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Abstract

Short range air-to-air missiles possess high maneuverability and

require real time computation in constructing their commanded controls.

The intercept time may be in the order of two to three seconds. Such

time constraints necessitate sophisticated control laws, many of which

require a good estimate of time-to-go before intercept. Preliminary

investigations of a time-to-go estimate using optimal control theory

under certain assumptions have yielded promising results.

The estimation algorithm is based upon a performance index consisting

of terminal miss-distance and time. Using a state space representation

for the missile-target dynamics, guidance law algorithms, and conven-

tional assumptions on system dynamics, the time-to-go estimate has shown

some improvement over existing methodologies.

However, several assumptions on system dynamics which have been used

in the development of the time-to-go estimate may be unrealistic under

current missile technology. The purpose of this research effort was to

extend the existing methodologies and eliminate some of the assumptions so

mentioned. In particular, the assumption of unlimited acceleration com-

mands may be eliminated from the time-to-go estimation by incoroorating

acceleration constraints directly as boundary conditions on the optimal

control law. To compensate for the zero target acceleration assumption,

one may apply a weighting functional of the missile parameters to the

estimator performance measure. Such extensions yield promising results.
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I. Introduction

To investigate short range air-to-air missile scenarios, several issues

need be addressed: (1) modelling the missile and target dynamics; (2) simulating

the target maneuver strategy; (3) developing a control law for the missile

in order to intercept the target and (4) generating the information necessary

to apply this control law. Points (3) and (4) are usually handled conjunctively

and the evaluation of the control designs are done under real time constraints.

Modelling the missile and target dynamics can be handled in a linear

or nonlinear, time-invariant or time-varying fashion. Nonlinearities appear

from saturation coefficients and current missile capabilities. They may also

appear from the choice of coordinate systems (inertial, missile body, seeker

coordinates, etc.) and states. This research effort assumes a linearized,

time-invariant model.

Development of a missile control law for target intercept is based upon

the chosen missile-target model. Work has been done [15] in applying various

fields of optimal and stochastic control to the air-to-air intercept problem

which has shown some promise. Application of optimal control theory results

in transforming system performance objectives into a mathematical cost func.tional

to be optimized. As terminal miss-distance is of primary importance, this

performance objective can be described by:

J = x T(t.f)Sfx(tf) (1)

where x(tf) represents aerodynamic states (relative positions, velocities

and possibly accelerations) and S is an appropriate weighting matrix on

position only.
p
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Equation (1) represents a primary system objective; however, it is usually

desirable to hit the target under other constraints as well (minimal time,

minimal control effort, minimal fuel consumption, and so on). Anderson [ll

has investigated various cost functionals under the assumption that a planar

linearized model adequately describes the air-to-air scenario. It was found

that a cost functional of the form:

xT(tf)Sf x(tf) + b fttf u (t)R u(t)dt (2)
0

gave adequate intercept characteristics. The parameter b represents a weighting

on control effort. It was also found that knowledge of present and future

accelerations generally improved intercept characteristics. However, these

parameters are not generally known.

Preliminary results of the guidance law methodologies discussed above

i ndicate that there are two important parameters that need be estimated or

predicted accurately in order toi:mprove system performance: a good estimate

of target acceleration, aT , and a good estimate of time-to-go before intercept,

t 90

Early attempts to estimate time-to-go resulted in using range R and range

rate I in proportional navigation guidance. Effectively, the estimate:

t _ (3)
0g R

represents the time-to-go estimate of pro-navigation guidance which gave

adequate results for simple target maneuvers. However, the method degen-

erated for scenarios with non-zero off-boresight yaw angles BAY (the angle

between missile body acceleration in the x-direction and line-of-sight vector

at launch).
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Riggs [14] has developed a time-to-go estimate under the assumption

that acceleration along the line-of-sight can be approximated by the mea-

sureable achieved missile acceleration in the x-direction. This resulted in

the iterative time-to-go estimate of:

tg (i+l) 2R-90---2-. . . .,, - (4)
V+vV + AR
c c

where:

01.4 - 39t - 12t (i)
^ go

and g - 32.174 ft/sec 2 . Using this estimate of time-to-go with a suboptimal

control law based upon (2) gave better inner launch boundaries (minimum launch-

ing range in which missile still hits target) from that of (3) using either

pro-nay or the suboptimal control law. (see Figure 1)

