
AOA-101 945 ILLINOIS UNIV AT URBANA DEPT OF PHTSICS F/S 20/12
ELECTRONIC STRUCTURE OF SOLIDS AND THEIR SURFACES AND INTERFACE--ETC CU)
JUN 81 A B KUNZ AFOSR-76-2989

UNCLASSIFIED AFOSRTR-6-571 NL

EL mhmhmhh



*7*1'qls8. CONTRACTTIO OR-HI GRAT -NBEE

U.P~~ IG O RNZT OCUNMENAN O ADD GES 10. RO R ELEM;ENT O RM T

RRL~N VFIC NACESIO AND ADRS32 RECPIETS DATALGNUEE81-05
~~~~~~~~~~~ia Scintri FocReicpfSoetfcRrtrh13NUE O AE

5' ._ AE ArFoc B~RaCs, D.C203

S. PE~RFRING ORANIZAI NAME A NES~fD ,crnf.o ntIr ADDRES S 10. CRITYA ELEMSS. RO JET TASKu~or

11. ' iTONG OFFIEME:'ftcasrc etfdi t 0 AND ADDRESS 12o .REPO r DAT

Ai r D o c Offie o f Sc ienifcsr Ra erchf 13 blckR OFr PAGE)

Ba:li Strcture Banter.C ac03 s

DeeUnclasrities

T!S past IEN fieyasof this projcaebe)eoe t eeomn fqai

~~ se7.icoeduc or The bic ereedititos nlsoonluiosereain.t

17 S7 . EflO phTMENsson tpe sr exper 'imnts;, and it eon som eten setrcpyopr

TI-9 anRd oIT-V ou iendssar prdesented iybonuhapers n fti eot

.- 1lo-ic Iompurtes oemltig onaducorats (oantir) setaae eotdi

taier 3.heerftefdmnal rlelatedictudiecture bein couprte atd thspitpand

sxrlarticles relating to these studies are being p)repared for publication._I_

DD ~ .1473 I.:. 0io- OFItAvgsSOO:

~5
CLITY I ASIFIArioN OF TM:S PAnE- (lI rr Daeta r,:ecJ)



Final Scientific Report

Grant AFOSR-7 6-2989

A. Barry Kunz, Professor of Physics
Principal Investigator

Department of Physics
University of l1tinols at t'rbana-Champaign

Urbana, 71. 61$C)1

:

Project terminated 31 March 1981
Report submitted June 1981

*1

*
v 

S

Approd for publlo reloast
distrlbut ion unilulted.

7 24 009
8 1 7 .. i : I



Table of Contents

1 Introduction

2 Chapter 1, Theory of Energy Bands in I-VI Compounds

79 Chapter 2, Ab Initio Energy Bands and Ionization Energies for

ALP, GaP and GaAs

98 Chapter 3, Surface Adsorbate Spectroscopy

135 Appendix 1 Post Doctoral Associates Supported by this Grant

136 Appendix 2 Graduate Students Supported by this Grant

137 Appendix 3 Publications Supported by this Grant

Accession For

NTIS GRA&I

DTIC TAB 
]

Unannounced [
justificatio -,

Distribution/
Availability Codes

vail and/or 1

Dst Special

NOTICE OF TRANSMITTAL TO DDC

This technical report has been reviewed 
and i9

approved for public release IAW ApR go-12 (Tb).

Distribution Is unlimited.
A. D. NBOSZ
TeohniOea informtIon Officer



Introduction

The past five years of this project have been devoted to development

of qualitative theories of the fundamental electronic structure of pure and

impure semiconductors. The basic theoretical tools and also conclusions

relating to chiefly photoemission type experiments and to some extent

spectroscopy of pure II-VI and III-V compounds are presented in Chapters 1

and 2 of this report. Basic complete work relating to adsorbates and their

spectra are reported in Chapter 3. Several related studies are being com-

pleted at this point and several articles relating to these studies are

being prepared for publication.

I.
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This irnvest.gf.gation has the iur-Pose of perforri.Ing

self -cons Istent energy band calculations on some of the Il-VI

cor~yrounds, such as cadmium; sulfide, zinc oxide, and -iflc sulfide.

There a-re ma~ny -)ractical arnd thecrpetical reasons

fc~r interest in these ma~terials.

