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- by
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Abstract:

Tnis paper presents a bug understanding system, called sniffr, which applies inspection methods
to generate a deep understanding of' a narrow class of errors. Sniffer i' an interactive debugging aide.
It. can locate and identify error-containing iniplcmcentafions of tyr!t- il programming cliches, and it
t-'t detscribe them using tie terminology employed by expert progrimmers.

T[he debugginoi knowledge in Sniffer is organized as a collectioni of indcpendent experts which
understand spcciftc errors. Each expert fuinctions by applying a sleature recognition process to the test
pigrxrti (thle program under analysis), and to die events which to-xk place during the execuition of
Ott code. No tddctive machinery is involved. [his recognition is supported by two systems: the

iiche ctdr which identifies small portions of algorithms from a plan for the code, and the time
rO\ 01 Olitd provides access to all program states whichi occuirred duiring the test program's execution.

In a tpical scenario. the user interacts with Sniffer to identify it manageable subset of the test
program which seems to contain an error. lie then issues a complaint describing the expcted
behavior of that region of die code. 'ie sniffler system then selects and applies the relevant butg
cxp'orts. and produices a detailed report about any error which is discovered. Thiis repiort includes a

*highj level sumtmary of the error, an analysis of dhe intended function of the code in terms of its
comlponlent p.arts. and at description of how the particuilar data valuies and control paths involvcd
d~ii; g execution led to the manifestation of dhe error observed.

.1 lThis paper was originally submitted as a master's thesis to the MIT l}:,partment of Electrical
Hngineering and Computer Scicnce. on May 8, 198 1.
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I. Introduction

'[liis thesis presents a system, called Sniffer, which deeply understands some errors in code.

Starting from a bug description supplied by the user, the system can trace an error to its source,

recognize the purpose for the code involved, and describe tie problem at a level of detail appropriate

to an expert programmer. Sniffer identifies errors in programs regardless of their domain of

application, and it employs mechanisms which are language independent in form.

The design of Sniffer was motivated by the observation that debugging is currently an arcane

science which provides very little guidance for the task of identifying errors. The process of

recognizing bugs requires knowledge from a variety of sources, and typically involves a number of

different strategies for localizing errors. A partial list of these sources includes the program, its

intended purpose, the execution paths and data states involved in its execution (either inferred or

observed), a knowledge of the primitives of the programming language and of the language

interpretation process, and the mappings between the symptoms of bugs and their probable causes.

In the face of this diversity, Sniffer employs a generalized production rule format to represent its

knowledge about bugs. Fach expert (or production) in the system contains all of the information

relevant for locating and identifying a specific error. This approach defines an initial theory of bug

recognition. It considers errors to be positive entities around which knowledge can be organized, as

opposed to representing them as differences from an established norm. This mechanism makes it

possible for individual bug experts to contain extensive knowledge about particular errors. At the

same time, the production rule format constitutes a default theory of bug recognition; it is a simple

mechanism for localizing information which does not restrict the problem solving methods that can

be employed. It is also a modular organization in that new bug experts can be introduced with

.. comparative ease.

'The expert system methodology is particularly effective in the domain of debugging because it

cleanly coordinates the process of obtaining information from a number of independent sources of

knowledge. In a more elaborate theory, uniform methods (such as deduction) should be involved,

but perhaps as tools, as opposed to the guiding principles of the solution. At the current level of

sophistication. Sniffer shows that al expert system is a natural organi/ation for the task of

tmdcrslinmding errors.

Smil'ler is also a dcostrati n of the power of i ,pet ionm mlethods in program rcog ii ion and

FM ZOAD PAGZ mKhADILda 71
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analysis. The system generates its understanding of errors by recognizing the pattern of events
associated with particular bugs. It identifies algorithms by matching them against programming

cliches. and it determines the circumstances surrounding errors by directly examining a history of the

execution of the code. This research shows that inspection techniques arc a conceptually simple

altcrnative to the creation of deductive engines for discovering facts about code.

Sniffer is implemented in three major components' the sniffer system which contains all the

information relevant for recognizing specific bugs, the time rover which supports queries about a

program's history, and the cliche finder, which identifies fragments of algorithms in programs that

are used later as a basis for recognizing errors. (See figure 1).

The debugging knowledge in sniffer is organized as a collection of independent experts for

specific bugs. Each expert (or sniffer) can examine the user supplied complaint, the suspect piece of

code, and the execution history of the program to determine if the bug it knows about is present. The

sniffers do not contain background knowledge about the particular program being examined. Their

expertise lies in the domain of programming, and concerns typical problems in the use or

implementation of programming cliches. In the current version of Sniffer, each expert identifies a

narrowly defined error. The gencrality of the sniffers come from their ability to recognize

implementations of typical algorithms independently of the way in which they are coded. This ability

is derived from the cliche finder, which in turn is supported by a system, written by Waters [Waters

1978] that transforms programs into a regular and language independent representation called a

PLAN (see also [Rich and Shrobe 19761). The expressive power of PlANs are central to this thesis.

The cliche finder is constructed as a collection of procedures which recognize algorithms as

patterns in the PLAN language representation for programs. The object of the system is to raise the

lc\ cl of discourse about a prograim. Rather than talk about car and cdr operations, the cliche finder

nalikcs it possible to speak about aggregates the size of list enumerations or splice-in operations. '[he

cliche finder operates on the primitive structures of the PL.AN language, wkhich include an explicit

* reprc,,tation for the data and control flow within a program, and a taxonomy for the building

blocks of recursive and iterative routines.

' lhe time rover monilors the execution of the test program (the program undergoing analysis)

and p i ides acc ss t) the infirmation it records. It ren mlbers both control iniforma lilon, arid the

SIL.,,,,,in of \altes acqtired hb all data objects in tie code. At C\cry instance of a side-effect

I li.t''ioll I. lilt sl\,lvlll (lcpusil' s I rtI d Mhith pr'",il\i" t hat infolrmation. ()i elcrv lillDLtit cll t', d
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function return it deposits an analogous record as well. The result is a complete picture of the

program's state as it evolves through time. The information in this trace is sufficient to rewind the

program to an earlier point, or to run it backwards if that is desired. In addition, the time rover can

evaluate an expression as if it occurred at an arbitrary moment during the test program's execution.

Both the user, and the bug experts make use of this facility.

A general scenario for use of Sniffer is as follows: the user is sitting at a terminal, watching a

program run. At some point, he becomes aware that the output is incorrect, although the program is

still functioning. ie stops the execution and investigates the problem using the facilities of the time

rover. eI might examine the order of function calls on the stack, the values of several parameters, or

events and data in procedures which were invoked and which successfully returned some time ago.

-cntuallV, the user finds a particular execution of a region of code which seems to contain a

proiblem. He then makes a complaint to the sniffer system, of the logical form

(get-expert-help expected-result time-t code-region)

'Ihe sniffer system analyzes the code for expected-result and for code-region to obtain a quick

understanding of the type of the error. It then inxokes all the relevant bug sniffers.

A sniffer might look at a the flow of control through a specific execution of a nested conditional,

or compare the values in a list befbre and after i function was called, or ask the user for further

inbrmation. If the bug the sniffer knows about is present, it proditces a detailed error report. This

jcporr includes a high level sutmmary of the error. an analysis of the intended function of the code in

terns of its component parts, and t description of ho' the particular data values and control paths

in oh ed during execution led to the manif-'station of the error observed.

Sniffer was inplemented in ILisp on the N[I I isp Machine. [he ILisp Machine was chosen

h,'c,tte it has the high speed and Lirgc rtinco l ic keuired hN Snilffer. The programs

Sibl1ttd to tihe S.,ilml eiCl 1,0 ciie in I i-,p. lhti, detsion , siplificd the implementation

t nll'ttl"crikitin". ,l1mu igli it Ic',dittcl thew s( e tf n pio nt , khh I ,nuld be inal)/'ed. 1lio ever, the

lfthe l'c rei h remins, in Ian.uc indepe,.'ndentL t hlqies.

4.i
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2. A scenario using Sniffer

'[his chapter contains a scenario produced by using Sniffer. However, in order to create a

scenario which shows bug detection, one needs a test program that is spiked with errors. This

prograin has to be complex enough it) illustrate subtle errols, but also simple enough to avoid

becoming a distraction from the main part of the research.

2.1 The test program

h'lhe test program is a morphogenesis simulation, called nroso, which loosely models the growth

of a colony of bacteria. In prosper, the user provides an initial pattern of cells and a collection of

production riles which govern their division. 'Ilie simulation outputs a trace of the bacteria colony

through time.

The cells live on a rectilinear array called the grid. Fach cell occupies one square of the grid and

may have up to four neighbors, corresponding to the top, right, bottom and left positions of the array.

[very cell has three basic properties, a type, an age, and a division time (which is the next time at

which it is expected to divide). The productions cause cell division. They are local transformations

that apply to one cell in the context of its immediate neighbors. Productions can access any of the

properties of the adjacent cells. For example. a typical transformation (see figure 2) might map a cell

of type "c" surrounded by "a" cells into two "c" units. In order to make the necessary room, the

neighbors are pushed out of the way.

Prosper is implemented as a production rile system that operates on data kept in a priority

queue. This queue, called the e\ ents-gueuCl, orders the cells according to their division time. 'Hie cell

with the next ((14O west) division-tinc has the highest priority. (See figure 3 for the top level code.)

[he flow of control is as follows: the grid is initialized with some pattern of cells, and those cells are

assigned disision times and placed on the events-queue. 'Ilie central loop removes the first member

of the queue, and finds the set of productions which can affect cells of that type. One of these

candidates is selected and applied. The transformis are responsible for requetlcing any

sct0nl-gcllCra.lion LellsII A i1 the\ product. Pptspor lerminates llien the ecents quetle is empty.

