<table>
<thead>
<tr>
<th>1.01</th>
<th>1.02</th>
<th>1.03</th>
<th>1.04</th>
<th>1.05</th>
<th>1.06</th>
<th>1.07</th>
<th>1.08</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.01</td>
<td>2.02</td>
<td>2.03</td>
<td>2.04</td>
<td>2.05</td>
<td>2.06</td>
<td>2.07</td>
<td>2.08</td>
</tr>
<tr>
<td>3.01</td>
<td>3.02</td>
<td>3.03</td>
<td>3.04</td>
<td>3.05</td>
<td>3.06</td>
<td>3.07</td>
<td>3.08</td>
</tr>
<tr>
<td>4.01</td>
<td>4.02</td>
<td>4.03</td>
<td>4.04</td>
<td>4.05</td>
<td>4.06</td>
<td>4.07</td>
<td>4.08</td>
</tr>
<tr>
<td>5.01</td>
<td>5.02</td>
<td>5.03</td>
<td>5.04</td>
<td>5.05</td>
<td>5.06</td>
<td>5.07</td>
<td>5.08</td>
</tr>
<tr>
<td>6.01</td>
<td>6.02</td>
<td>6.03</td>
<td>6.04</td>
<td>6.05</td>
<td>6.06</td>
<td>6.07</td>
<td>6.08</td>
</tr>
<tr>
<td>7.01</td>
<td>7.02</td>
<td>7.03</td>
<td>7.04</td>
<td>7.05</td>
<td>7.06</td>
<td>7.07</td>
<td>7.08</td>
</tr>
<tr>
<td>8.01</td>
<td>8.02</td>
<td>8.03</td>
<td>8.04</td>
<td>8.05</td>
<td>8.06</td>
<td>8.07</td>
<td>8.08</td>
</tr>
</tbody>
</table>

END

UNCLASSIFIED
TR-298

H. Niederhausen

FEB 81
TABLES OF SIGNIFICANCE POINTS FOR THE VARIANCE-WEIGHTED
KOLMOGOROV-SMIRNOV STATISTICS

By

Heinrich Niederhausen

TECHNICAL REPORT NO. 298

FEBRUARY 19, 1981

Prepared Under Contract
N00014-76-C-0475 (NR-042-267)
For the Office of Naval Research

Herbert Solomon, Project Director

Reproduction in Whole or in Part is Permitted
for any Purpose of the United States Government

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA
Contents

<table>
<thead>
<tr>
<th>Introduction</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. One sample tests:</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Sheffer polynomials for D</td>
<td>7</td>
</tr>
<tr>
<td>1.2 Recursions</td>
<td>8</td>
</tr>
<tr>
<td>1.3 Rényi-type distributions</td>
<td>10</td>
</tr>
<tr>
<td>2. Two sample tests:</td>
<td>13</td>
</tr>
<tr>
<td>2.1 Sheffer polynomials for V</td>
<td>13</td>
</tr>
<tr>
<td>2.2 Recursions</td>
<td>14</td>
</tr>
<tr>
<td>2.3 Rényi-type distributions</td>
<td>15</td>
</tr>
<tr>
<td>3. The variance-weighted Kolmogorov-Smirnov tests</td>
<td>17</td>
</tr>
<tr>
<td>4. Tables</td>
<td>22</td>
</tr>
<tr>
<td>Appendix</td>
<td>48</td>
</tr>
<tr>
<td>References</td>
<td>55</td>
</tr>
</tbody>
</table>
Notations:

\[\mathbb{Z} \] stands for the set of all integers,
\[\mathbb{R} \] for the real numbers,
\[\mathbb{N}_0 := \{ n \in \mathbb{Z} , n \geq 0 \} , \]
\[\mathbb{N}_1 := \{ n \in \mathbb{Z} , n \geq 1 \} , \]
\[x \wedge y := \min(x,y) , \]
\[x \vee y := \max(x,y) , \]
\[(x)_+ := \max(0,x) , \]
\[(x)_- := \min(0,x) , \]
\[\lfloor x \rfloor := \min\{ i \in \mathbb{Z} | i \geq x \} , \]
\[\lceil x \rceil := \max\{ i \in \mathbb{Z} | i \leq x \} , \]
\[\binom{x}{n} := \frac{x(x-1) \ldots (x-n+1)}{n!} \text{ for all } n \in \mathbb{N}_1; \binom{x}{0} := 1 ; \binom{x}{z} := 0 \text{ for all } z \notin \mathbb{N}_0. \]

For the values of a function \(\nu : \mathbb{N}_0 \to \mathbb{R} \) we use both notations \(\nu(i) \) and \(\nu_i \).
Tables of Significance Points for the Variance-Weighted
Kolmogorov-Smirnov Statistics

By

Heinrich Niederhausen

1. Introduction.

Let X_1, \ldots, X_M be i.i.d. random variables with continuous distribution function F and empirical distribution function

$$F_X(x) = M^{-1} \sum_{i=1}^{M} I(-\infty, x](X_i) .$$

The goodness-of-fit statistic

$$W_M^+ = \sup_{\theta_1 \leq F(x) \leq \theta_2} \frac{F_X(x) - F(x)}{\sqrt{F(x)(1-F(x))}}$$

has been shown to be asymptotically minimax (with respect to a certain loss function) by A.A. Borokov and N.M. Sycheva (1968). They also give some exact significance points and the asymptotic distribution of $\sqrt{M} W_M^+$. Beside W_M^+, we consider the following related statistics:

$$W_M = \sup_{\theta_1 \leq F(x) \leq \theta_2} \frac{|F_X(x) - F(x)|}{\sqrt{F(x)(1-F(x))}}$$

$$W_M^* = \sup_{\theta_1 \leq F_X(x) \leq \theta_2} \frac{F_X(x) - F(x)}{\sqrt{F(x)(1-F(x))}}$$

1
where Y_1, \ldots, Y_N is a second independent sample with the same distribution function, and V_1, \ldots, V_{M+N} is the combined sample. We call all these statistics variance-weighted Kolmogorov-Smirnov tests. In [10], we derived some methods to compute the exact distribution of such tests. Using those methods, we computed tables for the significance points of

$$(1) \quad \sqrt{M} W^+_M, \sqrt{M} W^+_M, \sqrt{N} W^+_M, \sqrt{N} W^+_M, \sqrt{M/(M+N)} W^+_M, \sqrt{N/(M+N)} W^+_M, \sqrt{M/(M+N)} W^+_M, \sqrt{N/(M+N)} W^+_M.$$

Let Z be any of the eight statistics in (1). Let

$$P(z) = P(Z \leq z).$$
For each $\alpha = .9, .95$ and .99 we try to find z_α such that $P(z_\alpha) = \alpha$. But the variance-weighted Kolmogorov-Smirnov distributions are discontinuous, even in the one-sample case. Therefore, we give $P(z_\alpha)$ and z_α in the tables, where $P(z_\alpha)$ is smaller than α. After each z_α, a single digit D is printed. If the last digit of z_α is increased by D, a z_α is obtained, such that $P(z_\alpha) > \alpha$. $P(z_\alpha)$ is also listed. All numbers are rounded in the last digit.

In all the tables we chose $\theta_1 = 1 - \theta_2 = \theta$ for $\theta = 0, 0.01, 0.05, 0.1$ and 0.25. In $\tilde{W}_M^+, \tilde{W}_M, \tilde{W}_M^+, \tilde{W}_{M,N}$ and $\tilde{W}_{M,N}$ we have to take the supremum over $0 \leq F_X(x) \leq 1 - \theta$. Thus, we have to replace θ by d/M, where the integer d is chosen such that d/M comes close to θ (see (3.2)). Analogously, replace θ by $d/(M+N)$ in $\tilde{W}_{M,N}^+$ and $\tilde{W}_{M,N}$.

In the two sample case, all tables are given for

- $M = 2, 3, 4, \ldots, 10; \quad N = 2, 3, 4, \ldots, M$
- $M = 15, 20, 25, \ldots, 50; \quad N = M, M-1, M-2, \ldots, M-5$
- $M = 100, 500; \quad N = M$

If for small M the table for a certain θ does not differ from the preceding table (with smaller θ), then this part of the table is omitted.

In the one sample, the same values of M are used, but the sample length $M = 500$ is omitted. The computer proved to be too slow for this case (and the desired accuracy).
For large sample sizes, a significance value $z_{1-\gamma}$ of a two sided statistic can be approximated by $\frac{z^+_{1-\gamma/2}}{2}$ of the corresponding one sided statistic. The larger the θ, the better the approximation. Despite "bad" asymptotic behavior, this approximation is practically satisfying even for $\theta = 0$. For this case, the computer drawing on the next page shows $z_{.9}$ and $z^+_{.95}$ for $M = 2, \ldots, 80$, where

$$P(\sqrt{M} \leq W < z_{.9})_{\theta=0} \approx .9 \quad \text{and} \quad P(\sqrt{M} \leq W < z^+_{.95})_{\theta=0} \approx .95.$$

We demonstrate on page 6 what happens if $z^+_{.95}$ (which is much faster to compute) is used as an approximation for $z_{.9}$: We plotted M against $P(\sqrt{M} \leq W < z^+_{.95})_{\theta=0}$ for $M = 2, \ldots, 100$. To illustrate the effect of a larger θ, we plotted also $P(\sqrt{M} \leq \bar{W} < z^+_{.95})_{\theta=1}$. The jumps come from the approximation of θ by d/M.

We repeat that part of [10], which is necessary to understand the algorithms. Chapter 3 gives an overview over the significance points by small tables. The large tables are computed in the same way.

All computations are done on a pdp 11 computer, using 16 significant digits. The reader can compare the tables for $\sqrt{M} W_M^+$ with table 1 and 2 of A.A. Borokov and N.M. Sycheva (1968). With the exception of one printing error, their numbers differ at most by 1 in the last given digit. The case $\theta = 0$ for $\sqrt{M} W_M$ has been considered by M. Noé (1972). His method of computation is close to ours for all two-sided one sample statistics in (1), except for special cases, see 3.
1. One sample tests.

1.1. Sheffer polynomials for \(D \).

Let \(\mu \) and \(v \) be monotone non-decreasing functions from \(\mathbb{N}_0 \) into \(\mathbb{R} \), satisfying \(0 \leq v_0 \leq \mu_0 \) and \(v_i < \mu_{i-1} \ \forall i \in \mathbb{N}_1 \). The following functions define a \(\mu \)-Sheffer sequence (see (A.12)) for the derivative operator \(D \):

\[
p(x) \mapsto \frac{d}{dx} p(x)
\]

\[
f_0(x) := \begin{cases}
 1 & \text{if } x \leq 0 \\
 0 & \text{else}
\end{cases}
\]

and

\[
f_n(x) := \begin{cases}
 \int_{\nu(n)}^{x} \mu(n-1) \int_{\nu(n-2)}^{\nu(n)} \mu(n-2) \cdots \int_{\nu(1)}^{\nu(2)} \mu(0) \prod_{i=1}^{n} du_i & \text{if } x \leq \mu_n \\
 0 & \text{else}
\end{cases}
\]

for all \(n \in \mathbb{N}_1 \). Obviously, \(f_n(v) = \delta_{0,v} \), hence, \((f_n) \) has roots in \(v \) (see (A.14)).

Denote by \(U(i) \) the \(i \)-th order statistic of a size \(M \) random sample from \(U(0,1) \). If \(\mu_{M-1} \leq 1 \), then

\[
(1.1) \quad f_M(\mu_{M-1}) = F(v_i \leq U(i) \leq \mu_{i-1} \ \forall i = 1, \ldots, M) / M
\]

\[= f_m(\mu_M) .\]
1.2. **Recursions.**

For this section we assume $\mu_M = 1$ without loss of generality. With $q_{n-k}(x) = x^{n-k}/(n-k)!$ in (A.13), the algorithm A.1 was found by M. Nøe (1972). Given that μ_k is constant for $k = 0, \ldots, K$, say, it may be possible to use an explicit formula for $f_i(\mu_k)$ ($i = 0, \ldots, K$).

The same is true for the values p_i in the following application of (A.16): Define $p_0 := 1$ and

\[
p_i := \frac{i-1}{k=0} \binom{i}{k} (-1)^{i-k-1} (\mu_k - \nu_i)^{i-k} p_k .
\]

Then

$$P(\nu_i < U(i) < \mu_{i-1} \text{ for all } i = 1, \ldots, M) = p_M .$$

Alternatively, we get from corollary A.2:

$$p_M = \det(\frac{i}{j-1} (\mu_{j-1} - \nu_i)^{i-j+1})_{i,j=1, \ldots, M} .$$

V.A. Epanechnikov (1968) found recursion (1.2) and G.P. Steck (1971) independently derived this determinant and many applications. See also E.J.G. Pitman (1972) for another proof.

Remark: Depending on the accuracy of the computer, (1.2) should be used only for small M because of the alternating summation. In algorithm A.1 the summation does not alternate, but compared with (1.2) the amount of
computations is approximately squared! In the computation of significance points it often occurs that \(\nu_M \leq \mu_0 \). The same is true, of course, in both one sided cases. Theorem A.2 (with \(i := 0 \)) yields for any real function \(\sigma \) on \(\mathbb{N}_0 \):

\[
(1.3) \quad p_j = j!t_{j, 0}(\sigma_j) - \sum_{k=0}^{j-1} \binom{j}{k} (\sigma_j - \mu_k)^{j-k} p_k \quad \text{for all } j = 1, \ldots, M.
\]

From \(\nu_M \leq \nu_0 \) we see that \(t_{j, 0} \) equals for \(j = 0, \ldots, M \) the Sheffer sequence for \(D \) with roots in \(\nu \). Given that \(\sigma_j \geq \mu_{j-1} \) for all \(j = 1, \ldots, M \), the summation in (1.3) is non-alternating. But how to compute \(t_{j, 0}(\sigma_j) \)? In the simple case \(\nu \equiv 0 \) (one sided tests) we get \(j!t_{j, 0}(\sigma_j) = \sigma_j^j \). With \(\sigma_j := \mu_{j-1} \) Steck's formula (1971, (2.3)) is obtained. See the previous section for other closed forms. We suggest the following procedure for general \(\nu \) (with \(\nu_M \leq \nu_0 \)):

Choose \(\sigma \equiv 1 \). Thus, for all \(j = 1, \ldots, M \),

\[
j!t_{j, 0}(1) = P(\nu_i \leq U_{(1)} \text{ for all } i = 1, \ldots, j) = j!f^{(j)}_{j}(1),
\]

if \(f^{(j)}_{n} \) is the \(\mu^{(j)} \)-Sheffer sequence for \(D \) with roots in \(0 \), where \(\mu_{i}^{(j)} = 1 - \nu(j-i) \) for all \(i = 0, \ldots, j \). Hence, (1.3) can be applied to compute \(t_{j, 0}(1) \) (we choose again \(\sigma \equiv 1 \)):

\[
p_{0}^{(j)} = 1 \quad \text{and} \quad p_{i}^{(j)} = 1 - \sum_{k=0}^{i-1} \binom{i}{k} \nu(j-k)^{i-k} p_{k}^{(j)} \quad \text{for all } i = 1, \ldots, j.
\]

Thus, \(j!t_{j, 0}(1) = p_{j}^{(j)} \) for all \(j = 1, \ldots, M \). Finally, enter again (1.3) and compute \(p_M \) from \(p_0 = 1 \) and

\[
p_j = p_{j}^{(j)} - \sum_{k=0}^{j-1} \binom{j}{k} (1-\nu_k)^{j-k} p_k \quad \text{for all } j = 1, \ldots, M.
\]
1.3. Rényi type distributions.

