con-

tractors to follow its guidelines faithfully. The chance of R&D suc-

cess is high. The technology transfer percentage is fair, and the

net estimated expected savings is low to moderate.

Some Research Results or Products

Software contracts in the commercial sector also have a mixed

record; however, lessons can be learned from the better practition-

ers. Non-contractual relationships that successful in-house software

shops have with their users/buyers also provide clues to a successful

acquisition methodology.

Many technological truths are known concerning software. Using

these truths as a basis for modification (redesign) of the

procurement/contracting process will require insight and creativity.

Few new technological breakthroughs are needed, though progress in

areas such as software metrics would clearly be beneficial. The

recent C31 working group on software development and acquisition con-

centrated its recommendations on acquisition contracting issues.

Remarks on Rationale

It is not unusual to hear remarks such as, "We know how to build

software; we just do not know how to buy it." While the first part of
the remark may be questionable, the second appears to be true. As we

learn how to build and maintain software, our acquisition process

should change to facilitate good practices.

12



References

Glass, R. L. "The Importance of the Individual." ACM Software

Enaineering Notes vol. 5, no. 3 (July 1980), pp. 48-50.

Jones, V. E., chairman. Final Report of the Software Acquisition and

Development Working Group. Washington, DC: ASD for C31, July 1980.

Mish, R. K. Software Acquisition Management Guidebook: Series Over-

view. Electronic Systems Division, Hanscom AFB, MA, tech. report

ESD-TR-78-141, March 1978. (NTIS accession no. AD-A055 575.)

Myers, W. "A Statistical Approach to Scheduling Software Develop-

ment." Computer vol. 11, no. 12 (Dec. 1978), pp. 23-35.

Scharer, L. "Pinpointing Requirements." Datamation vol. 27, no. 4

(Apr. 1981), pp. 139-151.

Walston, C. E., and C. P. Felix. "A Method of Programming Measurement

and Estimation." IBM Systems Journal vol. 16, no. 1 (1977), pp. 54-

73.

SAE Guidebooks - Application and Use, ASD USAF, Wright-Patterson AFB,

Ohio, ASD-TR-80-5028, 1980.

12

129



A.2.3 Technology Transfer in the Software Area

Description

Improved practices often exist in research efforts and industry

before they are used widely within the DoD community. When DoD's

practices move closer to and remain near the state of the art in

software technology, performance will be significantly upgraded.

Areas with good technology transfer in DoD should be examined,

and barriers to software technology transfer identified. Strategies

and mechanisms for locating new technology, evaluating it, and

transferring it appropriately must be developed, tried out, and

improved until they function satisfactorily. Strategies will address

such issues as how to identify technologies worthy of transfer, how

much to spend on implementing transfer, who must be

informed/influenced in order to have certain types of technology suc-

cessfully adopted, and how to evaluate and improve the technology

transfer effort itself.

Mechanisms for communicating and training need to be addressed.

More widespread use of newsletters, technique monographs, audiovisual

courses, correspondence courses, schools/training centers, and trav-

eling seminars focused on dissemination of advanced software technol-

ogy will be helpful.

While good technology transfer is a prerequisite for success by

all the other STI thrusts, the benefits estimated here are only for

transfer of technology already in existence. Net savings will be

moderate to high.

130

F,



Some Relevant Research and Products

Technology transfer studies and efforts have been performed for

DoD on other topics. Because of the rapid pace of technological

innovation, most of the software industry has problems similar to

those of DoD. Many courses, both live and recorded, already exist.

In addition, the educational establishment continues to produce some

relevant textbooks and courses. Some of the work on technology

transfer export restriction may also be relevant.

Remarks on Rationale

Technology not deployed and utilized has little value. The

rapid transfer of R&D results into use can provide a significant

improvement in performance.

Good software technology transfer would provide relatively inex-

pensive benefits. In addition, effective technology transfer is

essential for realizing the full benefit of the STI and of other

sponsored R&D.

References

Auerbach Publishers. Auerbach Information Management Series.

Pennsauken NJ: Auerbach.

COMTEC-2000 Study Group. Computer Technology Forecast and Weapon

Systems Impact Study (COMTEC-2000). 3 vols. HQ Air Force Systems

Command, Washington, DC, tech. report 78-03, Dec. 1978 - July 1979,

vol. 3, ch. 6 ("Technology Exploitation Time Lag").

Goodman, S. E., chairman, N. S. Glick, W. K. McHenry, et al.

Software Technology Transfer and Export Control. Arlington, VA:

131



Institute for Defense Analysis, July 31, 1980.

Martens, J., and L. Duvall. "The Role of an Information Analysis

Center in Software Engineering Technology Transfer." In 1980 National

Computer Conference, AFIPS Conference Proceedings, vol. 49, pp. 677-

682. Arlington, VA: AFIPS Press, 1980.

Squires, S., chairman. DoD Workshop on Software Technology, 15-16

Mav 1980, Fort Belvoir, VA: OUSDRE, 1980.

I0

132

Vl i



A.3 Personnel-Related

A.3.1 Superperformer Competencies

Description

A better understanding of the traits and behavior of individuals

who are superperformers, i.e. those who are recognized as being an

order of magnitude better than others in some aspect of software

development and maintenance, is sorely needed. Research has shown

great variation among the achievement rates of similarly-trained

software technicians. High achievers and comparable sets of average

and possibly low achievers should be studied through intensive inter-

views and other techniques to identify causative behaviors and

characteristics. Such understanding will help to select or assign

individuals to software speciaties.

Research and development can then be directed at the transfer of

these behaviors and characteristics to others. Some of these

behaviors may already be taught in the better academic programs, but

may be scarce in the pool of practitioners. Experiments will be con-

ducted on the success of transferring behaviors by formal training or

other educational methods.

The following questions will need to be answered. Can the

behaviors and characteristics be transferred? If so, how can this

best be accomplished? Once transferred, do these acquired behaviors

and characteristics result in the expected improvements in produc-

tivity?

133



Effective and usable technology transfer/training packages need

to be developed for the various software technician and management

roles and levels. These might be utilized in intensive advanced

training for programmers or in other DoD training and professional

development efforts.

This thrust is related to the improvement of technology

transfer, which aims at introducing and disseminating the best indus-

try practices. The potential benefits are enormous and potentially

span most of the significant issues in software; however, it would be

unrealistic to expect an across-the-board substantial improvement.

Areas with heavy user/buyer involvement might be less impacted.

The chance of research success is hard to judge. Even if some

abilities are hard to identify and transfer, others probably will be

reasonably easy.

While technology transfer penetration percentage will depend, in

part, on the mechanisms used and the funds expended, it is expected

that in the end the percentage will be fairly high. If 10% of the

staff were to become ten times better, then they would approach the

performance of the entire prior staff. This may take some time, how-

ever, since the synergistic effect of better people building better

software, which is then easier for skilled people to maintain, will

require a number of years to propagate throughout DoD. Original

development as well as maintenance changes should occur more rapidly

once this capability is achieved. The smaller number of software

professionals required should also ease planning and control diffi-

culties.

134

lip



Some Relevant Research and Products

Robert Glass surveyed studies showing large individual differ-

ences and proposed such a thrust as this. Psychologists have studied

a number of occupations/positions using the comparison of good and

mediocre performers to derive competencies that can be taught. For

example, MacBer has done a number of such studies for the Navy.

Unfortunately little rigorous validation of the success of any of

these efforts has been done.

Remarks on Rationale

This is one of the few areas where research results show order-

of-magnitude differences to be exploited. The potential benefit

greatly exceeds the limited investment required.

References

Computing Trends. A Summary of Capabilities and Experience. Seat-

tle, WA: 30 July 1980.

Glass, R. L. "The Importance of the Individual." ACM Software

Engineering Notes vol. 5, no. 3 (July 1980), pp. 48-50.

Goldman, D. "The New Competency Test: Matching the Right People to

the Right Job." Psycholozy Today Jan. 1981, pp. 34ff.

Mazlack, L. J. "Identifying Potential to Acquire Programming Skill."

Commun. ACM vol. 23, no. I (Jan. 1980), pp. 14-16.

135

74



A.3.2 Intensive Advanced Programmer Training

Description

A training process that transforms moderately inexperienced pro-

grammers into experts will greatly improve productivity and quality

in software. As in Army ranger training, indoctrination, training,

and realistic exercises are needed to establish a capability for

modern programming.

Because of the rapid obsolescence of computer knowledge, it is

difficult for a programmer or analyst to build up a body of current,

relevant knowledge. Most of what he knows is quickly outdated, and a

single individual rarely has knowledge of many relevant projects from

start to finish. College courses are necessary to form a knowledge

base, but they cannot provide sufficient experience for the real

world of large, military systems.

After a programmer or analyst has gained real-world knowledge,

it will be useful for him to participate in an advanced training pro-

gram. The training would not necessarily take place in classrooms;

it could be conducted through a national network such as the ARPANET

t or AUTODIN II. Assignments could be presented and worked on, and

small programming teams could interact over the network.

The courses would be directed toward military, real-time prob-

lems, and will enable the students to interact and use one another's

experiences as resources. The use of realistic exercises will enable

the students to learn through experience.

This effort would design courses for important areas and evalua-

tion methods to measure the effectiveness of such courses.

136

:- = -Z -.



Major benefits could accrue to DoD through establishment of an

advanced series of courses of proven value. Better training should

directly impact productivity.

Some Relevant Research and Products

Intensive "summer" schools like those given at MIT and the

University of California at Santa Cruz are good models. NATO-

sponsored summer schools on software and the Naval Research Labora-

tory summer courses on software engineering are also interesting

examples. Some educational efforts in private industry are relevant,

for example the IBM course described in the book by Jones. Related,

but on a less intense level, are new Master's degree programs in

software engineering. Examples of these are the programs offered by

the University of Seattle and the Wang Institute.

DoD has a substantial history of success with intensive training

in other subjects, e.g. Ranger training and pilot training. The

principles and techniques used are also relevant here.

Remarks on Rationale

Several companies have found in-house advanced training for pro-

grammers to be cost-effective. Because DoD has requirements that are

not taught in traditional computing courses (e.g. real-time opera-

tion, security and survivability, high criticality, and unusual

mathematical operations), specialized courses in these areas are

required.

137

a - -l



References

Chumura, L. J. et al. Software Engineering Principles. Washington,

DC: Naval Research Lab, July 1980. (NTIS accession no. AD-A087,997.)

Fasang, P. P., and D. C. Rine. "Computer Science and Engineering Cur-

ricula: the Bridge from Theory to Applications." Computer vol. 13,

no. 6 (June 1980), pp. 37-42.

Jones, C. B. Software Development: A Rigorous Approach. London:

Prentice-Hall, 1980.

Mulder, N. C., ed. "Special Supplement: Computer Science and

Engineering Education." Computer vol. 10, no. 12 (Dec. 1977), pp.

70-133.

Ramamoorthy, C. V. "Computer Science and Engineering Education."

IEEE Trans. Computers vol. C-25, no. 12 (Dec. 1976), pp. 1200-1206.

I-

IF,

V 138



I

A.3.3 Progtrammer Laboratory

Description

A laboratory to study how work is actually performed by software

practitioners (behavior, interactions, cognitive techniques) could

facilitate the development of tools and techniques leading to

increased productivity in software creation, use, and maintenance. A

central laboratory would be useful for researchers setting up experi-

mental software packages. Experiments in group dynamics and in the

influence of physical surroundings could be performed. The labora-

tory environment would also help to ensure that changes in worker

productivity are not due to uncontrolled, external events at remote

work locations. In addition, new techniques could be demonstrated

and instructors trained in new methods soon after the new methods are

validated and codified. Researchers would train the first group of

instructors, who would then leave to set up standard courses at their

own training centers.

The laboratory need not be restricted to one physical location;

part of the facilities could be a set of specialized software avail-

able on a nation-wide network. The accessibility of the software

would encourage its use in real-life situations, giving results to

complement those from isolated laboratory experiments.