'I h' gilI is illill icilwd 'Is .Illi h i.blk k',cd oil flit' lo alii ofcell,. ('lhis allo( s iicilenflal

Liirimettnl' W o hC disCuOiMcd. 'Allen skt'l.l,L' 111 l1lioms P.lo1w htCtllher.) I he tr.mishui li'litions aie

imlcd In 1 11h1.t ). if)' ii Ih 11 o1) of .1 he sh ,l 1' lad f lit .l III' ftl ' (cll llud o'ed. 1ht
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Fig. 2. Some sample tranisformiations

- -

I b

F ig. 3. mhe code for prosper

(DEFUN PROSPER (EVENTS-QUEUE)
((LAMBDA (TRANSFORNI-LIB GRID)

(PROG (MATCHES CELL 0IV-TIME)

(GRID-INIT EVENTS-QUEUE GRID)
LP (COND ((NULL EVENTS-QUEUE) (RETURN NIL)))

(DISPLAY-GRID GRID)
(SETQ CELL (TOP-CELL EVCrJTS-QUEUE))
(SEfQ DIV-TIME (TOP-TIME EVENTS-QUEUE))

* (SETQ EVENTS-QUEUE (REST EVENTS-QUEUE))
(SETQ MATCHES (FIND-TRACJSFORMS CELL TRANSFORM-LIB))
(APPLY-TRANSFORiS MATCHES CELL GRID)
(GO LP)))

* (CREATE-rRAtJZFORM-LIB) (CREATE-GRID)))

c. cnt-qLuete is in plemnc ( * a ,ortcd list. ith di i,,ion-liine wcd ;v; the index.
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2.2 The scenario

The following scenario was produccd with Sniffer. The dialogue starts after te program.

prosper. has been running for somc time, and has started to gcnerate incorrect Output at the tcrminal.

The problem is that the user expected a collcction or productions to cause an explosiwe growth of

cancer cells (cells of type "c"). and nothing happened. (Ihe productions are shown in figurc 2.

Figure 4 shows the output of prosper.)

Fig. 4. The output of prosper

R
A ARM ACA

RCA CCCA PER
RRR RAR RRA

U1IIDO.-2 IIJIMDOW-2 IMIDOU-2

The user's inp~ut is in lower case. and is preceded by a "<" prompt. Systcm output is in upper

case. I have interspcrscd comments describing the user's thoughts throu.hOLut dhe scenario.

.o..........

The user notices that the program is outputting bad data. and interrupts it to find the bug.

;Breakpoint BREAK; Resume to continue. Abort to quit.

(examine-his tory)

fut'js-ii, -' -26402, [CDR TRANSFORM]

I hi, indicates that the program was interniptcd at titlc - 264102. %%hich %%.is at the end of the

exettiti ,t| t)l'the.' fiorll (COR TRA uS rOR/.1). I'0( Im 11'11, is 1 ;t ,.kste l t ,ti1 n dillck .,. hall ,.Iriahle.
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The user moves tie focus of attcntion to the most recent point in time at which prosper was being

executed.

< (move-to (past-when '(in prosper)))
focus-lime =-26373. GRID*

[his request locates a moment immediately inside of p~rosper, as opposed to a time within a function

that pt osper calls.

< (print-frame)

Execution time: -26373, GRID*
Function: PROSPER
Executing at:
(NAMED-LAMBD' PROSPER (EVENTS-QUEUE)

((LAMBDA (TRANSFORM-LIB GRID)
(PROG (MATCHES CELL DIV-TIME)

(GRID-INIT EVENTS-QUEUE GRID)
LP (COND ((NULL EVENTS-QUEUE) (REIURN NIL)))

(DISPLAY-GRID GRID)
(SETQ CELL (TOP-CELL EVENTS-QUEUE))
(SE10 DIV-TIME (TOP-TIME EVENTS-QUEUE))
(SF10 EVENTS-QUEUF (REST EVENTS-QUEUE))
(SEQ MATCHtES (FIND-TRANSFORMS CELL TRANSFORM-LIB))
(APPLY-TRANSFORMS MATCHES CELL GRID$)
(GO [P)))

(CREAJE-TIIANSFORM-LII) (CREATE-GRID)))

I lie function print-framec displays the context of the current excuLtionl time. Iocus-jine is at top

level during tie execution of prosper. ait the end of tie evaluation of the atom. GRID. After this

1iioMent., the flow of control enters apply-transforms. and eventually leads to the interrupted

* execution of (CDR TRANSFORMS).

Since tie problem is that cancer cells arc not dividing, the user checks to see if any are schieduled

ti processing, le prints out the contents of the events-queue.

< (@ focus-Lime 'events-queue)
((24 A (-2 0) 2) (24 A (1 0) 2) (24 A (1 1) 2) (24 A (1 -1) 2) ..

* I The Fuinct ion. @. causces a L isp fon In to he evaluated in thle Lontext of the time supplied as its first

are oie or. I hie cints-queuec is a repi-esen ted ais an wsociat o m list of di vision -times and cells. Thle

car of ecwh item Is, the diision time. ind thec cdr represents a cell.

I lhe iiser prints out just the tv pecs ot the (clls hvinch atie ili the queue.

-w- - - - . .



T hc scenario -15 - Section 2.2

< (@~ focus-time '(mapcar 'cadr events-queue))
(A AA A... )

'[he cells near tile top of tile evcnts-queue should bc cancer cells and they arc not. Howevr, the

cll which is currently being processed has already been removed from the qu[CUC. Thei user examines

its value.

< (@ focus-time 'Cell)
(A (0 -1) 2)

The user then Finds the most recent time when a cancer cell was being processed. Its division

should have instigated explosive growth.

< (move-to (past-when '(Just-became-true
'( ? '(eq (cell-type cell) Ic)))))

focus-time =-00720, [TOP-CELL EVENTS-QUEUEJ*

This expression returns thle moment when the variable, CELL, became a cancer cell. 'The request

is implemented by scanning the execution history for the moment when the predicate,

(just-became- true ... ) applies. Theli variable "?" accesses the scan-time.

( (print-frame)

Execution time: -00720, [TOP-CELL EVENTS-QUEUEJ*
Function: PROSPER
Executing at:
(NAMED-LAMBDA PROSPER (EVENTS-QUEUE)

((LAMBDA (TRANSFORM-LIB GRID)
(PROG (MATCHES CELL DIV-TIME)

(GRID-INIT EVENTS-QUEUE GRTn)
LP (CON!) ((NULL EVENTS-QUEUE) (RETURN NIL)))

(DISPLAY-GRID GRID)
(SETQ CELL [TOP-CELL EVENTS-QUEUE]*)
(S[TQ DIV-TIME (TOP-1IME EVENTS-QUEUE))
(SE1Q EVENTS-QUEUE (RESt EVENTS-QUEUE))
(SETO MAICIIES (FIND-IRANSFORMS CELL TRANSiORM-t IS))
(APPLY-IRANSFORMS MATCHES CELL GRID)

* (GO LP)))
(CREATE-TRANSFORM-LIB) (CREATE-GRID)))

Pxecution is at the end of (TOP-CELL EVENTS -OULUE ).just before the settq flinction returned.

< (@ focus-time 'cell)
(C (0 0)1)

I h'is~ cell shmoilti l1;1%eic~'.~Y~ and .%ct it dlid riot. I1 lie ex e~pme'.'.on looks t~ri'wril to a

-7
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time when the transformations which could apply to CELL have been selected, and caluatcs MATCHES

in that environment.

< (@ (future-when '(eq (current-function ?) 'apply-transforms))
'matches)

((OLD-AGED-CELL DIE) (CANCER-CELL-WITH-ONE-NEIGHBOR METASTASIZE))

MATCHES is a list of two transformations. Each transformation has two parts, a predicate which

determines whether the production can apply, and a function which implements the transformation

itself. The first candidate in MATCHES removes old-aged cells from the grid, the second

transformation causes explosive growth. The user determines which one was selected.

< (@ focus-time '(old-aged-cell cell grid))
NIL

''his expression reevaluates the predicate for the "die" transformation in the current

time-environment. The result is necessarily identical to the one returned by the original invocation of

that form in the test program. Since it is NIL, the metastasize function must have been selected

instead. The user moves forward in time to a moment when top level code in "metastasize" is being

evaluated.

< (move-to (future-when '(in metastasize)))
focus-lime = -01751,

-(NAMED-LAMBDA METASTASIZE (RIGHT-CELL KEY-CELL) ...
< (print-frame)

Execution time: -01751.
-[NAMED-LAMBDA METASTASIZE (RIGHT-CELL KEY-CELL) ...]

Function: METASTASIZE
Executing at:
•[NAMED-LAMBDA METASTASIZE (RIGHT-CELL KEY-CELL)

((LAMBDA (NEW-CELL LOCATION)
(INCREMENT-DIVISION-COUNT KEY-CELL)
(MAKE-ROOM-BETWEEN KEY-CELL RIGHT-CELL GRID)
(GRID-INSERT NEW-CELL LOCATION GRID)
(EVENIS-QUEUE-INSERT NEW-CELL (+ DIV-TIME 2) EVENTS-QUEUE)

*" (EVENTS-QUEUE-INSERf KEY-CELL (+ DIV-TIME 2) EVENTS-QUEUE))
*(CREATE-CANCER-CELL) (CELL-LOCATION RIGHT-CELL))]

I he lls on eccnts-qocuc-imcrt should ha~e placed the cancer cells, new-cell and key-cell, on

[lte v% ll st1ulltetile %ilh ;j hirh pri , wty tdicsic n time, I he user checks to see if the events-queue was

motifit'd 11 an tmll e (l1ll tlug iC esc lithu00 of" that pr1p :cdlure.
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< (move-to (future-when '(eq (current-function ?)

'events-queue-insert)))
focus-time % -02672,

*[EVENTS-QUEUE-INSERT NEW-CELL (+ DIV-TIME 2) EVENTS-QUEUE]

< (unmodified* (@ focus-time 'events-queue)
( (end focus-time) 'events-queue))

T

In an environment where different versions of an object can be compared across time, several

new types of equality become important. Unmodified* is the strongest test possible. (See the section

on equality and coreference for a detailed discussion.) The expression (end focus-time) returns

the time corresponding to tie end of the evaluation of the current function.

'The results of the test confirms the user's suspicions. The insert function was called, but the data

never entered the events-queue. This is a suitable point to ask the sniffer system for its opinion.

< (get-expert-help '(events-queue-member new-cell events-queue)
focus-time
(end focus-time))

The gct-expert-help function invokes tie sniffers. The first argument is a L.isp predicate that is

expected to apply (to be non-nil) arter the execution of the region of code specified by the last two

arguments has occurred. In this case, that region happens to enclose a single s-expression (the call on

events-queue-insert). The sniffers use the predicate as a partial specification for the code in tie

region. They examine tie code for the predicate, and the code inside the region, as well as the

control flow and data values involved during those sections of execution. The sniffer which

* identified the bug produced the f)llowing report.

