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Abstract

Short range air-to-air missiles possess high maneuverability and
require real time computation in constructing their commanded controls.
The intercept time may be in the order of two to three seconds. Such
time constraints necessitate sophisticated control laws, many of which
require @ good estimate of time-to-go before intercept. Preliminary
investigations of a time-to-go estimate using optimal control theory
under certain assumptions have yielded promising results.

The estimation algorithm is based upon a performance index consisting
of terminal miss-distance and time. Using a state space representation
for the missile-target dynamics, guidance law algorithms, and conven-
tional assumptions on system dynamics, the time-to-go estimate has shown
some improvement over existing methodologies.

However, several assumptions on system dynamics which have been used
in the development of the time-to-go estimate may be unrealistic under
current missile technology. The purpose of this research effort was to
extend the existing methodologies and eliminate some of the assumptions so
mentioned. In particular, the assumption of unlimited acceleration com-
mands may be eliminated from the time-to-go estimation by incorporating
acceleration constraints directly as boundary conditions on the optimal
control law. To compensate for the zero target acceleration assumption,
one may apply a weighting functional of the missile parameters to the

estimator performance measure. Such extensions yield promising results.
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I. Introduction
To investigate short range air-to-air missile scenarios, several issues
need be addressed: (1) modelling the missile and target dynamics; (2) simulating
the target maneuver strategy; (3) developing a control law for the missile
in order to intercept the target and (4) generating the information necessary
to apply this control law. Points (3) and (4) are usually handled conjunctively
; and the evaluation of the control designs are done under real time constraints.
?‘ Modelling the missile and target dynamics can be handled in a linear
or nonlinear, time-invariant or time-varying fashion. Nonlinearities appear
from saturation coefficients and current missile capabilities. They may also
appear from the choice of coordinate systems (inertial, missile body, seeker
coordinates, etc.) and states. This research effort assumes a linearized,
time-invariant model.
Development of a missile control law for target intercept is based upon
the chosen missile-target model. Work has been done [15] in applying various
fields of optimal and stochastic control to the air-to-air intercept problem
which has shown some promise. Appiication of optimal control theory results

. in transforming system performance objectives into a mathematical cost functional

. to be optimized. As terminal miss-distance is of primary importance, this
3

performance objective can be described by:
Y T

where L(tf) represents aerodynamic states (relative positions, velocities
and possibly accelerations) and Sf is an appropriate weighting matrix on

position only.
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Equation (1) represents a primary system objective; however, it is usually
desirable to hit the target under other constraints as well (minimal time,
minimal control effort, minimal fuel consumption, and so on). Anderson [1]

[ has investigated various cost functionals under the assumption that a planar
linearized model adequately describes the air-to-air scenario. It was found

that a cost functional of the form:

t
J = 5T(tf)3f i(tf) +b Iy f gT(t)R u(t)dt (2)
0

gave adequate intercept characteristics. The parameter b represents a weighting
on control effort. It was also found that knowledge of present and future
accelerations generally improved intercept characteristics. However, these
parameters are not generally known.

Preliminary results of the guidance law methodologies discussed above
indicate that there are two important parameters that need be estimated or
predicted accurately in order to improve system performance: a good estimate
of taraet acce]eration,_gT , and a good estimate of time-to-qo before intercept,

t .
g0

Farly attempts to estimate time-to-go resulted in using range R and range

rate R in proportional navigation guidance. tffectively, the estimate:

t o= - R (3)

represents the time-to-go estimate of pro-navigation guidance which gave 1
I
adequate results for simple target maneuvers. However, the method degen- i

erated for scenarios with non-zero off-boresight yaw angles BAY (the angle

between missile body acceleration in the x-direction and line-of-sight vector

at launch).
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Riggs [14]) has developed a time-t0-go estimate under the assumption
that acceleration along the line-of-sight can be approximated by the mea-
sureable achieved missile acceleration in the x-direction. This resulted in

the iterative time-to-go estimate of:

t +1] = =t - -
g (i+1)