The primary benefit of the programmer laboratory is that it will

support several other thrusts. The central laboratory will make the

researcher's job easier by providing equipment and staff when needed,

and it will encourage the interaction of researchers working on dif-

ferent tasks who might otherwise not meet. Benefits will accrue dur-

ing all phases of the lifecycle. The cost savings of a lab already

139



set up and usable by many different researchers will be considerable,

and the savings from a methodology developed by a number of research-

ers meeting the lab may be huge.

Some Relevant Research and Products

The University of Maryland, NASA, and Computer Sciences Corpora-

tion have an effort called the Software Engineering Laboratory under-

way at the Goddard Space Flight Center. This contractor software

shop is monitored as it carries out its normal operations. Much of

the data is collected from forms filled out by staff members who

report efforts expended on each project. Emphasis to date appears to

be on software costing and complexity models, and on metrics.

Psychological research in the software area is relatively new; a

summary of recent work is given by Schneiderman in his book Software

Psychology. Programming language features, stylistic differences,

and approaches to debugging have been studied. In more traditional

psychological/social science areas, environments (physical, social,

and management), personality, motivation, and group processes have

been studied for software personnel. The value of much of this work

is limited, either because students (and small projects) were the

subjects, or because industrial studies were inadequately controlled.

Remarks on Rationale

A number of other thrusts in the STI require the existence of a

programmer laboratory. Development of such a laboratory in a care-

fully controlled manner, will ensure that it will become a center for

a broad spectrum of research activities, bringing together diverse

tasks with related objectives.

140



References

Basili, V. R., M. V. Zelkowitz, F. E. McGarry, R. W. Reiter, jr., W.

F. Truszkowski, and D. L. Weiss. The Software Engineering Labora-

tory. University of Maryland Computer Science Center, College Park,

MD, tech. report TR-535, May 1977.

Black, R. K. E., R. P. Curnow, R. Katz, and M. D. Gray. BCS Software

Production Data. Rome Air Development Center, Griffiss AFB, NY,

tech. report RADC-TR-77-116, Mar. 1977. (NTIS accession no. AD-A039

852.)

Chrysler, E. "Some Basic Determinants of Computer Programming Pro-

ductivity." Commun. ACM vol. 21, no. 6 (June 1978), pp. 472-483.

Curtis, B. "Measurement and Experimentation in Software Engineer-

ing." Proceedings of the IEEE vol. 68, no. 9 (Sept. 1980), pp. 1144-

1157.

Green, T. R. G. "Programming as a Cognitive Activity." In Human

Interaction with Computers, H. T. Smith and T. R. G. Green, eds., pp.

271-320. London: Academic Press, 1980.

Myers, G. J. "A Controlled Experiment in Program Testing and Code

Walkthrough/Ir.spection." Commun. ACM vol. 21, no. 9 (Sept. 1978), pp.

760-768.

Schneiderman, B. Software Psychology: Human Factors in Computer and

Information Systems. Cambridge, MA: Winthrop, 1980.

Walston, C. E., and C. P. Felix. "A Method of Programming Measure-

ment and Estimation." IBM Systems Journal vol 16, no. 1 (1977), pp.

54-73.

141



A.3.4 Personnel Independence

Description

Within DoD, personnel changes more frequently than hardware;

therefore, there is greater need for personnel independence than for

configuration independence. Personnel independence can be aided by

completely capturing all relevant knowledge about software, and by

organizational and transitional strategies both to retain personnel

and to transfer responsibilities properly among them. The learnabil-

ity and understandability of software representations clearly have

impacts as well.

Throughout the lifecycle, provisions must be made to minimize

the impact of personnel changes. Ideally one should be able to

tolerate all potential changes in software personnel. The appropri-

ate level of independence and the techniques to achieve it are the

subjects of this activity.

This effort is related to: integrated software support environ-

ment, system dictionary/directory, software engineer's support sys-

tem, and other efforts helping to completely capture software so that

new personnel can learn about it.

The initial benefits will be in methods for reducing cost and

risk caused by loss of continuity. The principal benefits will

accrue during the operations phase of the lifecycle, but some will

also accrue during development. The total cost savings will be low

on the average; however, risks will be greatly reduced.

142



Some Relevant Research and Products

Some standards exist for documentation (DoD and FIPS), and

experience has been gained in their usefulness for personnel indepen-

dence. Some organizations practice a policy of always having at

least two people who are familiar with each element of a system.

Remarks on Rationale

The goal of personnel independence was suggested by the goal of

hardware independence.

References

Couger, D., and R. A. Zawacki. Motivating and Managing Computer Per-

sonnel. New York, NY, Wiley, 1980.

Data Management. "Turnover Seen as the Result, Not the Cause of Per-

formance Problems." Data Management vol. 19, no. 4 (April, 1981), p.

22.

McLaughlin, R. A.. "That Old Bugaboo, Turnover." Datamation vol. 25,

no. 11 (Oct. 1979), pp. 97-101.

Patterson, M. B. "Motivating Your Staff." Data Management vol. 19,

no. 4 (April, 1981), pp. 23-30.

'I1

, " 143

V.'



A.3.5 Improved Education About Software

Description

The production of software and software-intensive systems satis-

fying everyone's needs and expectations is only possible when there

is effective feedback between developers and concerned DoD personnel.

In order for technically untrained (in software) personnel to be

effective, they need to understand enough about software problems and

possibilities to ask the right questions and interact constructively.

More emphasis is needed in obtaining sufficient general knowledge

about the realities of software development to enable requirements

developers, specification writers, contract managers, and users to

interact effectively with one another and with software developers.

Better informed requirements writers will not demand unachiev-

able reliability or unnecessary performance. Knowledgeable specif-

iers will not demand the use of inappropriate hardware, software, or

procedures. Users who have been able to participate in the early

stages of a procurement will not see themselves as its victims.

This thrust will survey existing courses and training materials

related to computer (hardware and software) awareness training for

non-technical professionals, review DoD's needs in this area, and

then create a new, integrated set of courses and materials for DoD

use.

144



Some Relevant Research and Products

Material and seminars are available that give an introduction to

computing, but few teach how to interact vith systems and softvare

personnel within the context of systems development and maintenance.

Research is being done in the areas of organizational change and

interorganizational relations, but only a small part of the litera-

ture directly reports on changes caused by computerization.

References

Huse, E. F. Organization Development and Change. 2nd. ed. St.

Paul, MN, West Publishing Co., 1980.

Keen, P. G. W. "Information Systems and Organizational Change." Com-

mun. ACM vol. 24, no. 1 (Jan. 1981), pp. 24-33.

London, K. The People Side of Systems. London, Eng., McGraw-Hill,

1976.

Lucas, H. C. Why Information Systems Fail. New York, NY, Columbia

University Press, 1975.

Mumsford, E., and D. Henshall. A Participative Approach to Computer

Systems Design. New York, NY, Wiley, 1979.

145

PS, .. 4



A.3.6 User Prograumming

Description

Because highly skilled software personnel are scarce and expen-

sive, more software development and maintenance tasks should be

switched to users. Tasks that are switched must be easy to learn,

user-oriented, and have friendly interfaces and tools. Such tools

could also be used by low-skilled software personnel. This capabil-

ity could be particularly attractive to DoD in areas where require-

ments changes need to be implemented in the field, for example in

electronic warfare.

Examples of tools are specialized systems to permit users to

perform their own programming after only an hour or two of instruc-

tion. A number of query systems have been developed, as have appli-

cation program generators to produce customized software packages

from answers a user gives to a set of questions.

The prediction of likely changes (so that the capability to

accomplish them can be built into a system), automatic system changes

to reflect changes in user-oriented requirements statements, and an

intuitive "programming" interface (based on the principle of directly

manipulatable objects) are all questions to be addressed. In the

last of these, a graphic representation of a system might be

displayed, and then changed by someone touching items on the screen

to rearrange them.

Table- or data-driven systems changed by user-supplied control

data are steps towards user programming. Designs making "systems so

advanced that they are simple" often have facilities for user

146



changes, and the concept of "unplug one box, plug in another" could

be applied to software.

The principal benefit is the elimination of dependence on scarce

programmer resources. Other benefits include better understanding of

the requirements by the programmer/user and lessened dependence on

immediate availability of programmers. Cost savings may not be

large; however, this thrust will help alleviate programmer shortage

problems and will allow tasks to be undertaken that might otherwise

be impractical.

Some Relevant Research and Products

High level data base inquiry and reporting facilities are being

widely utilized by users to do their own programming. Of particular

interest are products, like Query by Example (IBM), with some infor-

mality in their user interfaces.

Products, such as statistical packages, which are aimed at par-

ticular classes of users, and which deal with users in their

language, have had considerable success in eliminating the need for

programmers.

References

Blasgen, H. W., et al. "System R: An Architectural Overview." IBM

Systems Journal vol. 20, no. 1 (1981), pp. 41-62.

Hammer, H., W. G. Howe, V. J. Kruskal, and I. Wladawsky. "A Very

High Level Programming Language for Data Processing Applications."

Commun. ACM vol. 20, no. 11 (Nov. 1977), pp. 832-840.

Martin, J. Application Development without Programmers. Carnforth,

Lancs., U.K.: Savant Institute, 1980.

147



Reisner, P. "Use of Psychological Experimentation as an Aid to

Development of a Query Language." IEEE Trans. Softvare !LL vol.

SE-3, uo. 3 (Kay 1977), pp. 218-229.

Shoor, R. "Query Users Seek Ease of Use." Comiutervorld vol. 15, no.

12 (23 March 1981), p. 1.

Zloof, M. M. "Query-by-Example: A Data Base Language." IBM Systems

Journal vol. 16, no. 4 (1977), pp. 324-343.

148



A.4 Continuity-Related

A.4.1 Voice Replaces Text

Description

Many software workers are poor writers with insufficient time to

produce good documentation; much software is developed and delivered

with inadequate documentation. Technology exists for recording and

reproducing voice, and tools exist for editing voice. In addition,

technology exists for visual displays to occur simultaneously with

voice reproduction.

Effective (if stylized) technology exists to turn text into

voice. Within the decade, technology will probably be developed to

turn voice into text; some industry observers predict commercial pro-

ducts by 1984. Initially such products will not attempt to under-

stand voice, but will display alternative texts matching the spoken

words, permitting the user to select among the alternatives.

Voice and documentation can be combined with a program text

display that would include a pointer (such as a cursor) or other

highlighting technique. Voice can also be used to augment a

program's written description. In addition, demonstrations of a sys-

tem in action can be accompanied by the author's spoken description.

The software's author can be interviewed using a structured interview

technique to ensure that all requisite points have been covered.

Voice can be used to input program code, and to record comments on

software maintenance changes. The problem of indexing voice refer-

ence documentation will need to be addressed.

149

149



A portion of documentation costs could be eliminated through

successful use of the results of this thrust. Most of the benefit

would occur in the operations phase of the lifecycle from better

documentation, although some would also appear in the development

phase.

Some Relevant Research and Products

Relevant efforts are in the development of audiovisual training

and in computer aided instruction systems that use voice. Voice edi-

tors have been developed, for example, in MITRE's TICCIT CAI system.

Some firms have recorded structured interviews with programmers

as the basis from which to write documentation. Technical writers

can perform the interviews and then listen to the tape, rewriting as

appropriate to develop the documentation. Rewriting is minimized by

conducting the interview in the same format as the required documen-

tation.

Remarks on Rationale

Most programmers appear to be better writers of programming

languages than of English. Yet, when two programmers sit down

together, one of whom knows the program and one of whom is learning

it, the conversation is reasonably successful. What can be done to

make the programmer's knowledge available even after he has left?

One solution is to have him write down all he knows, with or without

the assistance of a technical writer working from interviews with

him. Another could be to record what he has to say and keep it in

the original voice form. This loses the ability to interact, but

should result in much more being recorded than if the information had

to be written down.