In applications, the test distributions seldom occur in the form of (1.1). But if our method is applicable at all, they are easily transformed so that one of the following two lemmas can be used:

Lemma 1.1: Let \(f \) and \(g \) be monotone non-decreasing functions from \([0,1]\) into itself such that \(f \leq g \) and

\[
f(0) \leq a/M < b/M \leq g(1) = 1
\]

for two fixed integers \(a \) and \(b \). Then

\[
P(f(F_U(x)) \leq x \leq g(F_U(x)) \quad \forall a/M \leq F_U(x) \leq b/M)
\]

\[
= P(\nu_i \leq U_i \leq \mu_{i-1} \quad \forall i = 1, \ldots, M)
\]

if

\[
\nu_i = \begin{cases}
0 & \text{for all } i = 0, \ldots, a-1 \\
f(i/M) & \text{for all } i = a, \ldots, b \\
f(b/M) & \text{for all } i > b,
\end{cases}
\]

and

\[
\mu_i = \begin{cases}
g(a/M) & \text{for all } i = 0, \ldots, a-1 \\
g(i/M) & \text{for all } i = a, \ldots, b \\
1 & \text{for all } i > b.
\end{cases}
\]

The proof is obvious. The situation in the following lemma is much more complicated.
Lemma 1.2: Replace a/M and b/M in lemma 1.1 by any real α and β such that $0 \leq \alpha < \beta \leq 1$. Then, under the same assumptions about f and g,

$$P(f(F_u(x)) \leq x \leq g(F_u(x)) \quad \forall x \in [\alpha, \beta])$$

$$= P(\forall_i \leq \mu_i \leq \mu_{i-1} \text{ for all } i = 1, \ldots, M)
$$

if

$$\nu_i = \begin{cases}
0 & \text{for all } i = 0,\ldots,\alpha_f \\
 f(i/M) & \text{for all } i = \alpha_f+1,\ldots,\beta_f \\
\beta & \text{for all } i > \beta_f
\end{cases}$$

and

$$\mu_i = \begin{cases}
\alpha & \text{for all } i = 0,\ldots,\alpha_g-1 \\
g(i/M) & \text{for all } i = \alpha_g,\ldots,\beta_g-1 \\
1 & \text{for all } i > \beta_g
\end{cases}$$

where

$$\alpha_f = \max\{k \leq M | f(k/M) \leq \alpha\}, \beta_f = \max\{k \leq M | f(k/M) \leq \beta\}$$

$$\alpha_g = \min\{k \geq 0 | g(k/M) \geq \alpha\}, \beta_g = \min\{k \geq 0 | g(k/M) \geq \beta\}.$$

Proof. Denote by $[0,1]_M$ the set of all monotone non-decreasing ordered vectors $u \in [0,1]_M$:

$$u = (u_1, \ldots, u_M) \text{ such that } 0 \leq u_1 \leq \cdots \leq u_M \leq 1.$$

Define the subset \mathcal{A} of $[0,1]_M$ by
A := \{f(i/M) \leq x \text{ holds for all } i = 0, \ldots, M \text{ and } x \in [u_i, u_{i+1}) \cap [\alpha, \beta]\}\}

(u_0 := 0, u_{M+1} := 1). \text{ Then }

A = \{f(i/M) \leq x \text{ holds for all } i = \alpha_{f+1}, \ldots, M \text{ and } x \in [u_i, u_{i+1}) \cap [\alpha, \beta]\}

= \{f(i/M) \leq u_1 \text{ holds for all } i = \alpha_{f+1}, \ldots, M \text{ such that } u_1 \leq \beta\}

= \{u_{\beta_{f+1}} > \beta, \text{ and } f(i/M) \leq u_1 \text{ holds for all } i = \alpha_{f+1}, \ldots, \beta_{f} \text{ such that } u_1 \leq \beta\}

= \{u_{\beta_{f+1}} > \beta, \text{ and } f(i/M) \leq u_1 \text{ holds for all } i = \alpha_{f+1}, \ldots, \beta_{f}\}. \text{ By interchanging the roles of } f \text{ and } g \text{ it follows analogously that }

B := \{x \leq g(i/M) \text{ holds for all } i = 0, \ldots, M \text{ and } x \in [u_i, u_{i+1}) \cap [\alpha, \beta]\}\}

= \{u_{\alpha_{g}} < \alpha, \text{ and } u_1 \leq g((i-1)/M) \text{ for all } i = \alpha_{g}+1, \ldots, \beta_{g}\}.

P(A \cap B) = P(f(F_U(x)) \leq x \leq g(F_U(x)) \ \forall \alpha \leq x \leq \beta) \text{ finishes the proof.} \quad \Box

Remark: If \nu_{i+1} > \nu_i \text{ for all } i = 0, \ldots, M-1 \text{ in the lemmas above, look for the best applicable method in \S 2. The probability is zero otherwise.}
2. Two sample tests.

2.1. Sheffer polynomials for V.

Denote by $\mathcal{J}(i,j)$ the set of all vectors T consisting of exactly i ones and j zeros. For each $T = (T_1, \ldots, T_{i+j}) \in \mathcal{J}(i,j)$ define the path T_k' of T by $T_0' := 0$ and $T_k' := T_k'_{k=1} T_k$ for all $k = 1, \ldots, i+j$.

The set $\mathcal{J}(i,j)$ is closely related to empirical distribution functions:

Let $X_1, \ldots, X_M, Y_1, \ldots, Y_N$ be $M+N$ continuous and i.i.d. random variables. Denote the monotone non-decreasing ordered combined sample by V_1, \ldots, V_{M+N}.

Define a.e.

\begin{equation}
T_k' = \begin{cases}
1 & \text{if } V_k = X_i \text{ for some } 1 \leq i \leq M \\
0 & \text{if } V_k = Y_j \text{ for some } 1 \leq j \leq N.
\end{cases}
\end{equation}

Then $T_k' = MP_x(V_k')$ and $k-T_k' = NP_y(V_k')$. Let μ and ν be integer valued function on $N_0 = -1 = \nu_0 \leq \mu_0$ and

\begin{equation}
\nu_{i-1} \leq \nu_i \leq \mu_{i-1} \leq \mu_i \text{ for all } i \in N_1.
\end{equation}

Then $f_i(j) = \# \mathcal{J}(i,j) | V(T_k') < k-T_k' \leq \mu(T_k')$ for all $k = 0, \ldots, i+j$), if (f_n) is the μ-Sheffer sequence (with variables in \mathbb{Z}) for the backwards difference operator V (see (A.6)) with roots in ν. Hence,

\begin{equation}
P(\nu(T_k') < k-T_k' \leq \mu(T_k') \text{ for all } k = 0, \ldots, M+N) = \binom{M+N}{M} -1 f_M(N).
\end{equation}
2.2. Recursions.

We assume $\mu(M) = N$ throughout this section. From the definition of a μ-Sheffer sequence (f_n) for ν with roots in ν we get the following two-dimensional recursion

$$ f_i(j) = \begin{cases} f_i(j-1) + f_{i-1}(j) & \text{for all } \nu_i < j \leq \mu_i \\ 0 & \text{else} \end{cases} $$

with initial values $f_0(j) = 1$ for all $j \leq \mu_0$, and $f_i(\nu_i) = 0$ for all $i \in \mathbb{N}_1$. On a computer with unlimited integer precision, this algorithm may be slow but absolutely accurate!

The one-dimensional recursion (A.16) is left to the reader. From corollary A.2 one gets the determinantal solution

$$ P(\nu(T'_i) < \lambda - T'_k \leq \mu(T'_k)) \text{ for all } \lambda = 0, \ldots, M+N $$

$$ = \binom{M+N}{N}^{-1} \begin{vmatrix} (\mu_{i-1} - \nu_j) \\ i-j+1 \end{vmatrix}_{i,j=1,\ldots,n}. $$

This determinant has been found independently by G. Kreweras (1965) and G.P. Steck (1969). See also S.G. Mohanty (1971) and E.J.G. Pitman (1972) for other proofs.

A close look on ν and μ may save some recursion steps. If $\nu(M) < \mu(0)$ the outside method allows non-alternating summation as described in 1.2.
2.3. Rényi type distributions.

Lemma 2.1. Define \(f, g, a \) and \(b \) as in lemma 1.1. Then

\[
P(f(F_{X}(x)) \leq F_{V}(x) \leq g(F_{X}(x)) \text{ for all } a/M \leq F_{X}(x) \leq b/M)
\]

\[
= P(v(T_{f}^{i}) < \ell \leq u(T_{g}^{i}) \text{ for all } \ell = 0, \ldots, M+N),
\]

if

\[
v_{i} = \begin{cases}
-1 & \text{for all } i = 0, \ldots, a-1 \\
\left\lceil \frac{(M+N)f(i/M)}{M+N} \right\rceil -1 & \text{for all } i = a, \ldots, b \\
v_{b} & \text{for all } i > b,
\end{cases}
\]

and

\[
\mu_{i} = \begin{cases}
\frac{\mu_{a}}{M} & \text{for all } i = 0, \ldots, a-1 \\
\left\lceil \frac{(M+N)g(i/M)}{M+N} \right\rceil -1 & \text{for all } i = a, \ldots, b \\
N & \text{for all } i > b.
\end{cases}
\]

The proof is obvious from 2.1.

Lemma 2.2. Define \(f, g, a \) and \(b \) as in lemma 1.1, and \(\alpha_{f}, \beta_{f}, \alpha_{g} \) and \(\beta_{g} \) as in lemma 1.2 with \(\alpha := a/(M+N) \) and \(\beta := b/(M+N) \). Then

\[
P(f(F_{X}(x)) \leq F_{V}(x) \leq g(F_{X}(x)) \text{ for all } a/(M+N) \leq F_{V}(x) \leq b/(M+N))
\]

\[
= P(v(T_{f}^{i}) < \ell \leq u(T_{g}^{i}) \text{ for all } \ell = 0, \ldots, M+N),
\]

if

\[
v_{i} = \begin{cases}
-1 & \text{for all } i = 0, \ldots, \alpha_{f} \\
\left\lceil \frac{(M+N)f(i/M)}{M+N} \right\rceil -1 & \text{for all } i = \alpha_{f}+1, \ldots, \beta_{f} \\
b-\beta_{f}-1 & \text{for all } i > \beta_{f},
\end{cases}
\]

15
and

\[
\nu_i = \begin{cases}
 a_i^g & \text{for all } i = 0, \ldots, \alpha_i^g - 1 \\
 \left(\frac{a_i^g \cdot (i/M)}{g} \right) - 1 & \text{for all } i = \alpha_i^g, \ldots, \beta_i^g - 1 \\
 N & \text{for all } i \geq \beta_i^g .
\end{cases}
\]

The proof follows the same pattern as the proof of lemma 1.2 and is therefore omitted.

Remark: It may happen that \(v \) or \(\mu \) in lemma 2.1 or 2.2 violates the monotonicity conditions (2.2). In this case define the "monotone hulls" \(\tilde{v} \) and \(\hat{\mu} \) by

\[
\tilde{v}_0 := -1
\]

\[
\tilde{v}_i := \max\{v_i, \tilde{v}_{i-1}\} \text{ for all } i = 1, \ldots, M ,
\]

and

\[
\hat{\mu}_M := N
\]

\[
\hat{\mu}_i := \min\{\mu_i, \hat{\mu}_{i+1}\} \text{ for all } i = 0, \ldots, M-1 .
\]

If \(\tilde{v}_{i+1} < \hat{\mu}_i \) for all \(i = 0, \ldots, M-1 \), look for the best applicable method in 2.2. The probability is zero otherwise.
3. The variance-weighted Kolmogorv-Smirnov tests.

We defined W_M in the introduction. Let

$$\pm h'(i) = \frac{2(1+s)}{2(s^2+4si(1-i))^{1/2}}$$

and

$$\mp c'(y) = M(y \pm [sY(1-Y)]^{1/2})$$.

We get from lemma 1.2

$$P(W_M \leq \pm \frac{1}{2} s) = M!f_M(i),$$

if (f_n) is the μ-Sheffer sequence for D with roots in ν, where

$$(3.1) \quad \nu_i = h^-(i/M) \text{ for all } i = [c^+(\Theta_1)^\Lambda M+1, \ldots, [c^+(\Theta_2)]^\Lambda M,$$

and

$$(3.2) \quad \mu_i = h^+(i/M) \text{ for all } i = [c^-(\Theta_1)]^+, \ldots, [c^-(\Theta_2)]^+ - 1.$$

The following short tables of the percentage points of $M^{1/2}W_M$ are computed by algorithm A.1 and by the outside method (1.3) if applicable. We chose always $\Theta_1 = \Theta = 1-\Theta_2$ for $\Theta = 0, .01, .05, .1$ and .25. Let

$$P(z) = P(M^{1/2}W_M \leq z).$$
We consider the significance probabilities $\alpha = 1 - P(z_\alpha)$ for $\alpha = .1, .05$ and .01. Because of discontinuities, these levels can not always be attained. If the absolute difference between α and $1 - P(z_\alpha)$ is less than .000005 this small discontinuity is not noted in the tables, and z_α is rounded to 4 digits after the decimal point. If

$$0.000005 \leq |\alpha - 1 + P(z_\alpha)| < 0.005,$$

and α is greater (smaller) than $1 - P(z_\alpha)$, then five digits are given and a bar is placed under (over) the last digit. This last digit is not rounded. Decreasing (increasing) it by one yields a probability greater (smaller) than α. Two bars indicate an absolute difference between .005 and .013. The asymptotic values of A.A. Borokov and N.M. Sycheva (1968, Theorem 3A) are given in the last row of table 2-5.

