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ABSTRACT

Let Xl, XZ’ «+s be independent random variables with common
distribution function F, zero mean, unit variance, and finite moment
generating function, and with partial sums Sn' According to the

strong law of large numbers,

n
P{n > ¢y for some n X m}

o
1]

decreases to 0 as m Iincreases to o when <, ¢ >0, For
general <, “s the Hewitt-Savage zero-one law implies that either

p_. =1 for every m or else 'pm Y0 as mt o. Assuming

@
the latter case, we consider here the problem of determining P, UP

to asymptotic equivalence.

For constant e, “s the problem was solved by Siegmund (1975);
in his case the rate of decrease depends heavily on F. In contrast,
Strassen”s (1965) solution for smoothly varying cy = o(n-Z/S)

is independent of F.

We complete the solution to the convergence rate problem by
congidering <, “s intermediate to those of Siegmund and Strassen.
The rate in this case depends on an ever increasing number of terms in

the Cramér series for F the more slowly ¢, converges to

Zero.




CHAPTER 1

INTRODUCTION AND SUMMARY

l.1. Basic assumptions and notation.

Throughout this work we suppose that Xl, Xz, eee 18 a
sequence of independent random variables with common distributiom

function F. Denote the random walk of partial sums by S:

S, ™ Spmy Xy» B 2 0.

The distribution F 1is assumed to be standardized in the sense that
EX =0, Var X = 1

where, to facilitate notation, we have introduced another random
variable X distributed according to F. Assume throughout that the
moment generating function (mgf) Eexp(3X) for F 1is finite for

f 1in some neighborhood of O and write
(1.1.1)  K(Z) = log(Ee>X)

for the cumulant generating function (cgf). This assumption, which
restricts attention to the so~called mgf case, is stronger than required
for the more elementary results (for example, the laws of large numbers)

discussed in this chapter. However, the loss in economy of assumption




is outweighed by the accompanying gain in ease of exposition.
Furthermore, the main result (Theorem 2.l1.1) of this work deals only

with the mgf case.

Our main goal will be to estimate the probability of the event

S
n
{T > c, for some n 2 m}
when m is large for a specified sequence ¢ = (cn) of positive
numbers. It is natural to think of the sequence c¢ as a "boundary” on
the growth of the sequence (Sn/n) of sample means as the "time"” n
increases. Often it will be more convenient to deal either with the

1/2

standardized process (Sn/n } or with the random walk S. The

corresponding boundaries will be denoted as follows:

Process Value at time n Boundary Value at time n
S
sample means 2 c c
n n
Sn -
standardized . 4 U(n) = Jac
random walk S g g(n) = JAl¥(n)




We write Z for a standard normal random variable.

B = (B(t))tko denotes Brownian motion.

We denote by L}J the integer part, or "floor”, of x, namely,
the largest integer not exceeding x. Similarly, [x], the

"ceiling” of x, is the smallest integer at least as large as x.

If k21 1is an integer, Lk denotes k iterations of the

natural logarithm function L 2 log.

As usual, the relation a(t) = b(t) means that a(t) = 0(b(t))

and b(t) = 0Ca(t)).

1.2. Weak law of large numbers.

Although the present work concerns itself with convergence rates
related to the strong law of large numbers, we begin with an examination
of convergence rates related to the weak law. There are two reasons for
this review: the weak~law results (1) provide motivation for, and (2)

are used in the proofs of, the corresponding strong—-law theorems.
The weak law of large numbers (WLLN) states that Sm/m -> 0
in probability as m = o, i.e., that for any constant c¢ > 0
sm
(1.2.1) P{I—;l >el =0

as m - o®. Treating upper and lower tails separately, we can write

(1.2.1) in the equivalent form




S
m
P{—=>c} =0,
(l.2.1a) Sm
P{"?> c} = o0,

since

Sm sm Sm
(1.2.2)  P{=l > c} = P{==> e} + P{- — > c}.

The convergence rate problem for the WLLN is to dewermine the left side

of (1.2.1) up «o0 a factor (1 + o(l)). 1In light of (1.2.2) this can be

accomplished by estimating in the same way the single-tail probabilities
in (1.2.1a). Since the random walk (-S) satisfies the assumptions of

Section 1.1 for S with F replaced by P{-X £ ¢}, it is enough to

deal with the upper tail probability P{Sm/m > cl.

A more general problem is to determine the asymptotic behavior of

sm
(1.2.3)  P{=> c }

for an arbitrary sequence of positive numbers cye In view of the
central limit theorem (CLT) for S, it is convenient to express (1.2.3)
in the standardized form

s
(1.2.3a) Mr'n > ¥(m)}

where we define

¥(n) = 4Ebm.




Indeed, the CLT states that when U(m) = UO is constant,

S
(1.2.4) P{I‘-'i > Ty} = p{z > V).

The CLT is thus an invariance principle in the sense that the right side

here is independent of F.

The Berry-Ess&en theorem (see Feller, 1971, p. 542) bounds the
error in approximating the left side of (1.2.4) by the right, uniformly
in WO. As a particular consequence,

Sm
(1.2.5a) p{7m—- > ¥(m)} > 0
if and only 1if

(1.2.50) ¥(m) » o.

The general problem of convergence rates related to the WLLN is to

determine (1.2.3) up to a factor (1 + o(l)) when (1.2.5) is in force.

Return to the case U(m) = c:m]'/2

of (1.2.1). Any unified
theory for handling this case must require ¢ to be small in some
gsense. For example, if S has symmetric Bernoulli components, {.e.,

1f X assumes the values %1 with probability 1/2 each, then for

any c 21

S
(1.2.6) P{;? > ¢} =0 for every m.




The identity (1.2.6) cannot hold for any c, on the other hand, unless

F has compact support.

Making precise the condition that ¢ be small, Bahadur and Ranga
Rao (1960) solved the WLLN convergence rate problem. Their solution is
contained in Section 3.4; see (3.4.12) with & = 0. In marked
contrast to the invariance principle (1.2.4), the rate of convergence in
(1.2.5a) ina this casé depends heavily on F. In fact, different choices

for F give different convergence rates for (1.2.5a) for some c¢ > O.

/2

The case W(m) = o(m1 ) with ¥(m) - o,

intermediate to the CLT case of constant ¥ and the WLLN case

¥(m) = le/Z’ was resolved by Cramér (1938):

'
)

Sa 2, %(m), F(m)
(1.2.7)  Pl=> ¥} = (1 + o(1))IP{Z > V() }-exp ¥ (m)—poN—p) ]
Here

M3 = 550 N3

is a certain power series, the so-called Cramér series for F, which
converges for § in a neighborhood of 0. For each k the

coefficient Xk depends on the moments of F of orders up to and

including k + 3; for example,

For a precise definition of ), see (2.1.1).




For the normal tail probability on the right in (1.2.7) we have the

standard estimate
(1.2.8)  P{z > ¥(m)} ~ (W (w)] ‘exp(~ ¥ (m)]

(as usual, a - bm means the same as a = (1 + o(1)) bm ).

On a logarithmic scale the correction in (1.2.7) to the normal

approximation becomes negligible:

Sm 142
log P{T > ¥(m)} ~ - ilF (m).

Even on the probability scale of (1.2.7), the correction is unnecessary

if ¥ does not grow too rapidly:

1/6

P(m) = o(m ) implies

S
(1.2.9a) P{-J;‘l > J(m)} ~ p{z > U(m)}.

If ¥ is allowed to increase somewhat more quickly, the correction

requires only the constant term )0 from the Cramér series:

Y(m) = o(ml/b) implies

(1.2.9b) P{F > ¥(m)} ~ P{Z > Wa)}- exp[)ov ),

The linear coefficient )1 enters next:

3/10

P(m) = o(m ) implies

s 3 4 (m)
(1.2.9¢) P{]n#'l > ¥(m)} ~ P{Z > V(m)}'expixoyfll'exﬂhv ;m I

PP P




N S SR ————

In general, if ¥(m) => o and ¥(m) = o(ml/2 - W)
with 0 <7 £ 1/3, then only the moments of F of orders up to and
including rifﬂj = 1 need be known to identify the convergence

rate (1.2.7).

The transitions in form from the CLT to Cramér”s result and
from Cramér”s result to the WLLN solution are smooth. When ¥ {s
nearly constant, as in (1.2.9a), Cramér”s result is an invariance
principle of the same form as the CLT. When, at the other extreme,
U(m) grows nearly as quickly as ml/z, the convergence rate
(1.2.7) depends heavily on F. The Bahadur - Ranga Rao result for

¥(m) = cm1/2

can be stated in the form

Su 2. F(m), Y(m)
(1.2.10) P{T > P(m)} ~ (1 + B)P{Z > W(m)}exp(¥ (m)—ln—-)(—l;—)l

as m => o, where [ depends on ¢ and heavily on F but vanishes

in the limit as ¢ = 0. Thus (1.2.7) may be regarded as the

lim{ting form of (1.2.10) when ¢ = O.

1.3. Strong law of large numbers.

According to the strong law of large numbers (SLLN),

Sn/n = 0 with probability 1; equivalently, for any constant

¢ >0

S
(1.3.1) P{l-éll >c forsome n2m}l v0 as mt{ .

Analogous to (1.2.2) is the decomposition




P{Tn>c for some n 2 m}
+ P{- 1? > ¢ for some n 2 m}
] s
(1.3.2) - P{;f-) c for some pxm and - 1?-) ¢ for some q X m}

for the probability in (1.3.1). 1In Section 4.3 we show that the last
term in (1.3.2) is asymptotically negligible when compared to the sum of
the first two terms. So we consider the one~sided version

sn
(1.3.3) P{T >c forsome nxm}¥0 as ot o

of (1.3.1).

A more general problem is to determine the asymptotic behavior of

S
= n
(1.3.4) P, = P{I— > ¥(n) for some n X m}
for an arbitrary sequence of positive numbers W¥(n). No matter what
the sequence V¥,
Sn
(1.3.5) Py vp= P{T >VYn) 1.0. as n =2 wo}.

It follows from the Hewitt-Savage zero—one law (Feller, 1971, p. 124)

that
(1-3-6) P =0 or P -1,

The case p = 1 1is trivial from the convergence rate viewpoint, for

then Py = 1 for every m. The classification of boundaries ¥

TR R R N T AR S RSN O . e dotubins U DR PN YU URCIET VIR SO gi




f 10
according to the dichotomy (1.3.6) is effected by the Kolmogorov -

Petrovski - Erdds -~ Feller integral test (cf. Jain, Jogdeo, and

Stout, 1975):

KPEF INTEGRAL TEST. If 0 < ¥ t, then

e

0 o ¥t
(1.3.7) P = . according as J‘ i ) e dt wo. [

M glati

Note that the criterion (1.3.7) is, like its weak-law analogue

e

(1.2.5), an invariance principle.

There are counterparts to (1.3.4-7) for Brownian motion: If
Pg = P{B(t) > g(t) for some ¢t 2 s}

then

Py v p 2 P{B(t) > g(t) 1.0. as t => o}
and (1.3.6) and the KPEF test hold; here
(1.3.8)  g(t) = A¥(c).

In fact, (1.3.7) for S 1is most easily proved from (1.3.7) for B by

showing that S can be closely approximated by B (cf. (3.1.6)).

In the interesting case that p = 0 {n (1.3.5) we say that g is

an upper class boundary for the random walk S and write g € U(S).

(Otherwise g 18 a lower class boundary and g @ L(S).,) Define

U(B) and L(B) analogously. If ¥ f, the KPEF tests allow us




11

to write g 6 U indifferently for g 8 U(S) (for amy S ) or

g € U(B). A similar comment applies to the notation g & L.

The test (1.3.7) gives rise to the celebrated law of the iterated
logarithm (LIL), which quite precisely describes the "interface”

between U and L.

LAW OF THE ITERATED LOGARITHM. If

/2

(1.3.9)  g(t) = [26(Lyt + 3Lgt + Lyt + ** + 1L et

> L (1 + P

e 4

with ¢ > 3, then

U >
(1.3.10) g e according as B 0. |
L <

The general problem of convergence rates related to the SLLN is to

determine P, uptoa factor (1 + o(l1)) when g € U. Let
Tm = {inf {n: n X m, Sn > g(n)}, the inf of the empty set being

+m . Then Tm 2 m, and

Py = P{Sn > g(n) for some n 2 m} = P{Tm < o}
admits the decomposition

Pp = P{T = n} +Pm<T <o}
(1.3.11) = P(S_ > g(m)} +P{m < Ty < @},

The convergence rate for the first term is known from studying the WLLN;

the second is new. For a simple lower bound we have
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(1.3.12) - P, 2 p{sm > g(m)}.