Lee [10] has contructed a secondary cost functional of the form:

3 = x-T(tf) Sf x(tf) + q(fdt) 2  (5)

in order to estimate time-to-go. Under the assumption of zero target acceler-

Wi ations and essentially unlimited acceleration commands, this resulted in the

iterative time-to-qo estimate:1
x (t) D F t)_ -T x ( (6)

S X T(t) FT F x v (t) + q
where x (t) represents relative position in missile body coordinates, M(t)

-p riI' represents relative velocity in missile body coordinates, and
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Figure .1 Inner launch boundary for 400 off bore-sight angle.
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The estimate (6) was based upon a system dynamic and control repre-

sentation. Preliminary simulation results have shown improvement over propor-

tional navigation and (4) at low and mid aspect angles (angle between the

target's velocity vector and the line-of-sight vector at launch). Appealing

attributes of using (6) as an estimate for time-to-go include its minimal

com iputation, its iterative nature and the insight one may obtain of the influ-

ence of design objectives (minimal terminal miss-distance and overall time)

on the estimate of time-to-go. (see Figure 2)

The time-to-go estimator described in (6), however, assumes unlimited

acceleration comands and zero target acceleration. These assumptions may

be unrealistic in practice. Furthermore, the guidance control laws des-

4 cribed in [1] and [14] may require complete accessibility or knowledge of

all of the system states.

This investigation addresses the issues of the time-to-go estimation

problem under limited acceleration conlands. Further, the effects of missile

parameters on the time-to-go parameter will be discussed. In particular,

I

h
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the influence of a weightingJ functional of system parameters on the

estimator convergence properties will be examined. It will be shown

that knowledge of the initial aspect and off bore-sight angles may

improve the time-to-go estimator and thereby improve the inner launch

boundary of the air-to-air scenario.

While investigating the influence of system parameters of the

time-to-go estimate, it was felt that research effort was also required

-.. to improve the guidance laws necessary for optimal target intercept.

That is, in order to further eliminate the target acceleration assumption

from the optimal guidance design, one must also reformulate the guidance

laws and modify the linear regulation cost functional to be optimized.

The approach of linear regulation is to drive the system states

of outputs to desired trajectories in an optimal fashion. The particular

specifications of the system dictate the form of the performance measure.

In rany applications, however, due to imperfect or incomplete measure-

irents of the system states as well as the controller structure constraints,

kcnly the systems outputs are available for compensation. This is the case

-ii the AAM problem in which the target acceleration is not known or can not

Ve me.asured, and the controller's parameters are restricted or constrained

die to physical rea sons.

tthods have been suggested for output feedback regulation in which the

control law is constrained to certain structures [8, 9, 18]. These algorithms,

however, way lack assurance of system stability, may riot possess the flexibility

to include dynamic compensation or arbitrary constraints in controller struc-

tures, or may not include knowledge of the influence of the compensator

parameters and order on the state or output trajectories.

I
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A design algorithm for output feedback has been designed by the

author, based upon construction of an error vector between optimal

trajectories when state feedback is available and the trajectories when

only the outputs are available. Minimization of the performance mea-

sure based upon this error vector leads to a Ricatti-type matrix

equation which may be solved in an iterative fashion. The methodology

is iterative in nature for both compensator order as well as compensator

parametric search. An appealing feature of this approach is that the

state trajectories using state feedback may be directly compared with

those obtained using dynamic or structured output feedback compensation.

The application of this algorithm to construction of guidance laws is

an area of future research.

The results of this reserach effort will he developed in the

following manner: Section I1 will discuss the optimal guidance law con-

struction and the time-to-go estimation problem from the state space

approach. The effects of limited acceleration conands on the time-

to-go estimate and miss-distance values will be discussed. Further,

the effects of varying a weighting functional in the time-to-go estima-

tor will also be discussed here. The results will illustrate some ifn-

provement in the inner launch boundary of the AAM scenario. In Section

III the design methodology for dynamic compensation will be introduced.

A discussion of the application of this methodology to an improved guidance

law is presented in Section IV. This may be an area of further investi-

gation.

=771-!
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11. Problem Development

Consider the following dynamics representing the air-to-air intercept

probl em:

i A.x + Bu (8)

w~hereA[ ] []

The states x(t) represent relative positions and velocities between 'missile

and target, while u(t) is the commanded control vector.