,.
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Rug Sumnmary

The bug is a case of violated expectations. The function METASTASIZE
called EVENTS-QUEUE-INSERT with the apparent intent of inserting
NEW-CELL into the EVENTS-QUEUE by side-effect. The insertion did not
occur because EVENTS-QUEUE-INSERT is an insertion function for sorted
lists without header cells. It does not act by side-effect when the

item sorts to the beginning of the queue. It conses it onto the top
of the list instead.

Analysis

The function

(DEFUN EVENTS-QUEUE-INSERT (ITEM TIME EVQ)
(PROG (NEW 01-D ENTRY)

(SETQ ENTRY (CONS TIME ITEM))

(COND ((OR (NULL EVQ) (BEFORE? ENTRY (CAR EVQ)))
(RETURN (CONS ENTRY EVQ))))

(SETQ NEW (CDR EVQ))
(SETQ OLD EVQ)

LP (COND ((OR (NULL NEW) (BEFORE? ENTRY (CAR NEW)))
(RPLACD OLD (CONS ENTRY NEW))
(RETURN EVQ)))

(SETQ OLD NEW)
(SETQ NEW (CDR NEW))
(GO LP)))

is recognized as a non-header-cell insertion function for sorted
lists. In this execution, the item to be inserted was (12 C (-1 0) 1)

and the value of EVQ was
((24 A (0 1) 2) (24 A (0 -1) 2) (24 A (-2 0) 2) (24 A (1 0) 2) ... 5

The ordering test. (BEFORE? ENTRY (CAR EVQ)) sorted the item to the
top of the list, and therefore the splice-in did not occur.
EVENrS-QUEUE-INSERT returned (CONS ENTRY EVQ) which evaluated to

((12 C (-1 0) 1) (24 A (0 1) 2) (24 A (0 -1) 2) (24 A (-2 0) 2) ...

The function

(DEFUN METASTASIE (RIGHT-CELL KEY-CELL)
((LAMBDA (NI W-CEIi. LOCATION)

(INCRLMiNI-I)IVISION-COUNI KEY-CELL)

(MAKE-ROOM-IEIWEEN KUY-CE[L RIGHT-CELL GRID)

(GRID-IN:;IRT NFW-CEIL lOCATION GRID)
•[EVENIS-QIJIUE-INSERT NEW-CELL (+ DIV-TIME 2) EVENTS-QUEUE]*
(IVFNTS-QIJIUL-INSERr KIY-CELI (+ DIV-TIME 2) EVENTS-QUEUE))

(CRLATE-CANCIR-CELL) (CIIL-LOCAIION RIGhIT-CELL)))

ignores the value returned hy [VENTS-QUIUE-INSERT on the indicated
call, and consequently the results of the insertion were forgotten.

I fit' L h.1e1ii iN, Ii( h ll)ll 11Sthi SI 11. i J,L Iihcl i thC fiblhwiIg chapters.
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3. The Time Rover

'The Purpose of the time roving facility is to allow the user, and the bug experts, to query the

execution history of the program undergoing analysis. The system was designed to support the style

of investigation displayed in the scenario. In order to do this. the time rover maintains a complete

trace of the events which occurred during execution, and allows arbitrary Lisp expressions to be

evaluated as if particular program states were in effect.

The best way to explain the issues involved in time roving is to discuss its implementation. This

is not intended as an overture to the inclusion of excessive detail. Since Sniffer was written to

demonstrate a point rather than as a system utility, it was implemented with a conceptually simple

design. Efficiency was not a concern.

3.1 Terminology

The execution history of a program refers to the sum total of events which occurred while it was

running: tie flow of control, the sequence of side effect operations. etc. The execution trace refers to

the physical structures which are used to represent that history.

Within an execution history there are various named times, or moments. 'me can ordinarily be

thought of as an integer. It starts at 1 and increases monotonically as execution progresses. The

beginning and the end refer to the first and the last moments during the execution of the user's

program. locus-lime corresponds to a specific moment in the execution trace. It is the focus of

attention within the history.

There is also a convention for naming directions. Earlier moments are closer to the beginning

and later moments are nearer the end. Figure 5 illustrates these ideas. A time-environment is an

abstract object in which one can look up the bindings of variables and their properties, etc., which are

in effect at a given time. For lack of a better method, all moments will be referred to in the present

tense.

I im
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Fig. 5. V'ocabulary ror discussing time traiel
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3.2 lnitilcmcntation

The time rover is composed of two parts, called the keeper and the seer both of which are

constructed as modified cviluators for Lisp. The keeper is Used (primaiily) to generate a history for

thc test program. It Call bc th1oughIt of as a careful evaluator which deposits records as it executes

forms. The scer listens to the User's debugging requests. It has thc ability to invcstigatc and compaire

any o~f the sttes assuciated with the test program's, history.

In the scenario, the keeper procc-,sed the oi iginal Cxccution of p rosper. and Al Forms typed by

tie user were handled by the seer. Trhe special function, 0, invoked n second uisage of (lie keeper; it

a caused die keeper to evaluate an expression in die conltext of a specified time. (In some senise, thie

igetdistinction betwen the keeper and the seet- is that the keeper can only think aibout one

mortia at a time. hi Ic the seer- kniows about all tirries at one monlt.)
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9 3.3 The keeper

The keeper implements a restricted version of Lisp, called K-liso, which is differcnt from normal

Lisp in two ways: it considers code to be an immutable object, and it uses the execution trace as the

environment for containing K-lisp objects. This includes "heap" data and variable binding

information. The execution trace is a structure which totally orders control flow events, and

side-effects events (changes in the contents of memory cells) with time. Conceptually this

information is divided into two parts, the control flow history, and the incarnation series.

The control flow history records all calls and all returns from the evaluator. It is a

straightforward extension of the Lisp stack, where no information is forgotten. Every call moment

contains a link to the invocation time of its parent, and every return montent contains a link to its

matching caller. (See figure 6.) This history contains more infonnation than is necessary to record

the control flow unambiguously (only the choices taken at branch points are strictly required), but it

was more convenient for my purposes to have the data in this form.

Fig. 6. A control flow history
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The incarnation series is a time ordered sequence for the values which each memory cell acquires

during the execution of the test program. This information is stored in terms of [name, binding]

pairs, called trace-cells. A trace-cell is an immutable object that records the contents of a cons (or the

value of an atom) at a particular time. The name component of a trace-cell is analogous to the

address of a cons in Lisp. It provides a handle on all of the versions ofa given cell. The binding field

of a trace-cell contains a car-part and a cdr-part which represent the car and cdr of the corresponding

I isp cons. Trace-cells are invisible to the programmer.

In the keeper, a value is a name. The data associated with a given name (id or cell-id) at a given

time is found by scanning the incarnation series for the most recent trace-cell with the appropriate id.

lhis search fulfills a role which is exacly analogous to looking up an address in normal Lisp. During

the evaluation of the test program, the current execution time is used as the starting point for

scanning the incarnation series. During debugging, that time is supplied by the eer.

The primitive operations of K-lisp are modified to accommodate trace-cells. The functions

%hich produce side effects cause trace-cells to be deposited, and the information obtaining

operations, car. cdr, and sYineval are modified to access these structures via search. ( will discuss the

new versions of eq and equal in a later section.) For example (see figure 7), the function cons in the

statement

(cons 'a 'b)

produces the trace-cell Icons-24, a.b], which indicates that the binding associated with the cell-id,

('011s-24 represents the (traditional) cons of the atoms a and b. (The cons function is a side-effect

operation in the sense that it allocates storage where none was required before.) Trace-cells, like

conses, contain the values of Lisp objects. The statement

(cons a b)

o midl produce a different trace cell, who's Ci'ar-/,l was the alue of a and who's ((dr-part was die

ihlic of1" b. thc imnctions rplaca and rplwl creale similar trace-cells, except that the name field

contlins the id of tile cell which is being updated. [he function sctq in the statement

(setq h 3)

rcmits in a trace-cell who's nmne i,, the aton. It. and v ho's binding field has a car-pti containing the

mmrmr 1. (.1 b m00% mtc n111 l l0 ned to hmK e IiL,,-'.kchi, to record the ScqncmV of, their alhlics.
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Fig. 7. Somc e~xamiple trace-cells
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Numnbers and similar constants can appear in the binding parts of' trace-cell.-, but not in name fields.

The operations car, cdr. and symes-ial cach mnap a ccll-id int another ceu-id. Thbe car ofa cell-id is

the car-panr of the corrcsponding trace-cell (Elhc onc in eft'cct at the current timc). Similarly, die cdr

of' a ccdt-id is thc cdi-part of' thc asiociated trace-ccu. All of thcse runctions involve in identical

* scarch through tie incarnation series. I-or example, the function vpncval takes in an id (which mnust

bc an atom name), scans thc incarnai ion scies for die most recent trace-cell with that id in the namc

fid, and outputs the car-par! of the trace-cell which is discovered.

3.3.1 An exaniiIc of tlie evaluat ion process

1 IFigure S shows a collection of sipshiits of' the incarnation series as the Iboliowi ng statements arc

executed.
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(setq y (cons I nil))
(setq z (cons 2 y))
(rplaca (cdr z) 3)

The first event is the creation of the trace-cell for (cons 1 nil ). The name field is arbitrarily set

to cdl-I, and the trace-cell is deposited at time 1. 1he setq operation deposits a trace-cell with the

name field y. and a binding field who's car-part is the cell-id, cell-I. No pointers are involved.

Similarly, in dhe trace-cell which is deposited by (cons 2 y), the value of y is represented by cell-I

again. This process continues until ( rplaca (cdr z) 3) is evaluated. In normal lisp, this side-effect

would have changed the contents of an existing cell. In the keeper, a new trace-cell is deposited with

the same name field, cell-I.

In order to evaluate lisp expressions, the keeper has to find the appropriate trace-cell every time

a cell-id is referenced (there may be many with the same name). For example, in figure 8, the value

of y at time-2 is found from trace-cell #2 to be the cell-id, cell-I. To print out the value of y, the

binding of cell-I at time-2 has to be printed. In this case, the contents of trace-cell #1 are the correct

result. The list "(1)" is printed.

In order to evaluate the predicate (@ time-5 '(car y)) the keeper has to discover that y was

changed by an indirect side effect through z. This process is accomplished as follows. Starting from

time-5, the keeper looks for the most recent setq record for the atom y. The value of y turns out to be

the id, cell-I. which was discovered from the trace-cell deposited at time-2. Next, the keeper takes the

car of cell-I. in the context of time-5. It scans backwards from time-5. looking for the most recent

Nversion of cell-I and returns the car-part of the resulting trace-cell. Trace-cell #5 has the appropriate

name. and the number "Y is returned.