Table 1 is a confirmation of M. Noé's (1972) computations. In table 2 and 3 the results of P.L. Canner's (1975) simulation study are given in parentheses. In table 4 and 5 the rows marked by F contain the percentage points of $M^{1/2} W_M$ as the tables before. The rows marked by F_X refer to the correspondent statistic where the supremum is taken over $d/M < F_X(x) \leq 1 - d/M$. The integer d is chosen such that d/M is closest to the desired θ:

$$d = \begin{cases} \lfloor M\theta \rfloor & \text{if } M\theta - \lfloor M\theta \rfloor < .5 \\ \lceil M\theta \rceil & \text{else} \end{cases}.$$

(3.3)

The F_X-row in table 4 equals for $M = 10$ the F-row and is therefore omitted.
<table>
<thead>
<tr>
<th>M</th>
<th>$\alpha = .1$</th>
<th>$\alpha = .05$</th>
<th>$\alpha = .01$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>4.6146</td>
<td>6.4257</td>
<td>14.1863</td>
</tr>
<tr>
<td>20</td>
<td>4.6423</td>
<td>6.4398</td>
<td>14.1908</td>
</tr>
<tr>
<td>50</td>
<td>4.6631</td>
<td>6.4488</td>
<td>14.1929</td>
</tr>
<tr>
<td>100</td>
<td>4.6719</td>
<td>6.4519</td>
<td>14.1931</td>
</tr>
</tbody>
</table>

Table 1: $\theta = 0$.

<table>
<thead>
<tr>
<th>M</th>
<th>$\alpha = .1$</th>
<th>$\alpha = .05$</th>
<th>$\alpha = .01$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>3.2900</td>
<td>3.9829</td>
<td>6.03859</td>
</tr>
<tr>
<td>20</td>
<td>3.3962</td>
<td>4.04515</td>
<td>4.9094</td>
</tr>
<tr>
<td>50</td>
<td>3.2029</td>
<td>3.55334</td>
<td>4.5353</td>
</tr>
<tr>
<td>100</td>
<td>3.0640</td>
<td>3.4379</td>
<td>4.1899</td>
</tr>
<tr>
<td>∞</td>
<td>3.05</td>
<td>3.30</td>
<td>3.79</td>
</tr>
</tbody>
</table>

Table 2: $\theta = .01$.

<table>
<thead>
<tr>
<th>M</th>
<th>$\alpha = .1$</th>
<th>$\alpha = .05$</th>
<th>$\alpha = .01$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2.9218</td>
<td>3.4216</td>
<td>4.1705</td>
</tr>
<tr>
<td>20</td>
<td>2.9094</td>
<td>3.1831</td>
<td>4.10391</td>
</tr>
<tr>
<td>50</td>
<td>2.8616</td>
<td>3.1525</td>
<td>4.8669</td>
</tr>
<tr>
<td>100</td>
<td>2.8584</td>
<td>3.1417</td>
<td>4.7419</td>
</tr>
<tr>
<td>∞</td>
<td>3.05</td>
<td>3.30</td>
<td>3.79</td>
</tr>
</tbody>
</table>

Table 3: $\theta = .05$.

<table>
<thead>
<tr>
<th>M</th>
<th>$\alpha = .1$</th>
<th>$\alpha = .05$</th>
<th>$\alpha = .01$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2.7148</td>
<td>3.1336</td>
<td>3.8203</td>
</tr>
<tr>
<td>20</td>
<td>2.7130</td>
<td>2.9830</td>
<td>3.72677</td>
</tr>
<tr>
<td>50</td>
<td>2.7284</td>
<td>3.0071</td>
<td>3.6284</td>
</tr>
<tr>
<td>100</td>
<td>2.7362</td>
<td>3.0120</td>
<td>3.5960</td>
</tr>
<tr>
<td>∞</td>
<td>2.78</td>
<td>3.05</td>
<td>3.59</td>
</tr>
</tbody>
</table>

Table 4: $\theta = .1$.

<table>
<thead>
<tr>
<th>M</th>
<th>$\alpha = .1$</th>
<th>$\alpha = .05$</th>
<th>$\alpha = .01$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 F</td>
<td>2.4383</td>
<td>2.6340</td>
<td>3.2863</td>
</tr>
<tr>
<td>F_X</td>
<td>3.2747</td>
<td>3.9777</td>
<td>6.0714</td>
</tr>
<tr>
<td>20 F</td>
<td>2.4694</td>
<td>2.7236</td>
<td>3.2852</td>
</tr>
<tr>
<td>F_X</td>
<td>2.7419</td>
<td>3.1507</td>
<td>4.0971</td>
</tr>
<tr>
<td>50 F</td>
<td>2.4990</td>
<td>2.77602</td>
<td>3.3414</td>
</tr>
<tr>
<td>F_X</td>
<td>2.6283</td>
<td>2.9530</td>
<td>3.4948</td>
</tr>
<tr>
<td>100 F</td>
<td>2.5159</td>
<td>2.7929</td>
<td>3.3568</td>
</tr>
<tr>
<td>F_X</td>
<td>2.5697</td>
<td>2.8727</td>
<td>3.4969</td>
</tr>
<tr>
<td>∞</td>
<td>2.53</td>
<td>2.83</td>
<td>3.40</td>
</tr>
</tbody>
</table>

Table 5: $\theta = .25$.

19
We denote by $W_{M,N}$ the two sample version of W_M:

$$W_{M,N} := \sup_{1 \leq F_Y(x) \leq 2} \left| \frac{|F_X(x) - F_Y(x)|}{[F_Y(x)(1-F_Y(x))^{1/2}]^2} \right|$$

$$(\theta_1 = a/(M+N) \text{ and } \theta_2 = b/(M+N) ; a \text{ and } b \text{ integer}).$$

Now we get from lemma 2.2

$$P\left(\frac{N}{M+N} W_{M,N} \leq s^{1/2} \right) = f_M(N)/(M+N),$$

if (f) is the μ-Sheffer sequence for ν with roots in ν, where

$$\nu_1 = \left[(M+N)h^-(1/M) \right]^{-i-1} \text{ and } \mu_1 = \left[(M+N)h^+(1/M) \right]^{-i},$$

with i in the same range as in (3.1) and (3.2). (See (2.5) and (2.6) for ν and μ.) The following tables of percentage points for $(\frac{MN}{M+N})^{1/2} W_{M,N}$ are computed using only algorithm (2.4). Discontinuities occur at almost each entry. The bars are set following the same rules as above, but only four digits are given. The table for $\theta = 0$ equals the table for $\theta = .01$ and is therefore omitted. The numbers in parentheses are taken from P.L. Canner's (1975) simulation study (computed for $\theta = 0$). For $\theta = .05$, the rows $M = N = 10, 20$ and 50 are equal to those in table 6, and are omitted. Instead, we demonstrate the effect of slightly different, but large sample sizes. Again, the rows are marked by F_X, if the supremum is taken over all $a'/M \leq F_X(x) \leq b'/N$. In table 8 and 9 the rows are omitted which do not differ from table 6. The asymptotic values of table 2-5 may be used for comparison.
For applications see K.A. Doksum and G.L. Sievers (1976): "Plotting with confidence: Graphical comparisons of two populations."

21
Tables

See the introduction for a description of the tables.

<table>
<thead>
<tr>
<th>$\theta = 0$</th>
<th>$\theta = .01$</th>
<th>$\theta = .05$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{V}W^+_M$</td>
<td>$\mathcal{V}W^+_M$</td>
<td>$\mathcal{V}W^+_M$</td>
</tr>
<tr>
<td>$P(2.99)$</td>
<td>$P(2.99)$</td>
<td>$P(2.99)$</td>
</tr>
</tbody>
</table>
\[\theta = 0.05 / 0.1 / 0.25 \]

\[\mathbf{M}^{w^+} \]

<table>
<thead>
<tr>
<th>(P(z,9))</th>
<th>(P(z,9))</th>
<th>(z,9)</th>
<th>(D)</th>
<th>(P(z,95))</th>
<th>(P(z,95))</th>
<th>(z,95)</th>
<th>(D)</th>
<th>(P(z,99))</th>
<th>(P(z,99))</th>
<th>(z,99)</th>
<th>(D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.000</td>
<td>0.10000</td>
<td>2.079584</td>
<td>8</td>
<td>0.84375</td>
<td>1.2449487</td>
<td>3</td>
<td>0.9325</td>
<td>1</td>
<td>0.1624081</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.000</td>
<td>0.10000</td>
<td>2.079584</td>
<td>8</td>
<td>0.84375</td>
<td>1.2449487</td>
<td>3</td>
<td>0.9325</td>
<td>1</td>
<td>0.1624081</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.000</td>
<td>0.10000</td>
<td>2.079584</td>
<td>8</td>
<td>0.84375</td>
<td>1.2449487</td>
<td>3</td>
<td>0.9325</td>
<td>1</td>
<td>0.1624081</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.000</td>
<td>0.10000</td>
<td>2.079584</td>
<td>8</td>
<td>0.84375</td>
<td>1.2449487</td>
<td>3</td>
<td>0.9325</td>
<td>1</td>
<td>0.1624081</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.000</td>
<td>0.10000</td>
<td>2.079584</td>
<td>8</td>
<td>0.84375</td>
<td>1.2449487</td>
<td>3</td>
<td>0.9325</td>
<td>1</td>
<td>0.1624081</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.000</td>
<td>0.10000</td>
<td>2.079584</td>
<td>8</td>
<td>0.84375</td>
<td>1.2449487</td>
<td>3</td>
<td>0.9325</td>
<td>1</td>
<td>0.1624081</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.000</td>
<td>0.10000</td>
<td>2.079584</td>
<td>8</td>
<td>0.84375</td>
<td>1.2449487</td>
<td>3</td>
<td>0.9325</td>
<td>1</td>
<td>0.1624081</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.000</td>
<td>0.10000</td>
<td>2.079584</td>
<td>8</td>
<td>0.84375</td>
<td>1.2449487</td>
<td>3</td>
<td>0.9325</td>
<td>1</td>
<td>0.1624081</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.000</td>
<td>0.10000</td>
<td>2.079584</td>
<td>8</td>
<td>0.84375</td>
<td>1.2449487</td>
<td>3</td>
<td>0.9325</td>
<td>1</td>
<td>0.1624081</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.000</td>
<td>0.10000</td>
<td>2.079584</td>
<td>8</td>
<td>0.84375</td>
<td>1.2449487</td>
<td>3</td>
<td>0.9325</td>
<td>1</td>
<td>0.1624081</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.000</td>
<td>0.10000</td>
<td>2.079584</td>
<td>8</td>
<td>0.84375</td>
<td>1.2449487</td>
<td>3</td>
<td>0.9325</td>
<td>1</td>
<td>0.1624081</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.000</td>
<td>0.10000</td>
<td>2.079584</td>
<td>8</td>
<td>0.84375</td>
<td>1.2449487</td>
<td>3</td>
<td>0.9325</td>
<td>1</td>
<td>0.1624081</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.000</td>
<td>0.10000</td>
<td>2.079584</td>
<td>8</td>
<td>0.84375</td>
<td>1.2449487</td>
<td>3</td>
<td>0.9325</td>
<td>1</td>
<td>0.1624081</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.000</td>
<td>0.10000</td>
<td>2.079584</td>
<td>8</td>
<td>0.84375</td>
<td>1.2449487</td>
<td>3</td>
<td>0.9325</td>
<td>1</td>
<td>0.1624081</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.000</td>
<td>0.10000</td>
<td>2.079584</td>
<td>8</td>
<td>0.84375</td>
<td>1.2449487</td>
<td>3</td>
<td>0.9325</td>
<td>1</td>
<td>0.1624081</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\theta = 0.1 \)

\(\theta = 0.25 \)
\[
\theta = 0.05 / 0.1 / 0.25
\]
\[
\begin{array}{cccccccc}
M & P(z_0) & P(z_{0.9}) & z_0 & D & P(z_{0.9}) & P(z_{0.95}) & z_{0.95} & D
\end{array}
\]
\[
\theta = 0.05 \text{ (continued)}
\]

<table>
<thead>
<tr>
<th>M</th>
<th>P(z_0)</th>
<th>P(z_{0.9})</th>
<th>z_0</th>
<th>D</th>
<th>P(z_{0.9})</th>
<th>P(z_{0.95})</th>
<th>z_{0.95}</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>9000</td>
<td>9000</td>
<td>2.840416</td>
<td>0.95</td>
<td>9500</td>
<td>2.655500</td>
<td>0.95</td>
<td>9000</td>
</tr>
<tr>
<td>20</td>
<td>9000</td>
<td>9000</td>
<td>2.703351</td>
<td>0.95</td>
<td>9500</td>
<td>2.483144</td>
<td>0.95</td>
<td>9000</td>
</tr>
<tr>
<td>25</td>
<td>9000</td>
<td>9000</td>
<td>2.580340</td>
<td>0.95</td>
<td>9500</td>
<td>2.336401</td>
<td>0.95</td>
<td>9000</td>
</tr>
<tr>
<td>30</td>
<td>9000</td>
<td>9000</td>
<td>2.488122</td>
<td>0.95</td>
<td>9500</td>
<td>2.175929</td>
<td>0.95</td>
<td>9000</td>
</tr>
<tr>
<td>35</td>
<td>9000</td>
<td>9000</td>
<td>2.446832</td>
<td>0.95</td>
<td>9500</td>
<td>2.108063</td>
<td>0.95</td>
<td>9000</td>
</tr>
<tr>
<td>40</td>
<td>9000</td>
<td>9000</td>
<td>2.325587</td>
<td>0.95</td>
<td>9500</td>
<td>2.005333</td>
<td>0.95</td>
<td>9000</td>
</tr>
<tr>
<td>45</td>
<td>9000</td>
<td>9000</td>
<td>2.184338</td>
<td>0.95</td>
<td>9500</td>
<td>1.803658</td>
<td>0.95</td>
<td>9000</td>
</tr>
<tr>
<td>50</td>
<td>9000</td>
<td>9000</td>
<td>2.016617</td>
<td>0.95</td>
<td>9500</td>
<td>1.615055</td>
<td>0.95</td>
<td>9000</td>
</tr>
<tr>
<td>100</td>
<td>9000</td>
<td>9000</td>
<td>2.383822</td>
<td>0.95</td>
<td>9500</td>
<td>3.141739</td>
<td>0.95</td>
<td>9000</td>
</tr>
</tbody>
</table>

\[
\theta = 0.1
\]