In order to achieve intercept with minimal control effort, a performance

measure may be constructed as:

Tx(tf) Sf :x(tf) + f uT(t) R u(t) d t (9)

t

Where

Sf 0 ] R = diag(r), t o = initial time,

and tf final time. Assuming that all the states are accessible, the maximum

principle [3] yields the optimal control law:

( u*(t) = F*(t) x*(t)

F*(t) = - R_ IT P*(t) (10)

w. where P*(L) satisfies:

P(t) 4 AT P(t) + P(t) A - P(t) B R - IT P(t) 0 (11)

and

x*(t 0 ) %

P(tf) S f (12)
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Further, the optimal state trajectory is governed by:

*(t)= (A + B F*(t)) x*(t) (13)

Equations (11) and (13) with boundary conditions(12) constitute a two-point

boundary value problem. It may be solved by numerical techniques [5].

In the case when r = 0, optimization of (9) with respect to u(t) finds:

u*(t) F* x*(t) (14)

where

2* [I tF t 2 90 tgo ]  (15)

t 0

and tq is defined as tf - t, that is, the time before intercept.
-0

The optimal controller defined by (14) requires complete knowledge

of all the states as well as knowledge of t o . Furthermore, estimation
-0

of t9 requires assumptions of zero target acceleration and unlimited ac-

celerations as well as complete access of the states, as seen by (6). Note

that (B) is uncontrollable and thus (14) represents a suboptimal control

law. This law may be improved if an accurate estimate of t is obtained.

Under system assumptions so mentioned, one may construct a secondary

performance measure to estimate tg as in (5). This measure represents

terminal miss distance and minimal time. The weight q is chosen according

to the importance one places on each term. In [10], a constant normalizing

weight was chosen.

3r1
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A. Limited Acceleration Conlnands

Consider modifying the control law of (14) to include limitations on

the control conmiands. Two methods may be applied to do this.

1. Slack Variable Approach

Suppose the control constraints are defined as mi where i=1,2,3 represents

the missile's acceleration controls in the X,Y,Z coordinates in the air-to-

air missile case. Let

< ui(t) <- mi  (16)

describe the bounds on the control.

Then (9) may be modified to incorporate (16) as:

a = xT(tf)Sfx(tf) + ftf uT (t)Ru(t) + 9T(t)h(t) dt (17)
f f to ..

where

hi(t) = zi 2 (t) _ (mi  - ui(t))(ui(t) + mi) (18)

and zi(t) is a parametric variable. Then minimization of (17) yields the

optimal contrained control. Although this method is simple to implement,

there may be numerical difficulties when the system's dimension is high or

the system is uncontrollable. This is the case here; therefore, a more direct

solution is desired.

.-
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2. Linear Regulation with Bounded Controls

The constrained control problem for linear regulation may be formulated

as:

d xT(t f)Sfx(tf) + , ftf xT(t)Qx(t) + uT(t)Ru(t) dt
to

subject to: x= + Bu

lul < M (19)

Application of the maximum principle yields the Hamiltonian:

H =  (xT(t)Qx(t) + uT(t)Ru(t)) + gT(Ax(t) + Bu(t))

+ hlT(A(t) M) + h2T(u(t) M) (20)

Then
u T(t)R + R TB + h T -h2T = 0 (21)

T-u

The optimal control law under control constraints becomes:

R-BTq Iu(t)I M

S= -R-(BTg_ + - h2) otherwise (22)

That is:

S-R-BTpx(t) ki(t)I M

u(t) F u(t) ' M (23)

LM u(t) < M

Thus, a clipping function may be applied to (14) to yield the optimal con-

strained control law. To see this effect on the time-to-go estimate,

I
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simulation studies on the nonlinear, time-varying model of the AAM scenario

was performed using (14) with no limits on u(t). This yielded the acceler-

ation conmmands shown in Figures 3 and 5 for two cases. The associated time-

to-go estimates are shown in Figures 4 and 6.

It is seen that the time-to-go estimate using (6) generally requires

smaller acceleration commands than (4) for these cases. To obtain better insight

into the acceleration controls, plots of the acceleration along the line-of-

sight were made for the case of an off bore-sight angle of 00, for various

aspect angles. These are shown in Figures 7 through 10. From this, it is

seen that a slightly more conservative initial trajectory of the line-of-sight

acceleration (between the 0 to 0.4 second period, when the missile is clearing

its launch platform) leads to a hit.

