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NOMENCLATURE

The following nomenclature applies to all parts of the report except
Section VIII and Appendix A. The notation for those is given within the
section.

a k~j(i )  impulse response from the kt-h input u k to jt~h output

yj at lag i. For single-input single-output systems,

the notation h i is used to denote the impulse response

at lag i.

BMWZ stable factor of model transfer function Hm(Z

BOs (z) stable factor of system transfer function H(z)

B ou(z) unstable factor of H(z)

CMt desired set point value at time t

C(z) z-transfor-m of c(t)

"Cov(t,T) covariance function between two variables at time t and T

d impulse response error vector defined as hT_ hT

e an error term

model of identified impulse response for single-input
single-output system, (N+1) x1 vector [ho,...,h N]

H(z), H(z) z-transforms of h and

inf infimum over x (greatest lower bound)

x

X i



J T weighted least squares performance index over time

horizon T

mM lower and upper amplitude constraints on input u(t)

N length of impulse response vector

p prediction horizon

P solution of Riccati equation for output matching (Sec-
tion IV); or optimization weighting matrix (Section V)

C! scalar gain mismatch factor defined as h= qh

q(t) linear weighting term (Section V)

R mismatch matrix between impulse responses (Section III);
or measurement noise matrix (Section VI)

IR N  N-dimensional Euclidean space

sup supremum over x (least upper bound)
X

uf(st) fictitious future input for time (t+s) based on comp.
tations at time t

uk(n) kth input at sample time n

u*(t) optimal input at time t

U(z) z-transform of u(t)

v oefficients of input function (Section V)
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v measurement noise (Section VI)

w(t) process noise at time t

Wk non-negative weighting factor at lag k

x(t) state vector at time t

yj(t) actual value of jth output at sample time t

YM(t) model output value at time t

t+T
SYp( )It+1 predicted output trajectory from time (t+1) to time (t+T)

vp (s,t) predicted output at t+s based on observations up to
time t

Yr(t) reference output at time t

{Yr(T) t +T  reference output trajectory from time (t+1) to time (t+T)

Y(z) z-transform of y(t)

-- Ypzi zero-input response part of predicted output yp

' Ypzs zero-state response part of predicted output yp

z(t) measured output at time t

-1 z-transform variable (or lag operator)
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Ii

CL reference trajectory parameter, 04a< 1. Higher a
denotes slower reference trajectory.

set of admissible input functions

02 noise variance

2oo2 plant output variance for open loop prediction MAC

0

c plant output variance for closed loop prediction MAC

2ow2 variance of colored noise w(t)w

P one lag correlation coefficient of process noise (Sec-
tion III); weighting factor for input in the quadratic
performance index (Section VI)

p 'p robustness indices

4, domain of robustness in Section III

V41 control law functions (Section V)

-Li gain mismatch parameters

M(t) tracking error (Yr(t)-y(t))

-(t) a vector of inputs defined as [u(t), u(t-1),..., u(t-N-1)]T

A sampling interval (seconds)

xiv



E[y(t)IY(t)] conditional expectation of y(t) given Y(t)

C) estimate of variable ( )

) vector of elements ( )i

( )OL open loop prediction of variable ( )

( )CL closed loop prediction of variable ( )

()a partial derivative of variable () with respect tovariable a (Section VIII)

QED (end of proof)
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SECTION I

INTRODUCTION AND SUMMARY

This report presents the results of basic research in Model Algorithmic

Control (MAC) with application to flight control systems. MAC is a new

digital control design approach which relies on the following features:

(i) an internal model of the system to be controlled

(ii) a reference trajectory description of desired closed loop
behavior

and (iii) an on-line optimization of future control inputs to produce
the desired performance.

MAC is well suited to the new generation of microprocessors, and is appli-

cable to a wide variety of aerospace problems.

The purpose of this report is to explore the theoretical foundations

and robustness of MAC and to examine its application to flight control

problems. A missile attitude control simulation was chosen as a typical

control design problem and used to demonstrate the application of MAC

theory. Section II presents a description of the MAC design philosophy

for general systems and a discussion of its application to linear multi-

variable problems in particular. Section III presents a mathematical for-

mulation of an idealized discrete-time MAC and examines robustness, noise

behavior, and the effects of input constraints. Section IV extends the

theoretical analysis of MAC to non-minimum phase and time-delay systems.

Section V examines a continuous-time MAC in order to provide a more general

mathematical framework and application guidelines for the techniques.

Section VI then discusses MlAC design for continuous systems with discrete

4 1' ' ' -... " '



noisy observations and unobserved outputs, and provides a formulation of

the problem of sample rate selection. Section VII discusses improvements

to the MAC predictor to handle process and measurement noise.

Next, the application of MAC and its software package IDCOM (for

Identification and Command) to a missile control example is disc;ussed in

Section VIII. IDCOM is described functionally, and the missile simulation

details are provided. The simulation results for several different test

series are given in Section IX. Section X presents overall conclusions

and recommendations for future work in this area.

The major conclusion of this report is that MAC is a very flexible,

powerful and promising technique for linear multivariable control design.

Its theoretical properties of optimality, convergence, robustness and

stability are verified by simulations of the missile attitude control

example. It is recommended that future studies of MAC concentrate on its

extensions to the adaptive case and on flight test demonstration of MAC

concepts.

i 2
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SECTION II

MAC DESCRIPTION

Overview

The purpose of this section is to provide a general introduction to

MAC philosophy and to compare it qualitatively with other control design

techniques. The three main principles of MAC are discussed in Section 2.1;

the special features of MAC linear multivariable systems and a comparison

with other modern control techniques are given in Sections 2.2 and 2.3.

The remaining two sections (2.4 and 2.5) are devoted to a component

functional description of stochastic MAC and a comparison with Self-

Tuning Regulators and Model Reference Adaptive Control techniques.

2.1 MAC General Description

Some of the recurring problems in the application of modern control

theory to flight control systems are: (i) model selection, (ii) incor-

poration of state and control constraints, and (iii) robustness and sen-

sitivity to unknown parameters and disturbances.

Here we present a technique called MAC which treats the above prob-

-. lems in an effective manner. The technique was originally developed

for industrial applications in France. It is based on an identification-

optimization approach, which is very general in nature, and is a digi-

tal technique which makes full use of the capabilities and growth

3



potential of current microprocessors. The MAC strategy relies on the

following three features: 1) internal model of the system, 2) reference

traiectorv and output constraints, and 3) control traJectorv comouta-

tion.

2.1.1 Internal Model of the System

The multivariable system to be controlled is represented by a mathe-

matical model in time-domain of the input-output type (see Figure 1).

For linear systems, the model is of the impulse response type, a repre-

sentation which has certain distinct advantages over the state space

representation or the transfer function representation for multivariable

control. For nonlinear systems, both the state space and tne input-

output representations have certain advantages and disadvantages. In

applications, one may use either or both depending upon the nature of non-

linearities and the complexity of the resulting controller. The purpose

of the internal model is to have a flexible representation of the controlled

system stored in the computer memory, which can be updated as the system

changes and which can be used at any instant to predict the future be-

havior of the system under different control inputs. The internal model

of the system is used to compute optimal inputs, to detect process changes,

sensor malfunctions and severe faults. The inputs and current output

of the internal model are updated according to the actual observed values

of these variables, but any large difference between the computed and the

actual values gives important clues as to the malfunctioning of sensors

and actuators.

i4
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fak,j(i), i= ,...,N} represents the impulse response from

kt -h input to jth output.

Figure 1. Impulse response representation of a linear system.

The internal model of the system is generally obtained via off-line

identification, using either a physical model structure when one is easily

available or an input-output representation model such as the impulse re-

sponse model, which may change with the operating point. Some form of

on-line parameter identification may also be done in those cases where

large random variations of system parameters are expected. It has been

4, found from experience that the robustness of MAC is sufficient to take

care of small parameter changes.

2.1.2 Reference Trajectory and Output Constraints

The desired response of the closed-loop system is specified in the

form of a reference trajectory and constraints are updated on-line using

the actual output of the system. It is possible to handle output-dependent

constraints I in this fashion and to eliminate the steady state measurement

iGeneral state-dependent constraints can also be handled if an observer (or
filter) is used to recreate the states from the measured outputs.

5



offset error. It should be noticed that the specification of reference

trajectories and constraints is much easier and natural than the specifi-

cation of a scalar performance index. Typically, the requirements on

controlled outputs are stated as "no overshoot," "fast response," or

"within maximum and minimum limits." These requirements are difficult to

express in a scalar quadratic performance index, but they are easily con-

verted into desired trajectories and constraints which can also be ex-

plained to the operators without any difficulty. In a hierarchical control

system, reference trajectories for lower levels may be specified by the

higher levels through an optimization process, since the controlled outputs

of lower levels are the control variables for the higher levels. The ref-

erence trajectories at the highest level would generally be obtained via

a combination of on-line and off-line optimization.

The concept of using reference trajectories is more general than

model-following. Firstly, it may not be possible to represent a reference

trajectory by a simple model, and secondly, under sensor or actuator

fault conditions, one may have to relax the system requirements to con-

trol within a band or tolerance limit. Certain control problems in-

|* volving more controlled outputs than control variables are formulated

more correctly as band-control problems rather than model-following or

scalar performance index problems.

2.1.3 Control Trajectory Computation

Controls are computed, in general, for a number of future time points

using an iterative optimization technique which minimizes the distance

6
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between the desired reference trajectory and output trajectory predicted

by the internal model, while keeping all the output, state and control

constraints satisfied. The complexity of the control algorithm is directly

dependent on the structure of the internal model, the number of inputs

and outputs and the constraints. For linear systems, the impulse response

representation results in a simple, fast, projection-type quadratic pro-

gramming solution which can be implemented in micro/mini-computers of

the present generation. The actual dimensionality of the state does not

increase the complexity of the algorithm as it would in a state vector

representation.

2.2 Special Features of MAC and IDCOM (IDentification and COMmand) for

Linear Multivariable Control

The MAC design approach has been found to be flexible and robust.

It is well suited for the evolving microprocessor technology providing

*high speed memory and fast computation times for basic calculations such

as convolutions. The universality of the impulse response representation

leads to a unified design approach for systems of all orders. Further-

more, the parameter-linearity of this representation leads to a duality

between identification and control.

MAC is implemented by a computer program called IDCOM. The special

features of IDCOM are: (i) no model order reduction is required since an

impulse response representation is used. (ii) Input magnitude and rate

constraints are handled directly and exactly. (iii) The control law is

time-varying and the closed loop response is robust to parameter changes.

(iv) Gain scheduling is replaced by on-line updating of the internal model

27



using operating data and parameter estimation techniques, thereby reducing

reliance on theoretical models of the system. (v) The same algorithm is

used for impulse response identification and for control law computation,

thereby simplifying the hardware requirements. (vi) The control laws

can be modified on-line in case of sensor failures or degraded system

performance.

2.3 Comparison of IDCOM with Other Modern Control Techniques

IDCOr, like most other modern control techniques, is a multivariable

time-domain technique. It is different, however, in several important

ways. These differences are important since they account for the success

of IDCOM in control applications where the lack of good models has pre-

vented the use of other modern control techniques (Richalet et al., 1978).

The important differences are:

(i) Robustness. Modern control techniques generally use full state

feedback based on a parametric state vector model. IDCOM, on the other

hand, uses output feedback based on an impulse response model. It can

be argued that the effect of modeling errors on IDCOM will be less com-

pared to that on state vector techniques.

(ii) Implementation. Modern control techniques based on state vector

models generally require the solution of matrix Riccati equations. Since

these equations are computationally time-consuming to solve for systems of

high order, the practical implementation of these techniques requires

model reduction and off-line solution of the Riccati equation. In prac-

tice, only the steady state gains from the Riccati equation are imple-

mented and these gains are scheduled as a functioi of the operating point

8



(e.g., flight condition). This implementation does not allow for

on-line changes in system model and performance criteria. The IDCOM

approach, on the other hand, is much more flexible and adaptive, since

the model, criteria, and sampling rates can be adjusted on-line. This

flexibility comes from the use of the impulse response representation,

which has the additional advantages of conceptual simplicity, ease of

identification and elimination of the model order reduction problem.

(iii) Criterion Function and Constraints. Most of the modern

control techniques require specification of a scalar criterion function.

In practice, this is very difficult or impossible to do. The specifica-

tion of the information used in IDCOM is easier and more natural. Basi-

cally, the specification of desired responses and constraints is simpler

than the specification of a scalar performance index. It is also possible

to set up a priority list on the control of outputs in IDCOM and even to

make them conditional on the occurrence of some future events. For example,

the failure of a sensor can be detected and the control strategy can be

shifted accordingly. The problems of sensor blackout or computer over-

load can also be handled since controls are computed and stored for

several future time points and these can be used till new information or

computational capability becomes available. The exact satisfaction of

control and output constraints is absolutely essential in many applications.

Such constraints are handled much more easily in IDCOM, tha' s to the

impulse response representation of the system.

(iv) Duality of Identification and Control. From a practical stand-

point, the duality of identification and control for an impulse response

model is much more useful than the duality between estimation and control

9]
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for state vector models. The former can be used directly to increase the

robustness of the controller by on-line identification whenever the resi-

duals between the model output and the system output are consistently

outside some prespecified confidence bands.

Some of the modern control approaches which are closer to MAC are the

Model Reference Adaptive (MRA) (Landau, 1974) and the Self-Tuning Regulator

(STR) (Astrom, 1980) approaches. They are, however, not exactly similar

since the specification of reference models and the computations of con-

trol are done differently, as discussed in Section 2.5 below.

2.4 Component Functional Description

In order to explain the operation of MAC and compare it to other

approaches, it is useful to describe the functions of each explicit MAC

component. Figure 2 shows different elements of a fairly general MAC

scheme consisting of seven different functional blocks. These are:

1. Internal model of the plant which is meant to be a close repre-

sentation of the system (this model may be in state vector form, linear

or nonlinear, impulse response form, transfer function form or even table

look-up, depending on the application).

2. Reference trajectory generator, which uses the latest plant out-

puts and desired set point conditions to generate desired reference tra-

jectories for the controlled closed loop system to follow.

3. Control signal generator performs most of the main computations

within MAC to produce control signals for the actuators. The inputs to

this block consist of the predicted error between the output of the

10
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Figure 2. Relation of adaptive MAC to other adaptive
control schemes.
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reference trajectory generator, (2, and the output predictor, S, along with

the control and state constraints, .2

The control algorithm is iterative involving several trials of dif-

ferent control inputs to calculate the best input for minimizing the

tracking error without overstressing the actuators and the computational

facilities of the process control computer. The model used for control

computations may not be the same as the internal model,(J), of the plant.

4. Identifier/scheduler performs the function of updating the inter-

nal model (Dof the plant under changing operating and plant conditions.

If the changes in the plant can be expressed as a deterministic function

of the operating state, off-line or periodic identification followed by

scheduling will be adequate.

However, if the changes in the plant are rapid and random, on-line

identification is required, which may be passive or active. In passive

on-line identification, no extra signals are injected into the system to

enhance identifiability or to improve the speed of identification. In

active on-line identification, extra input signals are used to enhanc

identifiability in order to match the frequency of adaptation with the

frequency of plant variations (see Mehra et al., 1978).

Input signal design techniques (Mehra, 1980) play an important role

in active adaptation. The identifier can also be augmented to perform

Fault Detection, Diagnosis and Prognosis (DDP) functions.

5. Control, state, and measurement constraints, which are generally

of the amplitude and rate type, may in some cases (e.g., mixed state and

control constrain s) be much more complicated.
2Circled numbers refer to blocks in Fiqure 2.
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6. Output predictor is an important element of MAC since the accuracy

of plant predictions contributes directly to the performance of any

control system. The predictor may be of the state type (Kalman, extended

Kalman, etc.), Luenberger observer type, impulse response, or ARMA (Box

and Jenkins, 1976 or Astrom, 1970). The latter type is common in Self-

Tuning Regulator (STR) and Model Reference Adaptive (HRA) control

applications. They are also discussed in Section VII.

7. Deconvolution generator is used in those cases where a direct

use of the internal model will lead to undesirable control behavior,

e.g., nonminimium phase or time delay systems. Several techniques for

generating deconvolution models are discussed in Section IV and Appendix A.

2.5 Comparison with STR and MRA

In Figure 2, a comparison of MAC, STR, and MRA is given in terms of

function blocks used in each scheme. For example, in STR with implicit

plant model, functions'4, 3, and kare combined into one block, i.e.,

the controller directly identifies the gains of the control law without

explicit identification of the plant model.

In this scheme, blocks7,Z '5), ,6j and 7 are either absent or they are

combined with T, 3, and A. Such a combination results in a simple design

at the expense of flexibility. For example, one cannot change on-line

reference trajectories or account for failed sensors. In explicit STR,

an ARMA model is identified on-line and then used to develop the control

law. This scheme is more suitable for nonminimum phase systems, but still

cannot handle constraints exactly.

j~4 13
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MRA may be implicit or explicit with respect to the reference model.

The difference is indicated in Figure 2, where Z+3 implies that func-

tions (2 and G3, are combined in the implicit MRA technique.

The obvious difference between MAC and the other techniques is

separation of different functions. In some practical applications, all

the functions may not be required, but the great generality, robustness

and flexibility of MAC come from having all these functions in the soft-

ware. With modern advances in digital hardware, one incurs very little

cost for having separate functions, whereas the payoff in terms of per-

formance and flexibility of the control scheme can be quite high.

2.6 Summary

In this section, the philosophy and basic concepts of MAC were dis-

cussed. The similarities and differences between MAC and other modern

control techniques were outlined, and the generality and flexibility of

MAC for control design purposes were emphasized.

14
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SECTION III

MATHEMATICAL FORMULATION AND ROBUSTNESS OF IDEALIZED DISCRETE-TIME MAC

Overview

The Duroose of this and some of the subsequent sections is to develop a

mathematical framework for an analytical study of MAC. The description of

MAC in Section II reveals that a great deal of intuition is involved in MAC

desigr 3 Therefore, a complete mathematical analysis of MAC properties is

extremely difficult. Several simplifying assumptions are required to make

the analysis tractable. The purpose of mathematical analysis is to serve as

a guide for MAC design rather than a replacement for it. In this section,

we analyze unconstrained linear single-input single-output discrete-time,

minimum phase systems. Both deterministic and stochastic (colored output

additive noise) systems are considered. The robustness problem is discussed

and performance "measures" of robustness are proposed. Some of results

presented here are more generally applicable to optimizing type of control

laws of which MAC is one example. In particular, a close link is estab-

lished between the stability and closed loop properties of optimizing type

and feedback type of control laws.

The organization of this section is as follows. Section 3.1 presents

an overview of the major functions of MAC (prediction-optimization).

Section 3.2 treats the case of a single input-single output system where

the inputs are free of constraints, and introduces linear closed loop and

open loop predictors. Section 3.3 is concerned with the stability analysis,
3The reader may be interested in looking at Sections 8.1, 8.2 and 8.3 for
further details of the MAC algorithm.
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both from a time domain and frequency domain viewpoint. Section 3.4

investigates the effect of an output additive noise and compares the per-

formances of the control with respect to reference trajectories under

open and closed loop prediction schemes. Section 3.5 poses the robust-

ness problem and its relation to stability. Section 3.6 defines two per-

formance indices for robustness analysis. Finally, in Section 3.7 con-

straints on input are introduced and the analysis of the constrained system

is related to the analysis of the unconstrained one.

3.1 Mathematical Formulation

As discussed in Section 2.5, MAC is conceptually similar to a model

reference adaptive type of control with some important differences in

practical implementation. It involves (i) dynamic models for system rep-

resentation and prediction, (ii) a reference trajectory and (iii) an

optimality criterion leading to the optimal control. A schematic rep-

resentation of MAC (Figure 3) displays the main operations performed:

(i) prediction of the future output for T steps ahead based on the output

P' (y(t)) of the actual plant and on the computed output (yM(t)) of the

plant's model, (ii) calculation of the future reference trajectory based

on the actual output (y(t)) of the plant and a desired set point c(t),

and (iii) computation of the input u(t) based on the above predictions and

using a certain optimization criterion.

3.1.1 Representation and Prediction

The system is represented by its impulse responses, the identification

of which can be done both on-line and off-line. However, in most cases

the off-line identification is accurate enough for the purpose of control

16
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and one can avoid the cost and complexity of an on-line identification

procedure. This is due to the particular redundancy of the impulse response

representation which allows a considerable enhancement of the robustness of

the control scheme against identification errors and parameter pertur-

bations (Mehra et al., 1979; Mereau et al., 1978).

The formal representation of the system is as follows:

y(t+l) = hTu(t) = h0u(t)+ h1u(t-1) +...+ Nhu(t-N) (3.1)

where y(t+l) is the plant output at time t+1; hT e N+1 denotes the plant

impulse response; u(t-j) eQ2R for j = 0,....,N. u(t-j) is the input at

time (t-j) to the plant. Q is the constraint set of the input.

The model (3.1) is also called the Actual Model to emphasize that hT

represents the actual impulse response. But since such perfect knowledge

c() tT denotes the sequence {c(t+1),...,c(t+T)}.

17



of the plant impulse response is usually not possible, one has to use an

approximation hT to hT. The model corresponding to this latter impulse

response is then:

YM(t+ l) =-- Tu(t) (3.2)

The above model, together with the past history of the plant output

denoted by Y(t) = {y(T), T5 t} is used to predict the future value of the

output. Various prediction schemes are conceivable. In this section we

will limit ourselves to simple open loop and closed loop prediction.

Figure 4, where y p(t) refers to the predicted value of the output,

summarizes the representation-prediction part of MAC.

u(to pl Y(t+I) Y(t)

T Delay

y p(t+1
.<, Predictor 1

SYM ( t + l )  YM( t )

Figure 4. MAC prediction.

3.1.2 The Reference Trajectory

The purpose of the control is to lead the output y(t) along a desired,

and generally smooth, path to an ultimate set point C. Such a path is

called a reference trajectory. In the present section the reference tra-

jectory is of first order and is initiated on the output of the plant at

18



time to:

Yr(to+k) k yr(to) + (1-ak )c k= 1,...,T (3.3)

Yr (tO) A Y(to)

The reference trajectory can be chosen to be of higher order and the set

point c can be made time varyinq. These latter extensions would not

bring any conceptual difficulty in the solution of the control problem,

although the actual computation of the inputs becomes more complex, but

not intractable, as the order of the reference trajectory increases.

3.1.3 The Optimality Criterion and the Optimum Control Strategy

The optimality criterion should reflect the previously mentioned

purpose of following the reference path to the desired set point c.

That can be done by defining the optimum control strategy as the one

which minimizes over a certain horizon in the future, the deviation of

the predicted outputs from the reference path. Formally, at each instant

tO, the optimum set of T future inputs {u*(t 0 ), u*(to+1),..., u*(t+T-1)1

are such that the predicted T outputs {yp(to+l),...,yp(to+T)} are as

close as possible, in the sense of a weighted Euclidean norm, to the ref-

erence trajectory yr' Therefore the function to minimize is:

T

J = (yp(t+k) - Y(t+k))2 wk (3.4)T k=1 Y( w

wk : nonnegative weighting factor

Note that at time t0, the determination of T optimal inputs u*(to+k)

19



(k = 0,... T-1) is done by solving a static optimization problem:

Minimize JT(u(to),... ,u(to+T-1))

(3.5)
s.t. u (to+k) e Q for k=O,...,T-1

Various types of algorithms can be used to solve (3.5) and to determine the

set U*(t0)= u *(t),. .. ,u*(to+T-1)} (Luenberger, 1973). The interval {to,to+T}

is called the horizon of control evaluation, and sometimes the horizon

of prediction since at time t0 one has to predict a set of T outputs

yp(t+k), (k= 1,..., T). Once the set U*(t 0 ) of the T optimum inputs is

determined, it is possible to wait up to T periods before observing the

actual output y(t), reinitializing yr (t), predicting yp's and computing

the next set U*(to+T). This means that all the elements of the optimum

control set U*(t 0 ) have been actually applied to the plant.

A more appealing strategy consists of applying the first few optimal

inputs u*(t+k), (k= 0,1,... 1 p with p<T) before reinitializing Yr and

computing the next T optimum inputs. In the limit, if the computing

facilities allow, one would apply only the first optimum input u*(t) of

4' the set U*(t), observe y(t+l), initialize the reference trajectory yr on

the observed value y(t+1) and solve the optimization problem (3.5) at

time t+1. In this latter case the unused optimum inputs u*(t+l),...,

u*(t+T-1) of U*(t) (computed at time t) will serve as starting values

for the numerical algorithm determining U*(t+1), that is, solving (3.5)

at time (t+1). Only this latter case will be considered in this section.

Figure 5 displays the optimum inputs and the corresponding predicted

output over the horizon T. To visualize the overall control procedure

20



corresponding to the last mentioned case, one must repeat the same picture

for t+1 , t+2. .. .. Fiqure 6 is a block representation of the whole control

scheme.

past Afuture

c

A A

t t+1 t+2 tIT

T

Figure 5. ;IAC inputs and outputs.

z*%t Pln ~ +)t) Prediction Solution

h T of y P(t+k) to (3.5) u*(t

Fmodell YM(t+1) ~1 YM(t for *tk
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3.2 Unconstrained Input

3.2.1 Linear Prediction

So far the characterization of the prediction scheme has been kept general.

Let us constrain the class of predictors to be linear. Notwithstanding the

linearity of the plant, the above class of predictors is a practically con-

venient choice. Moreover, it simplifies substantially the determination

of the optimum control sequence. Indeed, the linear character of y (t)

causes the function JT to be quadratic in the inputs u(t), and hence to

become a candidate for fast quadratic optimization algorithms.

3.2.2 One Step Prediction (T= 1)

The assumption that the input vector u(t) is free of constraints,

i.e., Q=R , results in a significant simplification in the optimum control

determination. That is, the length T of the horizon of prediction does

not affect the optimum value of the first input u*(t) to be applied. In

other terms, the minimization of JT and JT' with T' T, will result in

the same first input u*(t) of the optimum sequences of length T' and T.

In particular, the first element of the sequence {u*(t),...,u*(t+T-1)1

minimizing JT is identical to the input minimizing J1 " This is an im-

portant simplification, since it reduces a T-variable minimization at

each step to a one-variable minimization. This property, which is based

essentially on the principle of superposition of linear systems, is

easily established, as the proof of the following proposition demonstrates.

Proposition 3.1. If the input to the plant defined by (3.1) is free of

constraints, the min'lmization of JT (3.4) and the minimization of J at time

22
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to $ result in the same first input u*(t 0). That is, the first element of

the set U*(to) corresponding to the minimization of JT is identical to the

input minimizing J!.

Proof

T2

T IIYp(to+ j ) -Yrto+J)iI wj, w>Oj=1

The value zero for J T is achieved if and only if:

yp(to+J) = Yr(tO+j) j= 1,...,T (3.6)

The right-hand side of equation (3.6) depends on the observed value

YAto), c and c through (3.3), and hence is known independently of the

input u(t0),U(to+1),.... The left hand side yp(to+j) depends linearly

on YM(to+J) and on the observed value {y(t), !to +j-1}. Therefore, the

inputs u(to),u(to+1),...,U(to+j-1) enter linearly in the expression

of yp(to+j). The determination of the optimum input sequence is done as

follows. For j= I the equation

. yp(to+1) = yr(tO+1) (3.7)

determines uniquely u*(to). The next equation, corresponding to j 2:

Syp(to0+2 ) = y r(tO0+2)

in which the value of u(tO ) is set equal to the optimum u*(t 0 ), deter-

mines uniquely u*(to+I). Hence the optimal sequence {u*(to),...,u*(to+T-1)}

23

LA.



is determined sequentially. The existence and uniqueness of a solution

for each equation of (3.6) is assured because of the linearity of yp(t+j).