0 V o+vv 2+ 4R
C C

where:

101.4 - 39t - 12t (i)
r- %

tqo(i)

and g = 32.174 ft/secz. Using this estimate of time-to-qgo with a suboptimal
control law based upon (2) gave better inner launch boundaries (minimum launch-
ing range in which missile still hits target) from that of (3) using either
pro-nav or the suboptimal control law. (see Fiqure 1)

Lee [10] has convtructed a secondary cost functional of the form:

T 2

J o= x (ty) S¢ 5(tf) + q(sdt) (5)

in order to estimate time-to-go. Under the assumption of zero target acceler-
ations and essentially unlimited acceleration commands, this resulted in the

iterative time-to-qo estimate:

.
x (t) DF x (t)
tg - -$ T (6)
0 X, (t) FLFx (t) +q

where 5p(t) represents relative position in missile body coordinates, 5v(t)

represents relative velocity in missile body coordinates, and
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Figure 1: Inner launch boundary for 40° off bore-sight angle.
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f=-= @ sin ({E)_ (7)

The estimate (6) was based upon a system dynamic and control repre-
sentation. Preliminary simulation results have shown improvement over propor-
tional navigation and (4) at low and mid aspect angles (angle between the
target's velocity vector and the line-of-sight vector at launch). Appealing
attributes of using (6) as an estimate for time-to-go include its minimal
coniputation, its iterative nature and the insight one may obtain of the influ-
ence of design objectives (minimal terminal miss-distance and overall time)
on the estimate of time-to-go. (see Figure 2)

The time-to-go estimator described in (6), however, assumes unlimited

o acceleration commands and zero target acceleration. These assumptions may

” be unrealistic in practice. Furthermore, the guidance control laws des-

§ cribed in [1] and [14] may require complete accessibility or knowledge of

all of the system states.

; This investigation addresses the issues of the time-to-go estimation
problem under limited acceleration comnmands. Further, the effects of missile

parameters on the time-to-go parameter will be discussed. In particular,
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Figure 2a: Inner launch boundary comparison for two guidance control laws;
Off bore-sight angle is 40°.
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the influence of a weighting functional of system parameters on the
estimator convergence properties will be examined. It will be shown
that knowledge of the initial aspect and off bore-sight angles may
improve the time-to-go estimator and thereby improve the inner launch
boundary of the air-to-air scenario,

While investigating the influence of system parameters of the
time-to-go estimate, it was felt that research effort was also required
to improve the guidance Taws necessary for optimal target intercept.

That is, in order to further eliminate the target acceleration assumption
from the optimal guidance design, one must also reformulate the guidance
laws and modify the Jinear regulation cost functional to be optimized.

The approach of linear regulation is to drive the system states
of outputs to desired trajectories in an optimal fashion. The particular

specifications of the system dictate the form of the performance measure.

in many applications, however, due to imperfect or incomplete measure-
rents of the system states as well as the controller structure constraints,
only the systems outputs are available for compensation. This is the case
in the AAM problem in which the target acceleration is not known or can not
be measured, and the controller's parameters are restricted or constrained

due to physical reasons.

“ethods have been suggested for output feedback regulation in which the
control law is constrained to certain structures [8, 9, 18]. These alqgorithms,
however, iiay Tack assurance of system stability, may not possess the flexibility
to include dynamic compensation or arbitrary constraints in controller struc-

tures, or may not include knowledge of the influence of the compensator

parameters and order on the state or output trajectories.




A design algorithm for output feedback has been designed by the
author, based upon construction of an error vector between optimal
trajectories when state feedback is available and the trajectories when
only the outputs are available. Minimization of the performance mea-
sure based upon this error vector leads to a Ricatti-type matrix
equation which may be solved in an iterative fashion. The methodology
1?k is jterative in nature for both compensator order as well as compensator

parametric search., An appealing feature of this approach is that the
state trajectories using state feedback may be directly compared with
those obtained using dynamic or structured output feedback compensation.
The application of this algorithm to construction of gquidance laws is
an area of future research.

