
AD-AIOI 954 ROC HESTER UNIV NY DEPT OF COMPUTER SCIENCE /92

PERFORMANCE EVALUATION OF COMMUNICATING PROCESSES.(U)

MAY 80 I GERTNER N00011-78-C-0164

UNCLASSIFIED TR-76 NL," EEEEEEEEEEEE
EIIIEEIIEEEIIE
E~lElhElllllhE
EIIEEE.EIIIIIE
IIIIIIIIIEEEI
EEIIIIEIIIIEII
aEEE/IllEEEl/I!

II

DTIC
ELECTE

Deportment of Computer Science D
University of Rochester

Rochester, New York 14627

DITIUION STATMEN A1Z

Appvedi fGq_0 PO J608 P 8:, ~~Dlftbu~on Unl~nit"d .I

?ERIFInOPANCE 'J7A2ATU1N
of CO^MMU:::7T- ?RCCESSES,

M4ay ,Vi08 0

I iya 3ertnerJ I -J

tCompute-r-Sclence De-artment,
University of Rochester

Roches-ler, YTew o "I-

Su b mit -e d i n ? ar "i al 1 -_ llern t
of the

Reauirernen-:s for tne 1ree
DCTOR C7?- :~C~

The wor,&, r eported,-. i tis thesis was :nartially fun'ie V >?A

] ic 0 '?-'C- 64
Ac7;IonFor

NTIS GRA&I
DTIC TAB

Unnnounced D TIC
Distribution/ S U
Avralnbility Codes

t ~Avail and/or IlTvr~NSTATFMLN'DT AD
DistI Special___

Appir'vcd for public releaise;

1), 1101ution Ualiritod

Curriculum Vitae

Ilya Gertner was born in Kaunas, Lithuania, U on
April 20, 1950. He attended Polytechnical Institute of
Kaunas but received his B.S. in 1973 from Technion, Israel.
After serving in the Israeli army, he continued in graduate
school at Technion, receiving his M.S.

He entered the University of Rochester in the fall of 1976.
At the Computer Science Department he has been involved in
the development of RIG. His interests include running,
bicycling, skiing and chess.

I -

4'

II

4 - I & , I "I " ' , " I I l ' ": '"I I 1 " I " , " = - - -,.

Page ii

Acknowledgments

The author would like to express his appreciation to his
advisor Paul Rovner and members of his Ph.D committee:
Professors Jerome Feldman and James Low. Each of the
committee members contributed in a significant way to the
dissertation.

Appreciation also goes to Rose Peet for translating my
"personal dialect" into English.

And, finally, to all students who participated in the
development of RIG, without which this thesis woul be
impossible.

Page iv

* ABSTRACT

Understanding the behavior of communicating processes is
essential to the evaluation of distributed oneratin-
systems. This dissertation focuses on performance analysis
of existing distributed systems using finite state machine
models of computation. The performance evaluator describes
a finite state machine that represents a particular
abstraction, the system of interest. Different finite state
machines may be formulated and applied to the same
measurement data to extract different kinds of information.
To test the ideas in the environment of our local network, I
have implemented a performance-monitoring system that was
used to analyze RIG, a message-based distributed operatina
system. This required a language for describ-ng finite
state machines using symbolic references to RIG orocesses,
messages and a hierarchy of finite state machines.
Elementary finite state machines describe the behavior of a
single process representing a sequential program. Composite
finite state machines describe a group of communicating
processes representing a parallel program. The behavior of
a sequential program is characterized by a total ordering of
events; the behavior of a parallel progrqm is characterized
by a partial ordering. Representing all the possible
orderings of events in the composite model is an in.ractable
task. In our experience with RIG, such a composite model
includes a great many paths which almost never occur. The
challenge, therefore, is to find those paths that cccur
often in the execution of the system and are of significant
duration.< To aid the performance evaluator in describing
these paths, i introduce three new kinds of transitions:
the first characterizes a long sequence of messages; the
second describes the overall system state as a vector of

- process states; the third describes a limited number of
messages in a stream. This is a novel idea in describing
composite models of computation. Although we analyze
examples only from the RIG system, many ideas can be applied
to other programs that are characterized by sequential
behavior at some level of abstraction.

INL m

lb!

Page v

CONTENTS

1. Overview and Outline

1.1 Introduction
1.2 Related research

, 1.3 Outline of the dissertation

2. The environment of RIG 11

2.1 introduction
2.2 Overview
2.3 Implementation of messages

2.3.1 Interrupt messages
2.3.2 Flow control
2.3.3 Network Communication

2.4 Communication Styles

2.5 Summary

3. Performance Measurements of Message Traces 21

3.1 Introduction
3.2 An example of a distributed graphics application
3.3 Message traces

3.3.1 Introduction
3.3.2 Time intervals of a message
3.3.3 Statistics of messages

3.3.4 Statistics of a sequence of messages
3.3.5 Time intervals of parallel processes
3.3.6 Summary

3.4 A Language for Describing Finite State Machines

3.4.1 Motivation
3.4.2 Elementary Finite State Machines
3.4.3 Composite models for pipelined computations

3.5 Summary

4. Examples 42

4.1 introduction
4.2 Large scale computations

4.2.1 Introduction
4.2.2 Message trace
4.2.3 Reading a block of data
4.2.4 Reading a file
4.2.5 initializing a terminal
4.2.6 Results

t

Page vi

4.3 Pipelined computations

4.3.1 Introduction
4.3.2 Writing a block of data
4.3.3 Composite model for two messages in progress
4.3.4 Composite model for two users
4.3.5 Results

4.4 Summary

5. Implementation 71

5.1 Introduction
5.2 User interface
5.3 Statistics gathering
5.4 Interpretation of finite state machines
5.5 Summary

6. Other uses of finite state machines 79

6.1 Introduction
6.2 Reliable communications protocol

6.2.1 Introduction
6.2.2 Elementary models of sender and receiver
6.2.3 Composite model for sender-receiver
6.2.4 Results

6.3 Optimization of high-level protocols

6.3.1 Motivation
6.3.2 An example of PDP-10 Telnet protocol

6.4 Summary

7. Conclusions

7.1 Results
7.2 Disadvantages
7.3 Understanding Concurrency
7.4 Future Work

Bibliography ..

Appendix A: Create a process 103
Appendix B: BDTE definition of a model107
Appendix C: List of user commands lOo

Page vii

List of Figures

Figure 1. Environment of RIG.
Figure 2. Handling of Devices 16
Figure 3. Network Interprocess Communication 19
Figure 4. Example of Distributed Graphics 22
Figure 5. Message Trace 27
Figure 6. Event Time Stamps 27
Figure 7. Time Intervals of a Message 2
Figure 8. Activity Graphics
Figure 9. Elementary FSM LinkProcess4
Figure 10. Composite FSM Graphics 5
Figure 11. INDEX Transition in a Stream of Messages .

Figure 12. PREDICATE Transition in Composite Model. 7

Figure 13. User Windows 0
Figure 14. FSM, Read Block 40
Figure 15. FSM, Read Block, Simplified Composite. . . 51
Figure 16. FSM, Read File 57
Figure 17. FSM, Initialize Virtual Terminal 6
Figure 18. Write Block 61
Figure 19. FSM, Write Block Two messages in progress .r"

Figure 20. FSM Program, Write B1 ock 95
Figure 21. FSM, Write Block Two Users 6
Figure 22. Implementation

Figure 23. FSM, Communications Protocol,
Sender and Receiver 1

Figure 24. Composite FSM, Sender-Receiver Q4
Figure 25. FSM for the Retransmission Loop......

II

Page 1

1. Overview and Outline

1 .1 Introduction

Measuring the performance of communicating processes is
difficult due to the partial ordering of events. I
introduce a total ordering of events in the context of a
finite state machine model. Different finite state machines
may be formulated and applied to the same data to extract
different kinds of information. The basic assumption used
throughout the dissertation is that even parallel programs
are characterized by sequential behavior at some level of
abstraction. The major concern is the development of
programming tools and a methodology for performance
monitoring of distributed systems.

This dissertation was primarily motivated by the author's
experience in tuning the RIG system "Rochester's Intelligent
Gateway for the local network at the Com uter Tcience
Department) FBall, Burke, Gertner, Lantz, and Rashid, 10701.
RIG is a message-based distributed operating system intended
to serve as an intermediary between the human user and a
variety of computing facilities on the local network. The
work reported herein is a child of this environment: The
performance monitoring system ("the monitor"! runs on a
stand-alone minicomputer used to collect statistics of the
distributed operating system. Messages are the basic events
being measured (if a higher resolution is reauired, a
process must be modified to send a pseudo-essage. Finite
state machines are used by the monitor to select events of
interest and to present results to a performance evaluator.
Events of interest are those messages that trigaer
state-transitions in a finite state machine model. The
performance evaluator is a person using proaramming tools in
an attempt to understand the performance of a runnina
system. The quality of RIG has improved substantially due
to the implementation and use of the monitor. More to the
point, the suitability of the mechanisms and underlying
principles of the performance monitoring system was tested
by real measurements on a real system.

There are three general purposes of performance evaluation:
selection evaluation, oerformance projection, and
performance monitoring rLucas 71]. Selection evaluation
uses performance as the major criterion in the decision to
obtain a particular system from a vendor. Performance
projection is oriented toward designing a new system. The
goal in performance projection is to estimate the
performance of a system that does not yet exist.
Performance monitoring provides data on the actuq
performance of an existing system. It is generally usel to
locate a bottleneck limiting performance when either
reconfiguring the existing hardware or improving the
execution of software. There are two types of performance

Page 2

monitoring: sampling and event tracing. Sampling monitors
initiate data collection activities when a real time clock
signals the end of an interval. The interval or samplina-
period is usually constant. The time overhead of samling
monitors is minimal and fixed.

Event tracing monitors usually obtain more detailed
information about system operation over a shorter period of
time. At the occurrence of a prescribed event, the control
of the computer operating system is passed to the event
tracing monitor. The events are collected and recorded for
subsequent analysis. Two major problems of event tracing
monitors are: 1) accumulation of vast data in a short
period of time and 2) significant overhead inthe system
caused by the data collection. Both problems were avoided
in the RIG system. Hence, event tracing proved to be
valuable and practical for measuring rerformance. Event
tracing was useful both for system debugging 9nd nerformance
analysis. in the case of a software error, the event 'race
helped to understand conditions under which the error
occurred in the system. (A similar exnerience has also been
reported with other operating systems FLausen 51".

There is a wide range in the possible levels of rrog-ram
abstraction for the purpose of producing event traces. 9ne
extreme is measuring execution of every instruction; the
opposite extreme is measuring the entire program as a single
operation. NTeither of two extremes s useful
characterization of the program's behavior. To find the
right level of abstraction is a very difficult oroblem.
the case of multi-process systems in which processes
communicate via messages, the natural choice is -measuring
messages. In RlG, messages are higher-level constructs thar
procedures (handling a message requires several rrocedure
calls and possibly sending or receiving additionql messages
but are more detailed than user-level activities like
entering a line to the text editor (entering a line to the
text editor requires four processes to exchange five
messages).

I define the execution of a process as a sequence of events
where an event is recention of a message or a change in a
state explicitly declared by the process. 'Every event
carries several time stamps that are used to compute various
intervals of interest to the user. Analysis of the message
trace is difficult due to the large amount of 1-R anA
arbitrary ordering of messages. Although statistical 19-

reduction techniques help to gather a profile on the use of
the system FLucas 711 _], or to estimate parameters for
queueing network models FRose 7, analysis o+ .hant
benefitted from the statistics of a particular message. The
main difficulty is a lack of the context or conceptual
framework within which to evaluate those statistics. Other
systems provide general nurpose data reduction ockazes
suiting various users (FMacbougall 78] and F cDanie1 7?Th.

?age 7

In this dissertation I introduce a concertual! -1rqmeworlk
based upon a finite state machine model of ccmnutation.

In RIG, the performance evaluator analyzes a message .r.ce
in two steps. First, he measures the system at macro level;
for example, it takes about 2 seconds for .the system to
respond to a user entering a new line in a file. Second, he
searches for a set of measurements that -give him an
objective view consistent with the previous evaluation of
the system. One possible explanation is the following: 1
second was spent in handling recuests of other users, 1/2
second in handling the user's terminal keyboard and screen,
and 1/2 second in communicating with the file system. The performance evaluator might c.hoose to obtain more detailed

measurements on the way in which characters are displayed on
the screen. A formal definition of an abstract model
describing those events of interest 9nd an automatic syste
to analyze raw statistics in light of the model would be
great assets to the performance evaluator.

System measurements in terms of abstract models 'ave been
used before for the purpose of estimating zarameters of
simulation models lil. E -nets r.Nutt 721, or -Petri ets
[Peterson] but not for nerformance monitoring.
(Simulation models are beyond the score of this
dissertation; the last chapter discusses some rossible
future work in this di-ection.) Those models are well suited
to describing 'igly narallel structures but are difficult
to understand for the nerformance evaluator wlho is dealin_
with the real system. The main difficult: is understqnding
the statistics of parallel transitions that are only
partially ordered in time.

Related research in the areas of design and verificqtion of
correctness of communicating rocesses as eveone-0 e
formalism for the analysis of message traces. The -ormalism
-i based unon finite state machines 'jBochmr.n F relman
-7], and West 75]). Similar formalism can then be ar led
to performance analysis of communicating processes. The
main advantage in using finite state machines is simplicity
due to the total ordering of events in the context of the
model; the major problem- the large number of states in the
composite models- is dealt with in this dissertation.

Describing accurate models of computation is an art, Many
experiments, as well as deen understanding of the system,
are required to debug the model of a comnutation. To
support those experiments in the context of RIG, I have
implemented and used a langua-e that describes various
finite state machines for RIG. This language uses s ymbolic
references to P, processes, messap-es, and to a hierarchy of
finite state machines. Elementary finite state machines
describe the behavior of a single process rerresentin. q
sequential program. Composite finite state machines
describe a grour of communicating processes representinR 9

I.

Page i

-oara! le nr ogram.

The ma in difficulty in I esc ri n comnositp mose! f'
comAnic-ting orocesses is to recognize all system states
vector of process states and all the possi'ole
state-transitions. The system designer who verifies
correctness of communicating processes must examine all
possible system states even those that occur with a very low
probability FSunshine 7RI; the nerformance evaluator w"'o
analyzes the rerformance of communicating orocesses examines
only a small subset of states that occur often in the
execution of the system and are of significsnt duration.
These states represent the user view of computations in the
system. rn Ria, the number of states which are actual"-
reached during execution of the system is very small. Ujner
changing load conditions, the system passes th roug h a, la-r
ner of statesicy _tabilizes. t a new set o-
states chractening the s.stem 1u n,- er ecch new 1,d :hI
Srhearge -.... 4 e n

for a Wise range of e o4 ,

is e - a i n s u on o r -s - e r c s -' ' 'n -P 4

Mac'n 4 e, are ,r7a'' e "~ MCIes~~rg el emen~'no C~'i
-?erDorM anc e anlyi o- co u'iaon -rc1es r

use exatmles only from the ? syt. mny eas . a ne

applied to other oceraoire systems thw he we!- 'fie

int er rce 02! c'm ru n cat -'c n fcli1-ti4-e s. s -s t em s ar e
imlemente, 4 _rn a style whic '_ is very n s it t,_

eite a messag-c- ase d mc-1el o)r to a -,rcce-a u'- sed model?
,auer e- a!., -71

:he nroceoure-base! model is charqcterized a !cirspe numnber
o f very small orocesses, ra-id creation an,, deletion of

orocesses, communication bT means cof 1iret a rn
interlccking of data in memory, a nd i entificticn c#' t-
context of execution with the function rather than with the
process. n a message-based system, synonronization among
processes and queueing for congested resources is

imlemented in message queues attached to the nrocess
associated with those resources. in a orocedur-based
system, synchronization occurs in a form of queues of
processes waiting for locks associated with the

E corresponding data structures. in this dissertation, each
message is marked with three time stames: ' the i-e the
sender has queued the message; '2 the time 'he receiver
has accerted the message; "! 'Z 4he time the receiver
completed processing of the message. These 'ime stemrs are
used to compute various intervals of in Ierest t ..e
performance evaluator. Likewise, three time stam rs are
sufficient for a procedure-based system: ,1 the time a
process has accessed a lock guarling a shared resource; (2

the time the process has obtained control of the lock; ('
the time the process releases the lock. Analogous intervals
can then be compted for each procedure call.

-i qai ,I

Modeling and analysis of com-,ex systems which exhibit
concurrent behavior reauires various automated (comruter
aided) tools. Computer aided Iesi;n which is based on the
development of machine processable models and the use of
computer tools to evaluate those models have shown promise
[Estrin et al., 79]. This dissertation applies similar
models for the performance analysis of existing distributed
systems. Future systems will be designed, implemented and
documented using formal models of computation. The same
models (or simplified) can then be applied for performance
analysis of these systems.

.

Page 6

1.2 Related Research

This dissertation relates to three areas: '1 performance
monitoring of operating systems since the examples of
communicating processes are taken from the real operains
system; (21 design and verification of correctness of
communicating processes because finite state machines have
been used to verify the correctness of communication
protocols; (3) message-based computing because the
potential application of the methods developed in this
dissertation depends upon the future use of the
message-passing discipline.

Perfo-rmance monitoring of running programs proceeds in two
phases [Lucas 71]: First, an execution trace that contains
events of interest is generated; second, various statistics
are calculated from the trace to provide the user with an
insight about the program's behavior. This methodology was
applied to the analysis of page references in ALGOL programs
FBatson 7'1. The novel feature was the high-level of a
program's instrumentation for the purpose of statistics
gathering. We should not expect the programmer to debug and
optimize the performance of his program through the use of
memory dumps, loader maps, machine addresses and similar
diagnostic tools. Rather, our new systems should be
engineered as complete high-level language machines in which
all diagnostic information is nresented in terms of the
symbolic source language as written by the programmer.
These principles are used in this dissertation by dejvloping
a high-level language interface for the nerforman;ce
evaluator who uses a similar language and the same symbols
both for programming and performance analysis.

Earlier work on the analysis of trace data also used a grarh
model of the system. Some graphs were defined using "he
source code of a program at the level of a machine
instruction -Howard -and Alexander, 21. To reduce the
complexity of graphs, the authors introduced a hierarchy of
raphs and considered only a limited set of instructions
check points within the program). The correct selection of
check points (which is very difficult and is not automated"
was vital to the successful construction of those graph
models. Other graphs were produced using a trace of theprogram execution produced by a probe in the operating
system itself [Anderson 761. The system recorded a trace of
events at the job level, e.g. starting an input operation,
running the job, or waiting for the completion of a swap
operation. Here, automatic construction of grarh models
worked better due to the linear structure of graphs; user
intervention was still required to eliminate paths in the
graph model that occurred very seldom. These paths did not
contribute to better models but significantly complicated
it. In this dissertation, I use graph models of
computations but make no attempt to automate construction of
the graphs (although I develop a high-level language *o

Page

describe those graphs).

Many systems surport very general data reduction packages.
Most computer manufacturers provide a General Program Trace
Facility. The trace facility combined with a high-level
language describing events of interest was found extremely
useful for the analysis of existing systems [MacDougall 8].
Yet another degree of flexibility in collection and analysis
of measurements was achieved for a personal computer system
connected to a local network [McDaniel 771. Data collection
and analysis is performed on different machines at different
times thereby reducing the impact of measurements on the
running programs. I use a similar architecture with the
performance monitoring system running on a separate computer
to collect statistics of other computers connected to a
local network.

In summary, data collection and analysis is still an art:
There are no rules for the choice of the "right" level of
abstraction for the murcose of measurements; similarly,
there are no rules for what to do with the data. As s
result, some systems support very general iata collection
and reduction programs that postpone the burden of decisions
to the system's users (for example. rvacDou-7! a] and
[McDaniel 77] . Fortunately, in the case of m ulti-process
systems in which processes communicate via messages, we have
much better intuitions on how to characterize the behavior.
Dealing with message traces is a natural choice for such
systems. Data collection is easy because there is a small
number of central system routines that surport in+erorocess
communication. Data analysis is better understood because
there is an experience in using messa;e 'races for design
and verification of correctness of ccmmunicatinz orocesses
([Estrin et a!., 73], F ochman '31, FFeldmen '7 and rWest
78]).

