AD-A101 95¢ ROCHESTER UNIV NY DEPT OF COMPUTER SCIENCE F/6 9/2

PERFORMANCE EVALUATION OF COMMUNICATING PROCESSES. (U}
MAY 80 I GERTNER NO0014=78=-C=0164
UNCLASSIFIED TR=76 NI
[

N
I -
I I A
I T
EEEEEE
T T
|
T
I T T
T
I I
T T T8

N

TR e Ty

ADA101954

£
2
4,%,

NARIN, T E Al

- C

T ™ 5 ELECTE
= JuL 24 1981,
1,5 & -

Department of Computer Science
University of Rochester
Rochester, New York 14627

DISTRIBUTION STATEMENT &

vrmerenes | 81 6 15 168

DTIC]

D

et

w -

A

’e .-o::-f

PERFAOBMANCE ZTALUATION
of COMMUNIZATING PRCCISSES,

TR74
~ .
|7 May . %080 |

Ilya Gertner!
Computer Science Dervar*ment:
Uﬁiversi*y of Rochester
Rochester, Yew Tork-

ja? Tyt S ~
Submitted in Partial Tl Iills
of the
Requiremen=s Zor %tas Degrse
" DCCTOR OF PEILOSH?EY
~ - . - P d -

The work repor+ed in this *thesis was partially

G;an§E§QOO1A-jg-c-o154tL,w

|-
‘-

Accéssion For
NTIS GRA&I
DTIC TAB -
Unannounced 0
Justification _
[]
BiiiaillébiLJS:;Sﬁdd
| Distribution/ o L
Availability Codes e .—_
[Avail and/or DISTRIEUTION STATEMLNT A
[< — D L e L L T L e
pist speclal . Approved for public release;
H D.tribution Unlimi}:ad B
J

- nep f} TR TR RN
20 Bl s i RE v . ey W S N iy

Page ii
Zurriculum Vitae
Ilya Gertner was born in Kaunas, Lithuania, U.S.9.R. on
April 20, 1950C. He attended Polytechnical Institute of

Kaunas but received his B.S. in 1973 from Technion, Israel.
After serving in the Israeli army, he continued in graduate
school at Technion, receiving his M.S.

He entered the University of Rochester in the fall of 1975k,
At the Computer Science Department he has been involved in
the development of RIG. His interests include running,
bicycling, skiing and chess.

]

Acknowledgments

The zuthor would like to express his apprecia*ion to his
advisor Paul Rovner and members of his Ph.D committee:
Professors Jerome Feldman and James Low. Each of +*the
committee members contributed in a significant way to the
dissertation.

Appreciation 2lso goes to Rose Peet “for +translating my
"personal dialect" into English.

And, finally, to 2all students who vparticipated in the
development of RIG, without which this thesis would be
impossible.

s
H
i

Page iv
ABSTRACT

Sy

Understanding the behavior of communicating processes is
essential to the evaluation of distributed operating
systems. This dissertation focuses on performance analysis
of existing distributed systems using finite state machine
models of computation. The performance evaluator describes
a finite state machine that represents a particular
abstraction, the system of interest. Different finite state
machines may be formulated and applied +to the same
measurement data to extract different kinds of information.
To test the ideas in the environment of our local network, I
have implemented a performance-monitoring system *that was
used to 2analyze RIG, 2 message-based distributed operating
system. This required =2 language for describ.ng Ffinite
state machines using symbolic references to RIG ovrocesses,
messages and 2 hierarchy of finite state machinres.
Elementary finite state machines describe the hehavior of a
single process representing a sequential program. Composite
finite state machines describe a group of communicating
processes representing a parallel program. The hehavior of
a sequential program is characterized by 2 *o*al ordering of
events; +the behavior of 3 parallel program is characterized
by 2 partial ordering. Representing all +the vpossible
orderings of events in *he composite model is an in*ractable
task. In our experience with RIG, such 2 composite model
includes a great many paths which almost never occur. The
challenge, therefore, is %o find those pa*ths %hat cccur
often in the execution of the system 2nd are of significant
juration.s _Tc aid the performance evaluator in Adescribing
these paths, I introduce three new kinds of +transitions:
the first characterizes a long sequence of messages; the
second describes the overall system state as a vector of

process states; the third describes a limited number of
messages in a stream. This is a novel 1idea in describing
composite models of computation. Although we analyze

examples only from the RIG system, many ideas can be applied
to other programs that are characterized by sequential
behavior at some level of abstraction.

T e m il Tehe e AN

0t Mgy « s e o1

¥

Page v

CONTENTS
1. QOverview and Outline . . « « ¢« v v v v v v v o o« o W1

1.1 Introduction
1.2 Related research
1.3 Outline of the dissertation

2. The environment of RIG. . . . « « ¢« v « « v « « . 11

Introduction
Overview
Implementation of messages

3.1 Interrupt messages
.3.2 Flow control
3.3 Network Communication

2.4 Communication Styles
2.5 Summary

3. Performance Measurements of Message Traces.21

Introduction

An example of 2 distributed graphics application ﬁ
Message traces

Introduction

Time intervals of a message

Statistics of messages]
tatistics of a sequence of messages

Time intervals of parallel processes
Summary

WA WY GEW
OWI N o —

. e

>~ ANAN WA WA W —

A Language for Describing Finite State Machines
4.1 Motivation

4.2 Elementary Finite States Machines

4.3 Composite models for pipelined computations

Summary

4. EXampPleS. ¢« v ¢ o e e e a6 e e e e e e e e .. W42

Introduction
Large scale computations

Introduction

Message trace

Reading a tlock of data
Reading a file
Initializing a terminal
Results

NN H~AN -

N PO NI N

Page vi

. 4.3 Pipelined compuuatlons
4.3.1 Introduction
4.3.2 Writing a block of data
4.3.3 Composite model for two messages in nrogress
4.3.4 Composite model for two users
4.3.5 Results

4.4 Summary

5. Implementation A

Introduction
User interface -
Statistics gathering

Interpretation of finite state machines

(SRR, RO RN, |
. . . . -
A =

Summary

5. OCther uses of finite state machines72
£.1 Introduction b
6.2 Reliable communications protocol

6.2.1 Introduction

6.2.2 Elementary models of sender and receiver

6.2.3 Composite model for sender-receiver

6.2.4 Results
6.3 Optimization of high-level protocols

5.3.1 Motivation

6.%.2 An example of PDP-10 Telnet protocol

6.4 Summary
Te Conclusions . .« v v v v v i v 4 e 4 e e e e e W.07%

7.1 Results

7.2 Disadvantages

7.3 Understanding Concurrency
7.4 Future Work

Bibliography . . . « « ¢ v ¢ ¢ v v v v i i v e e . e.0R
Appendix A: Create a process . . . + .+ + + + + + . J10%
Appendix B: BNP definition of a model.107

Appendix C: List of user commands.100

Page vii

List of TPigures
Figure 1. Environment of RIG + . . 1%
Figure 2. Handling of Devices. . . .« 1A
Figure 3. Network Interprocess Communication 1%
s Figure 4. Example of Distributed Graphics. 22
: Figure 5. Message Trace . . « « « v o o « o o « « o 2%
Pigure 6. Event Time Stamps « 27
) Figure 7. Time Intervals of a Message. e e e e e .. 27
‘ Figure 8. Activity Graphics . . . e e e s .« . 30
Pigure 9. Elementary FSM Llnkprocess e e e e e e .. 34
.. Figure 10. Composite FSM Graphics 35
~. Figure 11. INDEX Transition in a Streanm of “essages . 37
. Pigure 12. PREDICATE Transition in Composite Model. . 37
'< Pigure 13. User Windows « . « . +, %0
Figure 14. F3M, Read Block . R
Figure 15. FSM, Read Block, Simplified lomposite. . . 51
Figure 16. PSM, Read File + + + +« + « « « . . 5%
Pigure 17. ¥SM, Initialize Virtual Terminal §A
FPigure 18. erte Block e e e ... A
Figure 10, ¥3M, Write Block Two nessagos in progress .A4
Pigure 20, PSM Program, Write Block. AR
Figure 21. FSM, Write Block Two Tsers. AR
Pigure 22. Tmolemen ation. . . c e e 4 .« . 7B

Figure 23. FSM, Communications DT‘o ocol
Sender and Receiver . . . B X
Pigure 24. Composite F3M, Sender- ?ecelvnr e e e .. R4

Pigure 25.

¥3M for the Retransmission Loop =28

|

Page 1
1. Overview and Outline

1.1 Introduction

Measuring the performance of communicating ovrocesses is
difficult due to the partial ordering of events. I
introduce a total ordering of events in the context of a
finite state machine model. Different finite state machines
may be formulated and applied to the same data to extract
different kinds of information. The basic assumption used
throughout the dissertaticn is that even pvarallel oprograms
are characterized by sequential behavior a4 some level of
abstraction. The major concern is +the development of
programming tools and a methodology <for vperformance
monitoring of distributed systems.

This dissertation was primarily mo*tivated by +the author's
experience in tuning the RIG system (Rochester's Intelligent
Gateway for the 1local network 2t +the Computer <cience
Department) [Ball, Burke, Gertner, Lantz, and Rashid, 107a]l,
RIG is 2 message-based distributed operating system intended
to serve as an intermediary between the numan user and 2
variety of computing facilities on %the local network. The
work reported herein 1is 2 child of this envircnment: The
performance monitoring system ("the monitor") runs on 2
stand-alone minicomputer wused %o collect statistics of the
distributed operating system. Messages are *the basic events
being measured (if a higher resolution 1is required, =2
process must be modified to send 2 pseudo-message). Tinite
state machines are used by the monitor *to selec* events of
interest and to present results to a performance evalua*or.
Events of interest are those messages +that trigger
state~transitions in a <finite state machine model. The
performance evalua*tor is a2 person using programming *ools in
an attempt to understand +the vperformance o¢f a running
system. The gquality of RIGC has improved substantially due
to the implementation and use of the monitor. More to the
point, the suitability of the mechanisms and underlving
principles of the performance monitoring system was tested
by real measurements on a real system.

There are three general purposes of performance evaluation:
selection evaluation, verformance projection, and
verformance monitoring [Lucas 71]. Selection evaluation
uses performance as the major criterion in the decision *o
obtain a particular system from a vendor. Performance
projection 1is oriented toward designing a new syvstem. The
goal in performance projection is to estimate the
performance of a system that does not yet exist.
Performance monitoring provides data on the actu=l
performance of an existing system. It is generally used to
locate a Dbottleneck 1limiting performance when either
reconfiguring the existing hardware or improving the
execution of software. There are two types of performance

5

o ot

AT,

o o

X 3
TVeTA

o - ot

Page 2

monitoring: sampling and event tracing. Sampling monitors
initiate data collection activities when 2 real time clock
signals the =end of 2an interval. The interval or sampling

pericd is usually constant. The time overhead of sampling
monitors is minimal a2nd fixed.

Event tracing monitors usually obtain more detailed
information about system operation over a2 shorter period of
time. A%t the occurrence of a prescribed event, the control
of the computer operating system 1is passed to the event
tracing monitor. The events are collected and recorded for
subsequent analysis. T™wo major problems of event tracing
monitors are: 1) accumulation of wvast dgta in 2 short
period of +time and 2) significant overhead in the sys+tem
caused by the data collection. Both vproblems were avoided

in the RIG systenm. Hence, event tracing proved o he
valuable and practical for measuring rerformance. Ty ant
tracing was useful hoth for system debugging 2ni nerforaance
analysis. In the case of a software error, *he even% “race
helped *o understand conditions wunder which +*he error
occurread in the syst (A similar exverience H%§ also heen

reported with other ooar ting systems [Lausen 75

There is a wide range in the ©possible 1lsavels of rrogranm

abstractio far the purvose of vrcociducing event *races. One
extrenme 43 measuring exscution of every instruction; the
opposite extreme is measuring *the entire program as a singla
operation. Pe ther of two extremes is 2 usaful
~haranuerwzaf1 9f +the program's behavior. To find +he

ght level of abstraction is a very difficult vproblem; in
uhe case of multi-process systems in which 9vrocesses
comrunicate via messages, *he natural choice 1is . measuring
messages. In RIG, messages a2re nhigher-level cons“ructs *han
procedures {nandling =2 message r=quires several rrocedurs
calls and possibly sending or receiving 2dditional messages’
but are moeore detailed <“han user-level ac*tivities 1live
entering a line to the %ext editor (entering a line %2 *he
text editor requires four —cprocesses %0 exchange five

messages) .

I define the execution of a process as a sequence of even*s
where an event is reception of 2 message or =2 change in a
stase explicitly declared by the process. Every event
carries several time stamps that are used to compute various
intervals of interest to the user. Analysis of the message
trace is difficult due %o the 1large =2mount o° 4a+a an-
arbitrary ordering of messages. Although statis*ical Ada*s
reduction tnchnlquos help to gather a profile on *he use

the =zystem [Zucas 711, or to _estimate parameters £
jueueing network modeis [Rose 78], analysis of RIG has n
benefitted from the statistics of a particular message. 7
main 4difficulsy is a 1lack of +he context or conceptual
framework within which to evaluate those statistics. Nther
systems vprovide general opurpose Adata reduction packages
suiting various users ([MacDougall 78] and McDaniel 777V,

S0 00
N IR

<D

1 i n -« v, it YRy e et v M T VNGNS . L AT W om et e ae

I L et R g

Page %

In this Adissertation I introduce 2 conceptual “ramework
based upon a finite state machine mcdel of ccmpuitation.

\

In RIG, the verformance evaluator anaWVZas 2 message *race
in two steps. First, he measures the system a* macro l= el
for example, it takes about 2 seconds for .the system *o
respond to 2 user entering a new line in a file. Second, he
searches for a set of measurements that give him an
objective view consistent with the previous evaluation of
the system. One possible explanation is the following: 1
second was spent in handling requests of other users, 1/2
second in handling the user's *erminal keyboard and screen,
and 1/2 second in communicating with the file system. The
performance evaluator might choose to obtain more detailed
measurements on the way in which characters are displayed on
the screen. A formal definition of an ahs*tract model
describing those events of in*terest 2nd 2n automatic svsten
to gnalyze raw statistics in lignt ¢f +*the model would te
great assets to the performance L

-a

23
+

’__J
g ow
W

have been
eters of

rats

aring.
*his

Sys+tem measursments i
used before for th
simulation models 11
TDe erson 77] bu

(Slmula*lon models
dissertation; the 1
future work in %his 4i
to describing highly
e
m

3

e

O S WO 0Dty i o
ot 3

IENe)

s QY

d"

-
= e 3
D3 U

“+ O
0 n v
{D 4

W33 O 0k ® S g @
3
m)
0 ¢
h
@®
"3
[N
ro
oS3 wsa
[OINAVES]

o

i3 -

om D ;P

O(Dm
o3
ct 1

o R R
3

8 rg

O
O OV o

3 ‘g ® 3
W D W D

=

D

3 W
=
jol
WL v (D

m o
0]
y4e
o’
—

O
13
ol
-
ot
@® ¢
Jo T Y

= 0

T
[]
3
s b

<
—
e

O
jo BNVl
O 10
& SIS

& I

to understand for
ith +the real s
the s*tatigtics
vpartially orider

"3
<,
23
]

¢

GO O W0
b4 3
<N

n
[
WD th? N

NS AR

[N

e
9]

o
PRl OF CFL

<

[

=03y vy ot
P (D

o B IRE Y e Pt
[V I0)]

w

N

4 il I
0
"3

(D
L
&1
)=
2]
0]

)
L)

D v
4
h D B

Q)Y oy
1))

[T TN

tig g O e

i

3
g
<

Related research in 2
correctness of oommunL:at-ng
foramalism far *He Qna ysis of me
is based upon finite state machin ol
771, and [Wes% 78]). Similar formalism
“o performance analysis of comnunicating or
main advan®tage in using finite state machines is i
due to the +total ordering of events in the context
nodel; +the major prob7em— the large number of =+afes in the
composite models- is dealt with in this dissertation.

ar g
o+ 3
txd 3
[e O]
N0 0
]
)

D

o+

D ;3

.
Ll VIR R Y

«
g
D
,1)
i]
D
o
)]
O
s
po
O D
[RINS)]

D D -
om0
V]

v

0n'g

t
s |
P o ¢
w S
3 D
3 0 .5
i3 e

3D W 0
D b 3

ct D .
oo]
30 I 30

2

=

o
'3 F4 W

[§)]
o3 1)

c

NN

e
sse
sin
a

Describing accura*e models of computation is an ar+4. Many
experiments, 2s well as 4eep understanding of the sys+tenm,
are required to debug *the model of a computation. To

support those experiments in *he context of RIG, I have
implemented and wused a language that Aescribes various
finite state machines for RIG. This language uses symnbolic
references to RIS processes, messages, and to 2 hierarchy of

finite sta*e mnachines. Tlementary finite state machines
describe the behavior of 2 single ©process representing a
sequential progran. Composite finite state machines

describe a group of communicating pnrocesses representineg =

Wi D, B

Pqge 24

(o]
u
\D

w3
-3
(&)

(30}
"3
n
3

o1
b
t @
(9]
]
-
Vs
3
X
L)

The main ifficulty
cemmunicating processs
{ vector ot process
¥, state-transitions. ™
correctness of communi:
possible system states
probability [Sunshine 7
analyzes the verformance
, only a small subset of
execution 2f the sys*tem
) These states represent the u
Al systen. In RIG. the num
' reached duri Sion of
R changing ons, *4h

U) jas
=]
g

D

o

O

Ju

-

-

Q]

D
W0 3
[l Bl §
‘g O

(J) H

<3

0w v

ot

D

i3

41

o

V)

3
[T

Ur e+

0N o O w
t g

® O 3O
8

u.)‘
AV
3w

o]
ieq1 er ﬂho veri?
oCcesses nuc* examine =2
se that occur with =2 v

verformance evaluator who
munica*ing processes examines
that occur often in the
are ¢f significant duratisn.
lew 2% computations in the
ates which are z2c%tuallzr
very small., 'Infder
through

L_J< <t
Ul G e D oo
=
g g

DD
O 13 5

ot
B

1L
W 0

[Ts BRS¢}

Y

d‘O‘U)
[BRVV IS SNt IO REe BN ()

V]

ot
ot
3 ¢

P
n n
(0]

40 e
R e BRI B)]
s

[42]

¥
b
3

WL‘J”S
v

14+ (D
3

o S I

D ot LuD
(D el

PRCTNY

2
5
o+

F3 N g

2
new se
A

R Y]
WOt U OB

ot
Ay}
.
b
)
S
~
'y oot)
b
i3
\D
e
V3
W 3 D
=

N SRY

. [0}
D wYg w o<
0
(e]

et

Gy () (bt

W
m oty
<
b o O

L5 TS BN{ Y
3.3

oy
3 D

YA

Dy ko
[S 207
13

BN
03O

b
'
1
3
0

NI B O S AR IS
+
3
D
193]

thovn 0 W
=
()

[N}
¢
=
SN
s 03
"3
W
3 @
11y
QL

’
’

Wy
P2
U
<D
3
"3
.
Rl
v

e IS AN

S

i3 1 3

t

t .+
e

! v
(SR = B IS B I PR)

Wt

=
@D

s
5
Y (b

O b
Y U
)

m W

v

3

SIS

W 0 0
) b
1]

NE RN

3

¢

'
T3

(Wit]
[N
+ W
)
3
'
<y
,\) rh O
o3 3
Fi3 o
- g
[IENETR NN ORI N |
PP IS WP 1
Uy
'ho
o 15
-y

.3
SN R

3 r4p

tte3 b M
w .
~3
sl
EONCINS IS
Vo

3
3 D

ot |

TS IR

‘
&

D 3 K 3 D ke
0

VIS 2Rt

WD Oy O W

W o ot

30

sz :onmun"
I in a s3ty?

03 e
o O

Q 0
PO o
<L

bae

e BT
O
QN

-~
-

D Dy e
3 t3 t3rgg D @ "y s

3T ap

U3 Ur t— 0 1t

(

[

4

[
W3 2

V)
Yo%)
Q

*3

Q

)

e BRI
dD ke

=223

v
12

CTND b b
R

[{]

(D
W
4]
{

banrey o
L) 3 L
® 03> wwo

(I)
) BE ey ()]

oy
A

Q
[§)]

e
[T
=~
30

AV I

D A+ W b b+ D

. b
(O]
30

I ISy
< s
H oy
O O WD
+ O i
O 0
o OIS
[I
N
S T

I |

[P INOERE BN
WSy
t =

2,0 8 &
o

"3 O
3

‘D
-0
RS]

3

ot ot
S

PO
30D vy L u N 0 R DD

W 0)

<t O
bh e

b O

<t
ot
¢

'

ba
(@]
WL
wt
-

51
14D Ja o

S

S o'W
3
33
rhO D W
[*]
ol

GO 0 10O

(&)
D
3 ot D b b2

1O 3
3

Ny O O
b S
ot
U i3

O O O thy DD D
£

oo

(o]

+ ot

b

830

3

Oy =3 2

@ O
D ct
3" D

1
o
S
[T I g

Ty ey

s

D r- 3
@ 3
O
3
o]
3

and
n
with +those
system, synchronization 2
processes wailting for loc&s ass0
2orresponding data structurses. In th
message is mar¥ed with three *iﬁn S
sender has queued the message
has accerpt he message; f?\

DO ® W DO
[4¢]

[Salie Bie IO RNILI6 REORN IS
JQ = Jq 1
:3

[=a]

@D ® @ w "3 D

a2 IO - R W
(D W 0

ot 3 (D .

S O]

(D
2 (D

OO0
[oN
+
4 (D
o
O

|

3 O

m o0
[4) 24)
D) e

]

[0)]
[Ye]
fws

W
)

O

O m

19)
W

d LT A T, 6
WIJ ¢
o

L 4
.

o
), 73

e
3
v}
b 1

% 4

DO W

e ~dn. .
Dee O
~ e o
314D
3
. 31
roo

~
1))
e
-

o< .
3585 DO 30

L 14

[¢

Q

3

(6]

r_l

D

o+

0]

» L
o

[/}

D D D 3 35D

(6]
0 .+ u

performance evaluator. Likewise, +th

0]
0

sufficient for 2 procedure-hased sys*tenm: ’1\ the
process has accessed a lock guardiing 2 shared resource; (2
“he time the process has obtained control of the lock; (=
the *ime the process releases the lock. Analogous interval
2an then be compted for each procedure call.

¢

Y
A

;.

’1
»
P

%

Page §

Modeling and analysis of complex systems which exhibit
concurrent Ybehavior requires various automated (computer
aided) tools. Computer aided design which is based on the
develovment of machine ©processable models and the use of
computer tools to evaluate those models have shown promise
[Estrin et al., 79]. T™is dissertation applies similar
models for the performance z2nalysis of existing distrihuted
systenms. FPuture systems will be designed, implemented and
documented using formal models of computation. The same
models (or simplified) can *hen be applied for performance
analysis of these systaems.