The scenario corresponding to Figure 3 was performed using an acceleration

covimand constraint of 75 ft/sec2 on all of the control coordinates. The

following table summarizes the results:

Acceleration commands

X-Direction Y-Direction Z-Direction

22.886 19.204 0.00

19.264 55.862 -.616

25.672 75.00 -2.183

39.017 75.00 -5.017

61.554 75.00 -10.111

75.00 75.00 -65.733

75.00 75.00 75.00

75.00 75.00 -72.935

75.00 75.00 75.00

75.00 75.00 -44.805

- ~ ~ ~ ~ ~ ~ ~ ~ ~~K 7_ 7-7 -Z' A Ii - i - - - . ..
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400 off bore-sight angle, and 1000' initial range.
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21

190

/ N.
1o " / N,

/\160/

/

130 /

100

70.\

\/
x /

40

.5 1.0 1.5 2.0

time(seconds)+

- -: Guidance law of [14]

Guidance law of [10]

Figure 5c: Acceleration command in the Z-direction for 1500 aspect angle,

400 off bore-sight angle, and 3750' initial range.
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Acceleration Commands

X-Direction Y-Direction Z-Direction

75.00 75.00 75.00

75.00 75.00 75.00

75.00 -13.768 75.00

75.00 2.064 75.00

65.829 1.414 75.00

47.546 1.474 75.00

46.886 2.999 75.00

Table 1: Acceleration commands (sampling period is .1 sec)

This particular case resulted in a miss when constraints were invoked

on the missile's control conmmands. The corresponding time-to-go estimate

is shown in Figure 11. Observing Figure 3 and Table 1, one notes that the

acceleration commands in the Z-direction are the most critical parameters.

Limiting the control in this direction has the most effect on the time-to-

, go parameter. To compensate for this constraint effect, one may modify the

estimator performance measure in (5). This is the subject of the next section.

B. Modification of the Time-To-Go Estimator

In order to compensate for non-zero target acceleration or other assump-

tions (or constraints) on (8), one may modify (5) by making the weight on

the minimal time measure time-varying or a function of system parameters.
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To see the effects of this weighting on the time-to-go estimate,

two simulation studies were performed on the case when the aspect angle

was 300, the initial launch range was 2000', and the off bore-sight angle

was 0'. The results are shown in Figures 12 and 13. In Figure 12,

the time-to-go estimate trajectory for equal weight place on terminal

miss distance and minimal time is denoted by a solid line. When the

minmal time term is weighted by a 10% increase, the time-to-go trajectory

is less conservative initially, signified by a lower dip below the true

time line. For more complexed scenarios, this led to more frequent

miss distance.

When the minimal time term is weighted by a 10% decrease, the

time-to-go trajectory is more conservative initially, signified by a

smaller dip below the true time line. In all cases for this particular

scenario, the missile hit the target.

To see the effects of initial weighting on the time-to-go estimate,

the above three cases were used during the first 0.4 seconds of the launch

(until the missile clears its launch platform). Then the initial con-

dition was used in (6) to continue the estimation algorithm. From

Figure 13, one observes that this has little effect on the time-to-go

estimate for the 00 off bore-sight case.

Hence it was desired to observe the effects of aspect angle and

off bore-sight angle on the time-to-go estimate. In particular, the

g.
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Figure,12: Effects of weighting on the time-to-go estimate for

300 aspect angle, 00 off bore-sight angle, and 2000'

initial range.
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weighting value q was chosen to be a functional of the aspect angle

or off bore-sight angle, assuming these parameters are known.

After several simulation studies, it was found that a weighting

of:

q = 0.1 q COS (AAY/RADC) (24)

gave improved results, where qo is the constant normalized weight

chosen in [10], AAY is the aspect angle, and RADC = 2ff.

This weighting was used in (6) to estimate the time-to-go parameter.

A summary of the resulting simulation studies for the 00 off bore-

sight angle and the 400 off bore-sight angle is shown in Tables 2 and 3.

The inner launch boudaries of these cases are also plotted in Figures

14 and 15.

Other more complexed weighting functionals, including the addition

of the off bore-sight angle were tried. It was found, however, that

these more complexed weights did not improved the time-to-go estimate

significantly over that using (24). However, other weighting functionals

using other system parameters may further improve this estimate and is

the subject of further investigative research.