150



Voice, and sound in general, has the advantage that it can be

combined with displays. Guided tours through the text of the program

could be as helpful as recorded guided tours through museums.

References

Dahmke, M. C. "Computer Speech: An Update." Byte vol. 6, no. 2

(February 1981), pp. 6-12.

MITRE. An Overview of the TICCIT Program. MITRE Corp., McLean, VA,

report M76-44, July 1976.

Verdon, P. "A Closer Look at the TI Speak and Spell." Byte vol. 6,

no. 4 (April 1981), pp. 150-154.

1.

" 151

t
,4



A.4.2 Built-In Training and Documentation

Description

A product with a built-in training capability would train new

operators and users without the need for instructors. Instead of

operators' and users' manuals, the system would have on-line access

to documentation. Simulation modes for play, step-by-step guidance,

and help facilities all point in this direction. Systems requiring

little training (for example, menu driven) also ease the problem.

Built-in training should allow a user to log on to an opera-

tional system and to place the system in a "training support" mode

that is functionally the same as the operational mode. The training

support mode would allow the user to select or specify the system

configuration, the inputs and the outputs. This mode would utilize a

"training" data base separate from the operational data base.

Built-in training will allow the user to specify the system confi-

guration via menu selections, if desired, or the training mode will

simulate the inputs and outputs. The user will be presented with

information to explain the training mode, operating instructions and

possible system configurations. The training mode should allow the

user to be trained by self-help steps through an operational scenario

using computer-aided instruction techniques, and to identify areas

requiring further training and instruction. In cases where further

instruction in the system use is required, appropriate sections of

manuals or other documentation should be presented to the user. The

training mode will not affect system operation.

Development of built-in training capabilities will decrease user

training costs by reducing (in some cases eliminating) the need for

152



instructors and classrooms and the time for the user to become

knowledgeable about the system. Also, for users who have been away

from the system for some time, built-in training should refresh their

memory quickly on system use. When system changes or upgrades are

made, the features can also be easily included in the training mode,

resulting in time savings and cost reduction to upgrade users' capa-

bilities.

Many interactive computer systems today have built-in help or

instruction-following procedures. The extension of these procedures

and techniques to train operational users may be difficult but should

be possible. The net estimated savings is expected to be moderate,

and to occur in the operational phase of the lifecycle.

Some Relevant Research and Products

Few new, if any, technological breakthroughs are required for

this R&D effort. Results of on-going developments in computer-aided

instruction, man-machine communication, information retrieval, and

knowledge-based systems will be beneficial to this thrust.

Remarks on Rationale

Training users on new operational systems or when upgrades or

significant modifications have been made to their systems is time-

consuming and can be costly in terms of travel and time away from the

operational site. A built-in training mode will allow a user to be

trained on-the-job at his convenience and at his own pace.

153



References

Hayes, P., E. Ball, and R. Reddy. "Breaking the Han-Machine Communi-

cations Barrier." Computer vol. 14, no. 3 (March 1981), pp. 19-30.

Nievergelt, J. "A Pragmatic Introduction to Coursevare Design." Con-

puter vol. 13, no. 9 (September 1980), pp. 7-21.

Nievergelt, J., and J. Weydert. "Sites, Modes, and Trails: Telling

the User of an Interactive System Where He Is, What He Can Do, and

How to Get Places." In Proc. IFIP Conf. Methodologv of Interaction,

Seillac, North Holland, 1979.

Salton, G. "Automatic Information Retrieval." Computer vol. 13, no. 9

(September 1980), pp. 41-56.

154



B. OTHER IDEAS

This appendix contains very brief descriptions of all ideas

currently categorized as unsuitable to be recommended for separate

thrusts. They are given here so that reviewers can comment on that

categorization. Only the fundamental concepts are described; there

is no attempt to portray a proposed effort. The most frequent rea-

sons why these ideas were excluded are: low chance of R&D success,

low benefit potential, close relationship with other candidates, area

too broad, area too narrow, and poor idea definition.

B.1 Technical

B.1.1 General

B.1.1.1 Presentation and Manipulation. Human factors and the

characteristics of problems being solved or tasks being performed are

important in achieving the best interface between machines and

software engineers. In addition to issues such as media and percep-

tion, there are such aspects as condensations, and/or what one needs

to see simultaneously.

B.l.l.2 Rigorous Documentation. Much documentation currently

produced and used is neither rigorously machine generated from the

software, nor rigorously verified in the terms of formal verifica-

tion. Automatic generation of documentation for users, maintainers,

and operators is one approach. Another is to attach a condition to
each documentation fragment such that the condition must still be

true or the documentation fragment can no longer be considered valid.

Less rigorously, one might attach to a documentation fragment a con-

dition that insists that there be no change in certain parts of the

software if the fragment is to continue to be considered valid.

Rigorous documentation would not only provide users of the documenta-

155

Z N r



tion with confidence in its validity, but could also greatly facili-

tate documentation maintenance.

B.1.1.3 Conflict Recognition Amona Representations. Separately

prepared descriptions or representations of software could be com-

pared for consistency. This is needed not only for different

representations of the same system during one part of the lifecycle,

but also across parts of the lifecycle, for example between a

representation of the requirements and a representation of the

design.

B.1.1.4 Exploratory Systems Applications of VHSIC. While stan-

dardization of hardware is the correct direction in which to be driv-

ing, by the end of the decade VHSIC technology should embody applica-

tions in hardware relatively quickly and inexpensively. The placing

of frequently used logic in hardware could offer significant speed

improvement. The conditions under which this would be desirable and

the methods and implications of this placement would be explored.

B.1.1.5 Military Information Utility. The concept of a mili-

tary information utility provides a framework for computer-based

information systems for DoD. Information services composed of pro-

cessing, storage, and communication, along with the relevant input

and output devices and media would be thought of not individually, or

on an ad hoc basis, but rather in terms of common information utility

services to be be provided. Different types or classes of service

can be provided to different types of users for different purposes.

Just as dial-up telephones for tactical communication provide a more

flexible and easy-to-use system than a special purpose net, so might

an information utility provide more flexible and understandable ser-

vice than a special purpose information system. The Source and the

National Software Works provide embryonic examples. An example of a

standard service might be graphic map displays, including standard

symbols for objects of interest. The integrated software support

156



environment might be a class of service under a military information

utility.

B.l.l.6 Multiple Classes of Service. What are the classes of

information services needed within DoD? Classes of services might be

established by analyzing requirements by user, types of functions

performed, and performance level required. Service classes for both

users and technicians would be needed.

B.l.l.7 Standard Real-Time Operating System. A standard

operating system for military computers (or a standard operating sys-

tem interface) would simplify the conversion of applications between

computers. Operating system incompatibilities inhibit software re-

use, even when the same programming language is available on all sys-

tems. This may be an alternative approach to the standardization of

instruction sets for military computers, or both ideas may be useful.

B.1.2 Requirements

B.1.2.1 Rapid Derivation of Requirements. Establishing

requirements is presently a long process; the goal is a capability to

develop requirements quickly after a decision is made to proceed.

Methodologies need to be developed or selected. These methodologies

may be manual, computer-based, or some combination thereof. It is

likely that methodologies will differ in detail by application or by

problem domain.

B.1.2.2 Transform Informal to Formal Requirements. Require-

ments usually originate in an informal expression. Expanding an

informal statement into a rigorous and complete set of requirements

can be very difficult and expensive. New methodologies, advances in

automated question and answer systems, and such approaches as query

by example are all possibilities.

157

p.

- .- 1- m



B.l .2.3 Requirements Languages Translation. If different
requirements languages are used for different problem domains, then

it will be useful to be able to translate one language into another.

This may not always be straightforward, since some features of
requirements languages are not common in normal programming

languages. It is possible that one might want to adopt a canonical

requirements language and translate all the others into it.

B.1.2.4 Weakest Possible Requirements Description. In order to

have the maximum design and implementation freedom, requirements

should be no more restrictive than necessary. A theory of require-

ments and procedure description strength is needed, giving the dimen-

sions along which requirements can be stronger or weaker. Currently

there are at least two dimensions being widely discussed: concurrency

(freedom to process in parallel) and indeterminacy (freedom to choose

any one action from a set).

B.l.3 Desixn

B.1.3.1 Derivation of Software from Specifications. Since an

application-oriented specification is presumably easier to prepare

and validate with the user, it would be useful to be able to turn

such a specification quickly into software executable with reasonable

efficiency. Automatic derivation simply means another very high

level language. In situations where automatic generation is not well

understood, a computer/human team might be used.

B.I.3.2 Very Hiih Level Lanuages. The ideal is to be able to

do anything one wants to do with a few natural commands. Very high

level languages might look like executable requirements languages.

Must very high level languages be tailored to specific application

problem domains, or are there generic approaches usable over wide

areas? The success of very high level languages depends on their

match with users' conceptualizations.

158

te

'I,



B.1.3.3 Component Tailoring and Interfacing. Building blocks

might be used to construct a system through a question and answer

session with a tool. The tool would place software components

together, tailor them properly, and interface them so that they work

together.

B.1.3.4 Publication of Standard Designs. Much software being

built today is very similar to other software already built, with

similar applications and functions, or similar data and data struc-

tures. The publication and dissemination of carefully thought out

and verified designs will reduce a significant amount of time now

spent re-inventing the wheel.

B.l.3.5 Data Structure and Abstraction. Two concepts widely

espoused by researchers are modeling a system's data base structure

on actual, external relationships and encapsulating portions of the

structure in modules that both regulate access and hide implementa-

tion details. The entity-relationship approach to data base design

and some knowledge-based systems approaches are examples of the

former. Packages in Ada are specifically intended to be used for

data abstraction or encapsulation.

B.1.4 Programming

B.1.4.1 Code Skeletons. Across broad classes of applications,

software is much the same at a high level, and differs only in

details. For the invariant high-level, standard code skeletons that

can be fleshed out with details allows the quick production of such

software. This is related to self-interfacing software.

B.1.4.2 Graph-Oriented Language. There is a lack of well

designed, easy-to-use graph-oriented languages. Graphs (nodes and

connectors), however, are a natural way to describe many problems,

including many problems in computer science.

159



B.1.4.3 Generatina Assertions from Requirements. The essential

condition for proper software is that it meet its requirements. The

generation of assertions to be placed in code from the requirements

facilitates formal verification or dynamic testing to show that

requirements are met. The generation of assertions involving decom-

position of requirements conditions might also be dependent upon

design and not just upon requirements.

B.1.4.4 Transform to Satisfy Physical Constraints. Implementa-

tions may be transformed to fit different configurations, or they may

be transformed to optimize various resource usages. This is relatd

to configuration independence.

B.1.4.5 Man-Machine Quality Improvement Team. Completely

automated software quality improvement may be impossible, particu-

larly when semantics are involved. For example, there may be a need

for a person to supply a functional name for a new module produced by

automatic restructuring. The machine could supply the discipline and

processing power, and the person could supply real world knowledge.

B.1.4.6 Application Generators. Application generators are

software tools that generate programs within a limited application

area or range of program types. Products and research results range

in scope from data entry screen formatters to inventory systems.

Application generators have generally been ad hoc approaches in lim-

ited areas, but they can provide substantial increases in produc-

tivity nevertheless.

B.1.4.7 Reusable Software. If significant software modules

could be re-used, fewer new software modules would need to be writ-

ten. This will significantly increase programmer productivity. Roy-

alties or other incentives could be used to encourage programmers to

design, document, and maintain software to this end.

B.1.4.8 Actor Languaaes. In the performance of distributed

tasks, it is often convenient to think of each process as an actor

160

own



who performs his role and communicates with other actors via mes-

sages. Actors are humans or knowledge-based problem-solving systems.

As originally conceived, an actor system is a model of a small scien-

tific community in which each actor is a scientist, but the analogy

to military problem-solving is straightforward. Communication is via

stylized messages; the purpose is to seek solutions within the com-

munity by proposing new plans, refining them, criticizing refine-

ments, and proposing consensual solutions. Smalltalk is an example

of an existing actor language.