Siegmund (1975) used the relation (l.3.11), together with the
Bahadur - Ranga Rao estimate for the first term and his own analysis of
the second, to solve the convergence rate problem in the SLLN case
g(t) = ct. Strassen (1965) solved the problem for boundaries
g 8 U not too far from the U \ L interface (1.3.9) -- roughly

/5) as t = . The major contribution

speaking, for g(t) = o(t:3
of this work is to complete the solution to the convergence rate problem

by bridging the gap between Strassen”s boundaries and Siegmund”s.

We set the stage by reviewing, in the next two sections, the

results of Strassen and Siegmund.

l.4. Strassen”s result.

We recall the omnibus restriction to the mgf case. Modulo a
precise definition of the adjective "smooth”, Strassen”s result (1965,

thm. 1.4) can be stated as follows:

THEOREM 1.4.1 (Strassen). If g € U has a smooth derivative,

0<V¥1t, and g(t) £ t3/5 -7 for some )Y > 0, then

152
(1.4.1) P J -fm A “’f e de.

S " L = ‘ " " . - . . N 3 .
W 8 S WO AR s sttt U I SO NN SUIPVUIUET WO SO 1)
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REMARK 1.4.2. (a) Strassen used an intricate argument to show that
(1.4.2) P{B(t) > g(t) for some t 2 s} ~ Jg a8 8 > o

and used this, along with approximation of S by B via Skorohod
embedding (see Breiman, 1968), to deduce his invariance principle j
(1.4.1). In light of (1.2.9a) one might expect that the restriction on

the growth of g could be eased to g(t) = o(t . This can in

fact be done (Theorem 3.2.1).

(b) Theorem 4.3 in Strassen (1965), a lemma to (l.4.1) credited by
Strassen to F. Jonas, is in error. As noted by Sawyer (1972), the
Skorohod embedding time for X may not have finite mgf even though X

does. Theorem 3.2.1 repairs the proof of (and yields a result somewhat

better than) Theorem l.4.1 by using the dyadic quantile-transformation H
approximation of S by B due to Komldés, Major, and

Tusnddy (1975; 1976) instead of Skorohod embedding.

(c) 1f we assume g(t:)/t:a/5 ¥, then (compare the proof of

Lemma 2.2.1(b))

g7 (t) = _T_W £,
In fact,

3< g’(t)/(ﬂjz—)-) < 1.
Thus

1p2
( - ()
szjrvg)e‘ﬂ de

e iy ) Sl sodin. . . e - : b R S
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which is the tail integral in the KPEF test (1.3.7). [

EXAMPLE 1.4.3. Define g @ U at the U \ L interface

according to (1.3.9), with ¢ >3 and B > 0. Then

(1.4.3)  P{s_> g(m)} ~ [ZJF(Lm)(Lzm)Z(L3m) cee ( YO R p]'1

LO‘Z e-1

which is of much smaller order of magnitude than
(1.4.8)  p_~ [2JpBc,_,mP7L
m o-1

In contrast we shall see for Siegmund”s boundaries and for those of
Theorem 1.6.1 (and also for Strassen”s when g 1s not too close to

L ) that

(1.4.5) Py ® P{Sm > g(m)}.

The extreme reluctance with which (l1.4.4) tends to zero is a
well-known phenomenon connected with the LIL. Were g only slightly

smaller we would have g € L aand hence Py~ 1 for every

. [

1.5. §$E§§und‘s result.

In stating Siegmund”s solution to the SLLN case g(t) = ct we
assume that c¢ > 0 1s sufficiently small. The criterion of smallness,
detailed in Section 3.4, is the same as for the Bahadur - Ranga Rao WLLN
result. We further assume that if F {s a lattice distribution with

span h, then ¢ 1is a point in that lattice.

i i SRR Bt pid i R " . destieibulibttin. ok s VIV W PR S

. d
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THEOREM 1.5.1 (Sifegmund). If g(t) = ct with ¢ > O as above,

then there is a comstant Y > 0 for which

(1.5.1)  pp ~ (1 + NP(S_> g(m)}. [

REMARK 1.5.2. (a) Siegmund determined the constant Y

explicitly and remarked that
(1.5.2) Y=>1 as ¢ => 0.

Nevertheless, for fixed ¢ the constant ), like the counstant p
and the series )\ in (1.2.10), depends heavily on the component
distribution F. So Siegmund”s result, unlike Strassen”s, is far from

an invariance principle.

(b) Siegmund utilized the decomposition (1.3.11). In analyzing the
gsecond term he used the fundamental identity of sequential analysis, the
large~deviation result of Bahadur and Ranga Rao, and some
renewal-theoretic calculations. The same kind of approach is used in

proving Lemma 2.4.1 to Theorem 2.1.1.

(¢c) For a generalization of Siegmund”s theorem to linear

boundaries g with nonzero intercept, see Theorem 3.4.1. ]




16

1.6. Completion of the solution to the convergence rate problem.

The solution to the convergence rate problem in the mgf case is
completed by the following theorem (cf. Theorem 2.1.1), which overlaps

somewhat with Strassen”s:

THEOREM 1.6.1. If g has a smooth derivative and satisfies the

monotonic growth conditions

(6.1 Bt
t

for some § > 0 and

(1.6.2) &Ly o,
then g € U and

(1.6.3) p ~1 =8® . ps > g(m)).
] m m’(m) m 8 0
REMARK 1.6.2. (a) That g belongs to U 1is an easy consequence

of the KPEF test.

(b) The theorem”s method of proof requires that g be kept away
from the U \ L 1interface and from linearity; hence the growth

conditions (1.6.1) and (1.6.2).

(¢) The rate of convergence of the factor P{Sm > g(m)} to zero
is given by Cramér”s theorem (1.2.7). Thus in the present case the
rate of convergence depends on F, but only through a (typically) finite

number of cumuylants of F.

ettt ginec PR P
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(d) One might expect that a result like (l.4.1), but with a
Cram@r-like correction to the exponential factor, would hold.

Indeed, we show in Lemma 3.2.4 that (1.6.3) can be recast in the form

142
7 = ® 1 gi(r) 7 2,.,3(t), ¥(e)
(1.6.3'a) Py = Iy = jm 45'1757{- e exp(¥ (t)TX(&—)l de.
/3

In particular, (l.4.1) holds for g(t) = o(t?/3).

(e) As in Slegmund”s case, g 1increases rapidly enough that

(1.4.5) holds (cf. Lemma 2.2.1(k)). |

EXAMPLE 1.6.3. The transitions from Theorems l.4.1 to l1.6.1 to

172 + §

1.5.1 are smooth. Let g(t) =t with 0 < § < 1/2.

Then
Py ~ (1 + 1/(28))P{s_ > g(m)}.

As § tends to its lower limit O, the factor (1 + 1/(26)) tends
to o®. This is consistent with Example 1.4.3. As § tends to its
upper limit 1/2, 1/(26) tends to 1, which is consistent with
(1.5.2) in Remark 1.5.2(a). Furthermore, we have seen in Section 1.2
that the form of P{Sm > g(m)} varies smoothly from the normal
approximation to Cramér”s theorem to the Bahadur - Ranga Rao

result. [

PRI S St G PV U
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1.7. A sketch of the proof.

In this section we present an outline of the proof of Theorem
1.6.1. For a precise statement and proof the reader is referred to

Chapter 2.

We shall use the standard terminology " S crosses the boundary g
at time m " to describe the event {Sm > g(m)}, although " s 1is

"

above g at time m " {s perhaps better. Notice that

{Sm_1 > g(m = 1), S > g(m), Spep > 8(m + 1}

is included in this event, even though S does not "cross” from one

side of g to the other.

The first step in the proof is to restrict to a finite interval
(m, vm) those times at which S crosses g in the event
{Sn > g(n) for some n 2 m} (whose probability is Py ). This is
done by choosing Vp SO as to satisfy two opposing constraints:
(1) that the probability of a g -crossing after time Va be
negligible; and (2) that g be virtually linear over [m, vm). The
"smooth derivative” condition guarantees that g~ changes slowly enough

to admit such a vm.

The first criterion is made precise by using elementary

subadditivity considerations and (1.3.12) to show that

(1.7.1) P

A sihain i Sedieadhe doy . Re L bbbt PRI NG WD W P e
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where

Po,v = P{Sn > g(n) for some m < n< v}

o
Using the mean value theorem, we then trap the graph of g over the
time—-interval {m, vm) between approximating lower and upper lines

lm and ‘m’ respectively, both passing through the point (m, g(m))

and having slope (1 + o(l)) g"(m) (see Figure 1.7.1). Writing lm

indifferently for £m or ?; , we define

Pm,vm(fm) 2 P{s > lm(n) for some m < n < v }.

Clearly

(1.7.2) Py v (?;) Spy, S
’'m ''m

which reduces the problem to that of showing

(1.7.3) Pav (fm) ~ 1
*'m

with { = or 7; and I_ defined in (1.6.3).
Let
Pm(lm) = P{Sn > fm(n) for some n X m}.

correspond to Pp v (fm) as p, corresponds to Ppy *
’m !m

If T = inf {n: n 2m, S, [m(n)} (as in Section 1.3, with

g replaced by lm ), then
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Fig. 1.7.1. g 1is trapped between approximating lines
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Pp(fy) = P{T < o}
=P{s > L (m} +Pn<T <o}
(1.7.4) = 1>{sm > g(n)} + P{m < T, < ol}.

The first term can be estimated using Cramér”s theorem (1.2.7). For
the second we use Siegmund”s techniques: the fundamental fidentity of
sequential analysis, the appropriate large—deviation result (here,

Cramér”s theorem), and some renewal theory. The result is
(1.7.5) Pm(lm) -~ 1.
From this we prove the analogue

(1.7.6) P f

m,v._''m
m

) ~ py(fy)

to (1.7.1). Equation (1.7.3) then follows from (1.7.6) and (1.7.5),

completing the proof of the theorem.

The heart of the proof lies with (1.7.5). It is enlightening to
examine the proof of (1.7.5) under the simplifying assumption that

F = §, the standard normal distribution function.

In order to apply the fundamental identity of sequential analysis
we first need to introduce the family of distributions associated with
F through exponential tilting. 1In the special case F = §
exponential tilting amounts to nothing more than a shift of location.
Accordingly, let Py denote the probability under which X,

Xz, .+ are independent and normally distributed with mean © and




22
unit variance. If
fm(n) = G& + €
and Tm is redefined by
Tm Z inf{n: n 2 m, Sn > G&},
then

(1.7.7) pm((m) = P{Sm > g(m)} + P(_cm){m < T, < w}.

The idea now is to tilt from P(_c ) to Pc . There are
n m

two reasons for this. First, since Ec (X) > 0, we have by the
m

SLLN the simplification

(1.7.8) {m < Tm <o} = {’I‘m >u} = {Sm £ Gh} a.s. Pcm.

- Second, letting Pén) denote the restriction of P to

e

the o -field generated by Xl, x2, ceey Xn, the Radon - Nikodym
derivative of P(n) with respect to P(n)

(=€) <.
assumes the particularly simple form

(n)
dP(_cm)
(1.7.9) —;;THT— = exp(-ZGmSn).
€
o
Thus

(n)
p(_cm)(m <T <o} = §n>m P(-cm){Tm = n}
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(n)

= zu)m J.{Tm - ) exp(-2€ S ) chn

(1.7.10) exp(-ZGmST ) ch ,
] ]

'j{m<rm<m}

demonstrating the fundamental identity of sequential analysis.

Recalling (1.7.8),

P(_cm){m < T o} = J‘{Sm ¢ (xm} exp(-ZCmS,rm) dPem

(1.7.11) = exp(-ZCm(Xm) Pcm{sm < (Xm}

J exp[-2€m(s.rm - X)) d(Pcm{° 'Sm <& 1),

The second factor on the right in (1.7.11) is
Pem{sm <&} =P{S <X -€nm}
= P{-Sm 2 -(Xm + Emm}
(1.7.12) - 1’{8m >, t+ emm},
making use of the symmetry and continuity of I One can show that
J%(emm -x) ~ 2% (m) = V(u) = o;
hence (1.2.8) implies that (1.7.12) equals

(1 + 0122 (2087 (@) ] exp(~ M (6 m - &)

(1.7.13) = (1 + o(1))exp(2cmo{m)§%{r‘;%—)-p{sm > g(m)}.

i = . N . - . .
ke oMt Sisidnion Do dag o o, —— — PR IR s am i .
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For general F, Cramér”s theorem (1.2.7) would be needed to evaluate

the final probability in (1.7.12).