In order to print out the elenenLs of a list in the context of a given time, the keeper has to

i tclpiret cach of the cell ids in'.olvcd. For exaniplc. the value of z at both timne-4 and time-5 is cell-2,

but the list it represents at timc-4 is composed of trace-cells #3 and # 1 (the list "(2 1)"). At time-5,

z is built from trace-cclls #3 and #5. corresponding to the list "(2 3)".

€211M
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" Fig. 8. The dvielopment or the incarnation series during execution
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3.3.2 Efciency considerations

The time rover was implemented with a list like representation for its environment in order to

make the syster easy to code. Once it was implemented, I discovered that it was slow, but not quite

so slow as expected. For simple requests, the keeper responded almost as quickly as the normal Lisp

interpreter. However. the time requiremecnt for eachi refereICC unllfortunately increases with the size

of the execution [race. At the end of thle scenario, the time rover required approximately half of a

second to locate eachi cell-id.

[he searches invol~ed in running the test programn canl he entirely eliminated by introducing a

niew data structure, called the now-array, to maintain the end timic-en% ironnient. (T[his environment

is the one normally associated wvith a running program, it always holds the state of tie latest moment

* of execution.) T]his table would contain a mnapping of cell-ids to their current bindings. In different

words, the now-array would be at shiallow binding of cell-ids to car-part, cdr-part pairs from

trace-cells. Since cell-ids can be chosen freely. they can he set uip as indices into successive memory

locations of the now-array. T[his would essentially eliminate all scarches for cJIl-ids (at a factor of two

mvcrhead in space).

The now-array would not speed up the excutIionl of debugging requests. These requests

typically access a numbecr of timei-en\ironnienits ill r-apid suIccession, which suggests that a search

paradigm is more reasonable than the alternative of updating the now-array to contain the

-timie -environmnittoffiwuts-ti~c \,\;.he never fiwus-ittle changes.

A second improvemnent would be to move to a non-linear representation for the execution trace.

Since (lie critical issue is to find Mel-ids as fast ats possible, a hashing scheme onl cell names is a

p rvsi hliiv. ( did not emiploy this approach because there was somle subtlety in volved inl integrating it

%\ithi the riced to iepi-esent alt ~mate evaluation sequcrnces (see below).

In aonv case. the meminr\ requiriement for the keceper grows v. ith thle du!rationI ot execution. At

"uOHI poinlt. this "ill thre-ateni to exceed the capacity of any machine, in Mi ich ease it would be

* p~ ~sihleto a~ie .bout cc rtail pi ortions of thle execution history. These legions would then

hecume opque to tile timte ro~cir. lom running thie scenario, no ienlory capaceity problems were
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3.4 The seer

fllie function of the seer is to provide the user with a uniform mechanism for operating on data

from the execution trace, and for manipulating the objects defined in his own local debugging

enN ironment. [he seer is constructed as an cvaluator for ILisp that is extended to coni.iin

time-stamped objects, called i-pairs, which refer to data from the incarnation series.

A I-pair contains two parts, a reference lime and a cell-id where the reference time specifies the

time-environment to use for interpreting the cell name. Reference times are sticky, in the sense that

the car of a t-pair is another t-pair with the same reference part. This approach allows the user to

change the perspecti~e used to view an entire lisp object by altering the reference time attached to its

topmost cell-id. A t-pair is represented here as a bracketed pair of the form I time id.

The primitive operations of the seer are modified to accommodate this new data type. If a

primitive is called on a normal Lisp object, then it is esaluated in the normal way (this might yicld a

t-pair). Wen a primitive is applied to a t-pair, it is evaluated with the aid of the corresponding

operation of the keeper. For example, from figure 8, symeval of {timc-4 1.1 is the t-pair

{time-4 cell-2} where cell-2 was obtained by applying the keeper's symeval function to z at time-4.

The function "@" (which invokes the keeper's evaluator on a Lisp foim) can be used to state the

effect of these primitives in a more concise form.

(symoval ft id)) => (@ t '(symeval id))
(car (t id}) =) (@ t '(car Id))
(cdr ft id)) => (@ t '(cdr id))

@ returns a t-pair who's reference time is the time supplied by its first argument.

3.4.1 Alternate timne-tracks

It is not immediately clear how to interpret the application of a side effecting primitive to a

ti me-stamnped object. The issue is that a t-pair refers to an object from the history of the test program

*: which was neer subjected to the side efl'cct that the user is requesting. (Information obtaining

operations are henign in this sense. They ha e no potential for al tring the data in the trace.) If the

ex'cution tr+aicc i,, intended to record the actual hi story of the program, the question is how can side

ct Itcts created I> the dehiiugerl he Ietored in?

Iherc te illin xf e l l lo 'lf,10'11 m 1 to lC-SoIc this question. If the dchtigging ,es''oom is

77v - - J
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considered to occur after thc test program is executed then it side-effect to a variable, say at time-JO.

Would actually occur at a nOIoment which is later than any morncnt in tie execution history. Th'lis

implies that a debugging request which accesses the supposedly side-effected data at time-li finds

that nothing has changed.

The approach I take is ito interpret all debugging requests that access the history of the code as

explorations in to alternate time-tracks for the test program's development. These debugging requests

are processed as if thl- test program executed them at the specified time. F~or example, in the context

of figure 8. the effect of the statement

(@ time'-4 '(rplacd (cdr z) 1))

is to grow a branch off of the incarnation series at tinie-4 (forming an incarnation tree) and to deposit

a trace- cell for cell-I at that time, 'The side effects created by the fuinctions setq. cons, and rplaca are

handled in a similar way. (See figure 9.)

'[his approach implies a small redefinition of the function "W'. I have described @ as a utility for

invoking the evaluator of the keeper. To be more specific, @, in the statement

(@ limne 'expression)

instructs the keeper to form at branch in the incarnation tree, and then hands the expression to the

keeper to be evaluated in the context of the tit ie-environment defined by time. (The seer evaluates

the parameters to @.) @ returns a t-pair which packages together the cell-id returned by the keeper

* and the time at " hich the keeper finishes its eValation. A time can be interpreted as at pointer into

(lie incarnationt tree. w hich hi-directionally liniks trace-cells.

The seer Canl use the function @ to retrieve information from the environment of the keeper, but

Ohw kceper cannot accCS datia defined in the seer. 'This occasionally causes some confusion. For

v'\ilml Ic. thc t'0llom in exprcs',ions (in the seer)

(setq tD '(a b c))
(@ time-2 '(setq y 0))

Aill i..''ilt in anl error A hen the keeper ificiempts to .1-ntevl' D at( tini-2, assuming that D is not defined

inl th1C (olitxt (it- the test programl at thait time. (The keeper' does ha~c limited access ito the seer, inl

Illi it 1( tun [lilt trn' Illl tiiv Ii h ilcle detirrcN itl the courise of'dchutig!ing. fihesc functions. motst he

in -l~li Ilic iii~not reh'iviice 1 pis.

11. J' lf-111 (d f-- 1111, t-. it Im.o i it v.'---'- lit-tlkl ft e W -*, iil m 41 s b
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Fig. 9. \n cxaniple of an alternate time-track
This figurc shows Ue growth of a branch in the execution history in response to the code statemcnt
shown.

+M-(setk (iconsin)

SI I,
I (sJ (c ,,s z .))

* _I

(rptac.a cdr t) 3)

(r,~(, a r ), ) ,ij.iIi 'I

I.,

- - .. .' -"U - '-i-- r- .. i'=... T :" -I i T~



Alternate timce-tracks - 30- Section 3.4.1

thc following rewriting rules.

(symeval (time id)) => (@~ time '(symeval id))
(car (time id)) 0> (@1 time '(car id))
(cdr {time id)) 0> (@ time '(cdr id))
(setq (time id) x) => (@ time '(setq Ad x))
(rplaca (time id) x) => (@ time '(rplaca Ad x))
(rplacd (time idl x) => (@ time '(rplacd id x))

The information obtaining operations create degenerate branches of the incarnation series (the time

does not increase), and the side effecting operations augment the data inl the trace.1 Note that the

cons of two 1-pairs within the seer is not implemented in terms of tie keeper's primitives. The

statement

(cons (@~ time-4 'z)(@ time-2 'y))

simply creates a cons cell in the environmient of the seer Ahich contains the resulting t-pairs.

3.4.2 Equality and coreference

The concepts of equality and coreference have to he extended to fit an environment where many

versions of dlata cells are available simultaneously. Inl normnal L isp, therc are only two ways to

compare objects. One can ask if' they are eq. mecaning that they ha~e the same name or address

0% hich is equivalent to asking if they are coreferentQ. or if they are equal. meaning that they contain.

iso nioi ph ic data structures.

Ini the seer, more distinctions are a~ ailable. One can ask if two t-pairs refer to the same object in

the keeper (I call this test unmodtfied). or if(%two cell-ids are the same (cq). These questions arise when

objects, are compared across times. I-or exaimple (See figure 8).

(eq (@ time-2 'y) (@ time-5 'y))

is i tic I [Cic. 01k. 1ist coiiiaiiiled ill y is diffci t atl thle tNo timesc although the top level cell-id which is

tie %,tile ify is oi-Iin both cases. (y ci n ains ( 1) at ui- 2 and ( 3 ) at tinic-5.) 'lhe staterent

h ; 1 no 'It 1, i ri.k Nill, t 1 lit), folt - 1, pik Lu 11111k ill FL m i ?lIn l~o k , 1;ii c lilt' ,k'd 11:ii 111C C\ci llloti Iritci (hei

LI11 d- hii l ,~ W. I L I I k (.11 1 1I 1 lolt ill, ILL1po of' ii ll, 11111111 I , I .' i ,11 it dot,~ i i I i o (li I lt it~ i ll li,
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(unmodified (1 time-2 'y) (@ time-5 'y))

is false. This test shows that the value of y was changed between the two times.

When these predicates are extended to lists, one can ask if two lists contain the same cell-ids at

every level (called eq*), or if they involve the same trace-cells at every node (unmodified*).

Umnodified* is the coreference test in the time roving environment. Eq* is a weaker function. For

example, suppose that an identical copy of the variable y is created by executing the statement

(0 time-4 '(rplaca (cdr z) 1))

(see figure 9). This deposits a record for cell-I in a side branch at time-6. In this case, the expression

(eq* (@ time-6 'z) (0 time-4 'z))

is true, but

(unmodified* (@ time-S 'z) (@ time-4 'z))

is false.

