AD-A102 158  MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTE==ETC F/§ 9/2
SNIFFER: A SYSTEM THAT UNDERSTANDS BUGS. (U)
JUN 8L D G SHAPIRO, NDOO14~80=C=0505
UNCLASSIFIED AI-M~638




PPy

L 4

ADA102158

.
.
v

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

' REFPGOGRT NUMBER

Al Memo #638 v

2. GOVY ACCESSION NO.

1D- A/c 2

RECIPIENT'S CATALOG NUMBER

L’ /5%

4 TITLE (and Subtitle)

/{ éniffer: a System that Understands Bugs,
Bapmeser

S. TYPE OF REPORT & PERIOD COVERED

/
/.~ Memorandum

-

8. PERPFORMING ORG. REPORT NUMBER

2
7. AUTROR(s) T E

| . paniel 6. shapiro .;

8. CONTRACT OR GRANT NUMBER(s) --

/ ’N00D14-80-C-0505

po-"

/r/,.‘ -

9. PERFORMING ORGANIZATION NAME AND ADDRESS
Artificial Intelligence Laboratory
545 Technology Square
Cambridge, Massachusetts 02139

4-10. PROGRAM ELEMENT. PROJECT, TASK

AREZA & WORK UNIT NUMBE RS

-

/

1. CONTROLLING OFFICE NAME AND ADDRESS
Advanced Research Projects Agency

1400 Wilson Blvd

12. REPORY DATE

/ /; June 1981
1. NuMBER OF PAGES

Information Systems

Arlington, Virginia 22217

Arlington, Virginia 22209 59
14 WMONITORING AGENCY NAME & ADDRESS(#f different from Controlling Oflice) 18. SECURITY CL ASS. (of this report,
Office of Naval Research UNCLASSIFIED

1Sa. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)
;o

Distribution of this document is unlimited.

17. DISTRIBUTION STATEMENT (of the abatract enfered in Block 20, if di{ferent from Report)

1B8. SUPPLEMENTARY NOTES

None

DIIC |

&), JUL29 1981 3

T
Y

Debugging
Error Recognition
Program Understanding

19. KEY WORDS (Continue on reverse side If necessary and Identily by block number) F @

errors.

81

:Expert Systems
20. STRACT (Continue on reveres eide Il necessary and icentity by block number)

This paper presents a bug understanding system, called sniffer, which applies
inspection methods to generate a deep understanding of a narror class of
Sniffer is an interactive debugging aide. .
error-containing impiementations of typical prog;amming cliches, and it can
describe them using the terminology employed by ‘expert programmers.

It can locate and identify

29 VAL

DD ' an'ss 1473

EDITION OF 1 NOV 83 18 OBSOLETE
S/N 0107-014-6601 |

UNCLASSIF1ED (1)

SECURITY CLASMFICATION OF THIS PAGE (When Data Enier

// _/"/ /// ‘-/’;

e e e o B ]

o e

' g

—




e «, - -

TN e —
MASSACHUSEITS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY
A.l. Memo No. 638 June, 1981

Sniffer: a System that Understands Bugs
by

Danicl G. Shapiro

Abstract:

This paper presents a bug understanding system, called sniffer, which applies inspection methods
10 penerate a deep understanding of a narrow class of errors. Sniffer i an interactive debugging aide,
It can locate and identify crror-containing implementations of typeca) programming cliches, and it
can deseribe them using the terminology emiploved by expert programmers.

The debugaing knowledge in Sniffer is organized as a collection of independent experts which
understand specitic errors. Each expert functions by applying a icature recognition process to the fest
program (the program under analysis), and to the cvents which toak place during the execution of
that cede. No dedactive machinery is involved. ‘This recognition is supported by two systems: the

In a typical scenario, the user interacts with Sniffer 10 identify a manageable subset of the test
program which scems to contain an error. He then issues a complaint describing the expected
behavior of that region of the code, The sniffer system then scleces and applics the relevanc bug
experts, and produccs a detailed report about any error which is discovered. This report includes a
hipgh level summary of the error, an analysis of the intended function of the code in terms of its
component parts, and a description of how the particular data values and control paths involved
dusing execution led to the manifestation of the error observed.

This paper was originally submitted as a master’s thesis to the MIT Department of Electrical
Fogineering and Computer Science, on May 8, 1981,

‘This report describes research done at the Artificial Intelligence |.aboratory of the Massachusetts institute of
Technalogy. Support for the lehoratory's astificial intelligence research has been provided in part by the
Advanced Research Projects Agency of the Depantment of Defense vader Office of Naval Research contracts
NOGOLY-T5-C-06043 and NOODTL-80-C -0505, and in part By Nationad Science Foundation grant MUS-7912179,




r T T RO T T TR W Rk

Acknowledgements

I would like to thank my advisor, Richard C. Waters, (sometimes called Dick), for his precise,
inexhaustable, and kind support throughout the creation of this master's thesis.  He is an cxcellent
advisor, and is appreciated well. I would also like to thank my cohort (one Roger Duffey by name)
for his moral and technical assistance in this rescarch. Keep plugging, kid. On a slightly Jarger scale,
I would like to thank (Dr.) Barbara White and (1r.) David McDonald mostly for being around, and
Mr. Daniel P, Dolata for his endless comradery, dispersed though it was across 3000 miles. Lastly, |
thank Jane Rebecca Katz for living through three years of the altered humanhood emmanating from

this particular gourd. She gets to celebrate too.




Table of Contents -3-
CONTENTS
1. Introduction 7
2. A scenario using Sniffer 11
2.1 The teSt PrOgram ......c.ceeecerveverererrrsresserssseseanenes erereessaasnanns 19
2.2 THE SCONATIO cvveerirerrreereerivuseseressssnsesserssrsssrersastersssnssesassssrasssossssens 13
3. The Time Rover 19
3.1 TEIMUNOIOBY oveevrriirrririetsermriscssenescssnmrsnessssssssestsnsessesssssansessessarassassssenssssassasensssassnn 19
3.2 IMPICMICILAUON ..covvreerrniriarieeeesirsnesstnsersasressssrecsrasssnssecssnsasasesssessnsastsessssisssasassnssans 20 T
3.3 THE KCEPET eeeeecminrrisistninsesesensesssssesnastsssorenastsssassasosss st sasasssesssssessesonsossastansarsnsans 21
3.3.1 An cxample of the evaluation process ........ 23
3.3.2 Effecicncy cONSIAETALIONS .....cccovcirnrernreresursestssssssnsesesussssssesssrassesstssssesensasassasssses 26
3.4 'The seer 27
341 Alternate ME-tracks ......cceererreecestonesssrsesesssossanesnsenss 2
3.4.2 Equality and COTCEEIENCC ......ccvurervevreersecrsesrarresssassessesssaesesorssssnns 30
3.5 A summary of the Keeper and the SEET .....c.evceesvrerierercsnenersesesesessssssessssssnasesenseens 32
3.6 Mcthds fOr SPCCHYING LHTICS ...oveveevveciveeecrcsnnnsssssereerssssressessssssssessssstensasssosssaassssssses 4
4. The cliche finder 36
4.1 Anoverview of PLANs ......... RO 36
4.2 An example of cliche rccognition .. 37
B.2.1 NOLALION .ovrererererrrenseerecsstnnessesrsasesstsesaneenssssssssstsassssssessanssessessesssssess .. 38
4.2.2 The PLAN f0r eventS-quCUC-INSETL ......ccvveressemusersioreensessarsssessases 42
4.2.3 Feature recognition in CHCRCS ...occccceeereereneresesmrinresessssnossanseresssssssenssessasserssssans 43
4.3 EXICNSIONS ...ocvecrirrerinreesereresesssatasessesassssssssssssssesssssassssssssssssarsssnssss seesasssess e sonassssasess 44
5. The sniller system 47 ‘9 Top
5.1 A ZCDCTIC DUG QCLECIOT o.oovevvteercvereerisenesserssssnssrsssesesssasnsrssassssssisssssssenssasssnsarseressesssasas 47 I
5.2 The Cons BUZ SNITCT ..oviiciieecieriniieseressns s sssssesessesssessesassssasesesessasssssssssnsssossrases 48 i &
Y r.‘ \' i .
6. Future work 53 ‘“'Vt ton _

_Dirtributios;_
Availobility Coded

f Avail and/or
Dict Special

AL

3 W AT Sy s, e e e e e e S L =3




L T

T

Table of Contents

7. Related work

8. Bibliography

e s e -

o ORI 3 Oy o e A HBIAERS A e SRV G

eI




rw - -ww——m:-.w.;-.,_“_____“_—“_—-—-___—‘
|
]
3 , Table of Figures -5-
FIGURES
Fig. 1. The IXESIZN OF SMIFTRT ..o veicrinreninis s es s s sersstrssscasrassessessssessssesssesesenssssnssesenss 9
Fig. 2. Some Sample transfOIMALIONS ...cv...veeevivrecterecreisssntciseeenssascsssssssassossssessessesssessessssassassersss 12
Fig. 3. TN COAC FOU PRUSPEL ..o sirrsisssirsstrssssrsass s rerss s s ssssrsessssssessssas s stessssaensnessemssn s ssnons 12
Fig. 4. 'The OUIPUL Of PLOSPET ..ccenriereeeeenceerrsnsesesrssssresessescsssesssssessessssessnssssssessessosssssssnsmssossessasnsas 13
Fig. 5. Vocabulary for disCusSing tME trAVED .......vccoviveisieieeresenresveisseserscssessetssessssssssssssssssases 20
Fig. 6. A CONUIOL fIOW NISLOTY ..uvrrierecetrtseereenssceretieaansaesesesnesssssssesessesssesstsnat st casesnssasostsssasensnnse 21
Fig. 7. Some example trace-Cells .......ooviecicivrrererenressssasesnssnsssessesrsssesssssssssssssssssssssssssserassss 23
Fig. 8. The development of the incarnation serics during CXCCULION .......coevvvvevvecenvnviveercsnerenn, 25
Fig. 9. An example of an alternate UME-Irack ...c.ovvciniesrcnreenessenerrinronstesessssessssesesssssserscssesssns 29
Fig. 10. "The heirarchy 0f €QUAlILY TOSES .o.uevriiiirciiereer st css s ssasessienasssssessssssesessssess n
Fig. 11 AR OVETVICw OF tRE LINC TOVOT w.uvvvirnrrrererinirinrcsscssnsssossssssessissssscssasassossresssssssessssessnns 33
tig. 12. Listinscrtion programs which map into the same PLAN ..o 38
Fig. 13. “The top Ievel PLAN for evemtS-QUCUC-INSCTT .......ovvvevomrermerrrsoriorsmsosssrssssessosssnsessossssases k)
Fig. 14. ‘The predicate for testing liSt €ICMENTS ... esenreresernistrnsssssesesessens 40 i
Fig. 15. The PLAN for inserting an element in a list .....ccocoivenneernsenennessinenerensssnnennsnessssesenens 4] |
Fig. 16. The PLAN for the splice-in OPCTation ........c.vecoviveminreismermieicsniensesssesssssssssssassns 45
Fig. 17. The Cons Bug SNIfTCr. ....covviiioiiiriericneneiieneninisnesesesrsssssssessssssssscssssssssessessessssens 49




Introduction -7- Section 1

1. Introduction

This thesis presents a system, called Sniffer, which deeply understands some crrors in code.
Starting from a bug description supplied by the user, the system can trace an error to its source,
recognize the purpose for the code involved, and describe the problem at a level of detail appropriate
to an cxpert programmer. Sniffer identifies errors in programs regardless of their domain of
application, and it employs mechanisms which are language independent in form.