Finally, the integrand in the third factor on the right in (1.7.11)
is the exponential of a product of two factors: Cm, which equals
(1 + 0(1)) g°(m) and so (see Lemma 2.2.1(b) and (1.6.2)) tends to zero
as m = ®, and ST - cxm, the amount by which § first
overshoots the levelm G& at or after time m. Using a
renewal-theoretic result of Lorden (1970) one can show that this excess

is of smaller order of magnitude than I/Cm and from this that the

integral on the right in (l1.7.11) tends to 1 as m = o.
Combining the results of our calculations,

(1.7.14)  p (£ ) = P{S_> g(m)}[l + (1L + o(l))z—zﬁfz—m)].

which can be reduced without difficulty to (1.7.5).

1.8, Extensions.

Theorem 1.6.1 1s restated and proved in detail in Chapter 2. 1In
Chapter 3 we give a correct proof of Strassen”s theorem and a slight
generalization of Siegmund”s. Chapter 4 discusses whether > can be

changed to 2 or vice versa in the definition
P, = P{Sn > g(n) for some n 2 m}

without affecting the convergence rate and considers the case of two

boundaries. In Chapter 5 we obtain a partial asymptotic expansion for




B
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Py in Strassen”s case. The expansion given by this invariance
principle contains a greater number of terms the nearer g 18 to the
U \ L 1interface and in fact forms a complete asymptotic series

when g leaves the range of Theorem 1.6.1. We also get asymptotic

upper bounds on the relative error in the approximation (1.6.3).

We conclude this summary by listing without comment four problems

ripe for future research.

(1) Develop complete asymptotic expansions for P, to extend

Theorems 1.5.1 and 1.6.1.
(2) Increase the dimensions of both X ("state”) and m ("time”).
(3) Allow the components Xk to have unequal distributions.

(4) Treat the non-mgf case. In other words, what results can be

salvaged when only finiteness of low—order moments 1s assumed?

. —




CHAPTER II
COMPLETION OF THE SOLUTION TO THE CONVERGENCE RATE PROBLEM

In this chapter we more carefully state and prove Theorem 1.6.1,
thereby completing the solution to the general problem of convergence

rates related to the SLLN.

2.1. Statement of theorem.

Let X, Xl, Xz, s+ be independent random variables with
common distribution function F, zero mean, unit variance, and moment

generating function Eexp(¥X) finite for & in some neighborhood

of 0, and put
s =30 20
n k=1 Xk’ n :
Let
K(3) = log(EeS™)

denote the cumulant gererating function corresponding to F. The

gso-called Cramér series

M3) = 32 53"

for F 1is defined implicitly for & near O by

26
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K(z) - z§ + %52,

z(3) ) given by K7(z) = §.

(2.1.1) D)
z (

Let g: (0, w) = (0, @) and write
g(t) = A¥(t).
Define

(2.1.2) = P{Sn > g(n) for some n 2 m}.

Py

THEOREM 2.1.1. Suppose that as t { @

@1 Ht
t

for some 0 < § < 1/2 and

(2.1.6) & 4o,
If g is continuously differentiable and if for some 0 < r <1

(2.1.5) g (u) ~ g7 (t)
when t, u = o with t < u < e[l + 1/05(e)],

then g € U and

(2.1.6) Py~ Iy E./%%%u% P{SIll >g(mn)} as m > ®. [

e i m st 0 BRI o Ontaiticn i s . De . PP vy DI NP NPT U SR err s ¥
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REMARK 2.1.2. (a) The conclusion (2.1.6) continues to hold if the
various regularity conditions imposed on g are assumed to hold only

for large t.

(b) The technical interpretation of (2.1.5) is that both the sup

and inf of the sets

3;%:—} :t<uftfl+ I/Uzr(t)]}

(2.1.7) {8

tend to unity as t = o®. This assumption is implied by the

condition
(2.1.8) g (u) ~g°(t) as u~t = o,

which we interpret to mean that for any function 8 of ¢, if

s(t) ~t as t ~>» o, then both the sup and inf of the sets
rd “) .
{8 ey ¢ U is between t and s(t)}
tend to unity as t = w.

(¢) The rate of convergence for P{Sm > g(m)} is specified by
(1.2.7-8).

2.2. Some facts about the boundary.

The present section is reserved for a list of elementary properties

of g resulting from the assumptions (2.1.3-5).
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LEMMA 2.2.1. Let g: (0, o) = (0, o) be continuously
differentiable and satisfy (2.1.3-5), and let g(t) = tl/zi(t).

Then
¥(e) ¥(v)
(a) t (wh ¥(t) 1 ® ) and ¥ 0;
Jt's— whence @ an T

® G+ 6HEEL ¢ go(ey ¢ B

() 7(e) = £ 2(go(r) - L 8L,

@ 6K ¢ geqey « T,

@ Fe - -3 YR T,
t

(£ og-i’?(?%l)c(%—-s%l;

3 2
a2, 4 9(O) 1 _ o U)o Fo(e) .
® 0 HOFEED < G- gt = ot as £ w;

(h) Yu) ~¥(t) as u~t => o
(1) %) -¥%(t) >0 when t, u > @ with tSugdt+1;
() V7 (u) ~¥(t) vhen t, u=> ® asin (2.1.5);
(k) 2<BL8) g4 L
J¥ (e) 13
PROOF. (b) We have

by (2.1.4). The first inequality follows simflarly from (2.1.3).
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(d) Combine (b) and (c).
(f) Combine (d) and (e).
(g) Use (f) and (a).

(h) If t £ u then (a) yields

B(e) < Bew) < (HPY?

T(e) = (1 + o(1))V(e);
the case t > u 1s handled similarly.

(1) By (a), the mean value theorem, (d), and (h),

0¢< Wz(u) - 92(e) Wz(t +1) - 92(e) < B(e + 1) » Wit)

2
¢ 1+ o1 EE 4 51,

(1) Use (c¢), (b), and (h) and (2.1.3).
(k) Use (¢) and (b). |

In Sections 2.3 through 2.6 we prove Theorem 2.1.1 following the

outline of Section 1.7.

B T W R N : . —ada
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2.3. Restriction of g -crossing times to a finite interval.

Throughout this section "fact (*)" refers to part (°) of Lemma

2.2.1.
Recall that we wish to define Vo >m in such a way that
(2.3.1) pvm - o(pm) as m~> ®

but g is virtually linear over [m, vm). As it turns out, an

appropriate choice is

(2.3.2)  v_ = [a(l + 1/¥¥%@) | .
Tact (a) implies that

(2.3.3) v ~anm

and (2.1.5) ylelds

(2.3.4) g’(t) ~g’(m) when m, t => o0 with m<t < Vo

LEMMA 2.3.1. 1If Yo is defined by (2.3.2), then (2.3.1) holds.
PROOF. By subadditivity
(2.3.5) Py £32 5 P{Sn > g(n)};

we“ll replace m by vy, in (2.3.5) to get an asymptotic upper bound

on p, . By Cramér”s theorem,
m

P{s > g(n)} ~ [JBW(n)] texp(- é#z(n)[l - ¥ )(V(n) 1)




32
= -1 172
(2.3.6) ~ [L2W0(n)] “exp{- 57" ()},

where

{Wz(t)[1 zW(t)x(W(t))]}l/z

(2.3.7)  W(e) &

Note

(2.3.8)  U(t) ~W(t) as t = w.

Also, as t &9 ®

20¢e)F- () = 20¢e)F-(e)[L - ZW(E)X(W(E))]

- 20 - A8, L A, « Ky KDy,

= (1 + o(1)N2V(e)T (v)
- @+ oo -
= (1 + o(1N2W(e)T (1)
by facts (d) and (g), so that

(2.3.9) T (t) - ¥ (¢)

Hence when t, u = o with t { u gt +1

- ~ 2
(2.3.10) 0 < #2w) - (o) € (1 + o1TLEL = o1y
(cf. proof of fact (i)). From (2.3.5-10) and facts (h) and (d) follows

Aoy < (1 +0(1)) 5y (F(m)]7h expl- 3H2(n)]
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- (1 + o(1)) J‘: (W¢e)]" exp[- % ¥2(e)] de

< (1 +o(1)) 87t er‘— exp[- 292(t)] ¥-(t) at
2 o) al

- o(-].:ﬁl/s ~ 2(¢) exp[- %ﬁz(:)] ¥-(t) dt).

But
[278 = 20y expi- H2(o01 T (o) ar
o S
'ji(m) M2 T a
- /8 7 3(myexpl~ 1HP(w))
so

@.3.10)  p = o8 7 3myexp(- SH2(m))).

Now by the mean value theorem, (2.3.8), (2.3.9), facts (j) and (d), and

(2.3.2),
- - 32
v - P 2 a4+ o126y - n)

F2(1 -

= (1 + o(1))267 ™ (a)

and thus (2.3.11) (with m replaced by Vo ) easily yields

p, = o([ZWH(m)]  exp(- FFi(@)])

v
m
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(2.3.12) = o(P{Sm > g(m)}).
To complete the proof of Lemma 2.3.1 use the obvious bound

(2.3.13)  p_ 2 P{S_ > g(m}. [

Define

(2.3.14) Ppy ™ P{Sn > g(n) for some m £ n < vm};
’'m

clearly,

(2.3.15) p <p $p,, +p, -

m,v
m o o

We therefore immediately obtain

COROLLARY 2.3.2. With Py given by (2.1.2) and Pn v by
’
m
(2.3.14),

(2.3.16) Pp~Pp, @s @ > o. |
b
m

2.4. Linearization of the boundary.

We define here straight lines _(ﬂ and Tm, both passing through
the point (m, g(m)), which well approximate g over the interval
[m, vm] (Fig. 1.7.1). The definition of zm (respectively, ‘m )

together with the mean value theorem will imply that this line minorizes

(majorizes) g on [m, vm].

“ .
R, e e e b i i i AR o Tttt i st N
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The slope Em (respectively, Gm) of J_Lm (R.m) is

defined to be the minimum (maximum) value of g~ over the interval
{m, vm]. We now treat both lines at once by writing, for example,

{  1indifferently for f  or Tm. By (2.3.4)

(2.4.1) Gm ~g°(m) as m = o.

The y -intercept of lm is

In analogy with (2.1.2) and (2.3.14) define

(2.4.3) Ppf,) = P{s > £ (n) for some n 2 m}

and

(2.4.4) pm,vm(gm) = P{s_ > fm(n) for some m < n < v }.

The key to analyzing (2.4.3) is the following lemma, to be proved in the

next section.

LEMMA 2.4.1. Llet | g denote the straight line

(2.4.5) lm(t) =X + €t
and define pm(tm) by (2.4.3). If € > 0 satisfies
(2.4.6) €, >0

and
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(2.4.7) JEcm -> o,
and {f

lx_|
lim sup m
(2.4.8) 2= o ——Gmm <1,

then

2€
m

(2.4.9) ) ~ —=
¢ --=u
m o

-P{Sm>fm(m)} as m > o. [

REMARK 2.4.2. The conditions (2.4.6-7) demand that Cm tend to
0, but not too quickly. Assumption (2.4.8) requires, loosely speaking,
that the limiting proportional contribution of the constant term to the
value at t = m of either (m(t) =X +€¢t or

lm(t) = *mm + €mt (which arose in (1.7.12) for the example

F =9 ) is less than 1/2. It follows from (2.4.8-9) that

p(f) = B{S_> £ (m)}. @

According to (2.1.3-4), (2.4.1-2), and Lemma 2.2.1(b), ‘m = £m

or ?; satisfies the assumptions of the lemma. Recall that
(2.4.10) (m(m) = g(m).
Furthermore, by (2.4.2), (2.4.1), and Lemma 2.2.1(b)=(c)

X
m m 2

m m




37

- 2(Q1 + o(1))g"(m) - 3 BB

- (1 +o(1)2(g"(m) - 3 BB
(2.4.11) = (1 + o(1))2./a¥" (m).
Combining (2.4.1) and (2.4.9-11) we get
(2.4.12)  p_(L) ~J§%‘§%)- P(S, > s(m)} = I, as u > w,
completing the analysis of (2.4.3).

In Lemma 2.4.3 below we”ll prove the analogue

(2.4.13) pvm(fm) = P{Sn > !m(n) for some n 2 vm} = o(pm(lm))

to (2.3.1). As an immediate corollary (cf. Corollary 2.3.2),

(2.4.14) pm’vm(lm) ~ py(fy) as > .