These rtra he5ve applications as phosphors (ZriS

st- CcI) s inf^r red deto-rtors (Zn3), In photovn'taic ce!ls (Cdr,;

. or inZ~K ~ . . . ,~ t~e (ZnO) , as FFE'Ts
2

*(CCS), In reteroj-,otion la-sers (Cd.ks), a.n.d even as acoustic

arn.liJie rs O'd S)

'Piy rrc ofco'idrb:e theoretic~l interest- as

elas xr*oe o- w-ide tand p-, L-,:)21s, ~ne'c~tc be',~~

t-1he covalen~t I!*l.7* ser~iccrd--otors and the more iconic I-VII

~nslatT'. Tey servo! yis %_test of calculationp.1 mothods previo-usly

,j s I o n t h c! i1, pr I1I..I col-poua.12- and othr orpounr~d simp2er
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In particular, the occupied d-levels, which lie in energy near the

top of the valence levels, complicate the picture. The positions of

the d-bands have not been correctly predicted in previous ab initio

calculations, and in fact some methods fail qualitatively by not

obtaining the proper ordering of the valence s,p and d levels.

The II-VI compounds have also been of theoretical interest

as excitonic systems. High densities of such electron-hole complexes

have been produccd and observed in CdS. The electron-hole liquid has

been observed and studied in CdS as well.

In addition, some very interesting rrznetic properties

In CuCI and CdS have recently been observed. This is the background

of these experimental studies. AnomAlous diamagnetism has been

observed in CuC! under rapid pressure and temperature cycling. In

some samples, up to 50% of the magnetic flux is excluded. This occurs

at high temperatures (150 M' ) and cannot be explained by ordinary

6iarnagnetism. The only currently known phenomenon that can explain

this is superconductivity.

V | IUn



It's clear that this would have to be suncrconductivitW

of different origin. Acoustic phonons, the known mechanism,

are too low in energy to bind electrons at such high temperatures.

Models using some other form of interaction to pair electrons

seem to be necessary. Some form of excitonic binding is proposed

in many of these models. One of the most well-known such models,

the Allender-Brray-E rdeen model, requires a metal and a

semiconductor to exist In very close proximity. Since CuCi can

disproportionate via the reaction 2CuCl Cu + CuCl , this trcdel
2

.. , . . sulfide, w:hich has been

observed to have only one valence state and is not believed to

disproportionate, has shown similar anomalous diamagnetism. The

* law of p!arsimony is, therefore, aFainst the metal-semiconductor

sandt:ich idea. Also, in both CuCl and CdS, Impurities clearly

*. , play a rajor role. Sufficiently clean samples display no

IntcresItnz behaviour at all. Aind to make life even more

interesting, cadmium sulfide also becomes a ferromagnet under a

h-h (40 1iJ1.og.uss) applicd field.

4
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Another zodel, proposed by Bishop and Overhauser ( ), involves

the interaction mediated by the optical phonons. This mechanism

has deep attractive potential wells, about 10 mev in depth for

a spacing of 250 angstroms. This suggests the possibility of

bounod states, and the pairing is considerably stronger, around

a factor of ten, than the pairing from acoustic phonons in

the typical Cooper pair in the highest temperature superconductors

Ino-.:n, at appro)-imately 20 degrees Kelvin. This idea is even more

Intriguing in the light of the fact that both CdS and CuCI are

strn--i4y polr ccpounds. This suggest that these phenomena

wc,1 uh not be seen in the less polar 1II-V compounds and in

el.eental semiconductors such as Ge and Si. They've been

investigated most thoroughly and indeed, such effects have not

beer. observed.

L,4



Chapter One

The calculations discunsed here are based on

iartree-Fock theory, the most common approximation to

the exact non-relativistic theory of a many-electron system.

I'll discuss t1he theory and its applications to crystalline

solids. The specializatio± of Hartree-Fock theory used

in these calcul~ations, the method of local orbitals,

deserves and Fets a chanter of its own.

A oriirvalis finding- exact solu~tions

to the Schrodincer equtation for a m-any-electron s';ste.

This is !.mpossible, If the universe Is as small as we think

It is. Consider the wevefunction, which Is a, 3N dimensional

function if therc are N electrons. Dividing each axis into,

say, 100 units, in order to numertcally Integrate and

differentiate, vie need to record 10 entries. The same

problem arises i~f we try to describe the tzavefunction by



6;4
sets of orthogonal fuIct.ons. 10 is just too big a number.