™ S

-

bt 27 RS

U

LR X

I o A

Po WO
sa

TR T T LRI

1.2 Related Research

This dissertation relates %to three areas: ‘1Y performance
monitoring of operating systems since the examples of
communicating vrocesses are taken from the real operating
system; (2 design and verification of correctness of
communicating processes because finite state machines thave
been used to verify the correctness of communication

protocols; {3) message-based computing because the
potential application of the methods developed 1in this
dissertation depends upon the future use of the

message-passing discipline.

Performance monitoring of running programs proceeds in +wo
phases [Lucas 71]: First, an exscution trace that contains
events of interest is generated; second, various statistics
are calculated from +the trace to provide the user with an
insight about the program's behavior. This methodology was
applied to the z2nalysis of page referances in ALGOL programs
[Batson 75]. The novel feature was +the high-level of a
program's instrumentation Zfor the purpose of statistics
gathering. We should not expect the vrogrammer %o debug and
optimize the performance of nis program through the use of
menory dumvs, loader maps, machine addresses and similar

diagnostic tools. Rather, ocur new systems should %be
engineered as complete high-level language machines in wnhich
2ll diagnostic information 15 9opresented in *erms of the

symbolic source language as written by +*he programnmer
These princivles are used in this disser*tation by dav=lopi

2 high-level language 1interface for the vperforman
evaluator who uses a similar language and the same symbo
both for programming and performance analysis.

> 3

<

N

m D jg .

o]

Zarlier work on the analysis of trace data 2lso used 2 graph

nodel of *the system. Some graphs were Aefined using *he
source code of a program at *the level »f 4a machine
. . [

instruction [Joward and Alexander, 721, To reduce the

complexity of graphs, the authors introduced a hierarchy of
rapns and considered only 2 limited set of instructions
%check points within %the program). The correct selection of
check points (which is very d4ifficult and is not automated)
was vital to the successful construction of +those agraph
models. Otner graphs were produced using a trace of *he
program execution produced by a probe in the operatine
system itself lAnderson 76]. The system recorded a trace of
events a* the job level, e.g. starting an input operation,
running the job, or waiting for the completion of a swap
operation. Here, automatic construction of graprh models
worked Ybvetter due to the linear structure of graphs; user
intervention was still required to eliminate paths in +he
graph mnodel that occurred very seldom. These paths did rot
contribute to better models but significantly complicateq
it. In this dissertation, I use graph models of
computations but make no attempt to automate consiruction of
the graphs (although I develop =2 high-level language *o

LT W

Lieay

S

i d

e

Page 7

describe those graphs).

Many systems surport very general data reduction packages.
Most computer manufacturers provide a General Program Trace
Facility. The trace facility combined with a high-level
language describing events of interest was found extremely
useful for the analysis of existing systems [MacDougall 78]J.
Yet another degree of flexibility in collection and analysis
of measurements was achieved for a personal computsr system
connected to a local network [McDaniel 77]1. Data collection
and analysis is performed on different machines a%t 4ifferent
times thereby reducing the 1impact of measurements on the
running programs. [use a similar architecture with +the
performance monitoring system running on a separate computer
to collect statistics of other computers connected +o =2
local network. .

AT AT V. TRy

In summary, data collection and analyzis is s%ill an art:
There are no rules for the choice of the "right" level of
abstraction for the purrose of measurements; similarly,
there are no rules for what to do with *he data. As =
result, some systems support very general data collection
and reduction programs that postopone the burden 2f decisions

to the system's users {for example, [MacDougall ~21 and

[McDaniel 77]). Fortunately, in the case 0f mul*ti-process
systems in which processes communicats via messages, we have
much better intuitions on how %0 characterize the behavior.
Dealing with message traces is a natural choice ‘ar- such
systens. Data collection is easy because *here is a small
number 0f central system routines *“ha% surport in*erprocess
communication. Data analysis is better understocd because

s3ag far desian
and verification o¢f correctness of comnunicasing processes
(b%strin et al., 78], TRocuman 7271, P2ldman 771 and [Wes*
781).

There is 2 long thistory of <he use of s%a*e-transition
models for the analysis of concurrent processes. Dijkstra
introduced state variables to synchronize sequential
communicating processes [Dijkstra 1966]. A state variable
is an additional programming concept (2 new type variable)
which is used solely for the purpose ¢f synchronization. In
addition, Dijks*tra advoca*ted the design of programs %o te
guided by the use of these s%a%e variables. ¥ saii,

"In my experience, one starts wi*th a rough pic*ure
of both prograns =and state wvariables, then he
starts to enumerate different states and finally
tries to build the programs”.

Feldman used the astate notion to develop a mathematical
formalism for verifying the correctness of communicating
processes [Feldman 77). He noted,

Page R

"We can only verify (and understand) systems +hat !
have some stable state transitions of a*t lsaast a ;
subset of the modules". . |

I

To describe a model for a group of processes, the
performance evaluator searches for a small number of system
states (defined to be a vector of process states) that occur
often in execution of the system and are of significant
duration. This is achieved by either enumerating all state i
variables as suggested by Dijkstra, or searching for the |
system stable state-transitions as described by Feldman.

The related efforts listed above considered only the design
specifications of communicating processes; no attempt has
been made to analyze the performance of existing systems
using a finite state machine model of computation. The -
related efforts listed below deal with state-transitions
semantics that are wused for the analysis of message-based
computing. A notable example is SARA, 2 simulation systenm
used for the design 2and analysis of multiprocess systems

[Estrin et 21., 78], In SARA the analysis 0of control
structures is performed with UCLA graphs {which are
equivalent to DPetri nets and are wused to verify the
correctness of control structures of “the system'. A system

that is designed with SARA can be described with a finite
state machine obtained from the UCLA graphs.

Message~based models have been used for simulation of
existing systems [Chany 2% al., 79]. The authors analyzed =2
multi-process system in which ©processes comnunicate vie
shared nemory and replaced interprocess communicasion
instances with messages. The result was a very accurate
simulation model. In addition, they developed]
mathematical fcrmalism for describing a vprocess as a

function of 1ifts variables and incoming messages. In *his
disssrtation, a process is a finite state machine where
states abstract the content of local variables.

The growing interest in message-passing suggests that many
future systems will be implemented or at least designed
using this discipline. Further, the developed techniques of
using finite state models for the performance analysis of
operating systems will be applied %0 a wider range of
systems.

A

¥

,h‘

Page O

1.3 Outline of the Dissertation

Chapter Two describes the environment o0f communicating
processes in RIG where the experiments are conducted (the
experiments are described in Chapter Four). RIG can bhe
thought of as a model of distributed computation, processes
communicate only by messages and there is no shared data.
The implementation and use of messages in RIG are described
in detail to help the reader understand the experiments.

Chapter Three describes a formalism for +the performance
analysis of communicating processes. PFirst, I define the
basic properties of a2 message trace and the time intervals
associated with each message. WNext, I introduce a finite
state machine model of computation. The time intervals that
are used to characterize a message are then extended to
characterize an event that is defined by a s*tate-transition
in the finite state machine model. The finite state
machines are encoded in a language that uses symbolic
references to the RIG processes, messages and a hierarchy of
finite state machines. :

Elementary Zinite state machines describe the behavior of =a
single 9process; composite finite state machines describe a
group ¢f processes. To reduce *the number of states in +the
composite medael, I use new Xinds of transitions allowing one
to describe 2 small subset of system states. The chapter
uses a plified example of a distributed graphics

application to illustrate the formalism.

Chapter Four contains examples of finite s*tate machines
modeling computations in RIG. Different fini% state
machines are formulated and applied to the same measurement
data *o extract different kinds of information. Jne finite
state machine express better the overlap between execution
of parallel processes; another finite state machine axpress

better the system overhead. On the basis of the
information, the performance evaluator +then points out
various bo*ttlenecks in the system. The chapter presents

results which 1indicate the value of finite state machines
for the performance analysis of communicating processes.
Informally, on the basis of examples, I suggest a
methodology for describing finite state machine models of
computations. The presentation 1is based on two examples:
large scale computations of many processes communica%ting in
full hand-shake and pipelined computations of a few
processes streaming messages in one direction.

Chapter Five describes the implementation of a performance
mohitoring system for RIG.

Chapter Six demonstrates how <finite state machines are
applied to entirely different areas: validation of reliable
transmission protocols and optimized implementation of

Page 10

high-level protocols. Tese +two examples further supvort
the position that finite s*ate machines are valuable models
for designing, implementing and performance analysis of
communicating processes.

Chapter Seven concludes the thesis. It summarizes the
experience of applying a finite state machine model to the
problem of evaluating the performance of systems composed of
communicating processes. Both practical results and general
principles are reviewed. Contributions to the general area
of understanding 0of communicating processes are also
discussed.

The appendix contains a description of +the finite state
machines and a display of the time intervals in the form
that is =actually used by *“he performance monitoring systenm
for the analysis of RIG. The example described in Section
4.1 (the initialization of a terminal in RIG) 1is opresented
in detail.

oA

v
S

&

e -~

DS

Page 11

2. The Environment cof RIG
2.1. Introduction

This chapter describes the RIG system for which +he performance
monitoring system 1is 1implemented and used to test the ideas
described in this dissertation. To understand better the kind of
computations considered, we describe the implementation and use
of the message style of communication in RIG. By comparing RIG
with other operating systems, we suggest that message-passing is
a useful strategy both for +the design and implementation of
operating systems. The wuse of finite state machines for the
performance analysis of this kind of computation is described in
the next chapter.

This chapter has four major sections: Section 2.2 gives an
overview of the RIG system and its hardware configuration.
Section 2.3 describes the implementation of messages. Interrupt

messages, flow control and network communications are describved
in detail. Section 2.4 describes the use of the message style in
RIG. Finally, Section 2.5 compares RIG with other systems with
emphasis on the fundamental oproperties of +the nmessage-passing
discipline.

2.2 Overview

The first version of the RIG system was up and running in early
1976 TRall % al., 761. RIZ was buil® %o serve as an
intermediary Yetween the human user (working through a disvlay
terminal or personal computer) and =2 variety of large computer
systems. The bulk of the user's computational requirements, such
as user program execution and special services, is met by these
large systems, which are partially :integrated in%to the RIZ systen
through a fast 1local network. RIG provides a user with basic
services such as oprinting, plotting, 1local file storage,
text-editing, and virtual terminal facility [Lantz and Rashid,

1979].

The following computing facilities are connected +o the 1local

network: four personal computers (Xerox Altos), two service
machines (Data General Eclipses), and two +time-sharing systems
(DEC-10 and VAX). The minicomputers and the VAX are connected
via a 3 MHz broadcast network (Etherlet). The DEC-10

comnunicates over a 50 KHz synchronous line to one of the +*wo

This chapter is based on the paper "Perspective on Message-based
Distributed Computing" by myself and other members of the RIG

group Ball et al., 69] and on the internal document "RIG Svstenm
Xernel™ [Gertner 79c].

Sar @l g ol

A

Eclipse
1].

S.

The RIG system runs on the Eclipse

i v [-y WY s — RN [A 3 T BT RN

computers

Page 12

+

e

ETHERNET

Figure 1:

ALTO
ALTO-PERSONAL COMPUTER,
64 K
RIG -MESSAGE-BASED
ALTO OPERATING SYSTEMN
ETHERNET-3MHZ BROADCAST
HETHORK
ALTO
ALTO
R
RIG
D. & PDP-10
ECLIPSE
50 KB ,
SYHCHRONOUS LIRE
RI1G
D. 6.
ECLIPSE

Environment of RIG

e,

Page 14

Logically, RIG can be thought of as a collection o*f
independent processes running on vwvarious computers and
cooperating via messages. Fach RIG machine has its own
kernel which provides the support functions of
message-passing, process scheduling, physical memory
management, and interrupt handling. EBach RIG process
performs a specific set of functions and has 2a distinct
logical address.

Communication between processes takes the form of messages
queued separately by the system kernel for each destination.
A destination in RIG is specified by a process-port pair,
where a port is simply a sub-address within a process.
Ports are used for selective message reception, multiplexing
and flow control. (Section 2.3 discusses the flow control
mechanisms employed in RIG.)

Fach system resource, such 2s %the file system, is man=2ged by
one or more server Dprocesses which are resvonsible for
verforuing resocurce-specific functions and for vproviding a
standard message interface to other RIG processes.

Three aspects of the communication techniques wused in RIG
eliminate the need to know the actual location of services
in the distributed system:

1. all basic services are provided by RIG ovrocesses
through the use of messages (no shared memory):

N

remote processes send and receive messages in the
same way 2as do local processes;

3. inter-process communication can be initiated
symbolically.

The key component of the RIG design was the decision <o
provide a uniform interface to all system services through
the use of messages. The RIG kernel serves only %o provide
the abstractions of process, message, and message Qqueues.
Jther functions, such as file access, terminal
communication, and printing, are provided by RIG processes
and are made available through messages.

Thus, the distinction made in +typical systems Dbetween
operating system services and wuser processes has been
abandoned. Although interprocess communication was well
understood when the initial design for RIG was formulated
(and had been implemented in a number of major operating
systems -- E1f, HyAra, TOPS-10, Tenex, BE700 MCP), such =
total dependence on message-passing was a considerable
deviation from the norm.

Resource 1independence 1s achieved? +through the |use of
standardized server protocols (see Section 2.4). These

-

. ¢ ?"‘4 X

|

B ot

. -

AT

1

n ol B

rw "';t‘f

e —— |
i
!
!
i
Page 15
provide a consistent mechanism for ovening, closing,
reading, and writing entities such as files, virtual
terminals, and line printers. The advantage of

message-passing over abstractions provided by other
operating systems for communication and device independence
(e.g. Unix pipes) lies in the wider range of
synchronization strategies available and the flexibility of
messages to convey control and data information and to
signal exceptions.

The ancestors of RIG are the inter-process communication
facilities of the SAIL programming language (which had been
successfully used in the Stanford Hand-Eye Project [Feldman
and Sproull 1971]) and the work of Walden [Walden 10721,

Several systems provide facilities similar to some of +those
provided by RIG. DEMOS [Raskett, Howard, and Montague
1977], Roscoe [Solomon =2nd Finkel 1978], and Thoth
[Cheriton, et al. 19791 are examples of systems built
entirely on the use of processes communicating via messages.
Other distributed systems 1like DCN [Mills 19741, and MSG
[NSW 1976] perform computations similar to RIG.

2.3 Implementation of Messages
I g

2.3.1 Interrupt Messages
I g

The RIT system nandlas 2ach device with two programs: the
device handling process and device interrupt handler. Both
programs commpunicate via messages. For efficiency

considerations, the actual implementation uses shared memory
to support communications between device handling oprocesses
and interrupt nandlers). The user communicates via messages
with the device handling process.

Consider an example of 2a network 1link handled b the
LinkInterrupt handler and Link process [Figure 2]. = A
process PA sends a message to the Link process which
forwards it to the LinkInterrupt handler. If the device is
idle, the LinkInterrupt handler 1immediately starts the
transmission; otherwise, the "packet" is queued. Uvon
completion of the operation, a hardware interrupt arrives to
the LinkInterrupt handler which forwards the message "done"
to the Link process. The message "done" 1is queued with

priority. In addition, the LinkInterrupt handler receives
the next waiting "packet" and starts the transmission of a
new mnessage. If there are no "packets" waiting then the

device becomes "idle".

?cqo /6

seot1Ad(Q JO SulTpuey :g dan¥iyg

SLdNY¥ILNT A® NIATYC — Y3ITANVH LdNYYILNDT ANIT

$39YSSIW AE NIATYA — $S3I0¥d ANTT

S L
yN171| TdNEgIINT ¥3ITANVH IEREAE
1dN¥UILNI $5390¥d |me——— y g4
ANTT - ANTY SSIW
AN -
i e e 8 e e O AR ey | e el

ol Ngat A

v..
'
»

- AU 3 e o AP AT

R

Page 17

2.3.2 Flow Zontrol

Bvery destination in RIG {process-port pair) uses oprimary and
secondary queues to hold messages in transit. If the destination
is local, the local system kernel does the gqueue management and
flow <control. If the destination 1is remote, the appropriate
network server does the queue management and flow control [(see
Section 2.3.3 on Networking). A primary queue has a2 maximum
message capacity (definable by the process). I€ a message is
placed in a primary gqueue it 1is considered 'posted' and the

‘sender is allowed to continue. If the primary queue is full, the

message is gueued in the secondary queue. ZEffectively secondary
queues have infinite capacity. .

A process can choose one of two options when sending a message.
In the <case of a "dedica*ed send"”, the sending process is kevot
suspended by i*ts kernel until space on the primary inout queue of
the destination Ybecomes available. A "send don'*t wait" is used
in situations where this simple Dbackpressure mechanisn is
unacceptadls. Tor example, processes providing criftical services
cannot 21low themselves %o be suspended walting for another
process to receive a message. In such cases the sending process
can request that %thne system kernel return =2 notice *that the
message cannot bhe sent and, further, that the system notify it
when another message can te sen®.

2.%.3%3 Network Communication

Network communication in RIZ is provided by oprocesses called
netwWwork servers. Tach RIS machine has at least one network
server which handles the flow 0f messages to and from o%ther
machines.

A message sent from a local vrocess PA to a2 vprocess PB on a2
remote host is diverted by its kesrnel to the apvrovriate network
Server process (Figure 31, The local server is responsible “or
routing and reliable transmission to the corresponding network
server on *the remote thost. The remote network server, upon
receipt of 2 message from PA, forwards the message to its finzl
destination, PB. PA and PB remain unaware that the message was
routed through the network servers. To facilitate the routing of
messages 4o its final destination, a process number contains
three fields: =2 host number, a system's incarnation number, and
a local identifier [Feldman et al., 78].

TR

SUOT4BOTUNWEOD 889004dI04UL XJIO0MgON ¢ eand1d

8d S§$S§320¥d IYI07 'V OL QWNV
Jd SS3J0¥d 3LO0W3Y 0L 39YSS3W V SUN3IS Vd $S320¥d

AYVONNOE 3INIHIVY

z791y 91y
_
_ §d JOVSSIH
$$3704d _ $$370Y4d .
Id[J9VSSIN ANTT XNIT ANIT [39VSSIN Vd

o

Q

2.4 Communication Styles

When two processes wish %o communicate theyv are free *o 4o
so in any mutually convenient manner within the constrainte
of the RIG message passing orlm1+1ves In vpractice, we
developed a set of guidelines (unenforced) that made *he
implementation and debugging of the system sasier. We have
found +three fundamental styles of message communication %o
be sufficient:

1. atomic transactions
2. asynchronous messages
3. connections -

For atomic transactions the link betwzen the communizating
processes 1s set up and expires on 2 message-to-messages
basis. Process PA simply composes 2and sends 2 message +o
process PB, without PB naving *tc know anythinz abou* PA.
Depending on the particular request, PA may or may not wait
for an acknowledgment from PB. P2 retains no information
about PA between transactitions. An example of an atomic
trancaction is a request for *the time of day.

Certain 'interrupt' conditions ‘e.g. process dea*h'! are
best handled as asynchrecnous messages not subject %o normal
flow control. Tn RIG, emergency messages vrovide the means
for one process %o alert anotner %to the occurrence of an
exceptional or unusual even®. Emergency messages are jueued
separately and delivered when *“he recipien®t next attemp*s *o
send or receive any message. Delivery is indevendent of any
message flow %tc¢ the receiving process. Once delivered, the
emergency handler ‘a3 stecial procedure within a process) is
invoked, and is resvonsible for processing *he event.

Any prolonged interaction Dbetween +two ©processes le.qg.
reading a file) may make it necessary for each process %o
remember the current state of the interaction (e.z. the
file position). In such cases, the vrocesses can create a
connection by each reserving a2 port for subsequent
interaction. Four standard procedures are conventionally

used for zanipulating connections -- Open, Close, Read, and
Write.

Connections can be one of two types: 1) full hand-shake, or
2) streamed. Full hand-shake 1is, in effect, =2 remote
procedure call White 76]. For example, when editing 2 file
it 1is necessary for the editor and file system to remain in
lock-step; every transaction involving the file mus*t bYe
acknowledged. Full hand-shake has the advantages *hat the
cooperating processes are always synchronized and +tha%t the
initiator of the connection has complete contrcl of the data
flow. The disadvantage is the decrease in performance of
the system.

- f“au,,._w,v“1---u-----HHu---------------------I-I‘,

Page 20

Once a streamed connection has been established, the
originator of data is free tc +transmit to the receiver
without waiting for either an output acknowledgment or an
input request. If the sending process can produce datza
faster than it can be consumed by the receiver, system
defined flow control mechanisms will automatically slow down
the sender (see Section 2.3.2). A typical example of
streaming in RIG is copying files from one machine %o
another.

Streaming can be used in any situation in which a connection
is established and a synchronous response %o input and

> output requests 1s nct necessary. The advantages of
¥ streaming are its low message overhead and the fact that it
o allows pipelining. The major disadvantage is that

exceptional conditions must be signalled asynchronously *o
the flow of data, making harder to write programs and debug.

2.5 Summary

RIG is 2 npulti-process sys*tem in which processes communicate

via messages. Many other systems support =a subset of

similar intervorocess comnmunication facilities. In fach, the
- implementation of some of these systems is similar to RIG.
For example, Thoth [Cheriton et 2l., 72] also uses a fixed
e message header for interprocess communication. (In contrast
‘ o RIG, hnowever, Thoth uses shared buffer pools to
communicate 1large zmounts of data; RIG copies buffers from
one process to another). Relatad systems are characterized
by similar approach to design problems. For example, in the
. N3W system, the Tool Initializa*ion Scenaric is similar +to
- the initialization of +the virtual terminal in RIG !see
Chapter 4).

Communication sityles 1in RIG are characterized by full
hand-shake 2and message-streaming. This dissertation uses
~ finite state machines to describe this kind of computation;
it is less clear, however, that the finite state machine
formalism applies equally well +to other interprocess
communication styles (e.g shared memory models).

The advantages of systems with well-defined intervrocess
communication are well recognized. Several systems (JARA
(Estrin et al., 1979] and DREAM [Riddle et al., 781) have
3 been developed to use 2 message-based operating system as g
y model for the design of any system. Although the actual

implementation of a system may be based on a shared memory
y model, the design is characterized by the message-passing

discipline. In all +those cases, performance analysis of
P communicating processes will become of paramount interest.