The design of Sniffer was motivated by the observation that debugging is currently an arcane
science which provides very little guidance for the task of identifying errors. The process of
recognizing bugs requires knowledge from a variety of sources, and typically involves a number of
different strategies for localizing errors. A partial list of these sources includes the program, its
intended purpose, the exccution paths and data states involved in its exccution (cither inferred or
observed), a knowledge of the primitives of the programming language and of the language
interpretation proccss, and the mappings between the symptoms of bugs and their probable causces,

In the face of this diversity, Sniffer cmploys a gencralized production rule format to represent its
knowledge about bugs. Each expert (or production) in the system contains all of the information
relevant for locating and identifying a specific error. This approach defines an initial theory of bug
recognition. Tt considers crrors to be positive entities around which knowledge can be organized, as
opposcd to representing them as differences from an established norm. This mechanism makes it
possible for individual bug experts to contain extensive knowledge about particular crrors. At the
same time, the production rule format constitutes a default theory of bug recognition; it is a simple
mechanism for localizing information which does not restrict the problem solving mcthods that can

) be employed. It is also a modular organization in that new bug cxperts can be introduced with
~, . comparative case.

o The expert system methodology is particularly effective in the domain of debugging because it
cleanly coordinates the process of obtaining information from a number of independent sources of
. knowledge. In a more claborate theory, uniform methods (such as deduction) should be involved,
but perhaps as tools, as opposed to the guiding principles of the solution. At the current level of
sophistication, Sniffer shows that an cxpert system is a natural organization for the task of
& understanding errors,

Sniffer is also a demonstration of the power of ispection methods in program recognition and

FRECEDING PAGE BLANK-NOT ¥ILMES|




Introduction -8- Section 1

analysis. The system gencrates its understanding of crrors by recognizing the pattern of cvents
assuciated with particular bugs. It identifies algorithms by matching them against programming
clichcs, and it determines the circumstances surrounding crrors by directly examining a history of the
cxccution of the code. This rescarch shows that inspection techniques are a conceptually simple
alternative to the creation of deductive engines for discovering facts about code.,

Sniffer is implemented in three major components; the sniffer system which contains all the
information relevant for recognizing specific bugs, the time_rover which supports queries about a
program’s history, and the cliche finder, which identifies fragments of algorithins in programs that
arc uscd later as a basis for recognizing errors. (Sce figure 1),

The debugging knowledge in sniffer is organized as a collection of independent experts for
specific bugs. Fach expert (or sniffer) can examine the user supplicd complaint, the suspect picce of
code, and the exccution history of the program to determine if the bug it knows about is present. The
sniffers do not contain background knowledge about the particular program being examined. Their
cxpertise lies in the domain of programming, and concerns typical problems in the use or
implementation of programming cliches. In the current version of Sniffer, cach expert identifies a
narrowly defined ermror.  ‘The gencrality of the sniffers come from their ability to recognize
implementations of typical algorithms independently of the way in which they are coded. "T'his ability
is derived from the cliche finder, which in urn is supported by a system, written by Waters [Waters
1978] that transforms programs into a regular and language independent representation called a
PLAN (sce also [Rich and Shrobe 1976]). The expressive power of PLLANS are central to this thesis.

The cliche finder is constructed as a collection of procedures which rccognize algorithms as
patterns in the PLAN language representation for programs. The object of the system is to raise the
level of discourse about a program. Rather than talk about car and cdr operations. the cliche finder
makes it possible to speak about aggregates the size of list enumerations or splice-in operations. ‘The
cliche finder operates on the primitive structures of the PLAN language, which include an explicit
representation for the data and control flow within a program, and a taxonomy for the building
blocks of recursive and iterative routines.

The time rover monitors the execution of the test program (the program undergeing analysis)
and provides access to the information it records. It remembers both control information, and the
succession of values acguired by all data objects in the code. At every instance of a side-effect

operation, the svstem deposits a record which preserves that information. On every function call and

i
i
|
'
!
v




Introduction -9- Scction 1

. Fig. 1. The Design of Sniffer

Jebu tng gel_ experr..."»e(f
rquesfs \

TIME ROVER

works with

SNIFFER SYSTEM

conlarng knavledse
dbou? specifie “'J"

Test Pr03 rom

CLICHE FINDER
identifies sall alparithens

< PLAN ANALYSIS ’




Introduction -10- Scction 1

function return it deposits an analogous record as well. ‘The result is a complete picture of the
program’s state as it evolves through time. The information in this trace is sufficient to rewind the
program to an carlicr point, or to run it backwards if that is desired. In addition, the time rover can
cvaluate an cexpression as if it occurred at an arbitrary moment during the test program’s execution.
Both the user, and the bug experts make usc of this facility.

A general scenario for use of Sniffer is as [ollows: the user is sitting at a terminal, watching a
program run. At some point, he becomes aware that the output is incorrect, although the program is
still functioning. He stops the exccution and investigates the problem using the fucilitics of the time
rover. He might examine the order of function calls on the stack, the values of several parameters, or
events and data in procedures which were invoked and which successfully returned some time ago.
Eventually, the user finds a particular execution of a region of code which scems to contain a

problem. He then makes a complaint to the sniffer system, of the logical form

(get-expert-help expected-resull time-t code-region)

The sniffer system analyzes the code for expected-result and for code-region o obtain a quick
understanding of the type of the error. It then invokes all the relevant bug sniffers.

A sniffer might look at a the flow of control through a specific execution of a nested conditional,
or compare the values in a list before and after a function was called, or ask the user for further
information. 11 the bug the sniffer knows about is present, it produces a detailed error report. “This
seport includes a high level summary of the error, an analysis of the intended function of the code in
terms of its component parts, and a description of how the particular data values and control paths
involved during exccution led to the manifestation of the error observed.

Sniffer was implemented in Lisp on the MIT Tisp Machine.  The Lisp Machine was chosen
because it has the high speed and large memuoty capacny required by Smiffer. ‘The programs
submsttted (o the system were also wntten m baspo Thas deasion simplified the implementation
constderanions, although it restricted the set of prograris wlich could be analyszed. However, the

tocus of the rescarch reniains m language mdependent techiigues.

. iy - N ) S <. - —— t—— T e e e

s

o T

- AR —

ek




2

A scenario using Sniffer -11- Section 2

2. A scenario using Sniffer

This chapter contains a scenario produced by using Sniffer. However, in order to create a
scenario which shows bug detection, one nceds a test program that is spiked with crrors. This
program has to be complex cnough o ilustrate subtle crrors, but also simple cnough to avoid

becoming a distraction from the main part of the rescarch,
2.1 The test program

The test program is a morphogenesis simulation, called prosper, which loosely models the growth
of a colony of bacteria. In prosper, the user provides an initial pattern of cclls and a collection of
production rules which govern their division. The simulation outputs a trace of the bacteria colony
through time,

The celis live on a rectilinear array called the grid. Each cell occupices one square of the grid and
may have up to four neighbors, corresponding to the top, right, bottom and left positions of the array.
Every cell has three basic properties, a type, an age, and a division time (which is the next time at
which it is cxpected to divide). The productions cause cell division. They are local transformations
that apply to onc cell in the context of its immediate neighbors. Productions can access any of the
prapertics of the adjacent cells. For example, a typical transformation (sce figure 2) might map a cell
of type “¢" surrounded by "a” cells into two “"¢"” units. In order to make the necessary room, the
ncighbors arc pushed out of the way.

Prosper is implemented as a production rule system that operates on data kept in a priority
qucue. This queue, called the events-gucue, orders the cells according to their division time. The cell
with the next (oggowest) division-time has the highest priority. (See figure 3 for the top level code.)
The flow of control is as follows: the grid is initialized with some pattern of cclls, and thosce cells are
assigned division times and placed on the events-queue. 'The central loop removes the first member
of the queue, and finds the set of productions which can affect cells of that type. One of these
candidates s sclected and  applied.  ‘The transforms are  responsible  for  requeucing  any
sceond-generation cells which they produce. Prosper terminates when the events-gqueue is cmpty,

The prid s implemented asachashi Gible keved on the docation of cells. (Phis altows incidentat

connechvity to he discovered. when separate fonmations prow together) The transtfonmations sire

stoved moa by also i the Jorm of o hash table beved on the bope ol the celt attected. The




N

The test program - 12

Fig. 2. Some siunple transformutions

Section 2.1

b a. b carcfnoma , b C.

Fig. 3. The code for prosper

(DEFUN PROSPER (EVENTS-QUEUE)

((LAMBDA (TRANSFORM-LIB GRID)
(PROG (MATCHES CELL DIV-TIME)
(GRID-INIT EVENTS-QUEUE GRID)
LP  (COND ((NULL EVENTS-QUEUE) (RETURN NIL)))
(DISPLAY-GRID GRID)
(SETQ CELL (TOP-CELL EVCNTS-QUEUE))
(SETQ OIV-TIME (TOP-TIME EVENTS-QUEUE))
(SETQ EVENTS-QUEUE (REST EVENTS~QUEUE))
(SETQ MATCHES (FIND-TRANSFORMS CELL TRANSFORM-L18))
(APPLY- TRANSFORMS MATCHES CELL GRID)
(GO LP)))
(CREATE-TRANSFORM-LIB) (CREATE-GRID)))

crents-queuc is mmplemented as aserted Bist, with division-time used as the index.




2R

The scenario -13-

2.2 The scenario

Scction 2.2

The following scenario was produced with Snifter. The dialogue starts after the program.

prosper. has been running for some time, and has started to generate incorrect output at the terminal.

‘The problem is that the user expected a collection of productions o cause an explosive growth of

cancer cells (cells of type “¢”), and nothing happened. (Ihe productions are shown in figure 2.

Figure 4 shows the output of prosper.)

Fig. 4. The output of prosper

ARY ARE

ACA ACCA

ARRA = ARA
luTNDOM-2 luinpou-2

ACA
AZA
AARA

{R1MDOW-2

The user's input is in lower case, and is preceded by a "<” prompt. System output is in upper

casc. | have interspersed comments describing the user’s thoughts throughout the scenario.

‘T'he user notices that the program is outputting bad data. and interrupts it to find the bug.

;Breakpoint BREAK; Resume to continue, Abort to quit.

(examine-history)

Jocus-time = ~26402, [CDR TRANSFORM]®

This indicates that the program was intermipted at time ~26302, which was at the end of the

exceution of the form (COR TRANSFORMY). [ocus-tone is o system imaintained global variable,




O

! The scenario -14- Scction 2.2

"The user moves the focus of attention to the most recent point in time at which prosper was being

1 exccuted.
: < (move-to (past-when '(in prosper)))
! Jucus-time = ~26373, GRID®
This request locates a moment immediately inside of prosper, as opposed to a time within a funciion
that prosper calls.
:
E < (print-frame)
"~ Execution time: ~26373, GRID® {
Function: PROSPER
Executing at:
(NAMED-LAMBDA PROSPER (EVENTS-QUEUE)
((LAMBDA (TRANSFORM-LIB GRID)
; (PROG (MATCHES CELL DIV-TIME)
(GRID-INIT EVENTS-QUEUE GRID)
LP  (COND ((NULL EVENTS-QUEUE) (REITURN NIL)))
(DISPLAY-GRID GRID)
(SETQ CELL (TOP-CELL EVENTS-QUEUE))
(SETQ DIV-TIME (TOP-TIME EVENTS-QUEUE))
(SETQ EVENTS-QUEUF (REST EVENTS-QUEUE))
(SETQ MATCHES (FIND-TRANSTORMS CELL TRANSFORM-LIB))
(APPLY-TRANSFORMS MATCHES CELL GRID®)
(GO LP)))
(CREATE-TRANSFGRM-LIB) (CREATE-GRID)))
‘The function print-frame displays the context of the current exccution time.  Focus_time is at top
level during the execution of prosper. at the end of the evaluation of the atom, GRID. After this
) moment, the flow of control enters apply-transforms, and eventually leads to the interrupted
excecution of (CDR TRANSFORMS).
A Since the problem is that cancer cells are not dividing. the user checks to see if any arc scheduled
A tor processing. He prints out the contents of the events-queue.
‘."! < (@ focus-time 'events-queue)
((28 A (-2 0) 2) (24 A (1 0) 2) (24 A (1 1) 2) (24 A (1 -1) 2) ...)
:, The tunction. @, causes a Lisp form 1o be evaluated in the context of the time suppliced as its first
| ]
argamient. The events-queue is a represented as an association list of division-times and cells. The
. car of cach item is the division time. and the cdre represents a cell.
Q Lhie wser prints out just the types of the cells which are in the queue.