Quantum mechanics is agaiar;t us. The upper limit for the

2
rate of information flow in a computer of mass 1 is mc /h

(h = Planck's constant, c = speed of light), In bits per

second. It's not hard to see that macroscopic physical

systems cannot b.e exactly simrulated by digital computers.

I emphasize the vord dJgital, since the electron is an

excellent analog of itself.

Such a digital simulation would be useless even

if it could be d.one. As sz:,ested, the real solid simulates

Itelf perfectly. The gcal of physics is to explain some

set of cccurrenccs in ter7s of a few, relatively simple

Ideas, rather th-an makirg a model isomorphic with the universe

end Just as confusing.

We begin to clear away some complications by

vsing the Eorn-Crenhelrner arproxialation. This neglects

any relationsh.p betwveen the motion of the electrons and

the: motion of tia nuclei. *-his n valid simplification, since

3 5
the nucle5. range from 10 to 10 t.tres heavier than an electron.



We can express the Ir-Electron .;Pvcfunction

as a function of the electronic coordinates alone:

Here contains the position and spin coordinates of the

ith electron. e write the Schrodinger equation for this

wavefunction:

, AJ k 1.-2)

here, H is the non-relativistic 'Hariltonian exoressed in
2

atomic units. In tis system of units, 1 C 2, and

the rasz of t';e_ -o~ccron Is o e-h.a...... The urit of distance

is cre b .ohr. (.529 engstroms) and the unit of energy is the

rydberg (13.6 ev).

H H '. (1 . 3 )

and

/.4)

Ii z(/.-- )

is indc.-.enCent of the electron coordirjcs, and hrs been

s I o c



The upper case characters refer to nuclear

properties: Z is the atomic number, H is the nuclear position

( usually assumed to be fixed, like Fimlico) and M is the

nuclear mass. The lower case characters describe properties

of the electrons. , is the coordinate of the ith electron.

The atomic numbers of the atoms under consideration

are relatively -o.,, and since in any event it is the valence

electrons that are of primairy interest, the non-relativistic

nature of the Ham.iltoniar r'ay be acceptable.

The: fundazenta! rr';..iaticn, no-,; an.:olied, is the

indepcndent particle model, In truth, in the real solution,

the variables are not serarab.c. We must assume that they are,

or more exactly that the true wavefunction can be well-

. approxin, ated by this model. The independent particle model -says

that the electron is acted on by the average of the other

electrons. The N-electron wavefunction is expressed as a product

of one-electron :avefunctions, or ss a linear combination of

e;3h Products. A simple examle is the Hiartree waveftuction:

/t )6 (yt.6'
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Sincc electrons sire , .... this I,'-electron w~vcfunction nust

be antisymmetric. Any irterchqnge of two l-articles rust reverse

the sign of the ;.vefunction. The simplest way to antisyzmetrize

is to use the determinant of n matrix whose elements are

(1 .6)
I

6 , K) , ' ,4/ cA'

cOt 1I1 5cs 7h t v : sp .. n. cl nzst,.t.s, but fortunately we have

-. I c. s ':- ". . ,t 7-.,b c', b: ' ey -r-.ssed Ps single-

For er arbitrary, we can find the expectation

value of t'he ii.:toni.an. it is a sum of one- and two- particle

,ntegrals:

'N

P Is a ncr!utaticn operator, constructed so that

P i *: .,;2 "  /j . , The t' . Ni arc not n roble7,i since the

, . .-I



Tie expectation value of tie iiamiltonian,( can be

minImized by varying the spinorbitals. It has been shown that

, (.9)

where E is the energy of the exact ground state.

We vary the orbitals, but take care to keep them

orthogonal, for convenience and without loss of generality. This

is done by using Iagrange multipliers. The objective is to obtain

the lowest upper bound to the exact non-relativistic energy.

We define the functional

Al/I ,i) .- ,10)

an", require that the variation of L = 0 for I = 1,2,.. .

This yields a set of 3N coupled nonlinear

inte:-rodifferent'ia equations kinown as the Hartree-Fock equations.
4%

-~ -v -2 - + 22 J.-~)( 1)
-.,-)--7 + ( d  -g ) -I .. ,

3=11

J snd K have the familiar Coulomb and exchange operator forms.