Note that two lists are not necessarily identical if their top level trace-cells are the same. There is

always the possibility that some internal cell has changed across the two times. From figure 9,

(unmodified (@ time-5 'z) (0 time-4 'z))

is true (z evaluates to cell-2 in both cases), but

* (unmodified* (0 time-5 'z) (0 time-4 'z))

is false. (Cell-I was updated between the two times.)

'Uhe function equal remains essentially unchanged in the context of the seer. It still tests for

isomorphism of structure. There is no requirement that the lists share the same trace-cells or even

that the same cell-ids arc involved. The atoms at the leaf nodes of the tree must be identical.

The relationship between these finctions is summarized in figure 10.

4,,
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Fig. 10. The heirarchy of equality tests
The equality tests for lists represented in trace stncturcs are stronger than the analogous tests on
cll-ids: eq* implies (,q and uniwodified* implies uninu, tfied. The converse is not true. Unmodified*
implies 'q*. bccausc lists with the same trace-cclls must contain the same cell-iids. lq* implies equal
because lists built with corresponding cell-ids must match at the level of atoms.

ti
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3.5 A sumnmry of the kecper and the seer

The keeper and the seer define a mechanism that allows the user to execute and then examine the

history of a test program. The keeper creates the execution history, and evaluates any requests

submitted by the seer which access that data. The seer provides the user with a Lisp environment for

executing debugging requests. It answers questions about die execution history by employing the

F.cilities of the keeper. Figure 11 shows the relationship between these systems.

Ihe o~eall en'ironment which the system presents has the user's debugging requests occurring

in a kind oi, stpcr-tirne whi,.h is not ordered with respect to the execution hiry. From the user's

"1 Cpci.tUvc..1l 41C the in f'Oriiatiln In tle trace is eqioally accessible.

I he use ofa ,lternace time tracks makes It possible to moc to moments in the test program's past

anld e ,flate cirhitrary lisp expressions in those contexts. The os'er can definc t'unctioins, and execute

dichinill any tme-environment. or explore hypotheses .ihoot the tet prograla's behavior by

rec\cttitinL' poitiovs of the coIde ol niodijied d.ita. The ,aleral.te hIstnie.; % hich these actions create

L.11a tlC IcI, .C he n' es li2.Ited in the ,ime indi er.
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Fig. 1t. An overviewi of the Oine rov'er
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The functions of the keeper and the seer could conceivably be combined into a single evaluator

that would have an extra degree of freedom, namely time. In this system. called the time-probe, it

would be possible to write programs that routinely call proccdures which will be defined in the future

to modify data which was current at some time in the distant past. Tbe difference between the time

rover and this hypothetical system is that the time-probe can travel in its own history. Neither the

seer nor the keeper has this ability (and it is not clear that they require it).

The creation of the time-probe is left for future research. 1

3.6 Methods for specifying times

The prinlitiscs for locating times are cast in the framework of search through the incarnation

series. There is a notion of the focus of attention, called the ficus-iime. which can be moved

throughout the execution history. The searches for other moments move either forward or

backwards from that time.

Time is it data type recogniied by the seer. [here are two functions which yield times;

future-whe|| and past-%hen. 'Ilie syntax is

(future-%hen fonn)

wherefi~rm is an arbitrary predicate evaluated by the seer (it may contain calls on @ which invoke the

keeper). The function fuiture-when scans forward in time from focus-time and returns die first

moment when fi)rm yields a non-nil (and non-error) result. Past-when performs the analogous

function for mov ing towards earlier moments in the history.

I he Implementation tor these functions is fairly intricate. It would be prohibitive to attempt to

,,pplt form at eerv moment i the history which is scanned, so the search functions first compute the

rvfcrence set of cell-ids accessed h fiwrn, and then ioc atention to the nearest moment when one

of th( se cell-id, ha1s a different binding. At the rcsulting time. fJinr is reevaluated and the refrence

set computed once again. The Iprocess repeats until fiiit reituns a non-nil value (success), or until the

scail It p)asses hioud the bound,iries of tile iiic itnation series (failure).

I he search mcchanism is alst capable of detecting transitions in the valuies offirl. For example,

I Ili, - mict prohk \ ... ld h:%,' |i t- 1.Il % 1111:1 1".'A \t: '+ '. lI.111, pinIlfllm litd m t (110 1,* mli p a ll'r fl,,! firv poo, i I lht
, 
mv.t' rs

Yd "t' 1 , 1 iI ll "1 dl "', d 11, Il . I t 1, p, . 1, ,111 1- 1,, 111h III l (lt 11, % lf ,, i t it, d, Il l ,ll r dill w ill? 0 1 \ q,,1". . a

11,B 1it,11 kl, I 1 m i tIli o lh . 11111t 1i. i l !* 11. 1" ' 1 [ I 1 1, i 1 * lt I i l ,l h1 mI 'v I il I i \ .' %t ,i , ll ;ih [ tii t, t h .i
'

t , l ed t' a lll
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the expression from the scenario,

(move-to (past-when '(just-became-true
' ? '(eq (cell-type cell) 'c)))))

caused the form

(@ ? '(eq (cell-type coll) 'c))

to be applied at the moment discovered by the scan, and the immediately preceding moment. 'he

function, just-became-true, identifies a particular kind of transition in the value of its form. Since

a scan can cause expressions to be applied in time-environments where they yield errors,

just-became-true looks for a transition from either a nil or error result, to a non-nil value. The

implementation of sniffer contains a number of similar functions: error-to-true,

error-to-false, false-to-true, etc., as well as two special functions,

just-about-to-become-true and just-about-to-become-false which return the moment

immediately before a transition is going to occur. (Ail transitions are defined to start at earlier times

and finish at later ones. The transition functions are not sensitive to the direction of search.)

The search functions can also employ predicates which depend upon data in the control flow

history. For example. the expression

(future-when '(during metastasize))

(not shown in the scenario) returns the next time when execution is within the definition of

metastasize. Since the records in the control flow history provide the code associated with each call

and return from the evduator, detecting during-nc.%s is not very hard. The procedure ascends the

parent hierarchy of function calls to see if it locates the expression which is the definition of

metastasize.

It turns out that the interaction between these kinds of requests and the search mechanism is

. somewhat tricky. In order for the search functions to know when next to apply a form, each

l predicate on control flow has to identity the borders of its current truth value. In some cases this is

easy: dur i ng knows that it ceases to apply at the endpoints of its span (which are trivially available

froin the execution trace). I lowever, if dur ing does not apply at the current moment, it has to find

i6, Il h bordering times % hcie it does. Ibis pamrtiily suh crts the purpose oi the :Y'an mechanism, which

\.Is ,it'lnplille to4 find thosc ,omleums It) h gin -Aitlh. Somc more sophisicamted alproach may be

t.illed for.

I '; "" i ' .. .T. ..
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4. The cliche finder

Thie cliche finder performs two functions within Sniffer; it recognizes small algorithms from the

test program in order to provide the bug experts with aj conlte.xt for identifying errors, and second, by

identifying algorithms, it raises the level of the Nocabulary which the system can use to describe code.

For examiple, in order to identify the error described in the bug report (see page 18), the cliche

finder recognized that events- queue- inser t implements a particular kind of list insertion (a

non-header-cell insertion for sorted lists). It also identified cliches which were components of that

insertion, namely a splice-in operation, an oidering predicate test and a list enumeration, somne of

which it referred to by name in the bug report.

The cliche finder is composed of a collection of algorithmn detectors which operate onl an

alternate representation for programs, called a P1LAN. P1 ANs (developed by Waters. Rich and

Shrobe [Waters 1978] [Rich and Shrobe 19761) are a powerful tool for Supporting program

recognition because they are a language independent notation. and they represent small algorithms in

an essentially canonic form. The generality of the cliche Finders depends upon these properties of

PI -ANs.

4.1 An overvicii or PLANs

* PI ANs identify se'eral critical constraints on the representations of algorithms. (See

[Waters 19781 for a detailed discussion.) I summari/e the main points below.

PI A Ns ign'Pore the ia in it hich control and data flow is imuplemnented For example, it makes no

difference if the control stnicture for a programn uses conditionals or goto statemients, both map into

the samie PLIA N. Sinmlark\ ill thle possible methods of using variables to hold partial resuilts or

pliop~ipfate Values ire judged equkmi~lent. PI /\Ns aire based onl data flow: they extract only the

essejimil iferci'mmecti 'n tiieen of iperalis thatf produiice and coiine data in code.

P/'I I As av~oclatc rI.atd s'inI of ic'.Ici which ma.1 have been wvide!; .vipaiiiicd in thec ofiginal

IcI. A P[ AN is a cOmlpmindj 'hj~t Lcompjosed of data, floss relatted segilents. lb:fict that one piece

of cOde outputsdii (Ls( \%lch '1oihr consumnes is 1 siiple pr-oof that both are %Norking towards some

tiolid in. I lie (oiscqucoce ot tOws (orp.ini/imin is that feature detection in IPl AN spaice iniole

* t-mm less seairch tli-in it \soiild reiuiuic inl thle orii ial test fIM thle code.
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The PLAN represenlalion is partitioned into fragnins which have stereotyped behaviors. 'This

allows complex programs to be understood in terms of simple purposeful parts. For example,

iterative and recursive routines are represented by a single PLAN structure (a PLAN Building

Method, or PIAB in Waters' terminology) called a temporal composition which can contain five types

of components: initializaions, generators, filters. accumulators and terminators. (The output of his

analysis system labels the segments which fulfill each of the five roles.) An initialization is a segment

that is executed once before a loop is entered. A generator produces a sequence of values that are

used in later calculations (a list enumerator is an example of a generator). Filters restrict the

sequence of values which are available beyond their location in the code. Accumulators perform

calculations, they remember results. Terminators are like filters in that they restrict sequences of

values, however, they may also stop the execution of a loop. The remaining plan building methods

categorize the program actions in straight line code. Taken together, the PBMs provide a complete

parse of a program into these purposeful parts. (The mechanisms which perform this analysis are too

lengthy to describe here. See [Waters 19781 for a full explanation.)

The result of features described above is that many textual representations for the same

algorithm are mapped into identical (or nearly identical) PLANs. For example, if the function,

events-queue-i nsert, is implemented using either of the expressions in figure 12, it analyzes into

the exact same PI.AN. This is true even though the forms involve different control structures,

different variable names, and distinct I isp primitives.