In summary, the time-to-go estmator described in (6) with modifications

in q has resulted in an improved estimate. One may apply other weightings

to improve the estimate even more. However, it is felt that research in

the modification of the guidance control laws would be of equal or greater

significance.
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00 off bore-sight angle

aspect angle: 0 30 60 90 120 150 180

range: 1000 1000 1000 1000 2500* 3250* 1875

* signifies upper bound. Actual inner launch boundary may be smaller.

Table 2: Inner launch boundary using (24)

40° off bore-sight angle

aspect angle: 0 30 60 90 120 150 180

range: 1000 1000 1000 3000* 4000* 4000* 5000*

* signifies upper bound. Actual inner launch boundary may be smaller.

Table 3: Inner launch boundary using (24)

III. Dynamic Output Feedback for System Regulation

The previous section addressed the issue of modifying the time-to-

go estimate due to unrealistic system assumptions in the AAM scenario.

It was found that varying the weighting of (6) resulted in some improve-

ment in the estimate. The reason for this analysis is primarily to

improve the guidance laws governed by (14) and (15).

Consider, however, modification of the linear regulator performance

measure directly in order to improve the guidance control laws.The subject

of this and the following sections is the development of a linear regulation

design methodology which can be applied towards the AAM guidance problem.

The infinite horizon time case is presented in this section while a

discussion of the finite time case is presented in the following section as

a basis for future research in optimal guidance and control.
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Consider a linear, time-invariant, controllable and observable system

represented by:

_(t) = A x(t) + B u(t)

y(t) = C x(t) (25)

where there are n states, m inputs, and r outputs. The infinite final time

linear regulator problem is to select a control law u(t) such that

j f [x(t) Q X(t) + uT(t) R u(t)] dt (26)
2 0

is minimized, where (.)T denotes transpose,,o 0, Q is a positive semidefinite

iatrix, and R is a positive definite matrix.

If all of the states are accessible, the solution to (26) is wel1-;;nown

and is given by [3]:

u*(t)- F* x(t)

F* = R- I BT P* (27)

I-where P* is the unique symmetric positive definite matrix solution to:

T -l T
A P + P A - P B R B P + Q 0 (28)

The corresponding optimal cost functional is:

S T(0) P* x(0) (29)

if state feedback is not feasible, consider an output dynamic compensator

represented by:

,(t)= Ac x (t) +Bc (t) (30)

, - - m,. i I i 
" I '' I -
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where nc is the order of the compensator. The output feedback control law may

then be given as:

u(t) Cc - (t) + Dc Y(t) (31)

Some of the elements of (30) and (31) may be constrained to be certain values

given a priori. One may augment (25) and (30), using (31.), to obtain:

a(t) = (A a + Ba K Ca) X a(t) (32)

where

A 0 =C 0
A a [ 00 Ba L J a L j

D C x
K c c a 33)

[ c A l

The output linear regulator problem then is to select (A , B , C , DC)

as well as n to minimize (26). In order to do this, consider defining an error

vector

e(t) x(t) x*(t) (34)

where x*(t) is the optimal state trajectory obtained from (27) using state

feedback and x(t) is the state trajectory using (30). The error vector follows

a time trajectory described by:

6(t) = (A + BF*) e(t) + B[(DcC-F*) x(t) + Cc _ (t)] (35)

Define a excitation vector:

i (t) = (DcC-F*) x(t) + Cc Xc(t) (36)
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or equivalently

%a(t) = (KCa - Fa) 2 (t) (37)

where F

Fa 0 (38)

Then

(t) = (A + BF*) e(t) + Bq(t) (39)

Note that if q(t) is bounded, e(t) is bounded and stable.

Consider, then, minimizing

I T21 q (t) Rq _q(t) dt (40)

where R is a symmetric positive definite matrix. Using (33), one finds:q

= 0 -a (t) [K Ca FTa] R a[K Ca -F a ] xa(t) dt (41)

whe re

R 
q

a 0 (42)

If a minimum for J exists, then the error excitation is minimum over the total

time interval. Hence, a minimum deviation of the state trajectories from the

optimal state trajectories will be achieved. The output regulation problem

therefore is to select K to minimize (41) subject to (32).