<table>
<thead>
<tr>
<th>M</th>
<th>P(z_0)</th>
<th>P(z_{0.9})</th>
<th>z_0</th>
<th>D</th>
<th>P(z_{0.9})</th>
<th>P(z_{0.95})</th>
<th>z_{0.95}</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>9000</td>
<td>9000</td>
<td>2.635194</td>
<td>0.95</td>
<td>9500</td>
<td>2.632902</td>
<td>0.95</td>
<td>9000</td>
</tr>
<tr>
<td>20</td>
<td>9000</td>
<td>9000</td>
<td>2.590674</td>
<td>0.95</td>
<td>9500</td>
<td>2.671650</td>
<td>0.95</td>
<td>9000</td>
</tr>
<tr>
<td>25</td>
<td>9000</td>
<td>9000</td>
<td>2.543935</td>
<td>0.95</td>
<td>9500</td>
<td>2.641594</td>
<td>0.95</td>
<td>9000</td>
</tr>
<tr>
<td>30</td>
<td>9000</td>
<td>9000</td>
<td>2.505325</td>
<td>0.95</td>
<td>9500</td>
<td>2.641594</td>
<td>0.95</td>
<td>9000</td>
</tr>
<tr>
<td>35</td>
<td>9000</td>
<td>9000</td>
<td>2.505325</td>
<td>0.95</td>
<td>9500</td>
<td>2.641594</td>
<td>0.95</td>
<td>9000</td>
</tr>
<tr>
<td>40</td>
<td>9000</td>
<td>9000</td>
<td>2.505325</td>
<td>0.95</td>
<td>9500</td>
<td>2.641594</td>
<td>0.95</td>
<td>9000</td>
</tr>
<tr>
<td>45</td>
<td>9000</td>
<td>9000</td>
<td>2.505325</td>
<td>0.95</td>
<td>9500</td>
<td>2.641594</td>
<td>0.95</td>
<td>9000</td>
</tr>
<tr>
<td>50</td>
<td>9000</td>
<td>9000</td>
<td>2.505325</td>
<td>0.95</td>
<td>9500</td>
<td>2.641594</td>
<td>0.95</td>
<td>9000</td>
</tr>
<tr>
<td>100</td>
<td>9000</td>
<td>9000</td>
<td>2.505325</td>
<td>0.95</td>
<td>9500</td>
<td>2.641594</td>
<td>0.95</td>
<td>9000</td>
</tr>
</tbody>
</table>

\[
\theta = 0.25
\]

<table>
<thead>
<tr>
<th>M</th>
<th>P(z_0)</th>
<th>P(z_{0.9})</th>
<th>z_0</th>
<th>D</th>
<th>P(z_{0.9})</th>
<th>P(z_{0.95})</th>
<th>z_{0.95}</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>9000</td>
<td>9000</td>
<td>2.449489</td>
<td>0.8750</td>
<td>9000</td>
<td>2.449486</td>
<td>0.8750</td>
<td>9000</td>
</tr>
<tr>
<td>20</td>
<td>9000</td>
<td>9000</td>
<td>2.437873</td>
<td>0.95</td>
<td>9500</td>
<td>2.694469</td>
<td>0.8687</td>
<td>9000</td>
</tr>
<tr>
<td>25</td>
<td>9000</td>
<td>9000</td>
<td>2.437873</td>
<td>0.95</td>
<td>9500</td>
<td>2.694469</td>
<td>0.8687</td>
<td>9000</td>
</tr>
<tr>
<td>30</td>
<td>9000</td>
<td>9000</td>
<td>2.437873</td>
<td>0.95</td>
<td>9500</td>
<td>2.694469</td>
<td>0.8687</td>
<td>9000</td>
</tr>
<tr>
<td>35</td>
<td>9000</td>
<td>9000</td>
<td>2.437873</td>
<td>0.95</td>
<td>9500</td>
<td>2.694469</td>
<td>0.8687</td>
<td>9000</td>
</tr>
<tr>
<td>40</td>
<td>9000</td>
<td>9000</td>
<td>2.437873</td>
<td>0.95</td>
<td>9500</td>
<td>2.694469</td>
<td>0.8687</td>
<td>9000</td>
</tr>
<tr>
<td>45</td>
<td>9000</td>
<td>9000</td>
<td>2.437873</td>
<td>0.95</td>
<td>9500</td>
<td>2.694469</td>
<td>0.8687</td>
<td>9000</td>
</tr>
<tr>
<td>50</td>
<td>9000</td>
<td>9000</td>
<td>2.437873</td>
<td>0.95</td>
<td>9500</td>
<td>2.694469</td>
<td>0.8687</td>
<td>9000</td>
</tr>
<tr>
<td>100</td>
<td>9000</td>
<td>9000</td>
<td>2.437873</td>
<td>0.95</td>
<td>9500</td>
<td>2.694469</td>
<td>0.8687</td>
<td>9000</td>
</tr>
</tbody>
</table>

\[
\theta = 0.5
\]

<table>
<thead>
<tr>
<th>M</th>
<th>P(z_0)</th>
<th>P(z_{0.9})</th>
<th>z_0</th>
<th>D</th>
<th>P(z_{0.9})</th>
<th>P(z_{0.95})</th>
<th>z_{0.95}</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>9000</td>
<td>9000</td>
<td>2.046426</td>
<td>0.95</td>
<td>9500</td>
<td>2.438304</td>
<td>0.9868</td>
<td>9000</td>
</tr>
<tr>
<td>20</td>
<td>9000</td>
<td>9000</td>
<td>2.046426</td>
<td>0.95</td>
<td>9500</td>
<td>2.438304</td>
<td>0.9868</td>
<td>9000</td>
</tr>
<tr>
<td>25</td>
<td>9000</td>
<td>9000</td>
<td>2.046426</td>
<td>0.95</td>
<td>9500</td>
<td>2.438304</td>
<td>0.9868</td>
<td>9000</td>
</tr>
<tr>
<td>30</td>
<td>9000</td>
<td>9000</td>
<td>2.046426</td>
<td>0.95</td>
<td>9500</td>
<td>2.438304</td>
<td>0.9868</td>
<td>9000</td>
</tr>
<tr>
<td>35</td>
<td>9000</td>
<td>9000</td>
<td>2.046426</td>
<td>0.95</td>
<td>9500</td>
<td>2.438304</td>
<td>0.9868</td>
<td>9000</td>
</tr>
<tr>
<td>40</td>
<td>9000</td>
<td>9000</td>
<td>2.046426</td>
<td>0.95</td>
<td>9500</td>
<td>2.438304</td>
<td>0.9868</td>
<td>9000</td>
</tr>
<tr>
<td>45</td>
<td>9000</td>
<td>9000</td>
<td>2.046426</td>
<td>0.95</td>
<td>9500</td>
<td>2.438304</td>
<td>0.9868</td>
<td>9000</td>
</tr>
<tr>
<td>50</td>
<td>9000</td>
<td>9000</td>
<td>2.046426</td>
<td>0.95</td>
<td>9500</td>
<td>2.438304</td>
<td>0.9868</td>
<td>9000</td>
</tr>
<tr>
<td>100</td>
<td>9000</td>
<td>9000</td>
<td>2.046426</td>
<td>0.95</td>
<td>9500</td>
<td>2.438304</td>
<td>0.9868</td>
<td>9000</td>
</tr>
</tbody>
</table>

25
<table>
<thead>
<tr>
<th>θ</th>
<th>\mathcal{W}_M^+</th>
<th>\mathcal{W}_M^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\theta = 0$</td>
<td>ϕ</td>
<td>θ</td>
</tr>
<tr>
<td>$\theta = 0.01$</td>
<td>ϕ</td>
<td>θ</td>
</tr>
<tr>
<td>$\theta = 0.05$</td>
<td>ϕ</td>
<td>θ</td>
</tr>
</tbody>
</table>

For $\theta = 0$ see \mathcal{W}_M^+.
<table>
<thead>
<tr>
<th>$\theta = 0.1$</th>
<th>$\theta = 0.25$</th>
<th>$\theta = 0.1$</th>
<th>$\theta = 0.25$</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>α</td>
<td>α</td>
<td>α</td>
</tr>
<tr>
<td>$N(\alpha, \beta)$</td>
<td>$N(\alpha, \beta)$</td>
<td>$N(\alpha, \beta)$</td>
<td>$N(\alpha, \beta)$</td>
</tr>
<tr>
<td>σ</td>
<td>σ</td>
<td>σ</td>
<td>σ</td>
</tr>
<tr>
<td>μ</td>
<td>μ</td>
<td>μ</td>
<td>μ</td>
</tr>
<tr>
<td>ν</td>
<td>ν</td>
<td>ν</td>
<td>ν</td>
</tr>
<tr>
<td>λ</td>
<td>λ</td>
<td>λ</td>
<td>λ</td>
</tr>
<tr>
<td>γ</td>
<td>γ</td>
<td>γ</td>
<td>γ</td>
</tr>
</tbody>
</table>

Note: The table represents data points for different values of θ and other parameters.
\[
\begin{array}{cccccccc}
\theta = 0 & / & 0.01 & / & 0.05 \\
M P(z,9) P(z,9) & z,9 & D P(z,95) P(z,99) & z,95 & D P(z,99) P(z,99) & z,99 & D \\
\hline
0 & 0.000 & 4,132473 & 9 & 9500 & 75 & 00 & 6,331982 & 9 & 9900 & 14,149294 & 7 \\
1 & 0.000 & 4,020930 & 9 & 9500 & 5.00 & 6,238915 & 7 & 9900 & 14,149997 & 8 \\
2 & 0.000 & 4,551500 & 9 & 9500 & 2.00 & 6,587881 & 7 & 9900 & 14,1725 & 6 \\
3 & 0.000 & 4,370436 & 9 & 9500 & 2.00 & 6,597823 & 7 & 9900 & 14,179033 & 6 \\
4 & 0.000 & 4,584041 & 9 & 9500 & 2.00 & 6,408175 & 7 & 9900 & 14,180241 & 7 \\
5 & 0.000 & 4,283405 & 9 & 9500 & 6.40 & 6,414924 & 7 & 9900 & 14,186053 & 8 \\
6 & 0.000 & 4,682145 & 9 & 9500 & 2.00 & 6,418953 & 7 & 9900 & 14,186490 & 8 \\
7 & 0.000 & 4,414079 & 9 & 9500 & 2.00 & 6,426654 & 7 & 9900 & 14,185603 & 9 \\
8 & 0.000 & 4,414079 & 9 & 9500 & 2.00 & 6,426654 & 7 & 9900 & 14,185603 & 9 \\
9 & 0.000 & 4,414079 & 9 & 9500 & 2.00 & 6,426654 & 7 & 9900 & 14,185603 & 9 \\
10 & 0.000 & 4,414079 & 9 & 9500 & 2.00 & 6,426654 & 7 & 9900 & 14,185603 & 9 \\
11 & 0.000 & 4,414079 & 9 & 9500 & 2.00 & 6,426654 & 7 & 9900 & 14,185603 & 9 \\
12 & 0.000 & 4,414079 & 9 & 9500 & 2.00 & 6,426654 & 7 & 9900 & 14,185603 & 9 \\
13 & 0.000 & 4,414079 & 9 & 9500 & 2.00 & 6,426654 & 7 & 9900 & 14,185603 & 9 \\
14 & 0.000 & 4,414079 & 9 & 9500 & 2.00 & 6,426654 & 7 & 9900 & 14,185603 & 9 \\
15 & 0.000 & 4,414079 & 9 & 9500 & 2.00 & 6,426654 & 7 & 9900 & 14,185603 & 9 \\
16 & 0.000 & 4,414079 & 9 & 9500 & 2.00 & 6,426654 & 7 & 9900 & 14,185603 & 9 \\
17 & 0.000 & 4,414079 & 9 & 9500 & 2.00 & 6,426654 & 7 & 9900 & 14,185603 & 9 \\
18 & 0.000 & 4,414079 & 9 & 9500 & 2.00 & 6,426654 & 7 & 9900 & 14,185603 & 9 \\
19 & 0.000 & 4,414079 & 9 & 9500 & 2.00 & 6,426654 & 7 & 9900 & 14,185603 & 9 \\
20 & 0.000 & 4,414079 & 9 & 9500 & 2.00 & 6,426654 & 7 & 9900 & 14,185603 & 9 \\
\end{array}
\]
<table>
<thead>
<tr>
<th>$\theta = 0.1 / 0.25$</th>
<th>$\gamma_{\mu M}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\eta_{(9)} P(\eta_{(9)})$</td>
<td>$\eta_{(9)}$</td>
</tr>
</tbody>
</table>

$\theta = 0.25$

<table>
<thead>
<tr>
<th>$\theta = 0.25$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\gamma_{\mu M}$</td>
</tr>
<tr>
<td>$\eta_{(9)} P(\eta_{(9)})$</td>
</tr>
<tr>
<td>$\eta_{(9)} P(\eta_{(9)})$</td>
</tr>
<tr>
<td>$\eta_{(9)} P(\eta_{(9)})$</td>
</tr>
<tr>
<td>$\eta_{(9)} P(\eta_{(9)})$</td>
</tr>
</tbody>
</table>

29
<table>
<thead>
<tr>
<th>M</th>
<th>N</th>
<th>P(z.9)</th>
<th>D(z.9)</th>
<th>P(z.95)</th>
<th>D(z.95)</th>
<th>P(z.99)</th>
<th>D(z.99)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>.8333</td>
<td>1</td>
<td>1.9999992</td>
<td>8</td>
<td>.8333</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>.7000</td>
<td>.9500</td>
<td>1.732050</td>
<td>6</td>
<td>.7000</td>
<td>.9500</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>.6576</td>
<td>.9576</td>
<td>1.940727</td>
<td>9</td>
<td>.6576</td>
<td>.9576</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>.6049</td>
<td>.9549</td>
<td>2.095541</td>
<td>8</td>
<td>.6049</td>
<td>.9549</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>.5528</td>
<td>.9528</td>
<td>2.255991</td>
<td>8</td>
<td>.5528</td>
<td>.9528</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>.5016</td>
<td>.9516</td>
<td>2.433719</td>
<td>5</td>
<td>.5016</td>
<td>.9516</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>.4521</td>
<td>.9521</td>
<td>2.650276</td>
<td>5</td>
<td>.4521</td>
<td>.9521</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>.4044</td>
<td>.9544</td>
<td>2.900754</td>
<td>5</td>
<td>.4044</td>
<td>.9544</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>.3584</td>
<td>.9584</td>
<td>3.250145</td>
<td>5</td>
<td>.3584</td>
<td>.9584</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>.3139</td>
<td>.9599</td>
<td>3.656942</td>
<td>5</td>
<td>.3139</td>
<td>.9599</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>.2710</td>
<td>.9610</td>
<td>4.105177</td>
<td>5</td>
<td>.2710</td>
<td>.9610</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>.2305</td>
<td>.9625</td>
<td>4.605119</td>
<td>5</td>
<td>.2305</td>
<td>.9625</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>.1916</td>
<td>.9644</td>
<td>5.162756</td>
<td>5</td>
<td>.1916</td>
<td>.9644</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>.1550</td>
<td>.9660</td>
<td>5.783077</td>
<td>5</td>
<td>.1550</td>
<td>.9660</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>.1213</td>
<td>.9679</td>
<td>6.462579</td>
<td>5</td>
<td>.1213</td>
<td>.9679</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>.0903</td>
<td>.9699</td>
<td>7.203074</td>
<td>5</td>
<td>.0903</td>
<td>.9699</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>.0616</td>
<td>.9720</td>
<td>7.996351</td>
<td>5</td>
<td>.0616</td>
<td>.9720</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>.0354</td>
<td>.9743</td>
<td>8.856942</td>
<td>5</td>
<td>.0354</td>
<td>.9743</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>.0117</td>
<td>.9769</td>
<td>9.800754</td>
<td>5</td>
<td>.0117</td>
<td>.9769</td>
</tr>
<tr>
<td>M</td>
<td>N</td>
<td>F(x)</td>
<td>G(y)</td>
<td>D</td>
<td>P(x)</td>
<td>G(y)</td>
<td>D</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>0.8931</td>
<td>0.9181</td>
<td>2.357018</td>
<td>0.9467</td>
<td>0.95164</td>
<td>2.611160</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>0.8931</td>
<td>0.9181</td>
<td>2.357018</td>
<td>0.9467</td>
<td>0.95164</td>
<td>2.611160</td>
</tr>
<tr>
<td>45</td>
<td>45</td>
<td>0.8931</td>
<td>0.9181</td>
<td>2.357018</td>
<td>0.9467</td>
<td>0.95164</td>
<td>2.611160</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
<td>0.8931</td>
<td>0.9181</td>
<td>2.357018</td>
<td>0.9467</td>
<td>0.95164</td>
<td>2.611160</td>
</tr>
<tr>
<td>75</td>
<td>75</td>
<td>0.8931</td>
<td>0.9181</td>
<td>2.357018</td>
<td>0.9467</td>
<td>0.95164</td>
<td>2.611160</td>
</tr>
<tr>
<td>90</td>
<td>90</td>
<td>0.8931</td>
<td>0.9181</td>
<td>2.357018</td>
<td>0.9467</td>
<td>0.95164</td>
<td>2.611160</td>
</tr>
</tbody>
</table>