The results of this reserach effort will be developed in the

following manner: Section Il will discuss the optimal quidance law con-

»‘:"'v

struction and the time-to-go estimation problem from the state space

L

approach. The effects of limited acceleration commands on the time-

»

to-go estimate and miss-distance values will be discussed. Further,

»Pa g

the effects of varying a weighting functional in the time-to-go estima-
tor will also be discussed here. The results will illustrate some im- !
provement in the inner launch boundary of the AAM scenario. In Section
P II1 the design methodology for dynamic compensation will be introduced. 1
" A discussion of the application of this methodology to an improved guidance

law is presented in Section IV. This may be an area of further investi-

gation.

asoniloi i
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I1. Prollem Development

Consider the following dynamics representing the air-to-air intercept
problem:
x = Ax + Bu (8)

where
0 1 0

A = B -
0 O I
The states x(t) represent relative positions and velocities between missile
and target, while u(t) is the commanded control vector.

In order to achieve intercept with minimal control effort, a performance

medasure may be constructed as:

t
T
Jo=x () Seox(te) + 7 Pty Rult) at (9)
t
0
vhere

[ 0
Sf = R = diag(r), t_ = initial time,

0 0 ©

and te final time. Assuming that all the states are accessible, the maximum

principle (3] yields the optimal control law:

ux(t) = F*(t) x*(t)
Fr(t) = - R™1 g7 px(t) (10)

where P*(t) satisfies:

P(t) + AT P(t) + P(t) A - P(t) B R B P(t) = 0 (1)
and

i) = x

P(te) = S, (12)

! L] ’ — ~ v o ST —— - -
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Further, the optimal state trajectory is qoverned by:
x*(t) = (A + B F*(t)) x*(t) (13)

Equations (11) and (13) with boundary conditions(12) constitute a two-point

boundary value problem. It may be solved by numerical techniques [5].

In the case when r = 0, optimization of (9) with respect to u(t) finds:

ur(t) = F* x*(t) (14)
where
* = _ .3
ooz U (15)
g0

and tq 1is defined as te - t, that is, the time before intercept.
"o
The optimal) controller defined by (14) requires complete knowledge
of all the states as well as knowledge of t, . Furthermore, estimation
<0

of requires assumptions of zero target acceleration and unlimited ac-

tgo
celerations as well as complete access of the states, as seen by (6). Note
that (8) is uncontroilable and thus (14) represents a suboptimal control
law. This law may be improved if an accurate estimate of tgo is obtained.
Under system assumptions so mentioned, one may construct a secondary

performance measure to estimate t, as in (5). This measure represents

9%
terminal miss distance and minimal time. The weight q is chosen according

to the importance one places on each term. In [10], a constant normalizing

weight was chosen.

v .3 i . e e o O » T T~ e
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A. Limited Acceleration Commands

Consider modifying the control law of (14) to include limitations on

the control commands. Two methods may be applied to do this.

1. Slack Variable Approach

Suppose the control constraints are defined as m; where i=1,2,3 represents
the missile's acceleration controls in the X,Y,Z coordinates in the air-to-
air missile case. Let
-my < ui(t) <oy (16)

describe the bounds on the control.

Then (9) may be modified to incorporate (16) as:

ul (t)Ru(t) + g’ (t)h(t) dt (17)

t
D sl leg)sen(ee) + 0!

where

hi(t) = 2,2(t) ~ (my = ug(£))(ug(t) +my) (18)

and z;(t) is a parametric variable. Then minimization of (17} yields the
optimal contrained control. Although this method is simple to implement,
there may be numerical difficulties when the system's dimension is high or

the system is uncontrollable. This is the case here; therefore, a more direct

solution is desired.
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2. Linear Regulation with Bounded Controls

The constrained control problem for linear regulation may be formulated

as:

