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ABSTRACT
N4Th.e observability requirements for bearings-only target motion analysis

(TMA) are rigorously established by solving a third-order nonlinear differential

equation. Closed-form expressions are developed and subsequently used to

specify necessary and sufficient conditions on own ship motion that ensure a

unique tracking solution. It is shown that for certain types of maneuvers the

estimation process remains unobservable, even when the associated bearing rate

is non-zero. Such maneuvers are frequently overlooked in heuristic discussions

of T.1A, observability, which may account for some common misconceptions regard-

ing the characteristics of acceptable own ship motion.Z--.-
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INTRODUCTION

Passive bearings-only tracking techniques are utilized in a variety of

theoretical and practical applications. 1-5 In the ocean environment, two-

dimensional target motion analysis (TMA) is perhaps most familiar. 4-7 Here,

a moving observer (own ship) monitors sonar bearings from an acoustic source

(target) travelling with constant velocity, and subsequently processes these

measurements to obtain estimates of source position and velocity. The geometric

configuration is depicted in figure 1, where both own ship and target are pre-

sumed to lie in the same horizontal (x-y) plane.

V 
Vt

(NORTH)

OWN SHIP

X (EAST)

Figure 1

Whenever bearing data are extracted frcm a single sensor, the aforemen-

tioned estimation problem will remain unobservable prior to an own ship

maneuver. Indeed, unique tracking solutions cannot be obtained for unaccel-
7

erated motion. It is this prerequisite maneuver which distinguishes

bearings-only TMA from more conventional localization techniques (e.g.,

classical triangulation ranging, etc.) and introduces added complexity to

the problem.

1
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Unfortunately, the subject of TMA observability has not received adequate

attention in the literature. Solution uniqueness requirements have evolved

mainly from heuristic and/or geometric arguments, which often lack mathematical

rigor. As a result, certain misconceptions prevail regarding the character-

istics of acceptable own ship motion; e.g., the assumption that any maneuverI

will suffice provided the associated bearing rate is non-zero. In this paper

we rigorously establish necessary and sufficient conditions for TMA observ-

ability. The system is recast in equivalent linear form which allows direct

application of a simplified observability test. Subsequent analysis yields a

third-order nonlinear differential equation embodying the pertinent constraints I
on own ship motion. By solving this equation it is shown that certain types

of maneuvers are unacceptable, despite the presence of non-zero bearing rates.

2
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PROBLEM FORMULATION AND ANALYSIS

The equations of motion for a constant velocity target, as depicted in

figure 1, may be expressed in the form

±(t VWt (la)

±(t) =-a C t) (lb)

where

v(c) M v (t)-V (t). (2)

Here, r = [rx,ry] and v - [Vx,vy]' represent the relative range and

velocity, while o= [aoxtaoy]' describes own ship acceleration. The

remaining vectors Xo [Vox,Voy]' and t [vtvy]' denote own ship and

target velocity, respectively; however, these will not be used explicitly

in the ensuing analysis. Finally, we note that equation set (1) can be

integrated to yield the familiar expressions: 6

V r(t) = r(t 0 )+(t-to)v(to) - J0 (t-T),a(,)dT (3a)

It
x(t) = v(t) - (T)dT (3b)

where to denotes some arbitrary fixed initial time.

Since we are primarily concerned with the theoretical aspects of

observability, only noise-free data measurements will be considered.

For bearings-only TMA, these measurements consist of line-of-sight

angles (see figure 1) which satisfy the nonlinear relation

$(t) = tan-l [rx(t)/ry(t)] • (4)

Ordinarily, the presence of measurement nonlinearities would

dictate an analysis utilizing techniques such as the "ratio test"'8

3
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or the "strongly positive semi-definite condition." 9 However,

application of these relatively complicated procedures may be avoided

here by rewriting (4) in equivalent linear form; i.e.,

M(t)x y(t) (5)

where

x = [rx (t 0 ),ry (to),vx (to0 ),Vy(to)]' (6)

M(t) [cosB(t),-sina(t), (t-to)cos6(t),-(t-to)sinO(t)] (7)

and

y(t) (t-T)[aox(T)coss(t)-ao(T)sinB(t)]dT. (8)

Observe that M(t) and y(t) depend only upon B(t) and a (t) which-_o

are known functions of time. The TMA solution parameters (unknown

initial states) have all been incorporated into a constant vector x.

Consequently, (5) may be viewed as the time-varying measurement

10-12equation for a static linear system. It is well-known that

systems of the aforementioned type are completely observable if and

only if the Grammian matrix

D (t)= t M' (T)M(T)dT (9)

is positive definite for some t>to.P Although (9) may be utilized to specify own ship

motion requirements, the attendant computations are particularly

12cumbersome. A simpler approach involves repeated differ-

entiation of (5) to obtain a consistent set of linear equations

for che unknown vector x. Specifically,

A(t)x Y(t) (10)

f

4
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where A(t) is a (4x4) partitioned matrix

M(t)

A(t) )
A~t) =(ll)

L (t) 
,

and

Y-(t) = [y(t),•(t)",Y(t),y'(t)]'. (12)

The general solution to (10) may be written in the form1 3

x = A#(t)y(t) + [I-A#(t)A(t)]z(t) (13)

where A#(t) denotes the generalized inverse of A(t) and z(t)

represents any arbitrary vector of appropriate dimension. From

this result it is evident that x can be uniquely determined if and

only if Rank[A(t)] = 4 for some t > to. Indeed, when A(t) attains

full rank, the relation A#(t) =A(t) is automatically satisfied

so that

x f A- (t)y(r-). (14)

However, if A(t) remains rank deficient for all t, the second term

in (13) will never vanish; consequently, x always contains an

arbitrary component which renders the system unobservable.