The scenario -15- Section 2.2

< (@ focus-time '(mapcar ‘'cadr events-queue))
(AAAA ...)

The cells near the top of the events-queue should be cancer cells and they are not. However, the
ccll which is currently being processed has already been removed from the queue. The user examines

its value.

< (@ focus-time 'cell)
(A (0 -1) 2)

The user then finds the most recent time when a cancer cell was being processed. 1ts division

should have instigated explosive growth.

< (move-to (past-when '(just-became-true
‘(@ 7 '(eq (cell-type cell) 'c)))))
focus-time = ~00720, [TOP-CELL EVENTS-QUEUE]®

This expression returns the moment when the variable, CELL, became a cancer cell. The request
s implemented by scanning the cxecution history for the moment when the predicate,

(just-became-true ... ) applics. The variable “?" accesses the scan-time.

< (print-frame)

Execution time: ~00720, [YOP-CELL EVENTS-QUEUE]®
Function: PROSPER
Executing at:
({NAMED-LAMBDA PROSPER (EVENTS-QUEUE)
((LAMBDA (TRANSFORM-LIB GRID)
(PROG (MATCHES CELL DIV-TIME)
(GRID-INIT EVENTS-QUFUE GRIN)
LP  (COND ((NULL EVENTS-QUEUE) (RETURN NIL)))
(DISPLAY-GRID GRID)
(SETQ CELL [TOP-CELL EVENTS-QUEUE]®)
(SLTQ DIV-TIME (TOP-TIME EVENTS-QUEUE))
(SE1Q EVENTS-QUEUE (REST EVENTS-QUEUE))
(SETQ MATCHES (FIND-TRANSFORMS CELL TRANS: ORM-{18))
(APPLY-TRANSFORMS MATCHES CELL GRID)
(GO LP)))
(CREATE-TRANSFORM-LIB) (CREATE-GRID)))

Exccution is at the end of (TOP-CELL EVENTS - QUEUE ). just before the setq finction returned.

< (@ focus-time 'cell)
(€ (0 0) 1)

This cell should have metastasized, and set it did not. Fhe next expression looks forward to a




A Ty T TO¥ T PTG 7T XYY R

o

The scenario -16 - Scction 2.2

time when the transformations which could apply to CELL have been sclected, and evaluates MATCHES
in that environment.
< (8 (future-when '(eq (current-function ?) 'apply-transforms))

'matches)
((OLD-AGED-CELL DIE) (CANCER-CELL-WITH-ONE-NEIGHBOR METASTASIZE))

MATCHES is a list of two transformations. Fach transformation has two parts, a predicate which
determines whether the production can apply. and a function which implements the transformation

itself.  'The first candidate in MATCHES removes old-aged cells from the grid, the second

- transformation causcs explosive growth. The user determines which one was sclected.

< (@ focus-time '(old-aged-cell cell grid))
NIL

This ecxpression recvaluates the predicate for the "die” transformation in the current
time-cnvironment. The result is necessarily identical to the one returned by the original invocation of
that form in the test program. Since it is NIL, the metastasize function must have been selected
instcad. The user moves forward in time to a moment when top level code in "metastasize” is being

evaluated.

< (move-to (future-when '(in metastasize)))
SJocus-time = ~01751,

*[NAMED-LAMBDA METASTASIZE (RIGHT-CELL KEY-CELL) ...]
< (print-frame)

Execution time: ~01751,
*[NAMED-LAMBDA METASTASIZE (RIGHT-CELL KEY-CELL) ...]
Function: METASTASIZE
Executing at:
*[NAMED-LAMBDA METASTASIZE (RIGHT-CELL KEY-CELL)
((LAMBDA (NEW-CELL LOCATION)
(INCREMENT-DIVISION-COUNT KEY-CELL)
(MAKE-ROOM-BETWEEN KEY-CELL RIGHT-CELL GRID)
(GRID-INSERT NEW-CELL LOCATIONMN GRID)
(EVENIS-QUEUE-INSERT NEW-CELL (+ DIV-TIME 2) EVENTS-QUEUE)
(EVENTS-QUEUE-INSERT KEY-CELL (+ DIV-TIME 2) EVENTS-QUEUE))
(CREATE-CANCER-CELL) (CELL-LOCATION RIGHT-CELL))]

The calls on cvents-queuc-insert should have placed the cancer cells. new-cell and key-cell, on
P

the eventssqiene with a high prionty division time. The user checks to see if the events-queue was

modificd atany tme during the execution of (hat procedure,




"T'he scenario -17- Section 2.2

< (move-to (future-when '(eq (current-function 7)
‘events-queue-insert)))

focus-time = ~02672,
*[EVENTS-QUEUE-INSERT NEW-CELL (+ DIV-TIME 2) EVENTS-QUEUE]

< (unmodified®* (@ focus-time ‘events-queue)
(@ (end focus-time) 'events-queue))

T

In an environment where different versions of an object can be compared across time, several

ncw types of equality become important. Unmodified* is the strongest test possible. (See the section

on cquality and coreference for a detailed discussion.) The expression (end focus-time) returns

g~ - the time corresponding to the end of the evaluation of the current function.

The results of the test confirms the user's suspicions. The insert function was called, but the data

never entercd the cvents-queue, This is a suitable point to ask the sniffer system for its opinion.

< (get-expert-help '(events-queue-member new-cell avents-queue)
focus-time
(end focus-time))

The get-expert-help function invokes the sniffers. The first argument is a Lisp predicate that is

expected to apply (to be non-nil) adter the exccution of the region of code specificd by the last two

arguments has occurred. In this case, that region happens to enclose a single s-expression (the call on

events-queue-insert).  The sniffers use the predicate as a partial specification for the code in the

region. They examine the code for the predicate, and the code inside the region, as well as the

control flow and data values involved during those scctions of exccution. The sniffer which

identificd the bug produced the following report.




o

The scenario -18 - Section 2.2

Bug Summiry

The bug is a case of violated expectations. The function METASTASIZE
called EVENTS-QUEUE-INSERT with the apparent intent of inserting
NEW-CELL into the EVENTS-QUEUE by side-effect. The insertion did not
occur because EVENTS-QUEUE-INSERT is an insertion function for sorted
Tists without header cells. It does not act by side-effect when the
item sorts to the beginning of the queue. It conses it onto the top
of the list instead.

Analysis

The function
(DEFUN EVENTS-QUEUE-INSERT (ITEM TIME EVQ)
(PROG (NEW OLD ENTRY)
(SETQ ENTRY (CONS TIME ITEM))
(COND ((OR (NULL EVQ) (BEFORE? ENTRY (CAR EVQ)))
(RETURN (CONS ENTRY EVQ))))
(SETQ NEW (CDR EVQ))
(SETQ OLD EVQ)
LP (COND ((OR (NULL NEW) (BEFORE? ENTRY (CAR NEW)))
(RPLACD OLD (CONS ENTRY NEW))
(RETURN EVQ)))
(SETQ OLD NEW)
(SETQ NEW (CDR NEW))
(GO LP)))

is recognized as a non-header-cell insertion function for sorted
1ists. In this execution, the item to be inserted was (12 C (-1 0) 1)
and the value of EVQ was

((24 A (0 1) 2) (24 A (0 -1) 2) (24 A (-2 0) 2) (24 A (1 0) 2) ...)

The ordering test, (BEFORE? ENTRY (CAR EVQ)) sorted the item to the
top of the list, and therefore the splice-in did not occur.
EVENTS-QUEUE-INSERT returned (CONS ENTRY EVQ) which evaluated to

((12 C (-1 0) 1) (24 A (0 1) 2) (24 A (0 -1) 2) (24 A (-2 0) 2) ...)

The function
(DEFUN METASTASIZE (RIGHT-CELL KEY-CELL)
((LAMBDA (NEW-CELL LOCATION)
(INCREMENT-DIVISTON-COUNT KEY-CELL)
(MAKE -ROOM-BETWEEN KEY-CELL RIGHT-CELL GRID)
(GRID-INSIRT NEW-CELL (OCATION GRID)
*[EVENTS-QUIUE-INSERT NEW-CELL (+ DIV-TIME 2) EVENTS-QUEUE]®
(EVENTS-QULUE-INSERT KL Y-~CELL (+ DIV-TIME 2) EVENTS-QUEUE))
(CRLATE-CANCER-CELL) (CULL-LOCATION RIGHT-CELL)))

ignores the value returned hy EVENTS-QUIUE-INSERT on the indicated
call, and consequently the results of the insertion were forgotten.

Lhe mechanisms which support this analysis are doseribed in the following chapters

B

PR S LR L




The Time Rover -19- Scction 3

3. The Time Rover

‘The purposc of the time roving facility is to allow the user, and the bug experts, to query the
exccution history of the program undergoing analysis. The system was designed to support the style
of investigation displayed in the scenpario. In order to do this, the time rover maintains a complete
trace of the cvents which occurred during execution, and allows arbitrary Lisp expressions to be
evaluated as if particular program states were in effect,

The best way to cxplain the issucs involved in time roving is to discuss its implementation. This
is not intended as an overture to the inclusion of excessive detail.  Since Sniffer was written to
demonstrate a point rather than as a system utility, it was implemented with a conceptually simple

design. Efficiency was not a concern,

3.1 Terminology

‘The gxecution_history of a program refers to the sum total of cvents which occurred while it was
running: the flow of control, the scquence of side cffect operations, etc. The execution trace refers to
the physical structures which are used to represent that history,

Within an exccution history there are various named times, or moments. Time can ordinarily be
thought of as an integer. 1t starts at 1 and increases monotonically as execution progresses. The
beginning and the end refer to the first and the last moments during the exccution of the user’s
program. Focus-time corresponds to a specific moment in the exccution trace. It is the focus of
attention within the history.

‘There is also a convention for naming directions. Farlier moments are closer to the beginning
and luter moments arc ncarer the end. Figure S illustrates these idecas. A time-chvironment is an
abstract object in which one can look up the bindings of variables and their properties, ctc., which are
in effect at a given time. For lack of a better method, all moments will be referred to in the present

{¢nse.




Implementation -20- Section 3.2

Fig. 5. Vocabulary for discussing time travel

b¢5-'nn'mj -—

. tme=1
oc earl:'c:‘ :::::{é
_ Focus-time ——>
| i i mcraSmJ {'mne
ater momen * .

eND—\Y

3.2 Implementation

The time rover is composed of two parts, called the keeper and the seer, both of which are
constructed as modified evaluators for Lisp. The keeper is used (primarily) to generate a history for
the test program. It can be thought of as a careful cvaluator which deposits records as it executes
forms. The scer listens to the user’s debugging requests. [t has the ability to investigate and compire
any of the states associated with the test program’s history.

[n the scenarto, the keeper processed the original exceution of prosper, and all forms typed by
the user were handled by the scer. The special function, @. invoked o sccond usage of the keeper; it
causcd the keeper to cvaluate an expression in the context of a specified time. (In some sensc, the

bigaest distinction between the keeper and the scer is that the keeper can only think about once

&

moment at a time, while the seer knows about all tirnes at one moment.)