3= nal(easexity) + t Af T ()0x(e) « o (tRu(t) dt

subject to: i_= Ax + Bu

lul] < M (19)

Application of the maximum principle yields the Hamiltonian:

Ho= o, (xT(0)Qx(t) + uT(t)Ru(t)) + gT(Ax(t) + Bu(t))
+ by T(u(t) - M)+ hyT(-u(t) - M) (20)
Then
AL N I Y W (21)
au

The optimal control Taw under control constraints becomes:

-R~18Tg lu(t)] < M
u(t) = T -
-R1(8Tg + hy - h,)  otherwise (22)
That is:
-R-18TPx(t) lu(t)] < M
u(t) = ] u(t) >~ M (23)
-M u(t) < M

Thus, a clipping function may be applied to (14) to yield the optimal con-

strained control law. To see this effect on the time-to-go estimate,
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simulation studies on the nonlinear, time-varying model of the AAM scenario
was performed using (14) with no limits on u{t). This yielded the acceler-
ation commands shown in Figures 3 and 5 for two cases. The associated time-
to-go estimates are shown in Figures 4 and 6.

It is seen that the time-to-go estimate using (6) generally requires
smaller acceleration commands than (4) for these cases. To obtain better insight
into the acceleration controls, plots of the acceleration along the line-of-
sight were made for the case of an off bore-sight angle of 0°, for various
aspect angles. These are shown in Figures 7 through 10. From this, it is
seen that a slightly more conservative initial trajectory of the line-of-sight
acceleration (between the 0 to 0.4 second period, when the missile is clearing
its launch platform) leads to a hit.

The scenario corresponding to Figure 3 was performed using an acceleration
cormand constraint of 75 ft/sec? on all of the control coordinates. The

following table summarizes the results:

Acceleration commands

X-Direction Y-Direction Z-Direction
22.886 19.204 0.00
19.264 55.862 -.616
25.672 75.00 -2.183
39.017 75.00 -5.017
61.554 75.00 -10.111
75.00 75.00 -65.733
75.00 75.00 75.00
75.00 75.00 -72.935
75.00 75.00 75.00
75.00 75.00 -44.805

L » i - K . - P
r Y - » . . - L g v o SRR EoI LR 2 Are .
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Figure 3a: Acceleration command in the X-direction for 0° aspect angle,
40° off bore-sight angle, and 1000' initial range.
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Figure 3b: Acceleration command in the Y-direction for 0° aspect angle,
40° off bore-sight angle, and 1000’ initial range.
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Figure 3c: Acceleration command in the Z-direction for 0° aspect angle,
40° off bore-sight angle, and 1000' initial range.
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Figure 53: Acceleration command in the X-direction for 150° aspect angle,
40° off bore-sight angle, and 3750' initjal range.
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Figure 5b: Acceleration command in the Y-direction for 150° aspect angle,
40° off bore-sight angle, and 3750' initial range.
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Figure 5c: Acceleration command in the Z-direction for 150° aspect angle,
40° off bore-sight angle, and 3750' initial range.
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X-Direction

75.00
75.00
75.00
75.00
65.829
47.546
46.886
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Acceleration Commands

Y-Direction
75.00

75.00
-13.768
2.064

1.414

1.474

2.999

{-Direction

75.00
75.00
75.00
75.00
75.00
75.00
75.00

Table 1: Acceleration commands (sampling period is .1 sec)

This particular case resulted in a miss when constraints were invoked

on the missile’'s control conmands.

is shown in Figure 11.

The corresponding time-to-go estimate

Observing Figure 3 and Table 1, one notes that the

acceleration commands in the Z-direction are the most critical parameters.

Limiting the control in this direction has the most effect on the time-to-

go parameter. To compensate for this constraint effect, one may modify the

estimator performance measure in (5).

B. Modification of the Time-To-Go Estimator

This is the subject of the next section.