4.2 An example of cliche recognition

'['he algorithm recognizers identify procedures by matching their PI.ANs against known cliches.
'This match must be essentially exacL (The cliche finders can tolerate variations at the level of

ignoring extraneous detail.) For algorithms of complexity of events-queue-I nsert this approach

has been successful. '[he recognition of larger programs will require more sophisticated methods. (1

discuss some alternative approaches in the section entitled extensions.)

The following three figures present the PI AN for events-queue-I nsert in its entirety. These

diagrams explicitly represcent a considcrahle arnount of information %hich is hidden in code, and they

contain sonic,,pccial notation as vell. I lowc' cr. most of the detail can bc ,alfely ignored. The figures

,itC tic',4'iltkvd i i oldtcr to O11 .ltC s p i' .\.liitsk k,5 %lith dia , on poilions ol the lI AN.,
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Fig. 12. List insertion programs which map into the same PLAN

-[a]-

(DEFUN INSERT (DATUM KEY QUEUE)
(LET ((OBJECT (CONS KEY DATUM)))

(COND ((OR (NULL QUEUE) (BEFORE? OBJECT (CAR QUEUE)))
(CONS OBJECT QUEUE))

((DO ((NQ (CDR QUEUE) (CDR NQ))
(OQ QUEUE NQ))

((OR (NULL NQ) (BEFORE? OBJECT (CAR NQ)))
(RPLACD OQ (CONS OBJECT NQ))))))))

-[hi-

(DEFUN EVENTS-QUEUE-INSERT (ITEM TIME EVQ)
(PROG (NEW OLD ENTRY)

(SETQ ENTRY (CONS TIME ITEM))
(COND ((OR (NULL EVQ) (BEFORE? ENTRY (CAR EVQ)))

(RETURN (CONS ENTRY EVQ))))
(SETQ NEW (CDR EVQ))
(SETQ OLD EVQ)

LP (COND ((OR (NULL NEW) (BEFORE? ENTRY (CAR NEW)))
(RPLACD OLD (CONS ENTRY NEW))
(RETURN EVQ)))

(SETQ OLD NEW)
(SETQ NEW (CDR NEW))
(GO LP)))

4.2.1 Notation

P1 N diagran-s contain three kinds of entities: boxes, solid lines and dashed lines. Boxes

-' riepresent actions %kihich ma be either primiitiv'e or compound. A primitive action corresponds to a

blac k box in dihc odeC, such as a c o ns statemnent in I isp. [here are eleven types of comnpound actions,

thcew include (ouncf ions. predle(s. and condmiio,,al for representing stiaight linic code, and fillers

ai w n~ rd h in mit itm, It'M tcp r cn tillg loo pinrg hehait r. I )ash ed lines rep resentI co ntCrol

Ilo%%. solid lines recpresent dait~i floA I-or exanmple, the diagrarn of Figure 13 represents the top level

I'l %N for events - queue - inser t ;v tile PtIN o, %t lnii or, whlere tile predicate

i6- (or (null evq) (before? entry (car avq)))

d~ciiinc 'Ahti heiiitoi (1% liltils)I tIItiu2il a ori . (II enters" t1he e\pe',a0( 411iitling the
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Fig. 13. The top lei e PLAN for e% cnt s-queue- insert
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Fig. 14. The predicate for testing list clements
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Fifg. 15. The PLAN for insertinga l ement in a list

c )?

16em
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body of thc loop. (Scc figure 12b flor thc code for cvents-queuc-insert.) There is data flow from the

inputs itemn and timie to the cons function

(cons time item)

which produces the data value eniry that is tested by the predicate ahove. TFhe diagram contains

branched control flow to show that there arc two possihle outcomes of the test. The box at the

P. bottom labeled join preserves the one- in one-out property of compound actions.

a EFach compound action has certain allowable components. called roles. There is a grammar

(%hich I will not present here) that restricts the elements which can fulfill a given role, and also

determines the number and the types of roles permitted in compound actions. In the figures. the role

a component fulfills is printed on its uipper left-hand corner.

4.2.2 The PLAN ror events-queue-inscrt

The PLAN for avents -queue- inser t is broken Up) into a conditional that determines whether the

loop ik to be entered (figure 13), a compound predicate which represents anl ordering test (figure 14)

and at III AN for the loop which contains the splice-in portion of the insertion (figure 15).

The inosi interesting part of the III AN is figure 15. This loop is decomposed into a generator,

%hiich enumnerates the elements of the events-queue (evq in) the diagram), and a termoinator which

controls the execution oif the loop body.

'111C generator represents the code segment

(derun events-queue-insert (item time evq)
(pr'og (new old entry)

(seta new (cdr eval
(seto old evq)

* p ..
(setU old new)
( se t neiw ( cdr new))
(go Wp))

( .It 1s 11l COMOL LfpOse f ~i optionail mni~itioand at boi, which is the poirtion that is executed

iniottmes. 111w hody ci111 Contain .1i lopfraiofl. at r-ccuisjuoand a join. " hich I explaiin below.

111C sole iptt to) the Peci~itor r;ili theiriahlv named evq. This dala passecs throuigh the

Itlo7l
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(cdr evq)

%fhich outputs the data (labeled nit~). Th'le body of the generator rcci Cs two inpuikts, new and (ld.

where uld 'darts as thle uniodified c~eiits-qtueue. The op('ratu)1 of dlie generator body is die fuinction

c d' rront (tie code

(cdr new)

abo~c. At eacti successive iteration, this operation causes new to become successive suhblists of the

eOents-queuce. [he data values 110w and ol/ become the outpilt of the generator, einerging fromt the

data join box in the diagram. Thie join indicates that thle output can come from one of two places; it

can be the inpul to the generator body (in case the generator terminates). shown by the data lines that

pass straight through the diagram, or it can comec fromt thle box labeled "It" which stands for a

recursive instance of' the enumerator. [he cross over of' data, where ncvw becomes old at the niext

iteration, can be seen fromt thle change of labels onl thle data flow lines at thle input ports of (lie R

segmenclt.

Fihe termiinat'or" for thle loop is conlceptully\ excuted in parallel with (lie generator. At each

iteration. (lie p~redicate compares entri, with the ualti of new that is obtained fromn the top of the body

portion of thle generator segmient. If (lie predicate returns thrlough its right hand branch. control

passes out of'the terminator segimient. and iteration of'the generator body is stopped ats well.

* 4.2.3 Feature recognmition ini cliches

iei algorithmn recogni/er foi- events-queue- i nsert is constructed as at hierarchy of procedures

Mlbach identify CaIct of the segmnets inl the PIl AN. This cliche finlder operates via an exact match

pairadigilli, essentiallN all of thle structulres Pre'CIA .inl the diagramns are reqiriied for a non-hecader-cel

insertion to be foumnd. The elements of thle insertion that were referred to in the bug report (iec page

18) %cre identified by at Feature extraction p~rocess that wats applied after events-queue- inser't had

becin identtified as at whole.

[-or example. [ie inpuit to events -queue - insert containing (lie queucke is identified ats (lie

Notil-C of tile dat1.1 11m% tile that enters fihe generat poi tion of the loop inl figure IS. The namle of

tOw pii'graii uimbfe ,isoti.ited %%irli thisx input (ovq in this case) is obt:iined front an annlotation ill

* the 1'1ill P \ N. (\ *irYili'ci \en pui -1(1(5 th code issokiautvd % itf I'l \ N wymiuiits Nfliene~cr
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possible.)

T'he item to be inserted is identified from figure 13 its the first input to the cons function

fuilfilling the action role of dhe P'LAN. By tracing this data flow line to its source, the entry can be

identified as the output of thle cons function of the initialization. (if the entry had been one of the

inputs of events-queue- insert, there would not have been an initialization. 'lle source of the

data flow line would hiave been a lambda input in the PLAN.)

The gcnerator in figure 15 exactly corresponds to the PL AN for the trailing pointer enumeration

- cliche. [his cliche is a list enumeration that returns pointers to two successive subset-, of a list. It

requires cdr operations in both the initialization and operation roles of the generator, and it demands

that the data flow line which is the second input of the generator body be the input to the

initialization segment as well. These restrictions ensure that successive elements of the list are

returned no matter how many times thle body is executed.

Events-queue- inser t also contains a splice-in operation which is trivially recognized in Figure

15. T[he PLAN for a splice-in is shown in figure 16. (it does not correspond to a simple piece of

code.) T[his operation is composed of a cons, a car and at rpl acd function, where the cons creates

anl augpmented list, and the rpi acd attaches it to the end of tile iminedittel) preceding portion of the

list. '[he PLAN representation for this algorithm requires that the second input to die cons, and the

first input to the rpl acd function start as a single data path. This path must be split by a cdr

operation just prior to the cons and rpl acd staltetments invol~ed. Ini figture 15, the cons and rpl acd

operations are evident, while the role of the cdr function is fulfilled by the cdr in the initialization

Mnd the cdr in the hod) of die trailing pointer enumeration.

4.3 Extecnsions

I[he getieralit% ol'the cliche finders could be extended by employing miore powerful recognition

teclliquies. The existing vision of thle systeml Cani use ain exact niiatch paradigmi only because it deals

' I ,ieirihils that are Simple enouigh to) he representedl by aI single camnicae~l III A N. As [ie size of

thle .ilt: u thin intreas~es, the %arialiility associated vN ith its di fl'erent implementations begins to show

uIi ile III AN. mid (Ile C\sact 111,1101 pmllitdigiln ecntmm'll\ Eliis. For thle recognition tasks insolved in

Ole "L el. l io. this .Ipproll ha KS beenl succes-4ful. I lOV e C% Vr. if has not beeni zhiortuh itested. Ihei

ll( 1he filer-j .III wiulk wuutlos" % o~ 'ultuil 11uo1 reCk Ollii: in li ur the uuteiilles46ip t'si ind one foir
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9 Fig,. 16. The PLAN for (lie splice-in operation

RPLI O)

the non-hcader-ccll inscrtion function used in the scenario.

Mfy original intentiun %,as to write the algorithm rccognimcrs as a composition of feature dctctors

for smrller cliches. The hope was that this more hieraichical design could be scaled tip to identify

largcr functions. However, die logical analysis undcrlying PI.ANs actually does a poor job of

localiing some cliches. Fur exainple, dhe splice-in fuictioit in figure 15 is sprcad across 4 ditTercnt

segment boundaries. The rcsult was that a co.siderable amount of search was ino'lvcd in tfinding
such clichcs. ('I his problem was the motivation for extracting eatures from events-queue- insert

after the program was recognized as a whole. It turned out to be e asicr to identify the more complex

entity first, and then pull out the meaningful sub-clichcs.)