There is a long history of -he use of s ate-transition
models for the analysis of concurrent processes. Dijks+ra

, introduced state variables to synchronize sequential
communicating processes [Dijkstra 1966]. A state variable
is an additional programming concept $a new type variable)
which is used solely for the purpose of synchronization. in
addition, Dijkstra advocated the design of programs to he
guided by the use of these state variables. F- said,

"In my experience, one ,tarts with a rough ric-ure
of both programs and state variabl-s, then he
starts to enumerate different states and finally
tries to build the programs".

Feldman used the state notion to develop a mthematical
formalism for verifying the correctness of communicating
processes [Feldman 775 He noted,

% . i nnk ~ i~

pqge q

"We can only verify (and understand) systems that
have some stable state transitions of at least a
subset of the modules".

To describe a model for a group of processes, the
performance evaluator searches for a small number of system
states (defined to be a vector of process states) that occur
often in execution of the system and are of significant
duration. This is achieved by either enumerating all state
variables as suggested by Dijkstra, or searching for the
system stable state-transitions as described by Feldman.

The related efforts listed above considered only the design
specifications of communicating processes; no attempt has
been made to analyze the performance of existing systems

using a finite state machine model of computation. Therelated efforts listed below deal with state-transitions

semantics that are used for the analysis of message-based
computing. A notable example is SARA, a simulation system
used for the design and analysis of multiprocess systems
rEstrin et a!., 781. In SARA the analysis of control
structures is performed with UCLA graphs (which are
equivalent to Petri nets and are used to verify the
correctness of control structures of the system). A system
that is designed with SARA can be described with a finite
state machine obtained from the UCLA graphs.

Message-based models have been used for simulation of
existing systems FChany et al., 791. The authors analyzed a
multi-process system in which processes communicate via

shared memory and replaced interrrocess communication
instances with messages. The result was a very accurate
simulation model. In addition, they developed a
mathematical formalism for describing a process as a
function of its variables and incoming messages. In this
dissertation, a process is a finite state machine where
states abstract the content of local variables.

The growing interest in message-passing suggests that many
future systems will be implemented or at least designed
using this discipline. Further, the developed techniques of
using finite state models for the performance analysis of
operating systems will be applied to a wider range of
systems.

Page

1.3 Outline of the Dissertation

Chapter Two describes the environment of communicating
processes in RIG where the experiments are conducted (the
experiments are described in Chapter Four). RIG can be
thought of as a model of distributed computation, processes
communicate only by messages and there is no shared data.
The implementation and use of messages in RIG are described
in detail to help the reader understand the experiments.

Chapter Three describes a formalism for the performance
analysis of communicating processes. First, I define the
basic properties of a message trace and the time intervals
associated with each message. Next, I introduce a finite
state machine model of computation. The time intervals that
are used to characterize a message are then extended to
characterize an event that is defined by a state-transition
in the finite state machine model. The finite state
machines are encoded in a language that uses symbolic
references to the RIG processes, messages and a hierarchy of
finite state machines.

Elementary finite state machines describe the behavior of q
single process; composite finite state machines describe a
group of processes. To reduce the number of states in the
composite model, i use new kinds of transitions allowing one
to describe a small subset of system states. The chapter
uses a simplified example of a distributed graphics
annlication to illustrate the formalism.

Chapter Four contains examples of finite state machines
modeling computations in RIG. Different finite state
machines are formulated and applied to the same measurement
data to extract different kinds of information. One finite
state machine exnress better the overlap between execution

* of parallel processes; another finite state machine express
4: better the system overhead. On the basis of the

information, the performance evaluator then points out
various bottlenecks in the system. The chapter presents
results which indicate the value of finite state machines
f or the performance analysis of communicating processes.
Informally, on the basis of examples, I suggest a
methodology for describing finite state machine models of
computations. The presentation is based on two examples:
large scale computations of many processes communicating in
full hand-shake and pipelined computations of a few
processes streaming messages in one direction.

Chapter Five describes the implementation of a performance
monitoring system for RIG.

Chapter Six demonstrates how finite state machines are
applied to entirely different areas: validation of reliable
transmission protocols and optimized implementation of

Page Iq

high-level protocols. These two examples further support
the position that finite state machines are valuable models
for designing, implementing and performance analysis of
communicating processes.

Chapter Seven concludes the thesis. It summarizes the
experience of applying a finite state machine model to the
problem of evaluating the performance of systems composed of
communicating processes. Both practical results and general
principles are reviewed. Contributions to the general area
of understanding of communicating processes are also
discussed.

The appendix contains a description of the finite state
machines and a display of the time intervals in the form
that is actually used by the performance monitoring system
for the analysis of RIG. The example described in Section
4.1 (the initialization of a terminal in RIG) is presented
in detail.

i-

4o

Page 11

2. The Environment of RIG

2.1. Introduction

This chapter describes the RIG system for which the performance
monitoring system is implemented and used to test the ideas
described in this dissertation. To understand better the kind of
computations considered, we describe the implementation and use
of the message style of communication in RIG. By comparing RIG
with other operating systems, we suggest that message-passing is
a useful strategy both for the design and implementation of
operating systems. The use of finite state machines for the
performance analysis of this kind of computation is described in
the next chapter.

This chapter has four major sections: Section 2.2 gives an
overview of the RIG system and its hardware configuration.
Section 2.3 describes the implementation of messages. interrupt
messages, flow control and network communications are described
in detail. Section 2.4 describes the use of the message style in
RIG. Finally, Section 2.5 compares RIG with other systems with
emphasis on the fundamental properties of the message-passing
discipline.

2.2 Overview

The first version of the RIG system was up and running in early
1976 'Ball et al., 761. R1G was built to serve as an
intermediary between the human user (working through a display
terminal or personal computer) and a variety of large computer
systems. The bulk of the user's computational requirements, such
as user program execution and special services, is met by these
large systems, which are partially integrated into the RIG system
through a fast local network. RIG provides a user with basic
services such as printing, plotting, local file storage,
text-editing, and virtual terminal facility FLantz and Rashid,
1979].

The following computing facilities are connected to the local
network: four personal computers (Xerox Altos), two service
machines (Data General Eclipses), and two time-sharing systems
(DEC-10 and VAX). The minicomputers and the VAX are connected
via a 3 MHz broadcast network (EtherNet). The DEC-10
communicates over a 50 KHz synchronous line to one of the two

This chapter is based on the paper "Perspective on Vessage-based
Distributed Computing" by myself and other members of the RIG
group rBall et al., 79] and on the internal document "RIG Svstem
Kernel" [Gertner 79c].

Page 12

Eclipses. The RIG system runs on the Eclipse computers Fi-aure

- ALTO

ALTO-PERSONAL COMPUTER,

64 K

A LRIG -MESSAGE-BASED
ALTO OPERATING SYSTEM

ETHERNET-3MHZ BROADCAST

KErI(ORK

ALTO

E~~~ T TE 0
ETHERNIET

". . ,ALTO

RIG

SECLI PSE

50 KB

SYNCHRONOUS LINE

- 1: 'En RIG' D. G.

* ECL IPSE

?igure 1: Environment of RIG

Page 14

Logically, RIG can be thought of as a collection o
independent processes running on vrarious computers and
cooperating via messages. Each RIG machine has its own
kernel which provides the support functions of

message-passing, process scheduling, physical memory
management, and interrupt handling. Each RIG process
performs a specific set of functions and has a distinct
logical address.

Communication between processes takes the form of messages
queued separately by the system kernel for each destination.
A destination in RIG is specified by a process-port pair,
where a port is simply a sub-address within a process.
Ports are used for selective message reception, multiplexing
and flow control. (Section 2.3 discusses the flow control
mechanisms employed in RIG.)

Each system resource, such as the file system, is managed by
one or more server processes which are responsible for
performing resource-specific functions and for providina a
standard message interface to other RIG processes.

Three aspects of the communication techniques used in RIG
eliminate the need to know the actual location of services
in the distributed system:

1. all basic services are provided by RIG processes
through the use of messages (no shared memory);

2. remote processes send and receive messages in the
same way as do local processes;

3. inter-process communication can be initiated
symbolically.

The key component of the RIG design was the decision to
provide a uniform interface to all system services through
the use of messages. The RIG kernel serves only to provide
the abstractions of process, message, and message queues.
Other functions, such as file access, terminal
communication, and printing, are provided by RIG processes
and are made available through messages.

Thus, the distinction made in typical systems between
operating system services and user processes has been
abandoned. Although interprocess communication was well
understood when the initial design for RIG was formulated
(and had been implemented in a number of major operating
systems -- Elf, Hydra, TOPS-1O, Tenex, B6700 MCP), such a
total dependence on message-passing was a considerable
deviation from the norm.

Resource independence is achieve0 through the use of
standardized server protocols (see Section 2.4). These

Page 15

provide a consistent mechanism for opening, closing,
reading, and writing entities such as files, virtual
terminals, and line printers. The advantage of
message-passing over abstractions provided by other
operating systems for communication and device independence
(e.g. Unix pipes) lies in the wider range of
synchronization strategies available and the flexibility of
messages to convey control and data information and to
signal exceptions.

The ancestors of RIG are the inter-process communication
facilities of the SAIL programming language (which had been
successfully used in the Stanford Hand-Eye Project FFeldman
and Sproull 1971]) and the work of Walden FWalden 10721.

Several systems provide facilities similar to some of those
provided by RIG. DEMOS FBaskett, Howard, and Montague
1977], Roscoe iSolomon and Finkel 10781, and Thoth
[Cheriton, et al. 1979 are examples of systems built
entirely on the use of processes communicating via messages.
Other distributed systems like DCN .ills 197g], and MSG
[NSW 1976] perform computations similar to RIG.

2.3 Implementation of Messages

2.3.1 Interrupt Messages

The RIG system handles each device with two programs: the
device handling process and device interru t handler. Both
programs communicate via messages. (For efficiency
considerations, the actual implementation uses shared memory
to support communications between device handling processes
and interrupt handlers). The user communicates via messages
with the device handling process.

Consider an example of a network link handled by the
LinkInterrupt handler and Link process FFigure 2 . A
process PA sends a message to the Link process which
forwards it to the LinkInterrupt handler. If the device is
idle, the LinkInterrupt handler immediately starts the
transmission; otherwise, the "packet" is queued. Upon
completion of the operation, a hardware interrupt arrives to
the LinkTnterrupt handler which forwards the message "done"
to the Link process. The message "done" is queued with
priority. In addition, the LinkInterrupt handler receives
the next waiting "packet" and starts the transmission of a
new message. If there are no "packets" waiting then the
device becomes "idle".

I', f t 1 ~ I| I| 1 l" " = - ,. - . .

(2m

LILl

= LLJ

Lii

-cLii

a- 7-

Lii I
>i

ucj
4 7- C)

0l

cn)

0.0

Page 7

2.3.2 Flow Control

Every destination in FIG (rocess-port pair) uses orimary and
secondary queues to hold messages in transit. If the destination
is local, the local system kernel does the queue management and
flow control. If the destination is remote, the appropriate
network server does the queue management and flow control (see
Section 2.3.3 on Networking). A primary queue has a maximum
message capacity (definable by the process). If a message is
placed in a primary queue it is considered 'posted' and the
sender is allowed to continue. If the primary queue is full, the
message is queued in the secondary queue. Effectively secondary
queues have infinite capacity.

A process can choose one of two options when sending a message.
In the case of a "dedicated send", the sending process is kert
suspended by its kernel until space on the primary input queue o"
the destination becomes available. A "send don't wait" is used
in situations where this simple backpressure mechanism is
unacceptable. For example, processes provilina critical services
cannot allow themselves to be suspended waiting for another
process to receive a message. in such cases the sending nrocess
can request that the system kernel return a notice that the
message cannot be sent and, further, that the system notify it
when another message can be sent.

2.3.3 Network Communication

Network communication in R i is provided by processes called
network servers. Each R! machine has at least one network
server which handles the flow of messages to and from other
machines.

A message sent from a local process PA to . nrocess D1 on a
remote host is diverted by its kernel to the a nrorriate network
server process FFigure 71. The local server is responsible 'or
routing and reliable transmission to the corresponding network
server on the remote host. The remote network server, upon
receipt of a message from PA, forwards the message to its final
destination, PB. PA and PB remain unaware that the message was
routed through the network servers. To facilitate the routinp of
messages to its final destination, a process number contains
three fields: a host number, a system's incarnation number, and
a local identifie.ar FFeldman et al., 7RI.

V)

LUi

Lii

C:)

Lii

Cd, 0

0 0

4
Id-

0 C)

CLii

0

cn)

P4

Page 1

2.4 Communication Styles

When two processes wish to communicate they are free -o do
so in any mutually convenient manner within the constraints
of the RIG message-passing primitives. In vractice, we
developed a set of guidelines (unenforced) that-iade the
implementation and debugging of the system easier. We have
found three fundamental styles of message communication to
be sufficient:

1. atomic transactions

2. asynchronous messages

3. connections

For atomic transactions the link between the communicatinR
processes is set up and expires on a messa-e-to-message
basis. Process PA simply composes and sends a message to
process PB, without PB havina to know anythinR about PA.
Depending on the particular request, PA may or -ay not wait
for an acknowledgment from PB. P3 retains no information
about PA between transactions. An example of an atomic
transaction is a request for the time of day.

Certain 'interrupt' conditions 'e.g. nrocess death are
best handled as asynchronous messages not subject to normal
flow control. In RIG, emergency messages provide the means
for one process to alert another to the occurrence of an
exceptional or unusual event. Emergency messages are queued
separately and lelivered when the recipient next attempts to
send or receive any message. Deliveffy is independent of any
message flow to the receiving process. Once delivered, the
emergency handier (a srecial procedure within a nrocess) is
invoked, and is responsible for processing the event.

Any prolonged interaction between two processes (e.g.
reading a file) may make it necessary for each process to
remember the current state of the interaction (e.g. the
file position). In such cases, the processes can create a
connection by each reserving a port for subsequent
interaction. Four standard procedures are conventionally
used for manipulating connections -- Open, Close, Read, and

£. Write.

Connections can be one of two types: 1) full hand-shake, or
2) streamed. Full hand-shake is, in effect, a remote
procedure call FWhite 76]. For example, when editing a file
it is necessary for the editor and file system to remain in
lock-step; every transaction involving the file must be
acknowledged. Full hand-shake has the advantages that the
cooperating processes are always synchronized and that the
initiator of the connection has complete control of the data
flow. The disadvantage is the decrease in performance of
the system.

Paae 20

Once a streamed connection has been established, the
originator of data is free to transmit to the receiver
without waiting for either an output acknowledgment or an
input request. If the sending process can produce data
faster than it can be consumed by the receiver, system
defined flow control mechanisms will automatically slow down
the sender (see Section 2.3.2). A typical example of
streaming in RIG is copying files from one machine to
another.

Streaming can be used in any situation in which a connection
is established and a synchronous response to input and
output requests is nct necessary. The advantages of
streaming are its low message overhead and the fact that it
allows pipelining. The major disadvantage is that
exceptional conditions must be signalled asynchronously to
the flow of data, making harder to write programs and debug.

2.5 Summary

RIG is a multi-process system in which processes communicate
via messages. Many other systems support 9 subset of
similar interprocess communication facilities. In fact, the
implementation of some of these systems is similar to RIG.
For example, Thoth FCheriton et al., 707 also uses a fixed
message header for interprocess communication. (in contrast
to RIG, however, Thoth uses shared buffer pools to
communicate large amounts of data; RIG copies buffers from
one process to another). Related systems are characterized
by similar approach to design problems. For example, in the
NSW system, the Tool Initialization Scenaric is similar to
the initialization of the virtual terminal in RIG (see
Ohapter 4).

Communication styles in RIG are characterized by full
hand-shake and message-streaming. This dissertation uses
finite state machines to describe this kind of computation;
it is less clear, however, that the finite state machine
formalism applies equally well to other interprocess
communication styles (e.g shared memory models).

The advantages of systems with well-defined interprocess
communication are well recognized. Several systems (SARA
[Estrin et al., 10791 and DREAM FRiddle et al., Th have
been developed to use a message-based operating system as a
model for the design of any system. Although the actual
implementation of a system may be based on a shared memory
model, the design is characterized by the message-passina
discipline. In all those cases, performance analysis of
communicating processes will become of paramount interest.

Pace 21

. Performance Measurements of Message Trqces

..1 Introduction

This chapter describes a formalism for the performance
analysis of communicating -processes. First, 1 define the
basic properties of a message trace and the time intervqls
associated with each message. Next, I introduce a finite
state machine model of computation. The time intervals that
are used to characterize a message are then extended to
characterize an event that is defined by a state-transition
in the finite state machine model. The -inite state
machines are *encoded in a language that uses symbolic
references to the RIG processes, messages and a hierarchy of
finite state machines.

The chapter has three major sections: Section 3.2 describes
in detail the example of the distributed graphics
application used throughout *the chapter. Section -. Z
describes the basic properties of message traces and
introduces a formalism to calculate various time intervals
of interest to the performance evaluator. Section z.d
describes the langua ge for defining finit- state machine
models of comnutation; Appendix 3 contains the B'1

definition of a model.

This cha-ter uses a simrlified example to illustrate the
formalism; the next chapter uses real examples from the R'G
system to presen+ results supporting the nosition that
finite state machines are rractical and valueble models for
the performance analysis o communicating processes.
Chapter Six pplies the same finite state machine formalism
to two entirely different areas: valilation of the behavior
of reliable communications orotocols and effiiente
imolementation of higher-level orotocols. The suitabili+y
of the new constructs that are developed for performance
analysis of communicating processes is thus tested by
applying the new constructs to different areas.

3.2 An Example of a Distributed Graphics Application

Consider an example of a distributed graphics application
[Figure 4]. The PDP-1O (Digital Equip. Corr., TOPS-I,
system) produces a binary representation of a picture and
sends it over the link. The RIG system receives the data
and displays it on the graphics device.

Portions of this chapter are described in the paper
"Performance Evaluation of Communicating Processes" fGertner
791.

M

1L-

C--J

ClU-

,c- (jJ L.Z

LJ
-e I.c;

- C -)
LUI

'I,

4l I ILiJ0

CC)

>-

a-

0..4
LC',

INKI

Page 23

Two processes and two devices in RIG are involved in this
computation. The link-handling process provides reliable
transmission and flow control between local and remnote
processes (messages 1, 2, 3, 5). The display-handling
process validates the command and executes it by drawinR on
the graphics device (messages 4, 6). Each message in the
trace contains three fields: the sender, receiver, and
message identifier. The sender defines the source of the
message; the receiver defines the destination; the message

identifier defines the function to be executed by the
receiver upon acceptance of the message.

Two user requests may produce 12 messages on the server
machine running RIG. The messages appear in the order of
their acceptance in this particular example. (!?essages i-0
occur for the first command; messages 7-12 for the second).

1) (LinkIntlnput -> LinkProcess, Input)
2) (LinkProcess -> LinkintOutput, Ack)
3) (LinkProcess -> DisplayProcess, Command)
4) (DisplayProcess -> Displaylnt, Draw)
5) (Linklnt0utput -> LinkProcess, Done)
6) (Disnlaylnt -> DisplayProcess, Done)

7) (Linklntnput -> LinkProcess, Tnut)
8) (Linkrocess -> LinkIntCutput, Ack
9) (LinkProcess -> DisplayProcess, Command)
10) (DisplayProcess -> Displaylnt, Draw)
11) (LinklntOutout -> LinkProcess, Done)
12) (DisplayInt -> DisplayProcess, Done)

Figure 5: Message Trace

The semantics of messages are described below:

1) (Linklntlnput -> LinkProcess, Input)

The hardware interrupt of the link input device signals the
arrival of an input packet. The interrupt handler (the
process is LinkIntlnput) sends the interrupt message (the
message identifier is Input) to the link handling process
(the process is LinkProcess). Having received the message,
LinkProcess acknowledges the foreign link handling process
(message 2), decodes the message into RIG format and routes
it to the local destination- the display handling process
(message 3).

2) (LinkProcess -> LinkLntOutput,Ack)

The link handling process sends back an acknowledgment (Ack)

Page 2A

to the link output interrupt handler that started the outrut

operat ion.

3) (LinkProcess -> DisplayProcess, CommandV

A message of type Command arrives at the display handling
process (the process is DisplayProcess) which checks for the
rights of the sender and the validity of the operation, and
then sends the request to the display interrupt handler
(message 4).