I: 0(x) -(x) (1.13)

7hr.r;e eguatons rn,-3 be written In ratrix form;

(1.14)

F 1



F is the IVxN matrix of th.e Foci? opurftor. For closed

shells, it is Hermitian, so S mny be dlagonslized by a unitary

transformation. Fortunately, the 1I-VI compounds have closed

shells. We way write, F /,'> = . J > . (1.15)

Combining this expression with equation 1.7 gives the Hartree-Fock

ground state energy,

F (1 /2) C 4. + (> . (1.16)HF.

The Aare the single-particle energies, almost. Koopran's

theorem states that given a variationally stationary state

formed fro- N sirultaneous sr'rorbi t -(.,eudo) eigenfunctions

of the N p.rticle Fock oper,'-tor , the stYts ' and

formeod by alterinF, the list of occupied eigenfunctions of F by

one entry, are stationary with respect to further variation of

that spinorbital whose occurancy has been ntered. If we

neglect relaxation effects, . is the entire change in system

energy when an electron is added or removed.

in order to equate the (.. w3th single-particle
A

encrP.ees, wec inuist also nssn. tc'.tt relaxai.ton effects are small -

. hat the ot-'C.c c..,c* -n rb tis chrn,,:e ony slightly when an
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There are such changes, sncne the Pock operator is a functional

of all of its own solutions, and changing one of them must

change all. The question is, how much? These relaxation effects

will be discusscd in a later section.

A"
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The M'ethod of Local Orbitals

The r-ethod of local orbitals is a variational

technique in which solutions to the Hartree-Fock equations

are sought for a small subsystem of the system of interest,

with the caveat that all such solutions found must be contained

withIn the occv - - jock space of the original system. Sets of

such local orbthi, hich are not orthogonal, can then

be assigned to e -}_ subunit of the larger systen using the

translaticr . , :i.'.riance of the .Foc:-Dirac density matrix,

thus spanring the occupied :Hilbert sTpace of that system.

A single noniterr-t'ive rotation of the local orbitals within

this occupied space then yields the exact self-consistent

solutions for the original Fock operator.

If A is the set of local

orbita. sntisfyn..;- the -artree-Fock equations for nn n-electron

sst rem., then F O 2;i 6.(3.1)
., .,.) ,J

*The Focl:.-Dirnc der sity onor..,tor for the equrition is

-4.II



)., ~*(3.2)

S is the inverse of the overlap matrix S.

.5. ~J6)Ix6 & P. ' (3.3

Rho is a projection operator (Yyandy=

chosen such thatyP= for any orbita:l 6jin the occupied space

an5dy%=O for any orbital ' in the virtual space. This means

that for any one-electron operator L, the projection of L

onto the -artree-Fock rmanifold will satisfy

y 0y; =LY"6 (3.4)

for Erny occuoled orbital ', and#TjifO for any virtual orbital .

Another approach, rigorously developed by Gilbert ( ),

begins by introdi;.ing modifled Hartree-Fock equations of the form

(F +A (3.5)

Above, A is an as yet unspecified Hermitian operator and rho

is the 'dia.onal' ( x equals x prime) form of the Fock-Dirac

density operator ( ), We see that rho is idempotent, Hermitian,

an projects onto occupied Fock space. Because of this last

-rc rrrty, it cc-n 'e shown tlit the occupied eigenfunctions of



t'r. 1 oifled HIrtVI.:c.FcI cao lie en'(Arely w thin the

occupied Fock srpice of the iunmodified llartree-Fock equations.

So, y & (3.6)

There is no Koop:.-n's theorem for this modified

equation, anda so the Cs cannot be interpreted as being nearly

-the -- rticle encr-ie s, as thley carn in the regtrhr I."ar tree -- Fock

eqiuntions. The tcJenergy of theo subsys temn stil 11ahs significance

sinrc~ 1 uni'*tery L~-~fr.'ticnw.hnocciupijed FocA. sptee

Sthe orC~~ .' crn~tors such tis tUhe 7amltonian

I'u -s OTA e ~ l F'y .~ .v .ry with the choice

* of .'.'C' a1re K for fu tosthat i-re ltocalized on specific

Thtt'c I 'itS C'f j.. ans~J i order to decide i.-hich operator

lcs't fulfills suh nrpaFs, we need to consider thea

g-J!A iIza~tion' of :f.ntioo (.),

0~. (3-7

L 1



constraints of equation 3.7 are taken Into account by the

parameters , , and the constraints that Involve exlicit

functions of )" in equation 3.7 are taken care of by !agrange

functions 4.(x) and ()

We obtain

X) < X) (3.8)

A A_

!.:ultiplying on the left by (l-Y), we see

• ( -p I -0 j=.1 ,2,...T (3.9)

ar. JD-~& -(zyC)~ y~ for al. (3.10)

nd s o Cy kLK+?X ; (} ~&LJ>(7) (3.11)

Substituting equation 3.11 into 3.8, we get

N )~? 1k(3.12)
which may be reiritten as 6/,> = &2 Ii> (3.13)

At T-
wi~ere& iJT ) >3.)