We combine (2.4.14) and (2.4.12) to obtain the rate of convergence for
(2.4.4):

(2.4.15)  p_ (fm) ~1 as m > ®.
’'m

Moreover, since g(n) 1is trapped between lm(n) and 7;(n) we have

(2.4.16) pm,vm(-[m) < Py,y_ < P,y o)

The main result (2.1.6) follows from (2.3.16) and (2.4.15-16).
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The remainder of this section is devoted to the following corollary

to Lemma 2.4.1.
LEMMA 2.4.3. With (m -gm or Rm, (2.4.13) holds.

PROOF. To begin the proof of (2.4.13) we apply Lemma 2.4.1 to the

left side to yield

2€m

(2.4.17)  p_ (f) -
m

e -
m

P(s, > £ (vp)},
m

g |s®

recalling (2.3.3) to verify the hypotheses (2.4.7-8). In light of
(2.3.3) and (2.4.8), the first factor on the right in (2.4.17)
asymptotes to the first factor oar the right in (2.4.9), or, in the
present context, to the first factor in Im (recall the proof of

(2.4.12)). Moreover, by Cramér”s result

P{svm > £ (v}

_ ¥ (v) ¥ (v)
(2.4.18) - [JBW_(v )] texp{- ¥ (v y(1 - 2 TN
m

m

here we have written
(2.4.19) L (¢) = ﬂm(:)
8o that Vm(m) = J(m) and

mm(vm) - vmQI/zim(vm)
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v -1/2
m

me + vam)
- (1 +o(1)u (& + € m)
(2.4.20) = (1 + o(1))¥(m).

Put

UNO RN 172
(2.4.21) V (t) - {W (t)ll - ZT)(-T‘— H

then

(2u6.22)  BlS, > f (v} ~ [FFH@)]  expl- 3 2.

m
But with
2.6.23)  £(5) = E[1 - 28MH)] - § as § >0,

so that

we have

¥ (v.) V (m)

2 - ¥y <m)-vf(%v-——)-mf(T)

'm(ﬂl) V (V ) ' (m)
-y [f( R ) =~ £( F )]"'(V ‘m)f(T‘)

ittt ot elicnbien btibontliedenitticnsin

(2.4.24)  £°(%) = 28[1 = 2EM¥)] - 222(\Z) + IV ()] ~ 23 as § >0,

-
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¥(m) T (v)
- . o¥(m), m _mm
= -(1 + o(l))m ZT( ﬁ Jvm )
2
+Q m < (m)

+ o(l)) 57—
le‘(m) m

X X
= =1+ o(1)) + 2V (6, + ) - (&, +v—:->1

+ (1 + 0¥ = Pay

m -
.- o)) ¢ 2@ - 2y + 1+ o ™) (m)
m

%a 201 = )y

- =1+ 0(1)) - 20 T @ -+ 1+ o))V

x
m

- =(1 + o)A T () - 22

(0.4
1+ oA T @ - (6 + )

= (1 + o)A T @) - (6 - .

- (1 +o(1)) « 208~ (¥’ ~ FT(m) (recall (2.4.11))

2 (1 +o(1)) - 26031 T P(m) (Lemma 2.2.1(d)).

So
Pvm(gm) p{sVm > ’m(vm)}
W = (1 + o(l)) P(Sm > g(m)}

"*‘—-““l‘lf"" “‘ . i PP PN .
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= (14 o(1) + exp(= T, 2(v,)- §,2(@)1) = o),

completing the proof of (2.4.13).

2.5. Line-crossing probabilities.

This section is devoted to the

PROOF of Lemma 2.4.1. ﬁ\§§}rsc need to establish some notation.

Define the distribution function Fm by
(2.5.1) Fm(x) = F(e, + X);

in other words, if X 1is distributed according to Fm , then
X - Gm has distribution function F. The effect of Fm will be to
replace the linear boundary lm by a horizontal one: in obvious

notation,
pm(lm) - PFm{sn > X for some n X m}.
Let Km denote the cumulant generating function corresponding to
Fm, so that
(2.5.2) Km(g) = K(%) - cmg.

Recall the assumption that K 1s finite in an open interval I

containing 0; Km is also finite in this interval.
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Since F has zero mean and unit variance, it is well-known that

(2.5.3) K@) ~33, K@ ~F K'(@F) >1 as >0,

and that
fEfﬁ' (2.5.4) K(0) =0, K°(0) =0, K"(¥) >0 for all § e I.
From (2.5.2) and (2.5.4)
(2.5.5) K (0) =0, K (0)~-€, K "(3) >0 forall ¥el.

Hence there exists at most one nonzero value §1(m), neceggarily
positive, for which Km(gl(m)) = 0. We now show that Sl(m)

exists for sufficiently large m and that
(2.5.6) §l(m) ~ 2€m as o= .

Indeed, let Sm = 0 be an arbitrary real sequence. By
(2.5.2=3),

(2:5.7) R (3D =(1+o(1) -3 -6% as 1 .

In particular, with Sm =C - ZCm (c >0

(2.5.8) K (3) = 2cem2[(1 + o(1))C - 1].

If C <1, then K (3 ) ~ -2C(1 - G)6.2 < 0; 1f C> 1, then
2
Km(gm) ~ 2C(C l)Gm > 0. Thisg shows that §l(m) exists
for gsufficiently large m and that, for any pair of constants
0<Cc<C<1<c”, CcK Sl(m)/(Zem) < C° for large m; (2.5.6)

follows.
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Similarly, for large m there exists exactly one point

So(m) e (o, gl(m)) at which Km’ vanishes, and
(2.5.9) So(m) ~ Cm as m ~> .
This follows from the fact that if Sm -> 0, then
(2.5.10) Km‘(gm) = (1 + 0(1))gm -€ as m -2 o.
Next, let Pm denote the probability under which X, xl,
Xz, eeo are i.i.d. with

(2.5.11) Pm{x e dx} = exp[So(m) * X - Km(so(m))] Fm(dx).

Pm has cgf

6.(8) = K (3,(m) +8) - K (3,(m))
(2.5.12) = k(3 (@) + 0) - K(3y(m)) - 6.6
note that

(2.5.13) 6m(0)

6.7(0) = 0, ."(0) = K"(3p(m)).

Put

(2.5.18)  8y(m) = -3,(m), O (m) = §,(m) = Z,(m).

Then
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{2.5.15) eo(m) - -Cm, el(m) ~ Cm as m = o

and

6,(85(m) = 6.(8, () = ~K_(3,(m)) = ~(K(3,(m)) + €_8,(m))
(2.5.16) - %sz as m = .

We now introduce the distributions associated through “exponential
tilting” with that of X wunder Pm. For each real 6 for which

6m(0) < ® let P be the probability under which X,

,0

X X are 1.1.d. with

1r Xgy oo
Pm’e{x edx} = exp[ex - dm(e)] P (X € dx}
(2.5.17) = exp(ex - 4_(8)] exp[3;(m) * x - K (3,(m))] F_(dx).
The corresponding cgf §, o 1s given by
by o0 = 6(0 + ) ~ 6_(8)
= K (Zp(m) + 6 +M) - K (3,(m) + ©)
(2.5.18) = K(Zp(m) + 6 +7) - K(5y(m) +0) - 6.

In particular,

(2.5.19) Em, X = 6m’e'(0) - dm’(e) <, =, or>0

according as @ <, =, or > 0

by (2.5.13) and the strict convexity of 6m'

- . ~ - - X .-
:m daifiinge -ty i dadon




As special cases of (2.5.17),

P = P

., m,0 Y

Pl!l,e.l‘(m){x € dx} = exp[gl(m) * x] Fm(dx),

and 1
Pm,eo(m){x € dx}
= exp{[3y(m) + 8y(m)] * x = [6_(8,(m)) + K _(35(m))]} F (dx)
(2.5.20) = Fm(dx) = F(Gm + dx)

(cf. (2.5.14), (2.5.16), and (2.5.1)). Hence by (2.4.3) and (2.4.5)

(2.5.21) pm(lm) = p {Sn > X for some n 2 m}.

m,BO(m)

Without loss of generality we consider Pm o tO be the
’

1 Xpy eees defined on the space of (infinite)

sequences of real numbers. Accordingly, let P;ng
9’

distribution of X

denote the restriction of Pm g tO the o -algebra generated by
»

the first n coordinates ( n =1, 2, ... ). Then for any ©° and

- (n) (n)
e, Pm,e’ and Pm'e" are mutually

absolutely continuous, and by (2.5.17)

dP(n;,
m rd 1] rd "

(2.5.22) :!P—(;—'— - eXP{(e -9 )Sn - n[dm(e ) - dm(e )]}-
o,

)
8"
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In particular, by (2.5.14), (2.5.16), and (2.5.22),

(r
dl:‘m,eo(m)
(2.5.23) ;P(—n)—- - exp[-gl(m)sn] (n=1, 2, ... ).
m,el(m)
Let

T, - inf{n: n 2 m, Sn > Gim},
the inf of the empty set being +m . Then by (2.5.21)

(2.5.24) pm({m) = p {s, >} +P m<T <}

myeo(m) m,eo(m)

By (2.4.5) and (2.5.20), the first probability in (2.5.24) is

P{Sm > lm(m)}. To complete the proof of (2.4.9) we shall use the

approach of Siegmund (1975) to show that

€ +

m
(2.5.25) Pm,eo(m){m < T, < ®} ~—
¢ -

. P{Sm > lm(m)} as m = ®.

a|59 a]ag

We first apply the fundamental identity of sequential analysis, to

wit: by (2.5.23)

Pm,eo(m){m < 'rm < o}

@
= 2n-urO-I J-{Tm = n} exP[-Sl(m)Sn] dpm,el(m)
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' ) I{m <1, <) exp(=3,(mSy 1 ¢¥y.6, (m)
(2.5.26) = exp[-gl(m)otm]

: J.{m < Tm < m} exp[-gl(m)(svrm = (xm)] de’el(m)o

Recalling el(m) > 0, (2.5.19) implies Em,el(m)x > 0; hence by

the SLLN

{fn<T <o} = {fm<T £ o} = {s, <&} a.s. Pm,el(m)’

i 0 s g VP ———

and the final integral in (2.5.26) equals

J‘{sm < am} GXP[‘SI (m) (sTm - am)] dpm’el(m)

=P {s, €& }E )(exp[-gl(m)(s,rm -&)D) s <)

(2.5.27) - Pm,el(m){sm £ (xm}

(exp(=3,(m)(Sp = &) IS, =& - y)
m

) I[o.w) Eu-,e>1(u:)

. Pm,el(m){sm € X - dy s, €&}

The last conditional expectation in (2.5.27) is

(2.5.28) Em’el(m)(exp[-gl(m)(&r(y) - Y)]),
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where T(y) = inf{n: Sn > y}. We show below that the expression

(2.5.28) tends uniformly in 0 { y <@ to 1 as m~> o; thus

(2.5.29) Pm,eo(m){m < T, <} ~ exp[-gl(m)otm] . Pm,el(m){sm < (Xm}.

Moreover, mimicking the proof of Cramér”s theorem we”ll show in

Section 2.6 that

€m+

(2.5.30) Pm’el(m){sm I4 OKm} ~ exp[gl(m)o{m] . . p{sm > Qm(m)}_

B|aR|B |

e -
m

Then (2.5.25) follows from (2.5.29) and (2.5.30).
The first of our two assertlons 1is that
(2.5.31) Em,el(m)(exp[-gl(m)ay]) 2> 1 as m = o,

uniformly in 0 { y < @,

where Ry - S‘[(y) - y 1is the excess over the horizontal
boundary with level y. 1In light of the inequality

12 e;q 21-"M for W20 and (2.5.16) it is enough
to show that the nonnegative quantity

1
(2.5.32) suP{Em,Gl(m)Ry :0Ly< @} = o(E;) as m = o.

Indeed, for 0 { y < o we find

( 2

2
E:m,el(m)ay)

< Fa0 (mfy
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4 +3
<3 Em,el(m)(x ) /Em,el(m)x

using theorem 3 in Lorden (1970). An easy dominated convergence
argument shows that E (X+)3 - E(X+)3 { o, and
m’el(m)

by (2.5.19),(2.5.12),(2.5.14),(2.5.10), and (2.5.6)

Em.91(m)X - 6m’(el(m)) = K’(Sl(m)) - €m
(2.5.33) = (1 + 0(1))§l(m) - em = (1 + o(l))em.
Therefore

sup{E 0Ly<o} <1+ o(l))[%'E(X+)3/Cm]1/2

w,6, (m)"y’
(2.5.34) - 0(em“1/2) - o, 7h.

which proves (2.5.32).