4) (DisplayProcess -> DisplayLnt,Draw)

The display interrupt handler (the process is DisplayInt)
receives the message Draw and immediately starts the
operation on the graphics device.

5) (LinkntOutput -> LinkProcess, Done)

The hardware interrupt of the link output device signals
completion of the link output operation (message 2).
LinkintCutput sends the message Done to LinkProcess which
receives the message and releases resources associated with
it.

6) (DisplayInt -> DisplayProcess,Done)

The hardware interrupt of the graphics output device signals
completion of the graphics output operation (message 4).
DisplayInt sends message Done to DisplayProcess which
receives -he message and releases buffers.

This example of distributed graphics is used throughout the
chapter to illustrate the formalism. The trace of messages
is used to define various time intervals of interest to the
performance evaluator. Later, those messages are used to
define state-transitions in finite state machines modeling
different subsystems of distributed graphics.

4 3.3 Message Traces

3.3.1 Introduction

This section describes the basic properties of message
traces and a formalism for calculating various time
intervals of interest to the performance evaluator. Firs+,
I describe the time intervals associated with every message.
To provide a conceptual framework within which to evaluate
these intervals, I introduce the notion of a user activity-
a sequence of messages implementing a given task. Analogous
intervals are then defined for an activity. The time
intervals of a single message are then expressed in terms of
the activity. To characterize performance of parallel

Page 25

processes (that run on different processors), 1 define new
kinds of time intervals.

3.3.2 Time Intervals of a Message

This section describes the time intervals associated with
every message. The system kernel produces several time
stamps and statistics related to the use of system resources
[Figure 7]. independent of the operation of the system, the
performance monitor calculat3s time intervals that are of
interest to the performance evaluator fFigure "I.

Every message carries three time stamps: its birth, the
time the sender has queued the message; the beginning of
execution, the time receiver accepted the message; and the
end of the execution, the time receiver completed processing
of the message. :n addition, every message carries some
measure of the system overhead and the number of swapped
pages. These statistics are used to compute various
intervals of interest to the performance evaluator. To
conveniently describe those intervals, 1 introduce some
notation.

A Precursor Pr(M) of message M is an occurrence of
the same type of message \which is defined by the
same triple) immediately before the occurrence of

M.

The operations of hardware devices are marked with the same
time stamps that are used to mark messages flowing between
processes [Figure 7]. For messages flowing from the
interrupt level, the birth of the message marks the
occurrence of the hardware interrupt. For messages flowing
from a process to the interrupt level of the system, the
start time marks the beginning of the device operation

t (which is controlled by the interrupt handler) and the
finish time marks the completion of the device operation.
Although those time stamps are harder to obtain for hardware
devices, there are many advantages in the uniformity of
notation.

The delay time is the difference between the time when the
receiver actually accepts the message and the time when the
sender queues the message FFigure 61. A higher degree of
multiprogramming causes larger delays. The time interval
between the time when the sender queues a messages and the

Ptime when the sender has queued another message of that same
type (the precursor message) characterizes the frequency of

* incoming messages. (An alternative is to measure the
interval between completions of the same type of message.
For the purpose of tuning a system for stand-alone
applications, I have found it to be sufficient to measure

• only the ratio of incoming messages). The execution time is

1.*

Page 26

the difference between the time when the receiver completes
processing of a message and the time when the receiver has
accepted the message.

I-". " '.- ! r, " _. r ., ,,.

Page 27

Birth(M) - time when the message was queued
by the sender.

Start(M) - time when the message was accepted
by the receiver.

Finish(M) - time when the receiver completed
processing the message.

Overhead(M) - time that the system spends in
scheduling the receiver accepting
message M.

Swapped(M) - the number of pages that the system
reads into main memory.

Figure 6: Event Time Stamps

Delay(M) = Start(M) - Birth(M)

The time that the message spends in
in the input queue of the receiver.

IntervalM) = Birth(M) - Birth(Pr(M\V)

The time interval between the current
message and the last occurrence of
the same type of message.

Execution(M)= Finish(M) - Start(M)

The time required by the receiver
to handle that message.

Figure 7: Time intervals of a message

Page 29

3.3.3 Statistics of Messages

To obtain statistics of messages, the performance evaluator
describes triples of messages using symbolic references to
RIG processes and messages. The same symbols are used both
for programming of communicating processes and for
describing triples of messages that are measured. The
following triple

(LinkIntInput -> LinkProcess, Input)

accumulates statistics for each packet arriving from
LinkIntInput to LinkProcess. The statistics include
accumulated time values and histograms (other statistical
parameters can also be computed). To collect statistics for
a broader class of messages matching the specified nattern,
I introduce a new construct, ANY. For example, the
following triple matches all messages arriving at
LinkProcess:

(ANY -> LinkProcess, ANY)

Another example is two triples matching the opening of
higher level connections in RIG (see Section 2).

(ANY -> ANY, Open)
(ANY -> ANY, Close)

If a higher resolution is required, a process may also
explicitly declare a change in state by sending a
pseudo-message. For example, LinkPrccess declares a
validity check of the input message.

(LinkIntInput-> LinkProcess, Input)
(LinkProcess -> System, Check)

Obtaining statistics of messages drastically reduce the
trace data. However, the performance evaluator is still
unable to understand the statistics. The main problem is a

lack of the conceptual framework within which to evaluate
these statistics. To provide the conceptual framework, I
introduce the notion of a user activity- a sequence of
messages implementing a given task. (A user transaction is
another common term used in describing activities of a
single user in a time sharing system FWatson 711). The time
intervals of a single message can then be expressed in terms
of the time intervals of the user activities.

3.3.4 Statistics of a Sequence of Messages

There are two purposes for the abstraction of sequences of

messages as a single activity: (1) concise description of
long message traces and (2) establishment of a framework

Page 20

within which to evaluate the time intervals of a single
message. I define an elementary activity as a sequence of
messages arriving at the same process; a composite activity
is a collection of messages arriving at a group of
processes.

First, I introduce the formalism for calculating the time
intervals of an elementary activity. The formalism is also
adequate for describing composite activities composed of
processes that are running on the same processor. In the
case of parallel processors, I extend the formalism with
time intervals that measure the amount of overlapping.

To simplify the formalism here, I consider messages arriving

at such a frequency that no pipelining occurs: the last
message of an activity always occurs before the first
message of the next activity. The performance evaluator
describes an activity as a sequence of triples for which
higher-level intervals are calculated. For example, two
messages arrive at DisplayProcess: Input and Done.

ACTIVITY: Display

/Linkintinput ->LinkProcess, Input

(LinkmtnCutout ->LinkProcess, Done)

-,T D-AC.V:TY

The time intervals of the activity Display are defined as a
sum of time intervals of individual messages.

Delay(Display) = Delay'Command) + Delay(Done)
Overhead(Display) = Cverhead(Command)+ Overhead(Done
Swapped,Display = Swapped(Command) + Swapped(Done)
Interval(Display) = Interval(Command)

The Response time of the activity is the difference between
the birth time of the first message and the completion of
execution of the last message: the total time of the
activity is the sum of execution time, system overhead and
delay time.

Response(Display) = Finish(Done) - Birth(Command)

Total(Display) =
Bxecut ion(Display)+Overhead(Display)+Delay(Display)

The activity is the conceptual framework for the sequence of
messages at the lower-level. The response time of the
activity measures the system at macro level. The difference
between the measured response time Response(Display) and the

Page 30

calculated total time Total(Display) provides a feedback to
the performance evaluator on how well the set of
measurements characterizes the time intervals of the
activity.

Having found the correct set of messages that explain the
time intervals of an activity, we proceed to evaluate the
lower-level components. For example, if Delay(Display)
constitutes a significant portion of Total(Display) time,
the extensive CPU consumption by other processes is the
bottleneck. To reduce the delay time, we increase the
priorities of processes that are involved in this
computation. In another example, computations of
DisplayProcess is the bottleneck if Execution(Command)
constitutes a significant portion of Execution(Display).

3n Time itervals of Parallel Processes

in the case of parallel processes (which run on separate
processors, we have to subtract the overlapped time of the
processes' execution. in the example of distributed
graphics, there are three independent processors: the CPU,
the display device controller and the link device
controller. For convenience, 7 repeat here the sequence of
messages.

ACT7VITY: 3raphics

1) (Linknttnput ->linkProcess, 7nput)
2) (LinkProcess ->LinkmntOutput,Ack)
3) (LinkProcess ->DisplayProcess, Command)
4) (DisplayProcess->Displaylnt,Draw)
5) (LinklntOutput ->LinkProcess, Done)
6) (Displaylnt ->DisplayProcess,Done)

END-ACTIVITY

Figure B: Activity Graphics

Two messages are handled in parallel by the CPU and link
output device (messages (2) and (3)). The link output
handler accepts message Ack and starts the output operation
on the llnk device. The next message Command is handled by
DisplayProcess that is running on CPU. The amount of
overlapping is calculated differently in the following three
cases:

Page 31

1) Overlap = 0,
if Start(Command) > Finish(Ack)

2) Overlap = Finish(Ack) - Start(Command),
if Finish(Command) > Finish(Ack)

3) Overlap = Finish(Command) - Start(Command),
if Finish(Command) < Finish(Ack)

Handling of messages is not overlapped in the first case,
where the completion of the message Ack (the time stamp is
Complete(Ack)) occurs before the beginning of the execution
of the message Command (the time stamp is Start(Command)).
Part of the handling of messages is overlapped in the second
case, where message Ack is completed before message Command.
Finally, the handling of messages is overlapped entirely in
the third case, where message Command completes before
message Ack.

Having estimated the total amount of overlapping, we
calculate the total execution time by first summing up all
the execution times of all the messages and subtracting from
the total overlanoed time The remaining difference is the
execution time of the activity. The following example
presents computations for the activity DistributedGrahics:

Execution(DistributedGraphics) :

+ Execution (Linkintlnput ->LinkProcess, :nput)
+ Execution (Link.Process ->DisplayProcess, Command)
+ Execution (MinklntOutput -)LinkProcess, Done)
+ Execution (DisplayInt ->DisplayProcess,Done
+

Birth(Disnlay'nt ->DisplayProcess,Done)
- Complete(DisplayProcess->Displaylnt,Draw)

+ Birth(LinkIntOutput -> LinkPrccess,Done)
- Complete(DisplayInt ->DisplayProcess,Done)

3.3.6 Summary

For every message, I introduced a small set of intervals
characterizing the processing time of the receiver (the
interval is Execution) , characterizing the ratio of incoming
messages (Interval), and characterizing the delay time that
the message spends in the input queue of the receiver
(Delay).

Page 32

To obtain statistics of messages, the performance evaluator
described triples of messages consisting of the sender,
receiver and message identifier. The same symbols were used
both for programming of communicating processes and for
describing finite state machine models of computations.
Although the statistics of messages drastically reduced the
amount of data, they were still difficult to understand for
the performance evaluator. The main problem was a lack of
the conceptual framework within which to evaluate the
statistics.

To provide the conceptual framework, I defined a
higher-level construct, a user activity representing a
sequence of messages. An elementary activity is a sequence
of messages arriving at the same process; a composite
activity is a collection of messages arriving at a group of
processes. To measure the amount of overlapping in
composite activities, 1 introduced a new time interval,
Overlap, that characterizes the amount of overlapping
between parallel processes.

3.4 A Language for Describing Finite State Machines.

3.4.1 Motivation

So far, we have considered activities having a linear
structure. This limitation is clearly unacceptable for
processes -hat base their decisions both on the incoming
messages and the internal state which is stored in local
variables of the process.

For example, DisplayProcess may send the message Error back
to the user instead of forwarding the message Draw to the
display device. This occurs in the case where the user
violates the protocol agreed upon during the initialization
of the user.

(DisplayProcess -> LinkProcess, Error).

In both cases, the behavior of processes has changed due to
the internal state of the process. The state chances are
important events for the performance analysis of
communicating processes.

I

3.4.2 Elementary Finite State Machines

This section uses finite state machine models to analyze the
performance of communicating processes. Elementary finite
state machines describe the behavior of a single process.
Composite finite state machines describe the behavior of a

group of processes. The main advantage in usinR finite
state machines is simplicity due to the total orlerin7 sf
events in the context of the model.

One kind of event is the reception of a message by a process
that is in the given state. In addition, the process can
explicitly declare a change in state by sending a
pseudo-message. An activity is a sequence of events
occurring in a finite state machine passing from the initial
state to the last state. From now on, I will use the term
event for message and finite state machine for activity.

The example of distributed graphics requires four processes:
LinkProcess, LinklntOutput, DisplayProcess and DisplayInt.
LinkProcess and DisplayProcess are each modeled with a
simple finite state machine having two states: Idle and
Busy. LinkintOutput and DisplayInt (both are interrupt
handlers) are each modeled with a finite state machine
having only one state and one transition. The trace of
messages is then converted to the trace of events (see
below). Each event has a name of the finite state machine
model, the current state label and the triple of the
message.

LinkProcess.Idle: (Linkintinnut ->LinkProcess, input)
LinkIntOutput.Idle: (LinkProcess ->LinklntOutput,Ack)
DisplayProcess.Idle:(LinkProcess -)DisplayProcess, Command)
DisplayInt.Idle: (DisplayProcess->DisplayInt,Draw)
LinkProcess.Busy: (LinkIntOutnut -)Link?rocess, Done)
DisplayProcess.Busy:(Displayint ->DisnlayProcess,Done)

Unless otherwise specified, a seauence of transitions
implies a sequence of state-transitions. The construct
CONNECT breaks the sequence of state-transitions by
explictly specifying the next state. A state having an
alternate transition is defined by repeating the same
state-label. For example, the state label "A" has two
outgoing transitions: Input and Error. (A BNF definition

.j of the language for deszribing finite state machines appears
in Appendix B).

1L

Page 34

FSM: LinkProcess

A: (LinkintInput ->LinkProcess, Input)
B: (LinkIntOutput ->LinkProcess, Done)

CONNECT (C)
A: (LinkIntInput ->LinkProcess, Error)

C:

END-FSM

Figure 9: Elementary FSM, LinkProcess

State A has two outgoing transitions: the first to send
message Done to LinkProcess and the second to send message
Error. State B is followed by the new construct CONNECT(C)
that specifies another entry to state C.

Composite finite state machines describe the execution of a
group of processes that produce only a partially ordered
collection of events. Some events that occur within
different processes are still ordered in time due to the
logic of computations. For example, communications between
device handling processes and their interrupt handlers
always occur in the same order.

Two processes communicate in full hand-shake if the first
process sends a message to the second process and
immediately waits for a reply from the second. Tn this
case, the composite model simply describes the sequence of
events. For example, LinkProcess and LinklntOutnut
communicate in full hand-shake.

FSM: LinkComplete

LinkIntCutput.Idle: (LinkProcess ->LinkIntCutput,Ack)
LinkProcess.Busy: (LinklntOutput ->LinkProcess, Done)

END -FSM
L

The sequence of events is further abstracted as a single
Ievent in the finite state machine at a higher-level (see

below). I organize finite state machines in two levels of
hierarchy: LinkComplete and Link. The higher-level model
Link describes all events associated with the handling of an
input packet.

FSM : Link

Page 75

(LinkIntInput ->LinkProcess, Input)
FSM(LinkComplete)

END-FSM

A new transition FSM(LinkComplete) occurs when the
lower-level finite state machine (LinkComplete) passes from
the initial state to the last state. Similarly, all events
that are associated with the handling of display command are
also described with two finite state machines:
DisplayComplete and Display.

The next step for the performance evaluator is to describe a

composite model of the entire system. Although some events
may occur in arbitrary order, the composite model precisely
defines different alternatives for the event ordering. In
the composite model Graphics at state A, the two
alternatives are either LinkComplete or DisplayComplete.

FSM: graphics

(LinkInt nut -> LinkProcess, Input)
(LinkProcess -> DisplayProcess, Command)

A: FSM(LinkComplete)
B: FSM(DisplayComplete)

a~.-CONNECT (LASTSTATE)

A: FSM(DisplayComplete)
C: FSM(LinkComplete)

END -FSM

Figure 10: Composite Model, Graphics
4

Different alternatives within finite state machines are
described uniformly either for a single process or for a
group of processes.

t.

3.4.3. Composite Models for Pipelined Computations

So far, we have considered only one activity in progress.
This section deals with pipelined computations where
activities overlap in time: the first event of a new
activity occurs before the last event of the previous
activity. (Recall that an activity is a sequence of events
that occur in a finite state machine passing from the
initial state to the last state).

t..

Page in

Message traces with overlapped activities are difficult to
analyze. Frequently, we find a few consecutive occurrences
of the same type of message, each belonging to a different
activity in progress. To retain the ability for calculating
statistics of user activities, I extend the notion of an
event to include the index of the activity in progress. A
fully specified event has a finite state machine, an index
of the current activity, a state label and a message triple.

For example, two consecutive occurrences of the message

Input appear in the event trace as follows:

Graphics(i).A: (Linklntlnput -> LinkProcess, Command)
Graphics(i+1).A: (LinkIntInput -) LinkProcess, Command)

Clearly, not everything can be described with this
simplistic model. In addition to the statistics of each
activity in progress, we would like to know how messages are
distributed among processes. To answer this question, we
need a composite model that describes a group of finite
state machines, each modeling one activity in progress.

Pipelined computations produce very complicated traces of
events due to the arbitrary ordering of t.ents and
activities in progress. To describe all possible cases in
one composite model is impractical; instead, we consider
only interesting cases that are selected by the user for the
performance analysis of the computations. In addition to
messages, I introduce a new type of event- a hardware
interrupt.

FSM: Display

A: (LinkProcess ->DisplayProcess, Command)
B: (DisplayProcess->DisplayInt,Draw)
C: (DisplayDevice ->Displayint,Interrupt
D: (DisplayInt ->DisplayProcess,Done)

END-FSM

To describe a limited number of messages in progress, I
introduce a new transition, INDEX rFigure 11]. A group of
finite state machines change their roles to depict exactly
these message in progress they are modeling by using the
INDEX operation. A finite state machine with a label ril
after the INDEX transition becomes Fi-1 1.

page "4

(i).A: (LinkProcess ->DisplayProcess, C-ommand)
(i) .B: (DisplayProcess->Display'mt ,Draw)
(i).C: (DisplayDevice ->Displayint,Interrupt)
(i).D: (Displaylnt -)DisplayProcess,Done)
(i+1).A: (LinkProcess ->DisplayProcess, Command)
(i+1).E: (DisplayProcess->Displaylnt,Draw)
(i+1) .C:. (DisplayDevice ->Displayint,Interrupt)
(i+1).D: (Displayint ->DisplayProcess,Done)

can be replaced with

(i) .A: (LinkProcess ->DisplayProcess, Command)
(i) .B: (DisplayProcess->Displayl)rnt,Draw)

'U.(i).C: (DisplayDevice ->Displayint,Interrupt)
(i).D: (Displayint ->DisplayProcess,Done)
INDEX(Display)
(i'YA: (LinkPrccess ->DisrlayProcess, Command)
(i).B: (Disnolayp.rocess-*>Dis-playint,Draw)
{i' C : (Dis3playDevice ->Displayint,:nterrupt
,i, .D: $DiSplay~nt ->DisplayProcess,Done)

Figure 11: :N11DFX Theration in a Stream of messages

Lo describe global chan7seges in the sytm : introduce a new
transition, PR:BDCA'E, describing the exact systemn state as
a vector of states of lower-level finite state machines. in
the case of pipelined computations, we are interested in the
vector of finite state machines modeling different
activities in progress. The new transition, PREDIPATEE,
helps to describe the vector of states FFigure 121.

(1) PREBDTCPATB(Di splay i)=" , Display(i+1)=B'
(2') Display(i).C: (DisplayDevice -> Displayint, interrupt)

A. (3) Display(i-1 .B:(DinlayProcess->Dis~lay~nt,Draw'1
t(4) PREDTCATB(Display~i =D, Display(i+lC

(5') Display(i).D: (,Displaymnt -> DisplayProcess, Done'
.M(6) DIDEX(Display)

Figure 12: PREDICATE Transition in Composite Models

The occurrence of transition (1) moves the models to the
state where Display(i) is waiting for an interrupt (state C'
and Display(i+1) is waiting for the device to become
available (state B) . The occurrence of Interrupt is
immediately followed by the next command moving the model to

I. another system state (4).

Page 38

Although I introduced a repetitive pattern into the behavior
of the system, the resulting finite state machine has many
states. In particular, different load conditions result in
different system states. A heavy load on the system results
in only one message in progress:

PREDICATE(Display(i)=C, Display(i+1)=A)

A light load on the system results in many messages in
progress (if the remote process can generate data faster
than the graphics device can display).