P. unitary transfo..ration gI',r.s

C iic> = 7' / > (.15)

Ince .c no...- kn,:, how to minirlrze any chosen H.ermitian



functional e , -c k can n o .et Fc ac.: to the true problem. Let

A = G - F, so that 6. 3 z o (3.16)

We can now minimizedJejand solve equation 3.5 at the sar.e time,

and so nay picI:7,3-Jto satisfy physical reasoning.

We choose A so that the solutions are localized on a site,

usually by pic.ing A to be some potential well centered on the

site. The Fock o::er tor can be separated into F , the atomic
S

Foci". operator for the site s, and U, an external potential

orerator for ti- site s. * e usually pick the localizing potential,

A, to be -U . T-z 2ocal c;-bitajsc .t~on is no,.v

IF +LI - I' J69(.7y 

(3

This isr't an obvious improvement over the original

HCartree-Fock eq-.t on, but it allows a systematic approximation

that simplifies 7-reatly the "artree-Fock problem without inducing

undue error. T'-! left side of equation 3.17 can be analyzed by

tre order of the Irntersite overlap. The Fock-Dirac density

c -,cr a-tori (3.18)

with V the Artr'It -- tIc cvcrhn. rptrix.
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As discussed In Lowdin ( ), m i,'ay be expanded in a power

-I

series in + ; V =>.J - V -,... (3.20)

Expnding the )3cal orbitals equation and di-carding second

order and greater in intersite overlap ( ) gives

+ P(3.21)

*here -. and

~'T 21-

As self-consistency is a, r..-.oched, the last two terris of equation

3.21 tend to cancel. There fc-re, the Fock space rotation changes

BEoch wi-efu.ct o.. into atcnic-like wavefunctions that are

eigenfunctions of the ator.ic FoCk operator.

We procede to localize a physically realistic

numbcr of electrons on each site. In cadmium sulfide, we choose

to have 46 electrons on the cadmium site and 18 on the sulfur,

aeproxi~rrting on ionic cheir ze distribution ( overlap and diffuse

valencc orbita~s permlt cc-plete covalency it. needed, however).

We h-ave achiev,. se-versl advantages. The problem Is

c=,:rputatlonnlly s ,.lic£, since the equntion being iterated

I .
'

1":



does not have to -.ortray the full cor, plexities of the solid,

and since the loc.ali orbitals are recognizably modified atomic

orbitals and aid in picturing chemical bondi.ng. This approach

has use as a beginniag in looing at amorphous substances, which

have only a short-range order.

The locpl orbitals are calculated using the program

called LOAS written by 1.unz. A basis function exxvansion of

Slater orbit.ls (:0-0s) is used for the radial part of the local

orbital while a .'r'-erical harrioric describes the angular behavior.

~I ~U) V ([' ~~ (A". 2'(3.22)

;W- usuolly take the /! ab d . fro:- :gs et al ( ) where

optimiized basis sets have been co::putcd for the atomic or ionic

system aprrorri te to the solid in question In ma.y cases, we

will chan-e this -asis set to achieve localization, considering

at the same time the total energy of the subsystem.

The expansion cocfficlent ( is solved "y the matrix

method cf hoothaan ( ),

Equation 3.21 P; solvcrd reneatedy until the self-

c or co s s~ Lr . . Iv r.< -; : <' ..... va. -i.e, nor:,al ly one r.art

l- 10 for the ch',rjt den, ' t.

...4. . . . ! = l i ' - : : I '



have only used the long-range Part of the external potential

as the localizing potential. So, for ionic substances, the

electrostatic potential will be screened while the short-range

effects of the inner shells will chsnge the local orbitals. Some

anions will not localize in this situation since it is the

f.'adelung part of 'the potential that stabilizes them. Since A Is

essentially arbitrary, we are free to alter it in whatever way
/

that achieves otirsl localization, and we often use-t LI

in equation 3.21 instezrd of -Y
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Energy PBand Theory

The -Hrtree-Focl: energy hpands are obtndnl d by plottir.p.