In order to compensate for non-zero target acceleration or other assump-

tions {(or constraints) on (8), one may modify (5) by making the weight on

the minimal time measure time-varying or a function of system parameters.

S YA o -
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Figure 11: Time-to-go estimate versys true time for constrained control case.
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To see the effects of this weighting on the time-to-go estimate,
two simulation studies were performed on the case when the aspect angle
was 30°, the initial launch range was 2000', and the off bore-sight angle
was 0°. The results are shown in Figures 12 and 13. In Figure 12,
the time-to-go estimate trajectory for equal weight place on terminal
miss distance and minimal time is denoted by a solid line. When the
minmal time term 1is weighted by a 10% increase, the time-to-go trajectory
is less conservative initially, signified by a lower dip below the true
time line. For more complexed scenarios, this led to more frequent
miss distance.

When the minimal time term is weighted by a 10% decrease, the
time-to-go trajectory is more conservative initially, signified by a
smaller dip below the true time line. 1In all cases for this particular
scenario, the missile hit the target.

To see the effects of initial weighting on the time-to-go estimate,
the above three cases were used during the first 0.4 seconds of the launch
(until the missile clears its launch platform). Then the initial con-
dition was used in (6) to continue the estimation algorithm. From
Figure 13, one observes that this has little effect on the time-to-go
estimate for the 0° off bore-sight case.

Hence it was desired to observe the effects of aspect angle and

off bore-sight angle on the time-to-go estimate. In particular, the




30

2.5 4+

1.0

i
f; 0 A% 4% : i e %
- 0 .5 1.0 1.5 2.0 2.5
?’r
3] time(seconds)~
. Figqure 12: Effects of weighting on the time-to-go estimate for
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Figure 13: Effects of initial weighting values on the time-to-go estimate
for 30° aspect angle, 0° off bore-sight angle, and 2000’
initial range.
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weighting value g was chosen to be a functional of the aspect angle

or off bore-sight angle, assuming these parameters are known.
After several simulation studies, it was found that a weighting
of:
q = 0.14q, COS (AAY/RADC) (24)

gave improved results, where Q is the constant normalized weight
chosen in [10], AAY is the aspect angle, and RADC = 2r.

This weighting was used in (6) tc estimate the time-to-go parameter.

A summary of the resulting simulation studies for the 0° off bore-

sight angle and the 40° off bore-sight angle is shown in Tables 2 and 3.
The inner Taunch boudaries of these cases are also plotted in Figures

14 and 15.

Other more complexed weighting functionals, including the addition
of the off bore-sight angle were tried. It was found, however, that
these more complexed weights did not improved the time-to-go estimate
significantly over that using (24). However, other weighting functionals
using other system parameters may further improve this estimate and is
the subject of further investigative research.

In summary, the time-to-go estmator described in (6) with modifications
in g has resulted in an improved estimate. One may apply other weightings
to improve the estimate even more. However, it is felt that research in
the modification of the guidance control laws would be of equal or greater

sigpificance.
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(: signifies upper bound. Actual inner
launch boundary may be smaller (computer
simulation stopped before completion of
analysis).

Figure 14: Inner launch boundary corresponding to Table 2.




34

4180

150

<

H

%

’ (® : signifies upper bound. Actual inner launch
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stopped before completion of analysis)

i‘ Fiqure 15: Inner launch boundary corresponding to Table 3.
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0° off bore-sight angle

aspect angle: 0 30 60 90 120 150 180
range: 1000 1000 1000 1000  2500* 3250* 1875
* signifies upper bound. Actual inner launch boundary may be smaller.

Table 2: Inner launch boundary using (24)

40° off bore-sight angle

aspect angle: 0 30 60 90 120 150 180
range: 1000 1000 1000  3000*  4000* 4000* 5000*
* signifies upper bound. Actual inner launch boundary may be smaller.