PREDICATE(Dieplay(i)=C, Display(i+1)=B, Display(i+2)=B,

Modeling all system states is impractical due to the large
number of them. An alternative is to describe a limited
system state- a user view of computations in the system
[Figure 131. Three messages in progress are each described
by a finite state machine. The user is concerned with two
models: Displayri] that is in state B and DisplayFi 1 that
is in state C. The hardware interrupt moves model
Displayri] to state L. At this point, the user applies

TDEX operation to consider the next pair of finite state
machines.

I have already developed a formalism to describe the user
view of computations in the system: the sequence of
transitions from (i) to (5) describes the system state for
only two messages in progress although in reality there
might be many more messages in progress.

4

DISPLAYC 1+2)-A

DISPLAY (I+1)=B

fllSPLAY(I =C USER'S VIEW

DISPLAYM) -IN*TER RU PT

DISPLAY(1+2)=A

DISPLAY (1+1) -B

DI SPLAY (I) -L

INiDEX(DISPLAY)

DJSPAY(I2)-A CHANGED USER'S

'UDISPLAY(I+1)mB VIEW

DISPLAY(I) L

Figure 13: User Windows

Page 40

To ensure completeness of the model, I introduce a special
RESET state. All states that are entered with a PREDICATE
transition are connected to RESET. If none of the specified
PREDICATE transitions occur, the model enters RESET state.
If the finite state machine model is not accurate in that it
does' not capture system states occurring often in the
execution of the system, most statistics are collected
within the RESET state. Exit conditions from the RESET
state are defined with PREDICATE transitions.

The sequence of five transitions described above constitutes

an ideal loop of always having one command in progress.
However, after an INDEX operation we may encounter a state
with no messages in progress.

!NDEX(Display)
PREDICATE(Display(i)=C, Display(i+)=A)
Display(i).C: (DisplayDevice -> DisplayInt, Interrupt)
Display(i).D: (DisplayInt -> DisplayProcess, Done)
PREDICATE(Display(i)=O, Display(i+!)=A)

If the above sequence of transitions occurs, the iisplay
device becomes idle: Either the remote process has not sent
the data or LinkProcess was not able to handle it. To
discover the reason, we apply transition PREDICATE to an
entirely different model for LinkProcess.

PREDICATE(LinkProcess(i)=A)

If the transition occurs, LinkProcess has not received
message (i), pointing out the foreign process- the
bottleneck of the system. If the transition does not occur,
LinkProcess has seen the message but for some reason has not
delivered it to DisplayProcess. Then, we might want to
describe a more detailed model of the computation. The
transition PREDICATE allows us to define an arbitrary system

4-: state as a vector state of selected finite state machines.

3.5 Summary

This chapter described a formalism for performance analysis
of communicating processes. First, it described the basic
properties of messages traces and introduced three time
stamps: Birth, Start, and Finish. On the basis of those
intervals, for every message the system calculates three
time intervals: Execution, Interval, and Delay. Analysis
of those measurements was still difficult due to the lack of
a conceptual framework within which to evaluate those
statistics. Then, I introduced the notion of an activity as
a collection of messages serving a single user request.
Elementary activities represent a sequence of messages
arriving at the same proc.ess; composite activities
represent a collection of messages arriving at a group of

Page 41

processes. Analogous intervals were defined to describe the
performance ofL elementary activities. In the case of
composite activities, I extended the formalism with the new
interval, Overlap, that characterized the amount of
overlapping between parallel processes.

Purther, I introduced a finite state machine model
describing the semantics of the message traces. The time
intervals that were used to describe messages were extended
to describe events defined by state transitions in the
finite state machine model. The activity is defined as a
sequence of events occurring in a finite state machine
passing from the initial state to the last state.
Elementary activities were described by elementary finite
state machines, and composite activities by composite finite
state machines. To reduce the number of states in the
composite models, I introduced three new transitions: (1)
FSM describes a long sequence of messages, (2) PREDICATE
describes the exact system state as a vector of process
states, and (3) INDEX describes a limited number of messages
in a stream. '-he suitability of the new transitions was
tested by real measurements.

Although composite models may have a large number of states,
in our experience with RI(I only a small number of states are
actually reached during the system's execution. To find
those states, howver, is very difficult and requires a deep
understanding of the system. Another difficulty is in
programming of finite state machines in a symbolic language
similar to that described in this chapter. A drawing of a
finite state machi*ne is a better representation allowin~g one
to immediately grasp various alternate transitions in the
model.

* The growing interest in message-based computing and in
-formal description of communicating processes suggests that

many future systems should be implemented or at least
designed using finite state machines (FEstrin et al., 1

4- ~and [Riddle et al.- 78u!). In those cases, the performance
evaluator will immediately have accurate finite state
machine models available for performance analysis. 'he
value of such a facility is another good reason to use
finite state machines in the design process.

Page 42

4. Examples

4.1 Introduction

This chapter describes how different finite state machines
are formulated and applied to the analysis of RIG. The
obtained results demonstrate the value of finite state
machine for performance analysis of communicating processes.

The chapter is based on two examples from the RIG system:
the virtual terminal and the file system. Section 4.2 deals
with large scale computations. in RIG, the initialization
of a terminal is such an example. Section 4.3 deals with
pipelined computations. The example is a user program
writing to a sequential file. This entails pipelined
computations because the CPU operations are overlapped with
the disk operations.

This chapter uses the formalism introduced in Chapter 3 to
present results obtained from the analysis of RIG. Chapter
5 describes how the same finite state machine formalism is
applied to two different areas: validation of reliable
transmission protocols and efficient implementation of
higher-level protocols. These two examples further sunort
the possition that finite state machines are valuable and
practical models of communicating processes for the purpose
of design, implementation and performance evaluation.

4.2 Large Scale Computations

4.2.1 Introduction

Here we are concerned with long sequences of messages
produced by many processes. Processes communicate in full
hand-shake: a process sends a message and immediately waits
for reply. Although this represents an extreme case that
reduces computations of a potentially parallel program to a
sequential program, this kind of computation is frequently
found in various initialization scenarios of multi-process
systems. in RIG, the initialization of a terminal is
characterized by a full-handshake style of communication
[Lantz et al., 79]. Overall four hundred messages are
passed among fifteen processes; out of them eight processes
are started rGertner 79b]. All computations are performed
on a single processor. Reading this section below should
help explain why the initialization of a terminal is so

t complicated.

The section has four major subsections: Subsection 4.2.2.

Page 43

contains a fragment of a message trace pointing out the
problems in modeling a large number of processes. Next
three subsections describe finite state machines for
analyzing these traces. Subsection 4.2.3 begins with a
simple model for a user program reading a block of data from
the disk. Subsection 4.2.4 uses the simple model to
describe a higher-level finite state machine for reading a
file of data. Subsection 4.2.5 describes the highest-level
finite state machine model for initializing a terminal in
RIG.

4.2.2 Message Trace

This section points out difficulties in analyzing a long
sequence of messages. The example is a fragment of the
message trace required to initialize a terminal. The format
of the message trace is slightly modified to improve
readability. For the purpose of presentation, the message
trace is divided into eight parts:

1) The system is idle; only clock interrupt messages
periodically appear in the system.

2) A user hits a "return" key causing the terminal to
initialize. The message DCUTfnterrupt indicates this event.

3) The ResourceManager process requests ProcessManager to
start a new pr tess (message CreateProcessMsg). The Process
Manager is responsible for reading in the process definition
tables and parsing them. Overall, twenty messages occur by
the time the new process (TnitMonitor) is created. The
ProcessManager returns the process identifier to the
ResourceManager (message PmReply: 115).
Here, one problem for the performance evaluator is to select

messages of interest in a long sequence. Some messages
always occur in the system independent of the application.
For example, one second may expire and the Timer process is
notified. Moreover, this time a five second interval
expires causing the Timer to notify the TenServer process
with the message FiveSecInterrupt. A finite state machine
having state-transitions each defined as reception of a
message is extremely valuable model for selecting messages
of interest.

The large number of messages arriving at the FileSystem
process make it difficult to concentrate on the main issue,
the creation of new processes. (Recall that we consider
only a fraction of the entire message trace required to
initialize a terminal). In this case, I will use a
hierarchy of finite state machines to concisely describe the
long sequence of messages. A lower-level finite state
machine describes all messages arriving at the FileSystem.

j4

Page 4

A higher-level finite state machine contains a single
transition defined as a, sequence of messages causina the
lower-level finite state machine to pass from the initial
state to the last state.

4) The ProcessManager requests ?ewProc (a system process
responsible for creating a process map as required by the
Eclipse hardware manual). The newly created InitMonitor
sends a request to start the Monitor process. Two messages
CreateProcessMsg and PmReply appear in arbitrary order. In
this particular case, the ProcessManager receives the
message CreateProcessMsg before ResourceManager receives the
message PmReply. This particular ordering is random,
requiring the finite state machine model to account for all
the possible alternatives.

5) Another process is created (Monitor:115). Here,
ProcessManager replies to :nitMonitor (PmReply: 116) before
the newly created process (Monitor) sends any message.

The StatusServer process is also created
(StatusServer=1 17).

7) The ResourceManager requests arguments from InitMonitcr.
Although at this point there are two messages outstanding
for InitMonitor (?mRepy: 117, and RequestArgsMsg), it
always receives these two messages in the same order. This
is because !nitMonitor communicates in a full 'and-shake
style with ProcessManager. This example demonstrates how
the full hand-shake st.le helrs to describe a finite state
machine having a single path modeling the receirt of two
messages. in part seven of the message fragment, all
messages are related to the initialization of a terminal but
they are not related to the creation of new crocesses.

8) The LineHandler process is created (LineHandler=120Y.

page 4

Sstem ->TmrClocklnterruDt

Syst em ->Timer ,Clocklnterrurt

2)

System -)Terminallnru t, YCUlnterrupot
System ->Timer , Clockinterrupt
Terminal~nput -)ResourceManager ,DataMsg

ResourceManager ->Terminal~utput, LineMsg

3)
ResourceManager -> rocessManager ,CreateProcessMsg

ProcessManager -> ileSystem , OpenMsg
System ->TerminalOutput, DCt~tnterrupt
System ->FileSystem , Diskinter-rupot
System -)FileSystemn , Disklnterrunt
System ->Timer , Clock7nterrupt
Timer ->TenServerProcess ,Five~ecinterrupt
System ->FileSystem , Diskxihterrunt
System ->FileSystem , Disk~vterrupt
File-Zystem ->ProcessYanager ,FileReply

ProcessMana~zer ->Fl ytmnnut~sg
S'ystem ->File~ystem :),Diskinterru-ot
TileSystem -)Pcs aae Utput',Iqg
Process! ansger ->Fle 2System , lo Se Y.SF
S-ystem ->FileSystem , DiskThter-rupt
FileSystem ->ProcessMarnagen , loseRenlpy

P rces~an~er -. ew? rcc, NewProcCre ate
Thn '~r - Poces~aage ,Create Pro cess'-sgc

Process:,anazer ->File Systen , -penMsg
Processana er ->Resuce~anager ,PmReply 1 1

-~~~ */ntoir 15

System ->Terminall'n~ut, D CT Int er runt
Terminalnput ->Terr7ninallnput, ZrrorMsg
System ->FileSystem , Disk~nterrupt
System -)Timer ,Clocklnterrupt

Systm ->FileSystem , Diskinterrupt,
System -> FleSyctem , Diskinterrunt
Ti le-SteM - Process' anager , File~e-ply
ProcessYanager ->File~ystem , InpDutMsg

'System -FileSystem , Disknterrupt
Filezyst em ->Process~anager , utputYsg
Process..anager ->Fileasystem , Close~qsg
System ->FileSystem D Disk In4t-e rrupot
FileSystem -> Process ,miager ,CloseReply

ProcessMansaer N>~ewProc , ,'ewProc~reate
ProcessMinager -> it-Monitor, Pi-Relply 116

//Monitor 116

Pa~e d

6'
nilt-Monitor ->ProcessManag er ,CreateProcess' ag

Procesa.'anager ->FileSystem , QrenMsga
System -)FileSystem , Di-sk~lteruot
Sy s te m >Fi leSystem , Diskliterrunot
System -)FileSystem , Di skint e rrurt
System -)FileSystem , DiskInterrupt
System ->FileSystem , Diskiterrupt
System -)FileSystem , Diskinterrupt
FileSystem ->ProcessManager ,FileRenly

ProcessManager ->FileSyste , TnnutMspg
System -)FileSystem , Diskinterrupt
FileSystem ->ProcessManager ,CutvutMs-

ProcessManager -)FileSystem , CloseMsg
System ->Timer ,Ciockinterrurt11

System -)FileSystem , Disklnterrunt
FileSystem ->ProcessMana-cer ,Close~enly

Processaranager -> ewProc , NewProcCreate
ProcessMa 'nager ->'Cni-t-Monit'or, PI~eply 11"
/ StatusServer 47

Resource.' anager -) nit-Minitor, RequestArgsl'sg
:nit-MTonitor ->ResourceManager , PrccessAr--sMsgP~epl y

.~n~-Moior - ScreenHandler , nenY~sg
ScreenHandler -erminal~utput, Ini'tScreenMsg
System ->Terminaillut-put, DC'llnterrunt+
ScreenHandler - ermina7lutrut, 3e- -eermnal~Prof ile
zerminal Cu trut - ScreenHandler , n tniScreen's
Screen-Tandle-r ->Init-Monitor, CpenRerly

.,,-monitor -Pocesslanager , CrateProcessMsa
P r o ce s san eer F 1 'e Sy stem , CpenMsg
System -)Timer ,Clocklnterrurt

tSystem -)FileSystem , Disk'.nterrurt
*System ->FileSystem , DiskInterrupot

System ->FileSystem , isklInterrurt
FileSystem ->ProcessManager ,File~ecly

4ProcessManager -)FileSystem , innutv-sR
System ->FileSystemn , DiskInterrupt
FileSystem ->ProcessManager , utr~ut%7s
Process !anager ->FileSystem , Close~sg
S:Ystem ->FileSystem D- Dsk'nterrurt
F ile-3y s tem ->Procesanager ,Closeperlv

Process"Xanagzer ',T:e'g~roc , NewProcCreate
Process, anager -> nit-Monitor, PmrReply

//Lineiandler =120

Page 4-

In summary, initializing a terminal produces a long sequence
of messages. All messages depicted above, constitute only a
fragment of all messages required to initialize a terminal.
Three difficulties encountered by the performance evaluator
are: 1) a large number of communicating processes; 2) a
collection of messages that are not related to the main line
of computation, creation of new processes; 3) a large
number of messages arriving at the FileSystem.

The next three sections describe one possible solution to
these problems. To analyze messages arriving at the file
system, I use a hierarchy of finite state machines. A
higher-level model contains a transition modeling a sequence
of messages required to read an entire file. Messages that
are not related to creation of new processes are not
included in the composite model of the system. The error is
estimated by accumulating statistics for all these messages.
The full hand-shake style of communication between processes
makes it possible for the performance evaluator to describe
the expected sequence of messages and subsequently to encode
them in a finite state machine model.

4.2.3 Reading a Block of Data

This section describesan example of a user reading a block
of data from -he disk, ignoring for the moment the issues of

multiplexing and oipelining 'those problems Will be
addressed in Section 4.3). - begin with two elementary
finite state machines: one for the file system and the
otner for the disk handler. Then I describe a composite
model for both processes. In the presentation, I suggest a
methodology to describe finite state machines and how zo use
them.

A user program ("the User") reading a block of data from the
disk requires services from the file system ("the
FileSystem") and the disk device ("the DiskHandier"). The
User and FileSystem communicate with messages ReadBlock and
ReadDone, the FileSystem and DiskHandler with DiskCommand
and DiskDone [Figure 14].

:t is convenient to model the DiskHandler with only one
state and one transition. Having received the message
DiskCommand, DiskHandler starts the device (a long
transition). The disk interrupt moves the model back to the
initial State.

The File~ystem has three states and four transitions. It
starts in state A, and upon receiving message ReadBlock from
the User, moves to the state B, a decision state. In state
B, the FileSystem decides whether to read directory blocks
or not. If needed, the FileSystem moves to state C, by
issuing DiskCommand to read the directory; otherwise, the

;' 1 1 'T , - . . ._

Page 48

FileSystem remains in state B by issuing DiskCommand to read
the user data. The same message identifier is used in
either case: whether reading the user data or the
directory. The finite state machine models help to identify
the meaning of these messages using state information. For
the purpose of performance measurements, we can exclude from
the model the decision of the FileSystem to remain in state
B.

To encode these models, I have used both documentation and
actual code of the file system. The documentation that
describes interprocess communications provides information
sufficient to describe three transitions: ReadBlock,
DiskDone, and EOF (End Of File). Further, I have examined
the code of the file system and found a state that requires
several disk operations for updating user directories. The
code has been modified to declare a change in the internal
state for the purpose of performance monitoring. Although
the code dealing with directories is complicated, I
approximate the entire computation with only two states: B
and C FFigure 15]. The accuracy of the model is sacrificed
for simplicity. The simplified model still retains states
and transitions that are important for performance analysis.
The transition ReadDirectory followed by DiskDone
accumulates statistics for all directory operations.

In addition to the notation described in Section 2, I use
drawings of finite state machines. Similar ,rawinrs have
been used to describe 'NA protocols F:BM -TA". in the
graphical notation, each state is indicated by a ertical
line named either at the top or the bottom. :he vertical

lines have circles with incoming or outgoing arrows. Bach
transition between states is represented by a horizontal

* arrow with the following properties:

* The tail of the arrow starts at a C _rce on the state line

corresponding to the initial state (before the transition).

* The head of the arrow ends at a circle on the state line

corresponding to the next state for the given transition.
* The activities or the output of the transition appear as
comments directly below the transition line.

* The input associated with the transition or the logical
condition causing the occurrence of the transition appears
directly above the state transition line.

* The transition arrow might represent a loop causing the
finite state machine model to stay in the same state.

p

o

rae 40

Block Diagram, Read Block

1 2
StartDevice

ReadBlock DiskCommand
> FILE >DS

ReadDone SYSTEM DiskDone HANDE nerpoe
6 51

ESM GTr a ph, FileSystenm

AB
TUser->FileSystem ,Read~lock

F ileSystem->Disk.4a-ndler ,Disk~ommiand

1<FileSystem->System, ReadDirectory

I Dik~anler>?il~ystm, iskDone

Filesystem->'User, C

FileSystern->User,ReadDone

PSM Graph, DiskHandler

I FileSystem-)D iskHand ler, Di skCommand

4 StartDevice

L
0<

Figure 14.: Read Block

Page 50

Until now, we considered two finite state machines: one for
the file system and one for the disk handler. The next step
is to build a composite model capturing the behavior of both
processes. There are two reasons for doing this: ,1 the
composite model can later be used as a single transition in
higher-level models; and (2) statistics of a single model
are better understood by the performance evaluator who views
the entire system as a sequence of events in terms of the
composite model.

The description of the composite model ReadBlock is easy due
to the full hand-shake in the interprocess communication.
Since only one finite state machine is active at a time, the
composite model is obtained by simply specifying states from
different finite state machines in the order of their
appearance. Surprisingly, in RIG, composite models are
easier to describe than elementary models. This is because
all changes in the system state are reflected in the trace
of messages. The number of states in the composite model is
small due to the very conservative style in the use of
messages. (in RIG, there are basically two styles of
communications: full hand-shake and message streaming.
Until now, we considered onl full hand-shake; Section 4.3
considers message streaming.,

To further simplify the composite model, I use a single
transition for reading a block of data that contains either
user data or directory information. The final version of
the finite state machine has only three states: A, B, and C
[Figure 15].