Since (41) is in standard form, the optimal J is given by:

J(K*) = ( x(0) Pa* a(0) (43)

where P * is the solution to the Lyapunov Matrix Equation:a

(A a + BaK* Ca) Pa + Pa (A a + B a K* Ca)

+ [K*Ca Fa]T Ra[K*Ca - F] = 0 (44)



39

Note that (44) requires knowledge of K*, the optimal compensator parameters.

One can solve ,43) and (.44) numerically by augmenting (43) as:

J(K, Pa' , ) aT(0) P a - (0)

+ tr {r[(A + B KC) P + P (A + B KC)
2a a a a a a a a

+ (KCa -Fa)TRa (KCa - Fa)]} (45)

where , is the Lagrange Multiplier and tr(') denotes the trace of a matrix.

;,Minimization of (45) requires construction of the following gradient matrices:

p (Aa + B aKC ) + r(A + B KC
jP aa a a aa

+ a(0) 0 aT(0) = 0

__ (Aa + BaKCa ) T P + P (A + B KCa)
r a a a a a

T+ (K)a F Ra (KCa -F 0+ (K~a - a  a Fa )

A TT

A- [BaP + R KC- F I'C 0 (46)
a a a a a a

This completes the necessary equations of optimality for the infinite

final time cost functional described by (26).

'IV. Appjication of the Error Excitation Approach to the Finite Terminal Time Case

When tf is finite, the optimal state feedback control law is givenby (10)

and (11) resulting in a two-point boundary value problem. Using the error

ii- . ,"* r _ , _ . .: ... - ,
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vector approach with dynamic compensation; the optimal control law is given

by (3P) and (31), found by minimizinq ,40). The minimum error excitation

value is:

1 TJ(k*) y a xa(O)) Pa*(to)X a(O) (47)

where Pa*(t) satisfies:

Pa (t) + (A a + Ba K*(t)Ca) Pa(t) + Pa(t) (Aa + Bat) Ca )

+ (K*(t) Ca Fa(t))T R a(K*(t)Ca - F a(t)) - 0 (48)

with F a Wt L*(t 0]0 0
and

xa*(to) Xa(t o )

A P *(tf) =  f (49)

Note that K* must be found by solving a two-point boundary value problem.

The terminal time linear regulator problem using state or dynamic output

feedback resulted in a two-point boundary value problem which usually requires

numerical techniques for a solution. Consider, however, the air-to-air missile

scenario in which the intermediate states need not be regulated and the

weight on the control effort is zero (r=O). In this case, the optimal state

trajectories take on the described by:

1_*(t) (A + BF*) x(t) (50)

pq

I,,
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that is:

e*t eA( t-t0) X(to) (51)

where

A A + BF

0 1

3 3 I(52)
t2t 9

In this case, the problem of (45) and the associated gradient matrix

equations of (46) have a reduction in numerical computation which makes

the two point boundary value problem more feasible to implement.

The algorithm described by (45) and (46) has been programmed and

applied to a multitude of problems. The application of this design

methodology to the air-to-air problem is a fruitful area of future re-

search. Extensions of (45) to the time-varying and stochastic case

also have direct application to the AAM guidance problem.

V. Summary and Recommendations

4.The purpose of this research effort was to investigate the effects

of target and missile parameters on the time-to-go estimation algorithm

developed by the author in [10]. It was found that the addition of

acceleration command constraints had the most effect on the Z-direction

control. In all cases tested, the constraints drastically increased the

terminal miss distance. In the test case presented in this report for a

simple off bore-sight angle, the additional constraints caused the missile's
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guidance strategy to result in a miss (under unlimited control, the missile

came within 2' of the target).

To compensate for this contraint limitation as well as other assumptions

on the time-to-go estimation development, it was necessary to incorporate

more information into the weighting functional of the estimator. It was

found that the addition of aspect or off bore-sight angle resulted in an

improvement of the time-to-go estimate.

Finally it is noted that the ultimate objective of guidance and control

is to develop optimal control laws under various scenarios. Towards this

objective, it is felt that a modification of the linear regulator formu-

lation is necessary to improve the guidance laws of the AAM problem.

The design methodology presented here represents regultion under

output or structured state feedback compensation. The algorithm can

be applied to the stochastic or time-varying case. Stability of the

regulator is also insured using this approach, which may not be

the case in many algorithms. It is felt that the application of this

methodology to the AAM problem would yield significant results.

11'
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