Now let us consider the cost J,:

J i Yp (t0+1) -Yr(to+l)11 
2

Clearly, the minimum of J is achieved for:

yp(t0 +1) = Yr(t0+1) (3.8)

which is identical to (3.6), resulting in the same solution u*(t0 ). 0

With respect to the above proof we should mention that:

(1) The linear character of yp(t+j) is a sufficient condition for

the proof to hold. If the predictor yp(t+j) is nonlinear and its depen-

dence on the past inputs and the observed, data is denoted via a nonlinear

operator F:

yp(t+j) = F(u(t+j-l), u(t+j-2). .... ;Y(T), T 5t+j-l)

then the necessary general condition for the proof of proposition 3.1 to

hold is that

F(-,u(t+j-2),...,u(t+j-N-1); y(T), T! t+j-l)

must be a mapping of R onto R. In tYe ase of a nonlinear predictor, the

optimal input sequence is generally not unique.

(2) The T optimal inputs u*(t 0 ), ...,u*(t0 +T-1) obtained by minimizing

JT are not identical to the input sequence obtained by T consecutive mini-

mizations of J l" This is partly because of the riqht-hand side of

24



equation (3.6). Indeed, while minimizing the distance over a horizon of

length T, Yr(t0 +J) is initialized on y(to) for the whole length of in-

terval T; but in the case of T consecutive minimizations of J1 at time tO,

t 0+1.... t0 +T-1, the reference trajectory yr is continuously initialized

on the observed y(to),y(to+1),.... y(t0+T-1t; that is:

Yr(tO+J) = xy(t 0+j-1) + (1-ct)c for all j= 1,...,T

3.2.3 Open-Loop and Closed Loop Prediction

In this section two simple one step prediction (T= 1) schemes, one

open loop and the other closed loop, are investigated. The input is

assumed to be free of constraints.

The simplest one step open loop predictor that one can imagine is:

t+) T (3.9)
yp(t+1)= M(39

that is, the model of the plant is used to )redict the outout one sten

ahead. The main inconvenience of this open loop predictor is, as one

might expect, that the output y(t) of the controlled plant would not

conve,'e to its desired final value c. This is easily established as

follows. The optimTIum input sequence u(t), in the sense of minimizing

Jl$ satisfies (3.8), which together with (3.3) and (3.9) implies:

yM(t+l) - h Tu(t) = Yr(t+l) =,y(t) + (l-'()c (3.10)

from which we can deduce the equation defining the optimum input sequence

as:

25



fiu(t) - ah Tu(t-I) (1-a)c (3.11)

Now assuming that the above recursive equation is convergent (i.e.,

the system is stable), the equilibrium input u* and plant output y* are

given as:

u* = (l-T)c, a constant scalar
hT1 _ ch T

Y* = hT1 T I~0c , a constant scalar (3.12)

I T =  , , . , ) e IR N + 1

Since in general the model impulse response h is different from the

plant one h T , the ultimate value y* differs from the desired value c. It

is seen that the necessary and sufficient condition resulting in a nonbiased

open loop prediction, i.e., y*=c, is hJ =h T. But such a condition is

more of academic interest and has little chance of holding in practical

situations. However, it is important to note that the bias

). ~~hT, T

5 LT - cj_i I - ah T I

-T Tcan be estimated since h is known and h1, i.e., the gain of the process,

can be estimated from the step response of the plant.

To overcome the above bias problem, one uses a closed looD orediction,

a sim.ole case of which is:

yp(t+]) = YM(t+1) + (y(t) YM(t))

= y(t) + (YM(t+1) -YM(t)) (3.13)

26
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where (y(t) -yM(t)) represents a correction term which is similar to the

innovation term of a Kalman filter. Then the optimum control, by (3.7), is

such that:

cy(t) + (-c)c = y(t) +(YM(t+1) - YM(t)) (3.14)

Now letting t- -, and assuming that the system is stable (i.e., lim y(t)<w),
t-K

one deduces:

lim y(t) = c
t-OCz

that is, the desired set point c is reached asymptotically. The previous

bias has vanished.

3.3 Stability

In the previous section, it has been assumed that the optimally

controlled system (both with open loop and closed loop prediction) is

stable. This section addresses the stability condition both in time do-

main and in z-transform domain.

In both cases, the optimum sequence of inputs u*(t) is generated by

an autoregressive equation, which results from (3.8) where yp(t+l) and

Yr(t+l) are expressed in terms of inputs:

open loop: (from equations (3.9) and (3.10))

N N-i
hou*(t) : hju*(t-j-1) - I h.u*(t-j) + (1-a)c0 j=0 j1 J (3.15)

y(t) hTu*(t-l)
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closed loop: (from equations (3.9) and (3.14))

N-1 N-1 N-1
hoU*(t) = hi.u*(t-l-j)- fi.u*(t-j) +(i-a)[c - I hju*(t-j)]

j=O J j=1 J j=O i
(3.16)

y(t) = hTu*(t-l)

Obviously, if the sequence u*(t) tends to an equilibrium value u*, that

is, if the corresponding autoregressive model is stable, then the output

y(t) tends to an equilibrium value y(-) which equals c in the case of

closed loop prediction but differs from c for open loop prediction. How-

ever, the converse is not true; that is, theoretically one may have a

converging output y(t), while the input u*(t) diverges. Intuitively it

is clear that even though lu*(t)l might increase indefinitely, the linear

function h Tu*(t) may remain finite (at least in theory). This is basically

what happens in nonminimum phase systems. Such behavior is not acceptable

in applications because of the nonrealizability of infinite inputs (Astrom,

1970; Astrom and Wittenmark, 1974).

The boundedness condition for the input sequence u*(t) is identica

to the stability of the autoregressive models, that is, the polynomials:

z[h 0 + 1z -+ .+hN-1z I] - [h 0+h 1z
- + . h. -1z N- ]  = 0

(open loop) (3.17)

and

(z-1)[h 0+ hIz
1 + ... + NIZ N -1] + (1- )[hO + hz-

1  + h N-1Z-N-i1 0

(closed loop) (3.18)

must have all their roots within the unit circle.
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So far we have mainly focused on the relationship between the output

y(t) and the optimum input sequence u*(t). Now let us turn our attention

to the response of an optimally controlled system to the set point c, that

is, the relationship between y(t) and c(t). In terms of the z-transforms,

one deduces from (3.11) and (3.14) with some manipulations:

open loop:

U(z) (I (3.19)

S= -H(z) -z H(Z)

Y( z) -: IW z -)(1 ) (3.20)

HC) 1(Z) - Z lz

closed loop:

U(z) _- (]-i) (3.21)
Tz) z-f(1-)H(z) + (1-Z ) (z)

V Y(z) - z H(z)( -j (3.22)
. C z 1-,l,x)nH(z) + (1_-- 1 z)

with U(-), Y(-), H('), H(') and C(-) denoting respectively the z-transforms

p of u(t), y(t), h(t), h(t) and c(t). Figures 7 and 8 display the open-

loop and the closed-loop cases.

C(Z) + 1__at

Figure 7. Open loop prediction.

29

bI



Pln

Figure 8. Closed loop prediction.

Let us first note that for a perfect identification of h, that is,

for R(z)= H(z), the open loop and closed loop transfer functions become

identical and given by

CZ: (1-0) (3.23)
(l-Iz' 1 )H(z)

C ~z - (3.24)

Note that under such perfect identification the transfer function of Y(z)

with respect to C(z) is of first order and identical to the reference

trajectory. Now if the plant itself is not stable, i.e., if the poly-

nomial H(z) has some of its roots outside the unit circle, then J(z)

corresponds to an increasing sequence u(t). This latter case characterizes

nonminimum nhase systems where the cancellationof z'1 H(z) in the original

expression of , leading to (3.10), is not valid because H(z) contains

unstable zeros.

Let us come back to the case of imperfect identification, H(z) H(z).

From the transfer functions (3.19)- (3.22) it becomes clear that for the

system to be stable, i.e., the output y(t) to be convergent and the opti-

mum input sequence to be bounded, it is necessary and sufficient that:

30
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open loop: R(z) - cz-IH(z) has all its roots within the unit circle

closed loop: z-1(1-)H(z) + (1-z-1 )(z) has all its roots within
the unit circle

It is easy to verify that the above polynomials are characteristic poly-

nomials of the autoregressive models (3.17) and (3.18).

Note that in general the exact plant transfer function H(z) is not

known and therefore one cannot evaluate the exact exoression of the

above polynomial. However, if the identification of H(z) is fairly good,

then it is expected, by the continuity theorem (which states that the

roots of a polynomial are continuous functions of its coefficients), that

the roots of:

H(z) - cz- 1H(z) (open loop)

and z_'(1-c)H(z) + (l-z-)H(z) (closed loop)

are close to the roots of:

(1-az-1 )R(z)

Therefore, the stability of the identified model H(z) implies the stability

of the system. But when the identification error becomes large so that

the discrepancy between H(z) and H(z) becomes significant, then to deter-

mine the stability of the system one should have recourse to robustness

analysis, which is discussed in Section 3.5 and involves determining the set

of plant polynomials H(z) for which the above characteristic polynomials

have stable roots.
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3.4 Additive Noise Comparison of Open Loop and Closed Loop Performance

Assume that the uncertainties of the system are modeled as an addi-

tive zero mean noise on the plant output. That is:5

y(t+l) = hTU(t) + w(t) (3.25)

The prediction model and the reference trajectory being as previously

defined:

yp(t+l) = hTu(t) open loop (3.26)

yp(t+1) = y(t) + hT(u(t) - u(t-1)) closed loop (3.27)

y r(t+k) = oky(t) + (1-ok)c k = ,... T (3.28)

The cost function to minimize over a horizon of T is now, instead of JT

EJ]= E1  ) (yP(t+j) -Yr(t+j))
j=1

where E denotes the expectation operator.

Following the same line of argument as in Section 3.1, it is seen that

when there is no constraint on inputs, the optimum input u*(t) is determined

by the equation

yp(t+1) = Y (t+1) (3.29)

which translates into:
5Here, the output y(t+l) may be considered the measurement available to the
controller. It includes the true plant output plus a measurement noise term.
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T u*(t) = ay(t)+ (1-a)c (open loop) (3.30)

y(t) + hT(u*(t) -u*(t-1)) = ay(t) + (1-t)c (closed loop) (3.31)

Similar to the deterministic case the optimum control sequence u*(t)

is determined sequentially from the above equations, in which the plant

output y(t) is observed. The difference with the deterministic case is

that the present sequence of optimum control u*(t) is nondeterministic,

which results from the noisy nature of the plant output y(t). The

reader can easily verify that since the noise has zero mean the mean

value y(t) of the plant output and the mean u*(t) of the optimum input

sequence have a deterministic dynamic identical to the one governing the

deterministic case as in Section 3:3. Thus, all the results of the pre-

vious section are valid for the calculation of the means u(t) and y(t). It

remains to study the variance behavior, and in particular the variance

of the controlled output y(t). Here it becomes necessary to differentiate

between the cases of white and colored noise.

3.4.1 White Noise

JLet the noise be white, Gaussian, and independent from the input u(t):

E[w(t)] = 0
2  for t=

E[w(t)w(T)] = I0 for t

E[w(t)u(t)] = 0

Let us first assume that the identification of the impulse response is

sufficiently good to allow the approximation h = . Then the control
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equation becomes:

yp(t+l) = y(t+1) -w(t) = cy(t)+ (1-a)c (open loop) (3.32)

Yp(t+l) = y(t)+h T(u(t)-u(t-1)) = y(t-1)-w(t)+w(t-1)

= cy(t) + (1-a)c (closed loop)

(3.33)

Denoting by a2(t) and a2(t) the variances of the open and closed loop
0 C

plant output y(t), one deduces:

2 (t+l) = a2 ( + a2 open loop (3.34)

22 2
a (t+l) =  a c (t) + 2a (1-a) closed loop (3.35)

which result in steady state variances of

2

2H = 2 open loop (3.36)

~22
2 H = 2 closed loop (3.37)

It is seen that for the open loop prediction, the variance of the

output decreases with a; that is, a fast reference model (small a) results

in a smaller variance. But for the closed loop case, the variance of the

output is a decreasing function of a; thus, a fast reference model results

in a larger variance. Figure 9 displays that the breakeven point is for

a= /2. Now,the practical implication of the above results is that when

the plant output y(t) is far from the desired value c, one can operate in
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two consecutive phases; first use an open loop prediction with fast ref-

erence trajectory (ci small) and then switch to a closed loop prediction

control with slow reference trajectory. The latter is necessary, since

as mentioned before, the open loop prediction yields a steady state bias.

2

' 2Ot 2oo

'/21

Figure 9. Closed loop and open loop variance.

Now assume that the identified impulse response T differs from the
Tm

actual one hT. Then the evaluation of the output variance involves, as

an intermediate stage, the computation of the covariance matrix:

U() = E[u(-) T(00)]

Or, equivalently, the evaluation of E[u(t)u(t-i)] for =O,...,N. It

can be shown that this involves the solution of a system of N linear
2

equations with (+-) unknowns, this latter being elements of U(-)

(Anderson and Moore, 1979).

Let us consider the simple case of constant gain mismatch between the

plant impulse response and the model one, i.e.,
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hT qjr q: gain

Then the basic control equalities for open and closed loop prediction

become:

y(t+l) qcty(t) + q(1-a)c + w(t) open loop (3.38)

y(t+1) : [1- (1-cx)q]y(t) + q(1-a)c + w(t) - w(t-1) (3.39)

closed loop

The corresponding variance dynamics are:

2 2 2
a2(t+1) = (qct) 22(t) + a open loop (3.40)

2 (1 2 2
a2(t+1) (1-1-)q) ac(t) + 2u (I-cL)q closed loop (3.41)

whence the stability conditions for the convergence of a and ac are:
0..,

lqtl < 1 open loop (3.42)

12- (1-a)q < 1 closed loop

and the corresponding steady state variances are:

a0  - open loop0 1- (ot) 2

02 202
c: 2- (-)q closed loop

From (3.42), it is clear that the stability of both open loop and closed

loop systems are guaranteed for:
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0< q < min[ y-j ,1-

that is,

q for -1<Q< /3

q - for a / 3

The plots of Figure 10 display the variances o 2 and o as functions of the

mismatch gain q in the above cases.
2

C,2 0

2--2 2 2/ /

2 2 '~ "
2 2

0 c

2 1

{"(a) - <, < Y, (b) 1/3 < <l

Figure 10. Noise variances with mismatch.

Let us first note that the parameter cc is usually positive, since it

is very unlikely and undesirable to select oscillatory reference trajec-

tories. Plot (a) indicates that for a fast reference model (0< C< '/3),

the open loop variance is always smaller than the closed loop one irrespec-

tive of the value of the qain q (provided that the system remains stable,
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i.e., q<2/1-a). In contrast, plot (b) shows that for a slow reference

model (/3<a< 1), the closed loop prediction always brings a smaller

variance as compared to the open loop variance, and moreover for a gain

factor of less than 1/x, the closed loop variance is less than 2a2, i.e.,

twice the variance of the noise. Since in most practical applications

one has to use a closed loop scheme to assure the unbiasedness, it is

desirable for the reference trajectory to have a rate of growth a within

the range of [2I , 1). This is not restrictive since in most oases, the

reference trajectories rarely have rates of growth less than 0.6.

3.4.2 Colored Noise

If the noise is colored, then the relatively simple results of the

previous subsection are no longer valid. The colored nature of the addi-

tive noise on the outout is often due to the fact that the plant output

y(t) is observed through a filter, usually of low order. Moreover, any

additive white process noise or input disturbance will reflect itself as

output colored noise.

To see the type of behavior implied by the colored character of the

noise, consider the simple case of a perfectly identified system

( h T) in the presence of a first order Markov process noise:

w(t+1) pw(t) + e(t) JpJ < I

e(t) : zero mean white noise of variance V
2

The stationary variance of the noise is then:
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2 v2

The systems equations are similar to the white noise case, but the recursive

relations governing the variances are more complex.

For the open loop prediction scheme, it is seen without much diffi-

culty that the variance recursion is:

a 2(t+1) a a 2 Wt + a2(tM + 2a cov(t)

where:

cov(t,t) -  E[(y(t)- y(t)) w(t)]

and

cov(t+l,t+l) apcov(t,t) + pow(t)

Letting t-, one deduces the stationary variance of

~2
2 l+ap 1 2 1+p I
O o- a2 w -p 1 2

As the plot of Figure 11 shows, for a positively correlated noise (p>O),

the qualitative behavior of the variance 0 with respect to a remains0

the same as in the white noise case; that is, an increase of a (slowing

the reference model) results in a larger variance. But if the noise is

negatively correlated (o< 0), then there is an optimum value of a, i.e.,

3
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an optimum reference trajectory, associated with each (. And moreover,

there is a range of values for , resulting in an output variance smaller

than the noise variance a 2
w

N1-P

2 <

Figure 11. Open loop variance, colored noise.

For the closed loop prediction, from the equation (3.33), one deduces

the following recursions for the variance:

2 (t+l) = a 2 (t) + (-2 + 2aCOV(t,t) - 2M+cov(tt-)
0c (tc w (t -po() a(t-1)+ ccvtt covt-1

where

cov (t,t) E[(y(t) -y(t))w(t)]

cov(t,t-1) E[(y(t)- y(t))w(t-1)]

and:
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cov(t+l,t+l) = cxcov(t,t) + P 2 wtM - a

cov(t+1,t) = acov(tt) + o(t) - Po2(t-1)

Letting t-,, the expression of the stationary variance is obtained as:

2
2 2 l-p 2 2 1- \2

1+O c O-pa w 2a -pI 2

As the plots of Figure 12 show, for a negative correlation factor p,

one has to slow down the reference trajectory (increase a) to decrease the

variance. For positive p, three situations arise depending on the value

of :. For (0 </3, the variance is still a decreasing function of a. For

i/3 < C' < 
1/2, the variance reaches its minimum for - , and moreover

2r
it is always bounded by its value at a= 0, i.e., 2\ /1+p. For '/2<p< 1,

the situation is reversed in the sense that the variance is bounded by its

2 2value at ct= 1, that is, by v 11-r2. In these two latter cases, slowing

down the reference model does not necessarily lead to a smaller output

variance since the minimum is achieved for some ci< 1.

2 2
C *

2v2v

. |.sve cn)e0 2

2

Figure 12. Closed loop variances, colored noise.
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Fiqure 13 shows the ratio a for different values of a and p. It is

seen that the breakeven value of a, that is, the value for which the closed

loop and the open loop variances are equal, moves toward the left as the

noise correlation factor increases. Therefore, as the noise becomes

more and more positively correlated, the range of value of a corresponding

to a smaller closed loop variance becomes larger.

-"2 °c

2 2

l+p

-- p= 0

Figure 13. Closed loop - open loop variance ratio.

The above colored noise analysis shows that it is often advantageous

to Derform an output filtering, particularly when the output noise level

is large. A proper choice of an output filter decreases the output vari-

ance while allowing the selection of a faster reference trajectory.

3.5 Robustness

The purpose of this section is to formulate and study the robust-

ness problems associated with the control nrocedures described in the
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previous sections. The control design is said to be robust if the plant

output y(t) converges to its ultimate desired value c, under a range of

plant and behavior changes caused, for instance, by failure of some of its

components or by large parameter deviations. The reader should also

see Appendix B for an application of the ideas of this section to a simple

missile example.

With regard to the closed loop prediction control mentioned previously,

the robustness problem is posed in terms of the stability of the input

sequence u(t) and the plant output y(t). This is a consequence, as

mentioned in Section 3.3, of the fact that the stability of the closed loop

system guarantees the unbiased convergence of the output to the desired set

point c. Therefore, as long as the structural changes of the plant, which

amount to altering the impulse response h T , are such that

(z-I)h(z) + (1-a)H(z) (3.43)

has all its roots within the unit circle, the control is robust.

Let us represent the relationship between the assumed impulse response

hTand the plant response hT by a diagonal matrix R:

hT = hTR or hi = rih i  i=O,...,N-1 (3.44)

Then the characteristic equation is written as:

N-I N-I
(z-1) I hiz + (I-Q) I rihiz-i = 0 (3.45)

i=O i=O 1 i

Given the model impulse response hT it is of great interest to determine
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the range of the matrix R such that (3.45)is stable. To do so one has

to determine a subspace 0 ofFN, such that for

(ro,r1,.. ,rN-1) e 0

the polynomial (3.45) remains stable. The subspace 0 of IRN determines

uniquely, through (3.44), another subspace o of IRN for impulse responses

h corresponding to stable closed loon characteristic Polynomials (3.45).

This latter subspace is called the domain of robustness:

N N-I N-1

ve]pRN (z-I) hiz + (1-c) E viz -i is stable
i=O i=O

(t vlrU~l the deterrninationof such a subspace of IRN requires complex search

,J1 :m-7*nrMs, and often, from a practical point, an unrealistic number of

nr putations. But fortunately, in almost all practical problems, valuable

iadditional information both on the physical properties of the plant and

on the failure and perturbation history of its different components is

available. The appropriate use of this information reduces substa ly

the size and dimension of the search space. For instance, if the robust-

ness aqainst identification errors or small perturbations is considered,

then the coefficients r, are of the form:

ri = I+ i i .... N-1

where ci are small and their upper bounds can be estimated from the particular

identification schene in oneration. If the robustness against failure of

some components--sensors or activators--is of concern, as in Ackermann (1979),
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then only a few elements of the impulse response change drastically; that

is, most of the coefficients ri are equal to 1. In addition to this re-

duction of the search space, various approximation procedures can be used

which result generally in more conservative estimates of the robustness

domain p but have the advantage of computational efficiency.

Consider the case where the mismatch between the plant impulse re-

sponse and the model is limited to pure gain, that is:

R = q1 or ri = q, i=O, ... N-1

The characteristic polynomial of the closed loop prediction scheme be-

comes:

(z-I)H(z) + (1-a)cIH(z)

Since the model H(z) is stable, the stability--i.e., robustness--condition

becomes:

1I-q( 1-A)I < 1

that is,

20 < q < I

However, in practice one would limit the range of admissible gain q to

( ,), since the range-) results in an oscillatory response

for y(t), which is not desirable. A similar analysis can be carried out to

determine the phase margin for the controller.
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3.6 Robustness Performance Index

So far we have been concerned with robustness in an absolute sense,

that is, from the viewpoint of asymptotic convergence of the plant out-

put to its desired value. Such a viewpoint does not provide an assess-

ment of the relative robustness performance of different control schemes

under various conditions. In particular, the effects of perturbations

and components failure on the speed of convergence are not apparent at

all, and clearly this is very important for industrial applications.

In light of the above considerations, it becomes necessary to define

some type of "measure" for the performance of the control scheme with

regard to robustness (Mehra et al., 1979). Here we propose two possible

performance indices. First consider:

D(y(t),cjhT  hT,a)

Sup D(y(t),clh TR hT , (3.46)
Ree

where D denotes the total weighted distance between the plant output y(t)

and the desired set point c:

D I (y(t)-C) 2 w t  w t > 0

t=o

A decreasing sequence of weight wt would enhance the importance of an early

convergence to c. The numerator of the index is the distance conditioned

on the perfect knowledge of the plant () =h) and the use of a reference

trajectory with rate a. In the denominator, first the distance is computed

"
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assuming that the discrepancy between the plant h and the model h can be

represented by h= RR, and the reference trajectory is specified by a.

Then the maximum of this distance caused by variation of R within the

range 0 is considered. Both numerator and denominator depend on the ref-

erence trajectory through the value of a. Obviously the value of the

performance index is within the range (0,1), and the performance improves

with increasing p'.

It is possible, and desirable, to define a performance index inde-

pendent from the particular reference trajectory. Such an index can be

used in comparison of MAC with other control schemes, such as LQ. One

can define such an index by:

Inf D(y(t),c,a T = h)

aeA

Sup Inf D(y(t),c,al- R= hT)
Ree aeA

where Ac (0,1) is the range of admissible reference trajectories. The

main difference with the previous case is that the controller is free to

choose the best reference trajectory in the sense of minimizing the dis-

tance between the plant output and the desired path c. Here the numerator /

denotes the minimum distance achieved by a proper choice of a, under the ,

condition of perfect identifiability. In the denominator, for each choice

of R, the minimum distance is achieved by a proper choice of a; then the

supremum is taken when R varies in the range 0.

The above performance indices are defined for deterministic models,

but their generalization to the case corresponding to additive output
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noise is straightforward by replacing the distances D with their expec-

tations. As an example, consider the case of pure gain mismatch q and

additive white noise, then the indices can be easily computed to have

the following expressions:

= inf 2- (1-a)q e =(q,q 2 ) [0, ]
qee l+a

inf 1+q 2
ea QA e = (ql,q2) ' [0 )P" = (aso

Sup Inf 2-(-a)q ( A (aia 2 ) c (0,1)
qeO ceA

To see the behavior of 0 with respect to a, consider:

dp' d [2-(1-)q 2 1 2(q2-1)

For q2 > 1, that is, if the maximum possible mismatch gain is larger than

unity (which is usually the case), then slowing down the reference trajec-

tory (decreasing a) improves the robustness of the system.

The expression of p" involves the maximum value of the gain and also

the maximum value of a which corresponds to the slowest admissible ref-

erence trajectory:

P"= 2 - (1-o2 )q2

1+aL
2

which decreases linearly when q2 varies from i to

It is interesting to note that the above results on robustness en-

hancemenot via slowing down the reference trajectory have been confirmed

in practical applications.
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3.7 Amplitude Constraints on Inputs

In most applications, the input u(t) is not free of constraints.

In general there are both amplitude and rate constraints imposed by

technical and cost considerations. Under such constraints, the results

of Section 3.2 must be revised; in particular, the minimization of the

distance J over a horizon of length T (T>1) does not necessarily yield

the same optimal input u*(t) as the minimization of J1 (T= 1).

It can be shown that, under rather weak conditions, the stability

of the system free of input constraints implies the stability of the

input constrained system. In fact, Praly (1979) (see Appendix A) has

proved a more general result pertaining to nonlinearity in the recursive

control equation determining u(t). Let us describe briefly his result,

a compiete proof of which involves mathematical technicalities and can be

found in Appendix A. When there are no constraints, the recursive equa-

tion generating the inputs u(t) is linear, of the type:

I N-I
*(t-=) hj.*(t-j) + uy(t-1) + (I-)c47)

Assume that the above recursion is stable and denote its steady state

solution by u*. Now consider a nonlinear time varying function ftN

and assume that instead of (3.47) the recursion governing the input

sequence is:

SN-1J

u*(t+l) f - Y hju*(t-j) + CXy(t-1) + (1-CX)c (3.48)
j=0

49



Then in order for the stability of (3.47) to imply the stability of

(3.48) it- is necessary that at every tiie t, and for any v:

ft(-u*+ V)'u* < L-'i vj (3.49)

where r is the greatest modulus of the roots of the characteristic equation

corresponding to (3.47).