• o

p.

b

Page ~

FSM Graph, Read Block

A
IUs er->Fi le System, ReadBlock

0 >0

File~ystem->DiskHandler, Disk' ommand
0<

DiskHandler->FileSystem ,Dis kDone

FileSystem..>tser, ReadDone
0<

FSY Program, Read Block

FSM: Read3lock
(User->FileSystem,ReadBlock

*B: (FileSystem ->DiskHandler,Disk-ommand)
(Diskiandler->Filegyst em ,DiskDone)
COIlNECT(B)

B: (FileSystem ->User,ReadDone)
END-FSM

Figure 15: FSM Read Block, Simplified ComPosite Model

Page 52

7n summary, I described model ReadPlock to be used as a
single transition in the higher-level models of reading a
file (Section 4.2.3 . 1 began with two elementary finite
state machines: one describing the file system and another
the disk handler. Describing the file system was difficult
due to the directory operations that required analysis of
the program code. Composite models were easier to describe
because all state changes in the system were expressed in
messages. The description of the composite model was
further simplified by leaving only those transitions that
were important for performance analysis.

4.2.4 Reading a File

This section uses the finite state machine model for reaiing
a block of data to describe a higher-level finite state
machine for reading a file. At the higher-level, the
transition

FSM(ReadBlock)

models the occurrence of a sequence of events that take
place as a finite state machine passes from the initial
state to the last state. The finite state machine ReadFile
starts in "idle state" A, and by receiving the message
OnenFile from the User moves to state B, a decision state.
in the case of an error message (the file does not exists
the FileSystem replies to User either with an error (for
example, the file does not exist) and moves back to state A,
or with FileOpened and moves to C. In state C, the
FileSystem continues reading blocks (the abstract transition
is FSM(ReadBlock]) until the end of the file (EOF message)
and closes the file (CloseFile) at the user's request.
Again, composite models were easier to describe than
elementary models.

It

t.

Page 5

FSM Graph, Read File

User->FileSystem,OpenFile lFileSystem->User,FileOpened
00 >0

0FileSystem->Jser,Error

FSM(ReadBlock)

User->FileSystem ,Close~ile

o<

1< FileSystem-MUser, EOF

FSM Program, Read File

FSM: ReadFile
(LUser->FileSystemn,OpenFile)

B: (FileSystem ->User,E7rror)
CONNECT (LASTSTATE)

B: (FileSystem ->User,FileCpened)
C: FSM(ReadBlock)

CONNECT (C
- C: (tUser->FileSystem,CloseFile)

CONNECT (IASTSTATE)
C: (FileSystem ->tUser,EOF)

CONNECT (LASTSTATE)
END -FSt4

Figure 16: FSM Read File

Page 54

4.2.5 Initializing a Terminal

This section describes the highest-level finite state
machine modeling the initialization of a terminal in RIG.
Lower-level models that are described in previous sections
are used as transitions. Although processes communicate in
a full hand-shake style, the composite model is still
difficult to describe due to the large number of processes.
The difficulty is in knowing the exact order of computation
of so many processes.
To represent all possible alternatives is impractical. Many

branches will complicate the model without contributing to a
better understanding of the performance. In this case, I
make no attempt to describe a composite model for the entire
system. Instead, I describe the composite model of the
major subsystem. The documentation of the RIG system has
been sufficient for me to acquire the knowledge necessary to
describe the model. This is an example of what one should
be able to do with adequate system documentation.

Initializing a terminal requires eight new processes:
InitMonitor, responsible for creating all the processes
handling the terminal, LineHandler, responsible for
multiplexing the physical line, and three pairs of processes
Monitor and PAD-Monitor, StatusServer and PAD-StatusServer,
Executive and PAD-Executive. Each pair of processes is
responsible for creating and destroying different kinds of
terminal windows (regions). Monitor is responsible for
creating new user regions of the screen. StatusServer is
responsible for controlling the status of all currently
active regions. Executive is responsible for handling of
user requests.

In the finite state machine description, the first
transition models the creation of process InitMonitor
[Figure 17].

InitMonitor = FSM(CreateProcess)

To measure the overhead in exchanging arguments among
processes and opening logical connections, I used two finite
state machines: OpenConnection and PassArguments.
Statistics of those models, together with statistics of the
composite model, constitute time intervals of the overall
system. The experiment [Figure 17] begins with the message

(ResourcesManager -> InputProcess, Input)

being sent to the ResourceManager responsible for handling
physical lines; the experiment ends with the message

(Executive -> LineHandler, LineEdit)

Page 55

received by the LineHandler responsible for multiplexing a
physical line.

The transition FSM (TerminalComponents) models the creation
of LineHandler and two virtual screens: Monitor and
StatusServer. The order in which processes are created is
unimportant; therefore, I use a finite state machine of
type COLLECT that models a collection of messages arriving
in arbitrary order.

.A

t

II 1

-,' " K I I '
' '' I ' '" "

Page 56

FSM: CreateMonitor

Monitor FSM(CreateProcess)
Pad-Monitor= FSM(CreateProcess)

ACTIVATE (Monitor-Outluput)
END -FSM

FSM: MonitorOutput

(Monitor -> Monitor-Pad, ANY)
(Monitor-Pad -> Monitor, PadReply.)

END -FSM

FSM: CreateStatusServer

StatusServer = FSM(CreateProcess)
Pad-Statusgerver= FSM(CreateProcess)

ACTIVATE (Status Server-Output)
END -FSM

FSM: StatusServerOutpout

(StatusServer -> 'StatusServer-Pad, A-NY)
(StatusServer-Pad -> StatusServer, PadRenly)

END -FSM

FSM(COLLECT): TerminalComponents

FSM(CreateMonitor)
- FSM(CreateStatus~erver)

LineHandler = FSM(Createprocess)
4 END-FSM

FSM: PassArguments

(ANY ->ANY, RequestArgMsg)

E~1DFSM (ANY ->ANY, ProcessArgsMsgReply)

FSM: OpenConnection

(ANY ->ANY, OpenMsg)

V EN-FSM(ANY ->ANY, OpenReply)

Figure 17: FSM Initialize Terminal
(continued on the next page)

Page 57

FSM: CreateProcess

Requester =(ANY ->ProcessManagzer, CreateProcessMsgg
FSM(ReadFile)
(ProcessManager ->MapCreator, NewProcCreate)
(MapCreator -)ProcessManager, ManoCreated)

A: (ProcessManager ->Requester, PMReply
(NewProcess ->System, FirstScheduling)

A: CONNECT (LASTSTATE)

(NewProcess -)System, FirstScheduling)
(ProcessManager ->Requester, PMReply)

END -FSM -

FSM: In it iali zeTerminal

(Pesourcesmanager -> Ter'minallnput, intrg
InitMonitor =FSM(CreateProcess, nu~g

AC T!VAT E(P ass Ar gum entl-s
ACTIVATE (Oren Connection)
ACT IVATE (Sc reenManagement)

FSM(T Term inal Ccmponents)

Nlap '-eatlor->Processiana-cer, ProcessD4e'
Executive 7FSM(CreateProce3S)
Pad-Executive- FSM' reateProcess)

ACT: VATE (Execut ive-Outnut)
(Executive - ineHandler, 1inedit)

EN J- F S M

Figure 17: FSM Initialize Terminal
(continued)

Page 58

The statistics produced by this model point out that
transition FSM(ReadFile) consumes about 25K of the total
time required to initialize a terminal. By keeping process
definition tables in memory, we could speed up the terminal
initialization by 25'. Although many messages are required
to establish logical connections, the system spends only 101
of its time in modules FSM(PassArguments) and
FSM(OpenConnection). Therefore, the performance of the
system was not severely affected by requiring all processes
to conform to those conventions. The statistics of those
transitions are as follows:

Statistics-FSM: ReadFileEvents
NumSa mnles:= 106 Execution:= 2608 Overhead:= 600
Swapped:= 14 IdleWaitDevice:= 1312

Statistics-FSM: OpenConnection
NumSamples:= 15 Execution:= 310 Overhead:= 113

Statistics-FSM: PassArguments
NumSamples:= 8 Execution:= 150 Overhead:= 50

4.2.6 Results

This section considered long sequences of messages produced
by many processes communicating in full hand-shake. The
example was the initialization of a terminal in RIG.
Overall four hundred messages were passed among fifteen
processes. To describe such a long sequence of messages, I
introduced a hierarchy of four levels:

a) Level 1, FSM(ReadBlock) modeled computations of the file
system and disk handler in reading a block of data.

b) Level 2, FSM(ReadFile) modeled computations for the file
system and user in reading a file.

c) Level 3, FSM(CreateProcess) modeled computations of four
processes: ProcessManager, MapCreator, FileSystem and
DiskHandler.

d) The highest-level 4, FSM(StartTerminal) modeled all
fifteen processes exchanging four hundred messages.

This hierarchy allows the performance evaluator to express
the statistics of very detailed computations of the file
system in terms of the statistics of initialization of a
terminal in RIG. This suggested a more efficient
initialization of a terminal in RIG by keeping the
processes' definition tables in memory, thereby avoiding the
file system accesses entirely. This kind of information was
gathered naturally by using finite state machines.

Page 3

This section considered a long sequence of messages produced
by many processes communicating in a full hand-shake style.
This kind of computation is also found in initialization of
some other systems. For example, the initialization of
RUNTOOL in the NSW system involves twelve distinct processes
and well over forty process activations ([NSW 771 and
[Schantz 79]). The methodology developed in this section
can be applied to the analysis of the NSW system. Although
processes run on distinct computers, most of the time they
communicate in full hand-shake, thereby making it possible
to describe a simple finite state machine modeling the
behavior of the entire system.

The NSW (National Software Works) is a software system that
provides uniform accesses to diverse computers (hosts) in a
network. It facilitates the use of a wide variety of
software tools. Specific knowledge about the location of
the tool or its particular environment is often not needed.

Page 60

4.3 Pipelined Computations

4.3.1 introduction

This section is concerned with pipelined computations
described by repetition of sequences of messages (user
activities). A new activity frequently begins before the
previous activity has been completed; therefore, the
handling of some messages is overlapped in time. The
example used in this section is a user streaming data to a
disk. A separate disk controller allows the overlap of disk
accesses with CPU computations. I demonstrate how the
knowledge of the system helped to identify a small number of
states in the composite model.

This section has three major subsections: Subsection 4.7.2
describes an elementary finite state machine, modeling a
user that writes a block of data. Subsection .
describes the composite finite state machine, modeling two
activities :n progress. Subsection A.3.A describes a

composite finite state machine modeling two users.
Different finite state machines were formulated and anoliei
to the same data to extract different kinds of information.

4.3 -21 Writine a Block of Data

The first step is to describe a sitple finite state machine

that models only one message in progress and has six states:
Idle, Writing, Busy, Done, Directory and Last FFigure 19.
The model is very similar to the Read,!ock model that is
described in Section 4.2.2. To represent more accurately
the overlap between the CPU and disk controller, I use
interrupts as events.

Statistics of this simple model revealed that 40, of all the
disk operations are performed to update the directories. Inthe system with a single user, the disk controller requires,

on average, 50 milliseconds to complete a single operation.
Every second 20 disk operations are completed: 13 for the
user and 7 for the directories. Consequently, the average
interval between user commands is at least 77 milliseconds.
During directory operations, the file system receive about 5
commands that keep the disk controller busy. When one
specific command is in progress (Write[i]=Busy), the CPU can
be used to perform other computations. To perform the next
command, the file system spends 15 milliseconds: 10
milliseconds to handle the user's request (the transitions
is WB) and 5 milliseconds to handle the interrupt message
(DD). This simple model points out that the directory

.4 operation is the bottleneck of the system.

A-

Page 61

FSM Graph, Write Block

Idle Writing Busy Done

WB DW

DD

I DR DIR

ED
1< 0

WD Last

Abbreviations:

WB -(UserProcess->FileSystemn, Write~lock)
DW -(FileSystem ->DiskHandler,DiskWrite)
DD -(DiskHandler-)FileSystem, DiskDone)
IN (Disk ->DiskHandler,Interrupt)
WD - FileSystem ->System, WriteDone)
DR - FileSystem ->System, Directorylperation)

tED -(FileSystem ->System, EndDirectory)l

Figure 18: Write Block

Page 6 2

4.3.3 Composite Model for Two Messages in Progress

To measUre the overlap between the CPU and disk operations
we need a composite model describing several messages in
progress. To simplify the description of the composite
model, I consider only two messages in progress. This is
sufficient to monitor one message being handled by the disk
controller and the next message being prepared by the CPU.

To further reduce the number of states in the composite
model, I describe only those states that are most likely to
occur. The following properties (or global
state-transitions) of the system help to reduce the number
of states. The description of each property is followed by
a fragment of system transitions used later in the composite
model.

1) Start(Write[i].DD) < Start(Write[i+1].IN

An interrupt message is always received before the next
interrupt occurs. in the composite model, the following
three transitions occur in the same order:

PREDICATE(Write[i+1]:Busy) , WriteFil=Done)
Writeil.(DiskHandler -> FileSystem DiskDone)
PREDiCAT'(Write[i+1]=Busy, Writer iI=Writing)

2) Start(Write[i].DD < Start[Writeri+21.WB

The file system receives an interrupt message with priority.
The following three transitions appear in the composite
model:

DRED:CATE(Write=T+ j:Idle) , Writer i]=Done)
(DiskHandler -> FileSystem, DiskDone)
(User -> FileSystem, WriteBlock)

3) PREDOATWrite[i]=Busy), not Write[i+1]=Busy])

The disk device handles at most one command at a time. The
following three transitions appear in the composite model:

PRED'CATE(Writei]=Writing, Writeri]=Busy)
Write[i].(Disk -> DiskHandler, Interruot)
(FileSystem -> DiskHandler, WriteBlock

4) Upon completion of the operation, the DiskHandler
immediately fetches the next command. The following three
transitions appear in the composite model:

m@mb A

Page 67

PREDICATE(Write[i+1]=Wri ting, WriteF i] =Busy)
Write~i].(System->DiskHandler, Interrupt)
Write[i+ .(FileSystem->DiskHandler, DiskWrite)

5) At most two commands in progress are considered. (A user
defines predicates for two commands in progress).

The composite finite state machine [Figure 191 starts in "no
write request" state A, in "one write request" state B, or
in "two write requests" state C. In state A, the first
write request moves (after a long delay) to state B (the
transition is (0, WB)). Now, a new request moves to state C

?, (the transition is (WB, WB)) or the disk command moves to
"one write in progress and there are no more user requests"
state D. But, in state D, the finite state machine can
still "catch up" by receiving a "next write request" (the
transition is (WR, DW)) and moves to state E.

In the decision state B, the FileSystem may decide to
suspend temporary user requests and engaae in updating the
system's directory. Computations without the overlap
between the CPU and disk are described by five states: A,
B, D, N, and P. The remaining seven states describe the
overlapped computations: D, E, F, G, H, and back to D or E.

in state E, one message is being handled by the disk
controller and another is ready for execution. If another
user message arrives, the model accumulates statistics in
state E (the loop with the transitions WD). In this case,
there are more than two messages in Progress. in state D,
only one command is in progress at the disk handler. Such
detailed information would be very difficult to obtain
without the use of finite state machines.

Ia

9.e -L

Page 64

FSM Graph, Write Block

RESETo0 9 -00

DIA DIR) DIR DIR

0->O- 0->0

fEND~ ENJD

(0,WB) (WB,WB (WB, DW)o>O .>0 >

F
0-,DW) (WB,DW) (W B,:N I

<> >>O >0

I I DW
INDEX (0,DD) (O,IN) 0
< 0

(, DWr B <a

(WB, DW)

0< INDEX /(DW,DD! (DW, IN)

Fiue< 9 <,M W<t.lc, w esgs Pors

pI

t.I

Page 65

FSM Program, Write Block

F'SM: WriteBlock
RESET:

PREDICATE(Write[i+1 1=Idle, Write[i]=Idle)
CONNECT(A)

PREDICATE (Write~ri+1]=Idle, Write[i]=Writing)
CONNECT(B)

PREDICATE(Write[i+1]=Writing, Write[i]=Writing)
CONNECT(C)

END RESET
A: Write~il .(UserProcess->FileSystem, WriteBlock)
B: WriteLii .(FileSystem->System, Directory)
BI: Write[i .(FileSystem->System, Directory)

CONNECT Bl)
Bi: Write[i] .(FileSys'tem->System, EndDirectory)

CONNECT (B)

B: Writer i+] .(UserProcess->FileSystem, WriteBlock)
C: Writ eFi].(FileSystem->DiskHandler, DiskWrite)

CONNECP T (EB)
C: WriteF ii.(FileSystem->System, Dir .ectory)
Cl: Writer il.'FileSystem->System, Directory)

CONNECT(Cl1
C1: Writel. rFileSystem->S:-ys'tem, EndDirectory)

£ -~B: WriteFi]. (FileSystem-Diskiadler, DiskWrite)
D: Writeri+l j.(U serProcess->FileSystem, WriteBlock)

COINECT (B)

D: WriteFi 1.(Syst.em->DiskHandler, Interrupt)~
Writ- e-l(D isk~andler->FileSystem, DiskDone)
Write[i. (Fi leSystem->Filelystem, WriteDone)
CONNECT A

Figure 20: FSM Program, Write Block
(continued on the next page)

E: Write[i].(System->DiskHandler,
Interrupt)Pae6

El: (User -> FileSystem, WriteBlock)
C-ONIECT (El)

F: Write i+1.(FileSystem->DiskHandler, DiskWrite)
G: Write [i].(Di skHandler->FileSystem, DiskDone)
H: Writeri] .(FileSystem->System, WriteDone)

J: PREDICATE(Writeri+1]=Writing, Write[i]=Busy)
CONNECT (F)

J: PREDICATE(Write[1+1]=Idle, WriteF i =Busy)
CONNECT (D)

F: Writelil .(DiskHandler->FileSystem, DiskDone)
K: Write iJ .(FileSystem->Systen, WriteDone)

INDEX (Write)

M: PREDICATE(Write[iL+l]=Writing, Writer il=Writing)
CONNFCT(C)

M: PREDICATE(Writeri+1]=Idle, Writei]= qriting)
CONNECT(B) L

END-FSM

Figure 20: FSM Program, Write Block

(Continued)

-11-10

Page 67

4.3.4 Composite Model for Two Users

The same model [Figure 19] can be applied for performance
analysis of two users. As was expected, the number of
directory operations increased by 1O. This is because a
smaller number of buffers is available for each user.
Unexpectedly, however, the execution time of the transition
(B->C) did not change. Further analysis revealed that in
RIG there is no additional overhead associated with
additional users. The file system makes no attempt to
optimize disk input queues for the purpose of reducing the
disk arm movement; therefore, the execution time in
handling the request of users did not change. Likewise, the
disk access time did not change (the transition E->F).
Hence, another model is necessary to describe the file
system in order to distinguish between requests of different
users.

The same formalism that was used to describe pipelined
computations is applied to multiple users. A typical
sequence of events for two users is

WriteUserlFi]. (serProcessl ->FileSysten, WriteBlock)
WriteUserl [i1l.(UserProcess->FileSystem, WriteBlock)
WriteUserli i+P.(UserProcess1->FileSystern, WriteBlock)
WriteUser2i.(UserProcessl->FileSystem, WriteBlock)
WriteUser2ri+1].(UserProcessl->File'ystem, WriteBlock).

Collected statistics indicate that transitions from state
to F occur three times as often as transitions from B to C
occur. This suggests that the FileSystem receives user
messages in bursts: first three messages from Userl;
second, three messages from User2. This explains that only
every third message moves the disk arm from one user area to
another user. (The number three is a default backlog in
RIG, the number of messages to be queued in the receiver's
input port. This explains why messages are received in
bursts of three messages.)

Page 68

FSM Graph, Write Block

A B),

I (WB, WB) (WB, DW) WB DDD

(WB,DW)

F
(DW, WB)

(DW,WB) (DD, WB)

0> >0 >0

(DW, WB) i
C < 0

'W'-, DW)

Figure 21: FSM Write Block, Two Users

"II"

Page 6o

4.3.5 Results

Throughout this section, various finite state machines have
been constructed and applied to the same data to extract
different kinds of information about the FileSystem in PIG.
A model of a single user streaming data at maximum speed
revealed various bottlenecks in the FileSystem. A simple
model [Figure 18], without considering pipelining, pointed
out the bottleneck- the handling of directories.

The third model [Figure 19] analyzed the relationship
between pipelining of user messages and directory
operations. The most interesting result was the model
itself. Sometimes in the input queue of the FileSystem up
to seven messages were queued by each user making it very
difficult to model the system. A simple finite state
machine modeling only two messages in progress was found
sufficient for performance analysis of the file system.