B.1.5 Testing

B.1.5.1 Static Analysis of Software. Many analysis and verifi-

cation techniques can be applied to software without execution.

Among these are: formal verification, data flow analysis, standards

and style auditors, and inter ice checkers. The development of

comprehensive but expandable tools that are both easy-to-use and rea-

sonably efficient would simplify the use of these techniques.

B.1.5.2 Generating Test Data from Requirements. Requirements

are statements of what software must do. If test data could be sys-

tematically developed from requirements statements, then this data

could be used to verify compliance. A complicating factor is testing

to ensure that the system not only does what it should do, but also

that it doesn't do what it shouldn't do.

B.1.5.3 Generating Test Data to Violate Assertions. Given that

assertions have been placed throughout the software, a test data gen-

erator can use search techniques that attempt to violate more and

more assertions. The assertions, in essence, provide an automated

way of checking expected results.

B.1.5.4 Testbed Facilities. Modular, easily changed testbed

facilities could be provided to facilitate testing various classes of

161

t.I



embedded systems. Each platform type or class of embedded system

might require its own facility, although many components could likely

be shared. Testbeds would offer variable levels of simulated and

real environments.

B.1.6 Operations

B.1.6.1 Construction for Future Evolution. How should software

be originally designed and built so that it can survive evolving

requirements? Modularity and pre-planned product improvement are

examples of approaches.

B.1.6.2 Modification of Large Systems. Changes in requirements

need to be implemented, and repairs need to be made. How this can be

done quickly without introducing error or requiring complete reverif-

ication is a problem.

B.2 Managerial

B.2.1 General

B.2.1.1 Model Contracts for Buying Software. Model contracts

for acquiring software would be very useful if they contained the

proper technical and managerial concerns. Among things to be

included are: software metrics, considerations for software personnel

aquality, standards and practices, software prototyping, verification

and validation, and proper contract incentives. How construction

should be broken up and what types of contracts should be used for

each stage of thr lifecycle would also be covered.

B.2.1.2 Maximizins DoD Rights to Software. Rights to software

and particularly software tools can be problems. Proper contracting

and acquisition management are needed to avoid excessive costs

162



incurred because the original contract did not provide for delivery,

ownership, or full Government rights to tools, support software, and

documentation (sometimes considered proprietary) throughout the life-

cycle, particularly the later (maintenance/operation) stages.

B.2.1.3 Multiplyiny, Expert Effectiveness. Off-loading some

activities from scarce and expensive highly skilled software person-

nel to less expensive ancillary personnel could increase effective-

ness and decrease costs. The chief programmer team concept is one

attempt in this direction.

B.2.2 Conception/Feasibility

B.2.2.1 Quick Look FeasibilitvlEvaluation. It has been

estimated that, on the average, more than five years pass between the

time a DoD system is conceived and the time it begins a formal

requirements analysis. Better abilities to analyze the feasibility

of potential systems quickly and to evaluate alternatives so that an

approach can be chosen might put systems in the field years earlier

than is now the case. Approaches that might help in this include

risk management of evolving systems and simulation of proposed sys-

tems. This is a management as well as a technical problem that will

probably require a managerial as well as a technical solution.

B.3 Continuity-Related

B.3.1 General

B.3.1.1 Completely Captured Software. If everything needed to

understand a system were recorded, then learning about the system,

analyzing it, maintaining it, and changing personnel would be easier.

Information could be captured concerning alternatives considered,

163



design choices made, and unwritten assumptions made regarding future

modifications.

B.3.1.2 Multi-verson Machine Mediated Proaramming. Team pro-

gramming is becoming widely accepted as the best approach. It is

sometimes difficult, however, to bring all persons whom one would

like to have on the team togettier, because of geographic separation

or scheduling conflicts. With a computer and associated communica-

tions as the interface among team members, geographic and time

schedule problems could be reduced. Also, additional discipline and

organization could be provided by the computer. The National

Software Works points in this direction. A bonus from having all

conversations processed through the machine is that they can be cap-

tured to provide potentially valuable documentation concerning the

background and rationale for the implementation.

B.3.1.3 Totally Visible Software. The intangible nature of

software has led to a number of managerial, user, and buyer misunder-

standings. If all relevant data concerning a software system could

be captured, then the data could be analyzed and displayed in terms

that managers and users could understand. Comparison to plans and

measures of progress and quality will be needed as well as means to

learn what software exists.

B.3.1.4 Systems that Never Forget. With the advent of less

expensive storage (for example laser-video disk), it becomes attrac-

Itive to consider a strategy of always being able to return to some

previous state. Confidence and security from disaster are added

benefits. The integrated software support environment might particu-

larly benefit from such an approach. Tools would be required to

locate and retrieve information of interest easily, in order to

derive full benefits.

164



C. SOFTWARE PROBLEM AREAS

This appendix presents a comprehensive outline of software prob-

lem areas. It is the result of repeated efforts to create a struc-

ture containing and classifying all problem areas found in readily

available prior studies. (Those studies are reviewed in Appendix

D.)

The outline contains four primary categories: (1) Technical, (2)

Managerial, (3) Personnel-Related, and (4) Continuity-Related. Prob-

lem areas mentioned in previous studies are inserted in the struc-

tures at appropriate points.

o Technical includes all steps that go into producing quality
results at each phase in the software lifecycle. In addi-
tion to exact, measurable definitions of excellence and
utility, this category includes procedures and tools to help
produce excellent, useful work. This primary category
includes the factors of Excellence, Utility, Efficiency, and
Quality Control. Briefly, Excellence includes the accurate
transformation of inputs to a phase into outputs from a
phase and assurances that such transformations are correct,
complete, internally consistent, and dependable. Utility
includes ease of use, clarity, relevance to the problem, and
lack of unneeded complexity. Efficiency ensures that the
development, operation, and maintenance processes, and the
finished prcduct are sparing of resources (time, money,
machines, and people); that the implementation is clean,
without wasted motion or needlessly complex operations; that

appropriate risks are taken and that they succeed; and that
the final product functions efficiently. Quality Control

ensures that the finished product of each stage meets esta-
blished standards within acceptable tolerances.

0 Managerial includes methods for collecting information on
project progress and resource utilization, and for predict-
ing future progress in terms of time, money, personnel, and

other resources, despite incomplete and incorrect data. It
also includes methodologies for exercising management con-
trol over budgets and schedules.

o Personnel-Related is a category because it is usually the

165

r

7. .. q II



scarcest and most critical resource in the software life-
cycle, and has a direct effect on cost. This category
includes finding, training, and retaining good people.

o Continuity-Related includes all written and oral communica-
tion involved in a software project: requirements state-
ments, design documents, specifications, manuals, memoranda,
and the project history, as well as oral communications
among members of the software team and between team members
and users. It is involved with the accurate, complete, and
internally consistent transmission of information. It
includes methodologies and tools to ensure that information
can be traced throughout all stages of the software life-
cycle.

Many problems were analyzed to arrive at 19 major problem areas.

Almost all problem areas are common to all application areas and

types of programming. Problem areas are summarized in Figure 7 and

are discussed in detail in the following subsections. References in

the form [source:pages] are given after most paragraphs; the bibliog-

raphy to which the references refer is at the end of this appendix.

C.1 Technical

Technical has eight primary problem areas, as shown in Figure 7.

(1) flawed and conflicting standards, (2) inappropriate constraints,

(3) poor definition of goals and measures (e.g. incorrect, unusable

success criteria), (4) faulty design, (5) incorrect selection and use

of languages and packaged software, (6) poor use of implementation

tools, (7) inferior testing methodology, and (8) unsatisfactory pro-

duct evaluation and follow-up.

C.1.1 Flawed and Conflicting Standards

As the Software Acquisition and Development Working Group found,

"Perhaps the most prevalent difficulty with the software acquisition

and development process seen by the software industry representatives

is the lack of a consistent software standard not only among the

various government agencies, but also often within a single

166



TECHNICAL
flawed and conflicting standards
inappropriate external constraints
poor definition of goals and measures; incorrect, unusable success criteria

inadequate assessment of goals
unrealistic performance assumptions
poor priority ranking of goals
inappropriately constrained design options
inadequate requirements and quality measures for:

- user-visible performance
- efficiency
- error tolerance
- reliability
- availability
- testability
- maintainability
- support tools
- evolution / adapatability
- portability

- usability
human factors not considered in user interface
human factors not considered in internal design
poor quality measures for products of each development stage
inadequate architectural analysis

faulty design development
lack of insight into design and testing alternatives
undependable predictors for cost vs quality vs time
insufficient use of risk reduction tools (e.g. prototypers, simulators)

incorrect selection and use of languages & packages
poor use of implementation tools

unavailable or unknown programming support tools
hard to use prbgramming support tools
inefficient programming support tools
unevaluated programming support tools
nonstandardized programming support tools

inferior testing methodology
lack of dependable, validated verification methods
no accepted method for predicting latent bugs and their impact

unsatisfactory product evaluation and follow-up
weak lessons learned feedback loop

MANAGERIAL
weak project leadership and coordination

.J poor management planning
ambiguous policy guidance
incorrect placement of resouces
inadequate configuration and change control

Figure 7: Problem Areas

167



MANAGERIAL Cont'd
unclear lines o responsibility and authority
non-uniform enforcement of rules
insufficient discipline and rigor
undue influence of external factors in scheduling/budgeting

poor monitoring & prediction of schedules & budgets
inadequate baseliues for project scheduling and budgeting
unsatisfactory tools for predicting schedules and budgets
lack of accurate models for sizing tasks
no general agreement on the data to be used to indicate project status
poor selection and gathering of data on current project status
insufficient risk analysis

unsatisfactory project control
schedule slippage and budget overruns
difficulties with standard life cycle model

flawed methodology for the acquisition process
incorrect contract type and contractual requirements
patchy contract monitoring
clumsy contract control

PERSONNEL-RELATED
inability to attract and keep qualified personnel

high turnover

shortage of qualified personnel
substitution of unqualified personnel
understaffed projects
incorrect job classifications and pay scales
reversed work incentives
"dead end" career ladders
clearance problems

unsuitable selection criteria and measures of competence for personnel
poor exploitation of personnel

poor training
slow technology transfer

CONTINUITY-RELATED
ambiguous, unclear, incomplete communications

invalid assumptions
inconsistent standards and terminology
lack of structure in communications
insufficient review

slow, outdated communications
obsolete documentation

lack of project history
loss of tradeoff study results and reasons for design decisions

poor phase-to-phase continuity
forgotten requirements and specifications

Figure 7: Problem Areas (concluded)

168



agency."[10:p. 2-1 Terms used in standards are not themselves stand-

ardized, the required level of detail is unclear, and the standards

are imprecise. The multiplicity of standards and of interpretations

of standards forces workers to spend time studying variations on

standards instead of producing. In addition, standards are not con-

sistently enforced; they often result in generation of paper that is

never read. Good standards are missing in critical areas such as

contract management and software quality. Worse yet, standards that

are present are so poor that they often hinder, rather than help.

(See 10: pp. 2-1 thru 2-3, 3-2; 5: pp. 1-7 thru 1-8] [11: 2-171

C.1.2 Inappropriate Constraints

A prime example of an inappropriate constraint is the use of

government-specified hardware. (Other such inappropriate constraints

occur when the contractor is required to use unsuitable on-site per-

sonnel, or an unsuitable design or design methodology.) Hardware

costs are falling and software costs are rising, yet the government

may constrain the contractor or system developer to use inappropriate

hardware solely because it is available or inexpensive. Difficulties

and expense caused by attempts to force software into such hardware

are disregarded. [See 10: pp. 2-20 thru 2-21, 3-41

C.1.3 Poor Definition of Goals and Measures

Poor definition of goals and measures of success may well be the

most important problem. Initial goals are often too ambitious: a

complex system is specified to be built in one massive effort instead

of stages. Goals for the performance and capabilities of the fin-

ished system are often not validated or subjected to a thorough

cost/benefit and risk analysis before being incorporated into

requirements and specifications. Because these analyses were not

performed, ranking of goals by priority is often not done or is

incorrect. Sometimes, needed goals are omitted entirely, because the

person setting goals has made an unstated assumption; e.g. that the

169

t



system to be delivered is a standard product not requiring goals to

be set for its performance. Such assumptions can easily lead to

disaster, because there is no way of measuring the quality of the

delivered product if there is no comprehensive set of goals for it to

meet.