Table 3: Inner launch boundary using (24)

[11. Dynamic Qutput Feedback for System Requlation

The previous section addressed the issue of modifying the time-to-
go estimate due to unrealistic system assumptions in the AAM scenario.
It was found that varying the weighting of (6) resulted in some improve-
ment in the estimate. The reason for this analysis is primarily to
improve the guidance laws governed by (14) and (15).

Consider, however, modification of the linear regulator performance

measure directly in order to improve the guidance control laws.The subject

of this and the following sections is the development of a linear regulation

design methodology which can be applied towards the AAM guidance problem.

The infinite horizon time case is presented in this section while a

discussion of the finite time case is presented in the following section as

a basis for future research in optimal guidance and control.
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Consider a linear, time-invariant, controllable and observable system

represented by:

1}

x(t) = A x(t) + B u(t)

il

y(t) = C x(t) (25)

where there are n states, m inputs, and r outputs. The infinite final time

linear regulator problem is to select a control law u(t) such that

o

J = % S [LT('C) Q x(t) + gT(t) R u(t)] dt ‘ {26)
0

is minimized, where (')T denotes transpose’tO =0, Q is a positive semidefinite
ratrix, and R is a positive definite matrix.
1f all of the states are accessible, the solution to (26) is well~inown

and is given by [3]:

vhere P* is the unique symmetric positive definite matrix solution to:

1

AT P +PA-PBRIB P+0Q=0 (28)

The corresponding optimal cost functional is:

J = ; x'(0) P* x(0) (29)

If state feedback is not feasible, consider an output dynamic compensator

represented by:

i (t) = Al x (t) + B y(t) Go)
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where N is the order of the compensator.

then be given as:

u(t) = €. x (t) + D_ y(t)

The output feedback control law may

(31)

Some of the elements of (30) and (31) may be constrained to be certain values

aiven a priori. One may augment (25) and (30), using (1), to obtain:

i (t) = (A + B KC,) x (t)

where

w

o =1
o o
1)

o ™
— o

[}
ol
o
‘Lx
"
|><

The output linear regulator problem then is to select (AC, Bc, Cc» D )

C

as well as n. to minimize #6). In order to do this, consider defining an error

vector

e(t) = x(t) - x*(t)

(34)

where x*(t) is the optimal state trajectory obtained from (27 ) using state

feedback and x(t) is the state trajectory using (30). The error vector follows

a time trajectory described by:

&(t) = (A + BF*) e(t) + BL(DC-F*) x(t) + C, x.(t)] (35)

Define a excitation vector:

a(t) = (0 C-F¥) x(t) + C_ x ()

c X

oo Mgk way < ; ™

(36)
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or equivalently
(t) = (KC, -~ F
Gylt) = (KCy - Fy) xy(t) (37)
where
q F* 0
4 Fa N (3%)
0 0 0
Then
&(t) = (A + BF*) e(t) + Bg(t) (39)
Mote that if g{t) is bounded, e(t) is bounded and stable.
Consider, then, minimizing
S-3 o dw Ry a(t) dt (40)

0
where Rq is a symmetric positive definite matrix. Using (33), one finds:

s3]

NS | T T 1
J 5 fo x, (8 [Ke, - F ) RIKC, - F 1x,(t) dt (41)
vihere
R 0
R, = | 1
0 0 (42)

If a minimum for J exists, then the error excitation is minimum over the total
time interval. Hence, a minimum deviation of the state trajectories from the
optimal state trajectories will be achieved. The output regulation problem
therefore is to select K to minimize (41) subject to (32).

Since (4]) is in standard forin, the optimal J is given by:

T

J(kx) = L x.1(0) P_* x_(0) (43)

]
7 %
where Pa* is the solution to the Lyapunov Matrix Equation:

(Aa + B K* Ca) Pa + Pa(Aa + B, K* Ca)

+ [krc - F TR [KC, - F 1= 0 @)
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Note that (44) requires knowledge of K*, the optimal compensator parameters.