The kecper ~2]- Section 3.3

' 3.3 The keeper

The keeper implements a restricted version of Lisp, called K-lisp. which is different from normal

L.isp in two ways: it considers code to be an immutablc object, and it uses the cxccution trace as the

environment for containing K-lisp objects. This includes "heap” data and variable binding

information. The execution trace is a structure which totally orders control flow events, and

side-cffects events (changes in the contents of memory cells) with time. Conceptually this

information is divided into two parts, the control flow history, and the jncacnation series.
Thue control flow history records all calls and all returns from the evaluator. It is a

straightforward extension of the Lisp stack, where no information is forgotten. Every call moment

contains a link to the invocation time of its parent, and every return monient contains a link to its

matching cailer. (Sce figure 6.) This history contains more infonnation than is necessary to record

the control flow unambiguously (only the choices taken at branch points are strictly required), but it

was morc convenient for my purposes to have the data in this form.

Fig. 8. A coatrol flow history

this represents the
execv tion of the S‘l'afcmunf

@)




The keeper -22- Section 3.3

The incarpation scrics is a time ordered sequence for the values which ecach memory cell acquires
during the cxccution of the test program. This information is stored in terms of [name, binding]
pains, called trace-cells. A trace-cell is an immutable object that records the contents of a cons (or the
value of an atom) at a particular time. The name component of a trace-cell is analogous to the
address of a cons in Lisp. It provides a handle on all of the versions of a given cell. The binding field
of a tracc-cell contains a car-part and a cdr-part which represent the car and cdr of the corresponding
Lisp cons. Trace-cells are invisible to the programmer,

In the keeper, a value is a name, The data associated with a given name (id or cell-id) at a given
time is found by scanning the incarnation serics for the most recent trace-cell with the appropriate id.
This search fulfills a role which is cxactly analogous to looking up an address in normal Lisp. During
the evaluation of the test program, the current exccution time is used as the starting point for
scanning the incarnation series. During debugging, that time is supplied by the seer.

The primitive operations of K-lisp are modified to accommodate trace-cells. The functions
which preduce side cffects cause trace-cells to be deposited, and the information obtaining
operations, cur. ¢dr, and symeval are modified to access these structures via scarch. (I will discuss the
new versions of eq and equal in a later section.) For example (sce figure 7), the function cons in the

statement
(cons 'a 'b)

produccs the trace-cell {cons-24, ab], which indicates that the binding associated with the cell-id,
cons-24 represeats the (traditional) cons of the atoms a and b, (The cons function is a side-effect
operation in the sense that it allocates storage where none was required before.) Trace-cells, like

conses, contain the values of 1isp objects. The statement

{cons a b)

would produce a ditferent trace cell, who's car-part was the vatue of @ and wha's cdrpart was the
vatue of b the functions rplaca and rplacd create similar trace-cells, except that the name ficld
contains the id of the cell which is being updated. The function serq in the statement

(setq h 3)

resudts ina trcescell who's name is the atom, Ao and who's binding ficld has a car-part containing the

nunther L Orh muatable obyects nead to have trace-cells o record the sequence of their vatues.

o




The keeper -23- Scction 3.3

Fig. 7. Some example trace-cells

name car-part ~ cdr-part

cons2Y a b

Numbers and similar constants can appear in the binding parts of trace-cells, but not in name ficlds.

The operations car, ¢dr, and symeval cach map a cell-id into another cell-id. The carofa cell-id is

the car-part of the corresponding trace-cell (the onc in cffect at the current time). Similarly, the cdr
of a cell-id is the cdr-part of the associated trace-cell.  All of these functions involve an identical
scarch through the incarnation series. [For example, the function symeval takes in an id (which must
be an atom name). scans the incarnation series for the most recent trace-cell with that id in the name

ficld, and outputs the car-part of the trace-cell which is discovered.

3.3.1 An example of the evaluation process

IFigure 8 shows a collection of snapshats of the incarnation series as the following staitements are

cxeeuted.




An cxample of the evaluation process -24- Section 3.3.1 :

(setq y (cons 1 nil))
(setq z (cons 2 y))
(rplaca (cdr z) 3)

AR AR - N e

The first cvent is the creation of the trace-cell for (cons 1 ni1). The name ficld is arbitrarily set
to cell-1, and the trace-cell is deposited at time 1. The setq operation deposits a trace-cell with the
naine ficld y. and a binding ficld who's car-part is the cell-id, cefl-1. No pointers are involved.
Similarly, in the trace-cell which is deposited by (cons 2 y), the value of y is represented by cell-1
again. 'This process continucs until (rptaca (cdr z) 3) is evaluated. In normal Lisp, this side-cffect

‘ would have changed the contents of an existing cell. In the keeper. a new trace-cell is deposited with
‘ the same name ficld, cell-1.

In order to evaluate Lisp expressions, the keeper has to find the appropriate trace-cell every time
a cell-id is referenced (therc may be many with the same name). For example, in figure 8, the value
of y at time-2 is found from trace-ccll #2 to be the cell-id, cell-1. To print out the value of y, the
binding of cell-1 at time-2 has to be printed. In this case, the contents of trace-cell #1 are the correct
result, The list "(1)" is printed.

In order to cvaluate the predicate (@ time-5 *(car y)) the keeper has to discover that y was
changed by an indirect side cffect through z. This process is accomplished as follows. Starting from
timme-5, the keeper looks for the most recent setq record for the atom y. The value of y turns out to be
the id, cell- 1, which was discovered from the trace-cell deposited at time-2. Next, the keeper takes the 1
car of cell-1, in the context of time-5. It scans backwards from time-S5. looking for the most recent

< version of cell-1 and returns the car-part of the resulting trace-cell. Trace-cell #5 has the appropriate
. name, and the number 3" is returned.

In order to print out the clements of a list in the context of a given time, the keeper has to
mterpret cach of the cell-ids involved. For example, the value of z at both time-4 and time-5 is cell-2,
v but the hst it represents at time-4 is composed of trace-cells # 3 and # 1 (the list "(2 1)”). At time-$,

<1 z 15 built from trace-cells # 3 and # 5. corresponding to the list "(2 3)".

S >,

s SRS~ s S LIRS K ah sl S T TV



Ftfecicney considerations

Fig. 8. The development of the incarnation series during execution

time

-5

Scction 3.3.2

(setq y (cons 1 nif))

cell-1

nil

|E

Cell-1

(Se_ch 2 (cons 2 y))

2

Cell-2 cell-1
Z ‘L cell-2
(rplaca (cdr 2) 3)
cell-1 3 | nif

3 g sl SR REY 1T T "




Gl St

-y

.-a

Fftecivney considerations -26- Section 3.3.2

3.3.2 Effeciency considerations

‘The time rover was implemented with a list like representation for its environment in order to
make the system casy to code. Once it was implemented, | discovered that it was slow, but not quite
so slow as expected. For simple requests, the keeper responded almost as quickly as the normal Lisp
interpreter. However, the time requirement for cach reference unfortunately increases with the size
of the cxecution trace. At the end of the scenario, the time rover required approximately half of a
second to locate cach cell-id.

The scarches involved in running the test program can he entirely climinated by introducing a
new data structure, called the now-array, to maintain the end time-cnvironment. {This environment
is the one normally associated with a running program, it always holds the state of the latest moment
of exccution.) This table would contain a mapping of cell-ids to their current bindings. In different
words, the now-array would be a shallow binding of cell-ids o carpart, cdr-part pairs from
trace-cells. Since cell-ids can be chosen freely. they can be set up as indices into successive memory
locations of the now-array. This would essentially eliminate all scarches for cell-ids (at a factor of two
overhead in space).

‘Ihe now-array would not speed up the exccution of debugging requests. These requests
typically access a number of dme-environments in rapid succession. which suggests that a scarch
paradigm is more reasonable than the alternative of updating the now-array to contain the
umec-environment of focus-time, whenever focus-tine changes.

A sccond improvement would be to move to a non-lincar representation for the execution trace.
Since the critical issue is 1o find cell-ids as fast as possible, a hashing scheme on cell names is a
possibiity. [ did not employ this approach because there was some subticty involved in integrating it
with the need to represent altrnate evaluation sequences (see below).

I any caxe. the mamory requirement for the keeper grows with the duration of execution. At
somne point, this will threaten to exceed the capacity of any machine, in which case it would be
possible o "forget”™ about certain portions of the execution history.  ‘These regions would then
become opaque to the tme rover. [y running the scenario, no memory capacity problems were

cncountered.

¢
1
?




R

.
t e
bl e

.

- ow,

‘The seer -27- Section 1.4

3.4 The seer

The function of the seer is to provide the user with a uniform mechanism for operating on data
from the cxecution trace, and for manipulating the objects defined in his own local debugging
cmvironment.  ‘The seer is constructed as an cvaluator for Lisp that is extended o contain
time-stamped objects, called +pairs, which refer to data from the incarnation serics.

A t-pair contains two parts, a reference time and a cell-id where the reference time specitics the
time-cnvironment to usc for interpreting the cell name. Reference times are sticky, in the sense that
the car of a t-pair is another t-pair with the same reference part. This approach allows the user to
change the perspective used to view an entire |isp object by altering the reference time attached to its
topmost cell-id. A t-pair is represeated here as a bracketed pair of the form {zime id}.

The primitive operations of the seer are modified to accommodate this new data type. If a
primitive is called on a normal Lisp object, then it is evaluated in the normal way (this might yicld a
t-pair). When a primitive is applied to a t-pair. it is cvaluated with the aid of the corresponding
operation of the keeper. For example, from figure 8, symeval of {timc-4 7} is ihe t-pair
{timc-4 ccll-2} where cell-2 was obtained by applying the keeper's symeval function to z at time-4.

The function "@" (which invokes the keeper's evaluator on a Lisp form) can be used to state the
cffect of these primitives in a more concise form.

(symeval {t id}) => (@ t '(symeval id))

(car {t id}) => (8 t '(car id))
(cdr {t id}) => (@ t '(cdr id))

@ returns a t-pair who's reference time is the time supplicd by its first argument.

3.4.1 Alternate time-tracks

It is not immediately clear how to interpret the application of a side cffecting primitive to a
time-stamped object. ‘The issue is that a t-pair refers to an abject from the history of the test program
which was never subjected to the side effect that the user is requesting.  (Information obtaining
operations are benign in this sense. They have no potential for altering the data in the trace.) If the
exceution trace is intended o record the actual history of the program, the question is how can side

clicets created by the debugger he factored in?

Ihere are many very confising ways o tesobve this gueston,  If the debugging session s

- arde -

e s -

[P




Alternate time-tracks -28 - Section 3.4.1

considered to occur after the test program is exccuted then a side-cffect to a variable, say at time-10,
would actuatly occur at a moment which is later than any moment in the cxccution history. ‘This
implics that a debugging request which accesses the supposedly side-cffected data at time-11 finds
that nothing has changed.

The approach | take is o interpret all debugging requests that access the history of the code as
explorations into alternate time-tracks for the test program’s development. These debugging requests
arc processed as if the test program executed them at the specified time. For example, in the context

of figure 8. the effect of the statement
(@ time-4 '(rplacd (cdr z) 1))

is to grow a branch off of the incarnation serics at time-4 (forming an incarnation tree) and to deposit

a trace-cell for cell-1 at that time. The side effects created by the functions setg, cons, and rplaca are
handled in a similar way. (Sce figure 9.)
This approach implies a small redefinition of the function "@". [ have described @ as a utility for

invoking the evaluator of the keeper. To be more specific, 6, in the statement
(@ time 'expression)

instructs the keeper to form a branch in the incarnation tree, and then hands the expression to the
keeper to be evaluated in the context of the titne-environment defined by time. (The scer evaluates
the parameters to @.) @ returns a t-pair which packages together the cell-id returned by the keeper
and the time at which the keeper finishes its evaluation. A time can be interpreted as a poinier into
the incarnation tree, which bi-directionally links trace-cells.