The process of setting goals is also plagued by inappropriate

levels of detail, in which a specific solution is written into

requirements instead of into a statement of the problem to be solved,

thereby constraining the designer unnecessarily. As was stated in

Stockton Gaines's "Draft Plan for the DoD Software Technology Initia-

t iv e,"

"There is substantial evidence that requirements rarely cap-
ture the desired intent, and even less often in the best
form. As a consequence, specifications often both over-

specify certain aspects of the system and under-specify oth-
ers. Specifications frequently specify minor details while
omitting major aspects that should have been specified. The
relationship of specifications to evolution and design, in
the context of software, needs special attention." [7: p. 2]
[See 10: pp. 2-3 thru 2-5; 11: p. 2-3; 1: pp. 2-7, 2-8, 3-5;
8: p. 41

Even when gQals are stated, they usually fail to meet standards

of excellence. There is usually a severe lack of usable, comprehen-

sive, measurable, validated requirements for user-visible performance

(e.g. transactions per minute), efficiency, error tolerance, relia-

bility, availability, testability, maintainability, support tools,

evolution-adaptability, portability, and usability. In addition,

there is often a lack of consideration of human factors when imple-

mentations and maintenance tools are considered. Just how large

should a module be if it is to be comprehended as a whole? And how

should the user interface for a maintenance tool be designed, if is

to be easy to use and to help reduce errors? The complexity of

designs often increases beyond the level of human comprehension.

170

Po



[See 1: pp. 2-11, 3-6, 3-34; 11: p. 2-9; 12: p. 35; 5: pp. 1-2, 1-3,

and 1-12; 4: p. 39; 6: p. 8; 8: p. 41

All the above problems contribute to a key problem in the area

of goal definition: the lack of dependable, usable measures of qual-

ity for evaluating concepts, requirements, specifications, implemen-

tations, test plans, and finished products. Without understandable

and acceptable measures, goals cannot be rigorously defined, and

without rigorously defined goals, excellence cannot be procured or

consistently rewarded.

C.1.4 Faulty Design

Problems in this area often start with the choice of an

incorrect system architecture, based on inadequate analyses of alter-

natives and trade-offs. The reason for such inadequate analyses is

the lack of deep insight into design and testing alternatives and the

resulting lack of dependable predictors for cost vs. quality vs.

time trade-offs. Therefore, it is not surprising that reasonable

automated tools are not in use. Indeed, there is a lack of good

development and evaluation tools, and a lack of good risk reduction

tools such as simulators and prototype construction systems. Lack of

good tools for design development also harms system evolution,

because the impact of proposed modifications cannot easily be deter-

mined. With today's multi-year system development cycles, evolution-

ary developments are virtually inevitable, if only to allow designers

to catch up with changes in the environment between system specifica-

tion and initial operation. [See 1: pp. 3-8, 3-10; 2: pp. 12, 13,

25; 4: pp. 23, 32, 33; 10: pp. 2-7, 2-8]

Poor implementation is the production of overly complex,

unclear, error-prone software in an inefficient way. Poor use of

languages, packaged software, and support tools reduce programmer
productivity.

171

V t
R



C.1.5 Incorrect Selection and Use of Languages & Packages

An inappropriate language may be selected for an application,

while existing software is ignored, although it could be modified.

Languages proliferate; therefore, time is needed to retrain program-

mers. Even standard languages may be implemented differently on dif-

ferent machines. When programmers become accustomed to using one

manufacturer's language extensions, their programs lose portability.

Since many currently-used languages do not encourage clean, modular,

structured design, non-portable code often cannot easily be modified

to make it run on a different system. [See 14: pp. 176-177; 11: p.

7-2; 5: p. 1-4; 4: pp. 35 thru 41]

C.1.6 Poor Use of Implementation Tools

Software tools (e.g. editors, debuggers, library maintainers)

are often unavailable, unpublicized, hard to use, inefficient, and

unevaluated. Implementers are often unaware of tools or previous

work (subroutines, etc.) that could save time. In addition, lack of

tool and language standardization makes time lost to retraining an

important factor whenever a new tool or language is considered. Lack

of tool portability raises the probability that such retraining will

be necessary whenever a programmer is moved from one project to

another. Sometimes a tool (such as a specialized cross-compiler)

will work only on special hardware or on a costly machine, and often

the tool or machine is not available to the Government for mainte-

nance after system acceptance. The cost of using a tool, including

tool acquisition and user training, must be weighed against the bene-

fit obtained by tool use. Unfortunately, there are few studies pro-

viding the necessary comparison data. [See 14: pp. 173, 174; 11: pp.

2-11, 5-21; 4: pp. 35, 36; 10: p. 1-6]

C.1.7 Inferior Testing Methodology

There is no satisfactory methodology to determine how much test-

ing is enough; there are few dependable verification methods (and

172



methodologies for choosing the appropriate method), and there is no

dependable methodology for predicting the number of latent bugs in a

system or their impact on availability and reliability. Not enough

money is allocated for testing. Testing plans are validated too

late, if at all; and the testing phase is far too time-consuming.

Test drivers often have their own errors, as do test data sets, and

test results are inconclusive. It is difficult to make the test

environment an accurate representation of the operational environ-

ment. [See 14: pp. 47, 59, 60; 11: p. 2-19; 5: pp. 1-5, 1-12, 1-13;

10: pp. 2-8, 2-141

C.1.8 Unsatisfactory Product Evaluation and Follow-up

Quality Assurance is poor in the software industry, because suc-

cess critera are often inappropriate, incorrect, and unusable. The

lack of a "lessons learned" feedback loop to the software development

community is a serious omission, as it is only through the use of

such a mechanism that data needed for research on goals and measures

of success can be accumulated. [See 1: pp. 11 thru 14; 5: p. 1-5;

10: p. A5]

C.2 Managerial

There are four major problem areas in management, as shown in

Figure 7: (1) weak project leadership and coordination, (2) poor mon-

itoring and prediction of schedules and budgets, (3) unsatisfactory

project control, and (4) flawed acquisition methodology.

C.2.1 Weak Proiect Leadership and Coordination

All too often there is a lack of a good system development plan,

symptomatic of a general lack of policy guidance and planning. A

standard method for selecting a management methodology is lacking.

Emphasis and resources can be placed on the wrong areas, and subtasks

may be poorly synchronized and interfaced. Change control is not

rigorously managed, and coordination of various program segments

173



rapidly breaks down. [See 11: p. 2-7; 13: p. 53; 10: p. 1-4; 14: p.

681

A clear assignment of responsibility and authority is often

missing, for both individuals and organizations. Rules are sometimes

promulgated without data showing that they are valid or that compli-

ance is measurable. Because rules are not enforced uniformly, there

is a general lack of discipline and rigor in all phases of the life-

cycle, which is exacerbated by management's reluctance to discipline

an indispensible programmer, who might quit. [See 11: p. 2-12; 1:

pp. 2-2, 3-19; 9: pp. A-31, A-37; 6: p. 8; 14: p. 681

The tendency to align software checkpoints or mileposts with

external events (e.g. hardware and manpower availability, political

considerations), regardless of software development realities, causes

more trouble. Such alignments sometimes result in premature program-
ming, before the design is finished, and in concurrent development of

hardware and software. [See 11: p. 5-6; 1: pp. 3-20, 3-21]

C.2.2 Poor Monitoring & Prediction of Schedules & Budaets

This problem has a number of contributing factors. One is the

severe lack of meaningful baseline data about schedule and budget

experiences of previous projects. The Rome Air Development Center is

currently gathering data, but existing data are sparse and of poor

quality. Data must be based on, or convertible to, standard metrics

and contain information on project type, development strategy, etc.

There are no generally accepted models for predicting schedules and

budgets and for sizing tasks. The lack of good models makes resource

allocation and trade-off analysis difficult. Unrealistic cost and

schedule estimates are often the result, because they are based on

inadequate risk analyses and unfounded assumptions in the absence of

usable models and data. Mission requirement uncertainties, probabil-

-ities of changes in system requirements, risks in undertaking a

software development at the state of the art, hardware and interface

174

t:

.4



dependencies, etc. are often not quantified because usable, standard

methods simply do not exist. [See 11: p. 7-2; 1: pp. 2-6, 2-8, 3-10,

3-36; 5: p. 1-2; 12: pp.35, 86, 88; 4: pp. 14 thru 17; 10: pp. 1-4,

1-5, 2-13, 2-16 thru 2-20, 14: p. 54; 8:]

Even with generally accepted, accurate models, the lack of ade-

quate data on project status would continue to create problems.

Inadequate cost and schedule monitoring is common, due in large part

to poor software progress visibility: the ability to see the percen-

tage of a given job that is satisfactorily completed at any given

time. Unfortunately, there is no general agreement on what data

accurately reflect the status of a project; therefore, no standard-

ized measure of how close a project is to completion. [See 11: pp.

2-4, 2-6; 1: pp. 2-8, 3-19; 10: p. 2-9]

C.2.3 Unsatisfactory Project Control

Schedule slippages and budget overruns are distressingly common,

but unsurprising in light of the problems mentioned above. The trad-

itional phasing of a software project, with formal reviews and struc-

tured procedures taken from hardware production, can cause various

problems (non-productive paperwork, inappropriate rigidities, etc.);

however, there are no acceptable alternatives. Management is often

uninformed on project status, and unable to affect it directly.

Problems in synchronizing hardware production with software produc-

tion are common. [See 11: p. 5-6; 4: pp. 15, 16; 10: pp. 1-4, 1-61

C.2.4 Flawed Methodology for the Acquisition Process

. There is a lack of a standard methodology for handling con-

tracts, and the contract type is sometimes inappropriate for the

problem (e.g. fixed-price for a high-risk, poorly-specified develop-

ment), resulting in loss of control over the contractor or in poor

work. Sometimes, software is not isolated from a systems contract to

ensure that all rights to it will be acquired. Often, tools used to

develop and maintain software are not acquired along with the

175



software, or money is not provided for their full development, docu-

mentation, and delivery. Too few risk reduction contracts (e.g.

parallel development, prototyping) are let, and requirements do not

stabilize early enough to be handled easily by standard methods.

[See 11: p. 2-17; 1: pp. 2-9, 2-10, 3-6, 3-20ff; 5: pp. 1-7 thru 1-9;

2: p. 2-19; 10: pp. 1-4, 1-5, 2-21 thru 2-23, 3-Iff.]

Problems often occur in managing interfaces among software and

hardware controlled by different contractors, because of weak confi-

guration control. Sometimes the acquisition manager will become too

involved in the internals of software components, managing trivial

details from the highest levels of authority. [See 11: p. 7-2; 1: p.

3-7; 5: p. 1-2; 8: p. 4]

Documentation required and delivered during the life of the con-

tract is often no great help in understanding project status. Docu-

ment requirements can be overlapping and vague, with the result that

documentation is overwhelming, hard to understand, and strangely or

illogically organized. [See 2: pp. 2-11, 2-40]

The time-consuming procurement process and requirements changes

during the life of the procurement cause considerable trouble.

Another problem caused by lengthy procurement is staff turnover, both

on the side of the contract monitor and on the side of the contrac-

tor. Project control can be inconsistent; the project can easily

lose or reverse direction at each change. [See 9: p. A-30; 4: p. 171

C.3 Personnel-Related

There are three major problem areas under this heading: (1)

severe shortage of qualified personnel and difficulties in retaining

them, (2) unsuitable selection criteria and measures of competence

for personnel, and (3) poor exploitation of personnel.