In the case of constant armlitude bounds on the input u*(t), the

functions ft(-) are time independent and involve saturation type of non-

linearities:

M for v>_M

f(v) v for m<v -M

m for v-<m

with u* e [m,M]

C-: It can be shown that such functions verify the inequality (3.49) when the

recursion (3.47) is stable. Therefore, the nonlinearities introduced by

amplitude constraints do not make the system unstable.

The above result is important since it reduces the absolute stability

analysis of a MAC driven system with amplitude constraints to the one of the

unconstrained system, which is relatively simple, thanks to its linearity.

It should be noted that the necessary condition (3.49) is relatively gen-

eral. A rather large class of nonlinear time varying functions verify

* such an inequality. These functions may reflect different types of

constraints (such as time varying rate and amplitude constraints), and

therefore the inequality (3.49) can be used to relate the stability analysis
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of a system with more general types of constraints to that of the un-

constrained system.

3.8 Summaary

A mathematical framework for the analysis of an idealized MAC

scheme has been presented. The main operations performed by MAC and the

corresponding components have been described. For single input-single

output systems, specific results pertaining to the stability and robust-

ness have been derived. An example of stability analysis of a MAC

control system for the single input-single output case is presented in

Appendix A.

-w
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SECTION IV

MAC FOR NONMINIMUM PHASE AND TIME DELAY SYSTEMS

Overview

In this section, the control of time delay and nonminimum phase

systems is discussed within the framework of MAC. It is shown that for

the control of such systems, MAC offers a relatively wide range of solu-

tions with various levels of performance. The implementations of these

solutions are fairly simple and often involve minor alteration of the

existing MAC software. However, from a Theoretical point of view, there

is a major difference between minimum phase and nonminimum phase systems,

namely, the inverse of the former is stable whereas the inverse of the

latter is unstable. This necessitates the use of different models for

control computations and for prediction in MAC. The control model has the

pronerty of possessing a stable inverse whereas the prediction model must

be as close as possible to the true model. In this section, an optimal

control model for use in MAC will be derived and its performance with other

P coimuinly used techniques for nonminimum phase systems will be compared.

The organization of the present section is as follows. Section 4.1

presents a historical background and 4.2 presents a brief review of MAC,

describinq its essential features for the single input-single output case.

Section 4.3 discusses the general nature of nonminimum phase systems in

the framework of MAC. It is also concerned with qualitative and conceptual

descriptions of the approaches of Sections 4.4 and 4.5. Section 4.4
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describes the "least squares solution" for nonminimum phase systems. For

the sake of clarity the detailed mathematical derivation of this latter

solution is given in Appendix C. Section 4.5 presents a minimum phase

solution based on removal of unstable poles. This is basically a pole

placement type of solution. Section 4.6 describes more heuristic approaches

which are nonetheless of great use and importance for applications. These

heuristic approaches are basically trial and error types of solutions

involving both cost coefficients and prediction interval adjustments.

4.1 Background

Control theory, from its very outset, has paid particular attention

to the control of nonminimum phase systems. This interest has been moti-

vated by the relatively frequent occurrence of nonminimum phase properties

in various engineering control problems, particularly with multivariate

systems.

All the available optimum control schemes--i.e., Linear Quadratic

control (LQ), Minimum Variance control (MV), Self-Tuning (ST) and Model

Adaptive control (MA)--have developed their own methodologies to tackle

nonminimum phase systems (Astrom, 1970; Peterka, 1972; Astrom and Witten-

mark, 1974; Ogata, 1970; Kwaakernak and Sivan, 1972). Despite the fact

that these methodologies stem from different control philosophies, they

have some common features. In particular, all of themlead in one way or

another to suboptimal solutions with bounded inputs. The optimality of

the solution is usually traded off for a meaninqful realizable suboptimal

solution (Astrom, 1970; Peterka, 1972).
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The present section treats nonminimum phase systems in the framework

of MAC. As will be seen, the MAC methodologies for such systems offer a

set of possible solutions ranging from the "best suboptimal control,"

which involves an off-line solution of a Riccati equation, to a more

heuristic type of control involving pole placement and/or cost coefficient

adjustment. The general properties of these solutions are similar in

many respects to the ones derived from previously mentioned control schemes

(LQ, MV, ST, MA). In particular it is shown that there is always a trade-

off between the optimality of a solution and the boundedness of its cor-

responding input. The practical implementation of the MAC solutions for

nonminimum phase systems often needs only minor alterations of the existing

MAC software and hence may be realized at relatively low cost.

4.2 Brief Review of MAC

We recall from Section III that in MAC the true plant and its mathe-

matical model are represented by their impulse responses hT and hT:

y(t+1) = hT u(t) Plant
(4.1)

YM(t+1) Tu(t) Model

with he]R N, heI N, u(t)e]R N . The vector u(t) represents the past N inputs
~u(t),...,u(t-N+l).

Based on this mathematical model and on the observed output of the

plant, a linear prediction scheme is conceived:
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yp(t+1) = yt(t+1) + [y(t) -YM(t) (4.2)

= y(t) + h T[u(t)-u(t-1)]

The controller also generates a reference trajectory yr' which is

initialized on the observed output of the plant:

Yr(t+k) = aky(t) + (I-xk )c; JLa < 1

where c is the ultimate desired value to which the plant output must

converge.

The control strategy of MAC is to force the predicted output yp

to follow, as closely as possible, the reference trajectory yr(t+k) over

T future periods (k =1,...,T). Hence the controller must determine a set

of T future inputs u(t),...,u(t+T-1) such that the weighted distance:

T 2
J T : yp(t+i)- Yr(t+i)]2Wi; wi  (4.3)

is minimized. It was shown in Section III that for a given h, o t, and

c there exists a unique sequence of inputs such that the above minimum is

zero, i.e., the predicted output yp follows exactly the reference trajec-

tory. In particular, if h =h, the corresponding optimum input sequence

forces the plant output y(t) to follow exactly the reference trajectory

Yr" Therefore, if h is known, the best choice for h, in the sense of

minimizing the distance between the plant output and the reference tra-

jectory, is h.

For a one step minimization (T= 1), the optimum input u*(t), mini-

mizing J1, is determined by:
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y (t+l) : Yr(t+l)
p r

(4.4)
or y(t) + hT[u(t) - u(t-l)] cly(t) + (1-x)c

In terms of z-transforms, denoting by Y(z), U(z), C(z), H(z) and

R(z) the transforms of the plant output y(t), the plant input u(t), the

setpoint c and the impulse responses h and h, one deduces:

Y(z) = H(z) (1-Q)C(z) (4.5)
(-ot)H(z) + (z-I)H(z)

U(z) = z (1-U)C(z) (4.6)
(1-a)H(z) + (z-Z)H(z)

These equations are equivalent to equations (3.21) and (3.22), with z
- 1

cleared from the transforms. This system is shown in Figure 14 (cf.

Figure 8).

__C(z) Y(Z)
i -(Z-I)H(z) H(z)

Figure 14. Idealized IDCOM block diagram.
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4.3 Nonminimum-Phase System--Statement of the Problem

Let us assume that the impulse response H(z) of the plant is

t'erfectly known. Then, equating the model's response H(z) with the

plant's response, we get from equations (4.5) and (4.6),

H (z) ____ ( 7
Y(z) =(-H -z- (I-Z) C(z) - - z (47)

u(z) --], -H ( (I-i) C(z) (4 .8 )

Y(z)

Note that the plant output tracking transfer (i.e., CTz) ) is of first

order with unit gain and a single oole at ,. This means that the plant

outDut follows exactly the reference trajectory. The plant impulse

response H(z) does not intervene in the expression of Y(z). But its

inverse intervenes in the expression of the plant input U(z). The zeros

cf H(z) become poles of the plant input tracking transfer (i.e.,(z)Hst).

If H(z) has some of its zeros outside the unit circle, that is, if

the system is nonminimum phase, it is clear from equation (4.8) that the

plant input u(t) becomes unbounded. However, the output y(t) remains

bounded and follows the reference path as long as none of its unstable

poles (corresponding to the cancelled H(z) of equation (4.7)) are ex-

cited. It should be noted that practical considerations such as physi-

cal constraints, cost, etc. will always impose an upper bound on the

norm of u(t). Once this bound is reached, the cancellati-ii of H(z) in

equation (4.7) is no longer perfect and the output y(t) starts to di-

verge from the reference path. Figure 15 displays such a situation.

14

57

'i ""1 -I I I ~ i I T" I I ' ' " " -' " [



When H(z) is not known precisely, which is usually the case, the

situation is worse in the sense that both y(t) and u(t) diverge. This

is seen from the expression for Y(z) and U(z) in equations (4.5) and

(4.6). The denominator [(1-a)H(z) +(z-1)R(z)] has its zeros close to the

zeros of (z-a)H(z) (since R(z) is close to H(z)). Therefore, Y(z) is

unstable and divergent. (For further discussion of nonminimum phase

systems, see Astrom, 1970; Peterka, 1972; Ogata, 1970; Astrom and Witten-

mark, 1974.)

From the above analysis we deduce that unlike the minimum phase

case where the natural choice of hT (or equivalently H(z)) is a vector

T
identical or close to h , for the nonminimum phase case this choice of

does not lead to a stable and realizable control strategy. In fact,

in order to have a stable control strategy which leads y(t) to its desired

final value c, it is necessary to choose an A(z) such that the polynomial

[H(z)(1-t )+(z-a)H(z)] has all its roots within the unit circle. This

results in a stable input sequence u(t), which tends toward a steady

state causing the term ;T[u(t)- u(t-i)] of equation (4.4) to converge

to zero. Then as t w, lim y (t+1)=lim y(t) limy r(t+)=c. Therefore,

a proper choice of H(z) (i.e., hT) will ensure the ultimate convergence

of the output y(t) to the desired value c while keeping the input sequence

bounded. However, as one might expect, the ultimate convergence of

y(t) to the desired value c is not done at free cost; since hTlhT, theI" -

transitional behavior of y(t) is different from that of y pt) (and hence

from the reference model Yr(t) which always equals y p (t) under the present

-T T
control strategy). It is worth noting that by choosing h equal to h
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the inverse situation occurs; that is, the output y(t) follows perfectly

y pt) (and hence the reference model Yd during the transitional phase,

but diverges from it as t increases (Figure 15).

Obviously, there are an infinite number of vectors ;T resulting

in a stable characteristic polynomial [H(z)(1-a) +(z-1)H(z)]. Among

all the admissible hT one may choose those which satisfy some secondary

criteria. A natural criterion is, for example, the minimization of the

total distance between the actual output y(t) and the reference model

Yr(t):

min [Y(J) -Yr(i)] 2

j=1

Other criteria may involve direct pole placement for the characteristic

polynomial [H(z)(1-a) +H(z)(z-1)], or equivalently the design of the

dynamic of the error:

C(t) = Yr(t) -y(t)

P. Sections 4.4 and 4.5 discuss the above cases.

;TBefore ending this section we note that the use of an h in equation

(4.7) which is consciously different from h implies that the mathematical

model YM is no longer attempting to "represent" the system. Therefore,

instead of YM we introduce a new variable c(t) which measures the error

between the plant output y(t+l) and the reference output yr (t+1):
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8,output y(t)

4

3

2"

0 t~_-~-~---_

-500--

-1000 input x(t) K
p -1500-

-Emax

-200 1

h T=D. -. 9, -1.26, 1.8060, -1.1092, .?8561; c= 0, initial condition
Y(0)= 5, ot= .8 and the bound on the value of the amplitude of the input

E =ax2000. AT= 1.

Figure '5. Simulation of the nonminimum phase system.

60



c(t+1) Yr (t+1)-y(t+l)

- yp(t+1) -y(t+l)

- d[u(t) - u(t-)]

with d=hT hT. As we can see, the vector fT directly influences the

dynamic of the error.

4.4 Least Square Solution

The present section deals with the determination of a vector h

such that the total Euclidean distance between the actual output y(t) and

the reference model yr is minimized. Minimize:

J 2
-2 yr ) = £2 (j) (4.9)

j=1 j=l

Hence the problem can be stated as follows: determine a vector h

such that the characteristic equation [(1-c)H(z) +(z-1)H(z)] has all its

roots within the nit circle and J is a minimum.

To solve the above problem, as one may expect, we will use the jargon

of linear quadratic control. But first we have to formulate the problem

in a framework suitable for a linear quadratic approach. For the sake

of simplicity, and without loss of generality, we may assume that c = 0.

i.e., the desired final value of the output is zero. Then the equations

which determine the optimum sequence of input u(t) (in the sense of

matching yp(t+1) with Yr(t+1)) are, by equation (4.4):

pI
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Yr (t+1) = cy(t) + h T(u(t) - u(t-1)) = Y P(t+1)

In terms of the sequence u~t), we have:

I~u(t) = rL1 2- (1-cz)hlju(t-1) + . + ChN- RN-2 - .a)h Nl3u( t-N)

+ [h N- (1-ct)h Nlu(t-N-1) (4.10)

The expression of the error e(t) in terms of u(t) is derived as

follows:

e(t) = y(t) - Yr(t) = yMt)- cy(t-1) Tu(t-1) - ch Tu(t-2)

= [his h 2-thl, ... , hN-cah N-1' -hNJ - u(t-l)1

u(t-N-1)

Lu (t-N-2)j

or equivalently,

E(t) 9T -u(t-1) with 9 [his h 2-cth1, ... ,I h N-ah N-1' -lh NI

Lu~tN:1](4.11)
Note that the dimension of 9T is (N+1), when the dimension of hT is N.

Let us introduce the (N+1)-dimensional vector (t) defined as:

*T T

Then c(t) and J can be written as
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e(t) = Tg(t) .12

(4.12)

J = lim [4T(t)qqT,(t),- t y T(j)q T (j)
t- - j=1 -

Equation (4.10) can be written in terms of E(t) as:

C(t) = Uq(t-1) +bl{[TIo ](t-1)} (4.13)

with U, b1' and LT defined as:

[0O0 011T-1
u - 1 0 0 (N+I) 0

110 0 0

00 1 oJ , b 0 (N+1) (4.14)

0

T0
L- I 1 2 -( ")hl''''' 6N-+i N-(l-)hN-I' hN''(l')hN]

N
L eJ N

Equation (4.13) is a state equation with a classical state feedback

control law. It is clear that the determination of the optimum h which

minimizes J is equivalent to the determination of a linear feedback gain

[LTIo] of equation (4.13) minimizing J. At this point there is sufficient

motivation to formulate the problem in the following way.

Find the optimum input sequence u*(t) which minimizes

J lim [T (k)qqT(k) + kI T  q T  (4.15a)
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where the state equation is:

C(t) = UC(t-1)+blu*(t-1) (4.15b)

It is easy to check that the above system is controllable. The

optimum control u*(t) is a linear function of the state vector E(t) : u*(t)=

LT (t) (Sage and White, 1977; Murata, 1977). It remains to show that

L has the property of having its last element LN+l equal to zero. The

following lemma establishes that result.

Lemma: The optimal input sequence u*(t) for equation (4.15) does

not depend on the last element of the state vector (t).

Proof: By linear quadratic control theory, we know that u*(t) has

the following expression in terms of C(t):

u*(t) = -{[R+b 1TPbl-IblTPU}A(t) = E (t)

where R is the cost matrix of the input u(t) (here R=O since J depends

only on the state vector and P is the steady state solution of a matrix

"k Riccati equation). Then,

b Pb1  P

blTPU [P1 P12' ..." Pl(N+I)]U = [P12 ' P13' "'" P(N+I)' 0]

and hence

L P1 [P12 * P139 "." PI(N+I)' 0]
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Let us recapitulate the results so far. It has been shown that the

determination of the best vector T in the sense of minimizing the total

Euclidean distance between the plant output and the reference trajectory

while keeping the control sequence u*(t) bounded is equivalent to the

determination of the gain matrix L of the linear quadratic control prob-

lem (4.15). The determination of L involves the solution of a Riccati

equation of order N+1. Once L is known T can be computed uniquely from

the last equation of (4.14). It should be noted that hT depends uniquely

on hT and a (the rate of growth of the reference model). Since the de-

termination of h is done off-line, even for large values of N (of order

80) the vector h can be computed without excessive cost. The linear

quadratic control problem of (4.15) is further detailed in Appendix C.

We end the present section by applying the above considerations to the

example of the previous section (see Figure 16).

4.5 Direct Pole Placement

In addition to the above optimal choice in the sense of quadratic

error minimization, there are an infinity of other possible choices of

hT leading to stable control solutions. The vector T is to be chosen

such that the polynomial [H(z)(1-i) +(z-1)H(z)] has all its roots confined

within the unit circle. Therefore, determining H(z) amounts to identi-

fying the above characteristic polynomial with an arbitrary stable

polynomial of order N+1.

However, going back to the original definition of hand d and

noting that for minimum phase systems one equates hT with hT, it becomes

65



6"

5-

4

S Yr(t)

2

0 >t__-_----.-.

-8.

-16 Ut

-24
-26-

I>

h (1., -.9, -1.26, 1.806, -1.1092, .2856] with a =.8 and c= 0. The
optimal hT is [-.5754, .0546, .0446, .1266, -. 2946, .0772].

Figure 16. LQ optimal control.
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natural to conceive a design procedure for H(z) which remains consistent

with the minimum phase case. Loosely speaking, H(z) should retain "as

much as possible" of the dynamic properties of H(z), while stabilizing

the characteristic polynomial [H(z)(1-a)+(z-1)H(z)]. One way of achieving

that objective is to maintain the stable roots of H(z) and to alter only

the unstable ones. Let us write H(z) as:

H(z) = BOs(z)Bou(z) (4.16)

where BOs (z) contains all the stable roots of H(z) and Bou(z) the

remaining unstable ones. Then let

deg Bos = N-(.
H(z) = BOs(z)BMs(z) deg BMs(4

where Bos(z) has the same stable zeros as H(z). The characteristic poly-

nomial [H(z)(1-)+ (z-1)H(z)] becomes

BOS(Z)[Bou(Z)(I-a ) + (z-1)BMs(z)] (4.18)

B Ms (z) must be chosen so that the polynomial

Bou(z)(1-a) + (z-l)BMs(z) (4.19)

is stable. Once BMS(z) is specified, the polynomial H(z) and thus the

vector are determined. The resulting control sequence u(t) will display

"he stable modes of H(z) in addition to the one of [B ou(z)(1-a) +(z-1)BMs(z)].

. ; f or this latter polynomial is the one having (Z+1) zeros at
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the origin:

Bo u(z)(l-a)+ (z-I)BMs(z) = C1z9+
1 (

(4.20)

or (1-z)BMs(z) = Cizk+ 1 - (1-a)Bos(Z)

with CI being a real constant.

The above choice of BMS(z) will lead to a fast convergence of y(t),

although not a very smooth one. Other choices of (4.19) may lead to a

smoother converaence of y(t). In particular, BMs(z) may be determined

so that the polynomial (4.19) becomes ide;itical to:

c2zk(zZ! 1-k _-)

with C2 being a real constant, Ok<9,+1, and I F 1. That is, the (z+i)

unstable poles of the original system are replaced by k poles at the origin

and (Z+1-k) poles of module Il1/Z+1-k Figures 17 and 18 display the

application of the above considerations to the example of Sections 4.4

and 4.5.S

Before ending this section, let us notice that: (i) the polynomial

Bou(z) may also include stable poles which are close to the unit circle.

By doing so, one is assured that "small" perturbations of H(z) will not

destabilize the controlled system.

(ii) The main advantage of the "direct pole placement" approach

over the linear quadratic one lies in its greater flexibility as compared

with the rigidity of the unique aspect of the LQ solution. This flexi-

bility, which is the result of the relative freedom involved in the choice

P6
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15

12

10, (t)

55

0 t

0 t

5u (t) .

-24

-28

h T [1., -. 9, -1.26, 1.806, -1.1092, .2856], ;T[.096, -1.904, -. 07376,
.1915, -.1685, .0605]. Poles of the nonminimun phase system: .3± 5j, .5,
1.2, 1.4. Poles of [H(z)(1-t) + (z-l)H(z)]: .3- 5j, .5, 0, 0, 0.

01 .8, c =0.

Figure 17. Stabilization by pole placement.
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- -4 t
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~~u(t)

-16

-24-

h T[. -. 9, -1.26, 1.806, -1.1092, .2856]; h [=-.128, -. 1872,
-05968, .17639, -. 16272, .06048]. c .8, c 0.

Figure 18. Stabilization by pole placement.
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of BMs(z), allows one to influence some important aspects of the converging

output y(t) such as its smoothness, overshoot and undesired oscillations.

In many practical problems one is willing to sacrifice the "minimum

quadratic error" nature of the linear quadratic solution for an improve-

ment in the other more important features, such as those mentioned above.

4.6 Constant Input Over p Steps

In the present section we describe another somewhat more heuristic

approach to the control of nonminimum phase systems. The present approach

is different from the above in that it requires some alteration of the

structure of MAC strategy. However, at the level of implementation these

necessary alterations are done via minor changes in the existing MAC soft-

ware.

Let us recall that in the regular MAC, at each period t, one looks

for p future optimum inputs {u(t), u(t+l),..., u(t+p-l)} such that the

sum

p-1 . 2 p-i
wilyr(t+i-l)c aiy(t)l 2 wiy(t+i)+;(Y(t+i)

i=O i=O

- u(t+i-l))- aiy(t)2, w ;00

(4.21)

is minimized.

Now let us impose the restriction of constant control over the p

future inputs, i.e.,
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u(t) = u(t+l) ... u(t+p-1)

Then the problem is reduced to the determination of the single value

u(t) such that (4.21) is minimized. It is clear that:

P-1

min I wilyp(t+i+l) -aiy(t)l 2
,. fu(t) ... u(t+p-1)j i=

p-12

min i wily p(t+i+l) -iy(t) 1
2

{u(t) = ... = u(t+p-1)} iO

Moreover, in the minimization shown in the right-hand side of the above

inequality, the optimum value of u(t) depends on the length p of the

horizon of prediction, while in the left-hand side the optimum value of

the input sequence {u(t), u(t+1),..., u(t+p-1)} is independent of p.

'7 Schematically the differences are shown in Figure 19.

(i)Yr(t+i)-Y r (t + i ) 7

/y(t+i)A. 
(tt-i

U( t+i ) -I 
u

..... - . . . . . . . I - . . .St t-+ -- t ~
Variable inputs Constant inputs t4

Figure 19. Effect of constant inputs on optimization.
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Another important property is that the stability of the system is

going to be influenced not only by the reference model (via the choice

of a) but also by the p parameters wi. It will be seen that proper

choice of wi's (i =0,...,p-1) can stabilize a nonminimum phase system.

Again, it is worth noting that the introduction of the horizon p and

the parameters wi 0i=O,...,p-1) allowing the stabilization is done at

the cost of degrading the distance minimization between the reference

model and the actual output during a transitional period.

In the following two subsections we treat the case of p= 2. The

results are easily extendable to p>2.

4.6.1 Two Step Ahead Prediction

Consider the particular case where p= 2 and w2 = 1. That is, at

period t, we are seeking to determine the inputs u(t) and u(t+l) such

that the predicted yp(t+2) matches perfectly the desired reference yr(t+2):

yr(t+1) = ay(t) (we assume that c= O)r
y t2 t reference model (4.22)

r y(t+2) = y(t)+ h[u(t)-u(t-l)]

yt -T - " prediction model (4.23)

yp(t+2) = y(t) + h [u(t+l)- _(t)]

Y(t+l) = hTu(t)
y(t+2) = hTu(t+l)jplant (4.24)

The equality condition becomes:

7
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Yr(t+2) = y p (t+2) (4.25)

That is,

4 2

where hi, h2 are the first two elements of h, and U2 is the two step

ahead shift matrix. The additional assumption that u(t) = u(t+l) (constant

input over the prediction horizon) implies that:

u(t) =u(t+1) - - f_(,_ 2)b T+ gT(IU 2)}uyt-1) (4.26)

N can be assumed even (if it is not, we can always consider a new

impulse response of length N+1 with h N+l= 0). Therefore, N= 2q. Then

let us define a new vector v of dimension N/2 such that:

VMt =UMt) u(t+1)

v(t+i) =u(t+2) =u(t+3)

v(t+q-l) =u(t+2q-2) =u(t+2q-1)

Thus equation (4.25) becomes:

6 1 +; 2M [;1 + 2 - ('-a 2)(h 1+ h2))v(t-1)

+ E 3 +E 4 - (1-a2 )(h 3+ h4) )v(t-2) (.7

+ EN-1+ N- (1-a 2 )(h_ 1 + hN)]v(t-q)
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Define:

h +h1h 2 " 1

h3 + h4 h3 + 4
9 =  " and ="

h N-1 + hNJ N-1 + hN

Then the above equations can be written as:

gl () =[ TI-U- (l 2)T] t-l- -(4.28)

= [- 2- ('-a 2)gl (t- ) + "" + [gq- (1-a 2)gq]-v(t-q)

where gi and gi are components of D and 9, or:

T 2 2 T T2T~) =M 2T_ y(t-I) + T[ (M. -2(t-l)] (4.29)

The reader familiar with MAC formulation will easily see the simi-

larities of equations (4.27) and (4.28) with equations (4.8) and (4.10)

describing the one-step prediction scheme. Equations (4.27) and (4.26)

can be deduced from (4.8) and (4.10) by replacing h, I and a with 9,

and 2, respectively. The difference is in the dimension of the system

(N/2 instead of N). All the considerations of Sections 4.4 and 4.5 can

be applied to the present system of dimension N/2. That is, if T is

minimum phase, then one would choose 0T T. Then equation (4.26) will

yield a stable input sequence v(t) and by equations (4.22) and (4.24), we

will have

7
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y(t+2) = Yr(t+2) = a2y(t) (4.30)

while

y(t+l) / Yr(t+l) = cy(t)

Then by equation (4.30),

lir y(t+2) = lim Yr(t+2) = 0
t t-co

and by equation (4.23),

lim y(t+1) = lim y(t)+j lim [u(t)-u(t-l)] =lim y(t)+0

Hence,

lim y(t+l) = lim y(t) =lim Y r(t) = 0
t-' to t*

That is, although during a transitional phase the perfect matching of Yr

and y occurs each two steps (t+2, t+4, ..., t+2j), as t increases y(t) -"n-

verges to a desired value c (here c=0). Figure 20 shows such a behavior

for a 6-order system.

Now if the vector T corresponds to a nonminimum phase system, then

one has to determine an N/2-dimensional vector iT stabilizing the dynamics

of (4.28). Both methods of Sections 4.4 and 4.5 can be used. The clear

advantage is that the dimension N has been reduced by half. It is easy

to see that a p-steps ahead prediction scheme would reduce the dimension

of the system to be stabilized to N/p instead of N.
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10 ~y(t)

5

0 YrI~t) -'~t

0 t

kU(t)

-16

-24-

Y(t)-Yr t)

h T [l., -2.2, 2.18, -.4420, -1.4303, .6594]. a= .8, c= 0.