The seer can usc the function @ to retricve information from the cnvironment of the kecper, but
the keeper cannot deeess data defined in the seer. This occastonally causes some confusion.  For
exatnple, the tollowing expressions (in the scer)

(setg D '(a b c¢))
(@ time-2 '(setq y D))

wil resultin an error when the keeper attempts to symeval D at time-2, assuming that b is not defined
in the context of the test program at that time. (The keeper does have limited access to the seer, in
thatccan tun functtons which the user detines in the course of debuging. These functions, must he
rnnabie m K -ispe They may not eeference tpairs)

Phodetmion of 8 makes it posablie o eapress e action of 1he seer’s primtites G tpaps by




|

i

E Alternate time-tracks -29- Sectivn J4.1

|

L

.‘

{ ’ Fig. 9. \n example of an alternate time-track

N This figure shows the growth of a branch in the execution history in response to the code statement
shown.

Hime (shy y Cons 1nil)

1 cell-1/ L nil

I

2 Yy (eII-]

I (setq 2 (eans 2 g))

3 | ¢ell 2 cell-1

I

4 2 cell-2

I (rplaca (cdr 2) 3)

5 .
(rplaca (cdr 2) 1) cell-1 3 ni

6 ca//-z:[ ] ol




Alternate time-tracks -30- Scction 3.4.1

the following rewriting rules.

(symeval {time id}) => (@ time ’(symeval id)}))
(car {time id}) => (@ time '(car id))

(cdr {time id}) => (@ time '(cdr id))

(setg {time id} x) => (@ time '(setq id x))
(rplaca {time id} x) => (@ time '(rplaca id x))
(rplacd {time id} x) => (@ time '(rplacd id x))

The information obtaining operations create degencrate branches of the incarnation serics (the time
does not increase), and the side effecting opcerations augment the data in the trace.! Note that the
cons of two t-pairs within the scer is not implemented in terms of the keeper's primitives.  The

statement
(cons (@ time-4 'z)(@ time-2 'y))

simply creates a cons cell in the environment of the seer which contains the resulting t-pairs.

3.4.2 Equality and coreference

‘The concepts of equality and corefercnce have to be extended to fit an environment where many
versions of data cells are available simultaneously.  In normal Lisp, there are only two ways to
comparc objects. One can ask if they are eg. meaning that they have the same name or address
{which is cquivalent to asking if they are coreferent), or if they are egnal, meaning that they contain
isomorphic data structures.

In the scer. more distinctions are available. One can ask if two t-pairs refer to the same object in
the keeper (1 call this test wnmaodified), or if twa cell-ids are the same (eg). These questions arise when

objects are compared across times. For example (see figure 8),
(eq (@ time-2 'y) (@ time-5 'y))

is trae Hered the st contained iny is different at the tw o times although the top fevel cell-id which is

the value of y is ¢o/f- 7 in both cases. (y contains (1) at time-2 and (3) at time-5.) The statement

1P s not sincth triae Sincc e strsctores opic cnting the control How listony e nacrged w:to the execution trace, the
e den s choore or ooy call e e doopar Thowovar tor the pupose of the prnitne opetations o docs not camgc i am

tete sty v




L. -, . -

L

Equality and coreference -31- Section 3.4.2

(unmodified (@ time-2 'y) (@ time-5 'y))

is false. ‘This test shows that the value of y was changed between the two times.

When these predicates arc extended to lists, one can ask if two lists contain the same cell-ids at
every level (called eq®). or if they involve the same trace-cells at every node (unmodified®).
Unmodified* is the coreference test in the time roving environment. Kg* is a weaker function. For

example, suppose that an identical copy of the variable y is created by executing the statement
(@ time-4 '(rplaca (cdr 2) 1))

(sce figure 9). This deposits a record for cell-1 in a side branch at time-6. In this case, the expression
(eq® (@ time-6 'z) (@ time-4 'z))

is true, but
(unmodified® (@ time-6 'z) (O time-4 'z))

is false.

Note that two lists are not necessarily identical if their top level trace-cells are the same. There is

always the possibility that some internal cell has changed across the two times. From figure 9,

(unmodified (@ time-5 'z) (@ time-4 ‘'z))

is true (z cvaluates to cell-2 in both cases), but

(unmodified®* (@ time-5 '2z) (@ time-4 'z))

is false. (Cell-1 was updated between the two times.)

The function equal remains essentially unchanged in the context of the scer, It still tests for
isomorphism of structure. There is no requirement that the lists share the same trace-cells or even
that the same cell-ids are involved. The atoms at the leaf nodes of the tree must be identical.

‘T'he relationship between these functions is summarized in figure 10.

il R b " g - B WY P R —— > ra——



s

~

A surunary of the keeper and the scer -32- Section 3.5

Fig. 10. The heirarchy of cquality tests

The cquality tests for lists represented in trace structurcs are stronger than the analogous tests on
cell-ids: eq* implies cq and unmodified*® implies ummnodified. The converse is not true. Unmodified®
implics ¢q*. because lists with the same trace-cells must contain the same cell-ids. 1y* implics equal
because lists built with corresponding cell-ids must match at the level of atoms.

eqoal

eq < €q%

’

unmodifi eJ < unnoc’l'QCJ *

implications pof shown are nof present

3.5 A summary of the keeper and the seer

The keeper and the seer define a imechuanism that allows the user to execute and then examine the
history of a test program. ‘Ihe keeper creates the execution history, and cvaluates any requests
submitted by the scer which access that data. The seer provides the user with a Lisp environment for
exceuting debugging requests. [t answers questions about the exceution history by employing the
facities of the keeper. Figure 11 shows the relationship between these systems.

[he overall environment which the system presents has the user’'s debugging requests occurring
makind of asuper-time which is not ordered with respect to the execution history. FFrom the user's
puspective, Wl of the infonmation m the trace is equally accessible.

The use of alternate ume tracks makes 1t possible to move to moments in the test program’s past
and evaluate arbitrary Lisp expressions in those contexts. e user can define functions, and execute
them inany time-enviroament. or cxplore hypotheses about the test program’s behavioe by
re-exceuting portions of the code on modified data. Fhe alternate Bistorics which these actions create

can themselves bemvestizgated in the same manner.

= 2 % gD IR - A et . O CRIIN G oo~ .. e WY ¥ PSR Y . “ e

R PR

- T e

v o

e A iy ik m e e

B i — - s,

o b — o ———




A summary of the kecper and the seer -33- Section 1.5

Fig. 11. An overview of the time rover

[ime Rover

,(’eeper'

i ﬁl;nu'nj

. Zm' o i fet‘

h\’. ] e'J
incaraation Tree

— g ~
norm;l
héf control Flow
HigTORY
stack
< Y, " __J




A summary of the keeper and the seer -34- Scction 3.5

"The functions of the keeper and the scer could conceivably be combined into a single evaluator
that would have an extra degree of freedom, namely time.  In this system, cilled the timie-probe, it
would be possible to write programs that routinely call procedures which will be defined in the future
to modify data which was current at some time in the distant past. ‘ihe difference between the time
rover and this hypothetical system is that the time-probe can travel in its own history. Ncither the
scer nor the keeper has this ability (and it is not clear that they require it).

The creation of the time-probe is left for future rescarch.!
3.6 Mecthods for specifying times

I'he primitives for lociting times are cast in the framework of scarch through the incarnation
serics.  ‘There is a notion of the focus of attention, called the focus-time. which can be moved
throughout the execution history.  The scarches for other moments move cither forward or
backwards from that time.

Time is a data type recognized by the seer.  There are two functions which yield times;
futurce-when and past-when, The syntax is

(futurc-when form)
where form is an arbitrary predicate evaluated by the seer (it may contain calls on @ which invoke the
keeper). ‘The function future-when scans forward in time from focus-rime and returns the first
moment when form yields a non-nil (and non-crror) result,  Past-when performs the analogous
function for moving towards carlier moments in the history.

The unplementation for these functions is fairly intricate, 1t would be prohibitive to attempt to
apply form atevery moment in the history which is scanned, so the scarch functions first compute the
reference sct nf cell-tds accessed by form, and then move attention to the nearest moment when one
ol those ccll-id:. has a different binding. At the resulting time, form is reevaluated and the reference
sctcomputed onee again. The process repeats until form returns a non-nil value (success), or until the
seatch passes beyond the boundanies of the mcarnation series (faiture),

Fhe scarch mechanisim is also capable of detecting transitions in the values of form. For example,

Iohe e probe woutd hase toadoad witho lew vess sonous problems scdduding the tempeorad fiorary problem This accurs
when a toneton b cd o the ot e e as oo it mte 4 et whonoats deltion sscodetforent . O worse sofl, a

Tanction Jebavd weony e tack b poseed iton o altorate boane s inelot never sl sid neser has ousted anall




.~ =d

“

Methods for specifying times -35- Section 3.6

the expression from the scenario,

(move-to (past-when '(just-became-true
‘(@ ? '(eq (cell-type cell) 'c)))))

caused the form
(@ ? ‘(eq (cell-type cell) 'c))

to be applied at the moment discovered by the scan, and the immediately preceding moment. The
function, just-became-true, identifics a particular kind of transition in the value of its form. Since
a scan can causc ecxpressions to be applied in time-environments where they vyield errors,
just-became-true looks for a transition from cither a nil or error result, to a non-nil value. The
implementation  of sniffer contains a number of similar functions; error-to-true,
error-to-false, false-to-true, etc., as well as two  special functions,
just-about-to-become-true and just-about-to-become-false which return the moment
immediately before a transition is going to occur. (Ail transitions are defined to start at earlier times
and finish at later ones. The transition functions are not sensitive to the direction of search.)

The scarch functions can also employ predicates which depend upon data in the control flow

history. For example, the expression
(future-when '(during metastasize))

(not shown in the scenario) returns the next time when exccution is within the definition of
metastasize.  Since the records in the control flow history provide the code associated with cach call
and return from the evaluator, detecting during-ness is not very hard. The procedure ascends the
parent hicrarchy of function calls to sce if it locates the expression which is the definition of
mgclastasize.

It turns out that the interaction between these kinds of requests and the search mechanism is
somewhat tricky. In order for the scarch functions to know when next to apply a form, cach
predicate on control flow has to identity the borders of its current truth value. In some cascs this is
casy: dur ing knows that it ccases to apply at the endpoints of its span (which are trivially available
trom the execution trace). However, if dur ing does not apply at the current moment, it has to find
the bordering times where it does. This partially subyverts the purpose ol the scan mechanism, which
was attempting o tind these moments to begin with,. Some maore sophisticated approach may be

calted for.

) »

I A s, RN




The cliche finder - 36 - Scction 4

4. The cliche finder

The cliche finder performs two functions within Sniffer; it recognizes small algorithms from the
test program in order to provide the bug experts with a context for identifying crrors, and second, by
identifying algorithms, it raises the level of the vocabulary which the system can usc to describe code.

For example, in order to identify the ervor described in the bug report (see page 18), the cliche
finder recognized that events-queue-insert implements a particular kind of list inscrtion (a
non-header-cell insertion for sorted lists). [t also identified cliches which were components of that
insertion, namely a splice-in operation, an ordering predicate test and a list enumeration, some of
which it referred to by name in the bug report.

The cliche finder is composed of a collection of algorithm detectors which operate on an
alternate representation for programs, called a PLAN. PLANs (developed by Waters, Rich and
Shrobe [Waters 1978] [Rich and Shrobe 1976]) are a powerful tool for supporting program
recognition because they are a language independent notation, and they represent small algorithms in
an essentially canonic form. The generality of the cliche finders depends upon these propertics of

PI.ANs.

4.1 An overview of PLLANS

PI ANs identify several critical constraints on the representations of algorithms.  (Sce
{Waters 1978] for a detailed discussion.) 1 summarize the main points below.