The preceding discussion reveals that all solution uniqueness

requirements are implicitly embodied in the scalar constraint

relation det[A(c)]AC which ensures that A(c) will attain full

rank for some value of t. Utilizing (7) and (11), this constraint

5
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relation may be written as: *

det[A(t)] = 2i(t)''(t) - 3g 2 (t) + 4i 4 (t) • 0 (15)

or, equivalently,

0(t) • tan-1  rx(to) + (t-t o )vx(tO (16)
ry(to°) + (t-t)v(t)I

Recall, however, that B(t) must satisfy the relation

[rx(to) + (t-to)Vx(to)- ot(t-Oaox(Q)dT

Bt - tan L 1 (17)

r (to) + (t-to)Vy(to) • (t'-.)ao (T)dT

which follows from (3a) and (4). Consequently, a unique tracking

solution can be extracted from bearings-only data if and only if

the right hand sides of (16) and (17) are functionally dissimilar;

i.e.,

[rxto) + (t-to)Vx(t0 ) - (t-T)aoX(T)dT rx(t 0 + (t-t ONv(to)1 (8

ry(t0 ) + (t-t0)Vy(to) - (t¶)a y'OdT ry(to) + (t-to)Vy(to)

Examination of (18) readily reveals the (prerequisite) need for an

own ship maneuver to render the system observable. Indetd, if no

maneuvers occur, the constraint relation will be violated since both

sides of (18) become identically equal. Although this result is well-

known, 4-7 it does not constitute a complete statement of TMA observ-

ability. The reason is that (18) cannot be satisfied simply by

* These results are derived by explicitly evaluating det[A(t)] and
subsequently solving the homogeneous differential equation corre-
sponding to det(A(t)] 0 with appropriate initial conditions.

6
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virtue of an arbitrary own-ship maneuver. The condition

a (t) • O is necessary, but not sufficient; i.e., certain

types of maneuvers are unacceptable. To rigorously fulfill

all requirements embod'-d in (18), it is both necessary and

sufficient that
tN

(t-T)adT d a(t)[r(to) + (t-to)V(to) (19)

to -- t

for any arbitrary scalar function a(t).

Fquation (19) provides a comprehensive mathematical

:'+,presenzar:.on of the TMA ob-'ervability requirements. Moreover,

2...'s e:-¾•e-$L. u7 ameL~ab!e to simple physical interpretation.

Fc, examp.,-0tLcing a(t) - 0 readily demonstrates how system

olservab~lity is contingent upon an own ship maneuver as

pre'o. isly discussed. Similarly, if a(t) ý 0, it becomes

evident tb t the motion constraints imposed by (19) can be

violated even though a (t) J O; thus, certain types of maneuvers

are precluded. These particular maneuvers always result in own

ship positional changes which lie along the instantaneous bearing

line (see figure 2). As such, the time characteristics of B(t)

will become indistinguishable from those produced by unaccelerated

motion.

7
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BEARING LINES

UNACCEPTABLE
OWN SHIP
TRAJECTORY OWN SHIP
(WITH MANEUVERS) - TRAJECTORY

L (NO MANEUVERS)

Figure 2

Another interpretation of system observab i lity derives by

recasting (19) in the form

(t-T)E[ao (T)ccs$(t)-aoy(T)sinS(t)]dT f- 0 (20)too

and then comparing (8) with (20) to obtain an equivalent

constraint relation y(t) 1 0. Note, however, that this

latter condition further implies

y(t) 0 0 (21)

which follows directly from (12). Consequently, satisfying

the requirement det[A(t)] 1 0 actually guarantees a unique

and non-trivial TMA solution, as would be expected from

physical considerations.
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The preceding discussion also reveals that (20) may be

utilized in lieu of (19) as an alternative test for observ-

ability. Although this particular constraint involves only

the scalar function y(t), it should be recognized that the

foregoing analysis of A(t) was necessary in order to establish

the crucial equivalence relationship

y(t) t 0*det[A(t)] 0 (22)

from which (20) is derived.

3
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SUMMARY AND CONCLUSIONS

The observability requirements for bearings-only TMA have been rigorously

established. It was shown that unique tracking solutions can be obtained if

and only if own ship accelerates, subject to the constraintIt (tJ)
(t-o ) [ao(.r)cosS(t) - a (t) sin$ (t) I dT 0 .

Further analysis has revealed a previously unknown class of maneuvers for which

the system remains unobservable. The bearing measurements associated with these

maneuvers are indistinguishable from those corresponding to unaccelerated

motion.

It is perhaps noteworthy that in realistic tracking applications own ship

motion usually consists of constant velocity segments interspersed with

maneuvers. Fortuitously, such tactics implicitly ensure that the observability

requirements will be satisfied. The one exception is when velocity changesI]
continually produce a zero bearing rate; i.e., the condition of "matched speed

across the bearing line." Thus, while the analytical results presented here

may have only limited impact on practidal maneuver strategies, they neverthe-

less provide a comprehensive exposition of the underlying mechanism governing

TMA observability.

As a final note, two situations can arise that are more applicable to

these results. The first is at long target ranges where the bearing rate is

often sufficiently small such that det[A(t)] 0 for all values of t. The

second condition is the case of sparse or intermittent data. Under such

circumstances, the observability requirements indicate that additional

precaution should perhaps be taken in the selection of an appropriate

sequence of own ship maneuvers.

11/12
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