The proccss of recognizing an Algorithm fromr! its p.rts also has the problem that the interface

het een the sub-cliches in a PL.AN cmn be complex. l:or example. the trailing pointcr elnuration

and the spli:c-in operation within even ts - queue -i nser t shame suhbsructurc. In order to c',rrelate

th.",c omerlapping parts, moc s -Ihisticaled datla rcpr.entalions, hae to he inmol d. Rich [Rich

lIll d c s , t1ol Sll.d ii'r/,j ill his tlhcsi'" hich ,ldrlc ', this issue.

-- - -_-_ r Z-
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A generalizecd pattern matching facility for performing PLAN recognition would be the method

of choice for identifying cliches. Thc creation of such a facility is a very difficult task, and it involves

both computational and representational issues that are unsolved. It is well beyond the scope of the

cliche inder as I envisioned it. Brotsky [to appear] is working on this topic for his Master's degree.
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5. The sniffer system

The sniffer system provides a mechanism for representing knowledge about errors in code. It is

organiied as a collection of independent expcits (called sniffers) which localiLe the information

required to identify specific bugs. F-tch expert can use the facilities of both the time rover and the

cliche finder to recognize its particular error. For example, the cons bug sniffer (which produced the

bug report in the scenario) used the cliche finder to determine that events-queue-insert was a

non-header-cell insertion, and it employed the time rover to identify the control paths taken during

that function's evaluation. In addition, the cons bug sniffer found the values for data objects by

causing the time rover to reexecute portions of the test program's code.

The sniffer system currently uses a simple control structure to chose the experts relevant to

particular problems. It runs all of its sniffers all of the time, and each expert is designed to fail

quickly when it does not apply to the task at hand. In the current version of Sniffer, there is exactly

one expert (the one used in the scenario), although a number of extensions are planned. (See the

section on future work for a discussion.) When the experts begin to share information, a more

complex control strategy will be required.

5.1 A generic bug detector

Each expert in the sniffer system contains three basic parts; a collection of triger which

determine if the expert is relevant, a body, which recognizes an error, and a template report that

produces output which describes the bug.

The triggers are filter functions which determine if a given expert should be tried. If they

succeed, the body of the expert is executed, and if the body succeeds, the template output is

displayed. Triggers are computationally inexpensive tests that fail if some essential feature is not

present. For example, the trigger for the sniffer used in the scenario was the cliche finder responsible

for identifying events-quoue-Insert. (Other cheaper triggers could also be employed. For

example. the presence of keywords such as "member" or "insert" inside of function names within the

user's code could cause specific bug experts to be applied.)

The body of an expert contains tests which recognize a particular error. 'Tliese tests are not

resti icted in jny way: the hody can tise hot the time rover and the cliche finder to detect the critical
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features which "implcmcnt" a givcn bug. For example, the body of the sniffer used in the scenario

examined the control flow in events-queue-insert, ie PLAN for that function and specific

values of the events-queue. It also examined the PLAN and execution sequence in the caller of

events-queue-insert, which was the function metastasize. Once the bug has been recognized,

the body determines sonic additional context elements (such as the text for the programs involved, as

opposed to their PLANs) and sends the results to the template report.

The template report mechanism produces the most comprehensive description of the bug which

the sniffers can provide. Each template contains two sections; a summary of the error, and an

analysis of the events surrounding the specific occurrence of the bug. The summary is a piece of

canned text that uses a vocabulary which is justified by the examinations the experts perform. All the

cliches it mentions are recognized by the sniffer body in the process of identifying the error. 'l'he

analysis section explains how the test program acted on specific data values to produce the

manifestation of the error observed. It provides the input and output values of procedures, and

displays interesting intermediate results that were internal to specific cliches.

'he sniffer system employs template reports in order to avoid the need for natural language

generation facilities. Each template contains canned text interspersed with slots that are filled with

data provided by the sniffers. In the output shown in the scenario (see page 18), the lower case

information was produced by the template, and the data in upper case were the parameters which

illed in the holes.

5.2 The Cons Bug Sniffer

In the scenario, the sniffer system was invoked by the expression

a1 (getexpert-help '(events-queue-member events-queue new-cell)

(focus-time)
(end focus-time))

! hcre the region enclosed by the two times encompassed a single execution of

* events-queue- insert. (The fnction get-expert-help rins all the hug experts. taking the

miron of their remilts.) lic snifter which produced the output shown on page 18 was called de cons

IIsl. ig I/'r fior . r'Id lists.

I 11C Ll i ;huiunS Of lie Loll-, bit h , hu'cr auc Nunmgg i/ed in fi;,.re 17. 'fie (rigger of the expert
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was the cliche finder for identifying a non-header-cell insertion. It was applied to the PLAN for

events-queue-insert. When this ran successfully, the sniffer body extracted the following

features from that PLAN; the ordering predicate test,1 the headcr-cell-insertion (which corresponds

to the PAN in figure 15), the splice-in operation, the cons finction which was evaluated on exit

from events-queue-insert, and tie variables or code fragments which identified the item to be

inserted and the queue. These features were identified by simple operation on PLANs. For example.

the cons return fills an action role of the exclusive-or shown in figure 13. (See the discussion in the

section on feature recognition in cliches.)

Fig. 17. The Cons Bug sniffer.

The cons bug sniffer is invoked with a user-supplied predicate describing the error, and a region of
the test program's execution which specifies a particular piece of code. The following tests define the
presence of the cons bug.

Triggers

* The PILAN for region must exactly match the PLAN for a

non-header-cell-insertion

Body

* The hcader-cell-insertion, and the splice-in portion of region must

not be executed between the two times.

* The ordering predicate test was executed.

* The insertion function returned by consing the item to be inserted

onto the list.

* The value returned by the insertion function was not used (in the

environment of its caller) to side-effect the list.

I I he orddko prvditl t, was ciCilI lfied by I lie pi occ of ao( lkri iig teqt of the hmon (( a h) or P a b), lie enclosing uwe
4f Iha! Inkc-Ihc.I %4; 1 mpmmm mII ' V. a I. amnl Io t( It I))). cl( it 1 Jptipd cqtlialkit
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With these features in hand, the cons bug sniffer proceeded to identify the critical events

associated with its bug. These tests were principally involved with determining the control path

actually taken through the events-queue-insert. First, the sniffer determined that the

header-cell-insertion in the PLAN was not executed. This was accomplished by finding the code

attached to the PLAN for that cliche, and submitting a request to the time rover (which was expected

to fail) of the form

(future-when '(during code) focus-time (end focus-time))

This expression translates to the statement, "was this code executed between these two times". (The

last two arguments are optional parameters which identify a region of the execution trace to

examine.) In the case of the non-header-cell-insertion, there was no single piece of code associated

with the entire cliche. The search was conducted for a piece of code attached to an internal segment

of the PLAN which had to have been executed if the insertion occurred. The cons bug sniffer

performed similar tests to establish that the ordering predicate was executed and that execution led to

the cons return described above.

The final criteria for the cons bug requires that the list returned by the insertion finction cannot

be used to side effect the queue. This can be established in several ways. The most direct method is

to use the time rover to examine the queue tbr side-effects. The cons bug sniffer accomplishes this

by running the expression

(unmodified$ (@ focus-time events-queue)
(@ (end focus-time) events-queue))

if the predicate returns true, then the list held by the variable events-queue was not side-effected

between the two times.

In the example of the cons bug shown in the scenario, the sniffer discovers the same fact (in a

morc informative way) by cxaliiing the III AN for the function metastas i ze. This PLAN shows

th.tt there is no data lo% oalingi, fiom the return v'alue of the inscrtion fuiction. This can he s:en in

the body ofmetas tas i ze ( ec page 18) by the faict that the code fragment

(events-queue-insert new-cell (+ div-time 2) events-queue)

(events-queue-insert key-cell (+ div-timo 2) events-queue)

consists of t %' ild..-pndcn c\pressions. Whe'n the coiis bug snififer detected this information. it
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produced the bug report statement

the function (defun metastasize ... ) ignores the value returned by

events-queue-insert.

Once the cons bug sniffer established that the bug was present, it determined a number of

specific data values to be used as context in the bug report. 'Ibis information included the code ,or

events-queue-insert and metastasize (obtained from an annotation on the top level segments

in their PLANs), the value of the variable containing the events-queue within the insertion routine,

and the value returned by events-queue-insert. Each of these data values was obtained by using

the time rover to reexecute portions of the code.1 For example, the value returned by

events-queue-insert was duplicated by the request

(S (future-when '(during '(cons entry evq)) focus-time)
'(cons entry evq))

This expression searches forward from focus-time to the moment when (cons entry evq) was

being evaluated, and executes that same expression in an alternate time track branching off from that

moment. The results are necessarily equivalent.

The predicate, (events-queue-member events-queue new-cel 1 ), which the user supplied to

describe the bug, was not employed as a specification for the error. It was used only to provide

contextual information for the bug report. (Specifically, if the PI.AN for the predicate included a

membership test, it was used to extract the variable nane for the object which the membership test

searched for. The user presumably wanted that object to be stored in the queue. This was the

variable new-cel l in the scenario.) In this particular case, a problem description was not required

because the cons bug is essentially a violation of rational form in the domain of programming. It is

rare to invoke any function for its side-effects when it does not always produce them, but in the case

of a routine known to be a list insertion, the expectations associated with its use arc much stronger.

There is an issue here relating to the breadth of knowledge in the bug experts. When the sniffers

are attempting to recognize the code associated with an error, they know piecisely what they are

looking for. In this environment, an exact match paradigm is a reasonable method to employ.

I Ihl gt:('tc IIllll Ir;ac¢ Ci1alll i itlt . tties. viitrtit'd h all t'ilit'iiIll ex'e'uli'd hv lhc it' pqrliprnl h il i thc, nic ii(I
Il t" ;ll css l , \ | l IIIl(I.tll1l1\ a., #Ig /iltl 1.1111t Ii IIIIII:11%v I lt vl ' oll ;IJld|t C''J'(1 c'\cill"'. hiIIl ;I 'll.vin filllc.tloll (.111 tell-il ,alily

II id il ic litat C
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I lowever, there are no constraints on the expression which the user types in to describe the bug. It

could be a specific and useful definition of the error, or it might revolve on a fact in the application

domain for the test program which would make little sense to the bug experts. [his points out that

the analysis applied to the user's predicate needs to be flexible. If de predicate cannot be totally

recognized, then it can be parsed for features which could be used to select relevant bug experts.