Pl ANs ignore the way in which control and data flow is implemented. For example, it makes no
difference if the control structure for a program uses conditionals or goto statements, both map into
the same PLAN, Stimilarly, all the possible methods of using variables to hold partial results or
propagate values are judged equivalent. PLANSs are based on data flow: they extract only the
essentutd mterconnections betw een aperations that produce and consume data in code.

P ANS associate related seements of code which may have been widely separated in the original
text. A PEAN s a compound object composed of data flow related segments. The fact that one picce
of code outputs data which ainother consumes s a simple proof that both are working towards some

umified goal. The conseguence ot this organizaiion s that feature detection in P AN space involves

tn less search than it would reguire in the original test for the code,




An overview of PL.ANs -37- Section 4.1

The PLAN representation is partitioned into fragments which have stereotyped behaviors. ‘This
allows complex programs to be understood in terms of simple purposcful parts. For cxample,
iterative and recursive routines are represented by a single PLLAN structure (a PLAN Building
Method, or PBAf in Waters® terminology) called a temiporal composition which can contain five types
of components; initializations, generators, filters, accumulators and terminators. (The output of his
analysis system labels the segments which fulfill cach of the five roles.) An initialization is a segment
that is exccuted once before a loop is entercd. A generator produces a sequence of values that are
used in later calculations (a list enumerator is an example of a gencerator). Filters restrict the
sequence of values which are available beyond their location in the code. Accumulators perform
calculations, they remember results, ‘Terminators are like filters in that they restrict sequences of
values, however, they may also stop the execution of a loop. 'The remaining plan building methods
categorize the program actions in straight line code. Taken together, the PBMs provide a complete
parse of a program into these purposeful parts. (The mechanisms which perform this analysis are too
lengthy to describe here. Sce [Waters 1978] for a full explanation.)

The result of features described above is that many textual rcpresentations for the same
algorithm are mapped into identical (or nearly identical) PLANs. For example, if the function,
events-quaue-insert, is implemented using cither of the expressions in figure 12, it analyzes into
the exact same PILAN. This is true cven though the forms involve different control structures,

different variable names, and distinct Lisp primitives.

4.2 An example of cliche recognition

The algorithm recognizers identify procedures by matching their PLLANSs against known cliches.
‘This match must be cssentially exact.  (The cliche finders can tolerate variations at the level of
ignoring extrancous detail.) For algorithms of complexity of events-queus-insert this approach
has been successful. The recognition of larger programs will require more sophisticated methods. (1
discuss some alternative approaches in the section entitled extensions.)

The foltowing three tigures present the PLAN for events-queve-insert inits entirety. ‘These
diagrams expliaitly represent a considerable amount of inforimation which is hidden in code. and they

contain some special notation as well, Towever, most of the detail can be safely ignored. The figures

are presented moorder o motivate specific examples which deaw on portions of the PLANS,




Notation -38- Section 4.2.1

Fig. 12. List insertion programs which map into the same PLAN
{a)-

(DEFUN INSERT (DATUM KEY QUEUE)
(LET ((OBJECT (CONS KEY DATUM)))
(COND ((OR (NULL QUEUE) (BEFORE? OBJECT (CAR QUEUE)))
(CONS OBJECT QUEUE))
((DO ((NQ (CDR QUEUE) (CDR NQ))
(0Q QUEUE NQ))
((OR (NULL NQ) (BEFORE? OBJECT (CAR NQ)))
(RPLACD 0Q (CONS OBJECT NQ)}))))))

-[b]-

(DEFUN EVENTS-QUEUE-INSERT (ITEM TIME EVQ)
(PROG (NEW OLD ENTRY)
(SETQ ENTRY (CONS TIME ITEM))
(COND ((OR (NULL EVQ) (BEFORE? ENTRY (CAR EVQ)))
(RETURN (CONS ENTRY EVQ))))
(SETQ NEW (CDR EVQ))
(SETQ OLD EVQ)
LP  (COND ((OR (NULL NEW) (BEFORE? ENTRY (CAR NEW)))
(RPLACD OLD {CONS ENTRY NEW))
(RETURN EVQ)))
(SETQ OLD NEW)
(SETQ NEW (CDR NEW))
(GO LP)))

4.2.1 Notation

PLAN diagrams contain three kinds of entitics: boxes, solid lines and dashed lines.  Boxes
represent actions which may be either primitive or compound. A primitive action corresponds to a
black box in the code, such as a cons statement in 1 isp. There are cleven types of compound actions,
these include compunctions, predicates, and conditionals for representing straight line code, and filters,
accumtdanons and terminations for representing fooping behavior, Dashed lines represent control
How. sohd hines represent data flow. For example, the diagram of figure 13 represents the top level

Pl AN for events-queve-insert as the PBM evclusive or. where the predicate

(or (null evq) (before? entry (car avg)))

determines whether the function rarens through a cons, or cnters the expression containing the




-

. wa

Notation -39-

Fig. 13. The top level PLAN for events-gucue-insert

Section 4.2.1

Xar : hime  jferm evq
|
)
]
|
]
}
]
l rd
l N .
: Cons

v

fr}c!lc'lh
Pred

Achon | }

e ————
ce [73
> <
rd
-
s ~
7 ~

Act 1'0h1 L

L

expression

© r e o T e < a rrom

0 i ey e o s - g 7



Notation -40 - Scction 4.2.1

Fig. 14. The predicate for testing list clements

predicate, entry evy .

predicate
nul| 2
Yyes l né—l
] S~ - i
l T
: pretllcafe v Y
l fnit; XL
! car
N
I before !
{ \
| ,
i
‘ no Jes
| 1
] / AN
| a3 * A C&o
‘ = 1
| e -—"7 !
2 :
|
J |
o '
: )
¥ 4
cer “24




Notation <41 -

Fig. 15. The PLAN for inserting an element in a list

Scction 4.2.1

EXPRESSION evq_

a

{n'
v

L ¢—

CONS

RPLACD




T T T T LY _'_m

Notation -42 - Section 4.2.1

body of the loop. (See figure 12b for the code for events-queuc-insert.) There is data flow from the

inputs item and rime 1o the cons function

(cons time item)

which produces the data value enfry that is tested by the predicate above. The diagram contains
branched control flow to show that there are two possible outcomes of the test. ‘The box at the
bottom labeled juin preserves the one-in one-out property of compound actions.

Fach compound action has certam allowable components, called roles. There is a grammar
(which [ will not present here) that restricts the elements which can fulfill a given role, and also
determings the number and the types of roles permitted in compound actions. In the figures, the role

a component fulfills is printed on its upper left-hand corner.

4.2.2 The PLAN for events-qucue-insert

‘The PLAN for avents-gqueus-insert is broken up into a conditional that determines whether the
loop is to be entered (figure 13), a compound predicate which represents an ordering test (figure 14)
and a PLAN for the Toop which contains the splice-in portion of the insertion (figure 15).

The most interesting part of the PI AN is figure 15. This loop is decomposed into a generator,
which enumcrates the clements of the events-queue (evq in the diagram), and a terminator which
controls the execution of the loop body.

‘The generator represents the code segment

(defun events-queue-insert (item time evq)
(prog (new old entry)

(setq new (cdr evql}
(setq old evg)

ip ...
(setq old new)
(setq new (cdr new})

(go 1ip)))

Generators are composed of an optional witialization and a body which is the portion that is executed
nuny umes. The body can contaim an operation, a recursion and a join, which 1 explain below.,

The sale anput o the pencrator s the variable named evg. Yhis dita passes through the

pret] ation




The PLAN for events-queuc-insert -4} - Scction 4.2.2

(cdr evq)

which outputs the data (labeled new). The bady of the gencrator receives two inputs, new and old,
where ofd starts as the unmodified events-queue. ‘The operation of the generator body is the function

cdr. from the code

(cdr new)

above. At cach successive iteration, this operation causes new 10 become successive sublists of the
events-queuc. The data values new and old become the output of the generator, emerging from the
data join box in the diagram. The join indicates that the output can come from one of two places; it
can be the input to the generator body (in case the generator terminates), shown by the data lines that
pass straight through the diagram, or it can come from the box labeled "R" which stands for a
recursive instance of the enumierator. The cross over of data, where new becomes ofd at the next
iteration, can be seen from the change of labels on the data flow lines at the input ports of the R
segment.

The terminator for the loop is conceptually exccuted in parallel with the generator. At cach
iteration, the predicate compares ensry with the value of new that is obtained from the top of the body
portion of the generator segment. I the predicate returns through its right hand branch. control

passes out of the terminator segment, and iteration of the generator body is stopped as well,

4.2.3 Feature recognition in cliches

I'he algorithm recognizer for events-queua-insert is constructed as a hicrarchy of procedures
which identify cach of the segmients in the PLAN. This cliche finder operates via an exact match
paradigm; essentially all of the structures present in the diagrams are required for a non-header-cell
insertion to be found. The elements of the insertion that were referred 1o in the bug report (sce page
18) were identificd by a feature extraction process that was applicd after events-queue-insert had
been identified as a whole.

For example, the input to events-queue-insert containing the queue is identified as the
souiee of the data tlow line that enters the generator portion of the Toop in figure 15, The name of

the program vartable assoctated with this input (evg in this case) i obtained from an annotation in

the PEAND (W aters anabvas sestem pronades the code associated with PEAN sepments whenever




Feature recognition in cliches -44 - Scction 4.2.3

possible.)

The item to be inserted is identified from figure 13 as the first input to the cons function
fulfilling the action role of the PLAN. By tracing this data flow line to its source, the entry can be
identified as the output of the cons function of the initialization. (If the entry had been one of the
inputs of events-queue-insert, there would not have been an initialization. The source of the
data flow line would have been a lambda input in the PLLAN.)

The generator in figure 15 exactly corresponds to the PLAN for the trailing pointer enumeration
cliche. 'This cliche is a list enumeration that returns pointers to two successive subsets of a list. It
requires cdr operations in both the initialization and operation roles of the gencrator, and it demands
that the data flow line which is the sccond input of the generator body be the input to the
initialization secgment as well. These restrictions cnsure that successive clements of the list are
rcturncd no matter how many times the body is executed.

Events-queue-insert also contains a splice-in operation which is trivially recognized in figure
15. The PLAN for a splice-in is shown in figure 16. (It does not correspond to a simple piece of
code.) This operation is composed of a cons. a cdr and a rplacd function, where the cons creates
an augmented list, and the rplacd attaches it to the end of the inmediately preceding portion of the
list. The PLAN representation for this algorithm requires that the second input to the cons, and the
first input to the rplacd function start as a single data path. ‘This path must be split by a cdr
operation just prior 10 the cons and rplacd statements involved. In figure 15, the cons and rplacd
operations are evident, while the role of the cdr function is fulfilled by the ede in the initialization

and the cdr in the body of the trailing pointer enumeration.

4.3 Fxtensions

['he generality of the cliche finders could be extended by employing more powerful recognition
techmques, The existing version of the system can use an exact match paradigm only because it deals
with aleorithms that are sunple enough to be represented by a single canonical PI AN, As the sive of
the algonthm increases. the variability associated with its different implementations begins to show
up i the PEANCand the exact match paradigm eventually fails, For the recognition tasks imvolved in

the scenatio, this approach has been successful. However, it has not been thoroughly tested.  The

chohe finder carrently contams twoalgonthm recopnizers: one for the memberstip tost and one for




Extensions -45- Scction 4.3

' Fig. 6. The PLAN for the splice-in operation

| tem fie lat

|

CDR ,
Y /
ConvS
RPLACD

3 .

the non-hecader-cell insertion function used in the scenario.