4.4 Summary

Finite state machine models were found to be extremely
valuable models for performance analysis of the RIG system.
(The generality of the finite state machine formalism is
discussed in Section 7.) Various examnles were described and
results for them were presented using the finite state
machine formalism described in Section 3. The informal
presentation was based on two examples from the RIG system:
the virtual terminal and the file system. The firs" example
presented a long sequence of messages produced by many
processes communicating in full hand-shake. The second
example presented pipelined computations that were described
with a stream of messages containing many activities
overlapped in time.
The first example was the initialization of a terminal in
R:7. Four hundred messages were passed among fifteen

processes. All computations were performed on a single
processor. Although this was an extreme case that reduced
computation of a potentially parallel program to a
sequential program, this kind of computation is found in
various initialization scenarios of other multi-process
systems.

The initialization of a terminal in RIG produces a long
sequence of message. To model this sequence, I introduced
four levels of hierarchy: FSM(ReadBlock), FSM(ReadFile'
FSM(CreateProcess) and FSM(InitializeTerminal). Statistics
of the file system (FSM(ReadBlock) were expressed in terms
of the global model (FSM(InitializeTerminal). This
suggested an optimization of the high level protocol to keep
process definition tables in memory, thereby avoiding file
accesses entirely. This kind of optimization would be very

Page 10

difficult to obtain without the use of finite state
machines.

The second example was a user streaming data to disk. This
produced a sequence of activities that were overlapped in
time. The separate disk controller allowed the overlap of
disk accesses with CPU computations. In describing the
composite model of computations, I used the knowledge of the
system to identify a small number of states characterizing
the system.

To reduce the number of states in composite models, I
successfully used three kinds of transitions: !i) FSM,
characterizing a long sequence of messages; (2) PRRDICATE,
characterizing the exact system state as a vector of process
states; (7)INDEX, characterizing a limited number of
messages in a stream- a user view of computations in the
system. The suitability of those transitions was tested by
real measurements. Although many messages were outstanlin,
the model consilered only two messages. This was sufficient
to explain the overlap between the CPU and disk. The same
model was also aplied to analyze two users. Then, I
dezcribed a different model in an attempt to analyze the
multiplexing abilities of the file system.

-,

t

4o

Page 71

5. Implementation

5.1 Introduction

The performance monitoring system ("the monitor" was
implemented on a stand alone minicomputer (Xerox Alto)
connected to the Ethernet, a 3 MHz broadcast network
[Metcalfe 76]. RIG runs on two Data General Eclipse
computers that are also connected to the Ethernet. The
monitor receives from RIG time-stamped messages, process run
times and swapping information. The performance evaluator
describes finite state machines that identify events of
interest in the execution trace of the system. The monitor
calculates statistics of the abstract model and presents
them to the performance evaluator rFigure 221.

The chapter has three major sections: Section 5.2 describes
the interface to the performance evaluator. (An appendix
contains a complete list of user commands.) Section 5.3
describes a technique for data gathering in RIG. This
techniaue can be applied to other systems in which
interprocess communication is well-defined. These systems
are implemented in a style which is very close in spirit to
either a message-based model or tu a procedure-based model
[Lauer et al., 79]. Section 5.4 outlines parsing of finite
state machine descriptions into state-transition tables.
The major effort here is to support the same symbols that
are used both for programming of communicating processes and
for describing finite state machines.

The purpose of this chapter is to demonstrate the
feasibility of the performance monitoring system that is
based on the use of finite state machines. This chapter
describes the implementation of the monitor. in order to
show that a finite state machine is an adequate model for
the performance analysis of communicating processes, I have
introduced a new formalism, tested it on a real system, and
used the results to support the value of finite state
machines. Chapter 3 introduced a finite state machine model
of computation and described various time intervals that can
be computed from such models for message-based systems.
Chapter 4 applied the formalism to RIG and used the results
to support the position that finite state machines are
practical models for performance analysis.

5.2 User Interface

The monitor provides a command language for a user. By
entering a command, the user affects the system state. The
system then prompts the user for various parameters.
Typically, a measurement experiment consists of two steps:
data collection and data analysis. First, a user initiates

Page 72

the data collection with the command ProduceTrace:

ProduceTrace
=>host:
=>time:
=>file:

It requires three parameters: the host number (or the list
of host numbers) of the system being measured; duration of
the experiment in seconds; and name of the file that stores
the trace data. Next, the user performs data analysis on
the trace file with the command UseTrace:

UseTrace
=>trace-file:

A set of other commands helps the performance evaluator in
data selection and analysis. For example, the command
FSMLoad initiates data analysis with finite state machines.

FSMLoad
=>Trace (Yes or No) ?
=>InputFile:
=>OutputFile:

The command FSMLoad requires a name of the input file that
contains symbolic description of finite state machines. The
Trace option, when enabled, prints all state-transitions and
their statistics. The OutputFile option directs finite
state machine statistics to the s.ecified file.

Several commands have been implemented to aid the user in
describing finite state machines. The command SelectTriples
produces a trace of chosen messages. Each message is
defined with a triple consisting of a sender, receiver, and
the message identifier.

SelectTriples
=>sender:
=>receiver:
=>message:

All options provi 3 a consistent default value and help
facility (for "help" the user types the "?" key, for default
the user types the "return" key). Preparing the systemstate for an experiment may be a lengthy and tedious

process. The use of a command file is a convenient way of
automating the experiment. It contains the user's
transcript as if he were interacting with the system. Since
all the commands only prepare the monitor for data
collection and analysis, a separate command is necessary to
actually start the experiment. The command RUN then
performs the experiment.

The same monitor has proven to be useful for other users

Page 73

that are not interested in finite state machine models.
Simple modifications of the disk handler allowed us to trace
disk operations including both user file accesses and
process page swapping.

5.3 Statistics Gathering

This section describes a technique for data gathering in
RIG. The technique can be applied to other systems in which
interprocess communications are well-defined. These
well-defined interfaces allow the monitor to collect
statistics selectively, at a very low cost. (In other
systems, data collection can be very- costly. For example,
the General Trace Facility (,TF) cons mes 7cy of the CPU
time in the system [:B A .

To support the data collection, the system was modified in
two places: the network hand'er and message-queueing. The
modification to the network handler was made to provide a
new type of service: to send system buffers over the net
upon request; the modification to the message-queueina was
made to store all recent messages in a circular buffer. The
monitor then sends a reauest for statistics contained in the
circular buffer.

The system's overhead in collecting statistics is small:
only 3 milliseconds are required to send the circular buffer
over the net, and 0.5 milliseconds to store a message in the
buffer. The low cost in collecting statistics is due to two
factors: acquiring statistics with a special "spying"
protocol that is implemented within the interrupt level of
the system, and a clear senaration between a fixed message
header and a message buffer.

The special protocol was made possible by placing the burden
of reliable transmission on a dedicated computer executing
the monitor. The monitor sends a reauest for statistics.
After some time, 4_ no reply has arrived, the monitor
retransmits the request. The RIG system has only to pass a
pointer to the link handler and start the output operation.

The clear separation between a fixed message header and a
message buffer allows the RIG system to fetch the message
header efficiently. A message header contains sender and

.. receiver process numbers, the message identifier, two data
words, and three time stamps. Consequently, for each
message the RTG system performs a major data reduction of
512 bytes "a maximum message buffer size in RIG) at a low
cost.

The size of the circular buffer is determined by the size of
interval within which the monitor sends a new request of
statistics and by the maximm number of messages being

Page 74

queued by the system during that period. In RIG, I have
chosen to collect statistics every second; in this case,
the circular buffer of size 1K is sufficient since the
system can queue at most 100 messages in one second.

The monitor, executing on a different computer on the
Ethernet, periodically sends a request for statistics
contained in the circular buffers and produces a textual
trace of events that are ordered in time. In the case of
communicating processes residing on different computers, the
monitor sends a request for statistics to all systems that
run processes of interest. To produce a time ordered trace
of events, first, the monitor synchronizes clocks of
communicating computers. (Although we can not achieve an
exact synchronization of distributed clocks FLamport 7-],
for the purpose of performance measurements, we approximate
the error introduced by a 3 MHz local network.) Next, the
monitor merges all events in the order of their appearance.
Any two events that occurred at the same time (because of
the finite resolution of the measurement clock) appear in
arbitrary order.

! .

RIG

-CIRCULAR

BUFFER OF

R\ REC E NT EVENTS

jETHERNET

PERIOD I CAL
REQUESTS

FOR

STATISTICS FSM DEFINITIOR
.. ALTO

S T T IS T C SP E R F 0 R N C C.

.,STATISTICS . PEVAUFOR

FOR FS M EVALUATOR

Figure 22: Implementation

Page Tr

5.4 interpretation of Finite State Machines

This section outlines how finite state machine descriptions
are parsed into state-transition tables. Here, the major
effort is to support the same symbols that are used both for
programming of communicating processes and for describing
finite state machine models of computation.

The performance evaluator describes a finite state machine
using symbolic references to RIG processes, messages and
lower-level finite state machines. It is important to
provide a uniform inte-'face both for programming and
monitoring. We should not expect the programmer to debug
and to optimize the performance of his program through the
use of memory dumps, loader maps, machine addresses and
similar diagnostic tools rBatson 76]. To provide the

uniform interface, the monitor uses the same standard header
files used in the actual code of processes. In ?IU the
standard headers map some process names into numbers. in
the case of processes not having fixed process numbers, the
monitor requests t'.e user intervention. Similarly, symbolic
debuggers for multiprocess systems require the user specify
the process number of the program ['ISW MSO1 .

The internal representation of a finite state machine has a
state transition table and a pointer to a higher-level
finite state machine. Each transition has a Message
descriptor or a pointer to s lower-level finite state
machine. When the transition occurs, statistics are
calculated and stored. If a transition occurs in a
lower-level finite state machine, the higher-level model
accumulates statistics according to the rules that were
defined for a seauence of events (Chapter .

5.5 Summary

This chapter demonstrated the feasibility of a monitor using
finite state machines by describing a narticular
implementation. The main achievements of this
implementation are simplicity and low cost in collecting
statistics. The modifications of the existing system were
very simple; what was required was to support a single
request for reading system buffers and to store all recent
events in a circular buffer. This type of implementation is
possible for local networks that support high bandwidth data
transmission.

In the case of a large number of computers connected to a
local network, the monitor running on a single computer
could become a bottleneck. For such networks, the monitor
must be modified by separating the data collection and data
filtering programs into a separate package. This package is

-AL 1V 'I

Page 77

then placed on some computer in the network; thereby
significantly reducing the amount of data flowing to the
monitor. A similar approach has been used in the METRIC
system [McDaniel 77].

The METRIC user views the world in three portions: a probe
in the user's program, an account that collects information
from the probe, and an analyst that processes the
information and presents it in an intelligible format.
Measurement events are those data that the probe transmits
to the account, and which are subsequently processed by the

:- analyst. The user's program and the probe live in a machine
that is independent of the account and analyst's machine.
This independence plays an important role in the robustness
and efficiency of METRIC. Different from the monitor
reported here, METRIC initiates orobes (or events) at user
selected places in a program. Consequently, METRIC has the
ability to monitor a large number of computers, specifying a
small number of events within each. Data analysis is
performed by special purpose user progrims. METRIC supports
only a general purpose utility package to write data
reduction programs.

A monitor reported here is a hnigher-level system than
METRIC. A user is provided with a command language to
initiate various experiments. Some commands are used to
collect statistics, other commands are used to analyze the
data. One of the commands is to use finite state machine
descriptions to select events of interest out of the
execution trace of the system. The performance evaluator
describes these finite state machines using the same symbols
that were used in programming the system.

e

I.I

Page "3

6. Other Uses of Finite State Machines

6.1 Introduction

This chapter describes how finite state machines has
benefited two areas: (1) validation of reliable
transmission protocols and (2) optimized implementation of
high-level protocols. In the first area, finite state
machines describe a situation where the network servers
which implement the reliable transmission protocol in RIG
enter a loop of states causing each packet to be
retransmitted twice.

In the second area, finite state machines helped to identify
two different parts of the code within communicating
processes: the first part deals with flow of exceptional
messages modeled by many state-transitions in finite state
machines; the second part deals with the common flow of
messages modeled by fewer state-transitions. This
observation suggests an optimization to support the most
common case of the message flow. instead of sending a
message, a process may choose to perform computations
locally.

The purpose of this chapter is to further motivate the
reader in using finite state machine models of computation
for the design, implementation and performance analysis of
communicating processes. Chapter 3 introduced the formalism
for descibing finite state machines for the analysis of

communicating processes. Chapter A demonstreted the value
of finite state machines by describing results obtained for
the RIG system.

6.2 Reliable Communications Protocol

6.2.1 introduction

This section uses the finite state machine formalism to
describe a situation where the network servers which
implement the reliable transmission protocol in RIG FFeldman
et al., 78] enter a loop of states causing each packet to be
retransmitted twice. The problem has been discussed but
never described formally [Rovner 781. Although the
composite model having the loop of states is complex, it
provides a language for the user to define conditions (or
transitions in the composite model) that cause those
retransmissions.

This section has three major subsections: Subsection 6.2.2

describes two elementary finite state machines: one
modeling the sender and another the receiver. Subsection

Page 7

6.2.3 describes the composite finite state machine modeling
two senders and two receivers. Subsection 6.2.4 formally
defines the system states that cause entrance into the loop
of retransmission and those that cause exit from the loop.

6.2.2 Elementary Models of Sender and Receiver

Two elementary finite state machines are described: one
modeling the sender and another the receiver. The example
is a sender streaming messages to a receiver. For each
packet having a correct sequence number, the receiving
network server sends back an acknowledgment. For each
received acknowledgment, the sending network server flushes
the buffer holding the outstanding message.

:he sender starts in "idle" state idle FFigure 23], and upon
receiving a message from UserProcess routes it over the net,

starts a timer and moves to "waiting for an acknowledgment"
state Wait. In the decision state Wait, either the timer
expires and the sender moves to "message has timed out"
state Timeout, or the acknowledgment arrives and the sender
moves to "message acknowledged" state Ack. To retransmit
the message in state Timeout, the sender sends the message
once again, starts the timer and moves back to state Wait;
to complete the protocol, in state Ack the sender posts the
buffer and moves back to state Last.

The model of the receiver is more complicated than one of
the sender. A message may arrive out of order and be
rejected. Those decisions are based upon the status of the
finite state machine modeling the message with a lower
sequence number. The composite model contains transitions
that depend on the state of the lower-level finite state
machine. To describe those transitions, I use the construct
PREDTCATE (see Section 3.4.3). For example, the transition

It PREDICATE(Receiver[i-i] > MSGTran)

occurs when ReceiverFi-i] is in the state that follows
MSGTran (e.g. Accepted or Last).

ReceiverFi] starts in state Idle. If the receiver model has
accepted the previous message (the model Receiverri-11 is
either in state Accepted or in Last), ReceiverFil moves to
"available to receive a message" state Available. Another
alternative in state Idle is to receive the next message in
transit which moves Receive[i] to "temporary in transit"
state TempTransit. If the rrevious message has been
received correctly (PREDICATE Fi-I >MSGTran), ReceiverFil
moves to state MSGTran; otherwise, an error occurs since
the message has arrived out of sequence. The message is
rejected and Receiver[i] moves to state Reject. In state
Available, having accepted a message, Receiverfi] moves to

Page RO

state Accepted where it sends back an acknowledgment and
enters the last state.

Page 91

FSM Graph, Sender

Idle Wait Timeout
message timeout1

0<
retransmit

Ac k
cleanup ack

Rej ect, eeie

PPREDCATT
i-i >MSGran) star-]Msa msag-e

Reec

ac I
Avaiable Err rro

Figure 23: FSM Communications Protocol,
Sender and Receiver

Page R2

Ideally, the following sequence of events occurs for two
messages in transit:

Senderf i .message
Available: Receiverfi] .start-message

Sender[i+I].message
Idle: Receiverf i+] .start-message
MSGTran: Receiverr i] .message-rec
TempTransit: Receiver i+1 1.signal

Senderr i] .ack
Sender[i+2] .message

Idle: Receiver i+2 1. start-message
MSGTran: Receiverr i+1 3 .message-rec
TempTransit: Receiverri+21.signal

Sender[i+1].ack

According to the specifications, the following sequence of
events, having retransmissions for every message, might
occur:

Sender[il .message
(1) Available: Receiver il.start-message
(2) MSGTran: Receiverr il.error

Sender[i5-1] .message
Idle: Receiverf i+l l.start-message

(3) TempTransit: Receiverr i+i 3 .msg-receive
(4) Sender, i .timeout

Available: Receiver i] start-message
MSGTran: ReceiverFi].message-receive

Receiver[i+1 .signal
SenderF ii • ack

(5) Senderr i+2 I -message
Idle: Receiver[i+2 "start-message
TempTransit: Receiver[i+2,.msg-receive

The first retransmission (the transition on line 4) occurs
as a result of an error in the transmission media (on line
2). Consequently, the message [i+1 1, being out of sequence
(line 3) is rejected. 5C+er, the message ri] is
successfully received and acknowledged (the sequence of
transitions starting on (line 4). Now, the newly arrived
message [i+2] (line 5) is posted but it will eventually be
rejected because the message [i+I] has not been received.
This may occur in a loop causing every message to be
retransmitted twice.

Note that by extending the receiving window to accept up to
K messages out of sequence, the problem may still occur when
the message [i+k] has been posted before the message Fil is
retransmitted. One solution is to withhold sending the
message [i+2] until the message fi+i] is delivered
successfully. Another solution is to retransmit all
messages in transit with sequence number "j" such that "j"
is greater than "i" for all messages [i] that were lost.

Page 93

6.2.3 Composite Model for Sender and Receiver

Although the composite model is a complex program, the
transitions in the composite model help to discern when the
problem is happening (not every message loss causes the
sequence of events) and why the problem sometimes disappears
as a result of a different system load.

I describe a composite model for two messages in progress
using four finite state machines: two describing the sender
and two the receiver. To simplify the composite model, I
include only those system states that are of significant
duration. For model of the sender, the following two
combinations are of significant duration:

Senderri+1]=:Idle, Sender[i]=Waiting)
Sender[i+]=Waiting, SenderFi]=Waiting)

All other combinations are immediately followed by internal
actions of the network server. The receiver model has four
combinations of significant duration:

(ReceiverFi+1 i=Tdle, ReceiverFil=Available)
(Receiver i+? :Idle, Receiveri '=MSGTran)
(ReceiverFi+1 l=TempTransit, Receiverfi =Available)
(Receiverri+!]=TempTransit, Receiver~i J :MSGTran).

Overall, there are eight possible combinations of system
states; out of them, two combinations are illegal:

(Sender[i+1]=dle, SenderFi]=Waiting,
Receiveri+!]=TempTransit, Receiver[i]=Available)

(Sender~i+1]=Idle, Sender[i]=Waiting,
Receiver[i+1]=TempTransit, ReceiverFil=MSGTran)

Consequently, the composite system model has only 6 states:
A, B, C, D, E, and F YFigure 24].

