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ABSTRACT

Let XI, X2, ... be independent random variables with common

distribution function F, zero mean, unit variance, and finite moment

generating function, and with partial sums S . According to then

strong law of large numbers,

S
p s P{-- > c for some n > m}m n n

decreases to 0 as m increases to c when c c > 0. For
n

general cn "s the Hewitt-Savage zero-one law implies that either

Pm I for every m or else p + 0 as m t o. Assuming

the latter case, we consider here the problem of determining pm up

to asymptotic equivalence.

For constant cn 's the problem was solved by Siegmund (1975);

in his case the rate of decrease depends heavily on F. In contrast,

Strassen's (1965) solution for smoothly varying c = o(n- 2 /5)
n

is independent of F.

We complete the solution to the convergence rate problem by

considering c ns intermediate to those of Siegmund and Strassen.

The rate in this case depends on an ever increasing number of terms in

the Cramir series for F the more slowly cn  converges to

zero.

v



CHAPTER I

INTRODUCTION AND SUMMARY

1.1. Basic assumptions and notation.

Throughout this work we suppose that X , X2, is a

sequence of independent random variables with common distribution

function F. Denote the random walk of partial sums by S:

Sn .Xk, n1 0.

The distribution F is assumed to be standardized in the sense that

EX - 0, Var X - 1

where, to facilitate notation, we have introduced another random

variable X distributed according to F. Assume throughout that the

moment generating function (mgf) Eexp(5X) for F is finite for

5 in some neighborhood of 0 and write

(1.1.1) K(1) - log(Ee )

for the cumulant generating function (cgf). This assumption, which

restricts attention to the so-called mgf case, is stronger than required

for the more elementary results (for example, the laws of large numbers)

discussed in this chapter. However, the loss in economy of assumption



is outweighed by the accompanying gain in ease of exposition.

Furthermore, the main result (Theorem 2.1.1) of this work deals only

with the mgf case.

Our main goal will be to estimate the probability of the event

S
{- > c for some n > mln n

when m is large for a specified sequence c - (c n) of positive

numbers. It is natural to think of the sequence c as a "boundary" on

the growth of the sequence (S n/n) of sample means as the "time" n

increases. Often it will be more convenient to deal either with the

standardized process (S n/n1/2 ) or with the random walk S. The

corresponding boundaries will be denoted as follows:

Process Value at time n Boundary Value at time n

S
sample means ncn n

S
n

standardized n ;(n) -hc
4o wn

random walk S ng g(n)-
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We write Z for a standard normal random variable.

B - (B(t))t20 denotes Brownian motion.

We denote by Lxj the integer part, or "floor", of x, namely,

the largest integer not exceeding x. Similarly, Fx] , the

"ceiling" of x, is the smallest integer at least as large as x.

If k 1 1 is an integer, Lk denotes k iterations of the

natural logarithm function L B log.

As usual, the relation a(t) - b(t) means that a(t) - O(b(t))

and b(t) - O(a(t)).

1.2. Weak law of large numbers.

Although the present work concerns itself with convergence rates

related to the strong law of large numbers, we begin with an examination

of convergence rates related to the weak law. There are two reasons for

this review: the weak-law results (1) provide motivation for, and (2)

are used in the proofs of, the corresponding strong-law theorems.

The weak law of large numbers (WLLN) states that S M/m - 0

in probability as m -), co, i.e., that for any constant c > 0

S(1.2.1) P{1- M > C) -,+ 0

as a-> cD. Treating upper and lower tails separately, we can write

(1.2.1) in the equivalent form
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P1{- > cl -.-> 0,

( .2.a) SmP{--- > c) -4 0,m

since

S S S
(1.2.2) P{ II > c, -{ > c} + P{- -2 > C}.

m m m

The convergence rate problem for the WLLN is to deaermine the left side

of (1.2.1) up to a factor (1 + o(1)). In light of (1.2.2) this can be

accomplished by estimating in the same way the single-tail probabilities

in (1.2.1a). Since the random walk (-S) satisfies the assumptions of

Section 1.1 for S with F replaced by P{-X K *}, it is enough to

deal with the upper tail probability P{Sm/m > cl.

A more general problem is to determine the asymptotic behavior of

(1.2.3) P{ > C
m m

for an arbitrary sequence of positive numbers cm. In view of the

central limit theorem (CLT) for S, it is convenient to express (1.2.3)

in the standardized form

S
(1.2.3a) P{ m > ;(m)}

where we define

V(m) - .Amc.3
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Indeed, the CLT states that when (m) TO is constant,

S

(1.2.4) ,{-M > To} .- P >{z >

The CLT is thus an invariance principle in the sense that the right side

here is independent of F.

The Berry-Ess~en theorem (see Feller, 1971, p. 542) bounds the

error in approximating the left side of (1.2.4) by the right, uniformly

in 0' As a particular consequence,

S
(1.2.5a) P{ > (m)} -- 0

if and only if

(1.2.5b) oD(m) - w.

The general problem of convergence rates related to the WLLN is to

determine (1.2.3) up to a factor (1 + o(1)) when (1.2.5) is in force.

l~(m) c1/2

Return to the case 1(m) E cm of (1.2.1). Any unified

theory for handling this case must require c to be small in some

sense. For example, if S has symmetric Bernoulli components, i.e.,

if X assumes the values *1 with probability 1/2 each, then for

any c k 1

S
(1.2.6) P{ m > c} u 0 for every m.

m
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The identity (1.2.6) cannot hold for any c, on the other hand, unless

F has compact support.

Making precise the condition that c be small, Bahadur and Ranga

Rao (1960) solved the WLLN convergence rate problem. Their solution is

contained in Section 3.4; see (3.4.12) with (X = 0. In marked

contrast to the invariance principle (1.2.4), the rate of convergence in

(1.2.5a) in this case depends heavily on F. In fact, different choices

for F give different convergence rates for (1.2.5a) for some c > 0.

The case T(m) - o(m /2 ) with T(m) -- ,

intermediate to the CLT case of constant and the WLLN case

1(m) - cmI/2, was resolved by Cramnr (1938):

(1.2.7) e{W > T(m)} - (i + o(I))P{Z > I(m)}'exp[ 2 (m) >( )I.

Here

()" k k

is a certain power series, the so-called Cramir series for F, which

converges for in a neighborhood of 0. For each k the

coefficient \ depends on the moments of F of orders up to and

including k + 3; for example,

1~ 3 1 4 1 1 3 2Fex)

For a precise definition of ) , see (2.1.1).
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For the normal tail probability on the right in (1.2.7) we have the

standard estimate

(1.2.8) P{Z > V(m)} - [.2-i-(m)I-lexp(- 42(m)]

(as usual, am -bm  means the same as am M (1 + o(I)) bm )

On a logarithmic scale the correction in (1.2.7) to the normal

approximation becomes negligible:

log P{ > V(m)} - -12(m).

Even on the probability scale of (1.2.7), the correction is unnecessary

if $ does not grow too rapidly:

T(m) - o(m1 /6) implies

S

(1.2.9a) P{- > T(m)} - P{Z > T(m)}.

If ; is allowed to increase somewhat more quickly, the correction

requires only the constant term X from the Cramfr series:

(m) - o(m1/ 4) implies

S T3(M
(1.2.9b) P{- m > T(m)} - P{Z > 1(m)I'exp[NL .

The linear coefficient X enters next:

- o(m 3/ 0) implies

S 3
(1.2.9c) Pfm > J(m)} -PIZ > V~)-x[,21() r(a).



In general, if t(m) - n and T(m) - o(m1/2 - ')

with 0 <q 4 1/3, then only the moments of F of orders up to and

including Fh/ifi - 1 need be known to identify the convergence

rate (1.2.7).

The transitions in form from the CLT to Cramfr's result and

from Cramfr's result to the WLLN solution are smooth. When is

nearly constant, as in (1.2.9a), Cramfr's result is an invariance

principle of the same form as the CLT. When, at the other extreme,

4(m) grows nearly as quickly as m/2 the convergence rate

(1.2.7) depends heavily on F. The Bahadur - Ranga Rao result for

;(m) - cm1/2  can be stated in the form

(1.2.10) 1m> ;~(m)l - (1 + P)P{Z > l lx~ m ~)VTm

as m -> a, where depends on c and heavily on F but vanishes

in the limit as c - 0 0. Thus (1.2.7) may be regarded as the

limiting form of (1.2.10) when c -> 0.

1.3. Strong law of large numbers.

According to the strong law of large numbers (SLLN),

S n/n - 0 with probability 1; equivalently, for any constant

c>O

S
(1.3.1) P{I-i > c for some n I m} + 0 as m t o.

n

Analogous to (1.2.2) is the decomposition



S
P[' > c for some n I m}

S
+P{-- > c for some n I m}

S S
(1.3.2) P4 > c for some p > m and - - & > c for some q I m}

p q

for the probability in (1.3.1). In Section 4.3 we show that the last

term in (1.3.2) is asymptotically negligible when compared to the sum of

the first two terms. So we consider the one-sided version

S
(1.3.3) P{n > c for some n > m} + 0 as m t o

of (1.3.1).

A more general problem is to determine the asymptotic behavior of

S

(1.3.4) Pm E P{-- >(n) for some n > m}

for an arbitrary sequence of positive numbers t(n). No matter what

the sequence f,

S

(1.3.5) P B P > T(n) i.o. as n -, D}.

It follows from the Hewitt-Savage zero-one law (Feller, 1971, p. 124)

that

(1.3.6) p 0 or p - 1.

The case p - 1 is trivial from the convergence rate viewpoint, for

then pm M 1 for every m. The classification of boundaries
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according to the dichotomy (1.3.6) is effected by the Kolmogorov -

Petrovski - Erd~s - Feller integral test (cf. Jain, Jogdeo, and

Stout, 1975):

KPEF INTEGRAL TEST. If 0 < * t, then

0 Co1(t) W t <

(1.3.7) p = according as - e dt CD.

Note that the criterion (1.3.7) is, like its weak-law analogue

(1.2.5), an invariance principle.

There are counterparts to (1.3.4-7) for Brownian motion: If

ps E P{B(t) > g(t) for some t 1 s}

then

Ps + p = P{B(t) > g(t) i.o. as t -), c}

and (1.3.6) and the KPEF test hold; here

(1.3.8) g(t) - J(t).

In fact, (1.3.7) for S is most easily proved from (1.3.7) for B by

showing that S can be closely approximated by B (cf. (3.1.6)).

In the interesting case that p - 0 in (1.3.5) we say that g is

an upper class boundary for the random walk S and write g e u(s).

(Otherwise g is a lower class boundary and g e L(S).) Define

U(B) and L(B) analogously. If * 1, the KPEF tests allow us
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to write g 6 U indifferently for g 6 U(S) (for any S ) or

g e U(B). A similar comment applies to the notation g e L.

The test (1.3.7) gives rise to the celebrated law of the iterated

logarithm (LIL), which quite precisely describes the "interface"

between U and L.

LAW OF THE ITERATED LOGARITHM. If

(1.3.9) g(t) - (2t(L2t + 3 t + + + t + (1 + P)L t)]1/ 2

with e > 3, then

U >
(1.3.10) g e according as P 0.

L

The general problem of convergence rates related to the SLLN is to

determine Pm up to a factor (1 + o(1)) when g 6 U. Let

Tm M inf {n: n I m, Sn > g(n)}, the inf of the empty set being

+aD. Then T m, andm

Pm P{Sn > g(n) for some n I m} - P{Tm < co}

admits the decomposition

Pm " P{Tm - m} + P{m < Tm < co}

(1.3.11) - PIS > g(m)} + P{m < Tm < O}.

The convergence rate for the first term is known from studying the WLLN;

the second is new. For a simple lower bound we have
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(1.3.12) pm I PS m > g(m)}.