θ = 0 / .01 / .05 / .1160/(M+N) (continued)
<table>
<thead>
<tr>
<th>Z</th>
<th>0.9000</th>
<th>0.9001</th>
<th>0.9002</th>
<th>0.9003</th>
<th>0.9004</th>
<th>0.9005</th>
<th>0.9006</th>
<th>0.9007</th>
<th>0.9008</th>
<th>0.9009</th>
<th>0.9010</th>
<th>0.9011</th>
<th>0.9012</th>
<th>0.9013</th>
<th>0.9014</th>
<th>0.9015</th>
<th>0.9016</th>
<th>0.9017</th>
<th>0.9018</th>
<th>0.9019</th>
<th>0.9020</th>
<th>0.9021</th>
<th>0.9022</th>
<th>0.9023</th>
<th>0.9024</th>
<th>0.9025</th>
</tr>
</thead>
</table>

(continued)
\[t = 0.25 \] (continued)

\[
\begin{array}{cccccccccc}
M & N & P(z_{0.9}) & P(z_{0.9}) & z_{0.9} & D & P(z_{0.5}) & P(z_{0.5}) & z_{0.5} & D
\end{array}
\]

\[
\begin{array}{cccccccccc}
10 & 10 & 0.8121 & 0.9999 & 1.622872 & 6 & 0.9345 & 0.9563 & 2.344033 & 9 & 0.9700 & 0.9930 & 2.927695 & 8 \\
9 & 9 & 0.8971 & 0.9112 & 2.082578 & 8 & 0.9472 & 0.9580 & 2.471260 & 7 & 0.9895 & 0.9918 & 2.987741 & 8 \\
8 & 8 & 0.8842 & 0.9071 & 1.873735 & 9 & 0.9499 & 0.9484 & 2.353931 & 6 & 0.9894 & 0.9940 & 2.941734 & 8 \\
7 & 7 & 0.8837 & 0.9053 & 2.099489 & 8 & 0.9417 & 0.9566 & 2.265029 & 8 & 0.9892 & 0.9930 & 2.886173 & 7 \\
6 & 6 & 0.8617 & 0.9105 & 2.065589 & 8 & 0.9374 & 0.9539 & 2.367454 & 7 & 0.9890 & 0.9955 & 2.861421 & 8 \\
5 & 5 & 0.8841 & 0.9281 & 2.043400 & 9 & 0.9281 & 0.8977 & 2.336063 & 8 & 0.9797 & 0.9903 & 2.711086 & 7 \\
4 & 4 & 0.8701 & 0.9061 & 1.940214 & 9 & 0.9371 & 0.9530 & 2.366313 & 6 & 0.9850 & 0.9950 & 2.732512 & 8 \\
3 & 3 & 0.8566 & 0.9301 & 2.043138 & 7 & 0.9301 & 0.9650 & 2.313658 & 8 & 0.9820 & 0.9965 & 2.962259 & 6 \\
2 & 2 & 0.8485 & 0.9091 & 1.833078 & 8 & 0.9091 & 0.9545 & 2.190889 & 6 & 0.9549 & 0.9999 & 2.683281 & 7 \\
1 & 1 & 0.8180 & 0.9120 & 1.992044 & 7 & 0.9489 & 0.9642 & 2.477167 & 6 & 0.9996 & 0.9926 & 2.981417 & 8 \\
0 & 0 & 0.8000 & 0.9074 & 2.107457 & 8 & 0.9666 & 0.9501 & 2.410496 & 7 & 0.9882 & 0.9903 & 2.936016 & 8 \\
\end{array}
\]
\[\begin{array}{cccccccc}
M & N & P(z_g) & P(\tilde{z}_g) & \tilde{z}_g & D & P(z_{g,95}) & P(\tilde{z}_{g,95}) & \tilde{z}_{g,95} & D & P(z_{g,99}) & P(\tilde{z}_{g,99}) & \tilde{z}_{g,99} & D \\
2 & 2 & 0.66671 & 1 & 1.999902 & 0.66671 & 1 & 1.999902 & 0
\end{array} \]
\(\theta = 0 \)/ .01 / .05 \(\sum_{j=0}^{M+N} W_{j} \)

<table>
<thead>
<tr>
<th>M</th>
<th>N</th>
<th>(P(z_{9}) = P(z_{0.9}))</th>
<th>(z_{9} = 0)</th>
<th>(D = P(z_{9.5}) P(z_{9.9}))</th>
<th>(z_{9.5} = 0.95)</th>
<th>(D = P(z_{9.9}) P(z_{9.9}))</th>
<th>(z_{9.9} = 0.99)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>25</td>
<td>0.0136</td>
<td>0.129</td>
<td>2.6171</td>
<td>0.946</td>
<td>0.950</td>
<td>2.5190</td>
</tr>
<tr>
<td>25</td>
<td>24</td>
<td>0.0136</td>
<td>0.119</td>
<td>2.5171</td>
<td>0.946</td>
<td>0.950</td>
<td>2.4190</td>
</tr>
<tr>
<td>25</td>
<td>23</td>
<td>0.0136</td>
<td>0.109</td>
<td>2.4171</td>
<td>0.946</td>
<td>0.950</td>
<td>2.3190</td>
</tr>
<tr>
<td>25</td>
<td>22</td>
<td>0.0136</td>
<td>0.100</td>
<td>2.3171</td>
<td>0.946</td>
<td>0.950</td>
<td>2.2190</td>
</tr>
<tr>
<td>25</td>
<td>21</td>
<td>0.0136</td>
<td>0.090</td>
<td>2.2171</td>
<td>0.946</td>
<td>0.950</td>
<td>2.1190</td>
</tr>
<tr>
<td>25</td>
<td>20</td>
<td>0.0136</td>
<td>0.080</td>
<td>2.1171</td>
<td>0.946</td>
<td>0.950</td>
<td>2.0190</td>
</tr>
<tr>
<td>25</td>
<td>19</td>
<td>0.0136</td>
<td>0.070</td>
<td>2.0171</td>
<td>0.946</td>
<td>0.950</td>
<td>1.9190</td>
</tr>
<tr>
<td>25</td>
<td>18</td>
<td>0.0136</td>
<td>0.060</td>
<td>1.9171</td>
<td>0.946</td>
<td>0.950</td>
<td>1.8190</td>
</tr>
<tr>
<td>25</td>
<td>17</td>
<td>0.0136</td>
<td>0.050</td>
<td>1.8171</td>
<td>0.946</td>
<td>0.950</td>
<td>1.7190</td>
</tr>
<tr>
<td>25</td>
<td>16</td>
<td>0.0136</td>
<td>0.040</td>
<td>1.7171</td>
<td>0.946</td>
<td>0.950</td>
<td>1.6190</td>
</tr>
<tr>
<td>25</td>
<td>15</td>
<td>0.0136</td>
<td>0.030</td>
<td>1.6171</td>
<td>0.946</td>
<td>0.950</td>
<td>1.5190</td>
</tr>
<tr>
<td>25</td>
<td>14</td>
<td>0.0136</td>
<td>0.020</td>
<td>1.5171</td>
<td>0.946</td>
<td>0.950</td>
<td>1.4190</td>
</tr>
<tr>
<td>25</td>
<td>13</td>
<td>0.0136</td>
<td>0.010</td>
<td>1.4171</td>
<td>0.946</td>
<td>0.950</td>
<td>1.3190</td>
</tr>
<tr>
<td>25</td>
<td>12</td>
<td>0.0136</td>
<td>0.000</td>
<td>1.3171</td>
<td>0.946</td>
<td>0.950</td>
<td>1.2190</td>
</tr>
<tr>
<td>25</td>
<td>11</td>
<td>0.0136</td>
<td>0.000</td>
<td>1.2171</td>
<td>0.946</td>
<td>0.950</td>
<td>1.1190</td>
</tr>
<tr>
<td>25</td>
<td>10</td>
<td>0.0136</td>
<td>0.000</td>
<td>1.1171</td>
<td>0.946</td>
<td>0.950</td>
<td>1.0190</td>
</tr>
<tr>
<td>25</td>
<td>9</td>
<td>0.0136</td>
<td>0.000</td>
<td>1.0171</td>
<td>0.946</td>
<td>0.950</td>
<td>0.9190</td>
</tr>
<tr>
<td>25</td>
<td>8</td>
<td>0.0136</td>
<td>0.000</td>
<td>0.9171</td>
<td>0.946</td>
<td>0.950</td>
<td>0.8190</td>
</tr>
<tr>
<td>25</td>
<td>7</td>
<td>0.0136</td>
<td>0.000</td>
<td>0.8171</td>
<td>0.946</td>
<td>0.950</td>
<td>0.7190</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>0.0136</td>
<td>0.000</td>
<td>0.7171</td>
<td>0.946</td>
<td>0.950</td>
<td>0.6190</td>
</tr>
<tr>
<td>25</td>
<td>5</td>
<td>0.0136</td>
<td>0.000</td>
<td>0.6171</td>
<td>0.946</td>
<td>0.950</td>
<td>0.5190</td>
</tr>
<tr>
<td>25</td>
<td>4</td>
<td>0.0136</td>
<td>0.000</td>
<td>0.5171</td>
<td>0.946</td>
<td>0.950</td>
<td>0.4190</td>
</tr>
<tr>
<td>25</td>
<td>3</td>
<td>0.0136</td>
<td>0.000</td>
<td>0.4171</td>
<td>0.946</td>
<td>0.950</td>
<td>0.3190</td>
</tr>
<tr>
<td>25</td>
<td>2</td>
<td>0.0136</td>
<td>0.000</td>
<td>0.3171</td>
<td>0.946</td>
<td>0.950</td>
<td>0.2190</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>0.0136</td>
<td>0.000</td>
<td>0.2171</td>
<td>0.946</td>
<td>0.950</td>
<td>0.1190</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
<td>0.0136</td>
<td>0.000</td>
<td>0.1171</td>
<td>0.946</td>
<td>0.950</td>
<td>0.0190</td>
</tr>
</tbody>
</table>

\(\theta = .00 \) (see \(\theta = 0 \) for smaller values of \(M \))

| 500 | 500 | 0.0999 | 0.9003 | 2.961845 | 0.9500 | 3.18642 | 0.9899 | 0.9900 | 3.66935 |

\(\theta = .05 \) (see \(\theta = 0 \) for smaller values of \(M \))

| 100 | 100 | 0.0996 | 0.9012 | 2.179509 | 0.9477 | 0.9501 | 3.008655 | 0.9899 | 0.9900 | 3.502189 |
| 500 | 500 | 0.0900 | 0.9003 | 2.842462 | 0.9500 | 3.099087 | 0.9900 | 0.9900 | 3.61357 |

35
\[\theta = 0.2 \sqrt{M/N} \]