Figure 20. Two-step ahead prediction for the nonminimum phase.
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One can formulate the p-steps ahead prediction problem with w i = 0

for i < p and wp = 1 as a one-step ahead prediction problem where the N-

dimensional previous impulse response hT is represented by a new (N/p)-

dimensional impulse response 9T

4.6.2 Weighted Distance

In the sequel we will attempt to see how the choice of the weighting

factor wi of equation (4.21) can be used to stabilize a nonminimum phase

system. Again, for the sake of simplicity we consider a horizon of pre-

diction of length p= 2. We seek an input u(t), constant over two periods,

which minimizes the distance

SJ2 = w1lyp (t+l) -Yr(t+1)]
2 + w2[Yp(t+2)- Yr(t+2 )]2  (4.31)

where y, yr and yp are subjected to equations (4.22) through (4.24). We

can normalize, without loss of generality, w1 and w2 by requiring that

The input u(t) which minimizes J is the solution of the following equa-

tion, where u(t+1)=u(t):
ad -
J2

au t)-

which leads to:
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0 = u(t+1)[Whl 2 +w2(h1 + h2)
2 +T[Wlhl(U-I)+ 1 2)w2 (u2-1)] (t -1)

+ Y(t)[hl(1-c)wl+ (h + 
2)(1-L

2 )w2] (4.32)

or

0 = u(t+l)[w 1h1
2 + W (h6 + h2)2]+wh 1 r T(u-I)+ (l-,)hT]u(t-l)

+ w2(h1+h2)[h T (U2-1)+(1-a 2 )h T]u(t-) (4.33)

The above equation determines the input u(t) which minimizes J2 ' as

a function of the past input vectors u(t+l). It is easy to verify that

for wI = 0, equation (4.33) becomes identical to equation (4.27) which

corresponds to two-step ahead prediction. Conversely, for w2 = 0 equa-

tion (4.33) is identical with the equation corresponding to the one-step

ahead prediction (see Section 4.3).

As in the previous sections, the controller can always determine

(N+1) parameters (w,, h,'... hN) such that the characteristic equation

corresponding to equation (4.33) has N-1 predetermined poles. However,

this solution presents no advantage over the ones described in Section 4.4,

and moreover it does not specify the role of w1 .

Let us require that the nathematical model represent the plant exactly;

that is, hT= T. Then there remains only one parameter wI to adjust "or
the stabilization of the system. By equating to hT in equation (4.33),

we deduce:
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0 u(t+1)[Wh 1
2 +w2(h 1+h) 2 + hT {wlh[U-aI] +w(h + h2)[U 2- 2I]}u(t-1)

(4.34)

Clearly, it is not possible to bring all the unstable poles of the above

dynamic to predetermined values inside the unit circle by adjustment of

only one parameter w1 . However, it might be possible to stabilize the

system with a proper choice of Wl; that is, to bring the unstable poles

inside the unit circle. It is clear that even this latter attempt is not

always assured of success, particularly when the number of unstable poles

of H(z) increases. However, experience has shown that in those cases, by

increasing sufficiently the length p of the horizon of prediction, it be-

comes possible to stabilize the system. An intuitive explanation of the

above phenomenon is that by increasing the length p, one introduces p-1

additional parameters, wi, which then can be adjusted to stabilize the

system. Comparing the above observation with the approach of Section 4.4,

where the horizon of prediction is equal to 1, it appears that the choice

of h or wi are complementary in the sense that either one fixes the horizon- 1

of prediction at p= 1 and thus has to determine the appropriate vector

or one fixes 6T (T= h T) and thus has to determine the appropriate

length p and the weights wi (i= 1,...,p).

The practical implementation of the above scheme needs minor altera-
tion in the existing MAC software. But the proper choice of wi needs

much acquaintance and experience with the particular system to be sta-

bilized. Figure 21 displays an example of such stabilization for a system

of order 5.
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-16,

IIL

h T =[l., -2.2, 2.18, -.4420, -1.4303, .6594]. a= .6, c= 0.

a Figure 21. Two-step ahead prediction with weights wl .2,
w2=8 for the nonminimum phase system.
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4.7 Summary

The problem of nonminimum phase systems has been posed within the

framework of MAC. The theoretical analysis has shown that a rather wide

range of solutions for the control of such systems exists. These dif-

ferent types of solutions are closely related to each other. Moreover,

their implementation needs minor alterations of the regular MAC software.

In practice, the specific solution to choose depends on the particular

system and also on the desired response behavior, and generally there is

no one "once-through" design method yielding an implementable solution.

In most cases, the proper solution is t'e outcome of a more or less

lengthy design process involving both theoretical considerations and also

simulation results.
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SECTION V

MATHEMATICAL FORMULATION AND ANALYSIS OF

MAC OF CONTINUOUS TIME SYSTEMS

Overview

In this section we develop a mathematical formulation for the MAC

scheme applied to continuous time systems rather than to discrete time

systems as discussed in Section III. This framework provides a pre-

cise formulation of the main components of the control scheme and clearly

indicates the many various possibilities for implementing the basic con-

trol strategy. In addition, this framework provides a means of analyzing

the behavior of the MAC scheme in different situations, and permits an

assessment of its computational requirements. The section is divided

into three sections: the first section presents the general formulation;

the second discusses the optimal solution and the form of the MAC control

law; and the third section briefly discusses the computational aspects

of implementing the MAC control strategy.

5.1 General Formulation of MAC Strategy

Simply stated, the MAC philosophy of control is to choose fictitious

future controls in order to minimize a weighted quadratic distance be-

tween a predicted output, which is a function of the fictitious future

controls, and a desired future output (reference trajectory). The first

step or first few steps of the fictitious future control are actually
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applied, and after a short interval of time a new fictitious future con-

trol is computed and the process repeats itself. To formulate this pre-

cisely, let us make the following definitions.

Predicted future output: y p (s,t) is the output predicted at future

time t+s when t is the present time. Note that s>O. The predicted future

output yp (st) depends on actual outputs and inputs up to the present

- ~time t and on the fictitious future inputs up to the future time s+t.

Fictitious future inputs: uf(st) denotes the fictitious future

input supposed to be applied at the future time t+s when t is the present

time.

Desired future output (reference trajectory): Yr(st) denotes the

output desired at the future time t+s when t is the present time. This

reference trajectory depends on actual outputs and inputs up to the pre-

sent time t. It may also depend on a prespecified objective function or

desired set-point.

The MAC strategy is to minimize a weighted quadratic distance between

yp (,t) and yr(,t) of the form

= r2 6
J(uf(.,t)) =o Oyp(St)-Yr(S.t)l w(s) ds (5.1)

where J depends on uf(.,t) through yp(.,t). In minimizing J we restrict

uf(-,t) to a fixed set Uf of admissible future inputs. The actual input

u(t) applied at time t is simply
61n this discussion the input and output values are finite dimensional
vectors. The norm JvJ is the usual Euclidean norm for the vector, i.e.,

IV 2 Z v +2 + where v is d-dimensional and vi are the coordinates

of v with respect to fixed coordinate basis.
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u(t) = uf*(O,t) (5.2)

where uf*(.,t)e Uf minimizes J.

To illustrate the control strategy more clearly we consider typical

implementations. First, we need to assume a particular functional re-

lationship between the fictitious future control and the predicted future

output. In other words, we need a model for the future response of the

plant. If we choose a linear model (as we usually do), then yp can be

expressed conveniently as the sum of the zero input response Ypzi and

the zero state response y of the system

y p(s,t) = ypzi(S,t) + y pzs(s,t) (5.3)

That is, Ypzi(s,t) =yp(s,t) if the future input is zero (uf(st) =0 for

all s O). The zero state response ypzs then gives the future output due

to future input alone.

We assume that Ypzs is given by an impulse response model in terms

of Uf as follows:

Ypzs (s't) f H(s-a,t) uf(o,t) do (5.4)
, 0

In the following discussion we will also assume that H(s-o,t) H(s-o) is

independent of the current time t.

There are several possibilities for representing the zero input

response Ypzi* For example, one can use the impulse response of the

Iactual past inputs:
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t

YPzils(t) _C H(s-G)u(a) da (5.5)

Alternatively, one might use a state model of the form:

Yi t = F(s) :(L) (5.6)

where R(t) is a function of actual past inputs and outputs computed by

some finite dimensional filter. Other possibilities (e.g., ARMA'type

models) exist, and one can also consider combinations of these. The

important thing to note is that the computations of ypzi and Ypzs can

be carried out independently. On the one hand, it seems most computa-

tionally efficient to use the impulse response model (5.4) to compute ypzs"

On the other hand, the impulse response model may not be the most ef-

ficient procedure for computing y and it is a good idea and easy to

tailor the zero input response model to the particular problem.

There are also several choices for the reference trajectory yr" Un-

fortunately (for purposes of mathematical analysis), these choices are

made more on the basis of intuition than systematic theory. However, it

is easy to express the most common choices in mathematical terms, and we

can subsequently analyze some of the implications of these choices. The

most common choice is the first-order reference trajectory of the form

Yr(st) = eS/Ay(t) + (le-S/)c(t) (5.7)

where A is a specified time of response, y(t) is the actual input at

time t and c(t) is a set-point or objective at time t (and c(t) is often
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constant in this case). Another choice of the reference trajectory is

given by

Yr(St) = c(t+s) (5.8)

where c(.) is a pre-specified objective function. (Here c(T) usually

tends to a constant value as T-*-c.) This choice corresponds to the out-

put predictive schemes of Reid et al. (1979, 1980).

Let y0 (s,t) denote the difference

Y0 (St) = Yr(St)-Ypzi(St) (5.9)

At time t, we must minimize

J(uf(.,t)) J 1Yo(St) -J H(s-a)uf(at)dI 2 w(s) ds (5.10)
0O 0f

with respect to uf(.,t)eUf. The set Uf of future admissible controls

must be a subset of a finite dimensional vector space of inputs (since

we have to do the optimization numerically on-line) and it must be such

that J has a unique minimum over Uf. Here we assume that Uf can be ex-

pressed as a set of unique linear combinations of input functions ui(s)

defined for s>0,

n
uf(.,t) = vi ui(.) (5.11), i

where v= (vi,v2 ...,vn) T eV and V is a closed, bounded polyhedron in

R n.7 The optimization of J is performed in Rn on the finite dimensior-I

7Here and elsewhere ( )T denotes the transpose of both vectors and matrices.
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vectors V. In terms of ve V, J is a quadratic form in v,

n n n
J(v) = I XP..v v.- 2 j qj(t)v. (5.12)

J=1 k= k j=1 

where

qj(t) = foW(S)Yo(S,t)T{IJo H(s-a)uJ(c)da}ds (5.13)

and

PJk = J w(s)i(J J uJ(o)TH(s-a)TH(s' )uk(T)dadt}ds (5.14)

where j,k= 1,2,...,n. Note that Pjk is independent of current time t

and doesn't need to be computed on-line. In order to ensure a unique

minimum, we assume ui(.) are chosen so that [Pjk ] is a nonsingular matrix

(hence positive definite).

The linear terms qj(t) do depend on t through yo(s,t)--that is, due

to the predicted zero input response yzpi(-,t) and the reference trajec-

tory yr(.,t). However, we can often arrange the computation of qj(t) so

that most of the calculations are done off-line. For example, if ypzi is

given by (5.6) and yr is given by (5.7), then qj(t) can be written

qj(t) = R(t)Tqj1 + y(t)Tqj2 + c(t)Tqj3  (5.15)

where qj 1  qj2 qj 3 are vectors which can be computed off-line as
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q j F w(s)F(S)4 0 ~-ru(a)do).ds (5.16)

0 O0

qj= w(s) ( e'/A){o H(s-a)uJ(a)do}ds (5.18)

At this point let us review the main steps of the control algorithm:

MAC Strategy

(i) Compute certain terms, such as Pjk in (5.14) and qj in

(5.16)- (5.18) off-line.

(ii) At each control update time t, compute qj(t) from (5.13)

or (5.15).

(iii) Minimize the quadratic form J(v) in (5.12) with respect to v

and its linear inequality constraints. Let v*(t) denote

the minimum solution.

(iv) Apply the actual control input

nk
u(t) = Vk*(t)u (0) (5.19)

k=1

up until the next control update time.8

-. (v) Return to (ii) and repeat.

5.2 Solution of Optimization and Form of MAC Control Law

The type of control law generated by the MAC strategy depends on the

way in which the terms vk*(t) in (5.19) depend on the past data. In turn,

8More generally, one would have u(t+s)= I v*(t)uk(s) for times t+s up

until the next update. k=1
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the dependence of vk*(t) on the past data is determined by the dependence

of qj(t) in .12) on the past data. Note that qj(t) depends linearly on

the past in the cases we considered in the previous section. If the

minimum {vk*(t)} is unconstrained, then it too depends linearly on the

past. Let v*(t) denote the n-vector with coordinates qk(t) and let P

denote the nxn matrix (Pkj]. Then, the unconstrained minimum of J(v)

in (5.12) is given by

v*(t) = P-1 q(t) (5.20)

The control law (5.19) can be written

u(t) = Uv*(t) (5.21)

khwhere u (0) is the kt column of the matrix U. In case of unconstrained

v*(t) we get the linear control law

u(t) up- q(t) (5.22)

If the reference trajectory is given by (5.7) and the zero input response

is given by (5.6), then (5.15) is true and (5.22) can be rewritten expli-

citly in terms of the past data as

u(t) = UP 1 (Q (t) +Q2y(t)+ Q3c(t)) (5.23)

In this expression Q is the matrix with (qj)T as its jth row.

In case v*(t) is constrained, the control law is nonlinear and much

more complicated. However, something more can be said about the
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functional form of the control law. Consider the figure below (Figure 22).

In this case n= 2 and the constraints on v and v2 have the form

vk < vk < v + , k= 1,2 (5.24)

The constraint set V is the square region indicated in the figure. The

dashed lines in the figure represent directions orthogonal to the con-

straints vk = vk . The orthogonality of the directions is with respect

to P and in general these directions would be oblique to the constraints.

For simplicity we have drawn them perpendicular (this corresponds to a

diagonal P).

Let v**(t) denote the unconstrained minimum

v**(t) = P-1 q(t) (5.25)

which may give v**(t)$ V. It is not hard to see that in each of the

regions 0, 1, 2, 3, 4, 5, 6, 7, 8 shown, the constrained minimum v*(t)

is an affine function of the unconstrained minimum v**(t). That is to

say, v*(t) can be written as

v*(t) = '(v**(t))v**(t) + 4'(v**(t)) (5.26)

where V'(v**) is an nxn matrix which is piecewise constant on the regions

0 -8, and 4'(v**) is a piecewise constant n-vector on the same regions.

?-. Thus, we say that the general MAC control law given by (5.21), (5.25) and
I,

(5.26) is piecewise linear-affine. The pieces are especially nice, being

defined by simple linear inequalities. Unfortunately, as n grows, the

tnumber of pieces grows exponentially. Nevertheless, there may be effective
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methods of analyzing this type of control law. For instance, it is an

example of the variable structure systems studied by Utkin (1977). Also

in certain cases it might be possible to analyze the behavior of v*(t)

effectively in terms of the unconstrained'minimum v**(t). However, it

must be remembered that in general v**(t) will evolve according to a

nonlinear law also. When the inequality constraints are not as simple as

in (5.24) (for example, if there are state constraints), the situation

becomes much more complex than pictured in Figure 22. It is still possible

to express the control law as piecewise linear-affine, but the pieces be-

come much more complicated. In any case, we will not pursue the inves-

tigation of the nonlinear control law any further here. Appendix A inves-

tigates the nonlinear type control law further for single input-single

output systems.

So far we have seen that the general MAC control law is nonlinear and

quite difficult to analyze.9 The MAC control law is linear in the case

that there are no inequality constraints on the set of admissible future

n
controls Uf so that V=R . However, the linear case offers its own dif-

ficulties due to the possibility of unbounded control inputs (since J

does not weight controls at all). 10 The choice of Uf and the reference

trajectory in this case can make the difference between stable and un-

stable, robust and non-robust control.

Before finishing this section, we note that the most common choice

of Uf is the set of inputs piecewise constant over disjoint intervals

of time. Thus, the basis inputs ui(.) have the form
9although the particular piecewise linear-affine structure offers some
promise of analysis.

10Control weights are easily added and easily analyzed, of course, but
their use has not been required in the examples we have treated.
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ui (s) =u i, s e I
(5.27)

0, sO I

where ui is a constant vector and Ii is a bounded interval in [0,-). The

choice of Ii (the so-called "time blocks" or "blocking") greatly affects

the type of unconstrained control computed by the MAC control law. Such

a choice of admissible future controls Uf leads one naturally to analyze

the problem in terms of discrete time models as presented in Section III.

5.3 Computational Considerations

In case of input or output constraints, one must use a numerical

optimization algorithm to minimize the quadratic form (5.12) with respect

to the constraints. Currently, a simple gradient projection algorithm

(Canon, Callum and Polak, 1970) is used to solve this optimization problem.

The problem is set up as a quadratic optimization with linear inequality

constraints on the vector v appearing in (5.12). Note that if there are

constraints specified on the input u(.), then these usually show up as

11
fairly simple constraints on v. Output constraints, on the other hand,

show up as more complicated linear inequality constraints on v, and these

tend to slow down the computation of the optimal v*. If only input con-

straints are present, the complexity of the optimization problem depends

only on the dimension n of the matrix P in (5.12). In most cases this

dimension is small (n 20). However, output constraints can seriously

increase the complexity of the problem even if P has small dimension. In

this case it would be advisable to use a small number of constraints on v

11State constraints can be formulated as (unobserved) output constraints
in this framework.
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to approximate the desired output constraints.

Another important aspect of computation is how much must be computed

on-line and updated each time one wants a new control. As noted above,

certain quantities such as P and q in (5.14), (5.16)- (5.18) can becerai qanitis uc a Pk an J

computed off-line and stored for on-line use. Input constraints appear

as simple linear inequalities on the v. which are usually independent of

time. Output constraints, on the other hand, may be time-dependent when

expressed in terms of linear inequalities in the variables v j.

Although there are a number of sophisticated algorithms for solving

quadratic optimization problems with linear inequality constraints, we

are more concerned at present with obtaining a clear understanding of

the behavior of MAC controlled systems. For this reason, we have re-

stricted the current research to a simple gradient projection algorithm.

Nevertheless, it is good to note that this simple algorithm is sufficiently

fast to update the control inputs for the problems considered so far.
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SECTION VI

MAC FOR CONTINUOUS-TIME SYSTEMS WITH

DISCRETE OBSERVATIONS AND UNOBSERVED OUTPUTS

Overview

In this section, we investigate MAC for an incompletely observed

continuous linear time invariant system containing both process and measure-

ment noise. The performance index is taken to be the expected value of

a quadratic function of the continuous tracking error and control effort.

In accordance with LQG theory, the subject is analyzed as two essentially

separable problems: the estimation and the control. The estimation,

which is of minimum variance type, is done by Kalman filtering. For the

control part, two types of solutions are considered. One is based on the

usual MAC approach utilizing impulse response functions and the other is

based on state feedback control. The latter approach is taken here to

study the sample rate problem, i.e., determination of the effect of sample

rate on controller performance. The organization of this section is as

follows. The problem is formally stated and discussed in Section 6.1.

Section 6.2 analyzes the optimal estimation problem. Given the output of

the estimator, the optimal control is discussed in Section 6.3. Section 6.4

is devoted to analyzing the effect of sample rate. The plant model in

this section is assumed to be in a state vector form. This is convenient

for studying the problem of unobserved outputs and sample rate selection.

In addition, for aerospace vehicles, state vector models are generally
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available. MAC implementation, however, is not restricted to purely

impulse response models or state vector models. As shown in Section V,

it is possible to use the state model for estimation-prediction purposes

and the impulse response model for control computations. Since these

approaches are mathematically equivalent for the idealized case of un-

constrained inputs, we will formulate the sample rate selection problem

in terms of the state vector approach, thereby exploiting the results of

LQG theory.

6.1 Statement of the Problem

Consider a discretely observed continuous-time linear time-invariant

system, given by

x(t) = Fx(t)+Gu(t)+w(t)
.... (6.1)

y(t) = Hx(t)+v(t)

where

x(-) e R , y(-), Rm , u() e R r;

E[x(t0)] R(to);

E[(x(tO -x_'(to))(x(t O ) --i(to))
T  - Px(tO);

Fe Rnxn, Ge Rnxr, H e Rmxn;

- w(.)e Rn, v(.) e Rm;
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w(.) and v(.) are zero-mean, uncorrelated white noise vectors with:

E[w(t)wT(t+T)] Q(t)6(T);

T

E[v(t)v (t+T)) R(t)6(T);

(.e n x n ,  0()); R(.) eR mXm,  R(-)>0.

The system is observed at discrete times ti, i= 1,...,p:

i)t Hxt+vt= (6.2)

It is desired to determine the optimum control vector u(-) which

minimizes the cost

J= E[ t0(ll (t) -(t)12 +p(t)112)dt] (6.3)

0

where Yr(.) is the reference trajectory. It is assumed that r has

first order dynamics, and that the setpoint is at the origin. Then

ir ( t ) - T r~t (6.4)

and r(tO) = Y(tO)

and the reference trajectory is given as a function of the initial obser-

vation and time as

Yr( t) /(to))e 0)) (6.5)
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or

Xr(t) = al(to)

where

= e

The positive constant p in equation (6.3) is the cost associated with the

input energy.

It is assumed that at time te [to,to+T], the controller has the in-

formation Y(t)={l(t+); tO <ti<t}, i.e., all samples prior to t. The

determination of u(t) is based on the information set Y(t).

It is well known that the determination of the optimal input u(.)

involves an estimation problem and a control problem. In the remaining

part of the present section, the separation property (separation theorem)

is derived for the system given by equations (6.1) and (6.2).

The cost J can be rewritten as:

J = E{E[ ito+T(ll (t)- r(t)I2 +pI1u(t)112)dtIY(t 0+T)]} (6.6)

0

where E[... Y(t)] denotes the conditional expectation given an information

set Y(), while E{...} denotes the expectation over all possible informa-

tion sets. Then

ito0+T22J Ef (E[J (t) - r(t)11ly(to+T)]+ pE[Ij(t) U11Y(t+T)])dtl (6.7)

to
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The conditional mean and covariance of the random vector (t) are

given by:

E[y(t)IY(t)] y (t)

E[(y(t)- -(t))(y(t) - ^(t)) TIY Mt ) 
- Py(t)

Then

2 t)12 +tE[IIy(t) -r(t)i1 1(t)] 11Y(t) Yr(t)I2+tr cov[y(t)- Yr(t)]

(6.8)

where y&r(.) is defined similarly.

The control being independent of the observation noise:

E[I1u(t) 112 y(t)] = jfu(t),I2  (6.9)

it remains to evaluate cov[y(t)- r(t)] using

T ()cov[y(t) -yr(t)] = cov[y(t)]+covlyr(t)]-2E[( (t)-&(t))T(r(t)-r(t))]

(6.10)

It follows that:

2t+T ^2 T
J = E[ J1 (U2(t) -r( )l +p u(t)I2)dt+ tr 0 cov[y(t)- r(t)Jdt]

ito rJ
(6.11)

where

100



coV[yr(t)] = Pyr (t) = E[HT x T(O)x(O)H]e 
()

P yr(t) = HTPx(t)He-2(1-)(t-t
0 )

SP(t) is independent of the estimation and control strategy. The task

hence reduces to minimizing

J = E[ It+T (11(t) - Yr(t) 2 + pliu(t) 12 + tr Py(t) - 2E[ ((t) - Y(t) )T
to

• (r(t)- Yr(t)) IY(t)])dt] (6.12)

where P y(t) denotes the covariance of y(t) conditional on the information

Y(t).

The above development shows that two problems must be solved; first,

it is necessary to design an estimator to obtain j(t):

I ik (t) =  E[y(t)IY(t)]

41 This estimator is of the minimum variance type. The second, in a sense

independent, problem is to derive the control u that minimizes equation

(6.12). The following section deals with the design of the estimator.

6.2 Optimal Estimation

The optimal (in the minimum-variance sense) estimate y(t) of the

system (6.1) given the discrete observations y(t), i = 1,...,p, is generated

4 101



(see Jazwinski, 1970 and Bryson and Ho, 1975) by the linear filter:

x(t) = 6)(t)+ Gu~t)+ K(ti)(j(t+ ) -H^{t_))S~t-t i)

(6.13)

y(t) = Hi(t)

for te(ti,ti+1 ), i=1,...,p. Here K(t ) is the Kalman gain and the term

(y(tT)- (t-)) = (y(tT)-H (t)) (6.14)

is the innovation, which contains the new information due to the observa-

tions at time ti, Y(t+). It may be noted that in general

t ) t = lim HR(t) (6.15)
t~i

The system (6.13) describes the evolution of the estimate 9(t) be-

tween instantaneous observations at times t.. The Kalman gain K(ti) is

obtained in terms of the solution of a Riccati equation. Since these

results are well documented elsewhere (see, e.g., Astrom, 1970, Kwakernaak

and Sivan, 1972), we omit the details here.

6.3 Optimal Control

Once the complete state of the system has been estimated, all the

controlled outputs (observed and unobserved) can be predicted for dif-

ferent fictitious inputs in the future (see Section V). One may use

either the state vector model or the impulse response model for predic-

ting the zero state response, depending on the dimensionality of each

representation and the associated computational effort. The optimization
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problem, however, is more efficiently solved using a discretized impulse

response representation, particularly when hard constraints have to be

satisfied.

The computation of the optimal controls using the impulse response

model is similar to that carried out in Section 5.1. The certainty

equivalence principle (Astrom, 1970), however, does not apply strictly

in the constrained control (or state) case. The analysis of this dif-

ficult case requires further investigation. We assume here that the

effect of constraints is taken into account indirectly by the control

effort weighting term in the performance index. The optimal control

problem is thus equivalent to an LQG problem, which may be stated in

continuous-time or discrete-time depending on the nature of the control

input. Most commonly, the control input is kept constant (or linearly

interpolated) between sample points so that a discrete-time formulation

is appropriate. Notice that the sample rate for the control input

application need not be the same as the sample rate for output observa-

tion. The former restricts the class of inputs over which optimization

is performed, whereas the latter influences the prediction accuracy.

The effect of these two sample rates on controller performance can be

studied in terms of the solution to two discrete-time Riccati equations,

the control Riccati equation obtained by discretizing the system equations

and the performance index at the controller sample rate, and the estima-

tion Riccati equation obtained by discretizing the system equations at

the observation sample rate. The relevant equations are given in

Kwakernaak and Sivan (1972), pp. 542-550. (See, in particular, equations

6-486, 6-487, 6-488, 6-523, 6-524 and 6-525.)
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6.4 Summary

It was shown that the problem of MAC design for stochastic continuous-

time systems with noisy incomplete discrete-time observations can be

reduced to the solution of an estimation problem and a deterministic

control problem. The former is solved in terms of a Kalman filter (see

Section VII for an alternative approach) and the latter is shown to be

solvable either using LQG theory or the procedure outlined in Section V.