Siegmund (1975) used the relation (1.3.11), together with the

Bahadur - Ranga Rao estimate for the first term and his own analysis of

the second, to solve the convergence rate problem in the SLLN case

g(t) - ct. Strassen (1965) solved the problem for boundaries

g e U not too far from the U \ L interface (1.3.9) -- roughly

speaking, for g(t) - o(t 3 /5 ) as t -- co. The major contribution

of this work is to complete the solution to the convergence rate problem

by bridging the gap between Strassen's boundaries and Siegmund's.

We set the stage by reviewing, in the next two sections, the

results of Strassen and Siegmund.

1.4. Strassen's result.

We recall the omnibus restriction to the mgf case. Modulo a

precise definition of the adjective "smooth", Strassen's result (1965,

thm. 1.4) can be stated as follows:

THEOREM 1.4.1 (Strassen). If g e U has a smooth derivative,

0 < V t, and g(t) 4 t3/ 5 
- Y for some Y > 0, then

1 g~t)- -F2 (t)

(1.4.1) Pm .m- J E Je tdt. 0

Im-
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REMARK 1.4.2. (a) Strassen used an intricate argument to show that

(1.4.2) PB(t) > g(t) for some t I s} - Ja as a -->

and used this, along with approximation of S by B via Skorohod

embedding (see Breiman, 1968), to deduce his invariance principle

(1.4.1). In light of (1.2.9a) one might expect that the restriction on

the growth of g could be eased to g(t) - o(t 2/3). This can in

fact be done (Theorem 3.2.1).

(b) Theorem 4.3 in Strassen (1965), a lemma to (1.4.1) credited by

Strassen to F. Jonas, is in error. As noted by Sawyer (1972), the

Skorohod embedding time for X may not have finite mgf even though X

does. Theorem 3.2.1 repairs the proof of (and yields a result somewhat

better than) Theorem 1.4.1 by using the dyadic quantile-transformation

approximation of S by B due to Koml6s, Major, and

Tusnhdy (1975; 1976) instead of Skorohod embedding.

(c) If we assume g(t)/t 315 +, then (compare the proof of

Lemma 2.2.1(b))

g'(t)

In fact,

g,8(t)/( ) 1

Thus

P Z J (t) e Mdt,

m m t
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which is the tail integral in the KPEF test (1.3.7). g

EXAMPLE 1.4.3. Define g e U at the U \ L interface

according to (1.3.9), with p > 3 and P > 0. Then

(1.4.3) P{S m > g(m)} - [2,/W(Lm)(L 2 m) 2 (L 3 m) *** (L p 2 m)(L P )1  + P] -

which is of much smaller order of magnitude than

(1.4.4) Pm - [2.p(LP-1m) -1"

In contrast we shall see for Siegmund's boundaries and for those of

Theorem 1.6.1 (and also for Strassen's when g is not too close to

L ) that

(1.4.5) Pm = P{Sm > g(m)}.

The extreme reluctance with which (1.4.4) tends to zero is a

well-known phenomenon connected with the LIL. Were g only slightly

smaller we would have g e L and hence p. - 1 for every

m. a

1.5. Siegmund's result.

In stating Siegmund's solution to the SLLN case g(t) - ct we

assume that c > 0 is sufficiently small. The criterion of smallness,

detailed in Section 3.4, is the same as for the Bahadur - Ranga Rao WLLN

result. We further assume that if F is a lattice distribution with

span h, then c is a point in that lattice.
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THEOREM 1.5.1 (Siegmund). If g(t) - ct with c > 0 as above,

then there is a constant Y > 0 for which

(1.5.1) Pm - (I + Y)P{S m > g(m)}. 0

REMARK 1.5.2. (a) Siegmund determined the constant Y

explicitly and remarked that

(1.5.2) Y - 1 as c - 0.

Nevertheless, for fixed c the constant Y, like the constant

and the series I in (1.2.10), depends heavily on the component

distribution F. So Siegmund's result, unlike Strassen's, is far from

an invariance principle.

(b) Siegmund utilized the decomposition (1.3.11). In analyzing the

second term he used the fundamental identity of sequential analysis, the

large-deviation result of Bahadur and Ranga Rao, and some

renewal-theoretic calculations. The same kind of approach is used in

proving Lemma 2.4.1 to Theorem 2.1.1.

(c) For a generalization of Siegmund's theorem to linear

boundaries g with nonzero intercept, see Theorem 3.4.1. 0
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1.6. Completion of the solution to the convergence rate problem.

The solution to the convergence rate problem in the mgf case is

completed by the following theorem (cf. Theorem 2.1.1), which overlaps

somewhat with Strassen's:

THEOREM 1.6.1. If g has a smooth derivative and satisfies the

monotonic growth conditions

(1.6.1) A( t
tl12 

+

for some S > 0 and

(1.6.2) t. + 0t

then g e U and

~ = g ) P{S m > g(m)}.
(1.6.3) Pm m -/M *>(m)} 0

REMARK 1.6.2. (a) That g belongs to U is an easy consequence

of the KPEF test.

(b) The theorem's method of proof requires that g be kept away

from the U \ L interface and from linearity; hence the growth

conditions (1.6.1) and (1.6.2).

(c) The rate of convergence of the factor P{S m > g(m)} to zero

is given by Cramir's theorem (1.2.7). Thus in the present case the

rate of convergence depends on F, but only through a (typically) finite

number of cumulants of F.
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(d) One might expect that a result like (1.4.1), but with a

Cramer-like correction to the exponential factor, would hold.

Indeed, we show in Lemma 3.2.4 that (1.6.3) can be recast in the form

1 2

2/

(1.6.3a) pro m m t e  exp[I2( M dt.

In particular, (1.4.1) holds for g(t) - o(t 2/).

(e) As in Siegmund's case, g increases rapidly enough that

(1.4.5) holds (cf. Lemma 2.2.1(k)). ]

EXAMPLE 1.6.3. The transitions from Theorems 1.4.1 to 1.6.1 to

1.5.1 are smooth. Let g(t) -t/2 + S with 0 < 6 < 1/2.

Then

Pm - (1 + l/(26))P{Sm > g(m)}.

As 6 tends to its lower limit 0, the factor (1 + 1/(26)) tends

to aD. This is consistent with Example 1.4.3. As 6 tends to its

upper limit 1/2, 1/(26) tends to 1, which is consistent with

(1.5.2) in Remark 1.5.2(a). Furthermore, we have seen in Section 1.2

that the form of P{S m > g(m)} varies smoothly from the normal

approximation to Cramfr's theorem to the Bahadur - Ranga Rao

result. 0
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1.7. A sketch of the proof.

In this section we present an outline of the proof of Theorem

1.6.1. For a precise statement and proof the reader is referred to

Chapter 2.

We shall use the standard terminology " S crosses the boundary g

at time m " to describe the event {S > g(m)}, although " S is
m

above g at time m " is perhaps better. Notice that

{Sm_1 > g(m - 1), Sm > g(m), Sm+1 > g(m + )}

is included in this event, even though S does not "cross" from one

side of g to the other.

The first step in the proof is to restrict to a finite interval

Cm, v ) those times at which S crosses g in the event

{Sn > g(n) for some n t m} (whose probability is pm ). This is

done by choosing v so as to satisfy two opposing constraints:m

(1) that the probability of a g -crossing after time vm be

negligible; and (2) that g be virtually linear over [m, vm). The

"smooth derivative" condition guarantees that g' changes slowly enough

to admit such a vm

The first criterion is made precise by using elementary

subadditivity considerations and (1.3.12) to show that

(.7.1) Pm - Pm,v '
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where

p m P{S > g(n) for some m n < v}.
M'v a i

Using the mean value theorem, we then trap the graph of g over the

time-interval [m, v ) between approximating lower and upper lines

f and I respectively, both passing through the point (m, g(m))

and having slope (1 + o(1)) g'(m) (see Figure 1.7.1). Writing fm

indifferently for M or _, we define

P,v(im ) P{Sn > m(n) for some m n

Clearly

(1.7.2) ) < Pm,v m v

which reduces the problem to that of showing

(1.7.3) Pm,v m i m

with fm -M or fm and Im defined in (1.6.3).

Let

Pm(fm) E P{S n > Im(n) for some n ) m}.

correspond to p Mv mOm) as pm corresponds to pm,vm.

If T a inf {n: n I m, Sn > Im (n)} (as in Section 1.3, with

g replaced by f m ), then
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I I

I I m

in V m

Fig. 1.7.1. g is trapped between approximating lines
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PMI)- P{TM < co

- P{S m > Iro(m)) + Pm < T < o }

(1.7.4) - P{S m > g(m)) + P{m < Tm < OD} "

The first term can be estimated using Cramfr's theorem (1.2.7). For

the second we use Siegmund's techniques: the fundamental identity of

sequential analysis, the appropriate large-deviation result (here,

Cramfr's theorem), and some renewal theory. The result is

(1.7.5) Pm 1m ) - 1m•

From this we prove the analogue

(1.7.6) Pmvm(Om) - pm(m)

to (1.7.1). Equation (1.7.3) then follows from (1.7.6) and (1.7.5),

completing the proof of the theorem.

The heart of the proof lies with (1.7.5). It is enlightening to

examine the proof of (1.7.5) under the simplifying assumption that

F - 1, the standard normal distribution function.

In order to apply the fundamental identity of sequential analysis

we first need to introduce the family of distributions associated with

F through exponential tilting. In the special case F -

exponential tilting amounts to nothing more than a shift of location.

Accordingly, let P9  denote the probability under which X1 ,

X2, ... are independent and normally distributed with mean e and

I -
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unit variance. If

f (n) +C nM m in

and Tm  is redefined by

T = inf{n: n I m, S > q
mn >M,

then

(1.7.7) pm(fM) - P{S m > g(m)} + P(_r){m < T < O}.

The idea now is to tilt from P(_, to Pr . There are

two reasons for this. First, since EQ (X) > 0, we have by the
m

SLLN the simplification

(1.7.8) {m < T < oD} {T > m} I {Sm (X I a.s. PC
m

Second, letting p(n) denote the restriction of P6  to

the o' -field generated by X1, X2, ... Xn, the Radon - Nikodym

derivative of P(n) with respect to P(n)
(-C' ) in

assumes the particularly simple form

(n)
dP(-C)

(1.7.9) ) - exp(-2C n

m

Thus

P(-rm){m < T < O I a n>m P (n) IT n}
M-) mnni (-C2) i



23

"n>m{T. n}exp(-29 S )dp(n)

2 n~ {T M I mU Q63

(1.7.10) f{m <T <c I exp(-2ZmST ) dPr,

demonstrating the fundamental identity of sequential analysis.

Recalling (1.7.8),

P(_ M){m < Tm  < OD - {Sm  4 [m }  exp(-26STm ) dP6
m3

(1.7.11) - exp(-2CmOX) P6 {Sm < m

J exp[-2C(S.T -~n IX d(PC {.Sm O

The second factor on the right in (1.7.11) is

PQ {S a0[} " P{S m 4X m - C m}
m

-P{-S > -a + C }
m m m

(1.7.12) " P{S m > -0[m + emm}

making use of the symmetry and continuity of !. One can show that

C - O) - 2.FaV'(m) z I(tm) -- co;

hence (1.2.8) implies that (1.7.12) equals

(1 + o(1))(2W)-1/2 [2mV-(m)]-l exp[- 1-1(Cmm  2

(1.7.13) - (1 + o(l))exp(2C ATm) )S) > g(m).m 2mjP (m, m > m)}
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For general F, Cramir's theorem (1.2.7) would be needed to evaluate

the final probability in (1.7.12).