The remaining assertion is (2.5.30). Standardizing to zero mean

and unit variance,

Sa 7 a0, m)*
P2,0, (@) %0 < %l * Pa,0, (my{To o7 ~ug}
m,8, (m)
with
(2.5.35) u_ = ~(X - mE X)/(aVar /2.
< a m m,el(m) m,el(m)
ST - astahiiinana. .. i PTSa
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From (2.5.33) and

(2:5:36) Var, o ()% = §57(8 (@) = K"y (@) = K3y (@) > 1

and (2.4.8) follows

X
m

(2.5.37)  u_ ~Ja(cm - =)

Let Gm be the standardized distribution of (=X) under

Pm,el(m)’ and let )m be the assoclated Cramér series.

Were it not for the dependence of Gm on m, direct application of
Cramér”s result (which holds as well when > 1is changed to 2 on

the left in (1.2.7)) would give

um um
(2.5.38) Pm’el(m){sm <G}~ P{Z > u texplp (D]

In fact, (2.5.38) can be established by rehashing the proof of

Cramér”s theorem and used to deduce (2.5.30). We shall follow a
somewhat shorter route and verify (2.5.30) directly, but our proof, like
Cramér”s, will be based on the standard large-deviation technique of

exponential tilting.

2.6. A Cramér-like result.

In this section we complete the proof of Lemma 2.4.1 by

establishing the Cramér-like result (2.5.30).

irticatiocs il EETN T SO R S
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For abbreviation we introduce the notation
q&
(2.6.1)  W(m) = £ (m)/m = /(e +—).

This should cause no confusion; after all, whenever Lemma 2.4.1 is
applied to the original convergence rate problem the identification

(2.6.1) is made. In additiom, let
(2-602) zm - z(——'

with 2z defined in (2.1.1) and put
(2.6.3)  8,(m) = z_+ 64(m);

we shall soon tilt from Pm,Sl(m) to

the left side of (2.5.30). Observe

Pm,Bz(m) to compute

¥(m)
(2.6.4) Zm -~ T - 0,

X
(2.6.5)  8,(m) = T‘“ +o(e)) = 0,

(2.6.6)  8.(8,(m)) = K(z,) = R(3p(m)) = €.8,(m).

Also note that

(2.6.7) Em,ez(m)x - dm‘(ez(m)) - K‘(zm) - em - ¥(m) - em

e

and that

2

(2.6.8) o = Varm’ez(m)x = 6m"(82(m)) = K"(zm) - 1.
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We are going to use the Berry-Esséen theorem, and so the third

absolute moments

13, e=ElxI* <

(2.6.9) 0y = E Ix

m,ez(m)

will arise; dominated convergence gives

(2.6.10) gm -> ¢.

Let

(2.6.11) "m = Pm,el(m){sm £ di}

denote the left side of (2.5.30). Putting 6" = el(m),

8" = 0,(n), and n=m {n (2.5.22) ylelds
(2.6.12) W = exp{-m[ (8,(m)) - ¢ _(8,(m))]}
. J(-m & ] exp[(8, (m) - 6,(m))s] Pm,ez(m) {Sm 6 ds} .
Recalling (2.5.16) and (2.6.6) and simplifying,
(2.6.13) W = exp{-m[€ z - K(z )]}
. J‘(_m PR CIORENORERD

. Pm,ez(m){sm e ds}.

If the approximation ﬂm to W is obtained from the right
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side of (2.6.13) by replacing P

normal distribution P{Gﬁ + ml/2

m,ez(m){sm € ds} with the

amz € ds} with the same mean

and variance, then (completing the square and rearranging)
"m = exp((8, (m) = 8,(m))X ]
1 2
+ explzuo (9, () - 8,(m)F] P{z < ~Jao (0, (m) ~ 8,(m))}
. exp{m[K(zm) -z - !éal]}

(2.6.14) = exp{ (8, (m) ~ 8,(m) )X ]

+ exp(- 22 (@) + h(JBo_(8, (m) - 8,(m)))]

3
+ expiim KR,y
where
1.2
3t
(2.6.15) h(t) = log(e « P{Z > t}]).
Note
12
he( _1 73t
t) =t ﬁe /P{Z > t}
(2.6.16) ~ =1/t as t = ®.

So by the mean value theorem

h(ﬁam(el(m) - 8,(m))) - h(J:i(em - E'“l-))

N .
ittt o A bt P ST AR PRSI Y
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%

x
= =(1 + o(1))JBlo (8, (m) - 8,(m)) = (€, = 2D/ [H(E, - D]

(2.6.17) = o(l),

and hence the second of the three factors on the right side of (2.6.14)

is (1 + o(l)) times
1y2 Gﬁ
exp(~- §¢ (m) + h(JE(Gm -]

152 1 %2 x
exp[~ 3¥"(m)]exp[zm(e - —)"]1P{Z >Ae - -}

X
(1 + o) (8, - =27 (2mm) ™ Zexp(- 192 ()

%
€t o -1 142
= (1 + o(1)) 5 [2W(@)] " exp(- 5¥%(m)]
m
‘2"
€ +—
= (1 + o(1)) 5 Pz > ¥}
¢ --2
m o

In light of (1.2.7) it is now clear that

(2.6.18) ﬁm ~ right side of (2.5.30). +

Moreover, integration by parts in (2.6.13) leads to the error

estimate

ORI P X GNP TR .
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| f m .
(2.6.19) "m - m| £ 2C - 3JE exp[(el(m) - eo(m)xxm]

[+ 4
m

. exp{m[K(zm) -zt !éal]}

where C is the universal constant appearing in the Berry-Eséen

bound C ° 9/(a3n1/2

) on the error in the central limit
theorem (see Feller, 1971, p. 542). Comparing with (2.6.14) and

recalling (2.6.15), the right side of (2.6.19) is

O

o 3}5

m

(2.6.20) 2C ° * f_exp[-h(Jho (8, (m) - 8,(m)))].

But
(2.6.21) exp[~h(t)] ~2Wt as t 2> o,

so by (2.6.8), (2.6.10), and (2.6.21), (2.6.20) is

X
(1 + o(1)) * 2CeZW(E  ~ -mﬂ)ﬂm = o(f).

Together "m ~ ﬂm and (2.6.18) give (2.5.30), completing

the proof of Lemma 2.4.1. [
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CHAPTER III
STRASSEN AND SIEGMUND REVISITED

3.1. Introduction.

The following theorem on boundary crossing probabilities for

Brownian motion B 1is duvue to Strassen (1965, cf. thm. 1.2).

As in Chapter 2, let g: (0, @) = (0, ®) and write
g(t) = &V(t)

THEOREM 3.1.1 (Strassen). Suppose that g 1s continuously

differentiable with

(3.1.1) ESZ-?-T

as tt for some L > 0. Assume as in (2.1.8) that
(3.1.2) g7 (u) ~g°(t) as u~t=> o
and that g € U(B). Then

(3.1.3) P{B(t) > g(t) for some t 2 s} ~ Jg as s - o,

where

56

FPTEIR:

witetalthuio,. i doiom i




57

1p2
. - 5¥°(t)
- |° 1 (t) 2
(3.1.4) JS = s h-" ~ e de. [

Approximating the random walk S by B using Skorohod embedding,

Strassen deduced Theorem 1.4.1. For Skorohod embedding Strassen was

able to show that

1/2 /4

{3.1.5) Sn = B(n) + O(nl/a(log n) (log log n)1 ) a.s. asn - o,

but this bound is crude enough that Strassen was forced to impose the

3/5 -
/3

restriction g(t) £ t in place of the more natural (cf.

(1.2.9a)) g(t) = o(t2 ). Furthermore, as explained in Remark

1.4.2(b), Strassen”s use of the Skorohod technique is flawed.

A response to both criticisms is provided by the approximation
scheme of Komlds, Major, and Tusnady (1975; 1976). These
authors used techniques strikingly different from those of Skorohod to
obtain a better approximation of B to S. The resulting improvement

(Komldés, Major, and Tusnidy, 1976, thm. 1) to (3.1.5) 1s
(3.1.6) Sn = B(n) + 0O(log n) a.s. as n => o,

and Komlds et al. showed that (3.1.6) is the best possible result in
this direction. In Theorem 3.2.1 we use Theorem 3.1.1 and the
Komlds et al. approximation to give a correct proof of Theorem

2/3

1.4.1, widening the range of boundaries to g(t) = o(t™'7).

Corollary 3.2.3 provides a neat summary of Theorems 2.l1l.1 and 3.2.1.

- g P X N . . .
e 2NN Diaghins. e . ) " .~ . -

PRSI T S U U S Y
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In Section 3.4 we generalize Theorem 1.5.1 to linear boundaries g

with nonzero intercept.

3.2. Strassen revisited.

THEOREM 3.2.1. Adopt all the assumptions of Section 2.1 preceding

(2.1.6), relaxing (2.1.3) to
t)
(3.2.1) 551757
t
and tightening (2.1.4) to

(3.2.2) ESZ% y0
t

and (2.1.5) to (3.1.2). If g € U, then

(3.2.3) Py - Jm as m => o

>
with J_  given by (3.1.4). |

REMARK 3.2.2. (a) As with Theorems 2.1.1 and 3.1.1, the various

regularity conditions imposed on g need only hold for large t.

(b) We remark without proof that condition (3.1.2) can be relaxed

to (2.1.5). One must then assume, however, that

(3.2.4) 88 __ 4

(tLet)l/z

for some ¢ or, more generally, that
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(t)
(3.2.5) t
(tf(t))1 2

for some function f{ satisfying

(3.2.6) £(t) 1 ©, (log £)~(t) 2 t~>/%
for large t. J

We postpone the proof of Theorem 3.2.1 to remark that Lemma 3.2.4
below allows us to combine Theorems 2.l.1 and 3.2.1 to form a strong-law

analogue to Cramér”s theorem:

COROLLARY 3.2.3. Adopt all the assumptions of Section 2.1
preceding (2.1.6), easing the restrictionon § to 0 < § < 1/2

and tightening (2.1.4) to

(3.2.7) 8L 4o
171

for some 0 <M < 1/2 and (2.1.5) to (3.1.2). If geU and

either 6§ >0 or Y 2 1/3, then

- ¥

(3.2.8) p_~J_ = ® 1 g (e,

2,39¢e), F()
- o 2% & exp[¥ (t)T)(T)] dt. [

Lemma 3.2.4 obtains the alternative integral expression (3.2.8) for

the rate of convergence of P in the case of Theorem 2.l.1.
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LEMMA 3.2.4. Under the assumptions of Theorem 2.1.1, (3.2.8)

holds.
PROOF. According to (2.3.6) and the normal tail estimate (1.2.8),

P{S > g(m)} ~ P{2 > ¥(m)}

-~

with ¥ defined in (2.3.7). It follows (cf. (2.3.2), (2.3.3),

{2.1.6), (2.1.5), and Lemma 2.2.1(J)) that

L‘“-'l- p{z > V(v )}

P d
Vy AU (a

and hence from Lemma 2.3.1 and (2.3.9) that

I(m) ~ o~
RER °‘“)J§'\F(TS PF(m) < 2 < P(v))

<}
]

172
-ﬂ(t)-
g (m) -
(1 + 0(1))JEW‘( Sl 42" e P-(t) dt

v [ g ¥

(L + 01N, - I, ).
m

(3.2.9)

But using Lemma 2.2.1(k) we find

I TC L

ca+diy [T Lo 9-(c) dt
25 o BN
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172
- 3%
a+oy arp [T L HORT

(1 + o(1)) (1 + 715) P{z > W(m)}

(1 +0(1)) (1 + ) P{S_ > g(m)}
and similarly

J
m

v

(1 + o(l))ZP{Sm > g(m)}.

Hence

(1 + o(1)) —= T < Em/pm < (1 + o(1)) % Q1 +§18)'
1+3¢

Thus

(3.2.10) 0¢ 3, € (+ o) 7 (1 +355) Py = o(py) = o)

and (3.2.8) follows from (3.2.9-10). [

We now undertake the proof of Theorem 3.2.1. Using the
approximation of Komlds et al. we shall prove in Section 3.3 the
following strong invariance principle to be used in conjunction with

Theorem 3.1.1.
Extend the time domain of S to ([0, o) via the definition

(3.2.11) S(t) = SLt_J , 0£t<<ow.
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LEMMA 3.2.5. Adopt the assumptions of Theorem 3.2.1. Choose

X >0 and put
(3.2.12) h=g%

Then, without loss of generality, there exist a Brownian motion B and

positive constants K and M such that

(3.2.13)  P{IS(t) - B(t)] > h(t) for some t 2 s} < Ke "0(8)

for all s > 0. [

REMARK 3.2.6. (a2) The phrase "without loss of generality” is to be
interpreted in the specific sense of Strassen (1965): there exists a
probability space on which S and B are both defined and (3.2.13)
holds. The proof of Theorem 3.2.1 then applies to this version of S,
but Py = P{Sn > g(n) for some n 2 m} 1s clearly the same for any

version of S.