<table>
<thead>
<tr>
<th>M</th>
<th>N</th>
<th>P(z, \theta)</th>
<th>P(z, \theta)</th>
<th>\theta</th>
<th>D</th>
<th>P(z, \theta)</th>
<th>P(z, \theta)</th>
<th>\theta</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>35</td>
<td>0.8971</td>
<td>.9018</td>
<td>2.645746</td>
<td>5.9491</td>
<td>.9510</td>
<td>2.879140</td>
<td>5.9903</td>
<td>.9901</td>
</tr>
<tr>
<td>35</td>
<td>34</td>
<td>0.8993</td>
<td>.9011</td>
<td>2.617128</td>
<td>5.9496</td>
<td>.9502</td>
<td>2.887846</td>
<td>5.9905</td>
<td>.9904</td>
</tr>
<tr>
<td>35</td>
<td>33</td>
<td>0.8979</td>
<td>.9014</td>
<td>2.658252</td>
<td>5.9491</td>
<td>.9515</td>
<td>2.894682</td>
<td>5.9900</td>
<td>.9904</td>
</tr>
<tr>
<td>35</td>
<td>32</td>
<td>0.8985</td>
<td>.9003</td>
<td>2.620067</td>
<td>5.9486</td>
<td>.9517</td>
<td>2.882018</td>
<td>5.9908</td>
<td>.9903</td>
</tr>
<tr>
<td>35</td>
<td>31</td>
<td>0.8974</td>
<td>.9042</td>
<td>2.835544</td>
<td>5.9498</td>
<td>.9514</td>
<td>2.915910</td>
<td>5.9906</td>
<td>.9900</td>
</tr>
<tr>
<td>35</td>
<td>30</td>
<td>0.8957</td>
<td>.9024</td>
<td>2.630207</td>
<td>5.9500</td>
<td>.9515</td>
<td>2.861349</td>
<td>5.9909</td>
<td>.9905</td>
</tr>
<tr>
<td>35</td>
<td>39</td>
<td>0.8996</td>
<td>.9035</td>
<td>2.677397</td>
<td>5.9470</td>
<td>.9506</td>
<td>2.921006</td>
<td>5.9905</td>
<td>.9909</td>
</tr>
<tr>
<td>35</td>
<td>38</td>
<td>0.8983</td>
<td>.9011</td>
<td>2.636463</td>
<td>5.9487</td>
<td>.9503</td>
<td>2.894420</td>
<td>5.9901</td>
<td>.9901</td>
</tr>
<tr>
<td>35</td>
<td>37</td>
<td>0.8978</td>
<td>.9024</td>
<td>2.623476</td>
<td>5.9496</td>
<td>.9524</td>
<td>2.910078</td>
<td>5.9909</td>
<td>.9901</td>
</tr>
<tr>
<td>35</td>
<td>36</td>
<td>0.8988</td>
<td>.9002</td>
<td>2.618862</td>
<td>5.9500</td>
<td>.9509</td>
<td>2.880481</td>
<td>5.9908</td>
<td>.9902</td>
</tr>
<tr>
<td>35</td>
<td>35</td>
<td>0.8981</td>
<td>.9021</td>
<td>2.650734</td>
<td>5.9493</td>
<td>.9519</td>
<td>2.897329</td>
<td>5.9908</td>
<td>.9902</td>
</tr>
<tr>
<td>35</td>
<td>34</td>
<td>0.8961</td>
<td>.9011</td>
<td>2.643610</td>
<td>5.9486</td>
<td>.9516</td>
<td>2.873184</td>
<td>5.9909</td>
<td>.9902</td>
</tr>
<tr>
<td>35</td>
<td>33</td>
<td>0.8971</td>
<td>.9002</td>
<td>2.656046</td>
<td>5.9493</td>
<td>.9525</td>
<td>2.909373</td>
<td>5.9907</td>
<td>.9902</td>
</tr>
<tr>
<td>35</td>
<td>32</td>
<td>0.8993</td>
<td>.9004</td>
<td>2.657541</td>
<td>5.9492</td>
<td>.9503</td>
<td>2.900927</td>
<td>5.9909</td>
<td>.9904</td>
</tr>
<tr>
<td>35</td>
<td>31</td>
<td>0.8997</td>
<td>.9015</td>
<td>2.632293</td>
<td>5.9491</td>
<td>.9503</td>
<td>2.671079</td>
<td>5.9909</td>
<td>.9900</td>
</tr>
<tr>
<td>35</td>
<td>30</td>
<td>0.8999</td>
<td>.9012</td>
<td>6.262553</td>
<td>5.9499</td>
<td>.9506</td>
<td>2.696045</td>
<td>5.9900</td>
<td>.9902</td>
</tr>
<tr>
<td>35</td>
<td>29</td>
<td>0.8995</td>
<td>.9010</td>
<td>2.632237</td>
<td>5.9487</td>
<td>.9507</td>
<td>2.694588</td>
<td>5.9907</td>
<td>.9900</td>
</tr>
<tr>
<td>35</td>
<td>28</td>
<td>0.8946</td>
<td>.9003</td>
<td>2.650851</td>
<td>5.9496</td>
<td>.9514</td>
<td>2.900130</td>
<td>5.9909</td>
<td>.9902</td>
</tr>
<tr>
<td>35</td>
<td>27</td>
<td>0.8924</td>
<td>.9021</td>
<td>2.666666</td>
<td>5.9496</td>
<td>.9516</td>
<td>2.896827</td>
<td>5.9909</td>
<td>.9902</td>
</tr>
<tr>
<td>35</td>
<td>26</td>
<td>0.8980</td>
<td>.9013</td>
<td>2.673043</td>
<td>5.9497</td>
<td>.9501</td>
<td>2.914944</td>
<td>5.9900</td>
<td>.9902</td>
</tr>
<tr>
<td>35</td>
<td>25</td>
<td>0.8934</td>
<td>.9000</td>
<td>2.644348</td>
<td>5.9492</td>
<td>.9503</td>
<td>2.905985</td>
<td>5.9908</td>
<td>.9901</td>
</tr>
<tr>
<td>35</td>
<td>24</td>
<td>0.8989</td>
<td>.9014</td>
<td>2.658960</td>
<td>5.9495</td>
<td>.9500</td>
<td>2.934078</td>
<td>5.9909</td>
<td>.9902</td>
</tr>
<tr>
<td>35</td>
<td>23</td>
<td>0.8998</td>
<td>.9008</td>
<td>2.647822</td>
<td>5.9497</td>
<td>.9509</td>
<td>2.918053</td>
<td>5.9908</td>
<td>.9901</td>
</tr>
<tr>
<td>35</td>
<td>22</td>
<td>0.9000</td>
<td>.9009</td>
<td>2.639381</td>
<td>5.9493</td>
<td>.9503</td>
<td>2.937344</td>
<td>5.9908</td>
<td>.9901</td>
</tr>
</tbody>
</table>

\[\theta = 0.25 \] (see \(\theta = 0 \) for smaller values of \(M \))
\[
\begin{array}{ccccccccc}
\theta & 0.0 & 0.01 & 0.02 & 0.03 & 0.04 & 0.05 & 0.1 & 0.2 & 0.3 \\
M & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 \\
N & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 \\
\end{array}
\]
\[
\begin{array}{cccccccc}
N & M & F(z_{.9}) & P(z_{.9}) & F(z_{.95}) & P(z_{.95}) & F(z_{.99}) & P(z_{.99}) \\
45 & 43 & .8999 & .9009 & 2.377790 & b & .9499 & .9514 & 2.648713 & b & .9909 & .9900 & 3.170839 & b \\
45 & 42 & .9000 & .9011 & 2.381935 & b & .9497 & .9502 & 2.663688 & b & .9998 & .9901 & 3.170070 & b \\
45 & 41 & .9005 & .9006 & 2.363058 & b & .9480 & .9513 & 2.649332 & b & .9999 & .9901 & 3.183469 & b \\
45 & 40 & .8996 & .9013 & 2.377835 & b & .9497 & .9507 & 2.661440 & b & .9900 & .9906 & 3.170569 & b \\
50 & 50 & .9005 & .9014 & 2.359555 & b & .9491 & .9512 & 2.666568 & b & .9980 & .9900 & 3.191678 & b \\
50 & 49 & .8989 & .9002 & 2.363861 & b & .9498 & .9510 & 2.643438 & b & .9980 & .9902 & 3.175402 & b \\
50 & 47 & .8979 & .9004 & 2.374460 & b & .9482 & .9504 & 2.659690 & b & .9999 & .9902 & 3.170049 & b \\
50 & 46 & .8985 & .9007 & 2.375526 & b & .9469 & .9501 & 2.635617 & b & .9980 & .9900 & 3.169565 & b \\
50 & 45 & .8970 & .9000 & 2.372050 & b & .9498 & .9506 & 2.640609 & b & .9999 & .9900 & 3.179711 & b \\

\text{(continued)}

\end{array}
\]
\[\theta = 1 \text{ (continued)} \]

\[\frac{\rho_{MN}(x,y)}{M,N} = 15 - 500 \]

<table>
<thead>
<tr>
<th>M</th>
<th>N</th>
<th>F(z)</th>
<th>F(z)</th>
<th>D</th>
<th>F(z)</th>
<th>F(z)</th>
<th>D</th>
<th>F(z)</th>
<th>F(z)</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>15</td>
<td>0.957</td>
<td>0.964</td>
<td>2.15</td>
<td>0.944</td>
<td>0.959</td>
<td>2.44</td>
<td>0.985</td>
<td>0.993</td>
<td>2.98</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>0.948</td>
<td>0.947</td>
<td>2.10</td>
<td>0.949</td>
<td>0.958</td>
<td>2.41</td>
<td>0.982</td>
<td>0.993</td>
<td>2.86</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>0.946</td>
<td>0.937</td>
<td>2.09</td>
<td>0.948</td>
<td>0.951</td>
<td>2.30</td>
<td>0.987</td>
<td>0.998</td>
<td>2.88</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>0.935</td>
<td>0.931</td>
<td>2.07</td>
<td>0.976</td>
<td>0.961</td>
<td>2.46</td>
<td>0.987</td>
<td>0.991</td>
<td>2.85</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>0.900</td>
<td>0.908</td>
<td>2.13</td>
<td>0.940</td>
<td>0.958</td>
<td>2.34</td>
<td>0.984</td>
<td>0.995</td>
<td>2.91</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>0.876</td>
<td>0.912</td>
<td>2.04</td>
<td>0.933</td>
<td>0.954</td>
<td>2.29</td>
<td>0.986</td>
<td>0.992</td>
<td>2.89</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>0.883</td>
<td>0.904</td>
<td>2.21</td>
<td>0.942</td>
<td>0.953</td>
<td>2.47</td>
<td>0.977</td>
<td>0.991</td>
<td>2.93</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>0.861</td>
<td>0.901</td>
<td>2.19</td>
<td>0.947</td>
<td>0.954</td>
<td>2.47</td>
<td>0.989</td>
<td>0.996</td>
<td>3.04</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0.877</td>
<td>0.900</td>
<td>2.25</td>
<td>0.944</td>
<td>0.952</td>
<td>2.46</td>
<td>0.989</td>
<td>0.995</td>
<td>2.95</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0.895</td>
<td>0.909</td>
<td>2.20</td>
<td>0.948</td>
<td>0.959</td>
<td>2.47</td>
<td>0.989</td>
<td>0.995</td>
<td>2.95</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0.894</td>
<td>0.904</td>
<td>2.16</td>
<td>0.949</td>
<td>0.953</td>
<td>2.39</td>
<td>0.991</td>
<td>0.992</td>
<td>2.98</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0.875</td>
<td>0.905</td>
<td>2.09</td>
<td>0.948</td>
<td>0.950</td>
<td>2.45</td>
<td>0.987</td>
<td>0.990</td>
<td>2.89</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0.888</td>
<td>0.907</td>
<td>2.35</td>
<td>0.941</td>
<td>0.952</td>
<td>2.54</td>
<td>0.989</td>
<td>0.996</td>
<td>3.02</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.915</td>
<td>0.912</td>
<td>2.56</td>
<td>0.999</td>
<td>0.952</td>
<td>2.52</td>
<td>0.990</td>
<td>0.997</td>
<td>3.02</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.866</td>
<td>0.901</td>
<td>2.18</td>
<td>0.946</td>
<td>0.955</td>
<td>2.50</td>
<td>0.984</td>
<td>0.996</td>
<td>2.99</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0.848</td>
<td>0.901</td>
<td>2.18</td>
<td>0.943</td>
<td>0.959</td>
<td>2.47</td>
<td>0.985</td>
<td>0.991</td>
<td>2.98</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.871</td>
<td>0.908</td>
<td>2.18</td>
<td>0.946</td>
<td>0.958</td>
<td>2.47</td>
<td>0.989</td>
<td>0.992</td>
<td>2.99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.875</td>
<td>0.908</td>
<td>2.18</td>
<td>0.946</td>
<td>0.958</td>
<td>2.47</td>
<td>0.989</td>
<td>0.992</td>
<td>2.99</td>
</tr>
</tbody>
</table>
\[e = 0.25 \text{ (continued)} \sqrt{\frac{M+N}{M+N}} \]

<table>
<thead>
<tr>
<th>M</th>
<th>N</th>
<th>(P(\varepsilon, q))</th>
<th>(P(\varepsilon, q))</th>
<th>(\varepsilon, 9)</th>
<th>(D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>15</td>
<td>0.8899</td>
<td>0.9904</td>
<td>0.323785</td>
<td>0.8988</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>0.8774</td>
<td>0.9904</td>
<td>0.323785</td>
<td>0.8988</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>0.8643</td>
<td>0.9904</td>
<td>0.323785</td>
<td>0.8988</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>0.8513</td>
<td>0.9904</td>
<td>0.323785</td>
<td>0.8988</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>0.8382</td>
<td>0.9904</td>
<td>0.323785</td>
<td>0.8988</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>0.8251</td>
<td>0.9904</td>
<td>0.323785</td>
<td>0.8988</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>0.8121</td>
<td>0.9904</td>
<td>0.323785</td>
<td>0.8988</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>0.7990</td>
<td>0.9904</td>
<td>0.323785</td>
<td>0.8988</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0.7859</td>
<td>0.9904</td>
<td>0.323785</td>
<td>0.8988</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0.7727</td>
<td>0.9904</td>
<td>0.323785</td>
<td>0.8988</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0.7596</td>
<td>0.9904</td>
<td>0.323785</td>
<td>0.8988</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0.7464</td>
<td>0.9904</td>
<td>0.323785</td>
<td>0.8988</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0.7332</td>
<td>0.9904</td>
<td>0.323785</td>
<td>0.8988</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.7200</td>
<td>0.9904</td>
<td>0.323785</td>
<td>0.8988</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.7068</td>
<td>0.9904</td>
<td>0.323785</td>
<td>0.8988</td>
</tr>
</tbody>
</table>

15 - 500
\[
\begin{array}{cccc}
\varepsilon = 0 & \varepsilon = 0.01 & \varepsilon = 0.05 \\
MN & M^N & \varepsilon_0 & D(M^N) \\
\hline
4 \times 4 & 4 \times 4 & 4 \times 4 & 4 \times 4 \\
\hline
MN & M^N & \varepsilon_0 & D(M^N) \\
\hline
\end{array}
\]
\[
\theta = \frac{0.05}{1} \sqrt{\frac{N}{N+1}} W_{MN} \\
\text{50 - 500 / 5 - 9}
\]

<table>
<thead>
<tr>
<th>(N)</th>
<th>(\theta)</th>
<th>(\phi)</th>
<th>(\theta)</th>
<th>(\phi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>90</td>
<td>2.6666618</td>
<td>0.9498</td>
<td>0.6468265</td>
</tr>
<tr>
<td>50</td>
<td>90</td>
<td>2.653228</td>
<td>0.9499</td>
<td>0.641943</td>
</tr>
<tr>
<td>50</td>
<td>90</td>
<td>2.6443458</td>
<td>0.9484</td>
<td>0.6491825</td>
</tr>
<tr>
<td>50</td>
<td>90</td>
<td>2.658850</td>
<td>0.9495</td>
<td>0.6507315</td>
</tr>
<tr>
<td>50</td>
<td>90</td>
<td>2.6460118</td>
<td>0.9497</td>
<td>0.6841555</td>
</tr>
<tr>
<td>50</td>
<td>90</td>
<td>2.6352628</td>
<td>0.7145</td>
<td>0.6352628</td>
</tr>
<tr>
<td>50</td>
<td>90</td>
<td>2.6309397</td>
<td>0.934</td>
<td>0.6309397</td>
</tr>
<tr>
<td>50</td>
<td>90</td>
<td>2.100528</td>
<td>0.9061</td>
<td>0.2100528</td>
</tr>
<tr>
<td>50</td>
<td>90</td>
<td>2.101818</td>
<td>0.6571</td>
<td>0.2101818</td>
</tr>
<tr>
<td>50</td>
<td>90</td>
<td>2.100481</td>
<td>0.9048</td>
<td>0.2100481</td>
</tr>
</tbody>
</table>