Finally, the integrand in the third factor on the right in (1.7.11)

is the exponential of a product of two factors: 9m' which equals

(1 + o(l)) g'(m) and so (see Lemma 2.2.1(b) and (1.6.2)) tends to zero

as m -> oD, and ST - 0, the amount by which S first
m

overshoots the level OX at or after time m. Using a
m

renewal-theoretic result of Lorden (1970) one can show that this excess

is of smaller order of magnitude than 1/Cm  and from this that the

integral on the right in (1.7.11) tends to 1 as m -c o.

Combining the results of our calculations,

(1.7.14) p (9 ) - P{S5 > g(m)}[1 + (1 + .... 2m)P(m)

which can be reduced without difficulty to (1.7.5).

1.8. Extensions.

Theorem 1.6.1 is restated and proved in detail in Chapter 2. In

Chapter 3 we give a correct proof of Strassen's theorem and a slight

generalization of Siegmund's. Chapter 4 discusses whether > can be

changed to I or vice versa in the definition

Pm M P{Sn > g(n) for some n I m}

without affecting the convergence rate and considers the case of two

boundaries. In Chapter 5 we obtain a partial asymptotic expansion for
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PM in Strassen's case. The expansion given by this invariance

principle contains a greater number of terms the nearer g is to the

U \ L interface and in fact forms a complete asymptotic series

when g leaves the range of Theorem 1.6.1. We also get asymptotic

upper bounds on the relative error in the approximation (1.6.3).

We conclude this summary by listing without comment four problems

ripe for future research.

(1) Develop complete asymptotic expansions for pm to extend

Theorems 1.5.1 and 1.6.1.

(2) Increase the dimensions of both X ("state") and m ("time").

(3) Allow the components Xk to have unequal distributions.

(4) Treat the non-mgf case. In other words, what results can be

salvaged when only finiteness of low-order moments is assumed?



CHAPTER II

COMPLETION OF THE SOLUTION TO THE CONVERGENCE RATE PROBLEM

In this chapter we more carefully state and prove Theorem 1.6.1,

thereby completing the solution to the general problem of convergence

rates related to the SLLN.

2.1. Statement of theorem.

Let X, X1, X2, ... be independent random variables with

common distribution function F, zero mean, unit variance, and moment

generating function Eexp(5X) finite for 5 in some neighborhood

of 0, and put

n 2 k 1 Xk' 0.

Let

K(5) - log(Ee x )

denote the cumulant gererating function corresponding to F. The

so-called Cramfr series

for F is defined implicitly for 5 near 0 by

26
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(2.1.1) 5 X5 K(z) -g + 1 2

z ( z(g)) given by K'(z)

Let g: (0, o) - (0, co and write

g(t) .0 t)

Define

(2.1.2) pa - P{Sn > g(n) for some n > ml.

THEOREM 2.1.1. Suppose that as t t CD

for some 0< 8< 1/2 and

(2.1.4) g(t) + 0.
t

If g is continuously differentiable and if for some 0 < r <1

(2.1.5) g,(u) - g,(t)

when t, u -- a with t K u K t[1 +1/2r( ,

then g 6U and

(2.1.6) Pm - I m PfSm gM as M CD

p7
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REMARK 2.1.2. (a) The conclusion (2.1.6) continues to hold if the

various regularity conditions imposed on g are assumed to hold only

for large t.

(b) The technical interpretation of (2.1.5) is that both the sup

and inf of the sets

(2.1.7) (t) t :C u < t[I + /,2r(t),,g,(t) : u

tend to unity as t -Y c. This assumption is implied by the

condition

(2.1.8) g'(u) - g'(t) as u - t -> c,

which we interpret to mean that for any function s of t, if

s(t) - t as t -- co, then both the sup and inf of the sets

{g,) : u is between t and s(t)}

tend to unity as t -> D.

(c) The rate of convergence for P{S > g(m)} is specified by
m

(1.2.7-8). 0

2.2. Some facts about the boundary.

The present section is reserved for a list of elementary properties

of g resulting from the assumptions (2.1.3-5).

91
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LEMA 2.2.1. Let g: (0, oD) - (0, o ) be continuously

differentiable and satisfy (2.1.3-5), and let g(t) -

Then

(a) Nt- t (whence T(t) t c ) and + 0;
t

(b) (-+ S ALI e -( t) (t)
t '

(c) I'(t) " t-I 2 (g-(t) - 1 t;
2 at

(d) S!L2 Vt

d ICe)) 1 ._2t),(e 32 +~~

Mf 0 4- it (.jl -

2 dT t_(1 __3(t 
2 
(t)(g) 0 (t )' - 8 t 3/2 0(- ) as t -3

(h) T(u) -(t) as u t -> c

(i) 12(u) -2(t) _), 0 when t, u -- co with t 4 u K t + 1;

(j) JP(u) -V'(t) when t, u - o as in (2.1.5);

(k) 2 K -'-- 1 + 1EV TP(t) 79"

PROOF. (b) We have

C"t) " Ct " tQ2. ZStt +t .(Et) p d ( (t)
g .4d T t o t

dt( t tdft t

by (2.1.4). The first inequality follows similarly from (2.1.3).
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(d) Combine (b) and (c).

(f) Combine (d) and (e).

(g) Use (f) and (a).

(h) If t K u then (a) yields

41(t) j 4(u) ~ ~ 1124f(t) -(I + o(1))lP~t);
t

the case t > u is handled similarly.

(i) By (a), the mean value theorem, (d), and (h),

0 ; 4 2(u) _ 12(t) < ;2 (t + 1) _ V2(t) < ;(t + 1)
t

(1 + o(1); ) = o(t).

(J) Use (c), (b), and (h) and (2.1.5).

(k) Use (c) and (b). f

In Sections 2.3 through 2.6 we prove Theorem 2.1.1 following the

outline of Section 1.7.
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2.3. Restriction of g -crossing times to a finite interval.

Throughout this section "fact (')" refers to part (-) of Lemma

2.2.1.

Recall that we wish to define v > m in such a way that

(2.3.1) Pv W O(Pm) as m -
M

but g is virtually linear over [m, vm). As it turns out, an

appropriate choice is

(2.3.2) v = Lm(1 + I/q2r(m))j

Fact (a) implies that

(2.3.3) v - M

and (2.1.5) yields

(2.3.4) g'(t) - g'(m) when m, t --) c with m K t < v .

LEMMA 2.3.1. If v is defined by (2.3.2), then (2.3.1) holds.

PROOF. By subadditivity

(2.3.5) PM 4 'nm P{Sn > g(n)};

we'll replace m by v in (2.3.5) to get an asymptotic upper bound

on p v . By Cramir's theorem,

P{S > g(n)} [- i.V(n) exp{- -) - (n) [ -} 2

n/
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(2.3.6) - [,a-I(n)]-exp{- - 2 (n)1},

where

(2.3.7) I(t) - 2 (t)[1 - -t) ( t) - 1/2.

Note

(2.3.8) i(t) - T(t) as t - a).

Also, as t -> o

2i(t)-(t) = 2V(t);'(t)[I -

- 272 t d ;l(t)) [X( 7 t)) +__) (t)22t) "d- -7t') + V

- (1 + o(I))2$(t)Tl-(t)

- (1 + o(1))2X 2 (t) •d<-7T)

- (1 + o(1))2V(t)T'(t)

by facts (d) and (g), so that

(2.3.9) '(t) - ;-(t)

Hence when t, u -+ c with t K u < t + 1

(2.3.10) 0 < j2(u) - 12(j) (1 + M- 0(1)t

(cf. proof of fact (i)). From (2.3.5-10) and facts (h) and (d) follows

wP m 4 (I + o1i) 2n~m [I(n)]1- exp[- 2(n)]
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-(1 + o(1)) 0{ [i(t) 1 exp(- j2(t) dt

K (1 + (1)) 6-1 {m F2 (t0 exp[- p(t)] V(t) dt

O({fj1/S - 2(t) exp[- 1 2 (t)] V(t) dt).

But

ailS- 2 1-2
()exp(- -4 (t)] ;'(t) dt

1 2
/(6) e du

j1/6 - 3(m)exp- 1-2

(mex[-7?(M)]

so

(2.3.11) pm" i/S -
3 (m)exp[- ? 2 (m)]).

Now by the mean value theorem, (2.3.8), (2.3.9), facts (i) and (d), and

(2.3.2),

2€
j2 (v) (m) I(I +o())2S ()n -iM)

- (1 + o(1))2j 2(I -r)(M)

and thus (2.3.11) (with m replaced by v ) easily yields

Pv M ([.i(m)]-1exp[- 9 D()])
m
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(2.3.12) = O(P{Sm > g(m)}).

To complete the proof of Lemma 2.3.1 use the obvious bound

(2.3.13) pm I P{Sm > g(m)}" 0

am

Define

(2.3.14) pm,vm -P{S n > g(n) for some m 4 n < vM};

clearly,

(2.3.15) Pm,vm 4 Pm 4 PM vm  
+  Pvm"

We therefore immediately obtain

COROLLARY 2.3.2. With pm given by (2.1.2) and Pm,vm by

(2.3.14),

(2.3.16) pm - Pm,vm  as m -> 0

2.4. Linearization of the boundary.

We define here straight lines ( and Tm' both passing through

the point (m, g(m)), which well approximate g over the interval

[m, vm] (Fig. 1.7.1). The definition of f (respectively, Im

together with the mean value theorem will imply that this line minorizes

(majorizes) g on [m, vj.

LA"



35

The slope --n (respectively, 6 ) of 2-m ( L ) is

defined to be the minimum (maximum) value of g' over the interval

[m, vm]. We now treat both lines at once by writing, for example,

f indifferently for or 1m" By (2.3.4)

(2.4.1) Cm - g'(m) as m - D.

The y -intercept of m is

(2.4.2) (K - g(m) -im
m in

In analogy with (2.1.2) and (2.3.14) define

(2.4.3) p(m) -PS n > IM(n) for some n I m}

and

(2.4.4) PmV 9 P{Sn > IM(n) for some m 4 n < vM}.

The key to analyzing (2.4.3) is the following lemma, to be proved in the

next section.

LEMMA 2.4.1. Let Im denote the straight line

(2.4.5) MW(t) -( m + Cmt

and define p MUM by (2.4.3). If 6m > 0 satisfies

(2.4.6) 9 --> 0

and
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(2.4.7) RQm -> OD

and if

lir sup
(2..8) M --> OD r M

m

then

26
(2.4.9) pm )- me • P{s > fm(m)} as m -> . U

m m

REMARK 2.4.2. The conditions (2.4.6-7) demand that Q tend tom

0, but not too quickly. Assumption (2.4.8) requires, loosely speaking,

that the limiting proportional contribution of the constant term to the

value at t - m of either W(t) - OX + 6mt or

fmW --Xm + Cmt (which arose in (1.7.12) for the example

F - ) is less than 1/2. It follows from (2.4.8-9) that

Pm(m ) = P{S m > fm(m)}
•  a

According to (2.1.3-4), (2.4.1-2), and Lemma 2.2.1(b), m f m

or i satisfies the assumptions of the lemma. Recall that

(2.4.10) fm(m) - g(m).

Furthermore, by (2.4.2), (2.4.1), and Lemma 2.2.1(b)-(c)

mX. - -2 - 2[Cm - 1 _m)_

In mnI 2 In
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- 2((1 + o(1))g'(M) - 9 _m

- (1 + o(-))2[g'm) -

(2.4.11) - (1 + o(l))2.' (m).

Combining (2.4.1) and (2.4.9-11) we get

(2.4.12) pm(Im) - 9{(m) PS m > g(m)I - Im  as m -4 o,

completing the analysis of (2.4.3).

In Lemma 2.4.3 below we'll prove the analogue

(2.4.13) pv (m ) E [Sn > fm(n) for some n I vi " o(p (fm))
m

to (2.3.1). As an immediate corollary (cf. Corollary 2.3.2),

(2.4.14) pm,vm(fm) - pm(fm) as m 4 oo.