T Ty YN G S

X. Performance M2asurements o Message Traces
Z.1 Introduction

This chapter describes =a formalism Zfor +the verformance
analysis of communicating -processes. PFirst, I define *he
basic properties of a message *race and the <+time intervals
associated with each message. WNext, T introduce 2 finite
state machine model of computation. The time intervals that
are used to <characterize a message are then exftended %o
characterize an event that is defined by 2 s*tate-transition
in the finite state machine model. The finite state
machines are encoded in a language that wuses symbolic
references to the RIG processes, messages and a2 hierarchy of
finite state machines.

The chapter has three major sections: 3ection 3.2 describes
in detail the examvle of +the distributed graphics
applicatiocon sed throughout -the chapter. Section 2.z
describes the Dbasic properties of message traces and
introduces =2 foraalism to calculate various time intervals

of interest to the performance evaluator. Sectior %.4
describes the language for defining ¥finite sta®te machine
models of computation; Aprendix 3 containg the 3UF

definition of a model.

This chapter uses =2 simplified example to 1llustra®te the
formalism; *thne next chapter uses real examrles ‘rom the RIZ
system to present results supovorting the vosition that
finite state machines are rractical and valuadl2 models for
the verformance =2nalysis of comnunicating processes.
Chapter 3ix applies *the same finite s*tate machine formalisn
to two entirely differen* areas: validation of *he behavior
of reliable comnunications protocols and efficient
implementation of higher-level protocols. The suitability
of +the new constructs that are develoved for performance
analysis of communicating processe is +thus *ested Dby
applying the new construcis to different areas.

3.2 An Example of a Distributed Graphics Application

Consider an example of a distributed graphics application
[Figure 4]. The PDP-10 (Digital Fquip. Corp., TOPS-1D
system) produces 2 binary representation of a picture and
sends it over the link. The RI5 system receives the data
and displays i% on the graphics device.

Portions of +this chapter are described in the paper
"Performance Evaluation of Communicating Processes" [Gertner
79].

?ou(e i

0! -dad

soTydsay paynqragstq Jo atduexy :y aantyg

N3I3Y¥IS IHL |
NO SKVYQ ONV ONVWWOD JHL S13IYdY3ILNI -SSII0¥d AVIdSIQ

TOYLNOD HOTd ANV NOISSIWSNVYL 374VITIY -SS3II0¥d NI

$§$3204¥d $S3J0%d

AV1dSIaQ

3J)1A3CQ
AVIdSIaQ

[v
ONVHWOD

Page 23

~

Two processes and two devices in RIG are involved in +this
o

computation. The link-handling process vrovides liadble
transmission and flow control between 1local and remote
processes {messages 1, 2, 3, 5). The display-handling

process validates the command and executes it by Arawineg on
the graphics device (messages 4, A). Fach message in the
trace contains three fields: the sender, receiver, and
message identifier. The sender defines the source of the
message; *he receiver defines the destination; the message
identifier defines +the function to bhe executed by *he
receiver upon acceptance of the message.

Two user requests may produce 12 messages on the server
machine running RIG. The messages appear in the order of
their acceptance in this particular example. (Messages 1-6
cccur for the first command; messages 7-12 for the second}.

1) {(LinkIntInput -> LinkProcess, Input)
2) (LinkProcess -> LinkIntOutput, Ack)

3) (LinkProcess -> DisplayProcess, Command)
4) (DisplayProcess ~> Displaylnt, Draw)

) (LinkIntOutput -> LinkProcess, Done)

6) (Displayint -> DisplayProcess, Done)

7)Y (LinkIntInput -> LinkProcess, Input)
8) (Link?Process -> LinkIntCutput, Ack)

9) (LinkProcess -> DisplayProcess, Commani)
10) (DisplayProcess -> DisplayInt, Draw)
11) (LinkIntQutout -> LinxProcess, Done)
12) (DisplayiInt -> DisplayProcess, Done)

Figure 5: Message Trace

The semantics of messages are described below:
1) (LinkIntInput =~> LinkProcess, Input)

The hardware interrupt of the link input device signals +the
arrival of an 1input ©packet. The interrupt handler {<the
process is LinkIntInput) sends the interrupt message (+he
message identifier is Input) to the link handling process
(the process is LinkProcess). Having received the message,
LinkProcess acknowledges the foreign link handling process
(message 2), decodes the message into RIG format and routes
it to the 1local destination- the display handling process
(message 3).

2) (LinkProcess => LinkIntOutput,Ack)

The link handling process sends back an acknowledgment (Ack)

Page 24

to the link output interrupt handler *that s*ar+ted *he outou+
oreration.

3) (LirkProcess -> DisplayProcess, Command)

A message of type Command arrives at the Adisplay handling
process {the process is DisplayProcess) which checks for the
rights of the sender and the validity of the operation, and

then sends the request to the display interrupt handler
(message 4).

4) (DisplayProcess -> DisplayInt,Draw)

The display interrupt handler (the oprocess 1is DisplayInt)

receives the message Draw and immediztely starts the
operation on the graphics device.

5) (LinkIn%Output -> LinkProcess, Dcne)

The hardware interrupt of the 1link output device signals
completion of the 1ink output operation (message 2).
LinkIntOutput sends the message Done to LinkProcess which

receives the message and releases resources associated with
~7t‘
-

6) (DisplayInt -> DisplayProcess,Done)

The hardwars interrupt of the graphics output device signals
completion of +the graphics output operation [message 4).
DisplayInt sends message Done *o DisplayProcess which
receives the message and releases buffers.

This example of distributed graphics is used throughout the
chapter to illustrate the formalism. The *trace of messages
is used to define various tims intervals of interest to the
performance evaluator. Later, +those messages are used *o
define state-transitions in finite state machines modeling
different subsystems of distributed graphies.

3.3 Message Traces
3.3.1 Introduction

This section describes +the ©basic properties of message
traces and a formalism for calculating varicus time
intervals of interest to the performance evaluator. FPirst,

I describe the time intervals associated with every message

To provide a conceptual framework within which to evalla+

these intervals, I introduce the notion of a user activity-
a sequence of messages implementing a given task. Analogous
intervals are +then defined for an activity. The time
intervals of a single message are then expressed in terns of
the activity. To characterize performance of parallel

CoeTew ’T:m

Page 25

processes (that run on different processors), I define new
kinds of time intervals.

2.3.2 Time Intervals of a Message

This section describes the time intervals associafted with
every message. The system kernel produces several time
stamps and statistics related to the use of system resources
[Figure 7]. Independent of the operation of the system, the
performance monitor calculatzas time intervals that are of
interest to the performance evaluator [Figure 71.

Every message carries three time s*tamps: its Dbirth, +*he
time the sender has gqueued the message; *the beginnineg of
execution, the time receiver accepted the message; nd *he

end of the execution, the time receiver completed processing
of the message. In addition, every message carries some
measure of the aystem overhead and the number of swapped
ages. These statistics are used to compuse various
intervals of interest to the performance evaluator. To
convenisntly describe those intervals, I introduce some
notation.

A Precursor Pr{M) of zessage M is 2an occurrence of
the same type of message (which 15 defined by the
same triple) immediately before the occurrence of
M.

The operations of hardware devices are marked with the same
time stamps *that are used %o mark messages flowing between
processes | Figure 7]. Por messages flowing from the
interrupt level, +the Dbirth of *the message marks thes
occurrence of the hardware interrupt. or messages flowing
from a process to the interrupt level of %the system, *he
s*art *time marks +the Dbeginning of the device operation
‘which is controlled by +the interrupt handler) 2and the
finish time marks the completion of the device operation.
Although those time stamps are harder to ob%tain for hardware
devices, there are many advantages in the uniformity of
notation.

r
e
h
n
2

The delay *time is the difference between the time when the
receiver actually accepts the message and the time when the
sender queues +the message TFigure 6]. A higher degree of
multiprogramming causes larger delays. The time interval
between the time when *the sender queues a messages and the
time when the sender has queued another message of that same
type {(the precursor message) characterizes the frequency of
incoming messages. (An alternative is to measure the
interval between completions of the same type of message.
For the purpose of tuning a system for stand-alone
applications, I have found it %o be sufficient +o measure
only the ratio of incoming messages). The execution time is

-
L3

T

AN

the difference between *the time when the receiver

Page 26

completes

processing of 2 message and the time when the receiver has

accepted the message.

R Ay * e SPPRV T S TN ;Y. TR e i

B S x h o

. lt

e .

-

7€ 4"

Birth(M) - time when the message was gjueued
by the sender.

Start/M) - time when the message was accepted
by the receiver.

Finish(M) - time when the receiver completed
processing the message.

Overhead(M) - time that the system spends in
scheduling the receiver accepting
message M.

Swapped(M) - the number of pages that the systenm
reads into main memory.

Figure 6: Zven* Time Stamps

Delay{M) = Start(M) - RBirth(M)

The time that the message spends in
in the input gueue of %the receiver.

Interval{M) = Birth(M) - Birth(Pr(M))
The time interval between the curren*
message and the last occurrence of
the same type of message.

Execution(M)= Finish{(M) - Start(M

The time required by the receiver
to handle that message.

-

Figure 7: Time intervals of a message

B R el =)

Page

+

27

4

T

4 2

Page 2%

%.3.3 Statistics of Messages

To obtain statistics of messages, the performance evaluator
describes +triples of messages using symbolic references to
RIG processes and messages. The same symbols are used both
for programming of communicating processes and for
describing triples of messages that are measured. The
following triple

(LinkIntInput -> LinkProcess, Input)

accumulates statistics for each packet arriving from
LinkIntInput to LinkProcess. The statistics include
accumulated time values and histograms (other statistical
parameters can also be computed). To collect statistics for
a broader class of messages matching the specified vpattern,
I introduce a new construct, ANY. For example, the
following +triple matches all messages arriving at
LinkProcess:

(ANY -> LinkProcess, ANY)

Another example is two triples matching +the opening of
higher level connections in RIG (see Section 2).

(ANY -> ANY, Ope
(ANY -> ANY, Clo

~

n

se)

If 2 higher resolution 1is required, =a process may also

explicitly declare a changz in sta%te by sending a
™

pseudo-message. Por example, LinkPrccess declares 2
validity check of the input message.

‘LinkIntInput~> LinkProcess, Input)
(LinkProcess -> Sys%em, Check)

Obtaining statistics of messages drastically reduce +he
trace data. However, the performance evaluator is still
unable to understand the statisties. The main problem is 1
lack of the conceptual framework within which to evaluate
these statistics. To provide the conceptual framework, I
introduce the notion of a wuser activity- 2 sequence of
messages implementing a given task. (A user transaction is
another common term used in describing activities of a
single user in a time sharing system [Watson 71]). The %ime
intervals of a single message can then be expressed in terms
of the time intervals of the user activities.

2.3.4 Statistics of a Sequence of Messages
There are two purposes for the abstraction of sequences of

messages as a single activity: (1) concise description of
long message traces and (2) establishment of a framework

» » e . PO, o = e e L v o

- -
AT H

PSS

Page 20

within which +to evaluate the +time intervals of a single
message. I define an elementary activity as a sequence of
messages arriving at the same process; a composite activity
is a collection of messages arriving at a group of
processes.

First, I introduce the formalism for <calculating the +time
intervals of an elementary activity. The formalism is also
adequate for describing composite activities composed of
processes that are running on the same processor. In the

case of parallel processors, I extend the formalism with

time intervals that measure the amount of overlapping.

To simplify the formalism here, I consider messages arriving
at such a frequency +that no pipelining occurs: the last
nessage of an activity always occurs before the first
message of the next activity. The performance evaluator
describes an activity as 2 sequence of triples for which
higher-level 1intervals are calculated. Por example, %two
messages arrive at DisplayProcess: Input and Done.

ACTIVITY: Display

{LinkIntInput ->LinkProcess, Input)
(LinkIntOutput ->LinkProcess, Done)

END-ACTIVITY

ntervals of the activity DPisplay 2re defined as a
2 intervals of individual messages.

Delay(Display) = Delay/Ccmmand) + Delay(Done)
Overhead(Display! = Cverhead!Command)+ Overhead(Done)
Swapped{Display' = Swapped(Command) + Swapped(Done)
Interval(Display) = Interval{Command)

The Response time of the activity is the difference DYbetween
the birth +time of the first message and the completion of
execution of the last message: the total +time of the
activity 1is the sum of execution time, system overhead and
delay time.

Response!Display) = Finish(Done) - Birth(Command)

Total(Display) =
Execution{Display)+Cverhead(Display)+Delay(Display)

The activity is the conceptual framework for the sequence of
messages a%t the lower-level. The response time of the
activity measures the system at macro level. The difference
between the measured response time Response(Display) and the

" %A C e ~it, R] VN Y TR ALY AP vi R Rnd

it e v e

w e

L4

' ey

Pagé 30

calculated %total time To*al(Display’) provides a feedback to
the performance evaluator on how well the set of
measurements characterizes the time intervals of the
activity.

Having found the correct set of messages +that explain the
time intervals of an activity, we proceed to evaluate the
lower-level components. For example, if Delay(Display)
constitutes a significant portion of Total(Display) time,
the extensive CPU consumption by other processes 1is the

bottleneck. To reduce the delay +time, we increase the
priorities of processes that are involved in this
computation. In another example, computations of

DisplayProcess 1is the Dbottleneck if Execution(Command)
constitutes a significant portion of Execution(Display).

32.3.5 Time Intervals of Parallel Processes

In the case of parallel processes (which run on separate

processors), we have %o subtract the overlapped time of the
processes’' execution. In the example of distributed
graphics, there are three independent processors: the CPU,
the isplay device contreller and the link device
controller. Tor convenisnce, I repeat here the sequence of
nessages.

ACTIVITY: Graphics

(LinkIntInput ->LinkProcess, Input)
(LinkProcess ~>LinkIntCutput, Ack)
‘LinkProcess ->DisplayProcess, Command)
(DisplayProcess~>DisplayInt,Draw)
(LinkIntOutput ->LinkProcess, Done)
(DisplayInt ->DisplayProcess,Done)

[S2N 1 IR I AN g
e e e

END-ACTIVITY

Figure 8: Activity Graphics

Two messages are nandled in parallel by the CPU and 1link
output device (messages (2) and (3)). The link outoput
handler accepts message Ack and starts the output operation
on the link device. The next message Command is handled by
DisplayProcess that 1is running on CPU. The amount of
overlapping is calculated differently in the following three
cases:

) » . . TR e - + SR L TR S i e

Page 31

1) Overlap = O,
if Start(Command) > Pinish{ Ack)

2) Overlap = Pinish(Ack) - Start(Command),
if Finish(Command) > Finish(Ack)
3) Overlap = Finish(Command) - Start(Command),

if Finish{Command) < Finish(Ack)

Handling of messages is not overlapped in the first case,
where the completion of the message Ack (the time stamp is
Complete(Ack)) occurs before the beginning of the execution ‘
of the message Command (the time stamp is Start(Command)). i
Part of the handling of messages is overlapped in the second ;
case, where message Ack is completed before message Command.
Finally, the handling of messages is overlapped entirely in
the third case, where messags Command completes before
message Ack.

- Having estimated +the total amount of overlapoing, we
calculate *the total execution time by first summing up all
the execution times of 2ll +he messages and subtracting from
the total overlapped time. The remaining difference is the
execution time of the .Lctivity. The following example
presents computations for the activity DistributedGraphics:

Execution(DistributedGraphics) =

+ Execution (LinkIntInput ->LinkProcess, Input)
+ ZExecution {LinkProcess ->DisplayProcess, Command)
+ Execution (IinkIntCutput ->LinkProcess, Done)
+ ZExecution (DisplayiIn* ->DisplayProcess,Done’
+
{ Birth(DisplaylIn+* ->DisplayProcess,Done)

- Complete(DisplayProcess->DisplayInt,Draw)

+ (Birth(LinkIntDutput -> LinkProcess,Done)
- Complete{DisplayInt ->DisplayProcess,Done)

3.3.6 Summary

For every message, I introduced a small set of intervals
characterizing the rocessing time of +the receiver {the
interval is Executionf, characterizing the ratio of incoming
messages (Interval), and characterizing the delay time that
the message spends in the 1input queue of +the receiver
(Delay).

LT

-«

4

O A,

ST

’

-

2T
L

,,.:r
a ¥ o

EE N e
-

Page 32

To obtain statistics of messages, the performance evaluator
described <triples of messages consisting of the sender,
receiver and message identifier. The same symbols were used
both for programming of communicating processes and for
describing finite state machine models of computations.
Although the statistics of messages drastically reduced the
amount of data, they were still difficult to understand for
the performance evaluator. The main problem was a lack of
the conceptual framework within which to evaluate the
statistics.

To provide the conceptual framework, I defined a
higher-level construct, 2a wuser activity representing a
sequence of messages. An elementary activity is a sequence
of messages arriving at the same process; a composite
activity is a collection of messages arriving at a2 grcup of

processes. To measure the amount of overlapping in
composite activities, I 1introduced a new +time interval,
Overlap, that characterizes the amount of overlapping

between parallel processes.

*.4 A Language for Descriving Finite State Machines.

2.4.1 Motivation

So far, we have considered activities having a linear
structure. This limi<ation is clearly unacceptable for
processes sna%t tase their decisions botn on the 1incoming
nmessages and the internal state which is s*ored in local
variables of the process.

Por example, DisplayProcess may send *he message Zrror Dback
to the user instead of forwarding the message Draw %o the
display device. <TIhis occurs in the case where the user
violates +the protocol agreed upon during the initialization
of the user.

(DisplayProcess -> LinkProcess, Error).

In both cases, the behavior of processes has changed due +*to
the internal state of the process. The state chances are
important events for the performance analysis of
communicating processes.

3.4.2 Elementary Finite State Machines

This section uses finite state machine models to analyze the
performance of communicating processes. ZElementary finite
state machines describe the behavior of a single process.
Composite finite state machines describe the behavior of a

LY i & il SR 3 3 O wa

Page 27

group of processes. The main advantzage in wusing €ini%e

state machines 1is simplicity due *o the *otal ordering =¥
events in the context of the model.

One kind of event is the reception of 2 message by a process
that 1is in the given state. 1In addition, the process can
explicitly declare a change 1in state by sending a
pseudo-message. An activity 1is a sequence of events
occurring in a finite state machine passing from the initial
state to the last state. PFrom now on, I will use the term
event for message and finite state machine for activity.

The example of distributed graphics requires four processes:
LinkProcess, LinkIntOutput, DisplayProcess and Displaylnt.
LinkProcess and DisplayProcess are each modeled with a
simple finite state machine having two states: Idle and
Busy. LinkIntOutput and DisplayInt (both are interrupt
handlers) are each modeled with a finite state machine
having only one state and one +%ransition. The +trace of
messages 1is then converted +to the +trace of events (see
below). Each event has a name of the finite state machine
model, the current state 1label and the +%riple of the
message.

LinkProcess.Idle: (LinkIntInpu* ->LinkProcess, Inpu+*)
LinkIntOQutput.Idle: (LinkProcess =>LinkIntOu*put,Ack)
DisplayProcess.Idle:{LinkProcess ->DisplayProcess, Tommand!
DisplayInt.Idle: (DisplayProcess->DisvlayInt,Draw
LinkProcess.Busy: (LinkIntCutoput ->LinkProcess, Done)

(

DisplayProcess.Busy: (DisplayInt ->DisplayProcess, Done)

Unless otherwise specified, a sequence of transitions
implies 2a sequence of state-transitions. The construct
CONNECT %breaks the sequence of state-transitions by
explictly specifying the next state. A state having an
alternate +transition 1is defined by repeating +the same
state-label. For example, +the state 1label "A" has two
outgoing transitions: Input and Error. (A BNF definition
of the language for describing finite state machines appears
in Appendix B).

Page 34
FSM: LinkProcess
A: (LinkIntInput ->LinkProcess, Input)
B: (LinkIntOutput ->LinkProcess, Done)
CONNECT(C)
A: (LinkIntInput ->LinkProcess, Error)
C:
END-FSM
Figure 9: Elementary PSM, LinkProcess
State A has two outgoing transitions: the first +to send

message Done to LinkProcess and the second to send message
Error. State B is followed by the new construct CONNECT(Z)
that specifies another entry to state C.

Composite finite state machines describe the execution of a
group of processes that produce only a partially ordered
collection of events. Some events that occur within
different ©processes are still ordered in time due to the
logic of computations. For example, communications Dbetween

device handling oprocesses and their interrupt handlers
always occur in the same order.

Two processes communicate in full hand-shake .if the first
process sends 3 message to the second process and
immediately waits for a reply from the second. In this
case, the composite model simply describes the sequence of
events. For example, LinkProcess and LinkIntOutput
communicats in full hand-shake.

FSM: LinkComplete

LinkIntCutput.Idle: (LinkProcess =>LinkIn%lutput,Ack)
LinkProcess.Busy: (LinkIntOutput ->LinkProcess, Done)

END-FSM

The sequence of events is further abstracted as 2 single
event in the finite state machine a* a higher-level [see
below). I organize finite state machines in two levels of
hierarchy: LinkComplete and Link. The higher-level model

Link describes all events associated with the handling of an
input packet.

FSM: Link

Y PR TP G

Page 35
(LinkIntInput ->LinkProcess, Input)
' PSM(LinkComplete)
1 END-~FSM
3
: A new transition FSM(LinkComplete) occurs when the

lower-level finite state machine (LinkComplete) passes from
the initial state to the last state. Similarly, all events
that are asscciated with the handling of display command are
also describegd with two finite state machines:
DisplayComplete and Display.

The next step for the performance evaluator is to describe a
composite model of the entire system. Although some events -
may occur in arbitrary order, the composite model ©precisely
defines different alternatives for the event ordering. 1In
the composite model Graphics at state A, the two
alternatives are either LinkComplete or DisplayComplete.
PSM: Sraphics
(LinkIntInput -> LinkProcess, Input)
(LinkProcess => DisplayProcess, Command)
A: FSM(LinkComplete)
B: FSM(DisplayComplete)
CONNECT(LASTSTATE)
A: FSM(DisplayComplete)
C: TPSM/LinkComplete)
o END-FSM
- Figure 10: Composite Model, Graphics]
<
!
. i
u

Different alternatives within finite state machines are i

! described uniformly either for a single process or for a o
group of processes.

e e e e e

‘. 3.4.3. Composite Models for Pipelined Computations

4 So far, we have considered only one activity in progress.

¥ This section deals with pipelined computztions where
y activities overlap in time: the first event of a new

activity occurs before the 1last event of the previous
activity. (Recall that an activity is a sequence of events

that occur in a finite state machine passing from the
initial state to the last state).

g

7€ T g
BAE A

Page 34

Message traces with overlapped activities are difficult *to
analyze. Frequently, we find a few consecutive occurrences
of the same type of message, each belonging to a different
activity in progress. To retain the ability for calculating
statistics of user activities, I extend +the notion of an
event to include the index of the activity in progress. A
fully specified event has a finite state machine, an index
of the current activity, 2 state label and a2 message %triple.