My original intentivn was to writc the algorithm recognizers as a composition of feature detectors
> for smaller cliches. 'I'he hope was that this more hicraichical design could be scaled up to identify
larger functions,  However, the logical analysis underlying PLLANs actually ducs a poor job of
localizing some cliches.  For example, the splice-in function in figure 13 is spread across 4 differcnt

segment boundarics. The result was that a considerable amount of scarch was involved in finding

'.4 such cliches. (1his problem was the motivation for extracting features from events-queue-insert

. after the program ;;/;ns recognized as a whole. [t turned out to be eusicr o identify the more complex

j entity first, and then pull out the meaningful sub-cliches.)

' The process of recognizing an algorithm from its parts also has the problem that the interface

. between the sub-cliches in a PLAN can be complex. For example, the trailing pointer enumieration

:’" and the splice-tn operation within events-queue-insert share substructure. In order w correlate

? these overlapping parts, more sophisticated data representations lave o be involved.  Rich [Rich |
. 1950] devclops a ol called overfay s in his thesis which address this issu. i

R TP TP frgy -y




Extensions -46 - Scction 4.3

A generalized pattern matching facility for performing PLAN recognition would be the method

of choice for identifying cliches. The creation of such a facility is a very difficult task, and it involves

both computational and representational issues that are unsolved. It is well beyond the scope of the

cliche finder as I envisioned it. Brotsky [to appear] is working on this topic for his Master's degree.




The sniffer system -47- Section §

S. The sniffer system

The sniffer system provides a mechanism for representing knowledge about errors in code. It is
organized as a collection of independent experts (called sniffers) which localize the information
required to identify specific bugs. Each expert can use the facilities of both the time rover and the
cliche finder to recognize its particular error. For example, the cons bug sniffer (which produced the
bug report in the scenario) used the cliche finder to determine that events-queue-insert was a
non-header-cell insertion, and it cinployed the time rover to identify the control paths taken during
that function's evaluation. In addition, the cons bug sniffer found the values for data objects by
causing the time rover to recxecute portions of the test program’s code.

The sniffer system currently uses a simple control structure to chose the experts relevant to
particular problems. It runs all of its sniffers all of the time, and cach cxpert is designed to fail
quickly when it does not apply to the task at hand. In the current version of Sniffer, there is exactly
one expert (the one used in the scenario), although a number of extensions are planned. (See the
scction on future work for a discussion.) When the experts begin to share information, a more

complex control strategy will be required.

5.1 A generic bug detector

Each expert in the sniffer system contains three basic parts; a collection of triggers which
dctermine if the expert is relevant, a body. which recognizes an error, and a template report that
produces output which describes the bug.

The triggers are filter functions which determine if a given cxpert should be tried. 1If they
succeed, the body of the expert is exccuted, and if the body succeeds, the template output is
displayed. Triggers are computationally incxpensive tests that fail if some cssential feature is not
present. For example, the trigger for the sniffér uscd in the scenario was the cliche finder responsible
for identifying events-queue-insert. (Other cheaper triggers could also be cmployed. For
example, the presence of keywords such as "member™ or "insert” inside of function names within the
user’'s code could cause specific bug experts to be applied.)

‘The budy of an expert contains tests which recognize a particular error. These tests are not

restricted in any way; the hudy can use both the time rover and the cliche finder to detect the critical




A gencric bug detector -48 - Scction 5.1

features which "implement” a given bug. For example, the body of the sniffer used in the scenario
cxamined the control flow in events-queue-insert, thc PLAN for that function and specific
values of the events-queue. It also examined the PILAN and execution sequence in the caller of
events-queue-insert, which was the function metastasize. Once the bug has becn recognized,
the body determines some additional context clements (such as the text for the programs involved, as
opposcd to their PLLANSs) and sends the results to the template report.

The template report mechanism produces the most comprehensive description of the bug which
the sniffers can provide. Each template contains two sections; a summary of the error, and an
analysis of the cvents surrounding the specific occurrence of the bug. The summary is a picce of
canned text that uses a vocabulary which is justified by the examinations the experts perform. All the
cliches it mentions are recognized by the sniffer body in the process of identifying the crror. The
analysis scction explains how the test program acted on specific data valucs to produce the
manifestation of the error observed. It provides the input and output valucs of procedures, and
displays interesting intermediate results that were internal to specific cliches.

The sniffer system employs template reports in order to avoid the nced for natural language
generation facilities.  Fach template contains canned text interspersed with slots that are filled with
data provided by the sniffers, In the output shown in the scenario (see page 18), the lower casc
information was produced by the template, and the data in upper case were the parameters which

filled in the holcs.

5.2 The Cons Bug Sniffer

In the scenario, the sniffer system was invoked by the expression

(get_expert_help '(events-queue-member events-queue new-cell)
(focus-time)
(end focus-time))

where the region cnclosed by the two times encompassed a single exccution of
events-queue-insert. (The function get-expert-help runs all the bug cxperts. taking the
union of their results.) The sniffer which produced the output shown on page 18 was called the cons

bug suifler for sorted lists.,

The critical actions of the cons bug snifter e summarized in figure 17. The trigger of the expert

e




B I

The Cons Bug Sniffer -49 - Section 5.2

was the cliche finder for identifying a non-header-cell insertion. It was appliced to the PILAN for
events-queue-insert. When this ran successfully, the sniffer body extracted the following
features from that PLLAN; the ordering predicate test,! the header-cell-insertion (which corresponds
to the PLAN in figure 15), the splice-in operation, the cons function which was evaluated on exit
from events-queue~insert, and the variables or code fragments which identified the item to be
inserted and the queue. ‘These features were identified by simple operation on PLANs. For example.
the cons return fills an action role of the exclusive-or shown in figure 13. (Sce the discussion in the

section on feature recognition in cliches.)

Fig. 17. The Cons Bug sniffer.

The cons bug snifter is invoked with a user-supplied predicate describing the error, and a region of
the test program’s cxecution which specifies a particular piece of code. The following tests define the
presence of the cons bug,

Triggers

* The PLLAN for region must cxactly match the PLAN for a
non-header-cell-insertion

Body

* The header-cell-inscrtion, and the splice-in portion of region must
not be exccuted between the two times,

* The ordering predicate test was exccuted.

* The insertion function returned by consing the item to be inserted
onto the list.

* The value returned by the insertion function was not used (in the
environment of its caller) to side-cffect the list.

1 The ordetmg predicate was identified by the presence of an ordesing test of the form (Ca by or (> a b). Ihe enclosing usage
af that predicte was enored ¢ gL 0O a bl and (ot (Ca b)), et woie pudped eguinadent

TN o Vo e WIS . TS USRI DAL oM A




e e e, .

&y

RGN OW T VERE T W

The Cons Bug Sniffer -50- Scction 5.2

With these features in hand, the cons bug sniffer proceeded to identify the critical cvents
associated with its bug. These tests were principally involved with determining the control path
actually taken through thc events-queue-insert. First, the sniffer determined that the
header-cell-insertion in the PLLAN was not exccuted. This was accomplished by finding the code
attached to the PLAN for that cliche, and submitting a request to the time rover (which was expected

to fail) of the form

(future-when '(during code) focus-time (end focus-time))

‘T'his expression translates to the statement, “was this code executed between these two times”. (The
last two arguments arc optional parameters which identify a region of the exccution trace to
examine.) In the case of the non-hcader-cell-insertion, there was no singie picce of code associated
with the entire cliche. The scarch was conducted for a piece of code attached to an internal segment
of the PLLAN which had to have been executed if the insertion occurred. The cons bug sniffer
performed similar tests to establish that the ordering predicate was exccuted and that exccution led to
the cons return described above,

The final criteria for the cons bug requires that the list returned by the insertion function cannot
be used to side cffect the queue. This can be cstablished in several ways. The most direct method is
1o use the time rover to examine the queuce for side-effects. The cons bug sniffer accomplishes this

by running the expression

(unmodified®* (@ focus-time events-queue)
(@ (end focus-time) events-queue))

if the predicate returns true, then the list held by the variable events-quaue was not side-cffected
between the two times,

ln the example of the cons bug shown in the scenario, the snitfer discovers the same fact (in a
more informative way) by examining the PELAN for the function metastasize. This PILAN shows
that there s no data flow coming from the return value of the insertion function. "This can be seen in

the body of metastasize (sec page 18) by the fict that the code fragment

(events-queve-insert new-cell (+ div-time 2) events-queue)
(events-queve-insert key-cell (+ div-time 2) events-gqueue)

comsints of two independent s-expressions. When the cons bug saitter detected this information, it

ot <o s AEIROR % TIPS . ARG e

T,

s —




‘The Cons Bug Sniffer -51- Section 5.2

produced the bug report statement

the function (defun metastasize ...) ignores the value returned by
events-quaue-insert.

Once the cons bug sniffer established that the bug was present, it determined a number of
specific data values to be used as context in the bug report. ‘This information included the code for
events-queue-insert and metastasize (obtained from an annotation on the top level secgments
in their PLLANs), the valuc of the variable containing the events-quecue within the insertion routine,
and the value returned by events-queue-insert. Each of these data values was obtained by using
the tme rover to reexcecute portions of the code.)  For example, the value returmed by

events-queue-insert was duplicated by the request

(@ (future-when '(during '(cons entry evq)) focus-time)
'(cons entry evq))

This expression searches forward from focus-time to thc moment when (cons entry evq) was
bieing evaluated. and exccutes that same expression in an alternate time track branching off from that
moment. The results are necessarily cquivalent,

The predicate, (events-queue-member svents-queue new-cel1), which the user supplied to
describe the bug, was not employed as a specification for the error. It was uscd only to provide
contextual information for the bug report. (Specifically, if the PLAN for the predicate included a
membership test, it was used to extract the variable name for the object which the membership test
scarched for. The user presumably wanted that object to be stored in the quecue, ‘This was the
variablc new-ce11 in the scenario.) In this particular case, a problem description was not required
because the cons bug is essentially a violation of rational form in the domain of programming. It is
rare to invoke any function for its side-cffects when it docs not always preduce them, but in the case
of a routinc known to be a list insertion, the expectations associated with its use are much stronger.

There is an issuc here relating to the breadth of knowledge in the bug experts. When the sniffers
are attempting to recognize the code associated with an error, they know picciscly what they are

looking for. In this cnvironment, an cxact match paradigm is a reasonable method to employ.

b The exceution trace contins the salues returned by all expressions executed by the test program, it they e net
necessanhy casy toadetidy as ooz vilues The e tover recondsoall side effect events, bt a given function can seteim any
el ad in the ace




‘The Cons Bug Sniffer -52- Scction 5.2

However, there are no constraints on the expression which the user types in to describe the bug. It
could be a specific and useful definition of the error, or it might revolve on a fact in the application
domain for the test program which would make little sense to the bug experts. This points out that
the analysis applied to the user’s predicate needs to be flexible. If the predicate cannot be totally
recognized, then it can be parsed for features which could be used to select relevant bug expetts.

Alicrnatively, if the sniffer system grows considerably larger, the user’s predicate could function as a

sourcc of hints for the direction which further analysis should pursue.




Future work -53- Scction 6

6. Future work

The top level goal of this reseaich was to develop a system that understands (some) bugs. Sniffer
has accomplished a portion of this task by demonstrating a decp understanding of one bug with what
appears to be a general mechanism. The next step of the project involves proving that generality, and
testing the power of Sniffer’s expert system approach. To do this, 1 intend to expand the sniffer
system by implementing a number of additional bug experts. These experts will cover a range of bug
types, some related to the cons bug, and some concerned with more abstract programming cliches.

For example, a list data abstraction can contain a number of bugs which involve violated
expectations about the maintenance of objects. If the Jookup function belicves there is a header cell,
but the insert function docs not, then any data item at the beginning of the list becomes invisible with
respect to the lookup operation. If the insertion algorithm implements a bag which can contain
multiple copies of an item, but the delete function removes them all, the user will perceive that
inserted data spontancously disappears. There are a number of similar errors of this type.