Nw

Page 94

FSM: Sender-Receiver

A:
Predicate(Sender[i+l]=Idle, Sender[i]=Wait,

Receiver[i+1]=Idle, Receiver[i]=MSGTran)

Al: // message [i] was received

(Receivers i =Accept)
(Receiver Lij =Last)
(Senderri j Ack)

.Sneri =Last)

INDEX(Sender, Receiver)
CONNECT (RESET)

A2: // message [il was lost

(Receive il=Error)
(ReceiveLi]=Available)
CONNECT (B)

A3: /./ message [i+ij is posted

(Sender[i I=Wait)
(ReceiverL i]=TempTransit)
CONNECT (D)

B:
Predicate(Sender[i+l 1=Tlie, SenderFi IWait,

ReceiverL i+l 1=Idle, Receiver i]3=Available)

Bi: /1message Fi] timeout

(SenderF il=Timeout)
(Senderri W ~ait)
(Receiver~ i1=MSGTran)
CONNECT(A)

t B2: //message [i+l] is posted

(Senderr il-Wait)
)(ReceiverriT=TempTransi',-

CONNECT (D)
C: // message Fi] timeout
Predicate(Sender~iil]=Wait, Senderri]=Wait,

Receiver[i+l]=Idle, Receiverril=Available)

(Senderril= Timeout)
(Sender~i I=Wait)
(Receiverr i]=MSGTran)
CONNECT (D')

?igure 24: Composite FSM , Sender-Receiver
ag(continued on the next page)

Page 95

D:
Predicate!'Senderri+l l=Wait, SenderFil=Wait,

Receiver[i+l]=Idle, ReceiverilSGan

Dl: //first receive ack Fi]

(Receive i] :Accept)
(Receive i~ =Last)
(Receive~l 1]=Available)
(Sender L {]=Ack)
(Sender~i]=Last)
INDEX(Sender, Receiver)
CONNECT (RESET)

D2: //first timeout message [i+1]

(Senderi i+l]=Tirneout)
(SenderlIi+ J =Wait)
(Receiver[i+1 I]-MSG'-ran)
CONNECT (E)

Predicate(Sender[i+l]=Wait, Sender[i]=Wait,
Receiverri-l]=TemnpTransit, Receiverril=NISGTran)

El: /1message [i] received and acknowledged

(ReceiveF il=Ac cept)
(Receiver il=Last)
(Receiver i+l]= Available)
(SenderFi] Ack)
(SenderF iJ=Last)
INDEX(Sender, Receiver)
CONNECT (RESET)

E2: iiimessage was lost

(ReceiveL i,='Error)
(Receive~i] =Available)
C ONNECT (F)

F:
Predicate(SenderFi,-l =Wait, Senderri]=Wait,

Receiver[i-i-i=TernpI.ransit, Receiver[i]=Available)

/reject message Fi+i] out of sequence

(Rece ives i+l] =Reject)
* (ReceiveL i+I .J=Tdle)

CCNNECT(C)

Figure 24: Composite FSY!, S-ender-Receiver
(ontinued)

Page 96

RESET:

Predicate(Senderf 1+1]=Idle, SenderE i]=Wait,
ReceiverE i+1]=Idle, ReceiverF i.=MSGTran)

CONNECT(A)
Predicate(Senderf i+1]=Idle, Sender[i]=Wait ,

Receiver, +]=Idle, Receiver[i]=Available)
CONNECT(B)

Predicate(Sender[i+1]=Wait, Senderril=Wait,
Receiver[i+1]=Idle, Receive-ril=Available)

COrNIECT(C)

Predicate(SenderF i+1]-Wait, Sender! i1=Wait,
Receiver~i+1]=Tdle, ReceiverFil=MSGTran)

CONNECT(D)

Predicate(SenderF i+1 j=Wait, Senderl i]=Wait,
Receiver, + -epast Receiver- 1MGrn

CONNECTm ')

Predicate(Se-der[i±11 =Wait, Senderfi]=Wait,
Receiverri+1]=TernD'ransit, ReceiverFil=Availabie

CC NNE C T(F')

Figure 24: Cmposite FSYI, Sender-Receiver
continued)

Page 87

6.2.4 Results

To describe the entire model would be like trying to
describe a program in English; instead, I describe only
those system states which cause retransmissions.

In state F, message [i+i] arrives out of order, therefore,
it is rejected. The following conditions cause the entrance
of the state F. In state E there are two messages in
transit: [i] and [i+1]. If message Fi] is lost, the model
enters "message [ii is lost, and message [i+I] is still in
transit" state F. Clearly, message Fi+I] will arrive at
Receiver[i+1] out of order and will be rejected. This is
the type of a situation of prime interest in this section.
The following sequence of state-transitions enters state F:

-> E2 -> F

In state F, message [i+1] is rejected moving the model to
"both messages are lost" state C. Then, Senderri] times out
message [i] moving to "message [i] is in transit" state D.
in state D there are two alternate transitions: to state D1
and to D2. The state D1 continues moving the model through
the loop of states causing retransmissions. In state DT,
message [i] arrives correctly at Receiverri] which
acknowledges Senderri], thereby completing the protocol for
message Fi]. in addition, ReceiverFi+l1] moves to state
Available. In this case, the INDEX operation is applied
both for the sender and receiver. in state RESET, depnending
on the status of message ri-+] (which was message Fi+21
prior to the INDEX operation), there are three alternate
transitions: to state B, C, or F. in all these cases, the
message [i] is lost. If the message ri I 1 is already in
transit, the model again enters the problematic state F. In
summary, the following state transitions occur in a loop
causing retransmission of each message:

F -> C -> D -> D1 -> RESET -> F

There are two transitions escaping from the loop: in state
D and RESET. In state D, the transition to state D2
retransmission of message [i+]) moves the model back to

the correct state E. In state RESET, the transition to
state C continues moving the model through the loop; the
transition to state B has two alternatives: transition to
state Bi guarantees the escape from the loop, and transition
to B2 moves the model back to state D.

ULwo _

Page 99

F C D D 1 RESET FI 02 0

>0 ->0o

A BB B
0< -CO < - <-

0 <0

Figure 25: FSM for the Retransmission Loon

AD-AIOI 954& ROCHESTER UNIV NY DEPT OF COMPUTER SCIENCE F/6 9/2
PEFRC E VAUTO OF COMNCTN PRCSE U
MA Y 80 1 GERTNER NOGOSN 78-C OlGA

UNCLASSIFIED TR-76 NL

Page 89

in conclusion, there are three loops of states causing
rejection of messages. The first loop rejects messages in
state F and later retransmits them in state C; the second
loop retransmits in state B2; the third loop retransmits in
state C.

1) F->C .D -D1 -RESET->F
2) D->D1 -RESET->B -B2 -D
3) C ->D ->D1 RESET ->C

Note that two escape conditions through states D2 and B1
were previously described as a way to avoid retransmissions.
The transition (D->D2) is enforced by always retransmitting
messages with higher sequence number; likewise, the
transition (B->B1) is enforced by do not sending messages
with higher sequence number until an acknowledgment has been
received.

.

Page 90

6.3 Optimization of High-Level Protocols

6.3.1 Motivation

One advantage in multi-process systems is the flexibility
offered by easy modification of processes without
reassembling the whole system [Parnas 721. To achieve a
flexible system, we strived to hide implementation decisions
within each process in RIG. Unfortunately, such a clean
decomposition of a system into processes increases the
number of messages. This section proposes an optimization
that significantly reduces the number of messages in the
system. Instead of sending a message, a process may choose
to perform computations locally. An analogy is an
optimizing compiler, which, in an attempt to save the
procedure call overhead, inserts the procedure body into the
code of the calling program; or, in some other cases, a
highly specialized and efficient -control transfer.

Finite state machine models of computation helped to
identify two different parts of a process code: the first
part deals with flow of exceptional messages modeled by
great many of state-transitions in finite state machines;
the second part deals with the common flow of messages
modeled by a small number of state-transitions. This
observation suggests an optimization that is appropriate for
the most common case of the message flow. The optimized
implementation requires fewer processes and messages to
support the same computation; consequently, the system's
overhead and the working set size are significantly reduced.

The purpose of this section is to motivate the reader
further in using finite state machine models of computation
for the design of communicating processes. There is always
a tension between monolithic and modular structure of
systems. As the number of processes in the system
increases, the overhead in interprocess communication also
increases. This section proposes a method to reduce the
system overhead by centralizing the code and state of every
process dealing with the common message flow.

6.3.2 An Optimization of the PDP-1O Telnet Protocol

In RIG, the PDP-1O Telnet facility requires five processes:
Telnet, TenServer, TTYInput, TTYOutput and DCU; the virtual
terminal requires five processes: TerminalInput,
LineHandler, Pad, TerminalOutput and DCU rLantz QO1.
Overall nine processes support the flow of messages between
the PDP-1O and user. To simplify the example, we consider a
user program running on the PDP-1O and printing data on the

4RIG terminal. In this particular case, one process that has
obtained the state and code from four other processes is

:' ' I I t l I" '1 I ! n ... -'T.. -.......

Page 91

sufficient to support the protocol. The following
information is provided by the four processes:

1) TTYInput provides the code and state of the line that
handles incoming characters from the PDP-1O.

2) TenServer provides the code and tables for multiplexing
different users sharing the same physical line.

3) Pad provides the code and data structures for displaying
one line on the terminal.

4) TerminalOutput provides code and state for handling the
terminal screen.

In RIG, the code for handling the common case of the message
flow is very simple; most of the code deals with handling
of exceptional conditions. For example, TTYInput is
concerned with errors occurring on the physical line.
TenServer handles the flow of incoming characters. In
addition, it recognizes various control characters having a
special meaning on the PDP-1O. Pad maintains the mapping
between virtual and physical screens. Recognizing those
conditions is easier than handling them. For example, if a
user types a special character "<CTL>S", the system's
activities drastically change: TenServer simulates the
meaning of the special character by disabling output on the
virtual terminal in RIG. In addition, it sends the
character to the PDP-1O and waits for special user actions
(<CTL>Q) to resume output of the user program. In this
case, recognition of the special character was easy but the
handling was more difficult requiring establishment of the
new state. Another example requiring complex actions of the
system is a user changing the configuration of the RIG
terminal causing the Pad process to cease the display of
data on the terminal screen.

In summary, the optimization of a high-level protocol is
possible for the common message flow at the expense of the
exceptional flow. Here, the hypothetical example was the
PDP-10O Telnet protocol (it was never implemented). The
basic assumption was that most of the code establishes the
initial state of processes and handles exceptional
conditions but only a very small portion of code supports
the common flow of messages. To optimize the flow, I

Isuggested centralizing the state and code dealing with the
common case. The functions that previously required a few
processes are then performed by a single process. To apply
those ideas to other systems might be very difficult.
Nevertheless, for systems that are designed using finite
state machine models of computation, we can again identify
the initialization of a finite state machine and gain in
efficiency of the implementation.

*!

Page 02

6.4 Summary

In addition to performance analysis, finite state machines
have benefited two areas: (1) validation of reliable
transmission protocols and (2) optimized implementation of
high-level protocols.

In the first area, I used finite state machines to describe
a situation where the network servers, which implement the
reliable transmission protocol in RIG, enter a loop of
states causing each packet to be retransmitted twice. The
composite model contained the loop of state transitions
causing retransmission of each message and the alternate
state-transitions causing exit from the loop. To reduce the
number of states in the composite model, I described only
those states that are of significant duration in execution
of the system. This is a novel idea in describing composite
models. The suitability of two transitions, INDEX and
PREDICATE, was tested in new applications.

In the second area, finite state machines helped to identify
a large portion of the code that deals with initialization
and handling of exceptional messages but only a small
portion of the code deals with the common case of message
flow. An optimization was described for a simple case,
where a process, instead of sending a message, may choose to
perform computations locally, thereby significantly reducing
the number of messages. These two examples further support
the value of finite state machines for designinp,
implementi.ng and analyzing the performance of communicating
processes.

Page q3

7. Conclusions

7.1 Results

The thesis presents a new method for performance analysis of
communicating processes based upon a finite state machine
model. An experimental performance monitoring system was
implemented and applied to the analysis of RIG, a
message-based distributed operating system.

First, I described the basic properties of messages traces
by introducing a small number of time stamps (Birth, Start
and Finish) that were used to calculate intervals of
interest (Execution, Interval and Delay) . Analogous
intervals were also defined for a sequence of messages.

Further, I introduced a finite state machine model
describing the semantics of the message traces. The time
intervals that were used to describe messages were extended
to describe events defined by state-transitions in the
finite state machine -model. Elementary finite - state
machines described a single process representing a
sequential program; composite finite state machines
described a group of processes representing a parallel
program. To reduce the number of states in 'composite
models, I introduced three new kinds of transitions: (1)
FSM describes a long sequence of messages, (2) PREDICATE
describes the exact system state as a vector of process
states, and (3) INDEX describes a limited number of messages
in a stream. These transitions were used to describe a
composite model of the system.

The quality of RITG has improved substantially due to the use
of the monitor. In this dissertation, I described two kinds
of examples: The first example dealt with long sequences of
messages produced by many processes communicating in a full
hand-shake style. The second example dealt with pipelined
computations that were described with a stream of messages.

To describe a long sequence of messages, I used a four
levels hierarchy of finite state machines. This allowed the
performance evaluator to concentrate on very detailed
computations while retaining the overall statistics of the
system. This kind of information would be very difficult to
obtain without the use of finite state machines.

The second example was concerned with pipelined
computations. First, I described a separate finite state
machine for each message in progress. The composite model
then described system states as a vector of states of finite
state machines each modeling one message in progress. To
reduce the number of states in the composite model, I used

* the transitions PREDICATE and INDEX to describe a limited
number of messages in a stream. These transitions were used

Page OA

to describe a small subset of system states (which represent
a user view of computations in the system&. This is a novel
idea in describing composite models and is based on the
observation that only a small number of system states are
actually reached during the system's execution.

7-njsite models expressing the user view of computation
were applied to validate reliable transmission protocols. I
described a. situation where the network servers which
implement the reliable transmission protocol in RIG enter a
loop of states causing each packet to be retransmitted
twice. Again, both transitions INDEX and PREDICATE were
successfully applied in describing transitions between. the
chosen set of system states. The problem of retransmission
was then formally described in terms of system
state-transitions.

Finite state machine models were found to be extremely
valuable and practical models for the performance analysis
of communicating processes. Although a group of processes
constitute a parallel program that is characterize! only by
a nartial ordering of events, in our experience with RIG
only a small fraction of that partial ordering is exercised.
Under changing load conditions, the system passes through a
large number of states and quickly stabilizes to a new set
of states characterizing the system under each new load.
The surprising result was that the total number of states
describing the average behavior of the system remained small
for a wide range of the load. This observation directs the
performance evaluator in a search of a small set of states
that occur often in the execution of the system and are of
significant duration.

The growing interest in message-based computing and in
formal description of communication protocols suggests that
many future systems will be implemented or at least designed
using finite state machines. In those cases, the
performance evaluator will immediately have accurate finite
state machine models available for the performance analysis.
For other systems, describing finite state machines may b-e
very difficult or even impossible (due to the large number
of states). Although systems are implemented as a
collection of parallel programs, a well-designed system is
characterized by sequential behavior at a higher-level of
abstraction. Hence, one should be able to apply finite
state machines to describe sequences of events.

4~J

Page 05

7.2 Disadvantages

Performance monitoring with finite state machine models of
computation has two drawbacks: (1) limited scope of
applications and (2) difficulty in programming those models.
For example, abstract models do not help in the search for
computational bottleneck at the procedure level. I have
witnessed situations where rewriting a single procedure in
an assembler improved the overall system performance by 10-.
In this case, the main problem was to find that procedure
which was the bottleneck of the system. An abstract model
describing the user view of computations in the system would
frequently fail to include the bottleneck in the model.

Inventing concise models of complicated systems is an art.
Many experiments, as well as deep understandina of the
system, are required to debug the model of a computation.
One difficulty is in finding a small subset of system states
that occur often in execution of the system and are of
significant duration. Another difficulty is in encoding the
model into a machine-readable form. Although the language
develored in the dissertation helps, other Methods (which
are beyond the scope of this work) need to be tried, e.,g. 9
graphical drawing of a finite state machine ?.n! a co'nriler
accepting this drawing would be potential assets to the
performance evaluator.

i.3 Understanding Concurrency

Understanding concurrency is a topic of great interest for
the theoretical computer science community FFisher et al.,

91. Herein, I compare the use of parallel structures in
R:G with other systems. In our experience with R.i, we have
developed a set of guidelines (unenforced) which made the
implementation and debugging of the system easier.

Several modern languages provide facilities which exnress
parallelism in programs ([Lampson et al., IO01- and
FBrinch-Hansen 75]). in RIG, the parallelism is static:
processes are created or killed rarely, and this is done
only at system initialization time. Consequently, a RIG
process is a sequential program; the parallelism is
achieved by having multiple processes. Other svstems
composed of processes representing sequential programs allow
interprocess communication via shared variables FPeterson
79]. Tn RIG, processes share no data and communicate only
via messages.

There are basically two styles of message communication:
full hand-shake and message streaming. The message
streaming is the only means of parallel computation. The
purpose of those constraints is to further reduce the number
of states in the system. Debugging this kind of computation

'I

Paae 0

is easy: the flow control mechanisms guarantee s limited
numnber of messages outstandin f'or every orocess; the
full-hand shake limits the number of processes ready for
execution. Analogous constraints in proqrammin_ of pqralle!
systems have also been used by other authors rMattheyses et
al., 79] and [Yoeli 781).

One can argue that a system composed of processes
communicating in full hand-shake or in message streaming has
less parallelism than would be possible by using a more
liberal style of message-passing. It may be, however, that
the system can not be implemented and debugged by any other
style of communication, or it may not be practical with the
available collection of tools and conceots (e.g. better
debuggers, suitable for parallel processes).

4-

Page 07

7.4 Future Work

Accurate models of behavior are still by far the weakest
link in all attempts to evaluate the performance of complex
computer systems. In the case of multi-process systems in
which processes communicate only via messages, system
designers and implementers have much better intuitions on
the behavior of the system. The designers use (or at least
they should use) finite state machines to validate the
correctness of those systems. In this dissertation, I
applied finite state machines to analyze the performance of
such systems. The use of crude finite state machine models
having detailed specifications at the points of interest
appears promising.

Clearly, progress in this area depends on the extent to
which finite state machines can describe existing oneratina
systems or can be applied to describe future systems. vany
future systems will be designed and implemented with various
automated tools using formal models of computation. (TodayT,
the notable example is SARA, a simulation system using UCLA
graphs and a very high-level language for design and
analysis of new systems FEstrin et a!., 791). The same
formal models can then be appliec to nerformance analysis of
those systems. We have done much of this fcr the R3 system
using finite state machine models of computation. Our
experience with a real system indicates that our methods are
sound, that even a crude finite state machine model is
adequate for finding performance bugs. The next ster is to
apply those ideas to other systems and to solve a wider
range of performance problems.

L

4]

3m

Page O'

Bibliography

[Anderson 1076] Anderson J. and Browne J. "Graph Models of
Computer Systems: Application to Performance Evaluation of
an Operating System", in Proc. International Symposium on
Computer Performance Modeling, Measurement and Evaluation,
Harvard University, 1976.

[Baker 78] Baker H. "Actor System for Real-Time
Computation", Ph.D Thesis, Laboratory for Computer Science,
MIT, 1978.

[Ball 1976] Ball E., Feldman J., Low J., Rashid R., Rovner

P. "RIG, Rochester's Intelligent Gateway: System
Overview", IEEE Transactions on Software Engineering, Vol.
SE-2, No. 4, December 1976.

[Ball 1979] Ball.E, Burke F., Gertner I., Lantz K., Rashid
P., "Perspective on Message-based Distributed Computing",
IEEE Proc. Computer Networking Symposium, Maryland,
December, 1979.

[Bartlett 691 Bartlett K., Scantlebury R., Wilkinson P. "A
N[ote on Reliable Full Duplex Transmission over 11/2 Duplex
Links", Comm. ACM, Vol. 12, 'o. 5, 1969.

[Baskett 77] Basket F., Howard J., and Montague J., "Task
Communication in Demos", ACM Proc. of the 6th Symposium on
Operating Systems Princirles, November 1977.

[Batson 761 Batson A. "Program Behavior at the Symbolic
Level", Computer, November 1P9'6.

FBochman 1977] Bochman G. and Gescei J., "A Unified Method
for the SDecification and Verification of Protocols",
Information Processing , Proceedings of the IFIP Conaress
77tIToronto), 107'.

[Bochman 1977] Bochman G.and Jochim T., "Development and
Structure of X.25 Implementation, Publication 202,
University of Montreal, July 1978.

[Bochman i'6] Bochman G., "Finite State Description of
Communication Protocols", in Proc. Computer Nletwork
Protocols Conf. Liege, 196.

fBrinch-Hansen 1978] Brinch-Hansen "The Programming Language
Concurrent PASCAL, IEEE Transactions on Software
Engineering, SE-i, 1975.

[Campos 78] Campos . and Estrin G. "SARA Aided Design of
Software for Concurrent Systems", National Computer
Conference, 1979, pp. 325-336.

[Chany 78] K.-hany and J.Misra "Specification, Synthesis,

6.0

Page '

Verification and Performance Analysis of Distributed
Programs", TR-86, University of Austin, November, 10"10.

[Cheriton 79] Cheriton D., Malcolm M., Welen L., and Sager
G. "Thoth, a Portable Real-Time Operating System",
Comm. CACM, February 1979.

[Dijkstra 1968] Dijkstra C. "Co-operating Sequential
Processes", in Programming Languages, ed Genuys F., Academic
Press, N.Y., pp. 43-112, 1968.