A study of the sample rate selection problem is indicated in terms of the

solution of two Riccati equations.

p

W4

104



SECTION VII

RECURSIVE PREDICTORS

Overview

This section describes the preliminary development of an estimator

to work with IDCOM in the control of systems in noisy environments. The

results of Richalet et al. (1978), Mehra et al. (1978) and our prelimi-

nary simulation results indicate that IDCOM works well in low-noise

environments. In several interesting processes, however, this ideal

environment cannot be guaranteed. A state estimator (Kalman filter) can

of course be included in IDCOM, for output prediction, when a good state

model is available. But the requirement of a good state model is a severe

one, and is not shared by the control optimization part of IDCOM. We

were thus led to consider alternate predictors which are compatible with

IDCOM yet offer good performance when noise and model uncertainty are

present.

This section begins with a description of the current predictor

in IDCOM (Section 7.1). Section 7.2 then discusses a simple, useful

modification which improves performance, and Section 7.3 compares this

predictor with the usual one. Autoregressive Moving Average (ARMA) models

are briefly discussed in Section 7.4, and optimal estimation is related

to this formulation in Section 7.5.
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7.1 IDCOM Prediction

It is useful to note how IDCOM currently computes the state (output)

predictions that it requires for control computation. The IDCOM fun--

tions may be outlined as in Figure 23. The current output, ya(t), ia fed

to two IDCOM blocks, one of which calculates the reference trajectory

for several future time steps y (s,t)12 and one which calculates the pre-

dicted output for zero-input in the future (i.e., no future controls

applied) yp(s,t).

IDesired ImpulseTi me ResponseConstants Model

Set oin Reference IYr(S't)
Set oint Trajectory

Calculation /1

I

I/
Fi~ue 23 IDCOM) fuct onalo Iitr

/ n nComputation lant aa(t+)" - ~~for u(r't ) Pa t n u

~Current

1 _ Zero-lnput

-, Predictiojn -- pz(S't)p t_ u(o,r<t)

Fiaure 23. IDCOM functional diagram.

2This notation s the same as that of Section V.
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The difference between these terms is the sequence e(s,t) of future

errors to be removed by the future controls, u(r,t). The only control

actually applied is u(O,t), the current choice, since the calculation

is repeated after the next step.

The internal (to IDCOM) impulse response model is usually used in

two places--the control calculation and the zero-input prediction. These

two functions do not require the same model, and in many cases an alternate

prediction model (e.g., for noisy environments) or control model (e.g.,

for nonminimum phase systems) may be desirable.

In general, however, IDCOM uses the same impulse response model,

identified (off- or on-line) for both functions. In order to avoid the

dangers of "open loop" prediction, however, where only the past inputs

and internal model are used, IDCOM modifies the standard prediction by

adding a bias-compensation term to improve performance. Thus, where the

"open loop" prediction for n-steps ahead would be
13

*T-n-1
YPzioL (n+l,t) = i Hi+nU(t-i)

the "closed loop" (bias compensated) version is

T-n-1Yzc(n+ l ,t )  X i= H HnU(t-i) + y a M - y p z i(O 't )  (7.1)

zJ piCL i=O ipz1

where

T
Ypzi(O,t) = i Hiu(t-i) (7.2)

13This assumes that only T impulse response terms are stored.
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is the estimated current output based on the past inputs and the internal

model. Intuitively, the "closed loop" predictor applies the bias between

the actual and currently predicted outputs to all future outputs. This

technique has worked quite well for standard, stable plants (with finite

impulse response).

7.2 Modification for Unstable (Integrator) Plants

While investigating the application of IDCOM to simple systenhs (e.g.,

integrators) with infinite impulse responses, it was discovered that a

slight modification to the above scheme resulted in a predictor which

could tolerate impulse responses which merely became constant (rather

than zero) for large T. By recomputing ypzi(O,t) at each time (n+1)

for which a prediction is needed, an expression for yPzi can be obtained

which converges whenever

H. - H = 0 Vi >T (7.3)*i-n i

rather than the usual requirement that

Hi  0 Vi >T (7.4)

Specifically, we choose

T-n-1,ypzinw (n01,t) = I=O (H i+n'H i)u(t'i)+ Ya(t)

new (t)

which results from changing the upper limit in equation (7.2).
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7.3 Comparison of Predictors

We can compare the behavior of these two predictors by considering

the actual output yzi(u,t) resulting from zero inputs after time t. We

define the prediction error for the new predictor as

e(n,t) = Ypzi(nt)-yzi(nt)

Then

T-n-1
e(n+1,t) I (H i+n - H i )u ( t- i ) - [y z i (n+ l ,t ) - y a (t )]

i=O

We note that if H from the internal model is exactly the real H, then

e(s,t)=O for all s as long as H satisfies equation (7.3). Thus, even if

H does not become zero for large T, good prediction is possible. By

comparison, the error in the regular computation would be

T-n-1 T-1e(n+l,t) = (H i+n - H i )u (t - i) '- [y z i
(n + l ,t ) ' y a (t )] -  Hiu(t-i)

i=O T-k-1

T-1
= - X Hiu(t-i)

T-n-1

which, in general, is not zero.

Similar expressions can be obtained for cases of bias and scale

factor errors in the impulse response. If the internal model (H') is

equal to the real impulse response plus a bias, i.e.,

H! = H +b
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then the above error becomes 0 for the new technique and

T-1
e(n+l,t) = (Hi +b)u(t-i)T-n-1

for the regular predictor. For scale factor mismatch,

H! qH :qH i

then

T-n-1
e(n+1,t) = (q-1) (Hi+n- Hi)u(t-i)

i=O

=(q-l)(Yzi(nt) -Ya(t))

for the new technique, which results in an error which grows with pre-

diction distance (i.e., as n grows). The regular predictor has this

error plus another term:

T-1
e(n+l,t) = (q-1)(yzi(n,t) -ya(t))- Y qHiu(t-i)

T-n-1

In general, it appears that the modified technique is better under

most circumstances, with only a slightly greater computation cost (re-

computing many "current estimates" based on prediction lag). This

method is now used on most of our programs. We note that the predictor

for n steps ahead is always written as a function of the current obser-

vation, and not as a function of the n-i-t prediction. This preserves

the separation between prediction and control computations, since the

future inputs would be required for the full estimate of the n-- t term.
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7.4 ARJA Models

The use of past inputs and impulse responses for output prediction

corresponds to a "moving average" filter (see Box and Jenkins (1976) for

a full discussion of this topic). The inclusion of the current observa-

tion creates a mixed, autoregressive-moving average (ARMA) predictor as

often used in time series analysis. It was noted in the last section

that the inclusion of the current observation permitted the treatment

of infinite-impulse response models. Indeed, this is a familiar fact in

ARMA modeling, and often motivates the use of mixed models.

In our current version of IDCOM, a 50t- order impulse response

(moving average) is used with a first order autoregressive term. It

seems probable that a lower order mixed-model would give equally good (or

better) prediction with less chance of numerical problems, straightforward

identification, and the ability to handle measurement noise. Such low-

order ARMA models combined with a short impulse response control calcu-

lation would, we believe, provide good control and estimation for systems

in noisy environments while preserving the robustness properties of MAC.

We intend to investigate this area in the near future.

7.5 Optimal Estimation

Before ending this section, we wish to briefly outline the solution

of an optimal estimation problem for IDCOM, with connections to ARMA

models and simplified estimation. For convenience, we begin with a con-

tinuous-time plant with white Gaussian process (w) and measurement (v)

noise, and dynamics:

4 111



:(t) = Ax + Bu + w(t)

y = Cx

z(t) = y(t)+ v(t)

where x is the state, y the output, and u a known input. The standard

Kalman filter for this system would be

AR + Bu + K(z- CR)

= (A-KC)x + Bu + Kz

where K is the gain matrix. In steady state, and with (O)= 0, this system

can be represented as

t OCL(tT)[Bu + Kz] dT
0

and

rt
t C4CL(t,-)[Bu + Kz] dT
0

where 0 is the closed-loop transition matrix

¢CL(t, ) = e(A-KC)(t -T)

The estimate y of the output can be approximated in discrete-time by

N
^(NA)= ) COCL[Bu+ Kz]A

0
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which can be written

N N
y(N&) = I Hl(i)uN-i + I H 2(i)zN- i

i=O i=O

where H1 = COCLBA and H2 = COCLKA. Without noise, K=O, and y is given by

y(t) =f COL(t,T)BU(T)dT + y(O)0

where

OOL(t,T) = eA(t-T)

and

N
y(NA) = i HOL(i)uNi

where HO =C~oLBA. Thus, we note the similarity between noise-free,

"open loop" prediction based on u alone and closed-loop prediction based

on both inputs and measurements. In general, there is no "easy" rela-

tionship between HOL and H1 and H1, although straightforward calculations

yield the latter two.

In applying these results to IDCOM, one is forced to create 50th

order state systems to handle an arbitrary 50t-h order impulse response.

The calculations for such large systems are awkward at best, and the

identification of lower-order ARMA models would greatly simplify the

filter computations.
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Finally, we suspect that the combination of exponentially-aged fil-

ters with reduced-order ARMA plant models may prove to be quite workable

and practical. Exponential aging (see Miller, 1971, or Schweppe, 1973),

sometimes called exponential least squares, is a method of filter design

which exponentially weights the past data. By introducing an exponential

aging term on the measurement noise covariance, the Kalman filter gains

remain open (non-zero) and the filter accepts new information even without

a process noise term.

Currently, the construction of noise covariances is often fictitious,

done merely to keep the filter gains in & region which results in good

performance. An alternate approach, somewhat less arbitrary, would re-

quire control system designers to specify only measurement noise covar-

iances (measured or from sensor specifications) and an exponential weighting

factor (based on desired bandwidth but explainable as easily as the

reference trajectory time constant of IDCOM). Such specifications, along

with a low order ARMA process model, may result in a simple estimator

with adequate performance and the ability to be easily modified by test

personnel as sensors change or experience with the estimator increases.

7.6 Summary

This section has described our preliminary work in improving output

prediction for IDCOM. An improved predictor was described for normal

operation with model uncertainty. Techniques for designing predictors in

noisy environments were discussed, and directions for future research were

given.
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SECTION VIII

MAC APPLICATION TO A MISSILE CONTROL PROBLEM

Overview

This section describes the application of MAC to a missile attitude

control simulation. The control program for MAC, called IDCOM, is dis-

cussed in Section 6.1. Two control computation algorithms used in the

simulations are described in Sections 8.2 and 8.3. The basic missile

model is presented in Section 8.4, and modifications made to the roll

axis are given in Section 8.5, along with step responses for the modified

(compensated) missile. All simulation results will be presented in

Section IX.

8.1 IDCOM Description

MAC is generally implemented by a computer program called IDCOM

(for IDentification and COiand) developed by ADERSA/GERBIOS in France.

In order to simplify program modifications for our research, another

version of IDCOM was written by us for simulating non-adaptive MAC appli-

cations. Our initial IDCOM is basically equivalent to the French ver-

sion, with some modifications as described below.

A block diagram of the components of our IDCOM is shown in Figure 24.

As indicated in the figure, when a new measurement is made, it is fed

to two blocks of IDCOM and used to compute a reference trajectory and

a zero input" prediction of the future outputs over a short horizon (for

optimization). The reference trajectory is a first-order exponential

.1
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IDesired Impulse
Time Response
Constants /Model

Siu 2. Reference Yr(tS.e o -dTrajectory / i
Calculation 

+ e(t) Control c u ( t ) o iPlant
e t r t Computation by f(t+1

Current
Output iStorage of

Past Inputs

- Zero-Input Ypi,

Prediction Yp i(S
L u(r<t)

~Figure 24. IDCOM components.

.drawn from the current (measured) output to a given set point. The de-

signer supplies a time constant (Ti) for this exponential for each output

i. The "zero-input" prediction uses the past inputs, measurements, and

internal impulse-response model to predict the future outputs in the absence

of future control inputs.

These two trajectories (reference and zero-input prediction) are

differenced to obtain an error trajectory to be minimized by the future

controls. The control calculation block then performs this minimization

in one of several ways. Once an input sequence has been computed, the
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first input is applied to the plant, and the cycle starts again after the

next measurement.

For our simulations, the zero-input prediction was obtained by the

"modified" (bias-compensated) estimator discussed in Section VII. The

controls were calculated in one of two ways, as discussed below.

8.2 Basic Control Computation

Our first control computation block is essentially a simple irversion

routine (in the absence of constraints) which finds inputs to zero the

error between the reference and zero-input trajectories. To make the

problem tractable, the error is only considered at a few points in the

future, and the future controls are required to be constant over inter-

vals ("blocks") between the output-matching points. For example, three

input values u1 , u2 and u3 may be computed to define the next five future

controls as:

u(1,t) = u

u(2,t) = u2

u(3,t) = u2

u(4,t) = u3

u(5,t) = u3

where u(s,t) is the computed control at time t to be applied s steps in

the future. This is shown pictorially in Figure 25.
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inputs

U2

current 1 2 3 4 5 steps
time into

future

Figure 25. Input blocking.

For this case, the outputs to be controlled (the error to be reduced)

occur at the endpoints of each block, i.e., 1, 3 and 5 steps in the fu-

ture. The advantage of this blocking is that it permits reasonably long

optimization horizons with low-dimensional required calculations. In

this example, only three numbers are computed for five steps ahead. Since

the controls will generally be recalculated one step ahead, this technique

sacrifices little.

The optimization routine used in the basic algorithm tries to invert

the system to find inputs which result in perfect output matching at the

chosen points. If this is possible, then the first control causes the

first output to be correct independently of the future inputs and outputs.

If constraints are encountered, or if the computation time is shortened,

however, the computed solution for one step ahead differs from the perfect

control in a way that results in good performance at the future selected

points.
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8.3 Gradient Algorithm

In order to improve the control calculation for general systems,

a gradient-projection algorithm was substituted for the basic (inversion)

control computation. This new algorithm retains the input blocking dis-

cussed above (to reduce the dimension of the problem) but does not

block the outputs. Instead, the new algorithm minimizes the sum of the

squares of the output errors at each step in the future up to the end

of the last input block. Thus, for the example above, the new algorithm

would compute three control numbers to minimize five future errors.

The capability also exists in the new algorithm for adding input

and output weighting matrices if desired. In general, we use only output

weighting unless control cost is meaningful. Output weighting alone is

very convenient, permitting easy tuning of the controller to achieve

desired performance for each output. Finally, we note that, for only

one block with endpoint one step ahead, the gradient algorithm and in-

version routine are equivalent (without control weights).

8.4 Simulation Model

In order to verify the theoretical results obtained earlier and to

demonstrate the behavior of MAC in an aerospace environment, a missile

attitude control simulation was developed. A simple, three-axis attitude

control model with independent pitch axis and coupled roll-yaw dynamics

was chosen from AFIT (1978). The model represents a hypothetical air-

to-air missile with asymmetric aerodynamic properties.

The model has six states, three inputs and three outputs, with
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dynamics:

x=Ax + Bu

y Cx

and

Z 1 0 0 0 0

M 0 0 0 0

o 0 Y~ a1  -1 2cp 1~

o o L 0 0 0

o 0 N 0 0 0

o 0 0 1 0 0

0 o 0

M 6q 0 0

0 0 0

*0 L 6p 0

i0 0 Nr

0 0 0

[1 0 0 0 0 0
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The states are:

x = a angle of attack (rad)

x2 = q perturbed pitch rate (rad/s)

x3 = a sideslip angle (rad)

x4 = p perturbed roll rate (rad/s)

x5 = r perturbed yaw rate (rad/s)

x= roll angle (rad)

with inputs

uI = elevator angle (6q ) (rad)

u2 = aileron angle (6 p) (rad)

u3 = rudder angle (6 r ) (rad)

outputs

yl = angle of attack (a) (rad)

Y2= sideslip angle (a) (rad)

Y3 = roll angle (0) (rad)

and parameters

v = forward speed

Zw = dimensional variation of z-force with downward velocity, sec 1

M = dimensional- ariation of pitching moment with angle of
aattack, sec

Y = dimensional variation of y-force with sideslip angle, sec'
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LB = dimensional2variation of rolling moment with sideslip
angle, sec

N = dimensional 2variation of yawing moment with sideslip
angle, sec

M6q = dimensional variation of2pitching moment with pitch controlsurface deflection, sec-

L6p = dimensional variation of2rolling moment with roll control
surface deflection, sec

N6r = dimensional variation off2yawing moment with yaw control6r surface deflection, sec

g = acceleration of gravity

I= equilibrium roll angle

Two flight conditions were chosen for study. The first has the missile

at Mach 2 at 20,000 ft, and weighing 239.5 lb. The pitch angle (equi-

librium) is 90 and sideslip is 0'. The second flight condition is Mach 4

at 70,000 ft, same weight, and equilibrium pitch and sideslip of 140 and

110 respectively.

The parameters for flight condition 1 were:

Zw = -1.4868

M = -149.93

M6q = -281.11

Y = -.91237

La -1559.2

L6p = 8770.6

Na = 290.48

N6r = 281.11
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The parameters for flight condition 2 were:

Zw = -.27877

Mot = -64.928

M6q = -43.285

Y = -.25089

L - 1650.5

L 6p = 1875.7

N = 50.499

Nr = 43.285

The models are considered acceptable for variations of 30 in a and a.

8.5 Model Modifications

An early impulse response analysis of these dynamics indicated a

very severe roll instability. Since IDCOM works best with finite impulse

responses, we chose to add roll angle and rate feedback to the aileron

comand, thus creating a compensated system for IDCOM to control. This

changed the fourth row of the A matrix to be:

[0 0 LB -L pG@ 0 -L6pG

Due to the roll-yaw decoupling from the pitch axis, this change did not

affect the angle-of-attack dynamics at all.

In the above row, L6p varies with flight condition, but G, the

compensator gain, was fixed to be in our tests. AFIT (1978) presented

values of G of 0.127 at flight condition 1 and 1.056 at flight condition 2,
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but we elected to use a simple, fixed gain compensator to merely stabilize

the plant. IDCOM would be used to get the required performance, and

thus an "optimal" G should not be needed.

Step responses of this compensated plant to control inputs are shown

in Figures 26, 27 and 28 for flight condition 1 and Figures 29, 30 and 31

for flight condition 2. A sample rate of 10 Hz (10 samples per second)

was used for these plots, with linear interpolation (by the plotting rou-

tine) filling in between data points. As shown in the plots, the pitch

axis dynamics are quite oscillatory for both flight conditions. An

analysis of the decoupled pitch dynamics revealed that flight condition 1

has a natural frequency of 12.24 r/s (1.95 Hz) and a damping ratio (C) of

0.061, while condition 2 has a frequency of 8.06 r/s (1.28 Hz) and a

damping ratio of 0.017.

8.6 Summary

This section has described the application of MAC to a missile atti-

tude control simulation. Two versions of the control algorithm (IDCOM)

were described, and their differences discussed. The missile model was

presented, and changes for our studies were noted. The next section will

present the results of these simulations.

.4
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A = angle of attack

B = sideslip angle

C = roll angle
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Figure 26. Step response to elevator input, flight condition 1.
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A = angle of attack
B = sideslip angle

C =roll angle
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Figure 27, Step response to aileron input, flight condition 1.
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Figure 28. Step response to rudder input, flight condition 1.
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Figure 29. Step response to elevator input, flight condition 2.
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Figure 30. Step response to aileron input, fliqht condition 2.
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SECTION IX

SIMULATION RESULTS

Overview

This section presents the results of MAC applied to a missile attitude

control simulation as described in Section VIII. The first section (9.1)

lists the simulation parameters and baseline conditions for the majority

of the runs. Section 9.2 then shows the performance of both the basic

(inversion) algorithm and the modified (gradient) algorithm for the base-

line conditions and some slightly different parameter values. Changes in

the reference trajectory time constant are shown in Section 9.3, and the

effects of input rate constraints demonstrated in Section 9.4. Section

9.5 shows the behavior of the algorithms when measurement noise is pre-

sent, and Section 9.6 demonstrates robustness limits for cases where the

internal model and real missile are not the same.

9.1 Simulation Parameters

The following sections will present a number of plots showing con-

trol responses as several different parameters and conditions are varied.

In order to facilitate comparison between related plots, the scales have

been kept constant, if possible, within each series of runs.

Unless otherwise noted, the following conditions existed in the simu-

lations:

-The sample time (A) was 0.1 second.
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-The controls were computed for three blocks ending at one, three,

and five steps in the future.

-The reference trajectory time constant (T) was 0.1 seconds (all

axes).

-No input constraints were imposed.

-The set points were changed at 0.4 seconds from 0' to 150 for

angle of attack (cx) and 100 for sideslip. The roll set point

remained at 0'.

-For the gradient algorithm, the output weights wi were all equal

(1); no input weights were used.

-Flight condition 1 was used.

The sampling rate of 10 Hz corresponds to a Nyquist frequency of

5 Hz, and thus all plant dynamics should be slower than 4 Hz. We expected

the closed loop plant to typically be controlled with a 0.1 second ref-

erence trajectory time constant, which would qualitatively match the

performance shown in AFIT (1978). This time constant is equal to a 1.59 Hz

natural frequency, which is sufficiently below the 5 Hz limit for these

simple simulations.

For the simulation, the impulse responses for IDCOM's internal model

were obtained numerically from the state space parameters. The simulation

itself (i.e., the plant) used a discrete-time state model obtained from

solving for the transition matrix for the state. The impulse responses

and transition matrix calculations were carried out with a 0.001 second

step size for accuracy. This method insured that accurate dynamic be-

havior would be seen at the sample points, although no attempt was made

in our tests to examine the response between samples.

132



We note that several responses are outside of the linear range for

the model, and thus should not be considered as absolute results. Rather,

the inputs and outputs should all be scaled down (to less than 30) if

absolute numbers are desired. Since all of the operations (except for

the constraint case) are linear, this presents no problems.

We also note that the low pitch damping ratio of the missile at

each flight condition presents a difficult control task for any digital

controller. An actual missile implementation would benefit from an analog

stabilization loop inside of the IDCOM control loop (as was modeled for

the roll axis and discussed in Section VIII). We did not use this internal

control structure for angle of attack, however, since we wanted to ex-

plore the operation and limitations of different IDCOM techniques in this

environment.

9.2 Initial Control Tests

This series of tests demonstrates the basic control behavior of the

two versions of IDCOM tested. The first figure (Figure 32) 14 shows the

basic (inversion) algorithm for the baseline conditions described above.

Figure 33 shows the same controller but only looking one step ahead

(i.e., one endpoint, one step ahead). We see that without constraints,

the results are nearly identical. The large oscillations in inputs are

due to the inversion of an oscillatory system (the missile). The con-

trolled outputs are very good, but the control behavior appears unde-

sirable.
14All figures for Section IX are grouped at the end of the section,

beginning on page 141.
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The next five plots show the modified, gradient algorithm. Figure 34

shows the baseline conditions, and Figure 35 shows the response to a 100

roll command with 0 sideslip. Note the much smoother control sequence

compared to the inversion routine (Figure 32). Figure 36 shows the gra-

dient algorithm only looking one step ahead, and thus converging to the

inversion technique. Figure 37 shows the improvement of just considering

two endpoints (one and five steps ahead), and Figure 38 considers three

endpoints (one, three, and 10 steps ahead), using a longer optimization

horizon. This results in slightly slower initial response but smoother

controls than Figure 34.

9.3 Reference Trajectory Changes

These tests show the effect of reference trajectory time constant on

speed of response. The gradient algorithm was used for this series and

results should be compared to Figure 34. Figure 39 shows the response

for a time constant of .5 second (from .1 seconds in Figure 34), while

Figure 40 speeds the reference to 0.05 seconds. For comparison, the

fast time constant (.05) with a one-step look ahead controller (gradient

here, but equivalent to the inverse) is shown in Figure 41.

4
9.4 Input Rate Constraints

This series of runs shows the effect of adding rate constraints to

the control inputs. IDCOM directly considers magnitude and rate constraints

in its control calculation so that improved compensation is possible (i.e.,

other controls may be adjusted) when one input is limited. For the

134

-V- m



missile control simulation, magnitude limits did not seem important,

since most control surfaces had large travel available. Rate limits

(i.e., derivative of control surface motion) did seem realistic, however,

and we attempted to investigate their effects on performance.

We recall that the baseline tests showed large swings in control

inputs were needed for the inversion algorithm to achieve its excellent

tracking. These input rates, although alarming, barely exceed a 250°/

second rate limit suggested by the Air Force for this simulation. Fig-

ure 42 shows the response of the inversion algorithm (one step look

ahead) to-a rate limit of 250°/second. The performance is generally

indistinguishable from that of the baseline test, Figure 32. A very

strict 50°/second rate limit is imposed in Figure 43, and this time the

output ioes not perfectly match the reference trajectory but the control

swings are nearly eliminated.

9.5 Effects of Noise

This series of tests demonstrates the behavior of IDCOM in the pre-

sence of white, Gaussian measurement noise. The gradient controller was

used for these runs, although the first example (Figure 44) uses only

one optimization point and is the equivalent of the inversion technique.

The controller was used in a regulator mode, with no set point step com-

mands, and the plot scale was reduced to show the output noise. The

plots are actually of the measured output including the true plant out-

put plus measurement noise. They thus show slightly more motion than

the true plant output alone exhibited. The noise was chosen to have a

variance of 0.25, applied at the sample time, 0.1 seconds apart.
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Figure 44 shows the outputs for the inversion-equivalent case. The

actual output noise variances were 0.1348, 0.0922, and 0.1001 for angle

of attack, sideslip, and roll respectively. Figure 45 shows the gradient

algorithm looking three steps ahead (as in the baseline case). The output

noise variances for this case are 0.1016, 0.0387, and 0.0290 for angles

of attack, sideslip and roll, respectively.

Although it is dangerous to draw conclusions from too small a random

sample, the gradient algorithm appears to retain its smooth control

properties (compared to the inversion technique) with little or no penalty

in output noise variance. The much more easily analyzed inversion rou-

tine may, therefore, provide a rough estimate of noise behavior for the

gradient technique.

9.6 Model Mismatch

This section demonstrates the behavior of the IDCOM algorithms when

the internal (to IOCOM) impulse response model is not the same as the

state space plant model used to simulate the missile. Two different

types of mismatch are shown below: a simple gain error as discussed in

Section 3.1, and a flight condition mismatch (e.g., internal model of

flight condition 1 with plant from flight condition 2) as treated in

Appendix B.

9.6.1 Gain Mismatch

As discussed in Section 3.1, when the internal model impulse response

is equal to a constant gain (1/q) times the real impulse response, the

controlled system is stable if

.4
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F

0< q - (9.1)

where

-A/

for sample time A and reference trajectory time constant T. This assumes

that a stable system is being controlled, and that the inversion algorithm

is being used.

To demonstrate this result we used the gradient controller with one

endpoint one step ahead (equivalent to the inversion routine) and set

point step commands of 30 (angle of attacQ, 20 (sideslip) and 00 (roll).

These set points have the same relative value as the baseline conditions

anq permitted use of the same plot scaling.

For the normal sample time (A= 0.1 seconds) and time constant (T = 0.1

seconds), equation (9.1) indicates instability for

q > 3.164

Figure 46 shows the case where q = 3, and indeed the system is barely stable.

Increasing q to 4 resulted in instability (not shown).

As indicated by equation (9.1) for any given q, robustness can be

improved by increasing the reference trajectory time constant. For q = 4,

T > 0.144 seconds

should produce stability. Indeed, a case with T=0.15 is shown in Fig-

ure 47, and the system is again stable, but not by much. Increasing
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T to 0.2, as shown in Figure 48 (q =4), made the system much more stable

(less oscillatory).