\(\theta = 0.1 \) (see \(\theta = 0 \) for smaller values of \(N \))
<table>
<thead>
<tr>
<th>M</th>
<th>N</th>
<th>P(z₂₉)</th>
<th>P(z₉₉)</th>
<th>z₉₉</th>
<th>D P(z₉₉)</th>
<th>P(z₉₉)</th>
<th>z₉₉</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
<td>.8813</td>
<td>.9343</td>
<td>.9343</td>
<td>.9522</td>
<td>.9581</td>
<td>.9961</td>
<td>3.146166</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>.8731</td>
<td>.9034</td>
<td>.9364</td>
<td>.9567</td>
<td>.9642</td>
<td>.9961</td>
<td>3.102794</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>.8761</td>
<td>.9058</td>
<td>.9385</td>
<td>.9589</td>
<td>.9685</td>
<td>.9969</td>
<td>3.027148</td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>.8797</td>
<td>.9264</td>
<td>.9459</td>
<td>.9675</td>
<td>.9683</td>
<td>.9969</td>
<td>2.886168</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>.8749</td>
<td>.9161</td>
<td>.9423</td>
<td>.9685</td>
<td>.9727</td>
<td>.9960</td>
<td>2.727679</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>.8561</td>
<td>.9394</td>
<td>.9394</td>
<td>.9594</td>
<td>.9613</td>
<td>.9960</td>
<td>2.576979</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>.8741</td>
<td>.9661</td>
<td>.9661</td>
<td>.9700</td>
<td>.9700</td>
<td>.9960</td>
<td>2.325119</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>.8601</td>
<td>.9301</td>
<td>.9301</td>
<td>.9720</td>
<td>.9720</td>
<td>.9960</td>
<td>2.325119</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>.8182</td>
<td>.9091</td>
<td>.9091</td>
<td>.9091</td>
<td>.9091</td>
<td>.9960</td>
<td>2.653580</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>.8930</td>
<td>.9119</td>
<td>.9424</td>
<td>.9592</td>
<td>.9606</td>
<td>.9960</td>
<td>3.098319</td>
</tr>
<tr>
<td>15</td>
<td>14</td>
<td>.8998</td>
<td>.9095</td>
<td>.9440</td>
<td>.9540</td>
<td>.9522</td>
<td>.9960</td>
<td>3.174198</td>
</tr>
<tr>
<td>15</td>
<td>13</td>
<td>.8967</td>
<td>.9102</td>
<td>.9447</td>
<td>.9535</td>
<td>.9520</td>
<td>.9960</td>
<td>3.066506</td>
</tr>
<tr>
<td>15</td>
<td>12</td>
<td>.8952</td>
<td>.9237</td>
<td>.9449</td>
<td>.9502</td>
<td>.9476</td>
<td>.9960</td>
<td>3.065532</td>
</tr>
<tr>
<td>15</td>
<td>11</td>
<td>.8920</td>
<td>.9057</td>
<td>.9435</td>
<td>.9529</td>
<td>.9503</td>
<td>.9960</td>
<td>3.075460</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>.8767</td>
<td>.9008</td>
<td>.9441</td>
<td>.9566</td>
<td>.9558</td>
<td>.9960</td>
<td>3.061585</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>.8865</td>
<td>.9047</td>
<td>.9404</td>
<td>.9502</td>
<td>.9565</td>
<td>.9960</td>
<td>3.186955</td>
</tr>
<tr>
<td>20</td>
<td>19</td>
<td>.8952</td>
<td>.9069</td>
<td>.9471</td>
<td>.9501</td>
<td>.9702</td>
<td>.9960</td>
<td>3.171146</td>
</tr>
<tr>
<td>20</td>
<td>18</td>
<td>.8969</td>
<td>.9046</td>
<td>.9492</td>
<td>.9521</td>
<td>.9714</td>
<td>.9960</td>
<td>3.248324</td>
</tr>
<tr>
<td>20</td>
<td>17</td>
<td>.8938</td>
<td>.9078</td>
<td>.9434</td>
<td>.9502</td>
<td>.7093</td>
<td>.9960</td>
<td>3.179445</td>
</tr>
<tr>
<td>20</td>
<td>16</td>
<td>.8900</td>
<td>.9067</td>
<td>.9458</td>
<td>.9561</td>
<td>.6655</td>
<td>.9960</td>
<td>3.174892</td>
</tr>
<tr>
<td>20</td>
<td>15</td>
<td>.8876</td>
<td>.9047</td>
<td>.9465</td>
<td>.9505</td>
<td>.7328</td>
<td>.9960</td>
<td>3.155242</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>.8882</td>
<td>.9005</td>
<td>.9456</td>
<td>.9576</td>
<td>.7745</td>
<td>.9960</td>
<td>3.204940</td>
</tr>
<tr>
<td>25</td>
<td>24</td>
<td>.8999</td>
<td>.9046</td>
<td>.9490</td>
<td>.9520</td>
<td>.7639</td>
<td>.9960</td>
<td>3.253304</td>
</tr>
<tr>
<td>25</td>
<td>23</td>
<td>.8974</td>
<td>.9016</td>
<td>.9490</td>
<td>.9540</td>
<td>.7458</td>
<td>.9960</td>
<td>3.213438</td>
</tr>
<tr>
<td>25</td>
<td>22</td>
<td>.8967</td>
<td>.9007</td>
<td>.9477</td>
<td>.9502</td>
<td>.7508</td>
<td>.9960</td>
<td>3.170087</td>
</tr>
<tr>
<td>25</td>
<td>21</td>
<td>.8992</td>
<td>.9037</td>
<td>.9490</td>
<td>.9524</td>
<td>.6751</td>
<td>.9960</td>
<td>3.244110</td>
</tr>
<tr>
<td>25</td>
<td>20</td>
<td>.8993</td>
<td>.9119</td>
<td>.9495</td>
<td>.9526</td>
<td>.7577</td>
<td>.9960</td>
<td>3.203243</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>.8960</td>
<td>.9100</td>
<td>.9494</td>
<td>.9522</td>
<td>.8171</td>
<td>.9960</td>
<td>3.279564</td>
</tr>
<tr>
<td>30</td>
<td>29</td>
<td>.8964</td>
<td>.9074</td>
<td>.9490</td>
<td>.9533</td>
<td>.7704</td>
<td>.9960</td>
<td>3.262785</td>
</tr>
<tr>
<td>30</td>
<td>28</td>
<td>.8984</td>
<td>.9012</td>
<td>.9490</td>
<td>.9519</td>
<td>.7774</td>
<td>.9960</td>
<td>3.262735</td>
</tr>
<tr>
<td>30</td>
<td>27</td>
<td>.8967</td>
<td>.9002</td>
<td>.9495</td>
<td>.9511</td>
<td>.7928</td>
<td>.9960</td>
<td>3.293592</td>
</tr>
<tr>
<td>30</td>
<td>26</td>
<td>.8986</td>
<td>.9013</td>
<td>.9497</td>
<td>.9564</td>
<td>.7846</td>
<td>.9960</td>
<td>3.248184</td>
</tr>
<tr>
<td>30</td>
<td>25</td>
<td>.8971</td>
<td>.9000</td>
<td>.9498</td>
<td>.9521</td>
<td>.7807</td>
<td>.9960</td>
<td>3.226618</td>
</tr>
<tr>
<td>35</td>
<td>35</td>
<td>.9031</td>
<td>.9023</td>
<td>.9491</td>
<td>.9521</td>
<td>.7991</td>
<td>.9960</td>
<td>3.308160</td>
</tr>
<tr>
<td>35</td>
<td>34</td>
<td>.9089</td>
<td>.9027</td>
<td>.9506</td>
<td>.9510</td>
<td>.8008</td>
<td>.9960</td>
<td>3.294460</td>
</tr>
<tr>
<td>35</td>
<td>33</td>
<td>.9085</td>
<td>.9007</td>
<td>.9507</td>
<td>.9511</td>
<td>.8192</td>
<td>.9960</td>
<td>3.297518</td>
</tr>
<tr>
<td>35</td>
<td>32</td>
<td>.9084</td>
<td>.9004</td>
<td>.9487</td>
<td>.9512</td>
<td>.8085</td>
<td>.9960</td>
<td>3.288755</td>
</tr>
<tr>
<td>35</td>
<td>31</td>
<td>.9066</td>
<td>.9007</td>
<td>.9543</td>
<td>.9509</td>
<td>.7933</td>
<td>.9960</td>
<td>3.249734</td>
</tr>
<tr>
<td>35</td>
<td>30</td>
<td>.9090</td>
<td>.9012</td>
<td>.9542</td>
<td>.9502</td>
<td>.7963</td>
<td>.9960</td>
<td>3.305529</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>.8982</td>
<td>.9033</td>
<td>.9497</td>
<td>.9517</td>
<td>.8645</td>
<td>.9960</td>
<td>3.341867</td>
</tr>
<tr>
<td>40</td>
<td>39</td>
<td>.8995</td>
<td>.9009</td>
<td>.9499</td>
<td>.9508</td>
<td>.8442</td>
<td>.9960</td>
<td>3.326882</td>
</tr>
<tr>
<td>40</td>
<td>38</td>
<td>.8970</td>
<td>.9025</td>
<td>.9497</td>
<td>.9518</td>
<td>.8370</td>
<td>.9960</td>
<td>3.301735</td>
</tr>
<tr>
<td>40</td>
<td>37</td>
<td>.8991</td>
<td>.9004</td>
<td>.9495</td>
<td>.9510</td>
<td>.8424</td>
<td>.9960</td>
<td>3.323741</td>
</tr>
<tr>
<td>40</td>
<td>36</td>
<td>.8992</td>
<td>.9010</td>
<td>.9492</td>
<td>.9507</td>
<td>.8266</td>
<td>.9960</td>
<td>3.332631</td>
</tr>
<tr>
<td>40</td>
<td>35</td>
<td>.8939</td>
<td>.9001</td>
<td>.9493</td>
<td>.9511</td>
<td>.8347</td>
<td>.9960</td>
<td>3.314846</td>
</tr>
</tbody>
</table>

θ = .1 (continued) √(MN/(M+N)) M, N

10 - 40
\[\theta = 0.1 \rightarrow 0.25 \quad \frac{\text{MN}}{\text{M+N}} \quad \text{V}_{\text{M},\text{N}} \quad 45 \rightarrow 500 \rightarrow 2 \rightarrow 9 \]

\[\text{M} \quad \text{N} \quad \text{P}(\bar{z}_{9}) \quad \text{P}(\bar{z}_{9}) \quad \bar{z}_{9} \quad \text{D} \quad \text{P}(\bar{z}_{95}) \quad \text{P}(\bar{z}_{95}) \quad \bar{z}_{95} \quad \text{D} \quad \text{P}(\bar{z}_{99}) \quad \text{P}(\bar{z}_{99}) \quad \bar{z}_{99} \quad \text{D} \]

\[\theta = 0.1 \quad \text{(continued)} \]

<table>
<thead>
<tr>
<th>45</th>
<th>45</th>
<th>0.9797</th>
<th>0.9014</th>
<th>2.5808728</th>
<th>0.9495</th>
<th>0.9517</th>
<th>2.860303</th>
<th>0.9899</th>
<th>0.9904</th>
<th>3.354102</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>44</td>
<td>0.9899</td>
<td>0.9007</td>
<td>2.606463</td>
<td>0.9493</td>
<td>0.9504</td>
<td>2.865445</td>
<td>0.9895</td>
<td>0.9901</td>
<td>3.318955</td>
<td>5</td>
</tr>
<tr>
<td>45</td>
<td>43</td>
<td>0.9777</td>
<td>0.9016</td>
<td>2.611430</td>
<td>0.9497</td>
<td>0.9506</td>
<td>2.852728</td>
<td>0.9899</td>
<td>0.9902</td>
<td>3.326269</td>
<td>5</td>
</tr>
<tr>
<td>45</td>
<td>42</td>
<td>0.9806</td>
<td>0.9007</td>
<td>2.598801</td>
<td>0.9481</td>
<td>0.9511</td>
<td>2.667537</td>
<td>0.9899</td>
<td>0.9902</td>
<td>3.351490</td>
<td>5</td>
</tr>
<tr>
<td>45</td>
<td>41</td>
<td>0.9893</td>
<td>0.9006</td>
<td>2.581444</td>
<td>0.9494</td>
<td>0.9502</td>
<td>2.829832</td>
<td>0.9898</td>
<td>0.9903</td>
<td>3.318489</td>
<td>5</td>
</tr>
<tr>
<td>45</td>
<td>40</td>
<td>0.8963</td>
<td>0.9052</td>
<td>2.603958</td>
<td>0.9498</td>
<td>0.9506</td>
<td>2.857039</td>
<td>0.9898</td>
<td>0.9901</td>
<td>3.331015</td>
<td>5</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>0.8999</td>
<td>0.9010</td>
<td>2.625854</td>
<td>0.9495</td>
<td>0.9511</td>
<td>2.881951</td>
<td>0.9896</td>
<td>0.9900</td>
<td>3.377599</td>
<td>5</td>
</tr>
<tr>
<td>50</td>
<td>49</td>
<td>0.8977</td>
<td>0.9014</td>
<td>2.634608</td>
<td>0.9498</td>
<td>0.9506</td>
<td>2.885253</td>
<td>0.9895</td>
<td>0.9900</td>
<td>3.340310</td>
<td>5</td>
</tr>
<tr>
<td>50</td>
<td>48</td>
<td>0.8995</td>
<td>0.9009</td>
<td>2.624761</td>
<td>0.9498</td>
<td>0.9508</td>
<td>2.867625</td>
<td>0.9890</td>
<td>0.9903</td>
<td>3.376226</td>
<td>5</td>
</tr>
<tr>
<td>50</td>
<td>47</td>
<td>0.8999</td>
<td>0.9009</td>
<td>2.623080</td>
<td>0.9497</td>
<td>0.9508</td>
<td>2.862856</td>
<td>0.9900</td>
<td>0.9902</td>
<td>3.357593</td>
<td>5</td>
</tr>
<tr>
<td>50</td>
<td>46</td>
<td>0.8991</td>
<td>0.9003</td>
<td>2.635529</td>
<td>0.9492</td>
<td>0.9505</td>
<td>2.861924</td>
<td>0.9905</td>
<td>0.9901</td>
<td>3.340571</td>
<td>5</td>
</tr>
<tr>
<td>50</td>
<td>45</td>
<td>0.8963</td>
<td>0.9030</td>
<td>2.607992</td>
<td>0.9493</td>
<td>0.9500</td>
<td>2.861921</td>
<td>0.9897</td>
<td>0.9901</td>
<td>3.355481</td>
<td>5</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>0.8996</td>
<td>0.9004</td>
<td>2.693965</td>
<td>0.9500</td>
<td>0.9512</td>
<td>2.964977</td>
<td>0.9900</td>
<td>0.9901</td>
<td>3.459590</td>
<td>5</td>
</tr>
<tr>
<td>500</td>
<td>500</td>
<td>0.9006</td>
<td>0.9100</td>
<td>2.742831</td>
<td>0.9500</td>
<td>0.9500</td>
<td>3.012909</td>
<td>0.9900</td>
<td>0.9900</td>
<td>3.545579</td>
<td>5</td>
</tr>
</tbody>
</table>

\[\theta = 0.25 \]