176



C.3.1 Problems Finding and Keeping Qualified Personnel

There is a severe shortage of qualified personnel and a tendency

to substitute large numbers of unqualified or poorly qualified work-

ers when qualified workers cannot be found. Not only is the work of

poor quality, but the amount of time available for productive work

per worker decreases because of the increased time spent in meetings

and communications among members of the workforce. In addition, pro-

jects often operate with too few seasoned professionals during criti-

cal early stages. One reason for the shortage of workers is a

national indifference to early education in computer applications and

related technologies. Furthermore, there is insufficient emphasis on

software engineering in computer science education programs. Other

important reasons for the personnel shortage within the Defense com-

munity are the overclassification of programming projects, the shor-

tage of capable workers having the required security clearances, and

the difficulty in transferring clearances and billets when required.

[See 11: pp. 2-15, 5-6, 7-1; 5: p. 1-10; 10: pp. 1-5, 2-23, 2-24, 3-

5; 3: p. 131

Partially due to the severe personnel shortage, there is diffi-

culty in attracting and retaining qualified personnel. Staff turno-

ver is astounding. One estimate is that the typical staffer remains

with one job for less than 24 months, despite the fact that the typi-

cal software development cycle lasts more than 40 months. (See 11:

p. 2-14; 1: p. 2-9; 5: p. 1-8; 4: p. 201

There appear to be a number of reasons for this situation. Ina-

bility or unwillingness to pay salaries commanded by top people is a

contributing factor, as is the poor quality of leadership found on

many projects. Work incentives are often reversed: competent person-

nel are overworked, but inadequately challenged, while their pay may

be unrelated to competence. (That is not too surprising; there is no

generally accepted, objective measure of competence.) Career path

177

4



problems contribute to the confusion; excellent technical people are

often promoted out of their fields into management, despite the fact

that their expertise is needed at the worker level. Indeed, if they

are not promoted, technical staff members will often quit or become

frustrated. Government job classification and civil service systems

can cause quite a bit of trouble: job descriptions are often mislead-

ing; job grades are often incorrect and inconsistent from one depart-

ment to the next; and the tenure system for raises and layoffs often

discriminates against the best workers in favor of those longer

employed. Since career ladders for computer personnel may end some-

where in middle management, the ambitious staffer must leave the com-

puter field to succeed. Computer specialists in high-security areas

have the additional worry that they will become pigeonholed because

of their clearances; because there is such a severe shortage of com-

petent professionals with high clearances, they may not be allowed to

transfer. [See 11: p. 2-14; 5: p. 1-10; 9: pp. 14, A-16, A-46; 10:

pp. A-8, A-9; 8: p. 4]

C.3.2 Unsuitable Competence Measures

Little work has been done to define the personality types that

would make the best analysts, programmers, programming managers,

etc.; for that matter, it is difficult to define "best." The per-

sonality type most common today among programmers and analysts may

not be the best for the future, but may simply be an artifact of

current selection methods, training, and work environment. Because

there are no generally accepted measures of excellence in specifica-

tion, design, testing, working with users or management, etc., there

is no way to judge whether the currently most common personality type

would be the most successful in achieving excellence across the

board. As was stated in [I: p. 531, "There is little organized

.- knowledge of what a software designer does, how he does it, or of

what makes a good software designer."

178

-V 
-

- J---- r--



L AD-AI02 180 MITRE CORP MCLEAN VA F/6 5/1

CANDIDATE R&D THRUSTS FOR THE SOFTWARE TECHNOLOGY INITIAT!VE.CU)

IMAY 81 S T REDWINE, E 0 SIEGEL, G R BEROLASS F19628-B1-C-0001

UNCLASSIFIED MTR-BIWOO160 NL

1 E3hEEEh



C.3.3 Poor Exploitation of Personnel

Poor training is a major problem for available personnel. Not

only do workers lack important knowledge, but managers lack the

technical knowledge to enable them to understand their subordinates

and the managerial knowledge to manage them. Tthe slow rate of

information transfer from the research institutes to the field is

extremely damaging in an area that changes as rapidly as software

engineering. A formal, fast, and effective method for technology

transfer is needed. [See 11: pp. 2-14, 7-1; 5: pp. 1-8, 1-10; 9: p.

A-9; 6: p. 8; 4: p. 20; 10: p. 1-4]

C.4 Continuity-Related

Figure 7 shows four major problem areas.

C.4.1 Ambiguous, Unclear, Incomplete Communication

These problems lead to invalid assumptions on the part of both

sender and receiver. Inadequate documentation is often a major

cause, as are inconsistent standards and terminology. The sender and

the receiver of a message may interpret the same statement in dif-

ferent ways, because they have different frames of reference or dif-

ferent experiences. The team designing the computer system has

experience in systems design, but probably doesn't know the applica-

tion as well as the user. "One cannot expect the contractor's system

analysts to be good artillerymen." [2: p. 2-71 It is important that

unstated assumptions on the user's part be expressed and made clear

to implementers, and vice versa. A lack of structure or a poor

structure in communication often results in undetected omissions or

internal contradictions leading to system changes as clarifications

are made. Insufficient review, combined with the problems in review-

ing an unclear, poorly structured document, result in the common

situation of incomplete and ambiguous requirement statements, specif-

ications, user documentation, maintenance records, etc. [See 11: pp.

179

=4 " 'I I 1 I ; I''
' I

. . : , , . , . . . i



5-2, 5-6; 2: p. 2-7; 5: p. 1-2; 6: pp. 8, 9; 10: pp. 1-4, 2-1 thru

2-5, A-31

C.4.2 Slow, Outdated Communications

Large numbers of changes are especially dangerous, because of

communications that are out of date. Obsolete documentation is typi-

cal; the slow dissemination of up-to-date information often results

in systems that are obsolescent before delivery. [See 10: p. 2-31

C.4.3 Lack of a Proiect History

Again, inadequate, incomplete documentation is a typical exam-

ple, along with failure to obtain support software and maintenance

documentation. Without an adequate project history, a project will

find it quite difficult to recover when a critical staff member

leaves. Failure to document design decisions and the analyses that

led to them can also waste a large amount of effort if those deci-

sions are ever reopened because of a change or reevaluation of the

system. [See 11: p. 2-5, 1: p. 3-15; 10: p. 1-41

C.4.4 Poor Phase-to-Phase Continuity

The final problem is that of poor continuity from one software

phase to the next: disparity between requirements and specifications,

between specifications and code, between requirements and test plans,

etc. Some work is being done to provide better continuity, but

current practice is still generally poor. No standard method exists

to trace all system requirements through all software development

phases, or to ensure that all design information is accounted for and

handled in each relevant phase. [See 13: p. 531

C.5 Biblioaraphy

[11 Asch, A., D. W. Kelliher, J. P. Locher III, and T. Connors. DoD

Weapon System Software Acquisition and Management Study. MITRE

180

V ~'



Corp., Bedford, MA, tech. report MR-6908, May 1975, vol. 1, MITRE

Findings and Recommendations.

[2] Asch, A., D. W. Kelliher, J. P. Locher III, and T. Connors. DoD

Weapon System Software Acquisition and Management Study. MITRE

Corp., Bedford, MA, tech. report MTR-6908, June 1975, vol. 2, Suk-

porting Material.

(31 Blumenthal, M. "Professor Bemoans Indifference to DP Education."

Computerworld vol. 15, no. 16 (Apr. 20, 1981), p. 13.

[4] Defense Computer Resources Technology Plan. Management Steering

Committee for Embedded Computer Resources, USD (R&E), Washington, DC,

June 1979.

[5] DeRoze, B. C. Defense System Software Management Plan. DoD

Software Management Steering Committee, OSD (I&L), Washington, DC,

Mar. 1976. (NTIS accession no. AD-A022 558.)

[6] Drezner, S. M., H. Shulman, and W. H. Ware. The Computer

Resource Management Study: Executive Summary. Rand Corp., Santa Mon-

ica, CA, report R-1855-PR, Sept. 1975. (NTIS accession no. AD-A018

884.)

[71 Gaines, S. "Draft plan for discussion at May 30 Software Tech

Initiative meeting." ARPANET mail from RAND-UNIX, 28 May 1980.

(81 Giese, C. "Final Report, Mission Area Orientation, DoD Software

Technology Workshop, Ft. Belvoir, VA, 15, 16 May 1980." Letter to Dr.

D. Fisher, Director, Electronics and Physical Sciences, OUSD (R&E),

Washington, DC, 7 July 1980.

[91 Jensen, A. P., E. L. Dreeman, and B. A. Reardon. Information

Technology and Governmental Reorganization: Summary of the Federal

Data Processing Reorganization Project. Office of Management and

Budget, Washington, DC, Apr. 1979. (NTIS accession no. PB-294 543.)

181

4.,



[101 Jones, V. E., chairman. Final Report of the Software Acquisi-

tion and Development Working Group. ASD (C31), Washington, DC, July

1980.

[11] Kossiakoff, et al. DoD Weapon Systems Softvare Manaaement

Study. Johns Hopkins Applied Physics Laboratory, Laurel, MD, report

APL/JHU SR 75-3, June 1975. (NTIS accession no. AD-A022 160.)

[12] Kosy, D. W. Air Force Command and Control Information Process-

ins. in the 1980s: Trends in Softvare Technology. Rand Corp., Santa

Monica, CA, report R-1012-PR, June 1974.

[13] Thayer, R. H., A. Pyster, R. C. Wood. "The Challenge of

Software Engineering Project Management." Computer vol. 13, no. 8

(Aug. 1980), pp. 50-59.

[14] Wegner, P., ed. Research Directions in Softvare Technologv.

Cambridge, MA: MIT Press, 1979.

182



D. SUMMARY OF SOME REVIEWED STUDIES

Outlines of some previous studies are shown below, giving the

funding, objectives, methodology, and structure of each study.

Research Directions in Software Technology, Peter Wegner, ed., MIT
Press, Cambridge, MA, 1979.

Funded bX: ONR, ARO, AFOSR
Objectives: To "set the stage for a research attack on the
defined problems by preparing a state-of-the-art summary
of.. all known approaches which might contribute to the eventual
improvement of computer software." (p. xi) Does not contain
guidelines for future research.
Methodology: 90 individuals contributed papers that were edited
through five drafts. Editorial conferences produced discussion

sections. Study lasted from 1975 through 1978.
Structure: Part I -- The Software Problem; Part II -- Research
Directions

DoD Weapon Systems Software Management Study, A. Kossiakoff et al.,
Johns Hopkins Applied Physics Lab, Laurel, MD, June 1975.

Funded b: OSD; DoD Software Management Steering Committee
Objectives: "To identify and define (1) the nature of the criti-
cal software problems facing the DoD; (2) the principal factors
contributing to the problems, (3) the high payoff areas and
alternatives available, and (4) the management instruments and
policies that are needed to define and bound the functions,
responsibilities and mission areas of weapon systems software
management." (p.1)
Methodology: "Review and analysis of ten recent major DoD-
sponsored studies .... Review of the software design and manage-
ment in ten Navy and two Army weapon systems.. .Discussions with
service and industry organizations involved in weapon system
software acquisition, development, and maintenance." Study
lasted from January through June 1975.
Structure: Brief survey of problem areas is followed by summary
pages of recommended actions and detailed reviews as described
above.

V DoD Weapon Systems Software Acquisition and Management Study,
Vols. 1 and 2, A. Asch et al., The MITRE Corp. MTR-6908, May 1975.

Funded b: (Same as immediately above.)
Obiectives: (Same as immediately above.)
Methodology: (Same as immediately above, with the exception that
the reviews were of five Army, nine Air Force, and one joint
project.)
Structure: (Same as immediately above, but in two volumes.)

Defense System Software Management Plan, Barry C. De Roze, ASD (IML),
,- Washington D.C., March 1976.