We combine (2.4.14) and (2.4.12) to obtain the rate of convergence for

(2.4.4):

(2.4.15) p m,vm(fm - Im  as m - oo.

Moreover, since g(n) is trapped between (m(n) and fm(n) we have

(2.4.16) pm,V(2) follows fomm(23) a

The main result (2.1.6) follows from (2.3.16) and (2.4.15-16).
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The remainder of this section is devoted to the following corollary

to Lemma 2.4.1.

LEMMA 2.4.3. With fm 4 or m (2.4.13) holds.

PROOF. To begin the proof of (2.4.13) we apply Lemma 2.4.1 to the

left side to yield

29m
(2.4.17) pv (Pis) p{S > fm(Vm)}

m Om m
m vm

recalling (2.3.3) to verify the hypotheses (2.4.7-8). In light of

(2.3.3) and (2.4.8), the first factor on the right in (2.4.17)

asymptotes to the first factor on the right in (2.4.9), or, in the

present context, to the first factor in Im  (recall the proof of

(2.4.12)). Moreover, by Cramfr's result

P{s v  > fm(v)}
m

(2.4.18) - [,2--'m(vm))- exp{- -! 2 (vm)[1 -2 m ( - )]};
m m

here we have written

(2.4.19) fm(t ) - "-m(t)

so that Vm(m) - V(m) and

m(vm) = vm-1/2 m(Vm)
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-11/2

m m m

(+ o(1))u-12(0n +i

(2.4.20) - (1 + o(1))(m).

Put

2(t) V=t) 1/2(2.4.21) =(),.{2(t)[1 - 2T=a)}

then

(2.4.22) P{S V > fm(vm)} -
2" ( m) I- e x p [ - " 2(Vm)]"

m

But with

(2.4.23) f( -2-25) [ - 2 as ~ 40,

so that

(2.4.24) f(5) - 25[1 - 22(5) - 2 2[X)(g) + 5X'(5)] - 25 as 5 - 0,

we have

21 (v )v - V (i ) v f ( ,)(-

!=(m) Tm(vm) V[Tm(m)
-Va -f f(T + -v m - -
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-(l+ OMm T~) I(m) VM(vm)

+ ( + o()) m 1 2~(-M--
mm

m m m(v)

+ (1 + o(1)) 2 (1 - r M

-(1+ o(1)) (X Pm>~1-s. + (1+ 0(1))f2(r)(m)

2r-(1 ++ o(l))f 2G r) (M))*

-G-( + o(l)).V 2()

_(+ 0(1)),plp 2r() - 2-

+ ( +l2r 12 (), (6b + 2)

-(+ o(l)),;q * m 1 -r M

(1+ ~))*2m'a-(m)ll 2('a) (recall (2.4.11))

> (1 + o(i)) -2012(l r)(m) (Lemma 2.2.1(d)).

p So

PV Om P~sv> I(vM)}

_____- (1 + 0(1))g~)
p (f ) p IFS P{S >ga)
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-(1 + o(l)) -exp{- 1 [i2 (va) 12 ()]M -~)

completing the proof of (2.4.13). f

2.5. Line-crossing probabilities.

This section is devoted to the

PROOF of Lemma 2.4.1. *first need to establish some notation.

Define the distribution function F by
m

(2.5.1) F (x) - F(C + x);

in other words, if X is distributed according to Fm , then

X - Qm has distribution function F. The effect of F will be to

replace the linear boundary fm by a horizontal one: in obvious

notation,

PM(Im )  P PF (Sn > % for some n > m}.
m

Let K m denote the cumulant generating function corresponding to

Fm, so that

(2.5.2) K() - K(S) - Qrag

Recall the assumption that K is finite in an open interval I

containing 0; Km  is also finite in this interval.

a!
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Since F has zero mean and unit variance, it is well-known that

(2.5.3) K(3) - 2 K(5) - 5, K"(5) -> 1 as 5 -> 0,

and that

(2.5.4) K(O) 0, K() 0, K"(5) > 0 for all 5 e I.

From (2.5.2) and (2.5.4)

(2.5.5) K m(0) - 0, K -(0) - -6 , Km"(5) > 0 for all 5 e I.

Hence there exists at most one nonzero value 51(m), necessarily

positive, for which KM(51 (m)) - 0. We now show that 51(m)

exists for sufficiently large m and that

(2.5.6) 5,(m) - 2 m  as m --> o.

Indeed, let m 4) 0 be an arbitrary real sequence. By

(2.5.2-3),

(2.5.7) K(s) - (1 + o(1)) . 2 -2 as m --> o.

In particular, with 5m S C - 26m (C > 0)

(2.5.8) KM(3m) - 2CEM2[( + o(1))C - I].

If C < 1, then Km(3m )  -2C(I - C)Cm2 < 0; if C > 1, then

Km(5m) - 2C(C - 1)Cm2 > 0. This shows that 51(m) exists

for sufficiently large m and that, for any pair of constants

0 < C < 1 < C', C < 51 (m)/(2Cm) < C' for large m; (2.5.6)

follows.
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Similarly, for large m there exists exactly one point

5m)e (0, 51(m)) at which Km' vanishes, and

(2.5.9) 30(m) - Cmas m -* co.

This follows from the fact that if 5m -0 0, then

(2.5.10) K -(3) - (1 + o(l))5m - 6 m as m -->c ~.

Next, let P Mdenote the probability under which X, X1 9

X 21...are i.i.d. with

(2.5.11) P {X e dx} - exp[5 0(m) x - Km(50(m))] Fm(dx).

P has cgf

iae - (50 (m) + e) -M3()

(2.5.12) -K(5 0(m) + 0) -K(5 0 (m)) - 9 e;

note that

(2.5.13) 6M(O) - 6 . -0 0, 6m' 0 
-.() K(0m)

Put

(2.5.14) e O(M) - -90(M), 01(m) - 9 -m 5()

Then
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(2.5.15) eo(m) - "-m' 1(m) - Cm as m -- o

and

im(e0(m)) = im(e(m)) - -Km(50 (m)) - -(K(3 0(m)) + tm%0m))

(2.5.16) 1 2 as m-* oa.

We now introduce the distributions associated through "exponential

tilting" with that of X under P . For each real 6 for which
m

6m(e) < o let P be the probability under which X,

X19 X2, ... are i.i.d. with

Pm, {X edx} - exp[ex -6m(e)] PM{X e dx}

(2.5.17) - exp[ex - 6m(e)] exp( 0 (m) * x - Km(50 (m))] Fm(dx).

The corresponding cgf 6m,e is given by

6m,@,q) = hm(e + ) - 4m(e)

- Km(5o(m) + 6 +7) - Km(50 (m) + 8)

(2.5.18) - K 0 (m) + 6 + ) (5o(m) + e) - Gm .

In particular,

(2.5.19) EM,eX - 6Me,(O) - im'(e) <, -, or > 0

according as e <, -, or > 0

by (2.5.13) and the strict convexity of 6
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As special cases of (2.5.17),

PM90 m

P ix e dx} exp[51(m) x] Fm(dx),
m,81(m)m

and

P {x edxIm, 90(M)

- exp{(30(m) + eo(In)1 x - [4m(e%(m)) + K m(30(m))]} Fm(dx)

(2.5.20) = F (dx) - F(CM + dx)

(cf. (2.5.14), (2.5.16), and (2.5.1)). Hence by (2.4.3) and (2.4.5)

(2.5.21) p U Pm M' OM Sn >Xm for some n Im}.

Without loss of generality we consider PMOto be the

distribution of X1, X2, ... ,. defined on the space of (infinite)

sequences of real numbers. Accordingly, let P(n)
m'9

denote the restriction of P MRto the a -algebra generated by

the first n coordinates ( n - 1, 2, .. .Then for any 9' and

a- P(n) and p(n).aemtly

absolutely continuous, and by (2.5.17)

dP (n)
(2.5.22) m'9 exp{(e' - @")S - n[601 e ]}

dP (n) n(8) -
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In particular, by (2.5.14), (2.5.16), and (2.5.22),

dP (r

(2.5.23) M,@ (M) - exp[- n) - ,2

d P ( n )1 ( 1, 2 * .

m,8 1(m)

Let

Tm M infln: n I mSn > 0

the inf of the empty set being +oD. Then by (2.5.21)

(2.5.24) p J P (S > X1 } + P {m < T < OD}mm m'e0(m) m m M,%0(m)

By (2.4.5) and (2.5.20), the first probability in (2.5.24) is

P{S m> ( (m)}. To complete the proof of (2.4.9) we shall use the

approach of Siegmund (1975) to show that

(2.5.25) P {'Om m < T m< OD m m .P{S m> I (m)l as m co .

m m

We first apply the fundamental identity of sequential analysis, to

wit: by (2.5.23)

P M8( {m <T (n O}

n-%m 1 am=n m)n1
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'J{m < Tm < D exp [ -5l(m)ST m] dPmGeI(m)

(2.5.26) - exp[-S1 (m)(Xm]

- Jim < < a), exp[-5l(m)(STm - a)] dPm,8l(m)"

Recalling el(m) > 0, (2.5.19) implies Em,9 (m)X > 0; hence by

the SLLN

{m < T < a}I - {m < Tm  o} {S 4 (m} a.s. P
m m m m Me~)

and the final integral in (2.5.26) equals

(Sm m } exp[-l(m)(ST - Cm)] dP., 9

M pm {Sm (X }-E (exp[-Sl(m)(S - cm)] I S K Ox)
M,e1Cm) m m m,e(m lTM (M m 4Xm)

(2.5.27) M P {S 4 X}M,e1(m) m m

Im
JfO,a ) Zm,e (in)(expt-l(m)(ST -¢m) -

s =m - y

S{m, S(m){sme m - dy I Sm '¢X

The last conditional expectation in (2.5.27) is

(2.5.28) Em,e(m)(exp[-l(m)(ST(y) - y),

- -" ... - - - .. - L.. ... ' S " "f fi
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where T(Y) - inf{n: Sn > y}. We show below that the expression

(2.5.28) tends uniformly in 0 y < ca to 1 as m - o ; thus

(2.5.29) P MO(m){m < Tm < co} - exp(-51(m) i • Pme (m){S m  (X }.

Moreover, mimicking the proof of Cramnr's theorem we'll show in

Section 2.6 that

(2.5.30) P{S cx} - expin(mlm] " m M P{S > ''}in,81(i) expfm C -i xi m
m m

Then (2.5.25) follows from (2.5.29) and (2.5.30).

The first of our two assertions is that

(2.5.31) E m,1(m) (exp1-(m)R 1 as m --> co,

uniformly in O y < co,

where Ry - ST(y) - y is the excess over the horizontal

boundary with level y. In light of the inequality

1 1 e -.1 1 - 1 for ' > 0 and (2.5.16) it is enough

to show that the nonnegative quantity

(2.5.32) sup{E R : 0 4 y < c } = o( - -) as m -> .
mE,(ui) y

Indeed, for 0 K y < co we find

(Em,e 1 (m)Ry)2 E m,e(m)R y2
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4 + 3
K T Eme1(m) (X )31Em,9 (M)X

using theorem 3 in Lorden (1970). An easy dominated convergence

argument shows that E (X )3  -- E(X) 3 < w, andm,e1 (m)

by (2.5.19),(2.5.12),(2.5.14),(2.5.10), and (2.5.6)

E m,91 (m)x m m (e1(m)) - K'(31 (m)) -m

(2.5.33) (1 + o(l))Sl(m) - em (1 + o(l))C m .

Therefore

sup{E ~e )R 0 K y < O} K (I + 0(l))4( E(X+)3 1/Q]/2

(2.5.34) - m- /2 ) " o(Cm-1).

which proves (2.5.32).