Although no theoretical results exist yet for the gradient routine,

its generally smoother control was expected to result in greater robust-

ness than the inversion algorithm. This proved to be true in our limited

testing. Figure 49 shows the gradient algorithm with three endpoints

(baseline conditions), q=3, and T=0.1 seconds as in Figure 46. The

gradient algorithm's behavior is clearly superior. Indeed, for q=4,

T= 0.1 seconds, when the inversion case was unstable, the gradient al-

gorithm gave reasonably good performance, as shown in Figure 50.

These tests seem to both confirm the theory of Section 3.1 and imply

that the robustness bounds for the simple inversion are conservative

limits for more sophisticated optimization algorithms.

9.6.2 Flight Condition Mismatch

One of the most attractive possibilities of robust control of air-

craft and missiles is the potential for reducing the amount of gain

scheduling required as flight conditions change. Robustness analysis

for this case can be quite tedious, as indicated in Appendix B, and one

often must simulate and examine controllers to determine the best struc-

ture and gains. This section presents a very limited demonstration of

the potential of IDCOM in these areas.

The two flight conditions chosen (see Section 8.4) represent widely

different systems, each difficult to control. Figures 34 and 36 earlier

showed the performance of IDCOM (gradient version) for three and one

endpoint optimization (respectively) at flight condition 1. Similar
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baseline plots for flight condition 2 are given in Figures 51 (three

endpoints) and 52 (one endpoint), but with step connands of 30 (angle

of attack), 20 (sideslip) and 00 (roll). Figure 52 shows the near in-

stability of the inverse control technique for the highly undamped

pitch dynamics at this flight condition. Again, the gradient technique

(Figure 51) is much better. In all of these runs, the internal model

was correctly identified (off-line) for each flight condition.

We next tried mixing the two internal models and actual flight con-

ditions, to see if one control model would work at the two extreme

conditions. We simulated both gradient and inversion techniques, and

neither was stable with the mismatched model for a reference z of 0.1

seconds. We then tried slowing the reference trajectory down, and were

able to stabilize the systems, with the consequent sluggish performance.

Figure 53 shows the inversion (actually gradient with one endpoint)

algorithm (T = 1 second) at flight condition 2 and an internal model from

flight condition 1. The set points were the baseline 150, 100, and 00.

Figure 54 shows the same case for a three endpoint, gradient algorithm.

The responses are very similar, with less control oscillation in the

gradient case.

Figure 55 shows the inversion algorithm for the reverse case (model

from condition 2 and missile simulated at condition 1) with lower set

points (30, 2', and 0°). The missile immediately approaches the set

point because of the unexpectedly large response (compared to the control

calculation model), even though the time constant is still 1 second

(reduced for stability). Figure 56 shows the gradient (three point) al-

gorithm for this case with the familiar improvement in control smoothness.
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9.7 Summary

This section has presented the simulation results from applying MAC

to a missile attitude control model. Some of the theoretical results of

the earlier analysis sections have been demonstrated for a simple al-

gorithm which approaches the idealized MAC considered in Section III.

Results were also presented for an improved controller currently under

development.

140



0

N

Angle of Attack
CU
CU

ft- 0

Ln

4')

C) 0.00 1.00 2.00 3.00 4.00 5.00 6,00
C? TIME (seconds)
0-C

Ln

' Elevator Deflection

F 0.00 1.00 2.00 3.00 4.00 5.00 6.00

TIME (seconds)

Figure 32a. Inversion algorithm at baseline conditions.

"1'1



0

U;

a) Sideslip Angle

0 Roll Angle

oB

C)0.00 1.00 2.00 3.00 4.00 5.00 6.00
Co TIME (seconds)
0-

Aileron Deflection

0) Rudder Deflection

ZI

0.00 1.00 2.00 3.00 4.'00 5.00 6.00
TIMlE (seconds)

Figure 32b. Inversion algorithm at baseline conditions.

142



0z
0
U;
N%

_C3 Angle of Attack

F-

0

0

Ln

0.

0

0.00 1.00 2.00 3.00 4.00 5.00 6.00
T IME (seconds)

Figure 33a. Inversion algorithm with one endpoint.

143



a)

Sideslip Angle

0

R I ME (scns

0-

Aileron Deflectio

* Rudder Deflection

0 00 1 .00 2 .00 3 .00 4 .00 5 .00 6 .00
T IME (seconds)

Figure 33b. Inversion algorithm with one endpoint.

4 144



-~ ~~~n --- . . ... I I iI

0

, 03 Angle of Attack

'2

Q)0

00

! ?

LU)

I I I I I I I
0.00 1.00 2.00 3.00 4.00 5.00 6.00

o TIME (seconds)

'7 - -

L
FElevator Deflection

-1 0

II I I ! I I
0.00 1 .00 2.00 3.00 4.00 5.00 6.00* TIME (seconds)

Figure 34a. Gradient algorithm at baseline conditions.

145



C?.

(n

w o
L LI

Sideslip Angle
* I-

* CD

Roll Angle

C)0.00 1.00 2.00 3.00 4.00 5.00 6.00
CO T IME (seconds)
0

Aileron Deflection

Rudder Deflection
4L

0.00 1.00 2.00 3.00 4.00 5.00 6.00
T IME (seconds)

Fiqure 34b. Gradient algorithm at baseline conditions.

t. 146



S..Angle of Attack

ua) U

CL 0

C ,

0

0 0.00 1.00 2.00 3.00 4.00 5.00 6.00
TIME (seconds)

0
-

C)-

~Elevator Deflection

0.00 1.00 2.00 3 .00 4,00 5.00 6.00

T I ME (seconds)

Figure 35a. Gradient algorithm at baseline conditions, roll command.

147

S.-1

meow

Elevatorr Deflectionow



C

-Sideslip Angle

L)- iB

C14

C Siesi Angle

O0

o 0.00 1.02.00 3.00 4.00 5.00 6.00

i;-- Ail eron Deflection

Rudder Deflection

S-

0
CD

-v

zI

io
0
tN.

2 t IIIII
0.00 1.00 2.00 3.00 4.00 5.00 6.00

TIME (seconds)

Figure 35b. Gradient algorithm at baseline conditions, roll command.

148



U)

Lca
C-5

CL

00

o0-0

TI E (seconds) 
6.00

C; u~ 3 a r d e t a g ri h i h O e e d o n
pjU

$n 
e soI-r t ~ C . i u ~ 33 e o e(U 7e ator Deflc149



:)

0

CD

0.00 1.00 2.00 TIE3.00 4.00 5.00 6.00

Aileron Deflection

0)

Co Rudder Deflection

iC
C)
C?.

0 9.00 1 .00 2 .00 3 .00 4 .00 5 .00 6.00
T IME (seconds)

Figure 36b. Gradient algorithm with one endpoint (becomes
inversion algorithm, cf. Figure 33).

150



0 Angle of Attack

=D

C

0
C
Lfl-

C) 0.00 1.00 2.00 3.00 4.00 5.00 6.00
C? TIME (seconds)
0-

4)

S.-

0)

0.010 .030040 .060
TIE (ecns

Fiue3a rdetagrihIihtoedons

05



LA-

Ln

Sideslip Angle

C)I BRoll AngleBB

C3
0

C)0.00 1.00 2.00 3.00 4.00 5.00 6.00
C? TIME (seconds)
0-

Aileron Deflection

n 0
C)-

C)

D Rudder Deflection

0.00 1.00 2.00 3.00 4.00 5.00 6.00
TIME (seconds)

Figure 37b. Gradient algorithm with two endpoints.

152



U,

0
U; Angle of Attack

D

D

S0.00 1.00 2.00 3.00 4.00 5.00 6.00
oTIME (seconds)

Fiue3a0rdetagrtmwthtreedons oghrzn

I15



Sideslip Angle

IL

IC?

C3 0.00 1.00 2.00 3.00 4.00 5.00 6.00
C? TIME (seconds)

Aileron Deflection

C;RddrDelcto

0

Rdder Deflection

15



-I. Angle of Att cpk

F- C

CD

0
0

C)0.00 1.00 2.00 3.00 4.00 5.00 6.00

C5 TIME (seconds)

0-

Cd,

)
0- C

0.00 1.00 2.00 3.00 4.00 5.00 6.00
TIME (seconds)

Figure 39a. Gradient algorithm, slow trajectory.

155



0

(1) 0

Sideslip Ang'

CD Z --- Roll Angle

0

0 0.00 1.00 2.00 3.00 4.00 5.00 6.00
C? TIME (seconds)
0

Aileron Deflection

-~S1

Rudder Deflection

I-.

*0.00 1.00 2.00 3.00 4.00 5.00 6.00
TIME (seconds)

Figure 39b. Gradient algorithm, slow trajectory.

156



U,4

Angle of Attack

0

C30.00 1.00 2.00 3.00 4.00 5.00 6.00
C? T IME (seconds)
0-

'7.. 

E e ato 
efl c~ o

ElevTo DEectionds

Fiue4a4rdetagoihfs rjcoy

15



C)-

a O

.2.

0

CL0

ZD n

CDI ol Angl

0

Aileron Deflection

4A

0

p.. CY

*0.00 1.00 2.00 3.00 4.00 5.00 6.00
T IME (seconds)

Figure 40b. Gradient algorithm, fast trajectory.

158



\Ii

CLU

j0

0.0
0.0

0 

20

a,.o

(UC; 
~E levator D f e t o

0

Figure 41a. 1vr o euvln)60
(e~~v~ef~)al gorithm, fast trajetoy

159

oil



0
U,

u0

)

Ailer nleto

-0
40

CU.

M Ailer Defl ection

)

0

0 .00 1 i.00 2 i.00 3 i.00 4 .00 5 .00 61.00

Figure 41b. Inversion (equivalent) algorithm, fast trajectory.

160



0

U;

,, ngleof Attack

I-

C:oV0

lElevator Deflection

I I

0

0.00 1.00 2.00 3.00 4.00 5.00 6.00
TIME (seconds)

Figure 42a. Inversion algorithm, 250°/second rate limit.

161 '

0i

4-.



CL

Sidli Angle

0

U I ;

0 0.00 1.00 2.00 3.00 4.00 5.00 6.00
0 TIME (seconds)

Aileron Deflection

C Rudder Deflection

0.00 1.00 2.00 3.00 4.00 5.00 6.00
T IME (seconds)

Figure 42b. Inversion algorithm, 2500/second rate limit.

162

=van= jwl7-,-



C%1

(A C3Angle of Attack

F- L

a-)

CD

in-

0 0.00 1.00 2.00 3.00 4.00 5.00 6.00
R TIME (seconds)

-

)

)

0.00 1.00 2.00 3.00 4.00 5.00 6.00
T IME (seconds)

Figure 43a. Inversion algorithm, 500/second rate limit.

163



CY.

)
L;U

CU
Sideslip 'Angle

DA

00

CDi
Roll1 Angle BB

C)B
0

U-,

CD 0.00 1.00 2.00 3.00 4.00 5.00 6.00
Co TIME (seconds)

0

-4

Ailer Deflection
a- B

-Z

0

0.00 1.00 2.00 3.00 4.00 5.00 6.00

TIME (seconds)

Figure 43b. Inversion algorithm, 50'/second rate limit.

164



Angle of Attack

Co

C30

I

0.00 1.00 2.00 3.00 4.00 5.00 6.00
TIME (seconds)

Elevator Deflection

Z0

Cr-

C:)

Ft I I I
0.00 1.00 2.00 3.00 4.00 5.00 6.00

TIME (seconds)

Figure 44a. Inversion algorithm with measurement noise.

165

*bS1 " -1 1 " ' -t ' " -- :-----r . . . . . . .



,Sideslip Angle

1-4-

CD

0.00 1.00 2.00 3.00 4.00 5.00 6.00
C IM (seconds)

-8 ileron Deflection

1?

Rudr eleto

TIMEe Deflection

Figure 44b. Inversion algorithm with measurement noise.

166



Angle of Attack

Ci)

C3

0

0.00 1.00 2.00 3.00 4.00 5.00 6.00
TIME (seconds)

I.- Elevator Deflection

=C3

0.00 1.00 2.00 3.00 4.00 5.00 6.00
TIME (seconds)

Figure 45a. Gradient algorithm with measurement noise.

167



e.Sideslip Angle Roll Angle

CD

-0

a- TIM (sdeconDs)ecio

0

Ailero Deflection

Fiue4b rdetagr-h ihmaueetnie

016



n

DLA

0.00 1.00 2.00 3.00 4.00 5.00 6.00
CTI (seconds)

7 Elevator
a~a) ~Deflection

F- C
CL0

C3
C?

0.00 1.00 2.00 3.00 4.00 5.00 6.00
TIME (seconds)

Figure 46a. Inversion algorithm with gain mismatch of 3, T= .1.

169



)

.)

Sideslip Angle

C? 
Roll Angle

Ca 0 .0- 

- -
z 00.)

0 
T 30

0

TIMlE (seconds) .060

Figure 46b. Inversion algorithm With gain mismatch of 3, T = .1.

170



S.U

C)

0

0 0.00 1.00 2.00 R .0 40 .060C? 4.0 5l so

O0

o Elevator Deflection

Figre47. IvesiT IME I(seconds) of0

Fig00 47 .0 2.ve si0 algo00h 4i00 ga n m s a c f 4 .5.6 0

171



U,

)

:Dw

Ln'- Sideslip Angle

C3 Roll1 Angl e

C) 0.00 1'.00 2.00 3'.00 4.005.060
0. ~T IME (seconds)

Rudder Deflection

Ailro

c Deflection

4 0

0

0.00 1.00 2.00 3.00 4.00 5.00 6.00
TIME (seconds)

Figure 47b. Inversion algorithm with gain mismatch of 4, T= .15.

172



CJQ

w ---"

S-

CL. Angle of Attack

0
U;

I I I I I I I

0 0.00 1 .00 2.00 3.00 4.00 5.00 6.00o TIME (seconds)
0

Elevator Deflection

CL0

z

j 0.00 1.00 2.00 3.00 4,00 5,00 6.0TIME (seconds)

Figure 48a. Inversion algorithm with gain mismatch of 4, T= .2.

173



CL 8

nu; Sideslip Angle

C Roll Angle

U,

I // I+- I -A

C30.00 1.00 2.00 3.00 4.00 5.00 6.00
* TIME (seconds)

Aileron Defl tio

Rudder Deflection

0

" 174

-I

0.0 102.0030040050 6.00
Figure 48b. Inversion algorithm with gain mismatch of 4, •r .2.

' .. ... ... .= II ' .... ? . T -L = - - -' - / ++L ;- +=.174 _



U)

-

0-8

Angle of Attack

0

CU

tI I I I I I
0 .00 1.00 2.00 3.00 4.00 5.00 6.00

o TIME (seconds)
-

-:... . , .El evator Deflecti on

Figure 49a. Gradient algorithm with gain mismatch of 3, T = .1.

175

-. 4 L . . . .- - : 'I ' e"



0

C"i

0)O

ZD " Sideslip Angle

CD B. //B_. B R

oRollI Angle

iI I I I
0.00 1 .00 2.00 3.00 4.00 5.00 6.00o TIME (seconds)

* C -

, AilIeron Deflection

- m - H

LRudder Deflection

.0

0

I, I I
0.00 1.00 2.00 3.00 4.00 5.00 6.00

TIME (seconds)

Figure 49b. Gradient algorithm with gain mismatch of 3, -t= .1.

176



7 AD-A102 145 SCIENTIFIC SYSTEMS INC CAMBRIDGE MA 
FIG 12/1

BASIC RESEARCH IN DIGITAL STOCHASTIC MODEL ALGORITHMIC CONTROLO.ARKMHR,(SEEN, OHNU)31 9C31

UNCLASSIFIED AFW AL-TR-80G3125 NL

smmmmhhhmhul
smmhohhhhEmhEE
smEEmhEEmhshE
EEmhhEmhmhEEEE

E~H eE~oEThc



14-

Angle of Attack
CD~

0

Lfl

I I I IIII

0.00 1.00 2.00 3.00 4.00 5.00 6.00
C TIME (seconds)

-N,

aJ

0

I II I I
0.00 1.00 2.00 3.00 4.00 5.00 6.00

TIME (seconds)

Figure 50a. Gradient algorithm with gain mismatch of 4, T = .1.

177



Lfl-
N

0-0

0

I-

0-

Sidelin Anglect

CD

0.00 1.00 2.00 3.00 4.00 5.00 6.00
T IME (seconds)

.17



0A

0

0-

0.00 1.00 2.00 3.00 4.00 5.00 6.00
TIME (seconds)

Fiur 51a A rdin ElevoritDeflin odiin2baei

j 179



N

C0

1C

0 0.00 1.00 2.00 3.00 4.00 5.00 6.00
o? TIME (seconds)

'0 - -

Aileron Deflection

a' Rudder Deflection

(L0

0 .00 1 .00 2 .00 3 .00 4 .00 5 .00 6 .00
TIME (seconds)

Figure 51b. Gradient algorithm, flight condition 2 baseline.

180



IA

S.

C? Angle of Attack

0

0 0.00 1.00 2.00 3.00 4.00 5.00 6.00
o TME (seconds)

0

Elevator Deflection

*0.00 1.00 2.00 3.00 4.00 5.00 6.00
TIME (seconds)

Figure 52a. Inversion algorithm, flight condition 2 baseline.

181 k



Ln

0

Sideslip Angle

C)

RAlleAnol

Tudder (scctonds

0

Def0 ectTME(scods

ionRude Delecrtion lgh odiin baeie

Figure 52b. Inversinagrtm 
figtcdtil2balle

182



CY.

; ... ... . .. " i I i I i I I ,i.i..I.i ii..i.I I

Angle of Attack

0

U;

I I t I !I
0.00 1 .00 2.00 3.00 4.00 5.00 6.00o TIME (seconds)

- 0

ZI

S I I IIII0.00 1.00 2.00 3.00 4.00 5.00 6.00
T I ME (seconds)

Figure 53a. Inversion algorithm, control model from condition 1with missile at condition 2.

VI

183

04

I'

I..



U 
0

'n
C)0

0

I

0

0 0.00 1.00 2.00 3.00 4.00 5.00 6.00
9TIME (seconds)

18



L -

0) 3

M Angle of Attack

~LO

L I i iii11

0.00 1.00 2.00 3.00 4.00 5.00 6.00oQIM (seconds)

b -~ El evator Defilection

0

Q

0.00 1.00 2.00 3.00 4.00 5.00 6.00
TIME (seconds)

Figure 54a. Gradient algorithm, control model from condition 1
with missile at condition 2.

ti 185



C0
0

U;

C)

I.--

Sideslip Ang'
1.C?

CD

in Roll Angle

CD0.00 1.00 2.00 3.00 4.00 5.00 6.00
o? TIME (seconds)

0)

C)
C?

zI Rudder Deflection

0.00 1.00 2.00 3.00 4.00 5.00 6.00
TIME (seconds)

Figure 54b. Gradient algorithm. control nudel from condition 1
with missile at condition 2.

'~'1'186



Q)

L a

-R Angle of Attack
CD

0

LAl
........ I I I

0.00 1.00 2.00 3.00 4.00 5.00 6.00
0TIME (seconds)
0-

fElevator Def ction

*1-

j .00 1.00 2.00 3.00 4.00 5.00 6.00
TIME (seconds)

Figure 55a. Inversion algorithm, control model from condition 2
with missile at condition 1.

'4

4187

nff mmli



OI-0

Dw Sideslip AngleCD

Roll Angle

C3 0.00 1.00 2.00 3.00 4.00 5.00 6.00
Co T IME (seconds)
0

Aileron Deflection

C.)
0

)

T IME (seconds)

p4 Figure 55b. Liversion algorithm, control model from condition 2
VA with missile at condition 1.

188



(U

- U

V.8 Angle of Attack

0

0.00 1.00 2.00 3.00 4.00 5.00 6.00
0 T IME (seconds)
0

8 Elevator Deflection

0.010 .030040 .060

1 18



wo

a) U

C-

V.. LnSideslip Angle
CD

0 ~RollI Angl e
0
U;

0 0.00 1.00 2.00 3.00 4.00 5.00 6.00
C? TIME (seconds)

0
04

-~IM RuddrcDfletio

19



SECTION X

CONCLUSIONS AND RECOMMENDATIONS

The overall conclusion of this study is that MAC technique has a

sound mathematical and empirical basis. It is a highly flexible, in-

tuitive, and general approach to control design which fully exploits

the capabilities of current microprocessors. MAC can handle hard con-

straints, time varying system characteristics, and unequal numbers of

inputs and outputs. These features, ease of implementation and its

theoretical properties of robustness make it a very powerful technique

for guidance and control of flight vehicles.

Specific conclusions of this study are: (i) the mathematical pro-

perties of an idealized MAC can be analyzed by conventional control analysis

techniques. For unconstrained single-input, single-output minimum phase

systems, MAC design is similar to inverse control. An appropriate choice

of reference trajectory is required to achieve desired robustness,

tracking, and disturbance rejection properties.

(ii) Simple analytical criteria can be derived for the robustness of

MAC in terms of gain margin, which agree quite well with the simulation

results. It is shown that there is a direct relationship between MAC

robustness and speed of response of the reference trajectory (or of the

closed loop system).

(iii) In general, the performance of the closed loop prediction MAC

is better than that of the open loop prediction MAC. However, there are
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cases (e.g., large initial distance from the set point) where a combined

use of open loop prediction and closed loop prediction strategies may be

useful.

(iv) For nonminimum phase systems, inverse control leads to unbounded

inputs. The MAC design approach can be easily modified to overcome this

difficulty, however. The modified MAC design uses two different models:

a prediction model which is a close replica of the true system and a con-

trol (or deconvolution) model which has a stable inverse. An optimal

solution to the latter problem is given in terms of a Riccati equation.

(The use of the Riccati equation solution, in this context, is very dif-

ferent from that in LQR design.) The optimal design performs much better

than pole placement and weighting techniques.

(v) MAC design can be extended to continuous time systems and the

optimal inputs can be computed by parameter optimization methods using

suitable basis functions. The control law is shown to be a piecewise

linear function of the reference trajectory and current state (or equi-

valently the past inputs and outputs) of the system.

(vi) For continuous time systems with discrete observations, un-

observed outputs, process noise, and measurement noise, the MAC approach

can be applied in conjunction with a state estimator (Kalman filter).

The control computations are still performed using an impulse response

model and a quadratic programming algorithm. The sample rate selection

problem, however, can be studied by an extension of the LQG theory. The

effect of sample rate on MAC performance can be expressed in terms of

the solution to the well-known estimation and control Riccati equations.
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(vii) The missile control simulations demonstrated superior perfor-

mance achievable with MAC in a missile control environment. The basic

MAC was shown to be tolerant of model mismatch and measurement noise,

as indicated in the theoretical development. An alternate optimization

algorithm was shown to preserve the good output tracking of the regular

algorithm while using smoother control sequences. The alternate algorithm

also appears to be more robust than the basic one, and just as tolerant

of noise.

(viii) Control design involves subtle tradeoffs between several con-

flicting objectives such as tracking, robustness, constraint satisfaction

and noise performance. Using the MAC approach, a large number of designs

can be tried rapidly and the above tradeoff can be made easily. MAC de-

sign is also self-suggestive for improvements since it reveals the factor

limiting performance.

The following recomendations are made for further research: (i)

adaptive MAC: the MAC approach is easily extended to the case where the

plant model is varying in an a priori unpredictable fashion. It has been

Ah shown that identification and control are dual problems in the MAC formu-

lation. However, the theoretical properties of adaptive MAC have not been

studied thoroughly. It is recommended that the convergence and robust-

ness properties of adaptive MAC be studied analytically and the role of

test signals (explicit and implicit) be quantified in terms of control

performance.

(ii) Impulse response representation is not suitable for lightly

damped and unstable systems. A number of heuristic techniques, including
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compensation prior to control by MAC are available and have been used in

practical applications. It is recommended that these techniques be analyzed

theoretically to select optimum designs for specific situations.

(iii) Since the MAC approach is equally applicable to guidance design,

it is recommended that both guidance and control problems for flight

vehicles be investigated using the MAC approach. In particular, the ap-

plication of MAC to cruise missile guidance is very promising (Reid et al.,

1980).

(iv) Several algorithmic improvements in MAC design have been described

in this report. It is recommended that these improvements be tested on

more complex simulations.

(v) The next logical step in MAC development is testing a research

aircraft such as TIFS and NAVION. This would involve determination of

real-time computer requirements, comparison with other control techniques

and performance evaluation.
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APPENDIX A

GENERAL STUDY OF SINGLE INPUT SINGLE OUTPUT LINEAR TIME

INVARIANT CONTROL LAWS. APPLICATION TO AN

ADAPTED MODELS ALGORITHM CONTROL (AMAC)

L. PRALY

Abstract: In this study, we come back on some characteristics of linear

time invariant control laws and we show how the single input single output

(SISO) adapted model algorithm control (AMAC) is a technique for designing

such a law.
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2 Avenue du ler Mai
91120 Palaiseau
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This appendix (pp. 197-250) originally appeared as an internal report at
ADERSA/GERBIOS, and it is reproduced here in its original form with its
own references and appendices.
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A - RETURN ON LINEAR TIME INVARIANT LAWS OF CONTROL

A-i Introduction

Let us return on what is the problem of sampled-data

control systems synthesis.

Given a mathematical model of a process, functionnal

operator between an input and an output, given a set of

specifications, given a method to compute a control input,

the problem of synthesis may be defined as follows : find

the parameters used in the computation of the control input

such that the mathematical process with that input meets

all the specifications. We spoke about a mathematical model

of a process and not about a real physical process. We will

say a law of command to be robust if it can be used on a

physical process.

More precisely we call robustness the coherence between

approximations of a mathematical representation of a physical

process, and the sensitivity of performance criteria defined

by the specifications, to variations of this representation.

Let P0 be the nominal mathematical process, the control

input is designed for, if the performance criteria are continuous

in P0 . we can expect the satisfaction of the specifications

for any P in the vicinity of P Then, the physical process

w2 want to command must have representations each in this

vicinity.

Another way to formulate the problem is : the set of

mnithematical processes, images of the physical prucess, must

bt enclosed in the set of mathematical processes which verify

the specifications for a given control law.
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So we will successively

- define a mathematical process

- define a set of specifications

- define a control law

- find relationships between parameters of the control

law

- study the sensitivity of the performance criteria.
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A-2 Definitions

A-2.1 Definition of the mathematical model of a process

A-2.1.1 Definition

We define here a discrete time mathematical model

of a process as a transformation of a set of sequences called

inputs into another set of sequences called ouputs.

We differentiate three typesof signals between

the input sequences

a controlable measured signal called control and

noted e
n

an uncontrolable but measured signal called

measured disturbance, and noted vn

an uncontrolable unmeasured signal called

disturbance and noted w
n

For single input single output systems e,v,w

are scalars and so is the output noted s
n

So, if P is an operator on sequences, we have

the relation between inputs and output

s(.) =P(e(.) ,v(.) ,w(.) ).