(b) The constants K and M depend on F, g, and X. [

In proving Theorem 3.2.1 we apply Lemma 3.2.5 with Ol = 1/2,

First observe that

Py " P{S(t) > g(t) for some ¢t X m}.

-Mh(m)

P{B(t) > g(t) + h(t) for some t 2 m} - Ke

=-Mh(m)

£ Pa < P{B(t) > g(t) - h(t) for some t 2 m} + Ke
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with h = 31/2. Now
Pp 2 P{S, > g(@} = (1 + o(1))[ZH(m)]) Fexpl- 39 (m)]
142
= exp(-(1 + 0(1))39% ()]

and by (3.2.2)

% (n) = o(h(m)),

so
ke MR(m) o(p)

and
(1 + o(1))P{B(t) > g(t) + h(t) for some t 2 m}

(3.2.14) <py € (1 + o(1))P{B(t) > g(t) -~ h(t) for some t 2 m}.

To complete the proof of Theorem 3.2.1 we”11 show that both of the

Brownian motion probabilities in (3.2.14) equal (1 + o(l)) Jm'

Begin with the right side of (3.2.14). Because g € U and

U+, the KPEF test (see Section 1.3) implies that
1y2
- 59°(e)
®
J‘ -!%El e 2 dt < ®.

Since g - h satisfies hypothesis (3.1.1) of Theorem 3.1.1 with

L =1/2 and by (3.2.2)

. 3. . - . iy
PR 1. . W e T T S P T T T
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3/2
W(t)%t—). - B_tﬁi)_ - 0(1)’

it follows from the KPEF test that g - h € U. Moreover, g - h

also satisfies (3.1.2) because

h”(t) = g-%g- = o(g”(t)).

Thus (3.1.3) holds for g - h:

P{B(t) > g(t) = h(t) for some t 2 m}

m rd - P
= (1 + o(1)) J‘m leﬂ-ﬂ (t)ﬁ B7CE) axpi- %—(W(c) - %f:—t)-)z} dt

(3.2.15) = (1 + o(l))Jm as m = o.

As for the left side of (3.2.14), we note that g € U and
g+ h2g 1mplies g+ h € U, whether U equals U(S) or
U(B). The function g + h also satisfies the assumptions of Theorem
3.1.1, but now we need to take [ = 1/4. Proceeding just as with the
right side, we find the left side of (3.2.14) to be (1 + o(l)) Jm’

and the proof 1is complete.

3.3. A strong invariance principle.

Using the standard probability estimate

Plocegmes [BCE) = BG)] > x} = R(,2%2) IB(e)] > x)}

(3.3.1) € 4P{B(1) > x}

for the uniformity of B over an interval [n, n + 1] of length one,
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one can prove without difficulty the following slight extension of

theorem 1 in Komlds, Major, and Tusnady (1976).

LEMMA 3.3.1. Let S satisfy the assumptions of Section 2.1,
including restriction to the mgf case. Then, without loss of
generality, there exist a Brownian motion B and positive constants

a, b, ¢ depending only on F such that

(3.3.2)  P(S¥E Is(t) - B(e)| > x} £ asPe ¥

for all x> 0 and s 2 1. |
With this result we are now ready for the

PROOF of Lemma 3.2.5. We may suppose that s > 1 and define

{20 from s by

3.3.3y 2 csg L,

Then by Lemma 3.3.1 and the increasingness of h
p(s) = P{Is(t) - B(t)| > h(t) for some ¢t 2 s}

< P(Uyyg {15(e) = B(e)] > h(r) for some 23 ¢ v ¢ 23y

sup

Is(e) - B(t)! > n2H}
ogeg2dtt

< 2y5¢ P
£ a, Ej)f exp[blj - clh(Zj)]

with a, = a ° Zb, b

1 1™ b * log 2, and ¢, = ¢c. According

1
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to (3.2.1), h2d) 2n) - *3/2 ¢or a1l § 2 0, and so

(3.3.4) implies that for ¢, = c1/2 and some a, >0

p(s) < 2, §j21 exp[-czh(zj)]
@ t
£ ay J.!—l eXp[-czh(Z )] dt
22 ©® .
- To—g_—szf'l u exp[-czh(u)] du.

Now by (3.2.12) and the fact g“(u) 2 g(u)/(2u) (cf. Lemma 2.2.1(b))

h”(u) = om<u)g'£“) 2 5 & h(u),

u 3

hence with a, = (2a2)/{orc2h(l/2)log'2] >0 we find

©
p(s) £ ay J‘Zg_l exp[-czh(u)] <, h“(u) du

= a3exp[-c2h(2¢ - 1)]

< a3exp[-c2h(%s)] .

(3.2.13) now follows with K = ay and M = 4-20(/3(._2 from

(3.2.2). 10 !
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3.4, Siegmund revisited.

In solving the convergence rate problem in the SLLN case (see
Section 1.5), Siegmund (1975) treated linear boundaries g(t) = €t
that pass through the origin and have positive slope €. Our proof of
Theorem 2.1.1 used Siegmund”s techniques to establish the key Lemma
2.4,1, which estimates crossing probabilities for boundaries
lm(t) X tE€rt having variable intercept & and slope
Cm = 0(l). The provability of Lemma 2.4.1 leads to the conjecture that
Siegmund”s result can be extended to the case g(t) =X + €t. The
purpose of this section is to state such an extension, Siegmund”s proof

adapting easily to our generalization.

Accordingly, let € > 0 and X € R be given, and denote

by g the straight line
(3.4.1) g(t) = X + Ct.

Our goal is to determine the asymptotic rate at which the boundary

crossing probabilities
(3.4.2) Py " P{Sn > g(n) for some n X m}

converge to zero as m —> o when S satisfies the assumptions of

Section 1l.1.

We need some notation. Define

Kg(3) = X(3) - €3
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for § in the interval of finiteness of K. As at the start of the
proof of Lemma 2.4.1 it follows that if € 1s small enough then there
exists a unique nonzero value §1, necessarily positive, for which
Kc(gl) = 0. Assume that such a value 51 exists == this

is the criterion of “"smallness” for € mentioned in Section 1.5 —
and let §0 denote the point in (0, §,) at which

Kc’ vanishes. 1In the notation of (2.1.1), 30 = z(€).

As (2.5.17) and (2.5.11) defined Pm 0* SO let Po denote the
’

probability under which Xl’ XZ, ee. are i.i.d. with
(3.4.3) PO{X € dx} = exp(3,x - Ko(3y)] F(€ + dx);
Po has cgf

(3.4.4)  #(8) = Ko (3, +0) =~ Ko(3),

mean

(3.4.5) 6'(0) = KC‘(go) =0,

and variance
(3.4.6)  o® = 47(0) = K."(35) = K"(3,).

Put

then (cf. (2.1.1))
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2

(3.4.8)  6(8,) = Ko (3) = %e - xe).

We further assume that either
(3.4.9) F 1is non-lattice
or

(3.4.10) F(€ + *) 1s a lattice distribution supported by
{0, th, #2h, ...} and with span h > 0, and & = hk for

some (positive, negative, or zero) integer k.

In Siegmund”s paper the necessary (see the proof of his lemma 1)
assumption that h 1s the span of F(€ + ) (rather than just a
multiple thereof) is tacit. The distinction is not merely academic, for
1f, for example, F 1is a lattice distribution supported by the
multiples of h and with span h, then (3.4.10) implies € 2 h.

For another illustration, in the case of symmetric Bernoulli components
( X = %1 with probability 1/2 each), Siegmund”s theorem and the
present generalization are vacuuous(!), for the smallest possible value

€ = 1 s8till does not satisfy the above criterion of smallness.

Generalizing, and simplifying the statement of, theorem 1 in

Siegmund (1975) we have

THEQOREM 3.4.1. Using the preceding assumptions and notation, as

m-=> o

andduditiin IS W SN NP NP SR
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(3.6.11)  p_ ~ exp(3%2, a”t [e‘““(eo)po{sn > 0} - B{s_ > en}]}

. P{Sm > g(m)}
and furthermore

(3.4.12)  P{S_ > g(m)} ~ C(Zﬁazm)-llzexp(-md(eo) + o),
where if (3.4.9) holds

(3.4.13) C = 1/leyl

and 1f (3.4.10) holds

(3.4.14) C = h/[exp(leo}h) -1i1. 0

Notice that the only factor in (3.4.11-12) depending on X 1is

exp(eoot) .




CHAPTER 1V
TWO REMARKS
4.1. Introduction.

In Section 1.4 we stated that Strassen (1965) determined the

probabilities
Py, = P{S, > g(n) for some n 2 m}

up to a facter (1 + o(l)) wunder certain conditions on g. In fact,
Strassen”s theorem 1.4 specifies the convergence rate for the

probabilities
P{Sn 2 g(n) for some n > m}.

The results are the same: 1in Section 4.2 we show that under the

assumptions of Corollary 3.2.3 the four probabilities
(4.1.1) Py ™ P{Sn > g(n) for some n 2 m},

(4.1.2) = P{Sn > g(n) for some n > m},

P+l

(4.1.3) p: - P{Sn 2 g(n) for some n 2 m},

(4.1.4) p;+1 = P{Sn 2 g(n) for some n > m}

n
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are all asymptotically equivalent, i.e., equal up to a factor

(1 + o(l)), as m => ®. Section 4.2 also contains the noteworthy result
that, under the assumptions of Theorem 3.4.1, Py and Pp4,  aTe

not asymptotically equivalent; furthermore, that p: ~ Pp

only in the non-lattice case (3.4.9).

Section 4.3 1s concerned with an entirely different matter. Let
S satisfy the assumptions of Section 1.1 and let g be a boundary
belonging to both U(S) and U(-S). According to the definition of

upper class boundaries the probabilities (4.1.1) and

P, = P{S < -g(n) for some n 2 m}
both vanish as m = o . The double~boundary crossing probability
(4.1.5) P{lSnl > g(n) for some n 2 m}

is majorized by Py + ;m and so is also small when m is large.

One expects that the probability of the event that S crosses one of
the boundaries +g after time m and then alters its course so
drastically as to cross the other is of smaller order of magnitude than
(4.1.5). This is indeed the case, as the following theorem, proved in

Section 4.3, demonstrates:

THEOREM 4.1.1. Let b € U(S), a € U(-S), with a f,

b . Then

P{Sn > b(n) or S_ < -a(n) for some n 2 m}

n

A
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(4.1.6) -~ P{Sn > b(n) for some n 2 m}

+ P{Sn < -a(n) for some n X m}. [

Section 4.3 also discusses some consequences of Theorem 4.1.1 when

a=b = g.
4.2. > wversus 2.

Suppose, as in the hypotheses of Corollary 3.2.3, that the

boundary g(t) = tI/ZW(t) satisfies the growth conditions

(b.2.1) BBt o, BBy,
as t !t ©®. Cramér”s result (1.2.7) can be stated in the form

(4.2.2)  P{S_> g(m)} ~ P{Z > ()} as m = o

with U defined by (2.3.7). Now as t = o,

i(t) ~ %) - o and, by a minor adjustment to the proof

of (2.3.10), ¥2(t +1) - T%(t) = 0. It follows

using the normal tail estimate (1.2.8) and Lemma 2.2.1(h) (whose proof

requires only (4.2.1)) that as m = o

(4.2.3) P{Sm+1 > g(m+l)} ~ P{Sm > g(m)}.

The strong-law counterpart

(6.2.4) Poti ~ Pn

to (4.2.3) is established using the result

e Beclin ot IRt Botbibin i and R A - : PR . .,

C P P FRT SR
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172
- . - 5¥°(¢)
- - 12 1 (t) 2
(4.2.5)  p  ~J_ . JEF'&JF'_ e dt

of Corollary 3.2.3. 1Indeed it is enough to recall that
iz(t +1) - Wz(t) —> 0 and to observe from (3.1.2)

that g“(t + 1) ~ g“°(t) as t = ™.

We next consider boundary crossing probabilities in which the
definition of the event { S crosses g at time n } is changed from
the strict inequality {Sn > g(n)} to {Sn 2 g(n)}. 1If the
component distribution F 1s continuous, i.e., has no point masses,
then clearly P{Sm 2 g(m)} = p{sm > g(m)} and p: =Py
for every m, irrespective of the properties of g. We now show that,

regardless of the form of F, these equalities hold asymptotically as

m~-> o, i.e.,

(4.2.6) P{S_ 2 g(m)} ~ P{s_> g(m)}
and

(4.2.7) ey~ py,

assuming the hypotheses of Cramér”s theorem (1.2.7) and Corollary

3.2.3, respectively.