Another class of bugs detectors would deal with the interactions involving shared data. These
bugs arc particularly confusing to programmers (as they involve dynamic list structure and subtle
interactions in code) but are idcal candidates for Sniffer because of the facilities provided by the time
rover. A typical symptom of unexpected sharing is the unexplained appearance or destruction of
data objects. A problem that comes from the absence of shared data is that expected side effects do
not occur. Alternatively, items which arc expected to be eq arc not judged to be equivalent.

1 suspect that there is also a set of bugs involving violations of rational form in the programming
domain. These bugs could be catalogued by examining the expectations associated with specific
programming cliches. The cons bug in the scenario is an example. Except for bizarre situations, any
time a list insertion returns without side-effecting its input, something is likely to be wrong. (This is
especially true when the user decides to complain about it.) In the case of a quecuc and process cliche
(this corresponds o the control structure of prosper), it is reasonable to expect that the results of
processing an item arc inscrted back into the qucue. ‘The bug in the scenario also relates to this
cliche.

The power of the bug recognizers can also he demonstrated by expanding the amount of bug

Jocatization cach sniffer performs. For example, the sniffer system could have been invoked at an

carlicr pomt in the scenario, when the bug had only been traced to the function metastasize. ‘The




¥
.
v

Future work -54 - Scction 6

cons bug sniffer would then identify the presence of an insertion within metastasize and proceed
to recognize the bug from there. There is also no reason why a sniffer cannot localize a bug to scction
of code and a region of executior. that arc completely difterent from the ones which the uscr initially
provides. The support routines are present, what it requires is a more flexible method for directing a
given sniffer. Each bug detector could presumably function by extracting hints from the user’s error
description, or directly from the user if that input was required.

Once a number of bug detectors have been written, T expect the rescarch to proceed in the
dircction of formalizing the knowledge which was gained. At that point, it would become
appropriate to rewrite the sniffer system to involve sharing of information between experts, a
taxonomy of bugs, and perhaps a hicrarchical understanding of cliches. Some of these developnients
rely on more powerful recognition techniques which are not yet available, although they arc being
developed at this time. (Sce [Brotsky. to appear].) Onc potential outcome of this research is an
understanding of the constrainis involved in the problem of error recognition, which is a step towards

a theory of understanding bugs.




g e ‘o

Rclated work -55- Section 7

7. Related work

To my knowledge, no previous work has had the primary goal of generating a decp
understanding of bugs in programs. The most closely related cfforts are Hacker [Sussman 1973} and

Ruth's thesis entitled "The analysis of algorithm implementations” [Ruth 1973]. (See [l.ukey 1978]

for a sunvey article describing work in this general field.)

Hacker is a system that designs and modifics programs to solve problems in the blocks-world
domain. It employs an iterative approach. ‘The system proposcs a possibly buggy solution for a
problem, runs the code, and analyzes any error which is produced. Hacker then applies a method for
modifying the code that is belicved to correct the error of the type discovered. If the new solution
docs not work, the process is repeated.

Hacker is primarily an cffort in lcarning and automatic programming, as opposed to a thesis

about debugging. (This is emphasized by Hacker’s complete name, "A_Computational Model of Skill

Acquisition™.) One of the system’s major devclopments is that it explicitly represents knowledge
about coding. There is no doubt that Hacker demonstrates a deep understanding of the programs it
writes. [t can notice when a program violates one of the subgoals of a blocks-world task, and it can
use the information associated with this error to generate a complex program that avoids the bug.
However, the process of bug classification is the least well-defined portion of the system.

Hacker gains a considerable amount of its leverage from the use of a toy domain which allows
only a limited sct of well understood operations. For example, cach of the primitive blocks-world
functions has a known purposc, which can be cited in the process of analyzing errors. ‘The bugs
which Hacker recognizes also involve constraints in this domain. For example, onc of the errors
discussed in Sussman’s thesis involves two sub-goal problems which exuactly undo one another’s
effects in the act of building a tower.

Sniffer applics similar domain constraints to generate its understanding of errors.  In Sniffer’s
casc however, the expertise lies in the domain of programming. and concerns the implementations
and usc of programming cliches.  As a result of this approach, the system can recognize bugs in
arbitrary programs. regardless of the tasks they perform.

Greg Ruth's dissertation describes a system that can recognize implementations for algotithms of
a given class, and can also recognize buggy versions of those procedures. The system is based on a

grammar which defines o class of programs, [t inputs & grimmmar, and a function which it then

- e

T Y — TRy = g PEY® T~ .~



2w g

s

Y

Related work -56- Scction 7

attempts to parse using that grammar. If it succeeds, the code is recognized as a member of the set of
correct programs. Ruth extends the number of programs which can be identificd by applying a
collection of behavior prescrving transformations to the code being analyzed. If the transformed
function can be parsed by the grammar, it is also recognized as correct. Much of the system’s
knowledge concerns these rewriting rules.

In a similar way, Ruth's analyzer can identify crrors. 1t does this by applying corrective
transformations to the input code and then attempting to recognize the resulting routine. If the new
function is within the sct defined by the grammar, the crror is analyzed as the inverse of the
corrective transformation which was applied.

The kinds of bugs which Ruth's system can discover have a very syntactic feel. 1t treats programs
as textual objects, without any detailed representation for their composition or the purpose of their
parts. Sniffer, on the other hand, generates its power from an in depth analysis of the building blocks
involved. The two programs also take fundamentally different approaches to the task of recognizing
crrors. Ruth's thesis diagnoses bugs as deviations from a predefined norm, whereas Sniffer searches
for specific error-defining patterns.  Sniffer uses this mechanism to represent extensive knowledge
about particular bugs.

The programmer’s apprentice project at MI'T has produced a good deal of work in the domain of
program understanding. Rich and Shrobe {1976] laid down the basics for the decompaosition of Lisp
programs into purposcful parts. Waters [1978) developed an analyzer which translates programs into
PI ANs. (This thesis relies heavily on the system which Waters implemented.) Rich's disscrtation
(Rich 1980] develops a mathematical foundation for the PLAN representation, and creates a library
of PLANSs for programming cliches. The complexity of the PLLANS in this library range from the
level of a variable interchange to the the queuc and process strategy cmployed by prosper. (The
hibrary also includes the insertion plan discussed in the scenario.) Rich makes concrete suggestions for
the construction of a P AN recognition system which a more gencral version of the cliche finder
would require. Brotsky [to appear} is working on this topic as the subject of his Master’s thesis.

There has been some work towards an abstract theory of bugs in programs [Miller and Goldstein
1977] which goes beyond the domain dependent classifications developed in Hacker. ‘The authors
deselop a planning grammar which can be used to describe programms, where statements in the
graminar can be refined into runnable code. The anthors then define a semantic error as a violation

of the problent deseription, and a syotactic error as a bug i the use of the grammar. “Hhis grammar




e 3

- e w,

»

~a

Related work -57- Section 7

doces not have the conceptual richness of the PILAN representations used in the apprentice project,
and the rclation between their bug types and crrors in more complicated programs is unclear.

There has been a considerable amount of work on expert systems (analogous to Sniffer) which
perform complex tasks. ‘That method of organization is one of the maost successful paradigms in Al
‘T'he unifying characteristics of the systems which usc this approach are that they rely on a number of
independent methods for gathering information and they deal with a large number of facts in the
process of finding solutions.

The Simulation and Evaluation of Chemical Synthesis project (SECS) [Wipke 1969, the Dendral
project, and much of the work in Al and medicine are in this class, SECS is an expert in the design of
organic syntheses. The infonmation relevanu to this task includes empirical facts about reaction
conditions and the sensitivities of functional groups, the 3-dimensional shape of the target molecule
(the one to be synthesized), the composition of the target, and clectronic cnergy levels of both the
product and the reactants. To coordinate these different sources of information, SECS confines a
great deal of its expertise to a sct of productions which cxamine these facts and determine if a given
chemical reaction {applicd to a particular molecule) will succeed or fail. The system performs at the
level of a skifled chemist.

Sniffer also provides a tool for supporting the debugging process. ‘There are two basically
differcnt approaches to this task. First, there are systems that simplify the process of tracking down
bugs, and sccond, there are methods that prevent bugs from happening in the first place. The first
category includes debugging cnvironments similar to the one implemented on the Lisp Machine,
which provide a single step evaluator and predicates for examining the data in the execution stack.
‘The time rover is a straight forward extension of this environment. (Every major programming
installation provides some support for activity of this kind.)

Bug prevention methods exist primarily in the domain of software engineering. Many of the
ideas included under this tcrm relate more to the process of coding than to the structure of the code
which is produced. However, data abstraction techniques {l.iskov 1977] are particularly relevant to
the kinds of crrors which Sniffer detects.

Data abstractions occupy the borderline between program  understanding methods  and
programming language technigues, since abstraction mechanisms build the level of vocabulary used
1o discuss a program. Rescarch in verification uses this fact, in that it tends to rely heavily on dita

abstractions s a place to attach restrictions about the properties for segments of code.

[* 2Ty




Related work -58 - Section 7

Data abstractions also imply a very strong form of type checking which makes certain kinds of
errors much harder to commit. For example, the cons-bug crror (which concerns the integrity of an
object and the division of responsibility for maintaining its properties) can only be committed within

the confines of a particular abstraction. These kinds of crrors can not be totally avoided, but their

frcquency can be diminished by employing these techniques.

£ i » W - - e -y o™, ".', _"—v' "’*W‘”,me P~ ey

J




Srdse aan e 3

Bibliography -59- Section §

8. Bibliography

Brotsky, D.C., Program Understanding Through Cliche Recognition (M.S. proposal), to appear.

Corey, E.J. and Wipke, W.T. Computer Assisted Design_of Complex Organic Syntheses, Science
v.166 no.10, pp 178-192, (October 1969)

Liskov, B.. Snyder.A.. Atkinson.R. and Schaffert, C. Abstraction Mcchanisms in Clu, MIT/1.CS
Computation Structures Group Memo 144-1, (January 1977)

l.ukey, F., Featurcs, AISB pp 10-14 (December 1978)

Miller, M.L., and Goldstein, 1L.P., Structured Planning and Debugging, 1IJCAIS, MIT.pp 773-779,
(1977)

Rich, C.. A Library of Plans with Application to Automated Analysis, Synthesis and Verification of
Programs. MIT Ph.D). thesis, (1980)

Rich, C., and Shrobe, H.E., Au_Initial Report on a LISP Programmer’s Apprentice, MIT/AI/TR-354
(1976)

Rich, C.. and Shrobe, H.E.. An_Initial Report on_a LISP Programmer’s Appientice (summary of
TR-354), IEEE Trans. on Soft. Eng. V4 #5 (November 1978)

Rich, C., Shrobe, HE.. and Waters. R.C., Computer Aj Svoluti Desi
Engineering (NSF proposal), MIT/AIM-5006 (1979)

Rich. C.. Shrobe, H.E., and Waters, R.C., An Qvcerview of the Programmer’s Apprentice, HCAI-79
(1979)

Ruth, G., Analysis of Algorithm linplementations, MAC/TR-130, (1973)

Shrobe, H.E., Waters, R.C., and Sussman. G.J., A_Hypothetical Monolog ustrating the Knowledge
Underlying Program Analysis (Appendix to NSE proposal), MI'T/ATM-507 (1979)

Sussman., G.J., A Computational Model of Skill Acquisition. MI'T/AI/TR-297, (1973)

rograms, MI'T/A1/TR-492 (1978)

Waters. R.C., Automatic Ang

Waters, R.C.. A Method for Analyzing 1oep Progiuns (excerpt from thesis), IEEE Trans. on Soft.
Fong.. VS # 3 (May 1979)