For example, two consecutive occurrences of +the message
Input appear in the event trace as follows:

Graphics(i).A: (LinkIntInput -> LinkProcess, Command)
Graphics(i+1).A: (LinkIntInput -> LinkProcess, Command)

Clearly, not everything can be described with thais

simplistic model. in addition <to the statistics of each
activity in progress, we would like to xnow how messages are
distributed among vprocesses. To answer this question, we

need a composite model that describes a group of finite
state machines, each modeling cne activity in progress.

Pipelined computations produce very complicated traces of
events due to the arbitrary ordering of <. ents and
activities in progress. To describe all possible cases in
one composite model is impractical; instead, we consider
only interesting cases tha*t are selected by the user for the
performance analysis of the computations. 1In addition to
messages, [introduce a new type of event- a hardware
interrupt.

PSM: Display

A: (LinkProcess ->DisplayProcess, Command)
B: (DisplayProcess->DisplayInt,Draw)

C: (DisplayDevice ->Displayint,Interrupt)

D (PisplayInt ~->DisplayProcess,Done)

END-FSHM

T> describe a limited number of messages in vorogress, I
introduce a new transition, INDEX (Figure 11]. A group of
finite state machines change their roles to depict exactly
these message in progress they are modeling by using the
INDEX operation. A finite state machine with a 1label [il
after the INDEX transition becomes [i-1]. :

N P ., . VRTI =PPy — ~ AUV Y RS T S G o

E
]
E

Page 27

(i) .A: (LinkProcess ~->DisplayProcess, Command)
(1) .B: (DisplayProcess->DisplaylInt,Draw)

(i).c: (DisplayDevice ->Displayint, Interrupt)
(i) .D: {(DisplayInt ->DisplayProcess,Done)
(i+1).A: (LinkProcess ->DisplayProcess, Command)
(i+1).B: (DisplayProcess->DisplayInt,Draw)
(i+1).C: (DisplayDevice ->Displayint,Interrupt)
(i+1).D: (DisplayInt ->DisplayProcess,Done)

can be replaced with

(i) .A: (LinkProcess ->DisplayProcess, CTommand)
(i).B: (DlsplavProcess >DisplayInt,Draw)

(i).C: {DisplayDevice ->Displayint,Interrupt)
(i).D: (DisplayInt ->DisplayProcess, Done)
INDEX{Display)

(i) .A: (LinkPrccess ->Display?rocess, Command)
(i) .B: (DisplayProcess->DisplayInt,Draw)

1) .C: ’D snlayuev1ce ->D1=Dlay1n,,-nfer”upt\

(i? D: {Displza ->DisplayProcess,Done)
Pigure 11: INDEX Operation in a Stream of messages

-

To describe global changes in *he system, I introduce 2 new
transition, PREDICATE, describing “the exact system state as
a vector 2f states of lower-~level finite state machines. In
the case 0f pipelined computations, we are interested in *he
vector of finite state machines modeling different
activities in 9progress. The new <%ransition, PREDICATE,
helps to describe *he vector of states [Figure 19]

PREDICATE!Displayl{i)=C, Display{i+1)=R)

Dlsplay(-,.v (DisplayDevice -> DisplayInt, Interrup*’
Display(i+1).B:{Disnlay?rocess->Dis§layInt,Draw\
PREDICATE(Display(i)=D, Display’i+!)=C

Dlaplay(l) D: {DisplayInt -> DisplayProcess, Done’
TVDLK(D1snlay\

P e e e
VI NN —
N S o S -

Figure 12: PR

(O]

DICATE Transition in Composite Models

The occurrence of transition (1) moves *he models to the
state where Dlsplayfl) is waiting for an interrupt (state O}
and Display(i+t) waiting for the device <%0 Dbecome
available (state B\. The occurrence of Interrupt is
immediately followed by the next command moving the model to
another system state (4).

Page 38

Although I introduced a repetitive pattern into the behavior
of the system, the resulting finite state machine has many
states. In particular, different load conditions result in
different system states. A heavy load on the system results
in only one message in progress:

PREDICATE(Display(i)=C, Display(i+1)=A)
A light load on the system results in many messages in

progress (if +the remote ©process can generate da%ta fas*er
than the graphics device can display).

($+]

PREDICATE(Display(i)=C, Display(i+1)=B, Display(i+2)=R, ...\
Modeling all system states is impractical due to the large
number of then. An alternative is to describe a2 limited
system state- a user view of computations in the systenm
[Figure 13]. Three messages in progress are each described
by a finite state machine. The user is concerned with +wo
models: Displayli] that is in state B and Displayl i+!] tha+
is in state C. The hardware interrupt moves model
Displayli] to s*ate L. At +this poin*, the user applies
INDEX operation %to consider the next pair of finite stat%e
machines.

I have already developed 2 formalism %o describe the user
view of computations in +the system: the sequence of
transitions from (1) to (5) describes *the system state for
only *two messages 1in progress although in reality there
night be many more messages In progress.

| | Page 3

DISPLAY(L+2)=A

DISPLAY(I+3)=B

BISPLAY(I) =C USER’S VIEW
2
E DISPLAY(T').INTERRUPT
f .
f
DISPLAY([+2)=A
DISPLAY(1+1)=8
‘- DISPLAY(I) =L
. INDEXC DISPLAY)
;' DISPLAY(]I+2)=A CHANGED USER'S

DISPLAY(1+1)=B VIEW

DISPLAY(I) =1L

Figure 13: User Windows

i
¥
-
n
¢
¥

Page 40

To ensure completeness of the model, T introduce a special
RESET &state. All states that are entered with a PREDICATE
transition are connected to RESET. If none of the specified
PREDICATE +transitions occur, the model enters RESET state.
If the finite state machine model is not accurate in that it
does " not capture system states occurring often in the
execution of the system, most statistics are collected
within the RESET state. Exit conditions from the RESET
state are defined with PREDICATE transitions.

The sequence of five transitions described above constitutes
an ideal 1loop of always having one command in progress.
However, after an INDEX operation we may encounter a state
with no messages in progress.

INDEX(Displ

PRuDICAmE%Dlaplay(l =C, Display(i+1)=A)

Display(i).C: (DlsplayDevice -> DisplayInt, Interrupt)
Display(i).D: (DisplayInt -> DisplayProcess, Done)
PREDICATE (Display(i)=0, Display(i+!)=A)

If the 2bove sequence of +transitions occurs, the display
device becomes idle: ZEither the remote process has not sent
the data or LinkProcess was not 2able <+$o handle 1it. To
discover the reason, we apply transition PREDICATE to an
entirely different model for LinkProcess.

PREDICATE(LinkProcess{i)=A)

If the +ftransition occurs, LinkProcess has not received
message (i), pointing out the <foreign process- +the
bottleneck of the system. If the transition does not occur,
LinkProcess has seen the message but for scme reason has not
delivered it %o DisplayProcess. Then, we might want +to
describe a more detailed model of the computation. The l
transition PREDICATE allows us to define an arbitrary system :
3tate as a vector state of selected finite state machines.

3.5 Summary

This chapter described a formalism for performance analysis
of communicating processes. First, it described the basic
properties of messages traces and introduced three +time

stamps: Birth, Start, and PFinish. On the basis of those
intervals, for every message the system c¢alculates three
time intervals: Execution, Interval, and Delay. Analysis

of those measurements was still difficult due to the lack of
a conceptual framework within which +to evaluate +these
statistics. Then, I introduced the notion of an activity as
a2 collection of messages serving a single user request.
Elementary activities represent a sequence of messages
arriving at the 3ame process; composite activities
represent a collection of messages arriving at a group of

Page 41

processes. Analogous intervals were defined to describe the
performance of elementary activities. In the case of
composite activities, I extended the formalism with the new
interval, Overlap, +that characterized the amount of
overlapping between parallel processes.

Further, I 1introduced a finite state machine model
describing +the semantics of the message traces. The time
intervals that were used to describe messages were extended
to describe events defined by state +transitions in the
finite state machine model. The activity is defined as a
sequence of events occurring in a finite state machine
passing from the initial state to the last state.
Elementary activities were described by elementary finite
state machines, and composite activities by composite finite
state machines. To reduce the number of states in the
composite models, I introduced three new +transitions: (1)
FSM describes =2 1long sequence of messages, (2) PREDICATE
describes the exact sys*tem s*tate as a vector of process
states, and (3) INDEX describes 2 limited number of messages
in a stream. The suitability of +the new +transitions was
tested by real measuremen®s.

Although composite models may have 2 large number of states,
in our experience with RIG only a2 small number of states are

actually reached during the system's execution. To find
those states, howver, is very difficult and reguires a deep
understanding of the system. Another difficulty 1is 1in

programming of finite state machines in a symbolic language
similar to that described in this chapter. A drawing of a
finite state machine is a better representation allowirng one
Y0 immediately grasp various alternate transitions in the
model.

The growing interest in wmessage-based computing and in
formal description of communicating processes suggests that
many future systems should be implemented or at least
designed wusing finite state machines ([Estrin et al., 78]

and [Riddle et 21., 78]). 1In those cases, +the performance
evaluator will immediately have 2accurate finite state
machine models available for performance analysis. The

value of such =2 facility 1is another good reason to use
finite state machines in the design process.

Page 42

4. Examples

4.1 Introduction

This chapter describes how different finite state machines
are formulzted and applied to the analysis of RIG. The
obtained results dJdemonstrate the value of finite state
machine for performance analysis of communicating processes.

The chapter is based on two examples from the RIG system:
the virtual terminal and the file system. Section 4.2 deals
with large scale computations. In RIG, the ({nitialization
of a terminal is such an example. Section 4.3 deals with
pipelined computations. The example is a wuser program
writing *to a sequential file. This entails pipelined
computations because the CPU operations are overlapped with
tne disk operations.

This chap*ter uses the formalism intrcduced in Chapter 3 +to
present results obtained from the analysis of RIG. Chapter
6 describes how the same finite state machine formalism is

aprlied to *wo different areas: validation of reliable
transmission protocols and efficisnt implementation of
nigher-level protocols. These two examples further suvvort

the possition that finite state machines are valuable and
practical models of communicating processes for the purpose
of design, implementation and performance evaluation.

4.2 Large Scale Computations

4.2.1 Insroduction

dere we are concerned with 1long sequences of messages
produced by many processes. Processes communicate in full
nand-shake: a process sends a message and immediately waits
for reply. Although this represents an extreme case that
reduces computations of a potentially parallel program to a
sequentizl program, this kind of computation is frequently
found in various initialization scenarios of multi-process

systems. In RIG, +the initialization of a terminal is
characterized by a full-handshake style of communication
[Lantz % al., 79]. Overall four hundred messages are

passed among fifteen processes; out of them eight processes
are started [Gertner 79b]. All computations are performed
on a single processor. Reading this section below should
help explain why the initialization of a terminal is so
complicated.

The section has four major subsections: Subsection 4.2.2.

<“..“,

A

fw,

Page 43

contains a fragment of a message trace pointing out the
problems in modeling a large number of processes. Next
three subsections describe finite state machines for
analyzing these traces. Subsection 4.2.3 begins with a
simple model for a user program reading a block of data from
the disk. Subsection 4.2.4 uses the simple model to
describe a higher-level finite state machine fcr reading a
file of data. Subsection 4.2.5 describes the highest-level
finite state mwmachine model for initializing a terminal in
RIG.

4.2.2 Message Trace

This section points out difficulties in analyzing 2 long
sequence of messages. The example 1is 2 fragment of the
message trace required to initialize a teraminal. The format
of the message trace 1s slightly modified <to 1improve
readability. For the purvose of presentation, the message
trace is divided into eight parts:

only clock interrupt messages

1) The system is idle;
in the system.

periodically appear

2) A user nhits a "return" key causing the terminal %o
initialize. The message DCUInterrupt indicates this event.

3) The ResourceManager process requests ProcessManager to
start 2 new pr cess (message Crea%eProcess)sg). The Process
Manager is responsidle for reading in the process definition
tables and parsing them. Overall, twenty messages occur by

the time *he new process [InitMonitor) 1is created. The
ProcessManager returns the process identifier to the
ResourceManager (message PmReply: 115).

Here, one problem for the performance evaluator is %0 select
messages of interest in a2 1long sequence. Some messages
always occur in the system independent of the application.
For example, one second may expire and the Timer process is
notified. Moreover, this time a five second interval
expires causing +the Timer to notify the TenServer process
with the message FiveSecInterrupt. A finite state machine
having state-transitions each defined as reception of a
message is extremely valuable model for selecting =uessages
of interest.

The large number of messages arriving at the FileSystenm
process make it difficult 40 concentrate on the main issue,
the creation of new processes. (Recall that we consider
only a fraction of the entire message trace required to
initialize a terminal). In this case, I will wuse a
hierarchy of finite state machines to concisely describe the
long sequence of messages. A lower-level finite state
machine describes all messages arriving at the FileSystem.

& . v » v WO P OGP WA Wy L o~

Page 44

A higher-level finite state machine contains 2 single
transition defined as 2 seguence 0f messages causing the
lower-level finite state machine to vass from +the initial
state to the last state.

4) The ProcessManager requests NewProc (a system process
responsible for creating a process map as required by the

Eclipse hardware manual) The newly created InitMonitor
sends a request to qtar+ the Monitor process. Two messages
CreateProcessMsg and PmReply appear in arbitrary order. In

this particular case, the ProcessManager receives +the
message CreateProcessMsg before ResourceManager receives the
message PmRerly. This particular ordering 1is random,
requiring the finite state machine model +to account for 2ll
the possible alternatives.

5) Another process is created {Moniter=115). Here,
ProcessManager replies to InitMoni%or (PmReply: 116) before
the newly created process {(Monitor) sends any message.

~
~

5) The S tusServer process is also created
(3tatusServe 17?.

7) The Resourcnwanage requests arguments from In +Monitor.
Although a2t this vpoint there are two messages outstanding
for InitMonitor /PmReply: 117, and Requesu rgsMsg), i*
always receives fthese two messages in the same order. This
is because InitVMonitor communicates in a full hnand-shake
style wi*th ProcessManager. This example demonsirates how
the full hand-shaks style helrvs %o AGSPFiba 2 finite stais
machine Thaving i ng the receipt of two
pessages. In pa the ﬂosoazo fragment, 211
messages are rela tialization of 2 terminal bus
they are not relat ation of new tTrocesses.

k
[}
(O
D >
< (q
< D
S0
Q - Org
13 4
(D H ot
jaxg
3
[e]
o ¥
D
_J

"3

created (LineHandler=120).

(6]

3) The LineHandler process i

A R Y A T Ty

Y
—
4]

@
g i3

y
y

o) o
ot ot

(1 U2~

N

3 Systam

Systen
Terminalinput
ResourceManager

3)
ResourceManager
ProcessManager
Systenm
Systen
Systenm
Systen
Timer
Systen
Systenm
T{leldysten
ProcessManagsr
Systen
PileSyste
ProcessManagsr
Systen
FileSysten

4>

4
»
~~rgtd Y-

.

oyate
r 11alIn“ b

e 1,
u1
—

]
2 (2 Uy
K
w 0
+ ot ot 3
(D(D

1R,
RO
B
RN U)
b
U)
0=
ot
[$1)
i3

ProcessManager
Jystenm
FileSysten
ProcessManager
ProcessManager
//Moniter = 116

3 is o 24 N
TN -

->
->

->
~>
->
->

->
>
~>
>
~>
->
->
-
->
->
-
N
-
->
->
->

->
->
-
->
1S

-

->
->
->
->
->
->
->
->
->
->
->
-/
->
->
->

Timer , ClockiIn*errup®
Timer , ClockIn*terrupt
Terminallnput, DCUIn%terrunt

Timer , ClockInterrupt

ResourceManager , DataMsg
TerminalOutput, LineMsg

ProcessManager , CreateProcessMsg

PileSystem , CpenWMsg
Terminallutput, DCUInterrupt
FileS8ystem , DiskInterrupt
FileSystem , DiskInterrup®
Timer , ClockInterrup®

TenServerProcess ,Fivefecinterrup
PileSysten , DiskInterrups
Pilelysten , DiskInterrupt
ProcessManager , FileReoly

Tilelystem , Znputl¥sg
FileSysten , DiskInterrupt
Processianager , Cusputisg
FileSysten , TloseVMsg
TileSystem , DiskInterrupt
ProcessManager , Close3e€ply
YewProc , NewProcfreate
Process¥anager , Jresta2ProcessM
Pilelysten , JpenMsg
ResourceManagsr , PaReply 1 115
TerminallInpu*, DCUInterrunt
TerminalInput, ErrorMsg
FileSystem , DiskInterrupt
Timer , ClockInterrupt
FileSystem , DiskInterrupt

FileSysten , DiskInterrupt
ProcessManager , FileReply

FileSysten , InputMsg
PilaeSystemn , DiskInterrupt
ProcessManager , Ou*putVsg
PilsSystem , CloselMsg
PileSystem , DiskInterrupt
ProcessManager , CloseReply
NewProc , NewProcCreate

Init-Yonitor, PmRevly : 116

ot

sg

"

bl

P A

Y

. .;ﬁ.;

LSS,
<8

6}
Init-Monitor
ProcessManager
System
Sysfem
Syst
System
Systen
System
FPileSystem
ProcessManager
System
FileSysten
ProcessManager
Systen
Systen
PileSystem
?rocessManager
ProcessManager
//StatusServar =

7)
ResourceVanzgsr
Init-Monitor
nit-Monitor
ScreenZandler
Systen
ScreenHandler
Terminallutput
ScreenHandlar

2\

\

Init-Monri%or
Procesoﬁanager

System

Systen

System

System
FileSystenm
?rocessManager
Jysten
Filelysten
ProcessManager
System
File3ysten
ProcessManager
Processlanager
//LineHandler =

-> ProcessManager
-> FileSystem ,
-> PileSystem ,
-> FileSys+tem ,
-> PileSystenm ,
-> PileSystem ,
-> FileSystem ,
-> FileSysten

-> DPOhessManagcr
-> FilaSysten ,
~> FPileSystem ,
-> ProcessManager
-> FileSystem ,
-> Timer ,

-> FileSysten ,
-> ProcessManager
-> YewProc ,
->"Init-Monitor,

1
1

-> Init-¥anitor,

-> ResourcsManager

-> Screentandler

-> Terminsa l‘utput,

-> Terminal®utout

-> Termin: *Jugnuu,

-> ScreenEandler
~> Init-Monitor,

~-> ProcessManager
-> ?ileSystem ,
-> Timer ,

-> FileSystenm ,
-> FileSystenm ,
-> FileSystenm

-> Drocess“anagor
-> FileSystem ,
-> PileSystem ,
-> ProcessManzager
-> FileSystem

-> Pile3ystem ,
-> ProcessManager

~> New?roc ,
-Monitor,

-> Init

’

b

’

?

CreateProcesstsg
OpenMsg
DiskInterruo
DiskInterruont
DiskIn%errupt
DiskInterrup
DiskIn%terrup
DiskInterrupt
FileReply
InputMsg
DiskInterrupt
CutoutMsg
CloseMsg
ClockInterrupt
DiskInterrupt
CloseReply
NewProcflreate
PmReply : 117

R s

®

"3

o
'
=

Qg

0 g ot @
Jq o

O

e

be

.J

)

-y

O 14O gl
S w2t
S octratdct s o ©

Ay RO R

D et GO0 RQ
@M 9
'3

'Y A OQGIT I I OO
= I R O e BT R ety S e

"3

ocessMsg

K[k
i e]
e o
e lieRo By vt
ot

s e]
Foor g

LW RRODSD
ol

+ 'S o+ ot Sy
Gy 33 @

yg 3
3
[
kel
ot

‘W O
a

[HEI 20 3 33 2D

o+
A oMy Ogg 2@ D ®

(9]

TUE O m O A0 Hm mn O DD
o

® rg 1 X Ny W
'S 4 D 4D S bk SO F AR

= O ‘U3
)

<

Page 4~

In summary, initializing 2 terminal produces a long seguence
of messages. All messages depicted above, constitufte only a
fragment of all messages required to initialize 2 terminal.
Three difficulties encountered by the performance evaluator
are: 1) a large number of communicating processes; 2) a
collection of messages that are not related to the main line
of computation, creation of new processes; 3) a large
nunber of messages arriving at the FileSystem.

The next three sections describe one possible solution to
these problems. To analyze messages arriving at the file
system, I use a hierarchy of <finite state machines. A
nigher-level model contains a2 transition modeling 2 sequence
of messages required to read an entire file. Messages that
are not relate to creation of new ©processes are not
included in the composite model of the system. The error is
estimated by =2ccumulating statistics for all these messages.
The full hand-shake style of communication between processes
makes 1t possible for the performance evaluator to describe
the expected sequence of messages and subseguently %o encode
them in a finite s*ate machine model. '

41.2.2 Reading =2 Block of Data

0of data from the disk, ignoring for the moment *hes issues o
multiplexing and vipelining those problems will b
addressed in Section 4.3). I begin with *wo elementary
finite state machines: one for +the file sgsystem and +he
other for *the disk handler. Then I describe 2 composite
model for both processes. In the presentation, I suggest 2
methodology to describe finite state machines and how S0 use
them.

This section describes 'an example of a user reading a tlock
s -
2

A user program ("the User") reading a block of da%ta from the
iisk requires services from the file system {"the
PileSystem") and the disk device ("the DiskHandler"). T™e
User and FileSystem communicate with messages ReadBlock and
ReadDone, the FileSystem and DiskHandler with DiskCommand
and DiskDone [Figure 14].

I* is conveniant to model +the DiskJandler with only one

state and one transition. Having received +the message
DiskCommnand, DiskHandler starts the device (a long
transition). The disk interrupt moves the model back to the

initial s%ate.

The FileSystem has three states and four transitions. It
starts in state A, and upon receiving message Read®lock from
the User, moves to the state B, a decision state. In state
B, the FileSystem decides whether to read direc%ory blocks
or not. If needed, the FileSystem moves %o state C, by
issuing DiskCommand to read the directory; otherwise, the

IR “'TW

LA SRS RAE® & o AADEIERDS o n d e e HmmSS ‘J

Page 48

FileSystem remains in state B by issuing DiskCommand to read
the user data. The same message identifier is used in
either case: whether reading the user data or the
directory. The finite state machine models help to identify
the meaning of these messages using state information. For
the purpose of performance measurements, we can exclude from
the model the decision of the FileSystem to remain in state
B.

To encode these models, I have used both documentation and
actual code of the file system. The documentation that
describes interprocess communications provides information
sufficient to describe three +transitions: ReadBlock,
DiskDone, and ZOF (End Of File). TFurther, I have examined
the code of the file system and found a state that requires
several disk operations for updating user directories. The
code has Dbeen modified to declare a change in *he internal
state for the purpose of performance amonitoring. Although
the code dealing with directories is complicated, T
approximate the 2ntire computation with only *two sta*es: B
and C [Pigure 15]. The accuracy of the model is sacrificed
for simplicity. The simplified model s%ill retains states
and transitions that are impor*tant for performance analysis.
™e transition Readlirectory folliowed by DiskDone
accumulates statistics for all directory cperations.