One can solve [43) and (44) numerically by augmenting (43) as:

J(K, P T) = %-gﬁT(O) P (0)

a Xa

s 1y (1[(A, + BKC,) P

2 * Pa(Aa * BaKCa)

a

v (KC, - Fa)TRa (K, - F)1) (45)

where © is the Lagrange Multiplier and tr(°) denotes the trace of a matrix.

Minimization of (45) requires construction of the following gradient matrices:

S i T
3?; (Aa + BaKCa)I + r(Aa + BaKCa)

I T
o (Ag + BaKCa) Pat Pa(Aa * BaKCa)
+ (KC. - FITR(KC. -F.) =0
a : a‘"va
J o T ) AT
Py [Ba Pa + Ra(hca - Fa)] I'c 0 (46)

a

This completes the necessary equations of optimality for the infinite

final time cost functional described by (26).

IV. Application of the Error Excitation Approach to the Finite Terminal Time Case

When t is finite, the optimal state feedback control law is givenby (10)

and (11) resulting in a two-point boundary value problem. Using the error

- A sy = - - TR O T WA TAEN Qo R
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vector approach with dynamic compensation; the optimal control law is given

by (30) and (31), found by minimizing ,40). The minimum error excitation

value is:

T
(

J(k*) = 3k x.(0) (47)

where Pa*(t) satisfies:

Pt + (AL * BK(E)C,) P L) + P (1) (A, * By (b)) C))

b (ke (t) €, - Fo(t))TR (K*(E)C, - F () = 0 (48)
with Fa(t) = F*(t) O
0o 0
and
-a*(to) - -a(to)
P *(te)= S (49)

Note that K* must be found by solving a two-point boundary value problemn.

The terminal time linear regulator problem using state or djnémic output
feedback resulted in a two-point boundary value problem which usually requires
numerical techniques for a solution. Consider, however, the air-to-air missile
scenario in which the intermediate states need not be regulated and the i
weight on the control effort is zero (r=0). In this case, the optimal state |

trajectories take on the described by:

x*(t) = (A + BF*) x(t) (50)




|

p
1
!‘ 4]
3 that is:
x*(t) = &) (¢ ) (51)
8 where
A=A+ BF
e r
= 0 I T
L3 _ s (52)
‘ — I - [
t -~ tg
L % A |

In this case, the problem of (45) and the associated gradient matrix
equations of (46) have a reduction in numerical computation which makes
the two point boundary value problem more feasible to implement.

The algorithm described by (45) and (46) has been programmed and
applied to a multitude of problems. The apptltication of this design
methodology to the air-to-air problem is a fruitful area of future re- ;
search. Extensions of (45) to the time-varying and stochastic case

also have direct application to the AAM guidance problem.

V. Summary and Recommendations

The purpose of this research effort was to investigate the effects

"J Z'T"'-Q,' L '

of target and missile parameters on the time-to-go estimation algorithm

-kt

developed by the author in [10]. It was found that the addition of

T

acceleration command constraints had the most effect on the Z-direction

control. In all cases tested, the constraints drastically increased the

terminal miss distance. In the test case presented in this report for a

o -

simple off bore-sight angle, the additional constraints caused the missile's

ATLTN X
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guidance strategy to result in a miss (under unlimited control, the missile

came within 2' of the target).

To compensate for this contraint Timitation as well as other assumptions
on the time-to-go estimation development, it was necessary to incorporate
more information into the weighting functional of the estimator. It was
found that the addition of aspect or off bore-sight angle resulted in an
improvement of the time-to-go estimate.

Finally it is noted that the ultimate objective of guidance and control

is to develop optimal control laws under various scenarios. Towards this
objective, it is felt that a modification of the linear regulator formu- f
lation is necessary to improve the guidance laws of the AAM problem.

The design methodology presented here represents regultion under
output or structured state feedback compensation. The algorithm can
be applied to the stochastic or time-varying case. Stability of the
regulator is also insured using this approach, which may not be 1

‘; the case in many algorithms. [t is felt that the application of this §

methodology to the AAM problem would yield significant results.
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