<table>
<thead>
<tr>
<th>2</th>
<th>2</th>
<th>0.6667</th>
<th>1</th>
<th>1.999992</th>
<th>7</th>
<th>0.6667</th>
<th>1</th>
<th>1.999992</th>
<th>7</th>
<th>0.6667</th>
<th>1</th>
<th>1.999992</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>0.6000</td>
<td>1</td>
<td>1.737044</td>
<td>6</td>
<td>0.6000</td>
<td>1</td>
<td>1.737044</td>
<td>6</td>
<td>0.6000</td>
<td>1</td>
<td>1.737044</td>
<td>6</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0.8571</td>
<td>1</td>
<td>2.190887</td>
<td>8</td>
<td>0.8571</td>
<td>1</td>
<td>2.190887</td>
<td>8</td>
<td>0.8571</td>
<td>1</td>
<td>2.190887</td>
<td>8</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0.7143</td>
<td>1</td>
<td>2.190886</td>
<td>8</td>
<td>0.7143</td>
<td>1</td>
<td>2.190886</td>
<td>8</td>
<td>0.7143</td>
<td>1</td>
<td>2.190886</td>
<td>8</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0.8674</td>
<td>1</td>
<td>2.190886</td>
<td>8</td>
<td>0.8674</td>
<td>1</td>
<td>2.190886</td>
<td>8</td>
<td>0.8674</td>
<td>1</td>
<td>2.190886</td>
<td>8</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0.8571</td>
<td>1</td>
<td>2.190886</td>
<td>8</td>
<td>0.8571</td>
<td>1</td>
<td>2.190886</td>
<td>8</td>
<td>0.8571</td>
<td>1</td>
<td>2.190886</td>
<td>8</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>0.8571</td>
<td>1</td>
<td>2.190886</td>
<td>8</td>
<td>0.8571</td>
<td>1</td>
<td>2.190886</td>
<td>8</td>
<td>0.8571</td>
<td>1</td>
<td>2.190886</td>
<td>8</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>0.8571</td>
<td>1</td>
<td>2.190886</td>
<td>8</td>
<td>0.8571</td>
<td>1</td>
<td>2.190886</td>
<td>8</td>
<td>0.8571</td>
<td>1</td>
<td>2.190886</td>
<td>8</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>0.8571</td>
<td>1</td>
<td>2.190886</td>
<td>8</td>
<td>0.8571</td>
<td>1</td>
<td>2.190886</td>
<td>8</td>
<td>0.8571</td>
<td>1</td>
<td>2.190886</td>
<td>8</td>
</tr>
</tbody>
</table>

\[k = 0.25 \]
Appendix.

The purpose of this appendix is to summarize the algebraic results which we used in the preceding chapters. All proofs are straightforward verifications of the definitions. Hence, we give only some hints and leave the details to the reader. A more general approach including Eulerian polynomials can be found in [11]. The "Finite Operator Calculus" of G.-C. Rota, D. Kahaner and A. Odlyzko [14] is the fundament of the whole theory.

Let \mathcal{P} be the algebra of polynomials over a field K with characteristic zero. In our rank test applications K always equals \mathbb{Z}, for the order tests choose $K = \mathbb{R}$. We will deal with linear operators $\mathcal{P} \rightarrow \mathcal{P}$ only, and omit the word "linear" in the sequel. For all $a \in K$ the shift operator is denoted by $E^a: p(x) \mapsto p(x+a)$. An operator Q on \mathcal{P} is a delta operator, if

- Q is shift invariant: $QE^a = E^aQ \; \forall a \in K$, and
- Qx is a non-zero constant.

The derivative operator D is a delta operator if $K = \mathbb{R}$, and the following properties show how Q generalizes D:

(A.1) $Qa = 0$ for every constant a [14,p.687]

(A.2) $\deg(Qp) = \deg(p)-1$ for each $p \in \mathcal{P}$ with $\deg(p) \geq 1$ [14,p.687].

Hence, the kernel of Q consists only of the constant polynomials.

A sequence of polynomials $(s_n)_{n \in \mathbb{N}_0}$ is a Sheffer sequence for Q, if
(A.3) \[s_0 \] is a non-zero constant

(A.4) \[Qs_n = s_{n-1} \] for all \(n \geq 1 \).

We make the convention \(s_n = 0 \) if \(n < 0 \). For instance, \((x^n/n!) \) is a Sheffer sequence for \(D \).

Lemma A.1: If \((s_n) \) is a Sheffer sequence for \(Q \) then \(\deg(s_n) = n \).

Proof: (A.1)-(A.4)

Lemma A.2: If \((s_n) \) and \((t_n) \) are both Sheffer sequences for \(Q \) with the property

\[s_n(v_n) = t_n(v_n) \]

for a given sequence \((v_n) \) in \(K \), then the two sequences are equal.

Proof: Induction over \(n \). Use \(\ker(Q) = \text{constant functions} \)

\((s_n) \) has roots in \(v: \mathbb{N}_0 \to K \), say, if \(s_n(v_n) = \delta_{0,n} \)

for all \(n \in \mathbb{N}_0 \). The Sheffer sequence for \(Q \) with roots in \(0 \) is called the basic sequence for \(Q \) and always denoted by \((q_n) \). Obviously,

(A.5) \((x^n/n!) \) is the basic sequence for \(D \).

It is easy to verify that
(A.6) \((x^n)^{x^n-1}\) \(n \in \mathbb{N}_0\) is the basic sequence for \(v = I-E^{-1}\).

More examples can be found in [14].

Immediately from the shift-invariance follows: If \((s_n)\) is a Sheffer sequence for \(Q\) with roots in \(v\), then \((Es_n)\) is a Sheffer sequence for \(Q\) with roots in \(v-a\).

Deeper than all the other results in this appendix is the following

Lemma A.3: If \(v(n) = an+b\) \((a,b \in \mathbb{K})\), then

\[s_n(x) := (x-an-b)(x-b)^{-1}q_n(x-b) \]

defines the Sheffer sequence for \(Q\) with roots in \(v\).
(For \(n = 0\) we have to define \(\frac{0}{0} = 1\).)

Proof: See [14, p. 702]

Now we come to a representation theorem for Sheffer sequences with roots in \(v(i) := \left\{ \begin{array}{ll} \varphi(i) & 0 \leq i \leq L \\ ci+d & \forall i > L, \end{array} \right. \) where \(L \in \mathbb{N}_0; c,d \in \mathbb{K}\) and \(\varphi: \mathbb{N}_0 \rightarrow \mathbb{R}\) arbitrary.

Theorem A.1: If \((s_n)\) is the Sheffer sequence for \(Q\) with roots in \(v\) as above, then

\[
(A.7) \quad s_n(x) = \sum_{i=0}^{L} a_i(c_i+d)(x-cn-d)(x-ci-d)^{-1}q_{n-i}(x-ci-d) \quad \forall n \in \mathbb{N}_0.
\]

50
Proof: Check recurrence and side conditions, using lemma A.3.

Corollary A.1: (Binomial Theorem). If \((s_n)\) is the Sheffer- and \((q_n)\) the basic sequence for \(Q\), then

\[
s_n(x+y) = \sum_{i=0}^{n} s_i(y)q_{n-i}(x) \quad \forall n \in \mathbb{N}_0.
\]

Proof: Choose \(c = 0, d = y\) and \(L = \infty\) in (A.7).

Avoiding alternating summation in (A.7), it may be sometimes preferable to use the "outside method" (a term, introduced by J.L. Hodges (1957)):

(A.8) \[
s_n(x) = r_n(x) - \sum_{i=L+1}^{n} r_i(c+d)(x-cn-d)(x-ci-d)^{-1}q_{n-i}(x-ci-d)
\]

where \((r_n)\) is the Sheffer sequence for \(Q\) with roots in \(\varphi\) (follows by summation over all \(i = 0, \ldots, n\) in (A.7)).

Repeated use of (A.7) yields a representation of the Sheffer sequence \((s_n)\) for \(Q\) with roots in the piecewise affine function

\[
v(i) := i a_j + b_j \quad \forall L_j < i \leq L_{j+1},
\]

where \(-L = L_0 < L_1 < \ldots\), each \(L_j\) integer, and \(a_j, b_j \in K\) for all \(j \in \mathbb{N}_0\). Then for all \(L_j < n \leq L_{j+1}\)

(A.9) \[
s_n(x) = \sum_{k_j=0}^{L_j} \cdots \sum_{k_1=0}^{L_1} p_j(x)p_{j-1}(v_j(k_j)) \cdots p_0(v_1(k_1)),
\]

51
if
\[p_i(x) = \frac{x-v_i(k_{i+1})}{x-v_i(k_i)} q_{k_{i+1}-k_i}^i (x-v_i(k_i)) , \]

where \(k_0 := 0 \) and \(k_{j+1} := n \). Because of its importance we explicitly write down the special case of (A.9) where

\[v(i) = \begin{cases}
 ia+b & \text{if } i = 0, \ldots, L \\
 ic+d & \text{if } i > L .
\end{cases} \]

Then

\[(A.10) \quad s_n(x) = \sum_{i=0}^L i(c-a)+d-b \frac{x-cn-d}{ic+d-b} q_i (ci+d-b) q_{n-i} (x-ic-d) . \]

For \(n < L \), the r.h.s. equals \((x-an-b)(x-b)^{-1} q_n(x-b)\) by lemma A.3.

Now we assume that \(K \) is completely ordered. Let \(\mu : \mathbb{N}_0 \to K \)

be a non-decreasing function and \((t_{n,i})_{n,i} \in \mathbb{N}_0 \) be a double sequence in \(\mathbb{P} \) with the properties

\[(A.11) \quad t_{n,i}(\mu_i) = t_{n,i+1}(\mu_i) \quad 0 \leq i \leq r(n) := \min\{m \in \mathbb{N}_0 \mid \mu(m) = \mu(n)\} , \]

\[t_{n,i} = 0 \quad \text{if } i > r(n) . \]

Define an associated sequence \((f_n) \) to \((t_{n,i}) \) by

\[(A.12) \quad f_n(x) := t_{n,i}(x) \quad \forall u_{i-1} < x \leq u_i \quad (u_{-1} := -\infty) . \]

We call \((f_n) \) a \(\mu \)-Sheffer sequence, if \((t_{m+n,r(m)})_{n} \in \mathbb{N}_0 \) is a Sheffer
sequence for all \(m \in \mathbb{N}_0 \). From corollary A.1 we get a first representation of \(f_n(x)\):

\[
(A.13) \quad f_n(x) = \sum_{k=0}^{n} f_k(y) q_{n-k}(x-y) \text{ if } x, y \in [\mu_{i-1}, \mu_i].
\]

If \((f_n) \) has roots in \(v \), i.e.

\[
(A.14) \quad f_n(v_n) = \delta_{0,n} \quad \forall n \in \mathbb{N},
\]

then any value \(f_n(z) \) can be computed from (A.13) by stepping through all the intervals \([\mu_j, \mu_{j+1}]\) until \(z \) is enclosed. We give only a brief description of this trivial algorithm:

Algorithm A.1. Assume \(f_r(j)(\mu_j), \ldots, f_1(\mu_j) \) are already computed such that \(j \leq n \) and \(v_{i+1} > \mu_j \)

a) If \(v_{i+1} < \mu_{j+1} \) then define \(x := v_{i+1}, \ y := \mu_j \), and compute \(f_r(j)(v_{i+1}), \ldots, f_1(v_{i+1}) \) from (A.13). Of course, \(f_{i+1}(v_{i+1}) = 0 \). Therefore, the \(i \)-index increased by one, and it increases again if \(v_{i+2} \) lies also in the same interval (define \(x = v_{i+2} \) and \(y = v_{i+1} \)). Finally a \(k \) is reached such that \(\mu(j) < v_k < \mu_{j+1} < v_{k+1} \) (the case \(v_k = \mu_{j+1} \) is left to the reader). Then choose \(x := \mu_{j+1}, \quad y := v_k \), and compute \(f_r(j)(\mu_{j+1}, \ldots, f_k(\mu_{j+1}) \) from (A.13). Now we are in the same situation as in the beginning.

b) If \(v_{i+1} > \mu_{j+1} > \mu_j \) then define \(x := \mu_{j+1}, \ y := \mu_j \), and compute \(f_r(j)(\mu_{j+1}, \ldots, f_k(\mu_{j+1}) \) from (A.13). Again, we are in the same situation as in the beginning.

c) If \(\mu_j = \mu_{j+1} \) increase \(j \) by one.

In special cases this algorithm can be simplified.
A one dimensional recursion can be obtained from

Theorem A.2: Let \((f_n)\) be a \(\mu\)-Sheffer sequence for \(Q\) (with basic sequence \((q_n)\)). If \((f_n)\) is associated to \((r_{n,i})\) then

\[
(A.15) \quad t_{n,i}(x) = \sum_{k=1}^{n} f_k(\mu_k) q_{n-k}(x-\mu_k) \quad \text{for all } n \in \mathbb{N}_0 \text{ and } i = 0, \ldots, n.
\]

Proof: Verify side conditions (A.11).

See [26, theorem 4.1] for a general version of this theorem. The announced one dimensional recursion follows, when we write (A.15) as

\[
(A.16) \quad f_n(x) = \sum f_k(\mu_k) q_{n-k}(x-\mu_k) \quad \text{for all } n \in \mathbb{N}_0,
\]

where the summation runs over all \(k\) such that \(\mu_k > x\). Thus, a system of equations for the unknown \(f_k(\mu_k)\) is obtained, if only one value \(f_n(\nu_n)\) with \(\nu_n \leq \mu_n\) is known for each \(n\). By Cramer's rule, \(f_n(\mu_n)\) can be expressed as a determinant:

Corollary A.2: If \((f_n)\) is a \(\mu\)-Sheffer- and \((q_n)\) the basic sequence for \(Q\), then

\[
f_n(\mu_n) = \det(\alpha_{i,j})_{i,j=1,...,n+1},
\]

where

\[
\alpha_{i,j} = \begin{cases} q_{i-j}(\nu_{i-1}-\mu_{j-1}) & \text{if } j = 1, \ldots, n \\ f_{i-1}(\nu_{i-1}) & \text{if } j = n+1. \end{cases}
\]

for any \(\nu \leq \mu\). If, in addition, \((f_n)\) has roots in \(\nu\), then

\[
(A.17) \quad f_n(\mu_n) = (-1)^n \det(q_{i+1-j}(\nu_{i-\mu_{j-1}}))_{i,j=1,...,n}.
\]
References

A Kolmogorov-Smirnov statistic with the weight factor $F(x)(1-F(x))$ is called "variance-weighted". We give tables of the exact significance points for various one and two sample cases.