In addition to the notation described in Section 2, I use

drawings of finite s*a2te machines. £imilar Arawings have
been used to descrive 3NA oprotocols [I2M 37al, n the
graphical notation, each state is indica*ed by 2 ~er+ical
line named either at the %top or the Yottom. The wvertical
lines hnave circles with incoming or outgeoing arrcas. Zach
transition between states is representad bty a Trorizental

arrow with the following properties:

* The tail of the arrow starts at a circi=2 on *hx
corresponding to the initial state (before *

* The head of the arrow ends at a circle on the s%tate 1line
corresponding to the next state for the given transition.

* The activities or the output of the transition appear as
comments directly below the transition line.

* The input associated with the transition or the logical
condition causing the occurrence of the transition appears
directly above the state transition line.

* The transition arrow might represent a loop causing +the
finite state machine model to stay in the same state.

[RTIR

T L O

Page 409
) Block Diagram, Read Block
i 3
1 2 StartDevice
ReadBlock DiskCommand >
> 1 FILE >] DISK
ReadDone |[SYSTEM DiskDone HANDLER| InterruptDone
< < <
) 5 4
é‘. PSM Graph, FileSystenm
3 A 5 4
? L User->FileSystem,ReadRlock l
k- >
PileSystem->DiskHandler,PiskClonmand 1
1 FilaSystem->System, ReadDirectory
< D
lDlsk~andler—>?1leSystem, DiskDone
- SO
o DiskHandler->FileSys%en, ZCW
< 2
File3dystem~->User, ZCF
b DiskHandler->Pilelystem,DiskDone
- o<
K | FileSystem->User,ReadDone
<
4
" FSM Graph, DiskHandler
]
‘ A R
N | FileSystem->DiskHandler,DiskCommand
B o)
f» StartDevice
‘.
E L
H 0«
t;
d Figure 14: Read Block
N {

-
P
Al

2

‘ R

oA

- e

s

T,

Page 50

Until now, we considered *wo finite state machines: one for
the file system and one for the disk handler. The next step
is to build a composite model capturing the behavior of both
processes. There are two reasons for doing this: (1) the
composite model can later be used as a single transition in
higher-level models; and (2) statistics of 2 single model
are better understood by the performance evaluator who views
the entire system as a sequence of events in terms of the
composite model.

The description of the composite model ReadBlock is easy due
to the full. hand-shake in the interprocess communication.
Since only one finite state machine is active at a time, the
composite model is obtained by simply specifying states from
different finite state machines in +the order of their
appearance. Surprisingly, in RIG, composite models are
easier to describe than elementary models. This is because
all <changes 1in the system state are reflected in the trace
of messages. The number of states in the composite model is
small due to the very conservative style in the use of
messages. (In RIG, +there are basically two styles of
communications: full hand-shake and message streaming.
Until now, we considered onlx full hand-shake; Section 4.3
considers message streaming.)

To further simplify the composite model, I wuse a single
transition for reading 2 block of data that contains either
user data or directory inforamation. The final version of
the finite state machine has only three states: A, B, and ¢
[Figure 151. ‘

. - i . LA e, e TET R L LYY R | i e

=

T TIPS VX AW IR Y

Page 51

FSM Graph, Read Block

y A
| User->FileSystem,ReadBlock j
o >C

FileSystem->DiskHandler,DiskCommand
0« ‘

DiskHandler->FileSystem,DiskDone

I " }

FileSystem->User, ReadDone) i
o< 0

PSM Program, Read Block

FSM: ReadBlock
(Jser->FileSystem,ReadBlock)

B: (FileSystem ->DiskHandler,DiskCommand) .
(DiskHandler->FileSystem,DiskDone) :
CONNECT(B) 5

B: (FileSystem ->User,ReadDone)

END-FSM

Figure 15: FSM Read Block, Simplified Composite Model

Page 52

In summary, I described model ReadPlock to be used as a
single transition in the higher-level models 0of reading a
file (Section 4.2.3). I began with +two =2lementary finite
state machines: one describing the file system and another
the disk handler. Describing the file system was difficult
due to the directory operations that required analysis of
the program code. Composite models were easier to describe
because 2all state changes in the system were expressed in
messages. The description of the composite model was
further simplified by 1leaving only those transitions that
were important for performance analysis.

4.2.4 Reading a File)

This section uses the finite state machine model for reading
a block of data to describe a higher-level finite state
machine for reading a file. At the nigher-level, the
transition

FSM(ReadBlock)

models the cccurrence of a sequence of events that +%ake
place as a finite state machine passes from the initial
state to the last state. The finite state machine ReadlPile
starts in "idle state" A, and by receiving the message
OpenPFile from the User moves to state B, a decision state.
In the case of an error message (the file does not exists)
the FileSystem replies %o User either with an error (for
example, the file does not exist) and moves back to state A,
or with FileOpened and moves to C. In state C, the
FileSystem continues reading blocks {the abstract transition
is FSM(ReadBlock)) until the end of the file (EOF message)
and closes the file (CloseFile) at +*he user's request.
Again, composite models were easier to describe than
2lementary models.

Page 5%

FSM Graph, Read File

User->FileSystem,OpenFile lFileSystem—>User,FileOpened
0 >0 >Q

FileSystem->User,Error
0< 0

PSM(ReadBlock)

User->FileSystem,Closefile

FileSystem->User, EQF

[e ¢

0«

FSM Program, Read File

FSM: ReadFile
(User->FileSystem,OpenFile)

B: (FileSystem ->User,Zrror)
CONNECT (LASTSTATE)
B: (FileSystem ~>User,FileOpened)
C: FSM(ReadBlock)
] CONNECT(C

s C: (User~>FileSystem,CloseTile)

. CONNECT (LASTSTATE)

> C: (FileSystem ->User,EOF)

g CONNECT (LASTSTATE)

. END-FSM

Figure 16: FSM Read File

2;

Page 54

4.2.5 Initializing a Terminal

This section describes the highest-level finite state
machine modeling the initialization of a terminal in RIG.
Lower-level models that are described in previous sections
are used as transitions. Although processes communicate in
a full hand-shake style, the composite model 1is still
difficult to describe due to the large number of processes.
The difficulty is in knowing the exact order of computation
of so many processes.

To represent all possible alternatives is impractical. Many
branches will complicate the model without contributing to 2
better understanding of the performance. In this case, I
make no attempt to describe a composite model for the entire
system. Instead, I describe <the composite model of the
major subsystem. The documentation of %the RIG system has
been sufficient for me to acquire the knowledge necessary to
describe the model. This is an example of what one should
be able to do with adeguate system documentation.

Initializing a <$erminal requires eight new processes:
InitMonitor, responsibdle for creating all the processes
handling the terminal, LineHandler, responsible for
aultiplexing the physical line, and three pairs of processes
Monitor and PAD-Monitor, StatusServer and PAD-StatusServer,
Executive and PAD-Executive. Bach pair of processes is
responsible for creating and destroying different kinds of
terminal windows (regions). Monitor 1is responsible for
creating new user regions of the screen. StatusServer is
responsibls for controlling the status of all currently
active regions. ZExecutive is responsible <for handling of
user requests.

In +the finite state machine description, the first
transition models +the creation of process InitMonitor
[Figure 17].

InitMonitor = FSM{(CreateProcess)

To measure the overhead in exchanging arguments among
processes and opening logical connections, I used two finite
state machines: OpenConnection and PassArguments.
tatistics of those models, together with statistics of the
composite model, constitute time intervals of +the overall
system. The experiment [Figure 17] begins with the message

(ResourcesManager -> InputProcess, Input)

being sent to the ResourceManager responsible for handling
physical lines; the experiment ends with the message

(Executive -> LineHandler, LineEdit)

Page 55

received by the LineHandler responsible for multiplexing 2
physical line.

] The transition FSM (TerminalComponents) models the creation

of LineHandler and two virtual screens: Monitor and
StatusServer. The order in which processes are created is
unimportant; therefore, I wuse a finite state machine of

type COLLECT that models a collection of messages arriving
in arbitrary order.

Page 56

FSM: CreateMonitor

"Monitor = FSM(CreateProcess)
Pad-Monitor= FSM(CreateProcess)

ACTIVATE(Monitor-Qutput)
END~-FSM

FSM: MonitorOutput

(Monitor -> Monitor-Pad, ANY)
(Monitor-Pad -> Monitor, PadReply)

END -FSM
FSM: CreateStatusServer

StatusServer = FSM{CreateProcess)
Pad-StatusServer= FSM(CreateProcess)

ACTIVATE(StatusServer-Outout)
END-FSM

oM. StatusServerlutput

(StatusServer ~> StatusServer-Pad, ANY)
(StatusServer-Pad -> StatusServer, PadReply)

END-FSH

PSM(COLLECT): TerminalComponents

FSM{CreateMonitor)
FSM(CreateStatusServer)
LineHandler = FSM(Createprocess)

END-FSM
FSM: PassArguments
(ANY -> ANY, RequestArgMsg)
(ANY -> ANY, ProcessArgsMsgReply)
END-FSM
PSM: OpenConnection
(ANY -> ANY, OpenMsg)
(ANY -> ANY, OpenReply)
END-FSM

Figure 17: FSM Initialize Terminal
(continued on the next page)

N o - . W~ - o AR <" S WY G PN -

-

P e

Yo ey
A A

Page 57

FSM: CreateProcess

END-F3M

Requester =(ANY -> ProcessManager, CreateProcess¥sg)
FSM(ReadFile)

(ProcessManager -> MapCreator, NewProcCreate)
(MapCreator -> ProcessManager, MapCreated)
(ProcessManager -> Requester, PMReply)

(NewProcess -> System, FirstScheduling)

CONNECT (LASTSTATE)

(NewProcess -> System, FirstScheduling)
(ProcessManager -> Requester, PMReply)

™SM: InitizalizeTerminal

(Resourcesmanager -> Terminallnput, Input¥Msg)
InitMonitor = ¥SM(lreateProcess)

CTIVATE(PassArguments)
ACTIVATE (OpenConnection)
ACTIVATZ(ScreenManagement)

FSM(TerminalCcmponents)

‘Maplreator->ProcessManager, ProcessDied)

Executive

P3M{CreateProcess)

Pad-Executive= FSM/Crea%teProcess)

ACTIVATE(Executive-Cutout)
(Executive -> LineHandler, LineFdi%)

END-FSM

Figure 17: PSM Initialize Terminal
(continued)

Py R

™~

gF

v o

Page 58

The statistics produced by this model ©point out that
transition PSM(ReadFile) consumes about 25% of the total
time required %o initialize a terminal. By keeping process
definition tables in memory, we could speed up the terminal
initialization by 25%. Although many messages are requijred
to establish logical connections, the system spends only 10%
of its time in modules FSM(PassArguments) and
FSM(OpenConnection). Therefore, the performance of the
system was not severely affected by requiring all processes
to conform to those conventions. ' The statistics of those
transitions are as follows:

Statistics-FSM: ReadFileEvents

NumSamples:= 106 Execution:= 2608 Qverhead:= 600

Swapped:= 14 IdleWaitDevice:= 1312
Statistics-FSM: OpenConnection

NumSamples:= 13 Execution:= 310 Overhead:= 113
Statistics-FSM: PassArguments

MumSamples: = 8 Execution:= 150 CQverhead:= 50

4.2.6 Results

This section considered long sequences 0f messages produced
by wmany processes communicating in full hand-shake. The
example was the initialization of a %erminal in RIG.
Overa2ll Zfour hundred messages were passed among fifteen
processes. To describe such a long sequence of messages, I
introduced a nierarchy of four levels:

2) Level 1, FSM(ReadBlock) modeled computations of the file
system and disk handler in reading a2 block of data.

b) Level 2, FSM(ReadFile) modeled computations for the file
system and user in reading a file.

c) Level 3, FSM(CreateProcess) modeled computations of four
processes: ProcessManager, MapCreator, FileSystem 2nd
DiskHandler.

d) The highest-level 4, FSM(StartTerminal) modeled all
fifteen processes exchanging four hundred messages.

This hierarchy allows the performance evaluator to express
the statistics of very destailed computations of the file
system in terams of the statistics of initialization of a2
terminal in RIG. This suggested a more efficient
initialization of a terminal 1in RIG by keeping the
processes' definition tables in memory, thereby avoiding the
file system accesses entirely. This kind of information was
gathered naturally by using finite state machines.

N T, S e ¥ R R = T e Yoy =

Page 59

This section considered a long sequence of messages produced
by many processes communicating in a full nand-shake style.
This kind of computation is also found in initialization of
some other systems. For example, the initialization of
RUNTOQOL in the NSW system involves twelve distinct processes
and well over forty process activations ([NSW 77] and
[Schantz 79]). The methodology developed 1in this section
can be applied to the analysis of the NSW system. Although
processes run on distinct computers, most of the +time they
communicate in full hand-shake, thereby making it possible
to describe a simple finite state machine modeling the
behavior of the entire system.

—— . —— i ——— —— —— — . ——

The NSW /National Software Works) is a software system that
provides wuniform zccesses to diverse computers (hosts) in a
network. It facilitates +he wuse of a wide variety of
software tools. Specific knowledge about the location of
the %tool or its particular environment is often not needed.

4.3 Pipelined Computations

4.3.1 In*troduction

This section 1is concerned with pipelined computations
described by repetition of sequences of messages (user
activities). A new activity frequently begins before the
previous activity has Ybeen c¢ompleted; therefore, the
handling ¢f some messages 1is overlapped in time. The
example used 1in this section is a user streaming data to a
disk. A separate disk controller 2llows the overlap of disk
At ' accesses with CPU computations. I Jemonsirate how the
knowledge of the system helped to identify 2 small number: of
states in the composite model.

This section has three major subsections: Subsection 4.3.2
describes an elementary finite state machine, modeling a

user that writes a Ylock of Adata. Subsection 4.3.%
descrites <*the composite finite sta*e machine, modeling w0
activities in 9oprogress. Subsection 4.7%.4 describes Y

composite
Different *
to the same 4

ite state machine modeling *wo users.
@ state machines were formulated an? applied
a %o extract different kinds of information.

h

¢ 4.3.2 Writing a 3lock of

e first

3%2p is %0 describe 2 simple finite stz2*s machine

that modsls only one message in progress and hag six siates:

Idle, Writing, 2usy, Done, Directory and lLast [Figure 19].

- The model 1is very similar to the ReadBlock model that is
2 described in Section 4.2.2 To represent wmore accurauely

the overlap between tne CPU and Adisk controller, I use
interrupts as svents.

Statistics of this simple model revealed *that 40% of all the

isk operations are performed to update the directories. 1In
the system with a single user, the disk controller requires,
A% on average, 50 milliseconds to complete a single operation.

L Zvery second 20 disk operations are completed: 13 for the
¢ user and 7 for the directories. Consequently, the average
: interval between user commands is at least 77 milliseconds.
Y Puring directory operations, the file system receive about 5

commands that keep the disk controller Ddbusy. When one
specific command is in progress (Write[i]=Busy), the CPU can
be used to perform other computations. To perform the next
command, the file system spends 15 milliseconds: 10
milliseconds to handle the user's request (the transitions
is WB) and 5 milliseconds to handle the interrupt message
(DD). This simple model points out that the directory
operation is the bottleneck of the system.

R ai IO

e

« U2

S— .
A AR

AR o

Page /1

FSM Graph, Write Block

Id1le Writing Busy Done
l WB DW 1 IN i
>0 > >'
DD
3¢ 4
DR DIR
0 >0
ED |
0< 0
Last
WD
0 >
Abbreviations:
WB - (UserProcess->FileSystem, Write3lock)
DW - (FileSystem ->DiskHandler,DiskWrite)
DD - {(DiskHandler->7il2System, DiskDone)
IN - (Disk ->DiskHandler, Interrupt)
WD - (FileSystem ->Systen, WriteDone)
DR - ZFileSystem ->System, DirectoryCperation)
ED - (FileSystem ->Systen, EndDirectory)

Figure 18: Write Block

Aty -

P

Page A2

TON" T TR T YT T

4.%2.% Composite Model for Two Messages in Progress

To measure the overlap between the CPU and disk opera*tions
we need a composite model describing several messages in
progress. To simplify <the description of the composite
model, I consider only two messages in progress. This is
sufficient to monitor one message being handled by the disk
controller and the next message being prepared by the CPU.

FT WL

To further reduce the number of states 1in +the composite
model, I describe only those states that are most likely to
occur. The following propertises (or global
state-transitions) of the system help to reduce the number
of states. The description of each-property is followed by
a fragment of system transitions used later in the composite
model. -

1) Start{Write[i].DD) < Start(Write[i+!].IN

An interrupt message is 2lways received Dbefore the nex*

interrupt occurs. In the composite model, the following
three transitions occur in the same order:

PREDICATE(Write[i+1]=Busy), Write[i]=Done’
Writel i].{DiskHandler -> I“11eSystem DiskDone)
PREDICATE(Write[i+1]=Busy, erte[lj =Writing)

2) Start{Write[i].DD < Start[Writeli+2]1.WB

The Tile system receives an interrupt message with priority.
The following three transitions appear in the composite
model: ;

PREDICATE(Write[I+1]=Id1le), Writel i]=Done) .
(DlskHandler -> PileSystem, DiskDone) >
(User => FileSystem, WriteBlock)

3) PREDICATE(Write[i]=Busy), not Write[i+l]=Busy])

™e disk device handles at most one command at a time. The
following three transitions appear in the composite model:

PREDICATE(Write[i]l=Writing, Writel i]=Busy)
Wwrite[i].(Disk -> DiskHandler, Interrupt)
{PileSystem -> DiskHandler, WriteBlock

4) Upon completion of the operation, the DiskYandler
immediately fetches the next command. The following three
transitions appear in the composite model:

i
1
Page 573 !

PREDICATE(Write[i+1]=Writing, Writel i]=Busy)

write[1].(System->DiskHandler, Interrupt)

write[i+1].{FileSystem->DiskHandler, DiskWrite) {
5) At most two commands in progress are considered. (A user
defines predicates for two commands in progress).

The composite finite state machine [Figure 19] starts in "no
write request" state A, in "one write request" state B, or
in "two write requests" state C. In state A, the first
write request moves (after a long delay) to state B (the
transition is (O, WB)). Now, 2 new request moves to state C
(the transition is (WB, WB)) or the disk command moves to
"one write in progress and there are no more user requests"]
state D. But, in state D, the finite state machine can
still "catch up" by receiving a "next write reguest" [the
transition is (WR, DW)) and moves to state E.

In the decision state B, the PileSystem may decide to
suspend temporary user requests and engage in updating the
system's directory. Computations without the overlap
between the CPU and disk are described by five states: A,
B, D, N, and P. The remaining seven states describe *he
overlapped computations: D, E, ¥, G, H, and back to D or E.

In state E, one message is being handied by the disk
controller and =another is ready for execution. If another
user message arrives, the model accumulates s*tavistics in
state E the loop with the transitions WD). In this case,
there are more *han two messagses in progress. In state D,
only one command is in progress 2t the disk handler. Such
detailed information would be very difficult %o obtain
without the use of finite state machines.

at
-

[4

Tw 4O
RS Ja ¥ e

r)
3
;
Page 64
PSM Graph, Write Block
RESET
0 0 o 0
A l
DIR DIR DIR DIR
0 >0 0 >0
END END l }
o< <) < <
(0, WB) (WB,WB) (WB, DW) $
0 >0 >0 >
; r
(0,DW) (WB,DW) (wB,IN) |
B-0< >0 >0 >0
P N ‘
! DW
INDEX (0,DD) (0,IN) | 0
0< 0< o< 0
(C,DwW) i 0<
0 >
i E
(WB, DW) _
C >0
g G %
INDEX $ (DW,DD) £ (DW, IN)
0< < < 3 |
!

Figure 19: FSM Write Block, Two Messages in Progress

PSM Program, Write Block

PSM: WriteBlock

RESET:
PREDICATE (Write[i+1]=Idle, Write[i]=Idle)
" CONNECT(A)
PREDICATE(Write[i+1]=Idle, Write[i]=Writing)
CONNECT(B)
PREDICATE(Write[i+1]=Writing, Write[i]=Writing)
CONNECT(C)
END RESET
A: Write% % (UserProcess->FileSystem, WriteBlock)
B: Write F11eSystem->System, Directory)
B1: Write[i J F11eSystem—>System, Directory)
CONNECT{B1)
B1: Write[i g (FileSystem->System, EndDirectory)
CONNECT(B)

B: Writel i+1

.(UserProcess->FileSystem, WriteBlock)
C: erterlg

FileSystem->DiskHandler, DiskWrite)

T~

CONNECT(E)
C Writel i].(Pi1l 2Systen->System, Directory)
C1: Write[i]. /*1l=System->qystem, Directory)
CONNECT(C1)
Ci: Write[i;.xFileSystem—>System, EndDirectory)
CONNECT(C
B: Write[i]. % 1leSys+em->DlaK{andl=r, DiskWrite)
D: erfer1+1_ (UserProcess->FileSystem, WriteBlock)
CONNECT(E)

D: Writeri%.(System—>DiskHandler, Interrupt)
Write! i].(DiskHandler->FileSystem, DiskDone)
Write[i .SFileSystem—>FileSystem, WriteDone)
CONNECTA

Figure 20: FSM Program, Write Block
(continued on the next page)

r.'-w-1Fvwwsm!u-!—I-H!!----"----"'“"44444444447 “ﬁ!

] Page 56

E: Write[i].(System->DiskHandler, Interrupt)
E1: (User -> FileSystem, WriteBlock)
CONNECT (E1)
F: WriteFi+12.(FileSystem->DiskHandler, DiskWrite)
G: Write i}. DiskHandler~>FileSystem, DiskDone)
H: Write[i].(PileSystem->System, WriteDone)

J: PREDICATE(Writel[i+l]=Writing, Write[i]=Busy)
F

(
. CONNECT (F)
J: PREDICATE(Write[i+1]=Idle, Writel i]=Busy)
CONNECT (D)
. F: Write i%.(DiskHandler->FileSystem, DiskDone)
K: Writel i].(FileSystem->System, WriteDone)
INDEX{Write)
M: PREDICATE(Write[i+!]=Writing, Writelil=Writing)
CONNECT(C)
M: PREDICATE(Write[i+1]=Idle, Write[i)=Writing)
CONNECT(B)
END-PSM

Figure 20: FSM Program, Write Block
(Continued)

L4

et
AL

Tl

Page A7

4.3.4 Composite Model for Two Users

The same model [Figure 19] can be applied for performance
analysis of +%$wo users. As was expected, the number of
directory operations increased by 10%4. This 1is because a
smaller number of buffers 1is available for each user.
Unexpectedly, however, the execution time of the transition
(B->C) did not change. PFurther analysis revealed that in
RIG there 1is no additional overhead associated with

additional wusers. The file system makes no attempt to
optimize disk input queues for the purpose of reducing the
disk arm movement; therefore, the execution time in

handling the request of users did not change. Likewise, the
disk access time did not change (the transition E->F).
Hence, another model 1is necessary ¢%to describe the file
system in order to distinguish between requests of different
users.