The truth of (4.2.6) 1is not surprising, as (4.2.2) suggests the

result
P{5_ 2 g(m)} - P(z 2 W(m)}

and Z has a continuous distribution. A straight-forward way of
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proving (4.2.6) 1s to note that the proof of Cramér”’s theorem
carries through as well for the non-strict crossing probabilities
P{Sm 2 g(m)} as for P{Sm > g(m)}. An alternative technique, to be
used also in deducing (4.2.7) when Theorem 2.1.1 is in force, is to

bound {Sm 2 g(m)} according to
(4.2.8)  {S_ > g(m)}C {S_ > gm)} C {s_> g (m},

where g- minorizes, but closely approximates, g. A suitable choice

for g is
(4.2.9) g (t) = [1 - 1/B3(e)] - a(t).

Clearly ¥ (t) ~U¥(t) > o as t => m®, where
g (t) = tljzw-(t). Moreover, with f given by (2.4.23)
and 6-(t) = [t:f(W-(t)/t:]‘/z)]U2 in accordance

with (2.3.7),

T2(e) ~ (F(e))2 t[f(g%_)_) PLEG

(1 + oy - HELIE) B LO),

(1 + o(1)) * 20(e)(¥(t) - ¥ (t))

(1 + o(1)) * 2/%(t) = o(l)
as t => ®. From Cramér”s theorem it follows that

(4.2.10)  P{s_> g (m)} ~ P{S_ > g(m)};

in light of (4.2.8), (4.2.6) holds.
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Turning to (4.2.7), we consider separately the two results,
Theorems 3.2.1 and 2.1.1, from which Corollary 3.2.3 follows. For
Theorem 3.2.1 we rehash the proof; for Theorem 2.1.1 this method is
direct but laborious and we choose to employ instead the approach of

(4.2.8-9).

Theorem 3.2.1 is derived from the corresponding result, Theorem
3.1.1, for Brownian motion. But as a consequence of Ylvisaker”s (1968)

theorem,
P{B(t) 2 g(t) for some ¢t 2 s}
(4.2.11) = P{B(t) > g(t) for some t 2 s}

for every s, so Theorem 3.2.1 for p; follows in the same way

as for Py and (4.2.7) holds.

Routine calculations show that the function g of (4.2.9)
satisfies the hypotheses of Theorem 2.1.1, with the possible exception
of the monotonicity of g (t)/t, and that (g )°(t) ~ g”(t) and

(P7)7(t) ~P°(t) as t = o. In addition, Lemma 2.2.1

continues to hold true -- some parts in negligibly weaker form, such as
(g-)’(t) £ (1 + o(l))g-(t)/t for the second half of (b) =-- and 1t

is not hard to see that the conclusion (2.1.6) holds for g-. Thus by
(4.2.8) and (4.2.10),

+ (g )7 (m) -
[4 £ (1 1 e
Py € Py € (1 + o(1)) TR P(s, > g (m)}

.
T T T U Y T T
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“(m)
= (1 + o(l
( of ))M‘(m) P{s > g(m)}

= (1 +o(INI = (1 + o(1))p,
and (4.2.7) holds.

Summarizing, when the assumptions of Corollary 3.2.3 are in force,

the four weak-law probabilities

(4.2.12) P{Sm > g(n)}, ‘P{Sm+1 > g(m + 1)},

Pis_ > g(m}, PB{S_,; 2 g(m+ 1))

o+l

are all asymptotically equivalent, as are (4.1.1-4).

The results are quite different when the hypotheses of Theorem
3.4.1 are assumed. In particular, it is immediately clear from
(3.4.11-12) that (4.2.3-4) fail in this case. Furthermore, (4.2.6-7)
are true if (3.4.9) holds but false if (3.4.10) holds. This can be
verified by reviewing the proof of Theorem 3.4.1, but we”ll introduce

minorizing approximants to g and proceed as in (4.2.8).
Assume first that (3.4.9) holds. For 6§ > 0 1let
gg(t) = & - b + €t.

Apply (3.4.12) to both g and 85 and use (4.2.8) (with

g— = &g ) to conclude

g !];1112: (P{s_ 2 g(m)}/P{S_> g(m)})
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¢ Hm s (prs 3 g(m)}/P{s_ > g(m)}) < exp(lg,l6).

Now let & - 0 to get (4.2.6). Relation (4.2.7) is proved in

the same way.

Approximations 8g to g with ever increasing precision are
not available in the lattice case¢ (3.4.10), due to the restriction of

X to integer multiples of h = (span of F ). In fact,
(4.2.13)  P{S_ 2 g(m)} = P{S_ > X - h + €n} ~ exp(leolh)p{sm > g(m)}
and similarly

+
(4.2.14) Py = P{Sn >X-h+ €n for some n 2 m} ~ exp(leolh)pm.

4.3, Two boundaries.

The first task of this section is the

PROOF of Theorem 4.1.1. The right side of (4.1.6) overestimates

the left by

P{Sn1 > b{n;) for some n; 2 m, Sn2 < -a(n,) for some n, m}

(4.3.1) < B(s, > b(p), S < -a(q)
for some p, q satisfying q > p 2 m}
+P{S_ < - , S
{P a(p), S, > bla)

for some p, q satisfying q > p 2 m}.

Let us examine the first term, which equals
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®
(4.3.2) Zp-m P{Sn £ b(n) for m<n < p, Sp > b(p), Sq < -a(q)

for some q > p}.

The summand here is
1 P{Sn < b(n) for m<n<op, Sp > b(p)}
times

P{Sq < -a(q) for some q > p | S <b(n) for m<adp,

Sp > b(p)}

< P{Sq - Sp < =(a(q) + b(p)) for some

q>p | Sn £ b(n) for m<n < p, Sp > b(p)}
= P{Sq - Sp < =(a(q) + b(p)) for some q > p}
= P{—Sk > a(k + p) + b(p) for some k 2 1};

the sum (4.3.2) is therefore majorized by

zg’,m P(s_ < b(n) for m<n<p, 5, > b(p)}

= P{Sn > b(n) for some n 2 m}
times
(4.3.3) P{—Sk > a(k) + b(m) for some k 2 1}.

We shall show that the probabilities (4.3.3) decrease to 0O as

T Y R L T 10 a . . ' R
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ot o, so that

(first term on right in (4.3.1))

/

(4.3.4) = o(first term on right in (4.1.6)).
In just the same way

(second term on right in (4.3.1))
(4.3.5) = o(second term on right in (4.1.6))
and the proof of (4.1.6) is complete.

Since b(m) ' ® as m t @ (as follows from

b € U(S) ), the events in (4.3.3) decrease to
(4.3.6) NP {-s. > a(k) + n for some k 2 1}

n=1 k
Because a € U(-S),
(4.3.7) Bl (-5, < a(k) for all k> k*}) = 1.

Hence the event (4.3.6) has the same probability as

Ugl_l FPDL {-Sk > a(k) + n for some 1 < k £ k*}

y n=

Utal “nel {1gkgicr (S0 > nb = @,

namely, zero. ]
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One might ask how the two terms on the right in (4.1.6) compare in
size. We shall answer this question assuming that a = b = g satisfies
the hypotheses of Corollary 3.2.3, i{.e., of either Theorem 3.2.1 or

Theorem 2.1.1.

Recall that Theorem 3.2.1 is an invariance principle: the

asymptotic rate at which the probabilities
Py = P{Sn > g(n) for some n X m}

decrease to zero is the same for any random walk, including (-S). Thus
each term on the right in (4.1.6) equals (1 + o(l)) Jm as m~> o,

where J, 1is defined by (3.1.4).

In the case of Theorem 2.1.1 we need only to examine the

corresponding weak-law probabilities using (1.2.7):

W(m))(W(m)

(6.3.8) (s, > g(m} ~ Bz > ¥(m) exp (W2 (B R ),

(4.3.9)  P{-s_ > g(m)} - P{Z > V(m)}exp[—wz(m)TW(m))(- Koy,

(4.3.9) holding since (=X) has Cramér series (~\(~(°))). The

ratio (4.3.8)/(4.3.9) is

(4.3.10) r_3= exp{wz(m)!%l[)(!%)-) + M- iv—(]:l)-)]}.

m

In light of (2.1.6) L is also the ratio of the first term on the
right in (4.1.6) to the second when a = b = g satisfies the hypotheses

of Theorem 2.1.1.
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/ 2/3

If ¥(m) = o(m!’®), 1.e., 1f g(m) = o(m?/3), then
L = 1, in accordance with ouf investigation for Theorem 3.2.1.
Likewise, provided the comstant term )0 - EX3/6 in the

Cramér series ) vanishes (in particular, if X has a symmetric

distribution function F ), then

r - exp{Wz(m)Eéﬁl[xlmsg) + XZ(WS;))Z - XIW(m) + XZ(V(m))Z

+ oKm2))

1I’s(m)
(4.3.11) ~ exp{2)2 m3,2 }

3/10).

tends to unity whenever U(m) = o(m
1/6
Suppose )0 #0 and m =0(¥(m)). Then

® >
(4.3.12) r -> o according as )0 ‘ 0.

The result (4.3.12) agrees with intuition: If the distribution of the
component X has a long right-hand tail, as is typically the case when

3

EX = 0, Var X =1, and EX~ > 0, large positive deviations for S

are more likely than large negative deviatiomns.

3/10

We can refine (4.3.11-12). For example, 1f U(m) = o(m ),

then

3 5
(4.3.13) r_= exP{z)quém) + O(W (m)yy

m3/2
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5/14

regardless of the sign of )o. 1f ¥(m) = o(m ), then

3 5 7
(4.3.18) £ - exP{z)ouJém) + 2)2W3§;) + o(ws§z))}a
m m

and so on.




CHAPTER V
ASYMPTOTIC EXPANSIONS
5.1. Introduction.

As defined in Section 1.2, the problem of convergence rates related

to the WLLN is to determine the probabilities
(5.1.1) P{Sm > g(m)}

up to a factor (1 + o(l)) as m = o when the random walk S

satisfies the assumptions of Section 1.1 and the boundary g satisfies

(5.1.2)  ¥(m) = 5{}’ > o

as m = ®. A solution to this problem is by definition an
approximation to (5.1.1) whose relative error tends to zero as m ~> .
We can guarantee that this first-order approximation is of a specified
quality by determining an asymptotic upper bound on the rate at which
the relative error vanishes. The guaranteed accuracy of a second-order
approximation whose relative error is known to vanish more quickly than
this bound is greater. Iterating this idea we arrive at the

problem of asymptotic expansions related to the WLLN: to develop an

asymptotic expansion for (5.1.1) when (5.1.2) obtains. In Section 5.2
/2)’

we present a solution in the Cramér case ¥(m) = o(ml

84
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¥(m) = o. The solution in the WLLN case ¥(m) = cmll2

is due to Bahadur and Ranga Rao (1960) and is omitted here.

The problem of asymptotic expansions related to the SLLN is to

derive an asymptotic expansion for the probabilities
(5.1.3) Py = P{Sn > g(n) for some n 2 m}

when g € U(S). The dominant term in such an expansion is given for

boundaries WP(t) = g(!:)/t:ll2

of slow, moderate, and rapid growth

in Theorems 3.2.1, 2.1.1, and 3.4.1, respectively, the slow and moderate
ranges overlapping considerably. 1In Section

5.3 we obtain a partial asymptotic expansion of Py for boundaries of
slow growth. This expansion is of higher order the more slowly
increases and in fact is complete, i.e., of infinite order, when ¥

is not also in the range of moderate growth. In Section 5.4 we derive
an asymptotic upper bound on the relative error in the approximation of
Theorem 2.1.1 for boundaries of moderate growth. The problems of
finding even the second term in an asymptotic expansion of Py for

¥ 1in the moderate range and of bounding the error in the

approximation of Theorem 3.4.1 remain open.

5.2. An asymptotic expansion related to the WLLN.

Throughout this section we assume (5.1.2).
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We begin with an examination of the case F -‘i of standard
normal components. In this case the probability (5.1.1) equals
P{Z > ¥(m)}, and the solution to the convergence rate problem is given
most simply by (1.2.8). The solution to the asymptotic expansion

problem is equally well known (Feller, 1968, p. 193): for any n 20

(5.2.1)  P{Z > W(m)} = [JZWW(m)] lexp[- %Wz(m)]

1 13 1°3-5

. [1 - -+ -
lI'Z(m) ¥ (m) W6(m)
n le3e c++ «(2n ~ 1)¢ of 1 )]

2% (m) V2™ (a)

4+ cee

+ (-1)

as m = .