A-2.1.2 Hypotheses

A-2.1.2.1 Hypothesis on P(HI):

We suppose P to be a linear time

invariant operator which is of rational type and asymptoti-

cally stable. Moreover we suppose a non zero static gain.
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A-2.1.2.2 Hypothesis on disturbances(H2):

We suppose both measured and unmeasured

disturbances to be causal and to admit z -transforms which

verify conditions of final value therorem [I].

If the disturbances are represented as

stochastic processes, these hypotheses are made on the

mathematical expectationsand all the following deterministic

results must be considered in mathematical expectation.

Moreover we suppose the output to be

lineraly time-invariant dependant on the disturbances. So we

introduce a new linear, time invariant, asymptotically stable

operator Q between the measured disturbance and the output.

A-2.1.3 Representation of the mathematical model

of the process

With hypotheses HI, H2, we compute the

output s(n), from the inputs e(n),v(n),w(n) by the recursive

equation

Nf N N n

f s ge +n
f. i Sn-i> g en-i+ 2 hi Vn-i

i=O i=O i=O

Nf+' -- f. w (1)

i n-i

where (f , (gi(,.,N),

(hi)iE(,N) are time invariant scalars.

Neglecting the initial conditions

(justified by asymptotic stability), we can represent (1)

in a more concise way using z - transforms

s(z) =P (z) e (z) +Q (z) v (z) +w (z) (2)
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where

P (z) 
p n (z)

Pd (z)

N N-i
P n (z ) - gi z g

i=O

qn (z)

(Z) =qd(z)

(3)
N N-i

q (z ) jh h- ihn >nZ) h i z

i=O

N Nf-i

pd (z) .q d(Z) f. Z

i=o

and from the causality principle, degree of p n(q ) is less

than degree of pd(qd

Moreover from the hypotheses, the roots of pd(z)

and qd(z) are strictly in the unit circle.

So we get the block representation given by

f igure 1

w nVn - Q(z) Wn

en -_ P(z) ++s n

FIGURE 1 - Representation of the process
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A-2.2 Definition of a set of specifications

A-2.2.1 Output regulation

We want the effect of non decreasing distur-

bances on the process to be, in some sense, minimized or

eliminated.

A-2.2.2 Ou.,uttracking

Given an external non diminishing signal

called the set point and noted u n , we want the output

s to track u with minimal or ideally, zero steadyn n
state error. For this problem, we impose a causal set point

with z - transform which verifies conditions of the final

value theorem.

A-2.2.3 Internal stability

In both cases it is also imperative that

an appropriate control law be designed in such a way as to

insure an asymptotically stable design i.e. the relations

between the external signals (set point, measured and

unmeasured inputs) and the internal signals (control,output)

must be stable in some sense.

A-2.2.4 Asymptotic convergence

We will summarize the preceding definitions

by the asymptotic convergence of the output s n  to the

set point u n

lir u ~s =0 (4)
n 2 n n
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In fact we have only here the least constraints

to set any system of control. The synthesis of such a system

must also take into account the behaviour of this convergence

and need performance criteria [2] . From greater variability we

keep ourselves within the convergence criterion.

A-2.3 Definition of the control law

A-2.3.1 Definition

We call control law a method to compute future controls

given the observation of all the measurable past signals. To

get a very general linear time-invariant control, we compute

a future control en+ I  , given the past measured signals

(em, s u , v m 4 n) as a finite linear combination
m m m m

N N N N

e(n+l)= _ a e di S + ri U-i- bin-i

i=O i=O i=O i=O

(5)

Or using z - transforms, we write

c (z) e(z) =r (z)u(z)-d(z) s(z)-b(z)v(z) (6)

with c(z), r(z), d(z), b(z) z - polynomials such that

degree of c(z) is greater than degree of r(z), d(z) or b(z)

and c(z) is mutually prime with r(z) , d(z) and b(z).

Note that from the homogeneity of equation (6), there

is no use to take rational functions instead of polynomials.

A-2.3.2 Interpretation

Equation (6) has the block diagram representation given

in figure 2.
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FIGURE 2 - Control law structure

So we can interpret the four parameters c,r,d,b of the

control law as [3] :

c(z) is a compensator

d(z) is a sensor

r(z) is a reference

b(z) is a feed-forward input.

2
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A-3 Relations between parameters of the control law

A-3.1 Study of the closed loop-system

We study the closed loop-system in its asymptotic

behaviour. So we are going to express the various transfers

between external and internal signals:

The closed loop system is represented by figure 3

vn  Wn

FIGURE 3 - Closed-loop system

We have the z - transform relations:

s(z)=s (z)u(z)+S (z)v(z)+S (z)w(z) (7)
a rv rw

e(z)=E (z)u(z)+E (z)v(z)+E (z)w(z) (8)
a rv rw

with : the tracking transfers

S (z)= r(z)P(z) (9)
a c(z)+d(z)P(z)

&i r(z)
E (z)= r~)(10)a c(z)+d(z)P(z)
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and the regulation feedback and feedforward transfers

Srv (z) c(z)Q(z)-b(z)P(z)
Sc (z) +d (z) P (z)

(z)= c (z) (12)

Srw c (z) +d (z) P (z)

Erv(Z)=- b(z)+d(z)Q(z) (13)

Er c(z) +d(z)P(z)

Er (z)=- d(z) (14)
w c(z)+d(z)P(z)

We can see that the poles of any transfer are

given by the roots of the expression c(z)+d(z)P(z) . Moreover

from the stability of P(z), Q(z) and the hypothesis of

mutual primeness, a necessary and sufficient condition of

internal stability is given by the stability of the control

and more precisely by the stability of the Ea(z) transfer.

We shall note that given the stability conditions,

the sensor d(z) determine the Erw(z) regulation transfer, the

compensator c(z) determines the Srw(z) regulation transfer
and r(z) determines the E (z) tracking transfer. With

a

the error tracking transfer

I - Sa)d(z)-r(z))P(z)
Sa(z)Sr (z)4 c(z)+d(z)P(z)

we remark that the difference between d(z) and r(z)

differenciates between regulation and tracking behaviours.

Whith expression (11), if it is possible to get

c(z)Q(z)-b(z)P(z) (16)

we will be able to compensate completely the measured distur-

bance.
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From expressions (9), (11), (12), we can write

expression (4) using the final value theorem

lim (I-z) ( s (z)-u(z))=O (17)

z -.* 1+

Supposing s(z),u(z) to be defined in the ring

(1,+ 00 ). In order to separate set-point, measured and

unmeasured disturbances actions, we will transpose the set

of specifications into four constraints

regulation constraints

Srw ( 1 )c( 1)( 0 (18)

Srv =c(1)Q(1)-b(1)P( ) . 0 (19)vc(l)+d(1)P(1)

tracking constraint

S (1)=i= r(1)P(1) (20)
a c (1)+d(1)P(1)

And stability constraint

The roots of c(z) pd(z)+d(z)pn(z) are strictly

in the unit cercle.

A-3.2 Regulation constraints

A-3.2.1 Passive regulation

We want to impose relation (18). With the

hypothesis on the process and if the sensor has a non

zero static gain, it is necessary and sufficient that

c(1)-O (21)
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So, we must impose a factorization of the

compensator in :

c (z)-(z-l)m(z) (22)

Moreover, from now on, we will write the

sensor as k d(z) with :

d(1)=1, kvO (23)

A-3.2.2 Active regulation

From the preceding results, we must

impose

b(1)=0 (24)

So, we have the following factorization

b(z)=(z-l)n(z) (25).

A-3.3 Tracking constraint

We verify expression (20) if we impose identical

static gains for both sensor and reference. So as in (23),

from now on, we will write the reference as k r(z) with

r(1)-I, kp'0 (26)

I!

A-3.4 Remark

With expressions (22) , (23) , (25) and (26) , (6) must

be rewritten as

zm (z) e (z) =m (z) e (z) + (z-1) n (z) v (z) +k (r (z) u (z)-d (z) s (z)) (27)
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So the control is computed in a recursive way.

A-3.5 Stability constraint

We study the polynomial

(z-1)m(Z)pd(z)+kd(z)pn (z)

We know already

- pd(z) has all its roots strictly in the unit circle

- k,d(1),p n(1) are different from zero

- degree of m(z) is greater than degree of d(z)

- degree of pd (z) is greater than degree of pn (z)

with no more hypothesis on the process, we can give a sufficient

condition of internal stability (Proof in Appendix 1).

If m(z) has all its roots strictly in the unit

circle, it exists a vicinity of zero V(O) such that if

k is in V(O)-(O), internal asymptotic stability is ensured

if and only if

km(1)P(1)> 0 (stability condition) (28)

with P(1) equal to the static gain of the process.

Note that from continuity, the existence of a vicinity

of k can be transposed on the existence of a vicinity of

P(z) as we will see in a next section, and so this permits

the study of robustness as it was formulated in the introduc-

tion.
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A-3.6 Introduction of a non linearity on the control

We will extend here the results of Rouhani [4]. We

introduce a non linear compensator defined as follows

(figure 4).

Let Yn be the input signal of the compensator, we

compute the control e through the expressionn

e (y +  (m -m )e +men )) (29)n+ m flZn i i+1 n-i N n-N
i=0

N N-i
with m(z)-I mi  z

i=o

f (x) a real time varying functionn

fn(.)
" " Y n - -- -- n e n + 1

(z-1)m(z)

FIGURE 4 - Non linear compensator

To study the behaviour of the closed-loop system, we

give an asymptotic value U to the set point, we compute

a theoretic asymptotic value e of the control

p (1) =W (30)

We suppose the disturbances to be bounded and the
-Np

processes to be a M.A. system (P(z)=-  pn(z)).
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Then we can say (Proof in Appendix 2)

Let p be the greatest modulus of the roots of

(z-1)m(z)zNP+kd(z)p (z), if for any n we have

Ifn TX T - Ixl I k <l (31)
nn

then the non linear system is stable.

In fact here (with the hypothesis on the disturbances)

the stability is taken in the sense of bounded input bounded

output (bibo). But if the external signals (set-point,

disturbances) become constant, it will become an asymptotic

stability and verify relation (4).
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A-4 Sensitivity of the convergence criterion

Following our introduction we are going to study the

sensitivity of our preceding results to variations of P

and Q. In fact given the parameters m,r,k,d,m of the

control law, we are looking for the set of P,Q operators

for which the convergence criterion is satisfied. To keep

the validity of our approach, we will take P,Q in the

class of linear time invariant processes.

At once let us remark that only the stability constraint

uses hypothesis on P and Q, so we can conclude to

insensitivity of the tracking and regulation constraints.

And from now on we will look at the stability problem.

A-4.1 Sensitivity to Q

From expressions (9) to (14) it is easy to

conclude that for any asymptotically stable Q, we will have

internal stability. So, in fact, there is no sensitivity to

Q.

A-4.2 Sensitivity to P

In the hypothesis Hi we have imposed P additional

constraints to those on Q, particularly rational type and non

zero static gain. The latter was essential in regulation

and stability constraints. So we must impose variations of

P to maintain the sign of the static gain. The former was

a theoretic facility but it can be relaxed.

A-4.2.1 P of rational type

In that case we have to find all the pairs of

polynomials (pn(z) , pd(z)) such that
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degree of pd is greater than degree of p nP and the roots

Of Pd(z) and (z-l)m(z)pd(z)+kPn(z)d(z) are strictly in the

unit circle.

Given pd(z) and the number (N +1) of coefficients

of pn (z), suppose m(z) has all its roots in the unit circle,

we look for the coefficients p 0. . . . . . ,PNp such that the

polynomial

NN -i
glz)=(z-I)mlz)Pdz)+kd(z) Pi z p (32)

i=O

has all its roots in the unit circle.

Let us work in the g(z) coefficients space.

Let G be a vector representative of g(z),

M be representative of (z-1)m(z)pd(z),

P be representative of pn (z),

D be a matrix representative of the action

of d(z) on p(z).

We have

G=M+kD.P, (33)

-. G is linearly dependant on P.

Otherwise, given the highest degree coefficient

of m(z) pd(z), from the continuity of the coefficients on

the roots, we can say that the set of admissible Gs which

represent polynomials whose roots are in the unit circle

is closed, bounded and connected. Moreover from the presence

of (z-2), we can say that M is on the frontier of this set.

Thus we have the situation given by figure S.
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fo G

zero static
gain locus

FIGURE 5 - Coefficient representation of stability

constraint

So from the knowledge of the set of admissible

Gs, we can find the set of admissible Ps. The first set has

been studied by Markov [6] in the continuous case. Particu-

larly we can't make sure of convexity of the set, so from

the linearity we don't know if the set of admissible Ps is

connected.

This approach gives the roles of m, d or k

m corresponds to a translation, d is very similar to a

rotation and k to a linear displacement. Moreover we can

see the coupling between vicinities of k and P.
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A-4.2.2 P in the vicinity of a rational P0-

Suppose the parameters of the control law to

be fitted to a nominal process P0 of rational type. We

are looking for variations A P around P0 such that we

have internal stability.

If we suppose P(z) to be an analytic function

outside a domain strictly contained in the unit circle and

if we note

g(z)= (z-1)m(z)+kd(z) P0 (z) (34)

h (z) =kd (z) A P (z) (35)

Then g(l) and h(l) are analytic in and on the
z z

unit circle and with the Rouche Theorem [7] , we can say

that for any process P(z)=P 0 (z)-AP(z) such that

)g(ei )I > Ih(eiq )I [- TT (36)

we will have internal stability.

We have in fact here another presentation of

the result of Doyle (8) in the SISO case.

A-4.2.3 Application to a polynomial variation

Let us take &P(z) of the form

N

4PlZ)j Ap(z M- i (37)

J=0

Expression (36) means

I(e ib- )m(e iq)+kd(e ip)P 0(ei )I> k Id (e io 1,&P (e i e ) (38)1

1.4e E(n, TiJ
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But we have with appendix 3

E N

AP(ei)i 2 2 1 lLSin (N+)e40)
-- A 2 j (- --- Si n & )(0

J=0

So we can get an upper bound of the modulus

I
2 2 in I(eie-1)me )+kd(e (i )P 0 (eis

J=o ke - I+~ kd (e ie)l .N+I 1L,Sin (N+1)01) 2
" 2- -+2 sin 9

(41)

Practically an FFT algorithm will provide all

these spectra.

A-4.2.4 Convergence criterion sensitivity index (CCI)

Given a process P0  and the parameters of the

control law we define an absolute index by:

Min (e i -1) m(e l g ) + P (e)Is (42)CCIlP 0 'm'k'd)= On +i] k d(eis )

From expression (36) this index gives an upper

bound on the possible spectrum variation to verify convergence

criterion. So we call it a convergence criterion sensitivity

index. To insure robustness, it has to be compared with an

equivalent approximation index given by the P0  model

estimation phase.
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A-5 Summary

In this first part, we came back on the problem of

linear control. The most important results have been

reformulated in a very general way :results on the structure

of the control law, results on stability in the linear case

and in a simple non linear case and at last results on a

measure of the sensitivity of stability.
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B. THE SINGLE INPUT-SINGLE OUTPUT (SISO)

ADAPTED MODEL ALGORITHM CONTROL (AMAC)

We have just presented a linear time invariant control law in a

general fashion. It is an abstract approach which serves only to ensure

the convergence criterion. In an attempt to get behavior criteria, we are

going to give a physical presentation through a SISO control based on

the mathematical representation of the process of paragraph A-2.1.3:

s(z) = P(z)e(z) + Q(z)v(z) + w(z) (1)

and the use of adapted models of the operators P,Q.

B-i. General SISO AMAC Presentation

B-1.1 Definition of the Strategy.

At time n, given the past measurable signals, the SISO AMAC computes

a control such that a predicted output of the process is identical to a

predicted set point.

Taking the notation of Box and Jenkins [9], we write this:

s n(1) = u n(1) (2)

the prediction being here of one point ahead. From the representation

of the process (1) we decompose the predicted output into two parts: a

deterministic part which functionally depends on the inputs and a non-

deterministic part su n(1) resulting from the disturbances. Let M(e n(1),

e2 ; £ n) be a model of the operator P which defines the deterministic
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output from the future and past controls, we deduce from (2) the control

law as:

M(e(1), e ; £n) - un(1) - sun(l) (3)

Then to compute the control e (1) we have three different problems:

inversion of M, estimation and prediction of the non-deterministic out-

put, and prediction of the set point.

B-1.2 Inversion of the Model M

From its definition, M is a model of the process. Note that to

compute e n(1), we use this model in a reversed way compared to the physical

transfer, so we require M to be invertible in the sense defined by Box

and Jenkins [9] and we call it a deconvolution model. Thus with the

linear time invariant hypothesis the model of the process is taken linear,

time invariant, asymptotically stable, of rational type and invertible.

Let mdi or Md(z) be the impulse response and the rational z-transform

of this deconvolution model. We obtain from (3)

o0

mdo.en(l)=- 1 mdi.en+li + u n(1) - Su n(1) (4)4' On i=ln

and md0 must be different from zero.

B-1.3 Estimation and Prediction of the Non-Deterministic Output

From expression (1) the non-deterministic output is the sum of both

a filtered measured disturbance v and an unmeasured disturbance w
n n

Suppose we have an estimation Q of w and a convolution model of the
2 n
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measured disturbance filter Q nc (Nc(z)), then if vn(1) and ^ (1) are

predictions of measured and unmeasuted disturbances, we compute:

su (1) -ncV n(1) + I nci'Vn+l- i 
+ Wn(l) (5)

n n i-i inl-

So we first need the estimation w (1) of the unmeasured disturbance and

secondly measured and unmeasured disturbance predictors.

We already introduced a convolution model Nc of Q. Let us take also

a new model mc i(Mc(z)) of the process P. This time we need a model to be

used in the same way as the process so Mc(z) is a convolution model com-

pared with Md(z), a deconvolution model. Similarly to expression (1), we

compute the estimation Q by
n

ln = en-i i n-i.iWO i O

Now from the past vn and n , we want to predict Su n(). From discrete

parameter prediction theory [101, vn(1) and ^n(1) can be computed with

prediction filters. Using a-transforms they may be expressed as

(1)(z) F z ^z
n "fwd(z) (7)

v(1)(z) = Fv(Z) v(z)= fvd(z) V(Z)

where fwn(z), fwd(z), fvn(z), fvd(z) are polynomials in z, the degree of

fwd(resp fvd) being greater than the degree of fwn(resp fvn). Moreover,

to be able to predict the continuous component of the disturbances, 
we
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impose unit static gain predictors.

Thus we get the z-transform of su n():

su(1)(z) = Nc(z) v(z) + Fw(z) Q(z) (8)

with Nc'(z) (nc.) computed from N and F through the relation:

nc 0 v (l)+ I nc v = nc' v (9)
i n+l-i i n-i

i=l i=o

Now from z-transform of (6) we have the final relation:

su(1)(z) = Fw(z)(s(z) -Mc(z)e(z)) + (N'(z) -Fw(Z)Nc(Z))V(z) (10)

or equivalently in the time domain:

sun(1) = fwi*(si mcl*e i) + (nci -fwi*nc )*v. (11)

where * represents the discrete convolution operator.

B-1.3 Set Point Prediction

To get a better behavior of the closed-loop system, at time n we

need future set points. In some cases they are available (particularly

when there is a hierarchical control). But generally we need a predictor.

Let us take it in the form of a rational filter Fu(z) with fu. as impulse1

response and with unit static gain.

fun(v')
^(l)()= Fu(z)u(z) fu-- u(z) (12)

or
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an(1) fui*ui (13)

with fun(z), fud(z) polynomials in z, with the degree of fud(z) greater than

or equal to the degree of fun(z).

B-l.4 Expression and Properties of the SISO AMAC Law

From expressions (3), (11) and (13) we get the SISO AMAC law

en(1) d 1 (fwi*mc - mdi)*ei +fui*ui - fwi*si - (nc fw*nc)*V

(14)

This prediction is used as the future control e n+I . Thus we get the

z-transform representation of the SISO AMAC law:

(z'Md(z) - Fw(z)'Mc(z))e(z) = Fu(z)*u(z) -Fw(z)s(z)

- (Nc'(z) - Fw(z)Nc(z))v(z) (15)

I-r

Then we find the expression of the four polynomials of our general linear

time invariant control law:

c(z) - z'Md(z) - Flw(z)Mc(z)

r(z) = Fu(z) (16)

d(z) = Fw(z)

b(z) - Nc'(z)- Fw(z)Nc(z)

Thus we can give a physical Interpretation to these polynomials. Moreover,

we see that from a physical point of view c, r, d and b are not mutually

independent, but Md or Me, Nc, Fu, Fv and w are.
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The regulation and tracking constraints (see Part A) are verified

since we have imposed:

Md(l) - Mc(l)

Fu(l) = Fv(1) - Fw(l) - 1 (17)

Nc'(1) - Nc(l)

The stability constraint (Appendix 4) can be verified by a modification

of the dynamic of the unmeasured disturbance predictor if: the different

models and predictors are stable, the numerator of the deconvolution

model has all its roots strictly in the unit circle, the following in-

equality is satisfied: Md(l).P(l) >0. (18)

Now assuming a perfect knowledge of the process and the measured

disturbance filter:

Mc(z) P(z); Nc(z) = Q(z) (19)

we can write the expected closed-loop tracking and regulation transfer:

S (Z) Fu(z)P(z))
a z Md(z)

Sr(Z) - 1 - (z)Mc(z) (21)

z Md(z)

Sty(Z) Q(z) -Nc'(z)Mc(z) (22)
) *~z z 2(z)

So the closed-loop tracking transfer is the product of the set point pre-

dictor and the deconvolution model mismatch of the process. Similarly we

get the closed-loop regulation transfer. Thus in a perfect matching,

the various predictors specify the tracking and regulation closed-loop

transfers.
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The block representation of the SISO AMAC is given by Figure 6.

Nc'

- . r-'r e I .., + + .+ s I + ,

U Fu I n P n

n d I Plant

IW
Figure 6. SISO AMAC Representation

Mc convolution model of the process

M deconvolution model of the process

P deterministic part of the plant

Q stochastic part of the plant (disturbance process)

Nc convolution model of the disturbance process

Nc' predictive convolution model of the disburbance process

Fu set point predictor

p unmeasured disturbances (w n) predictor

B-2. SISO AMAC Examples

Following our presentation we will present two classical control

systems used whenever the convolution and deconvolution model can be iden-

tical.
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B-2.1 The Optimum Control System of Phillipson 1i]

Let us suppose no measured disturbance and an asymptotically stable

process with a delay of 2 samples. We take a convolution model with a

delay of k samples, k underestimation of Z:

Mc(z) = zkMd(z) (23)

with Md(z) supposed to have all its roots strictly in the unit circle.

Then if we take a unit gain element as a set point predictor, and a

k-step-predictor zkH(z) for the disturbance, we obtain the optimal control

system of Phillipson (Figure 7) which is an improvement over the Smith

controller. uw
n Md(z)

Figure 7. Optimum Control System of Phillipson

As mentioned by Phillipson, this system used in regulation is equivalent

to the Box-Jenkins-Astrom minimum-variance control [9) or to the Kalman

linear regulator [12].

Thus, this system is essentially made for regulation. Moreover, the

use of the inverse model as controller since this will be a high-pass filter,

amplifies noise, causes violent changes in the control signal and perhaps

frequent saturation. That is why the AMAC uses here an adapted model and
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avoids rapid changes in set point thanks to the set point predictor.

Predictor H can be easily computed when the disturbance can be described

as the output of a known rational filter whose input is an independent

zero-mean random sequence. But to verify internal stability we must

not forget the constraints on the denominator of H. Here Phillipson

suggests the use of exponential smoothing for prediction to solve the

problem. That way, we can answer satisfactorily the output regulation

but not so properly the output tracking. The model predictive heuristic

control which follows attempts to answer the two questions introducing

a set point predictor and deducing the disturbance predictor.

B-2.2 Model Predictive Heuristic Control (MPHC) [131

We give here a simplified study of this method; the very general

study can be found in [14]. Suppose no measured disturbance (MPHC can

be extended to this case) and a convolution model having a moving average

(MA) structure with all its roots strictly in the unit circle, we take:

M(z) Mc(z) = Md(z) (24)

For the set point and disturbance predictors, we choose

1 - G(l)
Fu(z)= - z-lG(z)

(25)

F (z) 1 - G(z)
w - z-lG(z)

where C(z) is a nonzero static gain transfer such that Fu(z) and Fw(z)

satisfy stability conditions.
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Then from (15) we get the MPHC law:

1-(z 1-G(z) )*M(z),e(z) = 1 [(1-G(l))u(z) - (1-G(z))s(z)]

1- z-1G(z) i- 1 G(z)

(25)

(z-l)'M(z)-e(z) + s(z) - (1-G(1))u(z) + G(z)s(z) (26)

Let us develop the strategy of this relation.

Both terms are similar to outputs. We call the left-hand term a

predicted output sp(z) and the right-hand term a reference output SR(z).

From

sp(z) = zM(z)e(z) + (s(z) -M(z)e(z)) (27)

we define the predicted output as the output of the model at time (n+l)

corrected of the estimation 0(n) of the disturbance

sp(n+l) = s (n+l) + W(n) (28)

with sM(n+l) output of the model with a predicted input en(1). The ref-

erence output SR(z) is given by a trajectory connecting the past outputs

of the process to the present set point.

sR (n+l) = I-[gi)Un + I gi S n-i (29)

i 0 i=O

Thus the MPHC strategy consists in computing future inputs such that

predicted outputs are on a connecting trajectory. Its block representation

is given by Figure 8.
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w

n l-iG(z) I-- j- z 

., s

-G(z)

Figure 8. MPHC Representation with C(z) as Connecting Trajectory Generator

From part A, we will satisfy the convergence criterion if M(z) has all

its roots strictly in the unit circle and (I-G(l)) is taken as the stability

coefficient. But again, the transfers are not independent, for instance in a

perfect modeling we have:

S (Z) I- G(l) (30)a z- G(z)

S (Z) l I - G(z) = z-1 z- (31)rw z - G(z) z-G(z) l-G(l) Sa(Z)

The regulation transfer is the discrete differentiation of the tracking

transfer. Moreover, if the model does not verify the stability condition,

the strategy must be seriously questioned but it has been extended to this

case by the introduction of the notion of adapted model [14).

B-3. Choice of the Deconvolution Model

We have seen that the most general linear time invariant control law

contains five independent physical components. Theoretically each can be

obtained from a modeling (system or spectrum). But the deconvolution

mdel is a special case because its use is not a physical one. We are
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going to show where the problem is and how to solve it.

B-3.1 Terms of the Problem and Mathematical Solution

Let Md(z) be this deconvolution model

Md(z) = mdn(z) (32)
mdd(z)

with mdn(z), mdd(z) polynomials in z such that with expectation (4) degree

of mdd(z) is equal to degree of mdn(z).

Mc(z) is the knowledge of the process, i.e., the convolution model:

Mc(z) - mcn(z) (33)
mcd(z)

with mcn(z), mcd(z) polynomials in z, with degree of mcd(z) greater than

degree of mcn(z). The differences between these models are in their use.

Let es be the input and the output, we write

s(z) c mn(z) e(z) (34)
mcd(z)

similarly to the process, but:

e(z) = mdn(z) s(z) (35)

is a reversed relation compared with the process.