The same formalism that was wused +to describe pipelined
computations 1is applied to multiple users. A typical
sequence of events for two users is

WriteUsertl{i].(UserProcesst->FileSystem, WriteBlock)
WriteUser! i+t].(UserProcessi{->FileSystem, WriteBlock)
WriteUsert| i+2].(UserProcess!->FileSystem, WriteBlock)
WriteUser2{il.(JserProcesst->FileSystem, WriteBlock)
WriteUserZ[i+1].(UserProcess1->Fi1eSystem, WriteBlock).

Collected statistics indicate that transitions from state =
to T occur three times as often as transitions from E to C
occur. This suggests that the TFileSystem receives wuser
messages in bursts: first three messages from Usert;
second, three messages from User2. This explains that only
every third message moves the disk arm from one user area to
another user. {(The number three is a default backlog 1in
RIG, <*he number of messages tc be gqueued in *the receiver's
input vort. This explains why messages are received in
bursts of three messages.)

_c

e e

Page 68

FSM Graph, Write Block

A B e
(WB, WB) 1, (WB, DW) L (WB, DD)
0 >0 > >
] (WB, DW)
0<)
1
F
(DW, WB) $
<
A
(DW,WB) (DD, WBR) T
0 >0 50
(DW, WRB)
0¢ 9
‘WB, DW)
c < o

Figure 21: FSM Write Block, Two Users

Page 50

4.3.5 Results

Throughout this section, various finite state machines thave
been constructed and applied +o0 the same data to extract
different ¥inds of information about the FileSystem in RIG.
A model of a single user streaming data at maximum speed
revealed various bottlenecks in the FileSystem. A simple
model [Figure 18], without considering pipelining, pointed
out the bottleneck- the handling of directories.

The third model [Figure 19] analyzed the relationship
between pipelining of user messages and directory
operations. The most interesting result was the model
itself. Sometimes in the input queue of the FileSystem up
to seven messages were queued by each user making it very
difficult %o model the system. A simple finite state
machine modeling only two messages in progress was found
sufficient for performance analysis of the file system.

4.4 Summary

Finite sta%e machine models were found to be extremely
valuable wmodels for performance analysis of the RIG systenm.
{The generality of the finite state machine formalism is
discussed in Section 7.) Various examvles were described and
results for them were presented using +the finite state
machine formalism described in Section 3. The informal
presentation was based on two examples from the RIG system:
the vir<tual terminal and the file system. The first example
presented a long sequence of nmessages oroduced by many
processes communicating in full hand-shake. The second
example present=d pipelined computations tha*t were described
with a stream of messages containing wmany activities
overlapped in time.

The first example was the initialization of a +terminal 1in
RIG. Four hundred messages were passed among fifteen
processes. All computations were vperformed on a single
processor. Although this was an extreme case that reduced
computation o0f a potentially parallel program to 2
sequential program, this k%ind of computation is found in
various initialization scenarios of other multi-process
systems.

The initialization of a terminal in RIG produces a long
sequence of message. 70 model this sequence, I introduced
four levels of hierarchy: PSM(Read3lock), TFSM(ReadFile),
FSM(CreateProcess) and FSM(InitializeTerminal). Statistics
of the file system (FSM(ReadBlock) were expressed in terms
of the global model (FSM(InitializeTerminal). This
suggested an optimization of the high level protocol to keep
process definition tables in memory, thereby avoiding file
accesses entirely. This kind of optimization would be very

, - ,...,.;‘“' A —"'
3

S el B

- - -

ﬂ””ﬁ e

[\

Page 70

difficult to obtain without *he use of finite state
machines. .

The second example was a user streaming data to disk. This
produced a sequence of activities that were overlapped in
time. The separate d4isk controller allowed the overlap of
disk accesses with CPU computations. In describing the
composite model of computations, I used the knowledge of the
system to identify a small number of states characterizing
the system.

To reduce the number of states in composite models, I
successfully used three Y¥inds of transitions: (1) PFSM,
characterizing 2 long sequence of messages; (2) PREDICATE,
characterizing the exact system state ag a vector of process
states; {2)INDEX, characterizing =2 limited number of
messages in a stream- 2 user view of computations in the
system. The suitability of those transitions was tested Dby
real measuremen®ts. Although many messages wers ouitstanding,
the model considered only %wo messagss. This was sufficisant
to explain *he overlap between the CPU and disk. The same
model was also appli=zd +to analyze two users. Then, I
described 2 different model in an attempt to analyze the
multiplexing avilities of the file systen.

Page 71
5. Implementation
5.1 Introduction
The performance monitoring system {"the moni%or") was

implemented on a stand alone minicomputer (Xerox Alto)
connected to the Ethernet, a 3% MHz broadcast network
[Metcalfe 76]. RIG runs on two Data General ZEclipse
computers that are also connected %o +the Ethernet. The
monitor receives from RIG time-s*tamped messages, process run
times and swapping information. The performance evaluator
descrives finite state machines that identify events of
interest in the execution trace of the system. The monitor
calculates statistics of the abstract model and presents
them to the performance evaluator [Figure 221.

The chapter has three major sections: ESection 5.2 describes
the interface to the performance evaluator. {An apvendix
contains a complete list of wuser commands.) Section 5.3
daescribes a *echnique for data gathering in RIG. This
technique can be applied +to other systems in which
interprocess communication 1is well-defined. These systems
are Iimplemented in a s%tyle which 1s very close in spirit to
either 2 message-based model cor fu 2 procedure-based model
[Lauer et al., 79]. Section 5.4 outlines parsing of finite
state machine descriptions into state-transition tables.
The major effort here is to support the same symbols +that
are used both for programming of communicating processes and
for describing finite state machines. i

The purpose o0f +this chapter is to demonstrate the
feasibility of +the performance monitoring system that is
based on the use of finite state machines. T™is chavter
describes the implemenitation of the monitor. 1In order %o
show that a finite state machine is an adequate model for
the performance analysis of communicating processes, I have
introduced 2 new formalism, tested it on a real system, and
used +the results +to support the value of finite state
machines. Chapter 3 introduced a finite state machine model
of computation and described various time intervals that can
be computed from such models for message-based systems.
Chapter 4 applied the formalism to RIG and used the results
to support the position that finite state machines are
practical models for performance analysis.

5.2 User Interface

The monitor provides a command language for a user. By
entering a command, the user affects the system state. The
system then prompts the user for various parameters.
Typically, a measurement experiment consists of two steps:
data collection and data analysis. First, a user initiates

E
E
E

ha'e faatB O

N 3 PR LA T T g TR

Page 72

the data collection with the command ProduceTrace:

ProduceTrace
=>host:
=>time:
=>file:

It requires three parameters: the host number (or the 1list
of host numbers) of the system being measured; duration of
the experiment in seconds; and name of the file that stores
the trace data. Next, the user performs data analysis on
the trace file with the command UseTrace:

UseTrace
=>trace-file:

A set of other commands helps *he performance evaluator in
data selection and analysis. For example, +the command
FSMLoad initiatss data analysis with finite state machines.

FSMLoad

=>Trace (Yes or Yo' ?

=>Inputfile:

=>0utputFile:

The command ¥SMLoad requires a name of the input file +hat
contains symbolic description of finite state machines. The
Trace option, when enabled, prints all state-transitions and
their statistics. The O2utputFile option directs finite

state machine statistics to the specified file.

Several commands have been implemented to aid +he wuser 1in
describing finite state machines. The command SelectTriples
produces a trace of chosen messages. Fach message is

defined with a “riple consisting of a sender, receiver, and
the message identifier.

SelectTriples
=>gender:
=>receiver:
=>message:

All options providz a consistent default wvalue and help
fzoility (for "help" the user types the "?" key, for default
the user types the "return" Xkey). Preparing the system
state for an experiment may bYe a lengthy and tedious
process. The use of a command file is a convenien% way of
automating the experiment. It contains the user's
transcript as if he were interacting with the system. Since
all the commands only prepare the monitor for data
collection and analysis, a separate command is necessary +to
actually start the experiment. The command RUN then
performs the experiment.

The same monitor has proven to be useful for other users

»

i) [Salas 2% LRI

SR, T
ST T

&

-3

TV,

Page 73

that are not interested in finite state machine models.
Simple modifications of the disk handler allowed us to trace
disk operzations including both wuser file accesses and
process page swapping.

5.3 Statistics Gathering

This section describes a technique <for data gathering in
RIG. The technique can be applied to other systems in which

interprocess communications are well-defined. These
well-defined interfaces allow the monitor +to collect
statistics selectively, 2%t a very low cost. (In other

systems, data collection can be veryr costly. For example,
the General Trace Facility (%-:, cons mes 2*C% of the CPU
time in %he system [IBM "31

To support *the data collection, the system was modified in
two places: <he network ﬂand’er and message-queueing. The
modifization %o the network handler was nade %o provide a2
new type 0F service: %o send system buffers over the ne%
upon requast; the medification %o the message-queueing was
nmnade %0 store all recent messages in 2 circular buffer. The
amonitor then sends 2 reques® for siatistics con%ained in the
circular vuffer.

=

The system's overhead

{

in collecting statistics is small:
only 3 milliseconds are required to send the circular buffer
sver the net, and 0.5 nilliseconds %o store a message in the
buffer. The low cos%t in co ll@otlng statistics is due to two
factors: acquiring st tlSt’ with a2 special "syying"
protocol that is implements Lthin the interrupt level of
the system, 2nd 2 clear separation tetween a Tfixed message
header and a messags buffer.

The special protocol was made possible by placing the burden
of reliable +transmission on a dedicated computer executing
the monitor. The monitor sends 2 reguest for statisiics.
After some *time, if no reply has arrived, the monitor
retransmits the request. The RIG system has only %o pass 2
pointer to the link handler and start the output operation.

The clear separation between a fixed message header and a
nessage buffer allows <+he RIG system to fetch the message
neader efficiently. A message header contains sender and
receiver process numbers, the message identifier, two data
words, and +three time stamps. Consequently, <for each
message the RIG system verforms 2 major data reduction of
512 bytes {2 maximum message buffer size in RIG) at a3 low
cost.

The size of the circular buffer is determined by the size of
interval within which +the monitor sends a new request of
statistics and by +*the maximum number of messages being

- TR Wi ik R h JEO - RN AP i o LI

o 7 WL T e W

Page 74

queued by the system during that periodl. In RIG, I have
chosen to collect statistics every second; in this case,
the circular buffer of size 11X 1is sufficient since the
system can queue at most 100 messages in one second.

The monitor, executing on a different computer on the
Ethernet, periodically sends a request for statistics
contained in the circular buffers and produces 2 textual
trace of events thnat are ordered in time. In the case of
communicating processes residing on different computers, the
monitor sends =2 request for statistics to all systems that
run processes ¢f interest. To produce 2 time ordered trace
of events, first, +the monitor synchronizes <clocks of i
communicating computers. (Although we can not achieve an
exact synchronization of distributed clocks [Lamport 78],
for the purpose of performance measurements, we apovroximate
the error introduced by a ? MHz local network.) Next, the
monitor merges 2ll events in the order of theilr appearance.
Any two events that occurred at the same time !because of
the finite resolution of *he measurement clock) appear in
arbitrary order.

o+ VDRV 2. 22 Aty we o a

OA

U

?a,c 75

RIG

lpl 1 Y.

CIRCULAR

G

BUFFER OF

ETHERHNET

PERTODICAL

REQUESTS
FOR

STATISTICS
ALTO

RECENT EVENTS

T FSM DEFINITION

e

N

PERFORMNAMCE

STATISTICS
T CVALUATOR

FOR FSH

Figure 22: Implementation

A TTTT—— . B pme
» > - IR SIS Y -, 5. Dy e diweny -

Lo A L,

Y

L 4
&

LA e W, -

Page 7A

5.4 Interpretation of Finite State Machines

This section outlines how finite state machine descriptions
are parsed 1into state-transition tables. Here, the major
effort is to support the same symbols that are used both for
programming of communicating processes and for describing
finite state machine models of computation.

The performance evaluator describes a finite state machine
using symbolic references to RIG processes, messages 2and
lower-level finite state machines. It 1is important +to
provide a2 uniform inte-face %bvoth for programming and
monitoring. We should not expect the programmer to debug
and to optimize the performance of his program through the
use of memory dumps, Lloader maps, machine addresses and
similar diagnostic tools [Batson 76]. To provide the
uniform interface, the monitor uses the same standard header
files used in the =z2ctual code of processes. In RIG the
standard headers map some process names into numbers. n
the case of processes not having fixed process numbers, the
monitor requests t\e user intervention. Similarly, symbolin
debuggers for multiprocess systems raaulre the user specify
the process number of the program [NSW MS

The internal representation of a finite state machine has a
state <transition %table and a vpointer to a higher-level
Py vl

finite state machine. Tach +transition has =a message
descriptor or 2 vpointer to 1 lower—lavel finite s*tate
machine. When the +transition occurs, tistics are
calculated and stored. I¥ =g transwf1on occur in a
lower-level finite state machine, the higher-level model
accumulates statistics accordin to he rules +that were
defined for a sequence of events %Chapter),

5.5 Summary

This chapter demonstrated the feasibility of a monitor using
finite state machines by describing ! particular
implementation. The main achievements of this
implementation are simplicity and 1low cost in collecting
statistics. The modifications of the existing system were
very sSimple; what was required was to support a single
request for reading system buffers and *o store all recent
events in a circular buffer. This type of implementation is
possible for local networks that support high bandwidth dat*a
transmission.

In the case 0of a large number of computers connected tc a
local network, +the monitor running on a single computer
could become a2 bottleneck. PFor such networks, +the monitor
must be modified by separating the data collection and data
filtering programs into a separate package. This package is

L@ A, L -

rﬂ’id

e v

- -
¢

.~ gvwen

Page 77

then placed on some computer iIin *the network; thereby
significantly reducing the amount of data <flowing to <the
monitor. A similar approach has been used in the METRIC
system [McDaniel 77].

The METRIC user views the world in three portions: a probe
in the user's program, an account that collects information
from the probe, and an analyst that proceases the
information and presents it in an intelligible format.
Measurement events are those data that the probe transmits
to the account, and which are subsequently processed by the
analyst. The user's program and the probe live in a machine
that 1is independent of the account and analyst's machine.
This independence plays an important role in the robustness
and efficiesncy of METRIC. Different from the monitor
reported here, METRIC initiates probes {or events! at user
selected places in a program. Consequently, METRIC has the
ability to monitor 2 large number of computers, specifying 2
small number of events within each. Data analysis is
performed ty special purpose user programs. METRIT supports
only a general purpose utility package +to write data
reduction programs.

5

4 monitor reported here Iis a igher-level asysfem than
METRIC. A user 1is oprovided with a command language to
initiate various sxperiments. Some commands are used *to
collect statistics, other commands are used to analyze the
data. One of the commands is %o use finite state machine
descriptions to select events of interest out of +he
execution trace of the systen. The vperformance evalua*or
describes these finite state machines using *he same symbols
tnat were used in programming the systen.

L

-

Page 7R

6. Other Uses of Pinite State Machines

6.1 Introduction

This chapter describes how finite state machines has

benefited two areas: (1) validation of reliable
transmission protocols and (2) optimized implementation of
high-level protocols. In the first area, finite state

machines describe a situation where the network servers
which implement +the reliable transmission protocol in RIG
enter a loop of states causing each packet to be
retransmitted twice.

In the second area, finite state machines helped to identify
two different parts of +the code within communicating
processes: the first part deals with flow of exceptional
messages modeled by many state-transitions in finite state
machines; +the second part deals with the common flow of

messages . modeled by fewer state-transitions. This
observation suggests an optimization to support the most
common case of the message flow. Instead of sending a

message, 2 process ma choose to perform computations
locally.

The purpose of this chnapter is %o further motivate +the
reader in using finite state machine models of computation
for the design, implementation and performance analysis of

communicating processes. Chapter 3 introduced the formalism
for descibing finite stats mnachines <for thée analysis of
communicating processes. Chapter 4 demonstrated the value

of finite state machines by describing results ob*ained for
the RIG system.

6.2 Reliable Communications Protocol

6.2.1 Introduction

This section uses the <finite state machine formalism +*to
describve a situation where +the network servers which
implement *he reliable transmission protocol in RIG VVerman
et al., 78] enter 2 loop of states causing each packet o be
retransmitted twice. The problem has been discussed but
never described formally [Rovner 78]. Although the
composite model having the loop of states 1is complex, it
provides a 1language for the user to define conditions (or

transitions in +the composite model) that cause those
retransmissions.

This section has three major subsections: Subsection /A.2.2
describes two elementary finite state machines: one
modeling the sender and another the receiver. Subsection

; : "Page 70

6.2.3 describes the composite finite state machine modeling

two senders and two receivers. Subsection A.2.4 “formally .
; defines +the system s*ates that cause entrance into the loop
] of retransmission and those that cause exit from the loop.

6.2.2 Elementary Models of Sender and Receiver

Two elementary finite state machines are described: one
3 modeling the sender and another the receiver. The example
: is a sender streaming messages to a4 receiver. For each
3 packet having a correct sequence number, the receiving
'?: network server sends back an acknowledgment. For each
1 received acknowledgment, the sending network server flushes)
, the buffer holding the outstanding message.

The sender starts in "idle" s%tate Idle [Figure 231, and upon
receiving 2 message from UserProcess routes it over the net,
starts a timar and moves to "waiting for an acknowledament"
‘state Wait. In +he decision state Wait, either the timer
expires and the sender moves to '"message has timed out"
state Timeout, or the acknowledgment arrives and the sender
moves to "message acknowledged" state Ack. To reftransmit
the message in state Timeout, the sender sends fthe message
once again, starts the timer.and moves back to state Wailt;

. to complete the protoccl, in state Ack the sender posts the
buffer and moves back to state Last.

™e model of the receiver is more complicated +than one of
the sender. A message may arrive out of order and bhe
rejected. Tnose decisions are based upon the status of the
finite state machine modeling +the message with a lower
- sequence number. The composite model contains +transitions
that depend on the state of the lower-levsl finite sta‘e
machine. To describe those transitions, I use the zconstruct
PREDICATZ (see Section 3.4.3). For example, *he transition

PREDICATE(Receiver[i-1] > MSGTran)

occurs when Receiver[i-1] is in the state that follows
MSGTran fe.g. Accepted or Last).

TuNW.g AT
- a B .

; Receiver(i] starts in state Idle. If the receiver model has
accepted the previous message (the model Receiverl i-11 is
either in state Accepted or in Last), Receiverli] moves *o
"available +to0 receive a message" state Available. Another
alternative in s*tate Idle is to receive the next message in
transit which moves Receive[i] to "temporary in transit"
state TempTransit. If the rprevious message has been
received correctly (PREDICATE([i-171>MSGTran), Receiverlil
moves to state MSGTran; otherwise, an error occurs since
the message has arrived out of sequence. The message is
rejected and Receiver[i] moves to state Reject. In state
Available, having accepted a message, Receiver(i] moves to

we ~

A

B
v
[

_
.

L4

T

A &)

state Accepted where it sends
enters the last state.

back

P

an acknowledgment

L I e i e TSN

Page RO

e

and

FSM Graph, Sender

Page 31

Idle Wait Timeout
| message J timeout]
0 > 50
0« J
retransmit
Ack
cleanup ack
o< < 0
flush-buffer
FSM Graph; Receiver
Idle TempTransit M3GTran
PREDICATE

start-message
G >C

(I'i-11>MSG7ran)

message-~rec

>0

o< 0«)
Reject

PREDICATE

([i-1]>MSGTran) start-message message-rec
o< o >0 3 >0

signalli-1]
ack
Accepted Last
error
0« 0 < o)
Available Error

Figure 23: FSM Communications Protocol,

Sender and Receiver

Ideally, the following seguence of events occurs for fwo
messages in transit:

Sender[i;.message

Available: Receiver! i .start-message
Sender[i+1].message
Idle: Receiver|[i+1].start-message

MSGTran: Receiver| i].message-rec

TempTransit: Receiver! i+l l.signal
Sender[i].ack
Sender| i+2] .message

Idle: Receiver[i+2 1.start-message

MSGTran: Receiver{ i+1].message-rec

TempTransit: Receiver[i+2_.signal
Sender[i+].ack

According to the specifications, the following sequence of
events, having retransmissions for every message, might
occur:

Sender[ie.méssage

(1) Available: Receiver{i].start-message
(2) MSGTran: Receiver[i%.error
Sender{ i+!] .message
Idle: Receiver[i+1].start-message
(3) TempTransit: Receivgrri+1].msg-receive
(4) SenderLiE.timeout
Available: Receiver|i].start-message

MSGTran: Receiver[i].message-receive
Receiver[i+!].signal
Senderl{i].ack

(5) Sender[i+2).nessage
Idie: Receiver!| i+2 |.start-message
TempTransit: Receiver| i+2!.msg-receive

The first retransmission (the transition on line 4) occurs
as a result of an error in the transmission media (on line
2). Consequently, the message [i+1], being out of sequence
(line 3) is rejected. Later, +the message [i] is
successfully received and acknowledged (the sequence of
transitions starting on {line 4). Now, the newly arrived
message [i+2] (line 5) is posted but it will eventually be
rejected because the message [i+1] has not been received.
This may occur in a loop causing every messagce %0 be
retransmitted twice.

Note that by extending the receiving window to accept up to
X messages out of sequence, the problem may still occur when
the message [i+k] has been posted before the message [i] is

retransmitted. One solution 1is to withhold sending the
message [i+42] until +the message [i+1] is delivered
successfully. Another solution 1is to retransmit all

messages in transit with sequence number "j" such that "j"
ig greater than "i" for all messages [i] that were lost.

.o

Page 873

6.2.3 Composite Model for Sender and Receiver

Although the composite model 1is a complex ©program, the
transitions in the composite model help to discern when the
problem is happening (not every message loss causes the
sequence of events) and why the problem sometimes disappears
as a result of a different system load.