The remaining assertion is (2.5.30). Standardizing to zero mean

and unit variance,

Sm - mm,el(m)X

m,@i(m) m  - Pm,9t(m ) (mVar m,el(m)X)/2 m

with

(2.5.35) um a - WEm, (m)X)/(mVarmn@(m) X)1 /2 .

tm | ~ () me1m



50

From (2.5.33) and

(2.5.36) Var MO()X M. - m) KM.3()
(2..36 Vam,e1(m)X - #m(&(m)) - Km"( i(m)) - K"( 1 (m)) -- 1

and (2.4.8) follows

(2.5.37) um ~/( - -).

Let G be the standardized distribution of (-X) under

P and let X be the associated Cramfr series.m,e1(m)'

Were it not for the dependence of G on m, direct application of

33

I Cram~r's result (which holds as well when > is changed to on

the left in (1.2.7)) would give

3

(2.5.38) Pmn,e1(m) {Sm  0 } - P{Z > um}exp[ -- \ ()].

In fact, (2.5.38) can be established by rehashing the proof of

Cram~r's theorem and used to deduce C2.5.30). We shall follow a

somewhat shorter route and verify (2.5.30) directly, but our proof, like

Cram~r's, will be based on the standard large-deviation technique of

exponential tilting.

2.6. A Cram~r-like result.

In this section we complete the proof of Lemm 2.4.1 by

establishing the Cram~r-like result (2.5.30).
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For abbreviation we introduce the notation

(2.6.1) *()Z ()Gj +-a)

This should cause no confusion; after all, whenever Lemma 2.4.1 is

applied to the original convergence rate problem the identification

(2.6.1) is made. In addition, let

(2.6.2) zm M (T-

with z defined in (2.1.1) and put

(2.6.3) e 2(m) - zm+ @~

we shall soon tilt from P Me0(m) to P m' ()to compute

the left side of (2.5.30). observe

(2.6.4) Zm - T(m) -4> 0,

cc:

(2.6.5) e (m) - - + 0(6) - 0,

(2.6.6) 6 ( 2 (m)) - KCZm) -K(5 0 (m)) - Ce()

Also note that

(2.6.7) E x . 6m (0-~z) C - ___) C-l
m,@ 2(m) m 2 (m)) K m) 6  A 6m -m

and that

(2.6.8) a 2 = Var X~ 2(m x m (e2 (m)) -K"(zm) ~1
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We are going to use the Berry-Essfien theorem, and so the third

absolute moments

(2.6.9) -m me2m 1x 3, e EIX 3 < 00

will arise; dominated convergence gives

(2.6.10)

Let

(2.6.11) 17 M P {S 4 0
m M'e1(m) m

denote the left side of (2.5.30). Putting 9e e- m

e- e 2(m), and n -m in (2.5.22) yields

(2.6.12) Um M exp{-m[6 M(el(m)) -me()1

S(-oa ,c1] exp (M) - 0 (M))sl Pm m {Sm 0 ds}

Recalling (2.5.16) and (2.6.6) and simplifying,

(2.6.13) -m exp-m[C mz~ - K(z MM]

(-C (X exp((e1 (m) - e0(m) -Zm)51

m

If the approximation II to 71 is obtained from the right
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side of (2.6.13) by replacing P m. ([S me do} with the

normal distribution P{(X + ms 1/ 8 do) with the same mean

and variance, then (completing the square and rearranging)

unexp [ e Wm - 0 W Al.

1 2" exp[.rinY (91(m) -e'cM))
2  P{z 9 2(o'())))

" exp{m[K~z ) m~ mm

(2.6.14) -expf(@ 1 (m) - 90(m))%]

. exp[- j42(m) + h(.,o' (@1(m) - 2(m)))]

where

1 2

(2.6.15) h(t) -log(e P{Z > t}).

Note

1 2

h'(t) t It/P{z > t

(2.6.16) -1-/t as t -* OD

So by the mean value theorem

m Im) 2(m))m m
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-(1 + o(l)).,9(a (8iin -X e2 in)-

(2.6.17) 0()

and hence the second of the three factors on the right side of (2.6.14)

is (1 + o(l)) times

exp[- 1 2 (in) + h(m(

- exp(- j4 (in)]exp(.L(Cm - ] >.iE(C _-

- (1 + o(1))(Qm - -I) (21Ii)"exp[- L 2()

-(1 + o(1)) m m 1-V~n)1 exp[- 1 2

C

S+i

- (1 + o(1)) m lP{Z > V(in)}.

In light of (1.2.7) it is now clear that

(2.6.18) t - right side of (2.5.30).

Moreover, integration by parts in (2.6.13) leads to the error

estimate
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(2.6.19) Ni 4 - CI 2C 3 exp[(eO(m) - e0(m))(Xm]

. exp{m[K(z ) -z m  T(-)

where C is the universal constant appearing in the Berry-Esfen

bound C • /( 3n1/2 ) on the error in the central limit

theorem (see Feller, 1971, p. 542). Comparing with (2.6.14) and

recalling (2.6.15), the right side of (2.6.19) is

(2.6.20) 2C - . .. exp[-h(, (ei)-a 3 m(m)1(m)

m 4

But

(2.6.21) exp[-h(t)] -./21t as t --> o,

so by (2.6.8), (2.6.10), and (2.6.21), (2.6.20) is

(1 + o(1)) • 2Cj( m - -a)* -- -)m °(m)

Together W -m and (2.6.18) give (2.5.30), completing

in m
the proof of Lemma 2.4.1. fl



CHAPTER III

STRASSEN AND SIEGMUND REVISITED

3.1. Introduction.

The following theorem on boundary crossing probabilities for

Brownian motion B is due to Strassen (1965, cf. thm. 1.2).

As in Chapter 2, let g: (0, co) -- (0, a ) and write

g(t) "

THEOREM 3.1.1 (Strassen). Suppose that g is continuously

differentiable with

(3.1.1) g1t),

as t t for some : > 0. Assume as in (2.1.8) that

(3.1.2) g'(u) - g'(t) as u - t -) o

and that g e U(B). Then

(3.1.3) P{B(t) > g(t) for some t > s} -s as s - o,

where

56

+ ; +i '+ l -+ + " mi .i . - . + . +, - + . . + + . +_ . . . = . + +
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(3.1.4) J 't e d. 0

Approximating the random walk S by B using Skorohod embedding,

Strassen deduced Theorem 1.4.1. For Skorohod embedding Strassen was

able to show that

(3.1.5) S = B(n) + O(n /4(log n) /2(log log n) 1 /4) a.s. as n - o,n

but this bound is crude enough that Strassen was forced to impose the

restriction g(t) K t3 /5 - Y in place of the more natural (cf.

(1.2.9a)) g(t) - o(t2/ 3 ). Furthermore, as explained in Remark

1.4.2(b), Strassen's use of the Skorohod technique is flawed.

A response to both criticisms is provided by the approximation

scheme of Koml6s, Major, and Tusnfdy (1975; 1976). These

authors used techniques strikingly different from those of Skorohod to

obtain a better approximation of B to S. The resulting improvement

(Koml6s, Major, and Tusnady, 1976, thm. 1) to (3.1.5) is

(3.1.6) Sn = B(n) + O(log n) a.s. as n - o,

and Koml6s et al. showed that (3.1.6) is the best possible result in

this direction. In Theorem 3.2.1 we use Theorem 3.1.1 and the

Koml6s et al. approximation to give a correct proof of Theorem

1.4.1, widening the range of boundaries to g(t) - o(t2 /3

Corollary 3.2.3 provides a neat summary of Theorems 2.1.1 and 3.2.1.
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In Section 3.4 we generalize Theorem 1.5.1 to linear boundaries g

with nonzero intercept.

3.2. Strassen revisited.

THEOREM 3.2.1. Adopt all the assumptions of Section 2.1 preceding

(2.1.6), relaxing (2.1.3) to

(3.2.1) tt ) t

"t)

and tightening (2.1.4) to

(3.2.2) t) + 0
t 2N

and (2.1.5) to (3.1.2). If g e U, then

(3.2.3) Pm - Jm as m-+o

with J. given by (3.1.4). f

REMARK 3.2.2. (a) As with Theorems 2.1.1 and 3.1.1, the various

regularity conditions imposed on g need only hold for large t.

(b) We remark without proof that condition (3.1.2) can be relaxed

to (2.1.5). One must then assume, however, that

(3.2.4) g(t)

(tLPt)
1 /2

for some p or, more generally, that
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(3.2.5) g(t) t

(tf(t)) 1

for some function f satisfying

(3.2.6) f(t) t o, (log fW(t) I t - 5 / 4

for large t. f

We postpone the proof of Theorem 3.2.1 to remark that Lemma 3.2.4

below allows us to combine Theorems 2.1.1 and 3.2.1 to form a strong-law

analogue to Cramfr's theorem:

COROLLARY 3.2.3. Adopt all the assumptions of Section 2.1

preceding (2.1.6), easing the restriction on & to 0 S < 1/2

and tightening (2.1.4) to

(3.2.7) g(t) + 0
t 1

for some 0 K 'I < 1/2 and (2.1.5) to (3.1.2). If g e U and

either 8 > 0 or 1/3, then

1 2- mo 2- 2 ( t )  2 T(t) T(t)

(3.2.8) m,1 i (t exp[ 2 (t)e--(--7-)] dt. f

Lemma 3.2.4 obtains the alternative integral expression (3.2.8) for

the rate of convergence of pm in the case of Theorem 2.1.1.
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LEMKA 3.2.4. Under the assumptions of Theorem 2.1.1, (3.2.8)

holds.

PROOF. According to (2.3.6) and the normal tail estimate (1.2.8),

P{S > g(m)} - P{Z > (M)}

with i defined in (2.3.7). It follows (cf. (2.3.2), (2.3.3),

(2.1.6), (2.1.5), and Lemma 2.2.1(j)) that

m (m)

and hence from Lemma 2.3.1 and (2.3.9) that

p - (1+ o()) PJ(m) < z K -

1-2=(I + o0M) 9) !- Vm I-ee ? T(t) dt
,9q- (M) m rv

1-2
=(I + o(I)) e dtM q

(3.2.9) (1 + o(l))(M  - Jv )
m

But using Lemma 2.2.1(k) we find

i (1 g + ) e 0'(t) dt
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1-2

- (1 + o(1)) (1 + 1 JOD e, FPt dt

(1 + o(1)) (1 + ) P{Z > '(m)}

(1 + o(I)) (1 + 21) P{S m > g(m)}

and similarly

m > (1 + o(1))2P{S > g(m)}.

Hence

(1 + o(1)) 2 Im / < (1 + o(1)) 1 (1 + )
+2g

Thus

1 1(3.2.10) 0 < Jv 4 (G + o()) 1( +n) Pv M o(Pm) - O(Jm)
m m

and (3.2.8) follows from (3.2.9-10). 0

We now undertake the proof of Theorem 3.2.1. Using the

approximation of Koml6s et al. we shall prove in Section 3.3 the

following strong invariance principle to be used in conjunction with

Theorem 3.1.1.

Extend the time domain of S to (0, w) via the definition

(3.2.11) S(t) - S Lt j  0 t < D .

LtJ'

-- -a-.. S. -A t ~ --
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LEMMA 3.2.5. Adopt the assumptions of Theorem 3.2.1. Choose

C> 0 and put

(3.2.12) h - gO(.

Then, without loss of generality, there exist a Brownian motion B and

positive constants K and M such that

(3.2.13) P{IS(t) - B(t)l > h(t) for some t > s} < Ke- M h ( s )

for all s>O. 0

REMARK 3.2.6. (a) The phrase "without loss of generality" is to be

interpreted in the specific sense of Strassen (1965): there exists a

probability space on which S and B are both defined and (3.2.13)

holds. The proof of Theorem 3.2.1 then applies to this version of S,

but pm W P{Sn > g(n) for some n t m) is clearly the same for any

version of S.