the one-electron erer -ies derived in, cqiation 1.1-6 aqifst the

crystal m~omentum k. Our calculations rna1%e use of thre symmetries

of the crystal. In the case of these cnlculations, Jit Is the

zinc-blence' crystn . struct-oro.

Bloch's theorei,, requires that the 7 vefunctions of theJ

'~*~ (2.1)

for any la9ttice tre' Sltion vector ~.The crsl t:ertn 12 s

vgain 1, annd n is the bcand Index. *vIavefurictions th-it satisfy

this conditicn- ore ~ 'Jc aeucions.

If we locl': qt the set o f R , we car see that there

Is Pan ecemen!t of R~ that hns o rinirruri~ length, c-orreosrondiri-to
n

the 3u~~v ~ 1 httice sraclinz. Cnnsl~nt -n. this-, -,nd the fpct

tlhn t j s a r~pu~crI:n~ ;~ rWf can seec tK:ct there Is

winc



z_3
r-r, ore , t1iere is L fin i te re. on of von-equ I 1 -- t I-noJ n t s -

the first Brillouin zone.This rny be reduced to or! ' irreducible

wedge' by symmetry considerations.

The solution to the "artrce-Fock equations is lengthy

for crystals, and the successive approximation nature of the

calculations requires that the equation be solved several times.

The Hartree-Fock equation can be rewritten in terms of the

Foc'r:-Dirac dersity matrix( ):

-,;,x ) (2.2)

~J .3)-A

If a self-consIstent density rmtrix is available, then

eq.:ticn 2.2 need only be solved once to obtain the eigenvslues

and eisenfunctions. !-dams ( ) and Gilbert( ) have shown that

thr. dcnsity ratrix (x,x') is thc same for equations 2.2 and 3-.21

~> L f x ) 9~ ', ) ~ Z ~ 9 ) ' 0( 2 .4 )

So 'e have the required density matrix, and can obtain

cryst.] w-.rvefunctlons from the Plready obtained local orbitals

by ',.st.ructir . the i'ociz ooer;atzr -find solving equation 3.21 just

~-.rh::e, ric r-tAix eie r,-nt.s of' r. -e crea] culAt.ed to first order In



Irterp.to:il'c overlap , consistent t..ith tif- calculaticrn of the

local orbitnls.

The Bloch functions 6 ilr) are expanded in a basis set

in which the basis functions have the form

Z. (2.5)
/IA T /

This linear combination of basis functions technique is similar

to the farous linear combination of atomic orbitals technique

(LC!-C) except for the fact that the are not free-ato:i orbitals,

but are the loc! orbitrals obtained previously. ,rote, the local

orbits.ls nr occasionrjily enri.ched for the case of virtual states.

TheLAS pro.7ra; will not indicate &csis functions appropriate

for a virti:u.l state if thAt virtuDl state is of a different

an., r momentum type than the occupied states; for instance,

a cas- in which the occupied states are all s and p-like, while

thE first virtual state is d-li1*:e. In this case, basis states

for the virtuals -re added, consisting of snherical harmonics

ulli ed by single STOs that are chosen to have smll overlap.

Since the crystl momentur., I is a good q;.-ntm number,

the: ;::, ..:...e s 0. ~i a':cn 1zed into senrnite sr.ces for each

r., r]'oa;*1 )att.ce vector. '.he int r-,! nece.ssaor to r.erfLornm



th.e c] Letion r' ,:-i-nder.- -i.t r.eed only b'. perform.ed

once. !ulticenter Integration iZ; done by the Loi,;din c4-function

ex--nsio a method ( ). One of the sites is chosen as center and

all functions are exranded in term~s of spherical harmonics centered

cn th-it site. The calculations ,re performed using the programs

._A D and YZCN:E written by Kunz. The output consists of energies

and coefficients of the basis functions at 20 selected points

o - the Brillouiin zon e.

4.
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Correlotion Correctlons

As previously f.,ev-t.oned, ilartree-Fock theory does

not give exact so.-tions to the true many-electron Hamiltonian.

Since we are using a single deter.minental wavefunction, electrons

are affected only by the ,c-n field. Electrons of the same spin

have some of their trve :-.- interactions taken into account,

but there is no r.ir corr,.-!It.L.on at all btween two electrons

of conposite spi-. It is c'Ir. -. s thaxt the Coulomb force between

tuo eectrt;ns is " ,en&::.~f spl.n, and should keep electrons

from the near neig'.borhocd co' any othea7 electron.