I describe a2 composite model for two messages in progress
using four finite state machines: two describing the sender
and two the receiver. To simplify the composite model, I
include only those system states that are of significant
duration. For model of ‘the sender, the following two
combinations are of significant duration:

gSenderfi+1}=Idle, Sender{i]=Waiting)
Sender[i+1 J=Waiting, Senderli]=Waiting)

All other combinations are immediately followed by internal
actions o0f the network server. The receiver model has four
combinations of significant duration:

(Receiverfi+1%=7dle, Receiver(i%:Available)
(Receiver! i+!]=Idle, Receiverlil=MSGTran)
(Receiver[i+1]sTempTransit, Receiverfi%:Available\

(Receiverl i+1]=TempTransit, Receiver[i]=MSGTran).

Overall, there are eight possible combinations of system
states; out of them, two combinations are illegal:

(Sender(i+1]=Idle, Senderlil=Waiting,
Receiver{ i+1]=TempTransit, Receiver[i)=Available)

(Sender{ i+1]=Idle, Sender(i)=Waiting,
Receiver[i+!]=TempTransit, Receiverli]=MSGTran)

Consequently, the composite system model has only 6 states:
A, B, C, D, E, and F [Figure 24].

6 o

:.“.’,v,l.

R S

Pt e

FSM: Sender-Receiver

A:
Predicate(Sender{ i+1]=Idle, Sender[i]=Wait,
Receiver{i+!]=Idle, Receiver{i]=MSGTran)

Al: // message [i] was received

(Receiver i}:Accept)
(Receiver{ i]=Last)
(Sender[i]=Ack)
(Sender(i]=Last)

INDEX (Sender, Receiver)
CONNECT (RESET)

A2: // message [i] was lost

(Receive;i1=3rror)
. {Receivel i]=Available)
CONNECT (B)

A3: // message [i+1] is posted

(Sender[i%:Wait)

(Receiver| i]=TempTransit)
CONNECT (D)

B:

Predicate(Sender| i+1]=Idle, Sender[i%:Wait, _
Receiver{ i+1 1=Idle, Receiver|[i]=Available)

B1: // message (1] timeout

(Sender{ i]1=Timeout)
(Sender{ i]=Wait)
(Receiver(i]=MSGTran)
CONNECT(A)

B2: // message [i+1] is posted

(Sender[iﬁ:Wait)
(Receiver{ i J=TempTransit)
CONNECT (D)
C: // message [i] timeout
Predicate(Sender[i+!]=Wait, Senderli]=Wai%,
Receiver[i+1]=Idle, Receiver[i]=Available)

(Senderri%=Timeout)

(Sender[i)=Wait)
(Receiver{ i]=MSGTran)
CONNECT (D)

Figure 24: Composite FSM , Sender-Receiver
continued on the next page)

. LA S PR APy T g M T TR Ve i

Page 24

s e T 2

Page 85

D-
Predicate! Senderf1+11 =Wait, Sender/il=Wait,
Receiver[i+i J= Idle, Receiverl i) =MSGTran)

D1: // first receive ack [1i]

(Receive(i j=Last
(Receivel i+1]=Available)
(Sender[i]=Ack)
(Sender[i]=Last)
INDEX(Sender, Receiver)
CONNECT (RESET)

(Receiveﬁi}:Acce t)

D2: // first timeout message [i+1]

(SenderFi+1}=Timeout)
{Sender! i+1 |=Wait)
(Receiver[i+1]=MSGTran)
CONNECT(E)

Predicate(Sender[i+1]=Wait, Sender[i]=Wait,
Receiver[i+i]=TempTransit, Recelverr17 =MSGTran)

E1: // message [i] received and acknowledged

(Receivel il=Accept)
(Receivel[il=Last
(Rece1v0r1+17 Avallablp\
(aenderf1} =Ack)
(Senderl i]=Last)
INDEX(Sender, Recesiver)
CONNECT (RYSET)

// message [i] was lost

(Receive} il=Error)

(Receive_1]=Available)
CONNECT(F)

F-

Predicate(Sender[i+1]=Wait, Sender[i]=Wait,
Rece1ver[1+1]-TemD ransit, Receiver[il=Available)

// reject message [i+1] out of sequence

Recelve =Idle)

ReCGIV°F1]:Reject)
[i+
CONNECT(C)

Figure 24: Composite FSM, Sender-Receiver
{(continued)

»

€

RSP

ot

.~

¥

-

o e
R

Page |6

RESET:

Predicate(Sender{ i+1]=Idle, Sender[i]=Wait,
Receiver| i+1 J=Idle, Receiver|il= =MSGTran)
CONNECT(A)
Pred1cate(Senderf1+1] Idle, Sender[i]=Wait,
Receiver[i+l]=Idle, Recelverrl] Available)
CONNECT(B)

Predicate{Sender[i+1]=Wait, Senderli]=Wait,
Receiver| i+i]=Idle, Receiver[il=Available)
CONNECT(C)

Predicate(Sender{ i+1]=Wait, Sender(i]=Wait,
Receiver[i+1] _lee, Receiver(i] WSPmran)
CONNECT (D)

Predicate(Senderf i+1]=Wai%, Sender[i]=Wait
Receiver| i+1]=TempTransit, ?ecelverrl]-MSG”ran)
CONYECT(3)

Senderlil=Wait,

Predicate(Sender| i+1]=Wait,
1 empTransit, Recelverr17 Available)

Receiver| i+
CONNECT(F)

ey
m

i

Pigure 24: Composite FSM, Sender-Receiver
“continued)

o 3 B 3 < ey ST o O e - P Y, g woa

DAY

N

e o e 30 TR TV

Page 87

6.2.4 Results

To describe the entire model would be 1like +trying +o
describe a program in ZEnglish; instead, I describe only
those system states which cause retransmissions.

In state F, message [i+1] arrives out of order, therefore,
it is rejected. The following conditions cause the entrance
of the state F. 1In state E there are +two messages in
transit: [i) and [i+1]. 1If message [i] is lost, the model
enters "message [i] is lost, and message [i+1] is still in
transit" state F. Clearly, message |i+1] will arrive at
Receiver[i+1] out of order and will be rejected. This is
the type of a situation of prime interest in this section.

The following sequence of state-transitions enters state P:
D> EZ2 >F

In state F, message li+1] is rejected moving *the model to
"both messagss are lost" state C. Then, Sender{i] times out
message [i] moving to "message [i] is in transit" state D.
In state D there are “wo alternate transitions: to state D1
and to D2. The s%tate D1 continues moving the model +through
the 1loop of states causing retransmissions. In state D1,
nessage [i] arrives _ correctly at Receiver(i] which
acknowledges Senderli], thereby completing the protocol for
message (1]. In addition, Receiver[i+1] moves %o state
Available. In this <case, the INDEX operation is applied
both for the sender and receiver. In s*tate RESET, depending
on the status of message [i+1] [which was message [i+2)
orior to the INDEX operation), +here are +hree alternate
transitions: to state B, C, or F. In all these cases, +he
message 1] is lost. If the message [i+1] 1is already in
transit, the model again enters the problematic state . 1In
summary, the following state %ransitions occur in a 1loop
causing retransmission of each message:

F->C->D -=>D1 => RESET -

'LJ

There are two transitions escaping from the loop: in state
D and RESET. In state D, the transition +to s+tate D2
(retransmission of message [i+!]) moves the model back to
the correct state Z. In state RESET, the transition to
state C continues moving the model through +*he 1loop; the
transition to state B has two alternatives: transition to
state Bl guarantees the escape from the loop, and transition
to 22 moves the model back to state D.

6

.

e

]

B ¥

Tw 3

F C D D1 RESET
0 >0 >0 >0 >Q
D2 E

—>0—>0 I

B2 B
0< 0< 0¢< 0
A B1
0 {0 ommen
0« 2

Figure 25: FSM for the

Retransmission Loop

Page 82

AD=A101 954

ROCHESTER UNIV NY DEPT OF COMPUTER SCIENCE F/6 9/2
PERFORMANCE EVALUATION OF COMMUNICATING PROCESSES, (U)

MAY 80 I GERTNER NGOO14=78~C=0164
TR=7& NL

Page 89

In conclusion, tnere are three 1loops of states causing
rejection of messages. The first loop rejects messages in
state F and later retransmits them in state C; the second
loop retransmits in state B2; +the third loop retransmits in
state C.

1) F-=>C ->0D -> D1 -> RESET -> F
2) D -> Dt -> RESET -> B -> B2 ->D
3) C =>D => D1 -> RESET -> C

Note that two escape conditions through states D2 and B1
were previously described as a way to avoid retransmissions.
The transition (D->D2) is enforced by always retransmitting
messages with higher sequence number; likewise, +the
transition (B->B1) is enforced by do not sending messages
with_higher sequence number until an acknowledgment has been
receiveqd.

a2

P YOy
A4 p

Page 90
6.3 Optimization of High-Level Protocols

6.3.1 Motivation

One advantage in multi-process systems is the flexibility
offered by easy modification of processes without
reassembling the whole system [Parnas 72]. To achieve a
flexible system, we strived to hide implementation decisions
within each process in RIG. Unfortunately, such a clean
decomposition of a system 1into processes increases the
number of messages. This section proposes an optimization
that significantly reduces the number of messages in the
system. Instead of sending a message, a process may choose
to perform computations locally. An analogy 1is an
optimizing compiler, which, in an attempt to save +the
procedure call overhead, inserts the procedure body into the
code of the calling program; or, in some other cases, a
highly specialized and efficient -control transfer.

Finite state machine models of computation helped to
identify +*wo different parts of a process code: the firs%
part deals with flow of exceptional messages modeled by
great many of state-transitions in finite state machines;
the second part deals with the common flow of messages
modeled by 2 small number of state-transitions. This
observation suggests an optimization that is appropriate for
the most common case of the message flow. The optimized
implementation requires <fewer ©processes and messages to
support the same computation; consequently, the system's
overnead and the working set size are significantly reduced.

The purpose of +this section is to motivate the reader
further 1in using finite state machine models of computation
for the design of communicating processes. There is always
a tension between monolithic and modular structure of
systems. As the number of processes in the system
increases, the overhead in interprocess communication also
increases. This section proposes a method to reduce the
system overhead by centralizing the code and state of every
process dealing with the common message flow.

$.3.2 An Cptimization of the PDP-10 Telnet Protocol

In RIG, the PDP-10 Telnet facility requires five processes:
Telnet, TenServer, TTVInput, TTYOutput and DCU; the virtual
terminal requires five processes: Terminal Input,
LineHandler, Pad, TerminalOutput and DCU [Lantz <01,
Overall nine processes support the flow of messages Ybetween
the PDP-10 and user. To simplify the example, we consider a
user program running on the PDP-10 and printing data on the
RIG terminal. In this particular case, one process that has
obtained the state and code from four other processes is

) Y . - ~ty W) o [—— A v Y SE

—

A LA -

L LS

Page 91

sufficient to support the protocol. The following
information is provided by the four processes:

1) TTYInput provides the code and state of the 1line +that
handles incoming characters from the PDP-10.

2) TenServer provides the code and tables for multiplexing
different users sharing the same physical line.

3) Pad provides the code and data structures for displaying
one line on the terminal.

4) TerminalOutput provides code and state for handling +the
terminal screen.

In RIG, the code for handling the common case of the message
flow 1is very simple; most of the codle deals with handling

of exceptional conditions. For example, TTYInput is
concerned with errors occurring on the physical 1line.
TenServer handles the flow of incoming characters. In

addition, 1t recognizes various control characters having a
special meaning on the PDP-10. Pad maintains +the mapping
between virtual and physical screens. Recognizing those
conditions is easier than handling them. For example, if a
user <types a special character "<CTL>S", +the system's
activities drastically change: TenServer simulates the
meaning of the special character by disabling output on the
virtual terminal in RIG. In addition, it sends the
character to the PDP-10 and waits for special user actions
(<CTL>Q) %o resume output of the wuser program. In this
case, recognition of the special character was easy but the
nandling was more difficult requiring establishment of the
new state. Another example requiring complex actions of the
system is 2 user changing +the configuration of +the RIG
terminal causing the Pad process to cease the display of
data on the terminal screen.

In summary, the optimization of a high-level protocol is
possible for the common message flow at the expense of the
exceptional flow. Here, the hypothetical example was the
PDP-10 Telnet protocol (it was never implemented). The
basic assumption was that most of the code -establishes the
initial state of processes and handles exceptional
conditions but only a very small portion of code supports
the common flow of messages. To optimize +the flow, I
suggested centralizing the state and code dealing with the
common case. The functions that previously required a few
processes are then performed by a single process. To apply
those 1ideas to other systems wmight be very difficult.
Nevertheless, for systems that are designed wusing finite
state machine models of computation, we can again identify
the initialization of a finite state machine and gain in
efficiency of the implementation.

™ e W Ay R Tl R W O T VR Dy LIB 4 SR

6.4 Summary

In addition to performance analysis, finite state machines
have benefited two areas: (1) wvalidation of reliable
transmission protocols z2nd (2) optimized implementation of
high-level protocols.

In the first area, I used finite state machines to describe
a situation where the network servers, which implement the
reliable transmission protocol in RIG, enter a 1loop of
states causing each packet to be retransmitted twice. The
composite model contained the 1loop of state transitions
causing retransmission of each message and the alternate
state-transitions causing exit from the loop. To reduce the
number of states 1in the composite model, I described only
those states that are of significant duration in execution
of the system. This is a novel idea in describing composite
models. The suitability of +two +transitions, INDEX and
PREDICATE, was tested in new applications.

In the second area, finite state machines helped to identify
a large portion of the code that deals with initialization
and handling of exceptional messages bdbut only a small
portion of +the code deals with the common case of message
flow. An optimization was described for a simple case,
where a process, instead of sending a2 message, may choose to
perform computasions locally, thereby significantly reducing
the number of messages. These two examples further support
the wvalue of finite state machines for designing,
implementing and analyzing the performance of communicating
processes.

Conclusions

7.1 Results

The thesis presents a new method for performance analysis of
communicating processes based wupon a finite state machine
model. An experimental performance monitoring system was
implemented and applied to the analysis of RIG, a
message-based distributed operating system.

First, I described the basic properties of messages traces
by introducing a small number of time stamps (Birth, Start
and Finish) +that were used to calculate intervals of
interest (Execution, Interval and Delay). Analogous
intervals were also defined for a sequence of messages.

Further, I introduced a finite state machine model
describing the semantics of the message traces. The time
intervals that were used to describe messages were extended
to describe events defined by state-transitions in the
finite state machine model. Elementary finite - state
machines described a single process representing =2
sequential program; composite finite state machines
described a group of processes representing a parallel
program. To reduce the number of states in ‘composite
models, I introduced three new kinds of transitions: (1)
FSM describes a long sequence of messages, (2) PREDICATE
describes the exact system state as a vector of process
states, and (3) INDEX describes 2 limited number of messages
in 2 strean. These +transitions were used to describe 2a
composite model of the system.

The quality of RIG has improved substantially due to the use
of the monitor. In this dissertation, I described two kinds
of examples: The first example dealt with long sequences of
messages produced by many processes communicating in a full
hand-shake style. The second example dealt with pipelined
computations that were described with a stream of messages.

To describe a long sequence of messages, I used 2a four
levels hierarchy of finite state machines. This allowed the
performance evaluator to concentrate on very detailed
computations while retaining the overall statistics of the
system. This kind of information would be very difficult to
obtain without the use of finite state machines.

The second exanple was concerned with pipelined
computations. First, I described a separate finite state
machine for each message in progress. The composite nodel
then described system states as a vector of states of finite
state machines each modeling one message in progress. To
reduce the number of states in the composite model, I used
the transitions PREDICATE and INDEX to describe a 1limited
number of messages in a stream. These transitions were used

-~

L4

— - .

P %8

e il

Page 24

to describe 2 small subset of system states (which represent
2 user view of compu*ations in the system). This is 2 novel
idea in describing composite models and 1is based on +the
observation that only =2 small number of system states are
ac*tually reached during the system's execution.

Jomrusite models expressing the wuser view of computation
were applied to validate reliable transmission protocols. I
described a. situation where the network servers which
implement the reliable transmission protocol in RIG enter a
loop of states causing each packet to be retransmitted
twice. Again, Dboth transitions INDEX and PREDICATE were
successfully applied in describing transitions between. the
chosen set of system states. The problem of retransmission
was then formally described in terms of system
state-transitions.

Finite state machine models were Ffound +to be extremely
valuable and practical models for the performance =znalysis
of communicating processes. Although a groun of processes
constitute a2 parallel program that is characterized only by
2 par*tial ordering of events, in our experience with RIG
only =2 small fractiorn of that partial ordering is exercised.
Under changing load conditions, the system passes through a
large number of states and quickly stabilizes to 2 new set
of states characterizing *the system wunder each new 1load.
The surprising result was that the total number of states
describing the average behavior of the system remained small
for a2 wide range of the load. This observation directs the
performance evaluator in a search of a small set of states
that occur often in the execution of the system and are of
significant duration.)

The growing interest 1in message-based computing 2and in
formal description of communication protocols suggests that
many future systems will be implemented or at least designed
using finite state machines. In those cases, the
performance evaluator will immediately have accurate finite
state machine models available for the performance analysis.
For other systems, describing finite state machines may be
very difficult or even impossible (due to the large number
of s*ates). Although systems are implemented as a
collection of parallel programs, a well-designed system is
characterized by sequential behavior at a higher-level of
abstraction. Hence, one should be able %o apply finite
state machines %o describe sequences of events.

13 ' -~ oy P B " T el 4w

Page 95

. 7.2 Disadvantages

Performance monitoring with finite state machine models of
computation has two drawbacks: (1) 1limited scope of
‘ applications and (2) difficulty in programming those models.
For example, abstract models do not help in the search for
computational bottleneck at the procedure 1level. I have
witnessed situations where rewriting a single procedure in
an assembler improved the overall system performance by 10%.
In this case, +the main problem was to find that procedure
which was the bottleneck of the system. An abstract model
describing the user view of computations in the system would
frequently fail to include the bottleneck in the model.

= Inventing concise models of complicated systems is an art.

' Many experiments, as well as deep unders*anding of the
system, are required %o debug the model of a computation.
One difficulty is in finding a sm2ll subset 0of system states
that occur often in execution of the system and ars of
significant duration. Another difficulty is in encoding *he
model into a2 machine-readable form. Although +b° language

develoved in +he dissertation helps, other methods (which
are teyond the scope of thio work) need +to be rlei e.2. =
graphical drawing of 2 finite s%a*e machine 2nd4 a compniler

accepting *this drawing would te opotantial assets to the
performance evaluator.

.. 7.3

(&=

nders*tanding Concurrency

darstanding concurrency is a topic of great interest for
18 *heore*lnal no'nputer science community [Fisher e% al.,
]. Zerein, I compare the use of parallel structures in
. RIG with other syotems. In our experience with RI%, we have
- developed 2 set of guidelines (unenforced) which made the

. implementation and debugging of the system easier.

ok 3
o gite]

O

Several modern languages orov1de facilities which express
.. varallelism in programs rLampson et al., 19201 and
Y [Brinch-Hansen 75]). In RIG, the parallelism is static:
%, processes are created or killed rarely, and this is done
0y only a2t system initialization +time. Consequently, 2a RIG
process is a sequential ©progranm; the parallelism is
- 3 achieved by having multiple processes. Other svstems
. composed of processes representing sequential programs allow

interprocess communication via shared variables [Peterson
. 79]. In RIG, processes share no data and communicate only
via nmessages.

-

There are basically two styles of message communication:
v full hand-shake and message streaming. e message
streaming is the only means of parallel computation. ™e
purpose of those constraints is to further reduce the number
of states in the system. Debugging this kind of computation

" - .
e

EL L3

Page GF
is easy: the flow control mechanisms guarantee 2 limi+ed
number of messages outstanding for every ovrccess; the

full-hand shake 1limits +the number of processes ready for
execution. Analogous constraints in programming of parallel
systems have also teen used by other authors ,[Mattheyses et
al., 79] and [Yoeli 781). :

One can argue that 2 systen comnosed of processes
communicating in full hand-shake or in message streaming has
less parallelism than would be possible by using a2 more
liberal style of message-passing. It may be, however, that
the system can not be implemented and debugged by any other
style of communication, or it may not be oractical with the
available collection of tools and concepts (e.g. hetter
debuggers, suitable for parallel processes).

Page 07

7.4 Futpre Work

Accurate models of behavior are still by far +the wezkest
link 1in all attempts to evaluate the performance of complex
computer systems. In the case of multi-process systems in
which processes communicate only via messages, system
designers and implementers have much better intuitions on
the ©behavior of the system. The designers use (or a% least
they should use) finite state machines +to0 validate +he
correctness of <those systems. In this dissertation, I
apprlied finite state machines %o analyze the performance of
: such systems. The use of crude finite state machine models
K. having detailed specifications 2%t the vpoints of interest
’ appears promising.

Clearly, progress in this area depends on the exten* 4o
which finite state machines can describe existing operating
systems or can be applied *to describe future systems. Many
future systems will be designed and implemented with various
automated tools using formal mecdels of computation. (Todav,
the notable example is SARA, a simulation sys*tem using UCLA
graphs and =2 very high-lavel 1language “For design ani
analysis of new systsms Estrin 2%t al., 781). The same
formal models can then be applied %o performance analysis of
those systems. Ve have dons much of this for $he RIG systenm
- using finite state machine mnodels of computation. Our
experience witn a real system indicates that our methdds are
sound, %that even 2 crude finite state machine nmodel is
adequate for finding performance bugs. The next sten is *o
apply those ideas %o other systems and <*c¢ solve a wider
range o0f verformance problems.

Page 0O°

Bibliography

(Anderson 1276] Anderson J. and Browne J. "Graph Models of
Computer Systems: Application to Performance Evaluation of
an Operating System"”, in Proc. International Symposium on
Computer Performance Modeling, Measurement and Evaluation,
Harvard University, 1976.

[Baker 78] Baker H. "Actor System for Real-Time
Computation”, Ph.D Thesis, ILaboratory for Computer Science,
MIT, 1978.

[Ball 1976] Ball E., Feldman J., Low J., Rashid R., Rovner
P. "RIG, Rochester's Intelligent Gateway: System
Overview", IEEE Transactions on Software Engineering, Vol.
SE-2, No. 4, December 1976.

[Ball 1979] 3all.E, Burke E., Gertner I., Lantz ¥., Rashid

R., '"Perspective on Message-based Distributed Computing”,
IEEE Proc. Computer Networking Symposiun, Maryland,

December, 1979.

[Bartlet® 691 Bartlett K., Scantlebury R., Wilkinson P. "A
Mote on Reliable Full Duplex Transmission over 1/2 Duplex
Links", Comm. ACM, Vol. 12, ¥No. 5, 1960,

[Raskett 77] Basket F., Howard J., and Montague J., "Task

Communication in Demos™, ACM Proc. of the 5th Symposium on
Operating Systems Principles, November 1977.

(Batson 75] 3atson A. "Program 3ehavior =2t the Symbolic
Level", Computer, Yovember 1976.