Alternatively, if the sniffer system grows considerably larger, the user's predicate could function as a

source of hints for the direction which further analysis should pursue.

S.
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6. Future work

The top level goal of this rcseaich was to develop a system that understands (some) bugs. Sniffer

has accomplished a portion of this task by demonstrating a deep understanding of one bug with what

appears to he a general mechanism. The next step of the project involves pro% ing that gcneralit), and

testing the power of Sniffer's expert system approach. To do this, I intend to expand the sniffer

system by implementing a number of additional bug experts. These experts will cover a range of bug

types, some related to the cons bug, and some concerned with more abstract programming cliches.

For example, a list data abstraction can contain a number of bugs which involve violated

expectations about the maintenance of objects. If the lookup function believes there is a header cell.

but the instrt function does not, then any data item at the beginning of the list becomes invisible with

respect to the lookup operation. If the insertion algorithm implements a bag which can contain

multiple copies of an item, but the delete function removes them all, the user will perceive that

inserted data spontaneously disappears. There are a number of similar errors of this type.

Another class of bugs detectors would deal with the interactions involving shared data. These

bugs are particularly confusing to programmers (as they involve dynamic list structure and subtle

interactions in code) but are ideal candidates for Sniffer because of the facilities provided by the time

rover. A typical symptom of unexpected sharing is the unexplained appearance or destruction of

data objects. A problem that comes from the absence of shared data is that expected side effects do

not occur. Alternatively, items which are expected to be eq are not judged to be equivalent.

I suspect that there is also a set of bugs involving violations of rational form in the programming

domain. These bugs could be catalogued by examining the expectations associated with specific

programming cliches. The cons bug in the scenario is an example. Except for bizarre situations, any

time a list insertion returns without side-effecting its input, something is likely to be wrong. ('l1iis is

especially true when the user decides to complain about it.) In the case of a queue and process cliche

(this corresponds to the control structure of prosper), it is reasonable to expect that the results of

processing an item are inserted back into the queue. The bug in the scenario also relates to this

cliche.

eI'h poer of the bug recognizers can also he demonstrated by expanding the amount of bug

h t ,iliatioii each .nifcr perl'orms. For exaiple. the sifl'llr systein could have heeun invoked at an

c.|lier point in ti scenario. when the hlug hd only been traced to the fimt ion metastas I ze. '1ib
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cons bug snitfcr would then identify the presence of an insertion within metas t as i ze and proceed

to recognize die bug from there. Tihere is also no reason why a sniffer cannot localize a bug to section

of code and a region of execution that are completely different from the ones which the user initially

provides. The support routines are present, what it requires is a more flexible method for directing a

giken sniffer. Each bug detector could presumably function by extracting hints from the user's error

description, or directly from the user if that input was required.

Once a number of bug detectors have been written, I expect the research to proceed in the

direction of formalizing the knowledge which was gained. At that point, it would become

appropriate to rewrite the sniffer system to involve sharing of information between experts, a

taxonomy of bugs. and perhaps a hierarchical understanding of cliches. Some of these developments

rely on more powerful recognition techniques which are not yet available, although they are being

developed at this time. (See IBrotsky. to appecrJ.) One potential outcome of this research is an

understanding of the constraints involved in the problem of error recognition, which is a step towards

a theory of understanding bugs.

It.
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7. Related work

To my knowledge, no previous work has had the primary goal of generating a deep

understanding of bugs in programs. The most closely related efforts are IHacker [Sussmar, 19731 and

Ruth's thesis entitled "[he analksis of altorihm iniuinlicrntations" IRuth 1973]. (Sec [I.ukey 19781

ftr a sursey article describing work in this gencral field.)

Hacker is a system that designs and modifies programs to solve problems in the blocks-world

domain. It employs an iterative approach. The system proposes a possibly buggy solution for a

problem, runs the code, and analyzes any error which is produced. Hacker then applies a method for

modifying the code that is believed to correct the error of the type discovered. If the new solution

does not work, the process is repeated.

Hacker is primarily an effort in learning and automatic programming, as opposed to a thesis

about debugging. (This is emphasized by I lacker's complete name. "A Conioutational Model of Skill

Actquisition".) One of the system's major devclopments is that it explicitly represents knowledge

about coding. '[here is no doubt that llacker demonstrates a deep undei standing of the programs it

writes. It can notice when a program violates one of the subgoals of a blocks-world task, and it can

use the information associated with this error to generate a complex program that avoids the bug.

However. tlhe! process of bug classification is the least well-defined portion of the system.

Hacker gains a considerable amount of its leverage from the use of a toy domain which allows

only a limited set of well understood operations. For example, each of the primitive blocks-world

functions has a known purpose, which can be cited in the process of analyzing errors. The bugs

which Ilacker recognizes also involve constraints in this domain. For example, one of the errors

discussed in Sussman's thesis involves two sub-goal problems which ex:actly undo one another's

* effects in the act of building a tower.

Sniffer applies similar domain constraints to generate its understanding of errors. In Sniffer's

case however, the expertise lies in the domain of programming, and concerns the implementations

and use of' programming cliches. As a result of this approach, the system can recognize bugs in

arbitrary progrmns. regardless of the tasks they perform.

Greg Ruth's dissertation describes a system that can recogni/e implementations for algozithms of

a given class, and can dso iecogni/e buggy \el,,ions of those procedures. The system is baied on a

raiimnir which defines a clas,, of proglaml,. It inputs a gramimAr. and i function which it then

- '1
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attempts to parse using that grammar. If it succeeds, the code is recognized as a member of the set of

correct programs. Ruth extends the number of programs which can be identified by applying a

collection of behavior preserving transformations to the code being analyzed. If tie transformed

function can be parsed by the grammar, it is also recognized as correct. Much of the system's

knowledge concerns these rewriting rules.

in a similar way, Ruth's analyzer can identify errors. It does this by applying corrective

transformations to the input code and then attempting to recognize the resulting routine. If the new

function is within the set defined by the grammar, the error is analyzed as the inverse of the

corrective transformation which was applied.

The kinds of bugs which Ruth's system can discover have a very syntactic feel. It treats programs

as textual objects, without any detailed representation for their composition or the purpose of their

parts. Sniffer, on the other hand, generates its power from an in depth analysis of the building blocks

involved. The two programs also Lake fundamentally different approaches to the task of recognizing

errors. Ruth's thesis diagnoses bugs as deviations from a predefined norm, whereas Sniffer searches

for specific error-defining patterns. Sniffer uses this niechanism to represent extensive knowledge

about particular bugs.

The programmer's apprentice project at MIT has produced a good deal of work in the domain of

program understanding. Rich and Shrobe (19761 laid down the basics for the decomposition of L.isp

programs into purposeful parts. Waters [19781 developed an analyzer which translates programs into

P[ ANs. (ilis thesis relies heavily on the system which Waters implemented.) Rich's dissertation

11Rh 19801 decelops a mathematical foundation for the PLAN representation, and creates a library

of PlANs for programming cliches. The complexity of the PLANs in this library range from the

leel of a variable interchange to the the queue and process strategy employed by prosper. (The

library also includes the insertion plan discussed in the ;cenario.) Rich makes concrete suggestions for

tie construction of a II AN recognition system which a more general version of the cliche finder

willd 1cquiC. lhotsk [to appearl is working on this topic as tie subject of his Mascer's thesis.

1 here h, been some work towards an abstract theory of bugs in programs (Miller and Goldstein

19771 mlIich goes betond tile domain dependent classificat ions developed in I lacker. The authors

dcclop a planning gramnmar which can be used to describe programs, where statements in the

gr; r miimar c(:in he ic lined illi rinihlc cidc. lhe ainlhors then define a sematic errori as a violation

oif 1h,." .p lctit dc' 611ioln. anmd a s. miactic error as a hug in tie use of the gramnnar. I his Qiammn1iar

'--
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does not have the conceptual richness of the PI.AN representations used in the apprentice project,

and the relation between their bug types and errors in more complicated programs is unclear.

There has been a considerable amount of work on expert systems (analogous to Sniffer) which

perform complex tasks. That method of organization is one of the most sicccssful paradigms in Al.

The unifying characteristics of the systems which use this approach are that they rely on a number of

independent methods for gathering intbrmation and they deal with a large number of facts in the

process of finding solutions.

'The Simulation and Evaluation of Chemical Synthesis project (SECS) JWipke 19691, the T)endral

project, and much of the work in Al and medicine are in this class. SECS is an expert in the design of

organic syntheses. The information relevant to this task includes empirical facts about reaction

conditions and the sensitivities of functional groups, the 3-dimensional shape of the target molecule

(the one to be synthesized), the composition of the target, and electronic energy levels of both the

product and the reactants. To coordinate these different sources of information, SFCS confines a

great deal of its expertise to a set of productions which examine these facts and determine if a given

chemical reaction (applied to a particular molecule) will succeed or fail. The system performs at the

level of a skilled chemist.

Sniffer also provides a tool for supporting the debugging process. There are two basically

different approaches to this task. First, there are systems that simplify the process of tracking down

bugs, and second, there are methods that prevent bugs from happening in the first place. The first

category includes debugging environments similar to the one implemented on the Lisp Machine,

which provide a single step evaluator and predicates for examining the data in the execution stack.

The time rover is a straight forward extension of this environment. (Every major programming

installation provides some support for activity of this kind.)

Bug prevention methods exist primarily in the domain of software engineering. Many of the

ideas included under this term relate more to the process of coding than to the structure of the code

which is produced. lowever, data abstraction techniques [Iliskov 19771 are particularly relevant to

the kinds of errors which Sniffer detects.

l)ata abstractions occupy the borderline between program understanding methods and

6, pgrlmmning lanlgolI~gC techniques, since awlraction mechanisn,, build the level of vocabular' ued

t(o discus Ii piograin. RIescar'h in verificatiom oses this lamct, in tial it tend,, to rel hea vily On data

,Il I.Iractiomls ,. a pl.I t attach rv'.liclio s aibltit ( ihe pioperties fill 'segnietls l' code.
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Data abstractions also imply a very strong form of type checking which makes certain kinds of

errors much harder to commit. For example, the cons-bug error (which concerns the integrity of an

object and the division of responsibility for maintaining its pioperties) can only be committed within

the confines of a particular abstraction. These kinds of errors can not be totally avoided, but their

frequency can be diminished by employing these techniques.

2-)
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