Funded bl: DoD internal

183

1.°



Obiectives: To document a comprehensive plan for providing solu-
tions to some of the key problems in DoD software acquisition
and management.
Methodology: N/A
Structure: Part I -- Policy, Practice, Procedure, and Technology
Elements, indicating problems addressed and actions to be taken;
Part II -- Implementation Brief, describing organizational
roles, responsibilities, and interactions.

Air Force Command and Control Information Processing in the 1980's:
Trends in Software Technology, Donald W. Kosy, The Rand Corp. R-
1012-PR, Santa Monica, CA, June 1974.

Funded bX: AFSC
Obiectives: "To design an integrated Air Force R & D program for
the present decade that would develop the information-processing
technology needed to meet probable Air Force command and control
requirements in the following decade." (p.iii)
Methodology: Revision and updating of the CCIP-85 report; con-
servative extrapolation from historical patterns.
Structure: Brief overview of software technology followed by a
section on future requirements for Air Force Command-Control
systems, sections on the past evolution of software technology
and future technology trends, and a conclusions and recommenda-
tions section.

The Computer Resource Management Study: Executive Summary, Stephen H.
Drezner et al., The Rand Corp. R-1855-PR, Santa Monica, CA, September
1975.

Funded b_: USAF

Objectives: To produce recommendations that will help the Air
Force manage its computer resources.
Methodology: Visits to Air Force projects that contain "a sub-
stantial computer component."
Structure: A statement of the problem followed by observations
and recommendations.

Federal Data Processing Reorganization Study, Office of Management
and Budget, Washington, D.C., 1978-1979.

Funded by: OMB internal
Obiectives: "To examine the ways in which the Federal Government
acquires, manages, and uses data processing technology and to
make recommendations that will help the Government (1) improve
the delivery of services through the effective application of
computer and related telecommunications technology; (2) improve
the application and management of the relevant resources; (3)
eliminate duplication and overlap in agency jurisdiction rela-
tive to computer issues; and (4) improve the productivity of the
Federal data processing work force." (p.1)
Methodology: Fifty-five computer professionals from the public
and private sectors divided into ten independent study teams to
perform reviews of all relevant documents and to conduct an

184



extensive series of interviews.
Structure: Recommendations from study, followed by reports from
the ten teams in separate reports.

Defense Computer Resources Technoloay Plan, Management Steering Com-
mittee for Embedded Computer Resources, USD(R&E), Washington, D.C.,
June 1979.

Funded by: DoD internal
Objectives: "To provide coherent direction and guidance to gen-
eric computer technology R&D efforts for a period of at least
five years (FY1980 - FY1984)." (p. 5)
Methodology: Develop plans and recommendations made by study
groups in the 1974-1976 time frame; refine plans with the assis-
tance of the three Services as well as of DARPA, DCA, and NSA.
Structure: A statement of objectives and program management is
followed by summaries of the technology areas (Life Cycle
Management Tools, System Design and Architecture, Software Pro-
duct Specification and Standardization, Computer Hardware).
Each summary presents problem areas, technical issues and
approach, and research direction and action.

Final Report of the Software Acquisition and Development Working Group,
Victor E. Jones, chair, ASD(C31), Washington, D.C., July 1980.

Funded b.: DoD
Obiectives: "Determining the efficacy and cost effectiveness of
current software acquisition and development practices within
the Intelligence community, and ascertaining areas which could
benefit from better management controls." (p. ii)
Methodology: Software development corporations doing business
with the Intelligence Community were invited to present their
views, and case histories were studied.
Structure: Recommendations are followed by summaries of the
industry comments and the case histories are broken down into
categories (e.g., Documentation Standards, Software Development
Management).

Computer Technology Forecast and Weapon Systems Impact Study (COMTEC-
2000), COMTEC-2000 Study Group, HQ AFSC TR 78-03 vol. 1 - 3, Washing-
ton, D.C., December 1978 - July 1979.

Funded b: Air Force Systems Command
Objectives: "Forecast the advancement of computer and computer-
related telecommunication technologies; assess the potential
impact of these technology advances on the capabilities of
existing or future Air Force systems through the year 2000;
determine the policies and R&D initiatives required to bring
these technology advances to fruition and to incorporate them in
future weapon system capabilities." (vol. 1, p. 1-1)
Methodology: The technology forecasts were prepared by govern-
ment and industry specialists during a week at the Air Force
Academy, and the system impact studies were performed the fol-
lowing week by Air Force and industrial weapon system planners

185

II
I.1



and developers. The COMTEC-2000 Steering Committee then
analyzed the results of the meetings and synthesized twelve
major issues that were studied by small working groups.
Structure: The three phases of the study are issued in three
volumes: Volume 1 summarizes the first two phases, volume 2 pro-
vides technical data for those phases, and volume 3 presents the
results of the third phase.

Army Software Technology R&D Program, Technology Transfer
and Organization Plan, Software Technology Division, CENTACS, CORAD-
COM, Fort Monmouth, NJ, Sept. 1980.

Funded bby: Army
Objectives: "to provide the requirements for and definition of
the Software Technology Division as an organizational component
of CENTACS, CORADCOM, to identify, implement, and introduce into
operations software development tooling and other products in
response to the urgent need detailed in [Post Deployment
Software' Support (PDSS) Concept Plan Battlefield Automated Sys-
tems, May 1980]." (p. 1)
Methodology: An organization and set of tasks was proposed after
a study of the problem areas mentioned in the PDSS study.
Structure: A review of the PDSS study is followed by a proposed
structure for the Division and a set of task descriptions.

Preliminary Master Plan for Tactical Embedded Computer Resources,
Navy Material Command, Washington, DC, 31 January 1981.

Funded bv: Navy
Objectives: "to present the Navy's master plan for the develop-
ment, acquisition, and life cycle management of tactical embed-
ded computer resources (TECR), including computer hardware and
software, used in and in support of Navy combat systems." (p.
ES-1)
Methodology: A panel of experts from inside and outside the Navy
produced a set of recommendations given in the NECRP final
report of October 1978. Those recommendations were incorporated
in this study by the Tactical Embedded Computer Program Office,
which maintains the Master Plan.
Structure: "The plan addresses problem areas associated with
existing and emerging embedded computer systems; outlines plans
and strategies for developing and acquiring the embedded com-
puter resources necessary for solving these problems; discusses
manpower, personnel, and training requirements; and specifies
tasks, milestones, and resources needed to implement the stra-
tegies." (p. ES-I)

186

V. i i q ' I I - T ' " ' :f : " " " .. '



E. EVALUATION CONSIDERATIONS

Considering the current status of software metrics, reasonable quan-

tification of benefits is not possible. This is widely recognized;

much current research effort addresses the problem. Nevertheless, it

is important that some self-consistent methodology be established for

judging the value of proposed candidate thrusts. The following

approach is suggested.

In selecting candidates, benefits, costs, and interactions among

candidates need to be considered. Benefits from a candidate come

only after successful R&D and technology transfer, that is, when

results are actually used by DoD and its contractors. Costs will be

incurred throughout R&D, technology transfer, and operation.

Interactions among candidates may make some less desirable (e.g. two

efforts addressing the same problem) and some more attractive (e.g.

synergy among compatible tools). Each of these topics will be

explored in turn: benefits, costs, and interactions.

E.1 Benefits

Benefits from a thrust activity can occur in the forms of cost

savings, time savings, utility enhancement, and risk reduction; when

new systems are built and maintained using the R&D thrust products,

or when existing maintenance practices are changed to use these pro-

ducts.

Viewed from the initial candidate selection perspective, several

steps with varying levels of expected success precede the accrual of

benefits. Although the majority of thrusts are highly feasible,

research and development may not always produce the envisaged R&D

results. Furthermore, transfer of the technology may not succeed for

all potential applications within DoD. Thus, after estimating the

maximum potential benefits from a thrust activity, the expected bene-

fit could be calculated by multiplying the maximum benefit by the R&D

success probability and the technology transfer penetration

187

V..



percentage. For the most part, estimating such probabilities and

percentages with reasonable reliability is extremely difficult or

impossible; however, estimates may be more feasible with some thrusts

than with others.

R&D success depends on the amount and difficulty of innovation

and construction needed. Within a single candidate, several useful

results can be sought, each of which has a different probability of

success. Likewise, the applicable area of the results may be divided

among organizations of differing receptiveness. Figure 8 schemati-

cally shows how the present value of expected benefits could be cal-

culated from potential benefits, if quantification were practicable.

Even considered qualitatively, however, certain characteristics

become apparent. For example, narrowly directed capabilities may be

achieved more easily, but their benefits will be less than those of

more general capabilities. When evaluating potential thrusts,

reviewers should consider the contribution of each projected capabil-

ity or approach to DoD's software problems.

Much of the benefit will come in the form of cost savings or

increased productivity, as new systems are developed less expen-

sively, and as new and existing systems are more efficiently main-

tained.

When considering the savings benefit of a thrust on new system

efforts, a lifecycle model can be used. Figure 9 shows a typical DoD

lifecycle cost curve [1]. Since we are concerned with generic

effects rather than with a specific project's time and costs, time

and costs are measured in terms of the percentage of their totals for

the lifecycle. The purpose here is to suggest a framework within

which reviewers can evaluate the relative cost savings provided by

candidate thrusts. The numbers may not always be defensible, but

this section is not an attempt to define exact relative costs of

parts of the software lifecycle. Neither is it an attempt to give

188



Definition/
Consideration Measure Formula

R&D Probability of success in Pr(R)
achieving result, R,
aimed for by candidate

Technology Fraction of potentially T(R)
Transfer applicable areas that use

results

Potential Benefit if results used B(R)
Benefit everywhere applicable in DoD

Expected Expected value of benefits E(R)=Pr(R)T(R)B(R)
Benefit from candidate

Present Sum of the expected values of E(R,t)
Value benefits in each period dis- t

counted by interest rate, I, +1)
for time t to benefits. t

Figure 13: Theoretical Calculation of Benefits

189



Cost/Unit Time

47. 2

I .- i m

g I
i I

I 50.0%
20 I

L~i Time

Require;ents Development
8% 12.0%

Figure 9: Software Lifecycle [11

190

t . ,q -



precise definitions for portions of the lifecycle. For a discussion

of estimating cost distribution over the lifecycle, see [2].

Some technical thrusts are aimed at specific phases of the

software lifecycle: conception, requirements, design, programming,

testing, and operation. It may be difficult, however, to associate

other thrusts with the lifecycle model. Innovative training con-

cepts, more effective management control of the development process,
and' the capture of all data relevant to the development and mainte-

nance process are concepts that span the entire lifecycle.

The effect of errors on software cost is estimated in [1] to be

half the usual development and operations cost. The cost saving from

a thrust that will reduce errors by 20% is calculable at 20% of this

potential, or at 10% of lifecycle costs.

Note that elapsed time is also a variable. To a limited extent,

the tradeoff desired between cost and time can be accomplished, but

will change the shape of the curve. The sooner payoffs occur, the

more value they should receive in the evaluation of candidates. The

usual present value calculations are relevant here (See Figure 8).

In considering total system cost, all cost elements must be

included: technical personnel expenses, management and support per-

sonnel costs, direct costs, overhead costs, and (when applicable)

contractor fees. In general, total costs vary proportionally with

technical personnel costs; however, exceptions should not be ignored

when they occur.

Consideration of a thrust's effects on the software lifecycle,

either in reducing costs or shortening time, yields a method for

gauging its potential cost savings on new systems. New systems, how-

ever, are not the only potential beneficiaries of the Software Tech-

nology Initiative. Existing systems could also benefit. For exam-

ple, a technique that transforms code to improve some characteristics

191

VI



can be useful to existing systems. Benefits to existing systems can

be modeled by using the operations phase of the lifecycle.

A thrust's impact on existing systems can be estimated

separately; however, it is difficult to quantify the relative value

of the same percentage benefits to new systems versus benefits to

existing systems. DoD is estimated to spend seventy percent of its

software money on maintenance, and this percentage is increasing.

The potential effects of a thrust on existing systems enhances its

attractiveness.