(b) The constants K and M depend on F, g, and C. 0

In proving Theorem 3.2.1 we apply Lemma 3.2.5 with (X - 1/2.

First observe that

Pm = P{S(t) > g(t) for some t I m}.

Hence

P{B(t) > g(t) + h(t) for some t I ml - Ke- Mh (m)

Pm - P{B(t) > g(t) - h(t) for some t . m} + Ke-M h (m )
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wi th h g1 . Now

P P{Sm > g(m)} -(1 +o(l))[,4iIfi(m)] 1 expf- 1-2()

-exp(-(l + o(l)142m

and by (3.2.2)

2
*(mn) o~m)

so

adKe -M(n) . o(p )

(1 + o(1))PJB(t) > g(t) + h(t) for some t I m}

(3.2.14) Kp~ m (1 + o(l))P{B(t) > g(t) - h(t) for some t I mi.

To complete the proof of Theorem 3.2.1 we'll show that both of the

Brownian motion probabilities in (3.2.14) equal (I + o(l)) 3m

Begin with the right side of (3.2.14). Because g e U and

1Vf, the KPEF test (see Section 1.3) implies that

1 2
JaD4(t) e- 2 (t dt < a.

Since g - h satisfies hypothesis (3.1.1) of Theorem 3.1.1 with

-1/2 and by (3.2.2)
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iPth(t) -g/ t
IT-

it follows from the KPEF test that g -h e U. Moreover, g -h

also satisfies (3.1.2) because

2h( t)

Thus (3.1.3) holds for g h:

P{B(t) > g(t) -h(t) for some t I m}

(1G + o00)) j m zf -i exp{- -*QRt) -h)2 dt

(3.2.15) - (G + o(1A))J a s m --> oD

As for the left side of (3.2.14), we note that g e U and

g + h I g implies g + h 6 U, whether U equals U(S) or

U(B). The function g + h also satisfies the assumptions of Theorem

3.1.1, but now we need to take r~ - 1/4. Proceeding just as with the

right side, we find the left side of (3.2.14) to be (I + o(1)) JS

and the proof is complete. fl

3.3. A strong invariance principle.

Using the standard probability estimate

(3.3.1)' 1~~+ IB(t) - B(n)I x - {1'u IB(t)i > x}

for the uniformity of B over an interval [n, n + 1] of length one,
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one can prove without difficulty the following slight extension of

theorem 1 in Koml6s, Major, and Tusnfdy (1976).

LEMMA 3.3.1. Let S satisfy the assumptions of Section 2.1,

including restriction to the mgf case. Then, without loss of

generality, there exist a Brownian motion B and positive constants

a, b, c depending only on F such that

(3.3.2) p( SUP Is(t) - B(t)I > x} 4 asb eCX

for all x > 0 and s 1. 0

With this result we are now ready for the

PROOF of Lemma 3.2.5. We may suppose that s > 1 and define

1 0 from s by

(3.3.3) 2 < s K 2+

Then by Lemma 3.3.1 and the increasingness of h

p(s) - P(IS(t) - B(t)I > h(t) for some t I s}

K P(Ujj {IS(t) - B(t)I > h(t) for some 2J < t K 2J+11)

K 2jt P{ sup IS(t) - B(t)I > h(2J)}
OK2j~

• 2b
a 1  2, - 1)

with a~ a *2 b, b1 b -log 2, and c- c. According
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to (3.2.1), h(2J) > h(1) . 2 j/2 for all j 1 0, and so

(3.3.4) implies that for c2 - ci/2 and some a2 >0

p(s) K a2 2j4 exp[-c 2h(2i)]

a2 F-' exp[-c 2 h(2t)] dt

a2 o- -1 exp(-c2h(u)] du.

log 2,22

Now by (3.2.12) and the fact g'(u) I g(u)/(2u) (cf. Lemma 2.2.1(b))

W~u) ~h(u)

hence with a3 - (2a2)/[OLc2h(/2)log'2] > 0 we find

p(s) a 3  _ exp[-c2h(u)] c2 h'(u) du

-a 3exp[-c 2h(2

a3exp[-c 2h(s)].

(3.2.13) now follows with K - a3 and M - 42(K/3 c2  from

(3.2.2).9
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3.4. Siegmund revisited.

In solving the convergence rate problem in the SLLN case (see

Section 1.5), Siegmund (1975) treated linear boundaries g(t) - Ct

that pass through the origin and have positive slope Q. Our proof of

Theorem 2.1.1 used Siegmund's techniques to establish the key Lemma

2.4.1, which estimates crossing probabilities for boundaries

(m(t) - 0[ + mt having variable intercept O , and slope

Cm - o(l). The provability of Lemma 2.4.1 leads to the conjecture that

Siegmund's result can be extended to the case g(t) - 0[ + Ct. The

purpose of this section is to state such an extension, Siegmund's proof

adapting easily to our generalization.

Accordingly, let Q > 0 and 6 eR be given, and denote

by g the straight line

(3.4.1) g(t) - CC + Ct.

Our goal is to determine the asymptotic rate at which the boundary

crossing probabilities

(3.4.2) Pm = P{Sn > g(n) for some n I m}

converge to zero as m 4 oo when S satisfies the assumptions of

Section 1.1.

We need some notation. Define

KQ(3) - K(5) - 65
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for in the interval of finiteness of K. As at the start of the

proof of Lemma 2.4.1 it follows that if Q is small enough then there

exists a unique nonzero value 51, necessarily positive, for which

KQ(3i) - 0. Assume that such a value 5, exists -- this

is the criterion of "smallness" for Q mentioned in Section 1.5 -

and let 50 denote the point in (0, 5,) at which

K., vanishes. In the notation of (2.1.1), go - z(6).

As (2.5.17) and (2.5.11) defined P ,0' so let P0  denote the

probability under which X1. X2, ... are i.i.d. with

(3.4.3) Po{X e dx} - exp[g 0x - KQ(30)] F(C + dx);

P0  has cgf

(3.4.4) 4(8) KQ(go + e) - KC(30) ,

mean

(3.4.5) 4'(0) - Kr'(3 0 ) - 0,

and variance

(3.4.6) a 2 6"(0) - KC"(0) -K"(30).

Put

(3.4.7) e= -30 < 0;

then (cf. (2.1.1))
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1 2 3
(3.4.8) j(eO) - K30(O) - -2 a VC).

We further assume that either

(3.4.9) F is non-lattice

or

(3.4.10) F(C + ") is a lattice distribution supported by

{0, *h, *2h, ...} and with span h > 0, and O - hk for

some (positive, negative, or zero) integer k.

In Siegmund's paper the necessary (see the proof of his lemma 1)

assumption that h is the span of F(C + -) (rather than just a

multiple thereof) is tacit. The distinction is not merely academic, for

if, for example, F is a lattice distribution supported by the

multiples of h and with span h, then (3.4.10) implies Q . h.

For another illustration, in the case of symmetric Bernoulli components

( X - *1 with probability 1/2 each), Siegmund's theorem and the

present generalization are vacuuous(I), for the smallest possible value

6 - 1 still does not satisfy the above criterion of smallness.

Generalizing, and simplifying the statement of, theorem 1 in

Siegmund (1975) we have

THEOREM 3.4.1. Using the preceding assumptions and notation, as

M -)'>O
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(3.4.11) pm,- expf~cl n1-1 [e-n(eO)P {S~ > 0) - PS> 6n]

P{S M> g(m))

and furthermore

(3.4.12) P{S M> g(m)) C(2ffo' m) -12exp(-Mi(%o) + 00M).

where if (3.4.9) holds

(3.4.13) C -1/II0

and if (3.4.10) holds

(3.4.14) C - h/texp(19%)h) - 11. 0

Notice that the only factor in (3.4.11-12) depending on (X is

exp(e dO.



CHAPTER IV

TWO REMARKS

4.1. Introduction.

In Section 1.4 we stated that Strassen (1965) determined the

probabilities

Pm = P{Sn > g(n) for some n a m}

up to a factor (1 + o(1)) under certain conditions on g. In fact,

Strassen's theorem 1.4 specifies the convergence rate for the

probabilities

P{S n > g(n) for some n > m).

The results are the same: in Section 4.2 we show that under the

assumptions of Corollary 3.2.3 the four probabilities

(4.1.1) Pm W P{Sn > g(n) for some n I ml,

(4.1.2) Pm+ " P{Sn > g(n) for some n > m},

+
(4.1.3) Pm = P{S n I g(n) for some n I m),

(4.1.4) Pm+ + P{Sn I g(n) for some n > m

71
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are all asymptotically equivalent, i.e., equal up to a factor

(1 + o(l)), as m -- o. Section 4.2 also contains the noteworthy result

that, under the assumptions of Theorem 3.4.1, pm and pm+1  are
+

not asymptotically equivalent; furthermore, that p+ - P

only in the non-lattice case (3.4.9).

Section 4.3 is concerned with an entirely different matter. Let

S satisfy the assumptions of Section 1.1 and let g be a boundary

belonging to both U(S) and U(-S). According to the definition of

upper class boundaries the probabilities (4.1.1) and

PM E P{Sn < -g(n) for some n ' m}

both vanish as m -) oD. The double-boundary crossing probability

(4.1.5) P{OS I > g(n) for some n I m}

is majorized by p m+ Pm and so is also small when m is large.

One expects that the probability of the event that S crosses one of

the boundaries g after time m and then alters its course so

drastically as to cross the other is of smaller order of magnitude than

(4.1.5). This is indeed the case, as the following theorem, proved in

Section 4.3, demonstrates:

THEOREM 4.1.1. Let b e U(S), a e u(-s), with a

b t. Then

P{S n > b(n) or Sn < -a(n) for some n I m)S!
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(4.1.6) - P{S n > b(n) for some n I m)

+ P{S n < -a(n) for some n k m}.

Section 4.3 also discusses some consequences of Theorem 4.1.1 when

a - b w g.

4.2. > versus I

Suppose, as in the hypotheses of Corollary 3.2.3, that the

boundary g(t) - t/11 2 (t) satisfies the growth conditions

(4.2.1) (t OD S t + °

as t t cD. Cramfr's result (1.2.7) can be stated in the form

(4.2.2) P{Sm > g(m)} - P{Z > i(m)l as m -+ co

with i defined by (2.3.7). Now as t -+ co,

(t) -
1(t) --> n and, by a minor adjustment to the proof

of (2.3.10), j2 (t + 1) - 12(t) _- 0. It follows

using the normal tail estimate (1.2.8) and Lemma 2.2.1(h) (whose proof

requires only (4.2.1)) that as m -) c

(4.2.3) P{S +1 > g(m+l)} - P{S m > g(m)}.

The strong-law counterpart

(4.2.4) PmI. - Pm

to (4.2.3) is established using the result
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1-2

(4.2.5) P1  00 { 1g(t) e 2 dt

of Corollary 3.2.3. Indeed it is enough to recall that

j2(t + 1) _ j2(t) -- 0 and to observe from (3.1.2)

that g'(t + 1) - g'(t) as t -* c.

We next consider boundary crossing probabilities in which the

definition of the event { S crosses g at time n } is changed from

the strict inequality {Sn > g(n)} to {Sn > g(n)}. If the

component distribution F is continuous, i.e., has no point masses,
+

then clearly P{S m > g(m)} - P{Sm > g(m)} and Pm pm

for every m, irrespective of the properties of g. We now show that,

regardless of the form of F, these equalities hold asymptotically as

m "-) o, i.e.,

(4.2.6) P{Sm > g(m)} - PiSm > g(M)}

and

(4.2.7) Pm -

assuming the hypotheses of Cramir's theorem (1.2.7) and Corollary

3.2.3, respectively.