[Bochman 1977] Bochman 5. and Gescei J., "A Unified Method
for the Specification and Verification of Protocols",
Information Processing 77, Proceedings of the IFIP (Congress
77 {Toronto), 1977,

[Bochman 1977] Bochman G.and Jochim 7., "Development and
Structure of £.25 Implementation, Publiecation 202,
University of Montreal, July 1978.

[Bochman 1972] Bochman G&.
Communicatiocon Protocecls”
Protocols Conf. Liege, !

, "Finite State Description of
in Proc. Computer Metwork

Brinch-Hansen 1972] Brinch-iansen "The Programming Language
L J - & guae
Concurrent PASCAL, IEZE Transactions on Software
Engineering, SE-1, 1975.

(Campos 78] Campos I. 2nd Estrin G. "SARA Aided Design of
Software for Concurrent Jystems", National Computer
Conference, 1979, pp. 325=334.

[Chany 78] ¥.Chany and J.Misra "Specification, Synthesis,

i 4
1
1

N s)

L4

T

*
’-‘

Page NN

Verification and Performance Analysis of Distridtuted
Programs", TR-86, University of Aus*in, Yovember, 10792,

[Cheriton 79] Cheriton D., Malcolm M., Melen L., and Sszager

G. "Thoth, a Portable Real-Time Operating Systen",
Comm. CACM, February 1979,

[Dijkstra 1968] Dijkstra C. "Co-operating Sequential
Processes", in Programming Languages, ed Genuys F., Academic
Press, N.Y., pp. 43-112, 1968.

[Estrin 67] Estrin G. and Martin D. "ZIZxperiments on Models
of Computations and Systems", IEEE Tran. on IZlectronic
Computers, Vol. EC-16, No. 1, 1067.

[Estrin 78] Zstrin G., "A Methodology for Pesign of Digitsl
Systems- Supported by SARA at the agze of one", AFIPS
Proceedings, Vol. 47, 1978, pp. 313-324.

[Farber 73] Farbter D. e% al., "The Distributed Computing

System", IZEZ Proc. Compcon, 19792,

[Feldman 1971] Feldman J. and Sproul R., "Svstem Supoor:

for the Stanford Hand-Zyz System", Second In‘ternational

Joint Conference on Artificial Intelligence, London,

September, 1971,

[Feldman 1277] Feldman <. "Synchronizing Distant

Cooperating Processes"”, TR-26, Decpar*ment of Computer

Science, the Universiiy of Rochester, 10977.

[Feldman 19731 Peldman J., Low J. and Rovner D.,
"Programning Distriduted Systems", Proc. of the National
Conferance of the ACM, Washington, DC, December 1978,

Peldman 1972] PFeldman J., "High Level Programming For

Distributed Computing", Comm. ACM, July 1979.

Gertner 79a] Gertner I. "Performance Evaluation of

bommunicating Processes"”, Proc. ACM. Conference on

Simulation, Modeling and Measurement of Computer Systems,
Boulder, Colorado, August 10709,

[Gertner 79b] Gertner I. "Performance Analysis of RIG",
internal memo, Computer Science Department, University of
Rochester, August, 1979,

[3ertner 79¢c] Zertner I. "RIG System Yernel", in%ternal
documen<, Computer Science Department, Universi
Rochester, October, 1072,

nte
ty of

[IBM 76] IBM, "Systems Network Architec*ure, Tormat anA
Protocol Reference Manual: Architec*ure Logic", °C
20-312-0, IBM Corporation, White Plans, NY, 1074,

A * -k " P SN, . ¥ I NI QA o [T] -

B E 0 - 3

Programming
IBM Zoryp.,

1073]

current
19782,

HJansen P.

Programming Concept", Comm

[Howard 19721 Howard J. and Alexa
qeouences of “oeraflons Performed by °r
Methods, Prentlvv—Aall, 1873, p. 2%9-2

rt 78

[_—‘l

IS die]

am t
Di i

<
[} 8

e

~}tdgr—

o)

s
y July
[Lampson 8C) Lampson E.
Processes z2nd Monitors i
February 13220.

ot
™

U)l‘_ﬂ
S
w ©
< o3
[t)]

4
[N
[40]
3

[

3w

C3r
TR
- G2 D
< ot 3
@®» D cr
— £

mn W

o

Cx (O
@ ey £
S w
kg

® p @
iR NG e

D
3

>

o
(XS
(4]

em"

<t
(/)

Go

r..JuC 23 1)

Voni® ;oring”
September,

’
17

7.

"The Eve
TOHB-

781 MacDougall M.
Computer Conference,

[MacDougall
dational

t+h

v i

791 Ma eyses R.,
andi Analysis of
Conference on

Computer Systems",

Mattheyses
Specification
ACM. Proc.
Modeling of
1972,

Paralle
Jimulas
Boul

[McDaniel 77] McDaniel
Instrumentation System
Symposium on Cperating Syst

Distri
Principl

T

fo
bems

"Distributed

Computer

Conry

ion,

Library:

tnite P21

cHM

A

.

’

A4

nder .
ograms",

54.

and the Ordering

ACM, 7

"Ixpe

’
ACY,

"Virtu

n%

g

o

3 -

c

w

1

der, Colo

"METRIC:

buted
es,

id R.,

Vol.

Se

aing
2L

7,
n3, o

Processes:
Vol.

21,

Ierv

100

Ice
v,

A
Yo.

"Analyzing

Program

01, 21,

rience
27,

a

1 rm

Me
ence,

leasurement

rado,

2 Xe

"Tther

m
Tes*t

No.

with

Yo.2,

minal
tha

anAd

August

rnel

Environments”,
November 1077,

net:

[Metcalfe 76] Metcalfe R. and Dav
Distributed Packet Switching
Comm. ACM, July 1976.

for Local Zomputer

Networks",

[Mills ~7A] Mills D. "An Overview of <“he Dis*rihuted
Computer Yetwork", AFIPS Proc. MNCC, AFPIPS, June 1074,
[Millstein 1077] Millstein R. "A Distributed Processing

System", Proceedings of the 1977 Annual ZTcnference of the
Association for Computing Machinery.

[NSW 76] NSW Protocol Commitee, "MSG: The 1In
Communication Facility for +the National Softwa
TR-3483, Bolt Beranex and Newman, December 19,6.

[Nutt 72] Nutt G. "Evaluation Yets for Computer Systems
Performance Analysis", Fall Join* Comp. <Conf. 1972, APIPS
Proceedings, Vol 41.

[Parnas 721 Parnas D. "On the Zriteria *o te Used in
Decomposing Systems into Models", Comm. ACM, Vol. 15, No.
12, December 1972.

[Peterson 77] Peterson 3. and Fisher M. "Zconomi~cal
Solutions for the Critical Section Problem in 2 Pistributed
stt:m", ACM Proec. cf O%th Symposiun on Theory 2f
Computing”, 1277,

[Peterson 79) Peserson . "Understaniing Concurrency”,
TR-~59, Pepartment of Computer Science, University of
Roches*ter; also apgveared as Ph.D Thesis, University of
Washing*on, August 1979

fPaterson 77] Dstarson J., "Petri llets", AJYM Computin
Surveys, Vol. 9, No. 3%, qepue'n“er 1977,

[Piatkowski 75] Piatkowski Y. "Finite Ita%e Architecture",
Techinical Report IBM, TR-29,013%, YNorth Zarolina, Research

Triangle, August 1975.

[Postel 1974] Postel J., "A Graph Model Analysis of Zompu<er
Communications Protocols", ®h.D Thesis, University 3¢
California, Los Angeles, 1974,

-

Stavely A. "DenaV1or Modﬂhng during Software Design", TEET
Software Engineering, Vol. E-4, Yo. 4, July 1972,

[Riddle 78] Riddle W., Wileden J., 3ayler J., Segal

[Richards 62] Richards "BCPL Reference Manual".

[Rose 781 Rose C. "Measurement Procedure for Cusu
Network Models of Computer Systems”, ACM Computing Surveys,
Vol. 10, No. 3, September 1978.

[Rovner 78] Rovner P. Private Communications on Reliable
Transmission Protocol 1in RIG, Computer Science Devartment,
University of Rochester, December 1978.

[Ryder 79] Ryder B., "Constructing the Call Graph of a

R

YN

o

-

*

RS KR

Program", EEE Transaction of Software Enzineering, Vol.
SE-5, No. 3, May 1979,

[Schantz 79] Schantz R., "A Performance Analysis of Mational
Software Works System", Bolt Beranek and Newman Inc., Report
No. 3847, March 1979. ’

(Solomon 78] Solomon M. and Finkel R. "Roscoe--~ A
Multicomputer Operating System", TR-321, Computer Science
Department, University of Wisconsion-Madison, Sevtember
1978.

[Sunshine 78] Sunshine C., "Survey of Protocol Defini*ion
and Verification Techniques", Proc. Computer Networks
Protocols Symposium, Liege, Belgium, 1979,

[Sunshine 78] Sunshine (. and Dalal Y. "Connection
Management in Transport Protocols”, Computer Networks, Vol.
2, No. 6, December 1078.

[(Tompson 1974] Tompson X. and Richie D., "The TUNIX Time
Sharing System", Comm. CACM, Vol. 17, No. 7, July 1974,

[Van-Mierop 79] Van-Meirop D., "Desing and Verification of
Distributed Interacting Processes", PH.D Thesis,
UCLA-ENG-7920, March 1979.

[walden 1972] Walden D., "A System <or Interprocess
Communication 1in 2 Resouce Sharing Computer Network", ZTomm.
ACM, Vol. 15, No. 4, April 1972.

[Watson 70] Watson R., "TimeSharing System Design Concepts",
MeGraw-Hill Book Company, 1970.

[(¥atson 79] Watson R. and Pletcher J. "A Protocol
Structure for Network Overating System Services",
Proceedings 4th Berkley Conference on Distributed Data
Management, August 1979,

[West <. 19781 West C. "General Technique ‘or
Communications Protocol Validation", IBM Journal of Research
and Development, Vol. 22, No. 4, July 1978.

[Witby-Strevens 78] Whitby-Strevens C. "Towards the
Perforaance ZIvaluation of Distributed Computing Systems",
Proc. CCMSAC 78, Chicago, IL, October 1078.

[White 761 White J. "A High-level Framework for
Network-based resources sharing”, AFIPS Proc. NCC, AFPIDPS,
June 19756.

(Yoeli 78] Yoeli M. "A Structured Approach +o parallel
programming and Control", TR-126, Technion, Haifa, Israel,
1978.

Page 103

Appendix A: Create a2 process

This appendix contains a description of the finite state
machines and statistics in *the form that is actually used by
the performance monitoring system for the analysis of RIG.
Section 4.1 deéescribes the same example (the initialization
of a virtual terminal in RIG) in a more descriptive form
that is used throughout the dissertation.

Finite state machines are defined as BCPL oprocedures that

are loaded together with the performance monitoring system.

The differences between BCPL vrograms and the formalism used

throughout the thesis 1is purely syntactical. A procedure

call of a finite state machine definition produces a table

of state transitions each containing either a2 message triple -
{which consists of a sender, receiver and message

identifier) or 2 9pointer to the lower level finite state

machine. The statistics are calculated and presented for

each state transition.

The following two pages contain programs ReadTile{) and
CreateProcess(). The statistics of those two models were
sufficient to draw the conclusion +that the <£ile sgystem
accesses account for 25% of the total system in starting a
terminal. The obvious optimization in this case is to keep
the process definition table in memory as was described in
Section 4.1. '

The conclusion was drawn on the following basis: Execution
of the transition FSM(ReadFile) is 2608 milliseconds. The
system was idle 1312 milliseconds while waiting for +the
completion of the disk operation [+there were no additional
activities in the system). This constitutes about 504 of
the overall execution +time in creating a process (the
accunulated execution time is 4878 and the total idle +time
is 1312 milliseconds). "OtherStatistics™ accumulates
statistics for all other events in the system that were
selected by the CreateProcess descriptor. Agzain, about 50%
of the total time was spent 1in creating new processes.
Consequently, 25% of the total time was spent waiting for
the file sysiem to read process description tables.

Y-

Page 104

and PeadPile(} be

// OpenFile:

Transition("AnyProcess", "FileSystem", "CpenMsg")
BindMsgData("FileRequester", offset StatMessage.Sender/15)

//loop on disk-I/0 in order to open a file
let branchi =

Transition("System", "FileSystem", "DiskInterrupt™)
Connect(brancht)

Transition{ "FileSystem", "FileRequester", "FileOveneAd",
branch?)

//loop on disk-I/2 in order to read file blocks
let branch2 =
Transition("FileRequester","FileSystem", "InputMsg")
Transition{ "System", "FileSystem", "DiskInterrupt")
Transition{ "FileSystem", "FileRequester", "OutputMsg")
Connect{branch?2)

. // close a file

Transition! "FileRequester", "FileSystem", "CloseMsg",

1 branch?)
Transition{ "System", "FileSystem", "DiskInterrupt")

o Transition! "FileSystem", "FileRequester", "FileClosed")

. Connect (LASTSTATE)

T]

Page 105

and CreateProcesss() be
// request to start a process

Transition("AnyProcess", "ProcessManager", "CreateProcessMsg")
BindMsgData("ProcessRequester", offset StatMessage.Sender/16)

// read PDT block:
FSMTransition("ReadFileEvents")
//create process map

Transitiong "ProcessManager", "NewProc", "NewProcCreate")
Resume { "ProcessManager"”

// Alternative I: Requesting process receives a reply first

let branch! =

Tansition("ProcessManager", "ProcessRequester", "PMReply")
BindMsgData{ "CreatedProcess", offset StatMessage.Datal/15)
Transition!"AnyProcess", "CreatedProcess", "AnyID")

Connect{LASTSTATE)

// Alternative II: the newly created process is queued first
Transition{"AnyProcess", "CreatedProcess", "AnyID™,

branchi)
Transition{ "ProcessManager", "ProcessRequester", "PMReply")
BindMsgDa*a{ "CreatedProcess", offset StatMessage.Datal/16)
Connect(LASTSTATE)

]

FSM: CreateProcess
1) AnyProcess =>
NumSamples:= 8
Delay:= 120

2) FPSM(ReadFileEvents)

Page 106

ProcessManager , CreateProcessWVMsg
Execution:= 150 Overhead:= 50

NumSamples:= 106 Execution:= 2608 Overhead:= 600
Swapped: = 14 IdleWaitDevice:= 1312
IdleWaitSwap:= 70 Delay:= 2030
3) ProcessManager => NewProc , NewProcCreateProcess
NumSamples:= 3 Execution:= 1126 Overhead:= 50
Delay:= 130
4} ProcessManager => ProcessManager , AnyID
NumSamples: = 3 Execution:= R4 Overhead:= 50
Delay:= 120
5) ProcessManager => PrccessRequester , FmRevly
NumSamples:= 2 Zxecution:= 12% Overhead:= 50
Delay:= 60
7) AnyProcess => CreatedProcess , AnyID
fumSamples: = 8 Execution:= 126 Cverhead:= &0
Swapped:= 13 Delay:= 110
6§) AnyProcess => CreatediProcess , 'AnyID
VextTransition:s= 0
NumSamples:= 5 Execution:= 150 Overhead:= 30
Swapped: = 13 IdleWaitSwap:= 70 Delay:= 70
10) ProcessManager => ProcessRequester , PmReply
NextTransition:= 0
NumSamples:= 3 Execution:= 0k Overhead:= 2C
Swapped:= 22 IdleWaitSwap:= 100 Delay:= 260
AccumulatedStatistics:
NumSamples:= 146 Execu*ion:= 4878 QOverhead:= aCo
Swapped:= 49 IdleWaitDevice:= 1212
IdleWaitSwap:= 240
CtherStatistics:
NumSamples:= 204 ZExecution:= 5610 QOverhead:= 1330
Swapped: = 263 IdleWaitDevice:= 2750 1d41eBUG:= 110

IdleWaitSwap:= 1450

Page 107

Appendix B: BNF Definition of a Model
Syntax
<FSM-Model> -> PSM-BEGIN <FSM-Name> <FSM-Def> FSM-END
<{FSM-Name> -> <Regular-FSM> ! <Indexed-FSM>
<Regular-FSM> -> NAME
<Indexed-FSM> -> NAME [<INTEGER >
<{FSM-Def> -> <List~Tran>

-~ <List-Tran> <> <Tran> ! <List~Tran> <(Tran>

) {Tran> -> <(State-Label> : <Transition> ! <Transitiond
{State-Labtel> -> NAME
{Transition> -> <Event> <Next-State>
{Next-State> -> <Implied-Next> ! <CONNECT> (<State-Label>)
<Implied-Next> =-> <>
<Event> -> <Message> ! <(Tran-Index>

! <Tran-Predica*ed> ! <Tran-FSM>

{(Message> -> <Sender> <Receiver> <MessageID>
{8ender> -> NAME ! ANY

_ {Receiver> -> NAME ! ANV

. {MessagelD> -> NAME ' ANY

4o (Tran-Index> -> INDEX (<List-FSM-Name>)

" (List-FSM-Name> -> <FSM-Name> ! <List-FSM-Name> , <FSM-Named

<Tran-Predicate> -> PREDICATE ! <List-FSM-Pred>)

<List-PSM-Pred> => <PSM-Pred> ! <List-FSM-Pred> , <FSM-Pred>

- <FSM-Pred> => (F3IM-Name> = <State-Ladbel>
T <Tran-7SM> => PSM [<KPSM-Name>)
ef
: Variable Symbols:

{FSM-Model>, <FSM-Name>, <(FSM-Def>, <Regular-FSM>, <Indexed-FSM>,
13 <List-Tran>, <Tran>, <State-Label>, <Transition>, <Nex*t-State>,
“u <Implied-Yext>, <Event>,

<Message>, <Sender>, <{Receiver>, < MessagelD>,
{Tran-Index>, <List-FSM-Name>,
{Tran-Predicate>, <List~-FSM-Pred>, <FSM-Pred>
{Tran-7SM>

Terminal-Symbols:

) , ’ (v) "v"y =
PSMIBEGIN, FSM-END,

FSM, INDEX, PREDICATE,
CONNECT, ANY, NAME,

=7

INTEGER

Semantics:
Model

A finite state machine model is defined as a collection of
transitions. A sequence of transitions implies a sequence
of state-transitions; otherwise, the construct CONNWECT
explictly defines the next state. TFor each state alternate
transitions are defined by preceeding each <+ransition with
the same stats label.

FSM

The transition FSM occurs when the specified 1lower-level
finite state machine passes from the initial state to the
last state.

PREDICATE

The transition PREDICATE occurs when the specified 1lis*t of
finite state machines are 2ll in a given siate,.

INDEX

The transition INDEX causes a change Iin sys*tem sta+te, ™e
index of 2ll finite state machines specified in the 1is% is
decreased. A finite state machine modeling <he messazs [:]

in progress becomes a model for “he message [i-!'7.

-

X7

A. ".

ek w -

R
L4 .-

.
—— -

ChlR S

Page 109

Appendix C: List of User Commands

™e performance evaluator enters a command %o the monitor
which prompts for additional arguments. (The prompts are
preceeded with the sign "=>"). ZExcept for the command RUN,
all other commands affect only the state of the monitor.
The command RUN +then interprets the state by actually
performing the experiment.

The performance evaluator who uses finite state machines
typically performs the following actions:

1) compose a file containing a finite state machine
description;

2) load the file containing finite state machines !command
LoadFSM);

3) receive raw statistics using either ReceiveTrace command
which obtains statistics from a remote host or UserTraceDump
which reads in statistics from a2 local file;

4) start the experiment with the command RUN.

Of course, steps 2-4 may be contained in a transcript file
allowing *he wuser %o use just one command, UseTranscript.
The following commands are supported by the monitor in RIG:

BINDPRQOCESS
=>Vame:
=>ID:

This command binds a2 given process name to an integer. The
monitor prompts for a 1list of pairs each consisting of a
process name and an identifier. Symbolic names of processes
enable the monitor %to parse symbolic descriptions of finite
state machines and to produce a trace of symbolic messages.

CLEANUP

In the case of a system crash, this command enacts a cleanup
operation of the current experiment, saving all +he
statistics collected so far. -

DISK
=>File:

This 1is a special purpose commmand for +tracing disk

activities. It produces a time-stamped trace of all disk
commands and stores them in the specified file.

- Ean - . o A W T 'ERE

Page 110

FSMLOAD

=>Trace: 'Yes or Yo'?
=>InputFile:
=>QutputFile:
=>0utputlevel:

This command loads descriptions of <finite state machines
contained in the specified file. The trace option, when
enabled, produces a %trace of 2all state-transitions. The
output 1level parameter selects finite s*tate machines having
the specified or higher level within a hierarchy of finite
state machines.

MESSAGETRACE
=>File:
=>Histogram:

This command produces 2 time-stamped trace of messages and
stores them in the specified file. 1In addition, it produces
a histogram of 2ll the messages in the +trace. (Which
messages are traced is defined by another command:
SelectTriples).

PROCESSTRACE
=>rile:
=>Histogram

This command produces a trace of 211l processes with their
run times. In addition, it produces a histogram of all +he
process run times. (Again, processes are selected according
to the command SelectTriples).

READLOCATICNS
=>Address:

This is a special purpose command for reading arbitrary
system locations. It is used to gather some gross system
statistics such as the average number of queued messages in
the system, or the average number of ready processes.

RECEIVETRACE:
=>Host:
=>Time:
=>File:

This command stores all statistics that are received from
the remote host during the specified time period in a binary
dump file (all other files are used in textual format). The
command prompts for an identifier of the host being
measu: :d, the time 0f the measurement period (in seconds},
and 2 name of +the file that stores the raw data. The
performance evaluator may choose to produce statistics
directly without storing all statistics in the dump file.

Page 111

RUN

This command runs the monitor. For example, if ReceiveTrace
was 1nitiated, +the monitor collects raw statistics. If
UseTrace was initiated the monitor gets statistics from the
local file.

SELECTTRIPLES
=>8ender:
=>Receiver:
=>ID:

This command introduces the selection o¢f messages and
processes that appear in various +traces. Only those
processes and messages that match +the specifications of
stored triples are traced. The default value for each entry
(2 user hits "return” key) is the constant ANY, ma%ching any
value in the specified field of 2 message. Three "return”
keys *erminate the command.

SWAPTRACE
=>File:

This command produces 2 time-stamped trace of all swappe
pages. It prompts for a name of the file that stores th
data.

d
e

USETRACEDUMP
=>File:

This command uses the binary dump file tha®t was created
previously with the command ReceiveTrace. The binary dump
file is used to produce textual files of traces of various
events and statistics of finite state machines.

USETRANSCRIPT
=>File:

This command reads in the transcript file and interprets it
as if the user were interacting with the monitor.

QUIT

Quit from the monitor.