For general F the solution presented here to the asymptotic

expansion problem in the Cramér case
(5.2.2)  B(m) = o(Jh)
is due to Saulis (1969); see also Ibragimov and Petrov (1971, p. 416).

In addition to the assumptions of Section 1.1, suppose that F has

characteristic function Eexp(itX) satisfying

lim sup IEeitx| <1,

(3.2.3) It] = ®

the so-called Cramér”s condition (C). The condition (5.2.3) holds,
in particular, i{f F has a nonzero absolutely continuous component and

is a lattice distribution. Then for any n 2 0

fails if F




]

(5.2.6)  B{S_ > g} = p(z > ¥} - exp(¥P (X

C (30 Q@ + o(EELH™)

as m = o, where the functions QO’ Ql’ ++. satisfy
(5.2.5)  Q(m) = 0((!%)“), k2 0.

Saulis (1969) gives explicit formulas for the functions Qk' In

particular,
(5.2.6a) Qo(m) =1,

reducing (5.2.4) to (1.2.7) in the case n = 0. For n =1 the
approximation (5.2.4) fares better than is guaranteed by (5.2.5):

Q(m) = 0 if )0 = 0 and

X @ -1 -2 3
B o—— 2 -
W =T R > vy P
1
sam o0 i
otherwise.

In the language of asywptotic series, Zk Qk(m) is an

asymptotic expansion for

P{s > g(m)}

P{z > U(m)} - exp[Wz(m)Wj(nnlz')(w%})-)]

as m —> o with respect to the auxiliary asymptotic sequence

((¥(m)/ml/2yny
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The normal probability on the right in (5.2.4) can be expanded
using (5.2.1). The power series representation of ) yields an
asymptotic expansion for the argument of the exponential factor on the
right in (5.2.4). An expansion for that factor can then be obtained if
g(m) = o(m1 - 1‘) for some T > 0 by employing the Taylor”’s

series for the exponential function.

Recall from (1.2.9a) that the probabilities P{Sm > g(m)} and

P{Z > ¥(m)} agree up to a factor (1 + o(l)) whenever

g(m) = 0(1!12/3

). More generally, as seen below, 1if
(5.2.7)  g(m) = o(@® ~ M

with

(5.2.8) <M< 5
then the invariance principle

(5.2.9) P{Sm > g(m)} = (right side of (5.2.1)) as m = o

obtains, provided

37 - 1/3
(5.2.10) “‘511!72—-_1T

With W = 1/3, as 1in (l.2.9a), the bound on n is 0O, and (5.2.9)

reduces to (1.2.9a). As VW increases to 1/2, the bound on n

p o . ke b asadeih e an il

P ST Y S UG huduibialonsintc .
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increases to . The inequality (5.2.10) can be inverted:

n+1
(5.2.10&) 1' 2 m.

For example, to apply (5.2.9) with n = 1 we must have T 2 2/5,

3/5). For n = 2 we require g(m) = o(tnl'/7

i.e., g(m) = o(m )

and so on. If (5.2.7) holds for every VY < 1/2, e.g., if
(5.2.11) g(m) = & - (log mP, >0,

then (5.2.9) provides a complete asymptotic expansion for m: (5.2.9)

holds for each n 2 0.

The proof of (5.2.9) from (5.2.10) is easy. Since
g(m) = o(m2/3), i.e., B(m) = o(al’/®), (5.2.4) with n =1

yields

3
(S, > g(m)} = P{z > W(m)} -+ [1 + o(!:éel)] TSI N

3
= P{Z > U(m)} * [1 + O(W—J(;-Q)]

using (5.1.2). So (5.2.9) holds if

3
9°(m) 1
= o )
S/ wZn(m)
i.e., 1if

n+ 2
g(m) = o(m?® * 3y,

*e
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For this it 1s enough that 1 -7 £ (n + 2)/(2n + 3), i.e., that

(5.2.10a) hold.

5.3. An asymptotic expansion related to the SLLN.

The following theorem (Wichura, 1980) gives a complete expansion

for boundary crossing probabilities for Brownian motion.

THEOREM 5.3.1 (Wichura). Suppose the nositive function
g € U(B) satisfies the growth condition
(5.3.1) (e) 4
t

as tt for some [ > 0. Let n 2 0, and suppose g has

(n + 1) continuous derivatives satisfying the smoothness condition
(5.3.2) g™ ) ~ Mty as u~t > @, 1<Kk<n+1,

and the growth condition

(5.3.3) g™ (o) = M2 T kgey, 1<k <0+ 1.
Finally, suppose

(5.3.4)  P{B(t) > g(t) for some t X s} = o(—z—l——)
7°"(s)

as 8 —=> o. Then there exist functions A A

0r Ay oo

satisfying

1

(5.3.5) Ak(t) = O(W

), 0<k<n,
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as t = o such that with

@y 1 " F©
(5.3.6) Jk(s) = J‘s 7517: e Ak(t) dt
we have
P{B(t) > g(t) for some t 2 s}
(5.3.7) = 3P . (8) + o ?Jt' e %wzmﬁ—wﬁ—f—lm dt)

as s = w. [

REMARK 5.3.2. (a) Explicit definitions of Alc are given by

Wichura (1980); for example,

(5.3.82) Aj = 2g°,

(5.3.8b) A, = -E__

” 2 "
(5.3.8¢c) A, =-2080) ., 8"

2 - .
(8 ) (8 y*
In particular, the theorem reduces to Theorem 3.l1.1 in the case n = 0.
(b) Theorem 3.1.1 is of help in checking (5.3.4). [

As Theorem 3.2.1 follows from Theorem 3.l.1, so Theorem 5.3.1

yields the invariance principle
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THEOREM 5.3.3. Let S satisfy the assumptions of Section 1l.1l.
Suppose the positive function g € U satisfies the growth

conditions
(5.3.9) 3%%1
t

and

(5.3.10) S _4 g
RS

where

(5.3.11)

Wi

1
£ < 3

Let n 2 0, and suppose g has (n + 1) continuous derivatives
satisfying the smoothness condition (5.3.2) and the growth condition
(5.3.3). Then with Ak and Jk(°) as in Theorem 5.3.1 and with

p. glven as usual by (5.1.3),

m

1p2
fo o) - 7‘ (t)
(5.3.12) p_-= 5&_0 3 (m) + O(Im ./']t; e -1

as m > o, provided (5.2.10) holds.

REMARK 5.3.4. (a) The derivatives of g can be computed ignoring
¥, in the sense of (5.3.3), for all boundaries g of practical
interest (e.g., for g as in (1.3.9) or Example 1.6.3). Condition

(5.3.2) is likewise a mild restriction.
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(b) As always, the regularity conditions for g need only be

satisfied for large t.

(¢) The smoothness condition (5.3.2) can be weakened to
(5.3.13) g(k)(u) ~ g(k)(t) when t, u > o as in (2.1.5)
provided (3.2.4-6) hold.

(d) Theorem 5.3.3 is clearly the strong—law counterpart to the
result (5.2.9) of the previous section. With T = 1/3 the bound on
n 1in (5.2.10) is 0, and Theorem 5.3.3 reduces to Theorem 3.2.1. 1In a
case such as (5.2.11), for each W < 1/2 the boundary g satisfies

(5.3.10) for all large t, and so the expansion (5.3.12) is complete.

(e) Suppose, in addition to the assumptions of Theorem 5.3.3, that
the boundary is also in the range of moderate growth, i.e., that (2.1.3)
holds for some O < § < 1/6. In this case one can show without

difficulty that

142
- (t) P P{S_ > g(m)}
(5.3.14) J‘mf_e 7' — 1 4 z_-_= k2 0.
o E )

2k=1 ¢y ¥2%(m) @

Provided that (5.3.5) is also a lower bound, i.e., that

1
(5.3.15) (t) = ———— as t > o,
A e U

the k th term Jk(m) in (5.3.12) is also of order of magnitude

(5.3.14). For k = 1 one can even show that
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pﬂl
¥2(m)

(5.3.16) I (a) - Ap, *

vwhere (cf. (5.3.8b))

A (m) -
=1 e gm@m o 1
G310 A2 Tw (5" (@) ()

In particular, if M 2 2/5 in (5.3.10), i.e., 1f

S(C)/t3/5 ¥ 0, then

1 1
(5.3.18) p_ = [1 +5 A+ o(——)]J,(m),
n zhs ¥ (m) 0

demonstrating that the relative error in the approximation
Jm 2 Jo(m) of Theorem 3.2.1 is in this case of the same order of

magnitude as 1/0%(m). [
To prove Theorem 5.3.3 one uses Theorem 5.3.1 and the invariance
principle of Lemma 3.2.5 with

1

(5-3.19) X=2 ‘m.

The particulars of the proof require detailed knowledge of the

functions Ak of (5.3.5) and are omitted.

5.4, An asymptotic upper bound on the relative error in (2.1.6).

The following theorem is a refinement of Theorem 2.1l.1.
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THEOREM 5.4.1. Suppose, in addition to the hypotheses of Theorem

2.1.1, that g 1is twice differentiable with

(5.6.1)  g"(0) = 0Ly a5 t > .
t
Then we have the refinement

5.4.2 =[1+0 LQSJ'_QL +0 W(m)l 1
( ) P [ ( U = ) ( OS(W( )/Ji))]

of (2.1.6). [

REMARK 5.4.2. (a) The growth condition (5.4.1) is satisfied in
particular if the derivatives of g can be computed ignoring ¥ in ;

the sense of (5.3.3).

(b) The two-term big—oh bound of (5.4.2) on the relative error in

the approximation Im for P reduces to the first term when

g(m) = o(n?/3

w2/3 = o(g(m)).

) and to the second in the contrasting case

(c) For comparison, recall that the relative errors of the

approximations (1.2.7) and (1.2.8) are O(W(m)/\'nl/2

and
O(I/Uz(m)), respectively. For (1.2.7) we are ignoring the good

fortune of (5.2.6b).

(d) In case g(t)/l:3/5 ¥ 0, the approximation Jp of

Theorem 3.2.1 has greater accuracy (relative error = I/VZ(m) )

than that guaranteed by (5.4.2) (relative error
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= 0((log Vz(m))/Uz(m)) ) for 1 . See Remark

5.3.4(e). |

PROOF of Theorem 5.4.1. As a consequence of Theorem 2.1.1, whose

proof we shall review in order to sketch that of (5.4.2),

(5.4.3)  p_ = (¥(m) ] Lexp(- ﬁz(m)] as m > ©

with ¥ defined by (2.3.7). It follows as in Section 2.3 that if

the definition (2.3.2) is replaced by

1 1o Wz(m)
(5.4.4)  v_= [m(1 + 3;—-—;3(—-—)1 )
m)

with 0O < 6* < §, then (2.3.3-4) continue to hold, and

1
(5.4.5) p. = 0
Y Wz(m)

) . P, a8 m -> o.

Assuming (5.4.1), the definition of Cm (see Section 2.4) and Taylor”s

theorem imply the improvement

2
(5.4.6) Cm = (1 + 0(-1—°-:-2-u9-)-)) *+g°(m) as m = ®
. (m)

to (2.4.1).

Now the proof of Lemma 2.4.1 shows that the integral in (2.5.27) is :

smaller than 1 by an amount

1/2 1/2)1/2

O(Cm ) = 0((¥(m)/m ). But Lorden”s (1970) method

can be used to show that for any § > 0
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P (S6, @y < Fu,0, (m)* PRy

+ +
Em’el(m)[(gx + 1)exP(Sx )] -1

(5.4.7) <

E X *
S mvel (m)
With § chosen within the interval of finitemess of the cgf K,

this leads to the improved estimate

- UEm) 1
1 0 ————

for the final integral in (2.5.27). The relation (2.5.30) can be
developed into a complete asymptotic expansion; in particular, one can
show that the relative error in (2.5.30) is

0(1/92(m)) + 0(¥(m)/m}’?

). The same two-term bound on the
error holds for (2.4.9) and hence for (2.4.12). As (2.3.1) can be

tightened to (5.4.5), so (2.4.13) can be improved to

(5.4.8) p, () = °('21 ) b, a8 B> .
m

(m)

Combining the various bounds we arrive at (5.4.2). |

REMARK 5.4.3. To get fur “er terms in an asymptotic expansion for

P

= in the case of Theorem 2.1.1, one would need to approximate g

more closely than by the straight lines im and ?; of Section 2.4,
perhaps by higher-order polynomials. One would then seek appropriate

results from nonlinear renewal theory to replace the use of Lorden’s

(1970) bound. |}
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