As we want a stationary control law, following Box and Jenkins [91,

mcn(z) mdd(z)
we have to improve the stability of both transfers mcd(z and mcn(z)

The former can be ensured from the stability of the process. But the
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latter has no physical significance and we have seen that we must impose

mcn(z) to have all its roots strictly in the unit circle.

As mdd(z) has no constraint in the deconvolution use, we can take:

md(z) = mdd(z) = mcd(z) (36)

Moreover, to get a zero static gain compensator, with expression (16),

we must impose:

mdn(l) = mcn(l) (37)

Thus the problem is: knowing the model of the process mcn(z), how to

choose mdn(z) such that it keeps the significance of a model and it satisfies

the stability condition.

If mcn(z) has all its roots strictly in the unit circle, we take

obviously:

mdn(z) = mcn(z) (38)

So the real problem occurs when mcn(z) has roots on both sides of the

unit circle. Let us factorize mcn(z) Into:

mcn(z) = min(z)-mon(z) (39)

where min(z) has all its roots strictly inside the unit circle, mon(z)

has all its roots strictly outside the unit circle. We don't deal with

unit modulus roots. As mdn(z) is used as a denominator, let us consider:

mid(z) = md(z) (40)
min( z)
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mod(z) (40)

mid(z) is a holomorphic function defined outside a domain strictly con-

tained in the unit circle, so its Laurent exppnsion in the vicinity of

the unit circle is:

mid(z) = midz -j  
(41)

j=O

mid(z) corresponds to a causal impulse response and so has a physical

significance.

Inversely, mod(z) is a holomorphic function defined In a domain

strictly containing the unit circle, so its Laurent expansion in the vi-

cinity of the unit circle is

mod(z) = X mod.z3 (42)
j=O 

Thus, mod(z) can be considered as corresponding to a noncausal impulse

response. And so oxpression (35) or (3) implies the knowledge of the

future outputs: e (1) is functionally dependent on u (k), su (k), keN.
n n n

Precisely, from (3) we get:

min(z) e(z) = mod(z)[u(l)(z) -su(l)(z)] (43)
md(z)

e (1) depends on the term

mod j n (j) -SU n() (44)

j=O
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i.e., for the one step ahead prediction input, we need j-step predictions

of the set point and the non-deterministic output for all positive

integers J. This is a mathematical result; the physical problem is that

predictions are not real values. Thus the strategy of the SISO AMAC cannot

be totally ensured.

We are going to show how this mathematical solution can be used to

design the control law.

To simplify the statement, we will suppose no measured disturbance

and as suggested by Phillipson and MPHC applications, we take exponential

smoothing for prediction:

F (z) t
1 - tz

(45)
w -lF w(z) r -

1-rz

with t,r called tracking or regulation coefficients. Moreover, as there

is no probleta on the model's denominator, we suppose an MA model (with

p the number of coefficients)

Mc(z) mc(z) (46)
zp

with mc(z) factorized in mi(z)*mo(z).

So we will work with the block representation given by Figure 9 and

the AMAC law given hy the relations

md0en(1) nd i en+l-i + un(1) - Sn(1) (47)
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u n(j) -Un (1) - tu n-I (1) + (l-r)u;n u 0 (l) u U0

su(j) sun (1) - t su n(l() + (1-r)&^ ; s 0(1) Q 0 (47)

w - mce 

n -1

Fro te1 fatoiato ofm(z) e i eteiplersos

impuse rsponeicorespondingtoprtheinversen fo tfctrcotinn

corson othe roots outside the ui circle ed writbe the cotrl awas:a

minbe n(1) =- mine nl + mod i (U n(j) - sunj)(48)

But with our constant prediction we have:

mine n(1) =- min 3e + ( j + mod )(Mu Ml- su n(1)) (49)

With exponential smoothing for predictions the mathematical solution gives

a deconvolutlon model which has among the roots of the convolution model
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only those which are strictly in the unit circle.

From (20), (21)

S (Z) -t mon(z)
z-t z0mon(l)

(51)

S -r mon(z)
rw z-r z mon(l)

With 0 the number of roots of mon(z). Thus, the prescribed behaviors can

be followed only after the response time of mon(z).

B-3.3 k-Step Prediction

Our mathematical presentation tells us that to compute en (1) we need

further predictions. So one idea is to rewrite the AMAC strategy as

sn(k) = u n(k) (52)

with no a priori distinction between the models.

Then (47) gives

k-l p
mc. e (k-i) - mc. e+ki + Un(1) - su (1) (53)

i=O i=k

Thus the control e n(1) depends on the predicted inputs en (j) and we have

to solve a linear system with k unknown quantities. To get a unique solu-

tion one could introduce a criterion on the predicted inputs.

Let us look for a solution linearly dependent on the right term as:

~e(k)
in k p

: (- I mc,*e n+k i + u (1)-su (l)) (54)
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e n(1) is the single quantity of interest and we have the control law:

p
fIen(1) 1 mci-en+k-i + un -SUn(1) (55)

i=k

Thus the implicit deconvolution model is:

p-k
Md(z) = 1 + ) mci+k Z (56)

i=O

but with the static gain relation, we need:

p-k pfl1 +  I mc i+k I mc 1e (57)
i=0 i=O

and necessarily,

k-i
f, mci (58)

i-o

The indetermination of expression (53) is illusive. This k step prediction

strategy gives the MA deconvolution model:

k-i -i p k-i

Md(z) - k mei + z I mci z (59)
i=O i=k

Then the problem is how to choose the integer k in such a way as Md(z) has

all its roots strictly in the unit circle. Obviously there is at least

the solution k=p, but then the prescribed behavior can be followed only

after the time response of the process. This solution is not interesting
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but the deconvolution model can be easily computed.

This k-step prediction strategy can be extended. Given a set I of

positive inters, we impose:

sn(k) = u n(k), V ke 1 (60)

This leads as previously to a linear system whose unknown quantities are

the predicted inputs. It can be solved in various ways, but the solution

must give a deconvolution model satisfying the stability conditions [141.

The advantage of such an approach is in the constrained control

case: let 9 be the time invariant set of admissible inputs, we write the

extended k-step prediction strategy as:

Min J(s n(k)-u n(k); ke 1) (61)
en(j)eQ

where J is a criterion.

This optimization problem gives predicted inputs satisfying the con-

straints. Thus, one can expect to get a better behavior owing to the fact

that predicted constraints are taken into account.

B-3.4 Choice from Behavior Analysis

The deconvolution model defines the tracking behavior with the following

transfer obtained in a perfect modeling hypothesis.

Sa (z) Fu(z)P(z) (62)
a z Md(z)

When we can take Md(z) equal to P(z) the set point predictor plays the
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same role as the reference model in the MPHC, so we can extend here the

ideas of Rouhani [4].

B-3.4 Pole Placement

One can impose direct pole placement. In that case, from the speci-

fied polynomial pp(z) we get the deconvolution model as:

lld(z) = min(z)pp(z) (63)
md(z)

because, in perfect modeling, we have

Sa(Z) = Fu(z) mon(z) (64)
a z pp(z)

This method is very simple when the factorization (39) is known. If not,

this problem may be very difficult to solve numerically in particular

when there is a great number of roots.

B-3.5 Optimization Criterion

Another natural criterion is the minimization of a quadratic distance

between the expected and the actual responses to a set point sequence:

+I iFOe0  M (e0) iO12

J(Md(z)) -- -e M c e) u(e i ) dS (65)
-71 e Md(e i )

where u(e ) is a specified function.

This is equivalent to a distance between deconvolution and convolu-

tion models. Thus, if we write
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Md(z) W mdn(z)
md(z)

(66)

Mc) = ~men(z)
md(z)

The problem is to approximate the polynomial mcn(z) whose roots are on

both sides of the unit circle by a polynomial mdn(z) whose roots are

inside the unit circle and (65) can be rewritten as

+1ie 2
J(mdn(z)) mcn(e0) dF() (67)

-f mdn(e )

with dF(O) a positive measure and:

mdn(l) = mcn(l) (68)

Such a criterion and constraints can be computed by the Jury-Astrom al-

gorithm [15].

This method gives a deconvo]ution model which depends only on the

convolution model Mc and the set point predictor (tracking coefficient in

the exponential smoothing case). Those computations may be numerically

easier than polynomial factorization, but have to be done again if the

predictor is changed.

B-3.6 Conclusion

The deconvolution problem can be solved using a prediction strategy.

This leads to a simple method but not manageable results in the k step

prediction case or to more difficult computations as polynomial factori-

zation or constrained nonlinear optimization if we want to have more

manageable results.
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B-4. Summary

We have shown that a very general implementation of a linear time

invariant control law can be done by the adapted model algorithm control.

This method uses five independent physical entities: two non-deterministic

signal predictors which can be deduced from disturbance modelization;

two mathematical representations of the process behavior which are also

given by modelization; a set point predictor which can be deduced from the

control law specification. The problem is complicated by the fact that

one of the representations is used in a nonphysical way and thus has to

be adapted by a further prediction strategy.
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APPENDIX 1

Proof of the linear stability theorem.

Let Ck(z),A(z),B(z) be three polynomials with the

relation

Ck (Z)=(z-l)A(z)+k B(z) (A-1.1)

with :-degree of A(z) greater than degree of B(z)

-B(1)O0 (A-i .2)

-a 0  the highest degree coefficient of A(z)

_A(Z) has all its roots strictly in the unit circle

-A(z), B(z) with real coefficients.

We will show that it exists a vicinity of zero V(0) such

that if k is in V(0)- (0), the roots of C (z) are strictlyk
in the unit circle if and only if

" k a0  B(1)> 0 (A-i.3)

Proof : we use continuity results the roots of a

polynomial of the complex variable and the maximum of their

moduli are continuous functions of its coefficients, the

highest degree coefficient being taken different from 0.

So we have

For any real k, Ck(z) has (da  roots if da is

the degree of A(z).

This is Appendix 1 of the report which comprises Appendix A of the whole report.

242



2 - For k equal to zero, the roots of C 0(z) are

the da roots of A(z) which are strictly in thea
unit circle

The simple root : equal to 1.

3 - From the preceding continuity properties, it

exists a vicinity V(0) of zero such that for

any k in this vicinity, C(z) has da roots

strictly in the unit circle.

4 - Let us study the last root.

If the modulus is greater or equal to one, the root is

real because it is alone outside the unit circle and the

coefficients of the polynomial C(z) are real. So let us

consider the polynomial C(z) of the real variable, its

only root greater than one exists iff

C(M) C(x) > 0 (A-1.4)

for large x greater than one.

But here we have

C(1) =k B(1) (A-i .5)

and the sign of C(x) for large x is the one of a0  so

there is no root if

kB(1) a0  ' 0 (A-1.6)

Remark From the hypothesis on A(z) , the signs of

A(1) and a0  are the same.
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APPENDIX 2

Proof of the non linear stability theorem.

Let us take the notations

E(n) = ((e n-Mi) ... (e n-Ne) ... (e -))

t t

m = (0 ... 0 mN -. m 0 )

t

S(n) = ((s nNd-U)... (sn-U))

tt

W(n) = (wn-Nd w n )

nd (dnNd d 0 )

t t
v~n) = (vL ... v .. v)

bt = (0 ... 0 bNb ... b 0 ) (A-2.1)

Mm

01...... 0

- - M

p N

o 0

np

2r-p

rP= . . Nd
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q n-Nq o 0

Nd

0
q n-Nq q0I

t tt o = (1...)

- (0....... 01)tti

u _t I P t o  e

With II = identity matrix

M = N +N d

L N +Nd

N d

N number of coefficients of m(z)

Nd number of coefficients of d(z)

N number of coefficients of r(z)
r

N b  number of coefficients of b(z)

with those notations, we write-the compensator relation (29)

e n+=f [ +m [Yn+mt (I -- ) (E(n)+T t 0 )) (A-2.2)
0

-the compensator input (27)

Yn k[r t (U (n) +u t)-dt (S (n) + t 0 )] -btV(n) (A-2.3)
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-and the process output (2)

S (nl) EP (n)+ (P V (n) +W (n) (A-2.4).

From the equality of static gains of the sensor and

the reference, we have

0 O= 0(A25

So:

t t to t t
yn=k r U(n)-kd IPE(n)-(kdt ~ +b )V(n)-kd W(n) (A-2.6)

And

e 1 =f (+- (mt(II -T7) -kdt I-P ) E(n) + kr U (n)

Thus, we have a state representation of the control

En~l= A 1~)xt b 0 )et0(A28

with

xl1

F x ~nx0 (A-2 .9)

0 1 0

0 0 1(A-2. 10)

0 0 1

'4b 246



X t U()-kdt Q bt )Vn-dt W A2 1
nm0

Now we remark that A is a companion matrix associated

to the polynomial:

(z-l)m(z)z P+k d P n (z)

So we have a new result of stability

Let p()be the spectral radius of the matrix A

if f nsatisfies the following inequality

if n(X+T).J J < rk) .Ixj k (1 I n (A-2.12)

Then the system with the non linearity f nis stable.

Proof

If the linear system is asymptotically stable, the

spectral radius of A~ is less than one, then it exists a

consistent norm of A which is less than one [5]

For that norm, we have

xA H < (M) I xj 1 4 1 (A-2.13)

So

IE(n) +xnt 1 11 < f(A) IIE(n)II + Ix) n.Ilt 1 11(A-2.14)

But from (42), we have also

hF (sE (n) +x t +jtO) --th ( k E, E(n) +x t II (A-2.15)
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So

II E(n+1)II I k( IiEn)lI + - • ) (A-2. 16)

Then if x is bounded i.e. set-point, measured

n

and unmeasured disturbances 
are bounded, we can conclude

our proof.
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APPENDIX 3

Spectral analysis of the matrix (cos(i-j)0 ,.

From the relation

cos(i-j)e =cosig. cosJe +sinie . sinj& , (A-3.1)

we can write

.cos(i-j)p .I=Icosip (.cosj9 .)+ siniO (.sinjg .

(A-3.2)

So we see that the matrix is semi definite positive

with only two positive eigen values. We are looking for the

eigen vectors as a linear combination
4-

XiCO J49i+ sin j oi

We have to find x and y such that

cosie (xZ cos j9 + cosje sinjQ ) xyfcOsis
S J =0 j =0

+ + (A-3.3)

siniG (x. cosjQ sinjo + Isin JG ) y siniG
'. I =o j =o •'

We deduce the expressions

xA+B-xy

xB+C- y (A-3.4)
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with NM 2o j

J-0

BW-j sinJO cosio (A-3. 5)
i-a

CZ sin J&

J=0

We get

2x B+X(C-A)-B=0 (A-3. 6)

A-C+((C-A) 2+4B 2)

2B
(A-3 .7)

A+C+((C-A) 2+4B 2)

2

but

A+C=M+ 1

P. 2N. Iin(+
A-I- o cos-,o

sin v 2

J=O 
(A-3.8)

2B si 2 j sin(M+I)& sin!!G-Z ~ ~ Ij sine 2
1.0

So

2 (A-3.9)

YM+1 1 Isin (M+1) 9
~T±2 I sin
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APPENDIX B

APPLICATION OF ROBUSTNESS ANALYSIS TO SIMPLE MISSILE EXAMPLE

The following example applies the robustness analysis of Section III

to a single input-single output, second order model of missile longitudinal

dynamics (see Section VIII). After some preliminary analysis to obtain

the plant and model z-transform used in the robustness analysis, we

analyze the stability of the controlled plant when some parameters (plant

parameters, sample rate, reference rate, etc.) are varied.

1. Preliminary Analysis

As shown in Section III, the stability of the (sampled) controlled

plant is determined by the zeros of the expression

(z-1)H(z) + (1-a)H(z) (B.1)

where H(z) is the z-transform of the plant model, H(z) is the z-transform

of the plant, and a is the rate of the first-order output reference trajec-

tory (0a -1). The MAC controlled system is stable if the zeros of (B.1)

lie within the unit disc. In this section we derive expressions for H(z)

and H(z) in order to analyze the zeros of (B.1) in the next section.

Suppose the real plant is given by a linear, time invariant state

description

= Ax +Bu (B.2)

y = Cx (B.3)
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If this system is relaxed at t= 0 (i.e., x(O)= O) and if the input u is

constant over the intervals [kA, (k+l)A) of length A for k=0,1,2,...,

then

y(kA) = CeAAkA-(eAAI)BukzI (B.4)
L=0

In (B.4) it is assumed that all the eigenvalues of A have negative real

parts so that the inverse A is well defined. The z-transform corres-

ponding to (B.4) is

H(z) I CeAaA-(eAAI)Bz"  (B.5)

which is equivalent to

H(z) = C(I -z-leAA)-1A-I(eAAI)B (B.6)

We assume that the plant model used by MAC has a form similar to the

plant (B.2), (B.3) in the following way. The model uses a discrete-time

impulse response computed from a linear, time-invariant state description

with matrices A, B, C corresponding to A, B, C in (B.2), (B.3). The time

interval is the same as above, namely A. However, the model has the

following differences. The infinite sum in (B.4) is truncated after a

finite number of terms. In addition, A-1(eAA-I) is approximated by A.I.

With these assumptions we obtain the following expression for H(z).

N -

AM I te BAzA (B.7)
=0
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This is equivalent to

H(z) = (I z-eAA)1(I - z'(I)eA(N+))B (B.8)

In the examples we will assume that A, B, C have the following form

as given in Section VIII.

A = (w '3(B.9)
B = (B.10)

Msqj

C = (1 0) (B.11)

The expressions for A, B, C will be the same, with Zw9 M' Msq replacing

Zw, M , Msq in (B.9)-(B.11).

In order to compute H(z) and H(z) it will be necessary to compute

eAt for A of the form (B.1). If 6= Zw and w =- (-4M L-ZwZ) then eAt

is given by

6tsinwt
e t(coswt+ sin wt) e6t sir

eAt = (8.12)

-e 6 t (62 + 2  sinwt e 6t(coswt- sinwt)

2. Examples of Robustness Analysis

2.1 Example 1

In this example, the plant parameters are Zw =-1.4868, Mo=-149.93,
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M sq=-281.11, which gives

= -.7434, w = 12.2220

The corresponding H(z) is

H(z) = -(1.1807)z(z+ .9490)(z - (.6342)z+ (.8620))-1

which has zeros at z = 0 and z=-.9490, both stable as they should be.

The model plant used by MAC in this case will have the samc para-

meters, i.e., Zw=Zw ,  =M, Msq=Msq and with N=49, A= .1. The cor-

responding H(z) is

H(z) = -(2.0071)z'49(z 2 - (.6342)z+(.8620))-1(z 50+(.0280)z- (.0056))

Note that z50 + .0280z- .0056 can be writti as

z 50 + .0280(z- .2000)

Since 1.02801 < , Rouch 's theorem (see Ahlfors, 1966) implies that

50 50z50 + .0280(z- .2000) and z have the same number of roots in the unit

circle. In other words, all zeros are inside the unit disc; hence, all

zeros of H(z) are stable.

The controlled system's stability depends on the zeros of

(z-1)H(z)+ (1-a)H(z) = (1-a)(-1.1807)z(z+ .9490)(z 2- .6342z+.8620)-

+ (z-1)z-49 (z2 - .6342z+ .8620)Yi(z50 + .0280z- .0056)(-2.0071)

The zeros of this function are the same as the zeros of the polynomial f(z)
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f(z) -(1-a)(z+ .9490)(-1.1807) +(z-1)(z 50 +.0280z- .0056)(-2.0071)

which is equivalent to

f(z) =z 51 (1-ct+1.6999)+ z50 ((1-oA)(.9490) - 1.6999)+ (.0476)(z-1)(z-.2000)

Let fi(z) and f2( z) be defined-as

f1 z) =(1-a+1.6999)z 51 + ((1-a4C,949O) -1.6999)z 50

f 2z) = (.0476)(z-1)(z-.2000)

Thus, f(z)= f1(Z)+ f2(z) . For Izj= 1, it is straightforward to check that

for a < I

Hence, by Rouch6's theorem, f(z) has the same number of roots as f1(z)

within the unit disc. It is easy to see thot-f,(z) has all its 51 roots

inside the unit disc for 0 c<<1. Thus, the controlled sstem is stable

* for all O4a< 1 in this case.

2.2 Example 2

-~ In this example the plant parameters are Zw =-.27877, MaI =-64.928,

4 =-43..285 which gives 6~=-.1394, w= 8.0566. The corresponding H(z) issq

*H(z) -(.0087)z(z- .9710)(z 2 _ (1.9721)z+ .9725)-l

C The model plant used by MAC in this case will have parameters the
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same as for the previous case, Zw = -1.4868, McO =-149.93, Msq = -281.11 and

with N=49, A .,. As before, R(z) is given by

A(z) = -(2.0071)z-4 (z2 - 6342z+ .8620)- (z50 + .0280z- .0056)

The stability of the controlled plant depends on the zeros of the poly-

nomial f(z) given by

f(z) = (-2.0071-k(.0087))z
53

+ (5.9653+ k(.0140))z 52

+ (-5.9101- k(.0126))z
5 1

+ (1.9519- k(.0073))z
50

+ (-.0562)z
4

3+ (.1782)z

+ C-.1989)z2

+ (.0877)z

+ (-.0108)

where k= 1-a and a is the parameter in the reference trajectory, 0<CI<1.

To test the stability of the zeros of f(z) it is necessary to use a num-

erical test such as the Schur-Cohn test (see Tretter, 1976, p. 104) to

test whether any zeros of f(z) are outside the unit disc. For example,

there are roots on or outside the unit disc if k= 0, 1-e" (- .6321), but

all roots are inside the unit disc for k= 1.
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APPENDIX C

DERIVATION OF THE OPTIMUM IMPULSE RESPONSE

FUNCTION FOR NONMINIMUM PHASE SYSTEMS

1. Derivation of the Riccati Equation for p=O

The optimum control problem of Section IV is:

(k+l) = UE(k)+blu(k) (C.1)

T ~ n-1T

J(n) = dT(n)QE(n)+ CT(j)Q (j) (C.2)
j=O

Since dim [b1, Ub1 '..." UNbI] is equal to N+1, the system (C.1) is con-

trollable.

The cost function J(n) has the peculiarity of not depending explicitly

on the input u'(j). But in order to be able to use the common discrete

version of LQ, one must require that the cost associated with the input

u'(j) be strictly positive (Sage and White, 1977; Murata, 1977). That is,

the cost function must be of the type:

n-1

Jc(n) = T(n)QE(n)+ { T(j)Q)+pu(j)+Pu2 j)1, with p>0
j=O

In practice it is always possible to "correct" J with an additional
n-1 2.

term P 7 u' (j), where p is a small positive number, and obtain Jc" By
j=1

minimizing Jc' one gets a suboptimal solution. Since this suboptimal

solution depends on the value of p, one would expect that the smaller the
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value of p, the closer the suboptimal solution should be to the optimal

one.

In LQ optimal control, the intuitive significance of requiring a

strictly positive input weight in the cost function Jc is to assure the

boundedness of the input amplitude. But in the present problem, the

input u'(j) equals the first state component at time (j+1): l(j+l) =u(j).

Therefore, the positive weight q11 associated to C,(j+I) would prevent

the value of u'(j) from becoming unbounded.

Motivated by the above consideration, we tackle the problem of

finding the optimal input u'(n), if it exists, for the case p=O. In

order to do so, we derive the Riccati matrix for p> 0 and observing its

continuous dependence on p, we let p O.

The Hamiltonian Hk has the expression:

Hk = (k) Q (k)] + AT (k+1) [U (k) + b u'(k)] + 9-u' 2(k) (C.4)
Hk 1 2C4

TX(k) = aH/a(k) = Q (k)+u A(k+l) (C.5)

0 = 3H/au(k) = pu'(k) +b1 T(k+1) (C.6)

The conjugate equations are:

p (k+1) m pU&(k) - tiT X(k+1)

X(k) - uTX(k+I)+QE(k) (C.8)

with the boundary conditions:

L(n) Q (n) (C.9)
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Now introduce the matrix P(k) by

A(k) = P(k) (k)

Then equations (C.7) through (C.9) are rewritten as:

[PI+ bb IT p(k+l)]C(k+l) = pUC(k)

uTp(k+1) (k+1) = [P(k) -Q(k)]E(k)

P(n) = Q

Upon eliminating (k) and &(k+1) from the above equations we deduce:

U TP(k+I)[I+ b1b P(k+I)]'U = P(k)-

(c.1o)
P(n) Q

Note that

p -P12 (k+1) -P1N(k+l)

0 p+P11(k+1)

[I +-1 - P(k+I)]-' 1 0P P+ P11 (k+1)

! 0
P+P11 (k+)

,

arrng out the matrix multiplication of (C.I0) we deduce:
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-P12(k+1) -P13(k+1) -PiN(k+1)

p+11 k+) P+P 11 (k+1) .. p+p11(k+) 0

1 0 0 0

uTP(k+1 ) 0 0 0 +Q = P(k)

0 0 ... 1 0

0 0 ... 0 11

(C.11)

The dependence of the above Riccati equation on p is throughout 1/[p+P11(k+1)]

which is continuous for p>0 provided that P11(k+1)$0. That is, if

P11(k) O for all ke[1,n] and all poO, we can let p-O in the above

equation and deduce the corresponding gain matrix P(k).

Let us show that the entry P11(k) never vanishes, i.e., P11(k)tO

for all ke [1,n]. This results from the following induction:

P(n)=Q implies that P11(n)=q11 =h1
2 >0 (see Section IV).

From equation (C.11) we have

+[P11(k+)P22(k+1)- P12
2(k+1)] + pP22 (k+1)

P11(k) = p+P11(k+1)

P(k+1) being a semi-definite matrix, it results that:

p11(k+1) ) 0
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P22 (k+l) > 0

P 1 (k+1) -P p
2 (k+1) > 0 (all the minors of the non-negative

11 12 matrix P(k+l) are non-negative.)

Hence it follows that P11(k))q 11 >0 for all p>O.

Now we can let P 
0 in equation (C.11) and the resulting equation

(C.12) will generate the sequence P(k+l) corresponding to the case 
p=0.

~P 2(k+I) -PIN (k+ l)  -
_ _ _0

1P 1(k+1)

1 0.. 0 0

P(k) = Q+U P(k+I) 0 1 0 0 (C.12)

0 1 1 01

2. The Optimum Input u'(j)

The optimum input u'(j) is derived from P(j+i) by:

u'(j) = L(j)&(j) = -[bl p(J+l)bl bl
TP j+!)U ( )

U'1) = 1 [P12(j+1),... PIN(J+I ) , O](j)

Letting n go to infinity, the cost function 
J becomes

X = T(n)Q&(n)
j=O

261



Equation (C.12), solved backward for large n, converges to a "steady

state" Riccati solution and the gain Lj) becomes time invariant:

^= 1
L- [P121'P13"''' P1I 0]

Since only the first column of the matrix P is of importance for the de-

termination of C, we can write the Riccati recursive equation in terms of

column vectors of P.

P= [ and Q = [q! iqN]

Then:

Tp 'k P12(k+1) T
Pl(k )  U P 1(k+1) UTPI(k+1) +q,

P1(.i+l),(k+l)T

pj(k) = Tpj+(k+) - pUTPl(k+l)+ qj

PlN(k+) uTP1(k+l)+PN-1l(k) = UTP N(k+I)- P11(k 1')' l+ N-

PN(k) = N
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