The truth of (4.2.6) is not surprising, as (4.2.2) suggests the

result

PISm I g(m) P{z >siA hd

and Z has a continuous distribution. A straight-forward way of
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proving (4.2.6) is to note that the proof of Cram~r's theorem

carries through as well for the non-strict crossing probabilities

P{S m I g(m)} as for PIS m> g(m)). An alternative technique, to be

used also in deducing (4.2.7) when Theorem 2.1.1 is in force, is to

bound IS m> g(m)} according to

(4.2.8) {S m > g(m)} C -ISM > g(m)} : {SM > g (m)1'

where g minorizes, but closely approximates, g. A suitable choice

for g is

(4.2.9) g-(t) - [1 - 11 3C(r)] gt)

Clearly TP(t) - TV(t) -)- aD as t -4> a), where

g-(t) Et"121-(t). Moreover, with f given by (2.4.23)

and Vt)E Ctf(11 (t)/t 12)]1/2 in accordance

with (2.3.7),

~ t)- ~fr~)) 1(t) Tt -t

.t

-(I + o(1)) 21(t)(V(t) - t)

-(1 +- o(1)) 2/1V(t) - o(l)

as t -4 co. From Cramir's theorem it follows that

(4.2.10) PIS m> g-(m)} - P{S3 > g());

in light of (4.2.8), (4.2.6) holds.
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Turning to (4.2.7), we consider separately the two results,

Theorems 3.2.1 and 2.1.1, from which Corollary 3.2.3 follows. For

Theorem 3.2.1 we rehash the proof; for Theorem 2.1.1 this method is

direct but laborious and we choose to employ instead the approach of

(4.2.8-9).

Theorem 3.2.1 is derived from the corresponding result, Theorem

3.1.1, for Brownian motion. But as a consequence of Ylvisaker's (1968)

theorem,

P{B(t) t g(t) for some t . s}

(4.2.11) - P{B(t) > g(t) for some t > s}

+

for every s, so Theorem 3.2.1 for p follows in the same way

as for p, and (4.2.7) holds.

Routine calculations show that the function g of (4.2.9)

satisfies the hypotheses of Theorem 2.1.1, with the possible exception

of the monotonicity of g-(t)/t, and that (g-)'(t) - g'(t) and

(;-)-(t) - T-(t) as t -4 w. In addition, Lemma 2.2.1

continues to hold true -- some parts in negligibly weaker form, such as

(g-)'(t) 4 (1 + o(1))g (t)/t for the second half of (b) -- and it

is not hard to see that the conclusion (2.1.6) holds for g. Thus by

(4.2.8) and (4.2.10),

p + (1 + o(i)) (g-)(m) P(Sm > g-(m)}Pm m M 1+o1 (_ m
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-(1 + 0(1)) '()P{s m > g(m)}.g(m)

- (1 -4 ;&o-l)) )

-( + ) - ( + o())Pm,

and (4.2.7) holds.

Summarizing, when the assumptions of Corollary 3.2.3 are in force,

the four weak-law probabilities

(4.2.12) P{S > g(m)}, P{S m+ > g(m + M,
mo

P{S m g(m);, P{Sm+1  g(m + 1)}

are all asymptotically equivalent, as are (4.1.1-4).

The results are quite different when the hypotheses of Theorem

3.4.1 are assumed. In particular, it is immediately clear from

(3.4.11-12) that (4.2.3-4) fail in this case. Furthermore, (4.2.6-7)

are true if (3.4.9) holds but false if (3.4.10) holds. This can be

verified by reviewing the proof of Theorem 3.4.1, but we'll introduce

minorizing approximants to g and proceed as in (4.2.8).

Assume first that (3.4.9) holds. For 6 > 0 let

g -(t) - K - & + et.

Apply (3.4.12) to both g and g8  and use (4.2.8) (with

g- g ) to conclude

1 . lim inf (p{s t g(m)}/pIs > g(M)})
M - (P{Sm gM)/PS
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lii sup (P{S )t g(m)}/P{S~ > g(m)}) 4 exp(I% is).

Now let S *0 to get (4.2.6). Relation (4.2.7) is proved in

the same way.

Approximations g6 to g with ever increasing precision are

not available in the lattice casc (3.4.10), due to the restriction of

OX to integer multiples of h - (span of F )I n fact,

(4.2.13) P{S M g(m)} - P{SM > 0[ - h + Cm} exp(10e0 h)P{S M > g(m)}

and similarly

(4.2.14) pm M P{S n> OX - h + Cn for some n I ml - exp(II0 h)pm.

4.3. Two boundaries.

The first task of this section is the

PROOF of Theorem 4.1.1. The right side of (4.1.6) overestimates

the left by

P{Sn > b(nj) for some n, I m, Sn 2< -a(n2) for some n2 1 m}

(4.3.1) K P{S p> b(p), S q< -a(q)

for some p, q satisfying q > p t ml

+ PIS P< -a(p), S q> b(q)

for some p, q satisfying q > p ml.

Let us examine the first term, which equals
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(4.3.2) pi P{ 4 b(n) for m <n < p, S > b(p), S < -a(q)
p-M n p q

for some q > pl.

The summand here is

PiS n 4b(n) for m <.n <p, S P> b(p)}

times

Pisq < -a(q) for some q > p I S n b(n) for m 4 a < p,

S > b(p)}

Pi q{ - S < -(a(q) + b(p)) for some

q > p I S n b(n) for m 4 n p, S p> b(p)}

Pisq - S < -(a(q) + b(p)) for some q > p1

=P{-S k> a(k +p) + b(p) for some k~ I1}

the sum (4.3.2) is therefore majorized by

!, P{S 4 b(n) for m 4n< p, S > b(p)}
pmM n p

, Pisn > b(n) for some n I ml

times

(4.3.3) P{-Sk > a(k) +- b(m) for some k t 11.

We shall show that the probabilities (4.3.3) decrease to 0 as
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m t a, so that

(first term on right in (4.3.1))

(4.3.4) =o(first term on right in (4.1.6)).

In just the same way

(second term on right in (4.3.1))

(4.3.5) -o(second term on right in (4.1.6))

and the proof of (4.1.6) is complete.

since b(m) t oo as m t m (as follows from

b e U(S) ), the events in (4.3.3) decrease to

(4.3.6) (-1  {-S > a(k) + n for some k > 1}

n1 k

Because a e u(-s),

(4.3.7) P 00 {-S 4 a(k) for all k > k*}) -1

Hence the event (4.3.6) has the same probability as

'k* , = {-S k> a(k) +n for some 1 4k 4k*}

UM aD max *(S)>n
Uk*I n-1 Uk~k* 5 k~ } 0

namely, zero. 0
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One might ask how the two terms on the right in (4.1.6) compare in

size. We shall answer this question assuming that a - b - g satisfies

the hypotheses of Corollary 3.2.3, i.e., of either Theorem 3.2.1 or

Theorem 2.1.1.

Recall that Theorem 3.2.1 is an invariance principle: the

asymptotic rate at which the probabilities

Pm M P{Sn > g(n) for some n > m}

decrease to zero is the same for any random walk, including (-S). Thus

each term on the right in (4.1.6) equals (1 + o(1)) Jm as m -- oD,

where J. is defined by (3.1.4).

In the case of Theorem 2.1.1 we need only to examine the

corresponding weak-law probabilities using (1.2.7):

(4.3.8) P{Sm > g(m)} - P{Z > (m)}exp[ 2 (M)- (- )],

(4.3.9) Pf-S m > g(m)} - P{Z > T(m)}exp[-T (m)-SX(--1-m)],

(4.3.9) holding since (-X) has Cramer series (-)(-('))). The

ratio (4.3.8)/(4.3.9) is

2 V( m)11T(M) f__)
(4.3.10) r 2 exp{T (m)----() + _(- W.

m F_ _Xf

In light of (2.1.6) rm is also the ratio of the first term on the

right in (4.1.6) to the second when a - b g satisfies the hypotheses

of Theorem 2.1.1.
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If 4(m) = o(m /), i.e., if g(m) - o(m 2/3), then

r m- 1, in accordance with ouk investigation for Theorem 3.2.1.
m3

Likewise, provided the constant term X - EX 3/6 in the

Cramfr series I vanishes (in particular, if X has a symmetric

distribution function F ), then

r. - f ~p12 (m! [()~,~~ T2(1I(m) 2 - M) . v(M) 2

+ O(T m) 2

(4.3.11) ~ exp{2 2 3/2
m

tends to unity whenever 1(m) - o(m3/10).

Suppose Xo * 0 and m1/ 6 -o(l(m)). Then

CO>

(4.3.12) rm ->0 according as .< .

The result (4.3.12) agrees with intuition: If the distribution of the

component X has a long right-hand tail, as is typically the case when

EX - 0, Var X - 1, and EX3 > 0, large positive deviations for S

are more likely than large negative deviations.

We can refine (4.3.11-12). For example, if T(m) - 3/10),

then

3 5
(4.3.13) rm - exp{2 (M) + . 31(m) )1

m 3/2

• ! .. . . .. . .. . .. ... • - z . , , , i . . . .... . i . ...
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regardless of the sign of if 1T(M) -O(m 5/1 then

(4.3.14) r -x{ T eM + 2 -T 5 /2)+O( M

m In

and so on.



CHAPTER V

ASYMPTOTIC EXPANSIONS

5.1. Introduction.

As defined in Section 1.2, the problem of convergence rates related

to the WLLN is to determine the probabilities

(5.1.1) P{S m > g(m)}

up to a factor (1 + o(I)) as m --> o when the random walk S

satisfies the assumptions of Section 1.1 and the boundary g satisfies

(5.1.2) f(m) - --) O

as m - aD. A solution to this problem is by definition an

approximation to (5.1.1) whose relative error tends to zero as m --> Co.

We can guarantee that this first-order approximation is of a specified

quality by determining an asymptotic upper bound on the rate at which

the relative error vanishes. The guaranteed accuracy of a second-order

approximation whose relative error is known to vanish more quickly than

this bound is greater. Iterating this idea we arrive at the

problem of asymptotic expansions related to the WLLN: to develop an

asymptotic expansion for (5.1.1) when (5.1.2) obtains. In Section 5.2

we present a solution in the Cramer case ;(m) - o(m1 /2),

84

_A- A_!
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q(m) -4 c. The solution in the WLLN case T(m) = cmI/2

is due to Bahadur and Ranga Rao (1960) and is omitted here.

The problem of asymptotic expansions related to the SLLN is to

derive an asymptotic expansion for the probabilities

(5.1.3) Pm M P{Sn > g(n) for some n I m}

when g e U(S). The dominant term in such an expansion is given for

boundaries T(t) - g(t)/t 1 /2  of slow, moderate, and rapid growth

in Theorems 3.2.1, 2.1.1, and 3.4.1, respectively, the slow and moderate

ranges overlapping considerably. In Section

5.3 we obtain a partial asymptotic expansion of PM for boundaries of

slow growth. This expansion is of higher order the more slowly

increases and in fact is complete, i.e., of infinite order, when

is not also in the range of moderate growth. In Section 5.4 we derive

an asymptotic upper bound on the relative error in the approximation of

Theorem 2.1.1 for boundaries of moderate growth. The problems of

finding even the second term in an asymptotic expansion of pm for

V in the moderate range and of bounding the error in the

approximation of Theorem 3.4.1 remain open.

5.2. An asymptotic expansion related to the WLLN.

Throughout this section we assume (5.1.2).

W.06- - A L
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We begin with an examination of the case F = I of standard

normal components. In this case the probability (5.1.1) equals

P{Z > $(m)}, and the solution to the convergence rate problem is given

most simply by (1.2.8). The solution to the asymptotic expansion

problem is equally well known (Feller, 1968, p. 193): for any n 1 0

(5.2.1) P{Z > V(m)} [.- (m)]-1exp[-42(m)]

1 1"3 1"3"5
2 (M) 4(M) T6 (M)

+ (_,)a 1 -3 -. ... (2n - 1) 4  ( i1 )

v2n (M) (

as m-), 0.