FEstrin 67] Estrin G. and Martin D. "Experiments on Models
of Computations and Systems", IEEE Tran. on Electronic
Computers, Vol. EC-16, No. 1, 1967.
[Estrin 781 Estrin G., "A Methodology for Design of Digital

Systems- Supported by SARA at the age of one", AFIPP
Proceedings, Vol. 47, 1978, pp. 313-324.

[Farber 73] Farber D. et al., "The Distributed Comnuting
System", IEEE Proc. Compcon, 19O8

[Feldman 1 -1 I Feldman J. and Sproul 3., "Syvstem Support
for the Stanford Hand-Eye System", Second 7nternationa!
Joint Conference on Artificial Intelligence, London,
September, 1971.

FFeldman 1:77, Feldman . "Synchronizing Distant
Cooperating Processes", TR-26, Department of Computer
Science, the University of Rochester, 1977.

FFeldman 10791 Feldman j., Low '. and Rovner P..
"Pro~ramming Distributed Systems", Proc. of the National
Conference of the ACM, Washington, DC, December 19P.

FFeldman I0] Feldman J., "High Level Programming For
Distributed Computing", Comm. ACM, July 1979.

[zertner 79a] 3ertner . Performance Evaluation of
Communicating Processes", Proc. ACM. Conference on
Simulation, Modeling and Measurement of Computer Systems,
Boulder, Colorado, August 197Q.

Fertner 79b] Gertner I. "Performance Analysis of P-",
internal memo, Computer Science Department, University of
Rochester, August, 199.

4Kertner 70cl Gertner I. "RIG System 'Mernel", internal
document, Computer Science Department, University of
Rochester, October, 19" .

[IBM 76] IBM, "Systems Network Architecture, Format anR
Protocol Reference Manual: Architecture Logic", PC
30-312-0, IBM Corporation, White Plans, NY, 1076.

Page 1 0

F M VF] :3r OS/VS2 System Pro rirnm L. rry: Serv "rae

Ais. ub o GC --6 7 74, BI! Corp., White Pla' s , 7.Y.

[Hansen 1071 I Hansen P. "Distributed Processes: A
Concurrent P rozramming Concept", Comm. ACM, Vol. 21, No.11, 19q'S

[Howard 19721 Howard J. and Alexander W. "Analyzinp
Seauences of Onerations Performed by Programs", Program Test
Methods, Prentice-Hall, 193, n. 279-254.

[Lamoert '71 Lamport I., "Time, Clocks, and the Orderina oF'
Events in a Distributed System", Comm. ACM, Vol. 21, No.
j" 7, July 1078.

[Lam-pson 9C1 Tampson B. and Redell C., "Experience 1with
Processes and Monitors in M'esa" Commn A C, Vol. 27, .o.2,
February 1 0

[Lantz 19791 Lantz T. and Pashid R. "Virtual Terminal
System", TR-..6 Department of Computer Science, the
University of Rochester, 1070.

FKantz SC Lantz K., "Uf? r t erfaces to Distributed
Systems", Ph.D ThIne Si, COmput er Soj ence Denart-nt
University Rochester, 1980.

.Lauer i 0 Lauer C and Needham . "fh the -
_nD t , u O .

Te rating yst em Structures", X erox -_.al Alto Research
Center, i0" .

[-ausen - ausen A Lar e Semamhore 3ased Cneratin-
System", Comm. ACM, Vol 1 "To , 107c
rucas ucas H. "Performance v la: 4r. and

Monitoring", ACM ompu- J ng Surveys, V.7 'I o.T

September, 1971

IMacDoual 1 1 Macougall a . "The Event Analysis Prozran",
National Computer Conference, 1o'S.

F'attheyses 791 Mattheyses R., Conry F. "Models for
oecification and Analysis of Parallel Computing Systems",

ACM. Proc. Conference on Simulat ion, Mieasurement and
Modeling of Computer Systems", Eoulder, Colorado, August
1979.

FMcDanie! 771 McDaniel 2. "MET 1C : a Kernel
Instrumentation System for Distributed Environments",
Symposium on Operating Systems Principles, November

[Metcalfe 76] Metcalfe R. and David R., "Ethernet:
Distributed Packet Switching for Local Computer Networks",
Comm. ACM, July 1076.

MEL

Pqge I01

[Mills 5] Mills D. "An Overview of the Distr ihuteA
Computer Network", AFIPS Proc. 'TCC, AFIPS, June 1o17.

[Millstein 1077] Millstein R. "A Distributed Processing
System", Proceedings of the 197 Annual Conference of the
Association for Computing Machinery.

[NSW 76] NSW Protocol Commitee, "MSG: The Interprocess
Communication Facility for the National Software Works",
TR-3493, Bolt Beranek and Newman, December 1976.

[Nutt 72] Nutt G. "Evaluation Nets for Computer Systems
Performance Analysis", Fall Joint Comp. Conf. 1972, AP
Proceedings, Vol 41.

[Parnas 72] Parnas D. "On the Criteria to be Used in
Decomposing Systems into Models", Comm. ACo. 5, No.
12, December 1Q"2.

IPeterson 7-1 Peterson 2. and Fisher F. "Economio.!
Solutions for the Critical Section Problem in a Eistributee
System", ACM Proc. uf 9th Symposium on Theory ID
Computing", 1'77.

rfPeterson 7 q Peterson 2. "n erst andinP Cncurrency"
TR-59, Department of Com~uter Science, Uni'rersity of
Rochester; also anreared as Ph. D hesis , Universi V T
Washington, August 199.

Fpeterson -7 Peterson j. , "Petri 7ets" 4.2>! Icmrutir.n

Surveys, Vol. , No. , September 10--.

[Piatkowski 51 Piatkowski Y "Finite State Architecture",
Techinical Report IBM, TR-29.01y7, North Carolina, Pesearch.
Triangle, August 1075.

[Postel 1974] Postel J., "A ranh Model Analysis of Computer. Communications Protocols", Ph.D Thesis, University of

California, Los Angeles, 1974.

[Riddle '7] Riddle W., Wileden J., Sayler J., Segal A.,
Stavely A. "Behavior Modeling during Software Design", :EE
Software Engineering, Vol. SE-4, No. 4, July 19"0.

[Richards 68] Richards "BCPL Reference Manual".

[Rose 781 Rose C. "easurement Proceiure for ueueina
Network Models of Computer Systems", ACM Computing Surveys,
Vol. 10, No. 7, September 1978.

[Rovner 78] Rovner P. Private Communications on Reliable
Transmission Protocol in RIG, Computer Science Department,

f 4University of Rochester, December 1979.

[Ryder 79] Ryder B., "Constructing the Call Graph of a

Page 102

Program", IEEE Transaction of Software Enaineerinz, Vol.
SE-5, No. 3, May 1079.

[Schantz 79] Schantz R., "A Performance Analysis of National
Software Works System", Bolt Beranek and Newman Inc., Report
No. 3847, March 1979.

[Solomon 78] Solomon M. and Finkel R. "Roscoe-- A
Multicomputer Operating System", TR-321 , Computer Science
Department, University of Wisconsion-Madison, September
1978.
[Sunshine 78] Sunshine C., "Survey of Protocol Definition
and Verification Techniques", Proc. Computer Networks

Protocols Symposium, Liege, Belgium, 1979.

[Sunshine 79] Sunshine C. and Dalal Y. "Connection
Management in Transport Protocols", Computer Networks, Vol.
2, No. 6, December 107.

[Tompson 19741 Tompson K. and Richie D., "The UNIX Time
Sharing System", Comm. CACM, Vol. 17, No. ', July lQ7A.

[Van-Mierop 79] Van-Meirop D., "Desing and Verification of
Distributed interacting Processes", PH-.D Thesis,
UCLA-ENG-7920, March 1979

[Walden 1972] Walden D., "A System for Interprocess
Communication in a Resouce Sharing Computer Tetwork", Comm.
ACM, Vol. 15, No. 4, April 1972.

rWatson 70] Watson R., "TimeSharing System Design Concepts",

McGraw-Hill Book Company, 1970.

[Watson 791 Watson R. and Fletcher J. "A Protocol
Structure for Network Operating System Services",
Proceedings 4th Berkley Conference on Distributed Data
Management, August 1979.

[West C. 19781 West C. "General Technique for
Communications Protocol Validation", IBM Journal of Research
and Development, Vol. 22, No. 4, July 1078.

-Witby-Strevens 781 Whitby-Strevens C. "Towards the
Performance Evaluation of Distributed Computing Systems",
Proc. CCMSAC 78, Chicago, IL, October 1078.

[White 761 White J. "A High-level Framework 'or
Network-based resources sharing", AFIPS Proc. NCC, AFIPq,
June 1976.

[Yoeli 78] Yoeli M. "A Structured Approach to parallel
programming and Control", TR-126, Technion, Haifa, Israel,
1978.

4 : ' ' I I I I I' 1 1 '" " "

Page 1031

Appendix A: Create a process

This appendix contains a description of the finite state
machines and statistics in the form that is actually used by
the performance monitoring system for the analysis of RIG.
Section' 4.1 describes the same example (the initialization
of a virtual terminal in RIG) in a more descriptive form
that is used throughout the dissertation.

Finite state machines are defined as BCPL procedures that
are loaded together with the performance monitoring system.
The differences between BCPL programs and the formalism used
throughout the thesis is purely syntactical. A procedure
call of a finite state machine definition produces a table
of state transitions each containing either a message triple
(which consists of a sender, receiver and message
identifier) or a pointer to the lower level finite state
machine. The statistics are calculated and presented for
each state transition.

The following two pages contain programs ReadFile() and
CreateProcess(). The statistics of those two models were
sufficient to draw the conclusion that the file system
accesses account for 25? of the total system in starting a
terminal. The obvious optimization in this case is to keep
the process definition table in memory as was described in
Section 4.1.

The conclusion was drawn on the following basis: Execution
of the transition FSM(ReadFile) is 2608 milliseconds. The
system was idle 1312 milliseconds while waiting for the
completion of the disk operation (there were no additional
activities in the system). This constitutes about 50e of
the overall execution time in creatinR a process (the
accumulated execution time is 4878 and the-total" idle time
is 1312 milliseconds). "OtherStatistics" accumulates
statistics for all other events in the system that were
selected by the CreateProcess descriptor. Again, about 50 |
of the total time was spent in creating new processes.
Consequently, 254 of the total time was spent waiting for
the file syszem to read process description tables.I.!

Page 104

and ReadFileo be

//OpenFile:

Transition("AnyProcess", "FileSystem", "CpenMsg")
BindMsgData('1FileRequester"1, offset StatMessage.Sender/16)

//loop on disk-IO in order to open a file

let branch!=
Transition("System", "FileSystem", "Disklnterrupt'i
Connect(branchl)

Transition("FileSystem", "FileRequester", "FileOpenel',H

//loop on disk-T/C in order to read file blocks

let branch2 =I

Transition(' "System", "FileSystem", "Diskinterrupt")
rasto("FileSystemn", "FileRequester", "Outputmsg')

Oonnect(branch2)

//close a file

TransitionK' "FileRequester", "FileSystem", "C 1os eMsz"
branch2)

Transition$' "System", "FileSystem", "DiskInterrupt")
L ransition("FileSystem", "FileRequester", "File~losed")
Connect(LASTSTATE)

Page 105

and CreateProcesss(o be
[
1request to start a process

Transition("'AnyProcess", "ProcessManager", "Cet~ocs~al
BindMsgData("ProcessRequester", offset StatMessage.Sender/16)

/'/ read PDT block:

FSMTransition("ReadFileEvents")

/ /create process map

Transition("Processvian-ager" "New~roc", "NewProcCreate")
Resume ("ProcessManager" 5

// Alternative I: Requesting process receives a reply first

let branchl
Tansition("ProcessManager", "Process~equester", 'IPM~eply")
BindMsgData("CreatedProcess", offset Stat'Message.Datal /16)
Trans 4-tion("Any~rocess" , "Created Process", I'AnyD")
Connect (IJASTSTATE)

1Alternative IT: tVhe newly created pro-cess is queued first

Transition(\"AnyProcess", "CreatedProcess", "AnyID",
branchi '

Transition("Process.Manager", "ProcessRequester", "PMP~eply")
BindMsgData("CreatedPrccess", offset Stat~lessage.Data1/16)
Connect(LASTSTATE)

Page 106

FSM: CreateProcess
1) AnyProcess => ProcessManager CreateProcessMs-

NumSamples:= 8 Execution:= 150 Overhead:= 50
Delay:= 120

2) FSM(ReadFileEvents)

NumSamples:= 106 Execution:= 2608 Overhead:= 600
Swapped:= 14 IdleWaitDevice:= 1312
IdleWaitSwap:= 70 Delay:= 2030

3) ProcessManager => NewProc , NewProcCreateProcess
NumSamples:= 8 Execution:= 1126 Overhead:= 50
Delay:= 130

4) ProcessManager => ProcessManager AnyID
NumSamples:= 8 Execution:= 384 Overhea4:= 50
Delay:= 120

5) ProcessManager => ProcessRequester , PmReply
NumSamples:= 8 Execution:= 129 Overhead:= 50
Delay:= 60

7) AnyProcess => CreatedProcess , Any!D
NumSamples: e Execution:= 126 Overhead:= 50
Swapped:= 13 Delay:= 110

6) AnyProcess => Createdrocess , AnyID
NextTransition:= 0
NumSamples:= 5 Execution:= 160 Overhead:= 30
Swapped:= 13 IdleWaitSwap:= 70 Delay:= O

10) ProcessManager => ProcessRequester , PnReply
NextTransition:= 0
NumSamples:= Execution:= 06 Overhead:= 20
Swapped:= 22 IdleWaitSwap:= 100 Delay:= 260

AccumulatedStatistics:
NumSamples:= 146 Execution:= 4878 Overhead:= 000
Swapped:= 49 IdleWaitDevice:= 1312
IdleWaitSwap:= 240

OtherStatistics:
NumSamples:= 204 Execution:= 5610 Overhead:= 1470
Swapped:= 263 IileWaitDevice:= 2750 IdleBLTG:= 110
IdleWaitSwap:= 1450

Page 107

Appendix B: BNF Definition of a Model

Syntax

(FSM-Model> -> FSM-BEGIN (ESM-Name> (FSM-Def> FSM-END
(FSM-Name> -> <Regular-FSM> ! (Indexed-FSM>
(Regular-SM> -> NAME
(Indexed-SM> -> NAME F (INTEGER 1

<FSM-Def> -> (List-Tran>
(List-Tran> -> (Tran> ! (List-Tran> (Tran>
(Tran> -> (State-Label> : (Transition> ! (Transition)
(State-Label> -> NAME

(Transition> -> (Event> (Next-State>
(Next-State> -> (Implied-Next> ! (CONNECT> ((State-Label>
(Implied-Next> -> < >
(Event> -> (Message> !(Tran-Index>

(Tran-Predicate> ! (Tran-FSM>

(Message> -> (Sender> (Receiver> (Message'D>
(Sender> -> NAME !ANY
(Receiver> -> NAME !ANY
<MessaaeTD> -> NAME ANY

<'ran-index> -> INDEX (Lis-FSM-Name>
(List-SM-Name> -> FSM-Name> ! List-FSM-NaMe> , (SM-Name*

(Tran-Predicate> -> PREDICATE < List-FSM-Pred>
(List-FSM-Pred> -> (FSM-Pred> ! List1-7M-Pred> , FSM-Pred>
< FSM-Pred> -> <FSM-Namie> < State-Label>

(Tran-:ESM> -> FSM (<SM -Name>

Variable Symbols:

(FSM-Model>, (FSM-NIame>, (FSM-Def>, <Regular-FSM>, (Indexed-FS'>,
(List-Tran>, (Tran>, (State-Label>, (Transition>, (Next-State>,
(Implied-Next>, (Event>,
(Message>, (Sender>, (Receiver>, < MessageID>,
(Tran-Index>, (List-:FSM-_Name>,
(Tran-Predicate>, (List-FSM-Pred>, (FSM-Pred>
<Tran-?5r4>

Terminal-Symbols:

:, [V it (V)V 191
FSM-BEGIN, FSM-END,
FSM, INDEX, PREDICATE,
CCNIECT, ANY, NAME, INTEGER

Page 109

Semantics:

Model

A finite state machine model is defined as a collection of
transitions. A sequence of transitions implies a sequence
of state-transitions; otherwise, the construct CONNECT
explictly defines the next state. For each state alternate
transitions are defined by preceeding each transition with
the same state label.

FSM

The transition FSM occurs when the specified lower-level
finite state machine passes from the initial state to the
last state.

PREDICATE

The transition PREDICATE occurs when the specified list of
finite state machines are all in a given state,

INDEX

The transition :NDEX causes a change in system stq e. 'The
index of all finite state machines specified in the list is
decreased. A finite state machine modeling -he message
in progress becomes a model for the message ri_1 >

, 4 "F l -: "-

Paae 109

Appendix C: List of User Commands

The performance evaluator enters a command to the monitor
which prompts for additional arguments. (The prompts are
preceeded with the sign "=>"). Except for the command RUN,
all other commands affect only the state of the monitor.
The command RUN then interprets the state by actually
performing the experiment.

The performance evaluator who uses finite state machines
typically performs the following actions:

1) compose a file containing a finite state machine
description;

2) load the file containing finite state machines (command
LoadFSM);

3) receive raw statistics using either ReceiveTrace command
which obtains statistics from a remote host or UserTraceDump
which reads in statistics from a local file;

4) start the experiment with the command RUN.

Of course, steps 2-4 may be contained in a transcript file
allowing the user to use just one command, UseTranscript.
The following commands are supported by the monitor in RIG:

BIND PROCESS
=>Name :

This command binds a given process name to an integer. The

monitor prompts for a list of pairs each consisting of a
process name and an identifier. Symbolic names of processes
enable the monitor to parse symbolic descriptions of finite
state machines and to produce a trace of symbolic messages.

CLEANUP

In the case of a system crash, this command enacts a cleanup
operation of the current experiment, saving all the
statistics collected so far.

DISK
=>File:

This is a special purpose commmand for tracing disk
activities. It produces a time-stamped trace of all disk
commands and stores them in the specified file.

Page 1 10

FSMLOAD
=>Trace 'Yes or o ?
=>Input File:
=>OutputFile:
=>OutputLevel:

This command loads descriptions of finite state machines
contained in the specified file. The trace option, when
enabled, produces a trace of all state-transitions. The
output level parameter selects finite state machines having
the specified or higher level within a hierarchy of finite
state machines.

MESSAGETRACE
=>File:
=>Histogram:

This command produces a time-stamped trace of messages and
stores them in the specified file. In addition, it produces
a histogram of all the messages in the trace. ('hich
messages are traced is defined by another command:
SelectTriples).

PROCESSTRACE
=>File:

=>Histogram

This command produces a trace of all processes with their
run times. In addition, it produces a histogram of all the
process run times. (Again, processes are selected according
to the command SelectTriples).

READLOCATIONS
=>Address:

This is a special purpose command for reading arbitrary
system locations. It is used to gather some gross system
statistics such as the average number of queued messages in
the system, or the average number of ready processes.

RECEIVETRACE:
=>Host:
=>Time:
=>File:

This command stores all statistics that are received from
the remote host during the specified time period in a binary
dump file (all other files are used in textual format). The
command prompts for an identifier of the host being
measuz 2d, the time of the measurement period (in seconds),
and a name of the file that stores the raw data. The
performance evaluator may choose to produce statistics
directly without storing all statistics in the dump file.

Page 111

RUN

This command runs the monitor. For example, if ReceiveTrace
was initiated, the monitor collects raw statistics. If
UseTrace was initiated the monitor gets statistics from the
local file.

SELECTTRIPLES
=>Sender:
=>Receiver:
=>ID:

This command introduces the selection of messages and
processes that appear in various traces. Only those
processes and messages that match the specifications of
stored triples are traced. The default value for each entry
(a user hits "return" key) is the constant ANY, matching any
value in the specified field of a message. Three "return"
keys terminate the command.

SWAPTRACE
=>File:

This command produces a time-stamped trace of all swapped
pages. It prompts for a name of the file that stores the
data.

USETRACEDUMP
=>File:

This command uses the binary dump file that was created
previously with the command ReceiveTrace. The binary dump
file is used to produce textual files of traces of various
events and statistics of finite state machines.

USETRANSCRIPT
=>File:

This command reads in the transcript file and interprets it
as if the user were interacting with the monitor.

QUIT

Quit from the monitor.