Although the cost savings framework emphasizes benefits due to

reduction in personnel costs, decreased development time, and

increased reliability, other potential benefits also exist. These

include enhanced functionality, performance, availability, portabil-

ity, and generality. Portability and generality point to the poten-

tial utility of the system in environments or for purposes not origi-

nally envisaged. The utility of a system can have four potential

sub-utilities depending on its use and its modifiability: (1) used

as-is in intended applications, (2) used as-is in other applica-

tions, (3) modified in intended application, and (4) modified in

other applications.

Cost savings result when a less expensive or quicker way to

obtain an existing operational utility is developed. When system

function or utility are obtained that would not have been attempted

without the prerequisite thrusts, then cost savings do not adequately

indicate the full benefits, since one is not doing the same thing

less expensively, but rather something new.

Candidates can have results that reduce the risk, that is, the

variability or unpredictability in funds, time, or utility. Risk

reduction can be very useful to DoD management, quite apart from any

reductions in funds or time, or increases in utility.

192



Lastly, DoD will not be the only beneficiary of the Software

Initiative. Other branches of the Federal government, and the

software industry as a whole are potential beneficiaries.

E.2 Cost of R&D Thrusts

The total costs of a candidate for R&D, technology transfer, and

operational maintenance are difficult to estimate accurately,

although the cost for the first few years of R&D may be relatively

easy to estimate. Full development is usually very difficult to

estimate. Technology transfer costs require a tentative strategy to

be selected and the cost of transferring to the forecasted areas

estimated. Operational costs will consist of users' expenses and

maintainers' costs for products such as software tools.

Despite the difficulties, part of a candidate's evaluation must

be based on its costs. Certainly, exceptionally inexpensive candi-

dates (e.g. superperformer competencies) or ones with unusual

expenses (e.g. programmer workstation) need special consideration.

As the STI proceeds, the issue of the costs of thrusts may

diminish for efforts of proven promise. For a successful candidate,

benefits will far exceed costs. Savings from even a very small

reduction in the next decade's software expenses will easily exceed

any proposed candidate's costs.

E.3 Types of Relationships Among Candidates

Thrusts can have several types of relationships that signifi-

cantly affect decisions concerning their support. A thrust may

depend on the prior success of another for its own success, or the

benefit from a thrust may be reduced or enhanced by another thrust's

success.

Two thrusts can have the same target; the success of one can

produce the same benefit as the success of both, or the successes may

be additive. Partial redundancy may result from partial overlap of

193



targets. Combined benefits may come about because one thrust reduces

the volume of the problem the other addresses. For example, one can-

didate might aim at reducing the cost for repairing an error, while

another might aim at reducing the number of errors originally commit-

ted.

Synergies can also exist among candidates. This is particularly

true if the output of one's pzoduct is an input of another's. The

compatibility of interface between the tools produced by such candi-

dates determines the magnitude of the synergistic effect.

The decision on what set of candidates to select resembles an

investment portfolio decision, but has interdependencies more com-

monly associated with capital investment and project planning deci-

sions. Reviewers should concentrate on evaluating each individual

candidate, but consider the interdependencies. To the extent possi-

ble, the set of candidates recommended by each reviewer should be

internally consistent.

E.4 References

[1] Alberts, D.S., "The Economics of Software Quality Assurance",

Conference Proceedinas NCC 1976, New York, AFIPS Press, 1976.

[2] Putnam, L.R. (ed), Tutorial: Software Cost Estimating Lifecycle

Control, Los Alamitos, CA, IEEE Press, 1980.

194

5: "i ' '



F. SOFTWARE TECHNOLOGY INITIATIVE QUESTIONAIRE

195

MOO



SOFTWARE TECHNOLOGY INITIATIVE QUESTIONNAIRE

Introduction

This Software Technology Initiative Questionnaire is provided for
reviewer response. If a separate questionnaire is not available, one
can be made by copying Appendix F. The questionnaire will greatly re-
duce your burden in responding thoroughly, and will speed our analysis
of the responses. We suggest that you use the questionnaire to guide
your construction of a response, referring, whenever more detail is
needed for understanding a candidate, to the appendices: Appendix A
for tentatively accepted candidates, and Appendix B for tentatively
rejected candidates. Figure 6 summarizes all of the candidates by
title, and indicates their tentative classifications. The table of
contents can be used to locate the page number of specific candidate
descriptions in the appendices.

The questionnaire is divided into 2 parts: (1) a General Question-
naire (which should be filled out by all reviewers) which includes
sections on Identifying Information, Problem Areas, Candidates, and
Other Comments; and (2) Specific Candidate Questionnaires, one of
which should be filled out for each candidate about which a reviewer
has knowledge and interest. In addition, reviewers should feel free
to add comments on a separate sheet of paper.

Before filling out the questionnaire, reviewers should read Ap-
pendix E for an explanation of desired evaluation considerations.

We are aware that many of the questions are difficult and pre-
cision may be impossible. Please simply give us the best answer you
can.

The results will be analyzed and the analysis used as a basis for
discussion on which candidates to include in the Software Technology
Initiative.

We are confident that the Software Technology Initiative will
benefit from your response. We greatly appreciate your time and
interest.

(5/81)

196



STI GENERAL QUESTIONNAIRE

A. Identifying Information

1. Your Nam
Position
Address

Telephone

2. Should these questionnaire answers be considered to be:o a. The official response of your organization
E b. Your personal response only

3. Your Organization

B. Problem Areas

1. Please rate the relative seriousness of each of the 19 major problem areas die-
cussed in Appendix C, as compared to each other. (Order by rating each problem
on a scale from one to five, with one being least serious/important and five
being most serious/important.) SERIOUSNESS

ILeast Most

Serious Serious|
Technical 1 2 3 4 5

C.1.1 flawed and conflictins standards

C.1.2 inappropriate external constraints

C.1.3 poor definition of goals and measures (e.g., incorrect, unusable suc-
cess criteria)

C.1.4 faultyv design

C.1.5 incorrect selection and use of languages and packaged software

C.1.6 poor use of implementation tools

C.1.7 inferior testing methodology

C.1.8 unsatisfactory product evaluation and follow-up

Managerial
C.2.1 weak project leadership and coordination

C.2.2 poor monitoring and prediction of schedules and bud ets

C.2.3 unsatisfactory project control

C.2.4 flawed methodology for the acquisition process

Personnel-Related
C.3.1 problems finding and keepins qualified personnel

C.3.2 unsuitable competence measures

C.3.3 poor exploitation of personnel
: Cont inutty-Relat ed

g.4.1 ambiguous, unclear, incomplete communication

C.4.2 slow, outdated coummanication
C.4.3 lack of prolect history I

C.4.4 poor phase-to-phase continuity ......

2. Are there any significant problem areas that are not covered by one
of these 19 listed areas? _ yes no
If yes, please list and rank on the five-point scale.

197



C. Candidates

Instructions for column checklist

1. Please rate this candidate in terms of its overall worth, specifically its
contribution toward gaining the desired order-of-magnitude improvement in
the software process. Rate the candidate on this five-point scale, vith
"1" being the lowest worth (little contribution to gaining the Improvement)
and "5" being the highest worth (high contribution toward gaining the

Improvement).

2. Do you think this candidate should be:

a. accepted (check A)
b. rejected (check R)
c. accepted with modification (check M)*
d. combined with another candidate (check C)

e
*

I If c, please note suggested modifications on a Specific Candidate
Questionnaire (under 07, "Other Coments"), on a separate sheet, or
on a copy of the candidate description found in the appendix.

N Mote number(s) of other candidate(s) with which you would combine

this candidate.

3. Please check those candidates about which you feel you have sufficient
knowledge or interest to fill out the following, more detailed Specific

Candidate Questionnaire.
' 1 "

OVERALL WORTH DISPOSITION
Will

Combine Answer

Lowest Highest With Candidate
Worth Worth Other question-

1 2 3 4 5 A R M C (C) naire

A.1.1.1 Integrated Software Support
Environment

A.1.1.2 Ada Package Sets for Common
Usage Areas

A.1.1.3 System Dictionary/Directory

A.1.!.4 Set(s) of Tools Covering Entire
Lifecycle

A.1.1.5 Software Engineer's Support System

A.1.1.6 Programmer Workstation

- A.1.1.7 Useful Measures of Software Quality

A.l.1.8 Multiple Representations of
Software

A.1.1.9 Earliest Possible Error Detection

A.1.1.10 Configuration Independence

U A.1.2.1 Rapid Simulation

1'A.1.3.1 Rapid Prototyping

* A.1.3.2 Application Domain Expertise

A.1.3.3 Data Validation

A.1.3.4 Built-in Testing

A.1.3.5 Forgiving Systems

A.1.3.6 User-Oriented Requirements Inter-
face

A.1.3.7 Complex noledge-Based Systems

A.1.4.1 Data Flow Approach

198



1 2
OVERALL WORTH DISPOSITION

Will
Coibine Answer

Lowest Highest ith Candidate
Worth Worth Other Question-

1 2 3 4 5 A R I M C (C) naire

A.1.4.2 Self-Interfacing Software

A.1.4.3 Predicate Approach

A.1.4.4 Exception Handling

A.1.4.5 Distributed Functions and Resources

A.1.4.6 Suitable Communication Intercon-
nection

' A.1.5.1 Transform Software to Improve
Quality

A.1.5.2 Formal Verification of Large Systems

A.1.6.1 High-Confidence Software Testing

A.1.7.1 Facilitating System Evolution

A.1.7.2 Impact Analysis of Proposed Change

A.2.1 Acquisition Manager's Support System

A.2.2 Software Technology-CompatibleAcquis it ion

A.2.3 Technology Transfer in the Software
Area

. Superperformer Competencies

A.3.2 Intensive Advanced Programmer
Training

A.3.3 Programmer Laboratory

A.3.4 Personnel Independence
z
o A.3.5 Improved Education About Software

e A.3.6 User Programming

A.4.1 Voice Replace Text

A.4.2 Built-In Training and Documenta-
tion

4. Of the candidates tentatively rejected (listed in Appendix B), are there any
that you think deserve further consideration at this time?

Yes No

If yes, which?

Why?

199



D. Other Coiments (Attach extra sheets, if necessary):

200



SPECIFIC CANDIDATE QUESTIONNAIR

Candidate Name and Number

1. Please rate the potential applicability of this candidate's results to, first,
your own organization's work and, second, DoD in general:

n. I Very'-applicable (could solve important/numerou8 problems)
Moderately applicable could solve some problems)
Limited applicability (might solve few/relatively

unimportant problems
No applicability (wouldn't solve any problems)

2. How much incremental improvement in the software process do you think could
result from this candidate in each time period:

None Low Medium* Rimh*
SShort-term( 4 years)

Mediu-term (4 - 7 years)
Lon -term 7 - 10 ears
Ver lon -term more than 10 ears

* If you checked "medium" or "high" in the short-term, please describe the

nature of the benefits you would expect.

3. Please rate the likelihood that the R&D for this candidate will succeed:

a. very likely

b. moderately likely

c. small chance of success

d. virtually no chance

4. Please rate the likelihood of successful technology transfer (i.e., the
likelihood that applicable areas will actually use it) both within your
organization, specifically, and DoD, generally:

Own Or. DoD

Very likely
Moderately likely
Little likelihood
Very unlikely

5. Estimate the potential savings that will result from this candidate's effects

on the software life cycle, both by reducing costs and shortening time:

Cost Savings Time Savings

e* None iLow ed. High Nee** None Low Med. High Phas,
conceptual/feasibility

requ irements
II deveo ant

overat of new systems

operations of existing
FFa stems

* Negative - will result in cost increase
• Negative - will lengthen time

6. Is your organization supporting any ongoing research or developing any products
relevant to this candidate that are not found in the candidate description?
Yes _ _ No __

If yes, please Identify (Attach description, if available)

201



7.Other Comentu (Please Include any references we have omitted that you
think important to this area.)

202



I