For general F the solution presented here to the asymptotic

expansion problem in the Cramfr case

(5.2.2) I(M) - o(E)

is due to Saulis (1969); see also Ibragimov and Petrov (1971, p. 416).

In addition to the assumptions of Section 1.1, suppose that F has

characteristic function Eexp(itX) satisfying

(5.2.3) lim sup IEeitXI < I,(5. .3) ItI -)' O

the so-called Cramfir's condition (C). The condition (5.2.3) holds,

in particular, if F has a nonzero absolutely continuous component and

fails if F is a lattice distribution. Then for any n 1 0
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(5.2.4) P{S m > g(m)} - P{Z > 1(m)} ° exp[2

km- Qk'm) + o((!,,_) n)

as m --> co, where the functions Q0 Q1, ... satisfy

(5.2.5) Qk(m) - 0 (( j))k), k 0.

Saulis (1969) gives explicit formulas for the functions Qk" In

particular,

(5.2.6a) Qo(i) - 1,

reducing (5.2.4) to (1.2.7) in the case n 0 0. For n - 1 the

approximation (5.2.4) fares better than is guaranteed by (5.2.5):

Ql(m) E 0 if N - 0 and

NO . [12(m) -i 2(m)
Q.(m) T e q{z >$ (m)})

(5.2.6b) - -(I + o(i)) 3N 1
V(m).E

otherwise.

In the language of asymptotic series, k Qk(m ) is an

asymptotic expansion for

P{S m > g(m)}

as m -* co with respect to the auxiliary asymptotic sequence

(($(m)/ml/2)n).



88

The normal probability on the right in (5.2.4) can be expanded

using (5.2.1). The power series representation of X yields an

asymptotic expansion for the argument of the exponential factor on the

right in (5.2.4). An expansion for that factor can then be obtained if

g(m) - O(m ) for some 1 > 0 by employing the Taylor's

series for the exponential function.

Recall from (1.2.9a) that the probabilities P{S m > g(m)} and

PiZ > W(m)} agree up to a factor (1 + o(1)) whenever

g(m) - o(m2/3). More generally, as seen below, if

(5.2.7) g(m) - o(m I - T)

wi th

(5.2.8) < 1

then the invariance principle

(5.2.9) P{S m > g(m)} - (right side of (5.2.1)) as m - D

obtains, provided

(5.2.10) n K

With - 1/3, as in (1.2.9a), the bound on n is 0, and (5.2.9)

reduces to (1.2.9a). As increases to 1/2, the bound on n
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increases to cD. The inequality (5.2.10) can be inverted:

(5.2.10a) ~ n + 1~

For example, to apply (5.2.9) with n -I we must have 11 > 2/5,

i.e., g(m) =o(m 35). For n - 2 we require g(m) -o(m 4/7

and so on. If (5.2.7) holds for every 11 < 1/2, e.g., if

(5.2.11) g(m) .~.(log m)P, P > 0,

then (5.2.9) provides a complete asymptotic expansion for m: (5.2.9)

holds for each n 1 0.

The proof of (5.2.9) from (5.2.10) is easy. Since

g~m - ,2/3 ) ~. ~m ~ / ), (5.2.4) with n -1

yields

PS> g(m)} - PIZ > 1I(m)} [1 + (T 3(M)) 1 [1 + __(M

- PIZ > $!(m)} -[1 + 00' (in))

using (5.1.2). So (5.2.9) holds if

T 3(M) I(
o( 2n(M

i.e., if

g(m) -o(m 
2 n +3
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For this it is enough that 1 - K (n + 2)/(2n + 3), i.e., that

(5.2.10a) hold.

5.3. An asymptotic expansion related to the SLLN.

The following theorem (Wichura, 1980) gives a complete expansion

for boundary crossing probabilities for Brownian motion.

THEOREM 5.3.1 (Wichura). Suppose the nositive function

g e U(B) satisfies the growth condition

(5.3.1) t
t

as t t for some I > 0. Let n 1 0, and suppose g has

(n + 1) continuous derivatives satisfying the smoothness condition

(5.3.2) g (k)(u) - g(k)(t) as u - t --> , 1 k K n + I,

and the growth condition

(5.3.3) g(k) (t) : t /2 - kV(t), 1 4 k < n + 1.

Finally, suppose

(5.3.4) P{B(t) > g(t) for some t I s} - o( )
; 2nCs)

as s -* a. Then there exist functions AO, Al, ...

satisfying

(5.3.5) Ak(t) = 0( ), 0 4 k 4 n,,t-2k - lCt)
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asa t -~cD such that with

1 2
(S) JDJ 1 -4 (t)

(5.3.6) 1 s...n e 2 Ak(t) dt

we have

P{B(t) > g(t) for some t > 9}

1 2

(5.3.7) -n~- Jk 0+({ e OD~n- 1(2t() dt)

as s -- aD. g

REMARK 5.3.2. (a) Explicit definitions of A k are given by

Wichura (1980); for example,

(5.3.8a) A 0 - 2g',

(5.3.8b) A1 . 2'

(g~

(5.3.8c) A2 ' - 44A)2 9
2 (g') 5 (g') 4

In particular, the theorem reduces to Theorem 3.1.1 in the case n 0.

(b) Theorem 3.1.1 is of help in checking (5.3.4). a

f As Theorem 3.2.1 follows from Theorem 3.1.1, so Theorem 5.3.1

yields the invariance principle
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THEOREM 5.3.3. Let S satisfy the assumptions of Section 1.1.

Suppose the positive function g e U satisfies the growth

conditions

(5.3.9) g.

ti1
2

and

(5.3.10) 1 + otI

where

(5.3.11) <

Let n 1 0, and suppose g has (n + 1) continuous derivatives

satisfying the smoothness condition (5.3.2) and the growth condition

(5.3.3). Then with Ak  and Jk(*) as in Theorem 5.3.1 and with

PM given as usual by (5.1.3),

1 2

(5.3.12) p m k-O Jk(m) + o( { e o2n d(t)

as m -), , provided (5.2.10) holds. 0

REMARK 5.3.4. (a) The derivatives of g can be computed ignoring

1, in the sense of (5.3.3), for all boundaries g of practical

interest (e.g., for g as in (1.3.9) or Example 1.6.3). Condition

(5.3.2) is likewise a mild restriction.
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(b) As always, the regularity conditions for g need only be

satisfied for large t.

(c) The smoothness condition (5.3.2) can be weakened to

(5.3.13) g (k)(u) - g (k)(t) when t, u -+ co as in (2.1.5)

provided (3.2.4-6) hold.

(d) Theorem 5.3.3 is clearly the strong-law counterpart to the

result (5.2.9) of the previous section. With * - 1/3 the bound on

n in (5.2.10) is 0, and Theorem 5.3.3 reduces to Theorem 3.2.1. In a

case such as (5.2.11), for each 11 < 1/2 the boundary g satisfies

(5.3.10) for all large t, and so the expansion (5.3.12) is complete.

(e) Suppose, in addition to the assumptions of Theorem 5.3.3, that

the boundary is also in the range of moderate growth, i.e., that (2.1.3)

holds for some 0 < 6 < 1/6. In this case one can show without

difficulty that

1 2
( 1 PM P{Sm > g(m)}

(53.4 dt '10_______
(.1 t 2k-l(t) ;2k(m) 2k (m)

Provided that (5.3.5) is also a lower bound, i.e., that

(5.3.15) Ak(t) - I - as t -+ c,

the k th term J k(m) in (5.3.12) is also of order of magnitude

(5.3.14). For k - 1 one can even show that
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(5.3.16) J1 (m) -4mpm -2.m

where (cf. (5.3.8b))

f~2t7~ - Al(m) g"(m) 1

(5.3.17) Am g(m) (g(m)3 2(1m)

In particular, if 11 > 2/5 in (5.3.10), i.e., if

g(t)/t 3 /5 + 0, then

(5.3.18) pm - [1 + AAm +

demonstrating that the relative error in the approximation

Jm = Jo(m) of Theorem 3.2.1 is in this case of the same order of

magnitude as i/2(m). 0

To prove Theorem 5.3.3 one uses Theorem 5.3.1 and the invariance

principle of Lemma 3.2.5 with

(5.3.19) M - 2 - 1

The particulars of the proof require detailed knowledge of the

functions Ak  of (5.3.5) and are omitted.

5.4. An asymptotic upper bound on the relative error in (2.1.6).

The following theorem is a refinement of Theorem 2.1.1.
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THEOREM 5.4.1. Suppose, in addition to the hypotheses of Theorem

2.1.1, that g is twice differentiable with

(5.4.1) g"(t) - 0 (t) )) as t -> c

t2

Then we have the refinement

(5.4.2) p 1+Qlg~ 3)+~~3~g2

of (2.1.6). 0

REMARK 5.4.2. (a) The growth condition (5.4.1) is satisfied in

particular if the derivatives of g can be computed ignoring V in

the sense of (5.3.3).

(b) The two-term big-oh bound of (5.4.2) on the relative error in

the approximation I for pm reduces to the first term when

g(m) - O(m2/3 ) and to the second in the contrasting case

m2/3 - O(g(m)).

(c) For comparison, recall that the relative errors of the

approximations (1.2.7) and (1.2.8) are 0(4(m)/mi /2) and

0(1/ 2(m)), respectively. For (1.2.7) we are ignoring the good

fortune of (5.2.6b).

(d) In case g(t)/t 3/5 + 0, the approximation J3  of

Theorem 3.2.1 has greater accuracy (relative error 1/V2 (i) )

than that guaranteed by (5.4.2) (relative error
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- ((log *2(m))/ip2 m)) ) for I * See Remark

5.3.4(e). D

PROOF of Theorem 5.4.1. As a consequence of Theorem 2.1.1, whose

proof we shall review in order to sketch that of (5.4.2),

(5.4.3) PM = MM)2 (m) I as m a c

with Idefined by (2.3.7). It follows as in Section 2.3 that if

the definition (2.3.2) is replaced by

(5.4.4) v - m1+ 1~* 2 F

with 0 < S* < Sthen (2.3.3-4) continue to hold, and

(5.4.5) PV - 0( 21 masm-cD

Assuming (5.4.1), the definition of 9 m (see Section 2.4) and Taylor's

theorem imply the improvement

(5.4.6) Cm = (1 + 0( 10% W1(m) g,(M) as m 4) aD

to (2.4.1).

Now the proof of Lemma 2.4.1 shows that the integral in (2.5.27) is

smaller than 1 by an amount

ONC ) / 0((41(m)/m 12) 12). But Lorden's (1970) method

can be used Co show that for any 5 > 0
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exp(Pm,e R) E exp(5-)

Em m[(3X+ +1)exp(+

(5.4.7) 4 E m'9l(m) X

With 5 chosen within the interval of finiteness of the cgf K,

this leads to the improved estimate

1 - O(L log((/) )

for the final integral in (2.5.27). The relation (2.5.30) can be

developed into a complete asymptotic expansion; in particular, one can

show that the relative error in (2.5.30) is

0(1/ 2 (m)) + 0(0(m)/m /2). The same two-term bound on the

errir holds for (2.4.9) and hence for (2.4.12). As (2.3.1) can be

tightened to (5.4.5), so (2.4.13) can be improved to

(5.4.8) pv 02 ) - 0( v2 ) " Pm as m -) o.
M '(m)

Combining the various bounds we arrive at (5.4.2). 0

REMARK 5.4.3. To get fur her terms in an asymptotic expansion for

P. in the case of Theorem 2.1.1, one would need to approximate g

more closely than by the straight lines j and 1 of Section 2.4,

-M- ino etin24

perhaps by higher-order polynomials. One would then seek appropriate

results from nonlinear renewal theory to replace the use of Lorden's

(1970) bound. 0

l , - - d - , j / ,- . ' _"__"_ ,
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