We si ; that the notion of electrons of opposite

spins Is uncorrelated, and tK-t electrons w.Ilth like spins are

in:completely cerrc.ted. :'. correlation energy is usu-ally.

defined as the difference "ct.een the energy obtained from

our rrean-field !--rtrce--Fo3': theory and the exact non-relativistic

energy of the system. This e:.act energy could in prino1ple be

Ciet'r;,,.-Ar.oj by us ir * a r.;'-' ,tio,: technique called configuration

ir.toxr;c tic,

nuf I -, I N tt I-- C) n



In this method, a wavcfunctiorn is used that is a linccr

combination of determinants. It's Impracticnl for all but the

sm.allest molecular and atomic systems, and is far too time-

consuming to be useful in solids.

For solids in general, and specifically in the case

of the II-VI compounds under discussion, we attempt to estimate

the correlation correction to the Hartree-Fock calculation. The

correlation correction for the one-electron eigenvalue is the

error from i'oopn-arn5 theorerr. ( ) and from the independent

P-rticle model.

Accox-dJng to Kooj-.ans' theorea, an orbital egenvalue

is poroxmate1ly the differen-ce beyween the hiartree-Fock energy

of the N-electron systemr with the level occupied and the Hartree-

Fcch energy of the N-1 electron system with that same level

inoctcupied. These 11artree-Focl excitation energies are

£ _ (4.1)

for states that are occupied in the Hartree-Fock ground state

P. (And1~ (4.2)

f-,r ",vrtv.'il t.ritc." of' the F;urt rce-Fock ground state.



wi~ri e -ttov:ipt to 1 r. s'rove th~e i:1rtrec!-:-cock

r~p-,-roxirnAtIon, we i;Ish to 'Neej the Oticra). band schemie, so

fAI)
~. ,:(4.3)

-r (4.14)

where the eigenvaltzs are the exact cigenvalues of' the system.

v!ce ssvme that the correlation onerglez are a sm'all perturbation

(L)
of the original buntre.Vc~ inds, rsnd we can then write E as

E ~ . + E, (4.5)
iiF

h Cr 0., - is thei totnl corre.111tion energy of a system with L
C

elecLtons. Equctio-,s 4.3 an" 4~ rnfay3 rri-e be written ais

e =e +. (F - (4.6)
nV c

e e + (E -E )(4.?)
nk n C c

A usefl.~ approxir-tion, valld for nonmetals ith

vplence band width ).rss th~trn the Hartree-Fock optical band gap,

vas develorped, by Ihantelides cetL- al ( .They showed that equations

on', msi4? ~y be rcplprfeod b ,

Bl~ + E (hi) (4.8)
nl: nI( nk

o 0
(4.9)



(N) 7
in these equations, , E (e) is the self-cnergy of an electronnk'

that occupies the one-electron Hartree-Fock stsfie rik in an

(W-1 )
N-electron system. E (h) is the total energy change in the

nk

remaining N-1 eleztron; when the electron occupying the state in

(N-i)
question is removed. E (h) is the self-energy of a hole.

nk

Pantelides et al ( ) have produced some model-

iderendent results concerning these self-energies. They find

that the self-energy of holes is always positive, and therefore

the valence bands from the original Hartree-Fock calculation

alwa:s move u? on the energy scale upcon correlation. These self-

en-.1es zrow as we approach the bottom. of the valence bands, so

on balance the valence bands are narrowed. The self-energies of

the lo.w-er electrons in the con...uction band are negative, so the

conduction bands r.ove down. The models used have only small

ch Dn;e in the amount of shift for the low-lying conduction band,

and so we use a rigid downward shift for these. We end up

shifting the valence bands higher and rigidly dropping the

con4-ection bands. ThIs rroduccs a smaller optical gap than that

o-.'-: d hy th1 c:'treeo" clculations.



We more nearly appr("u.clh t,t elxTp2rir:,ental gap by thils narrowing.

These selC-e.v*rgies were first calculated by

Toyozawa ( ). The theory of thIs calculation, the electronic-

polaron method, was considerably further developed by A. B. Kunz,

so that it now predicts ILCe self-energies as well.

In the originfrl Hartree-Fock theory particles respond

only to the average positicn of the other electrons end ions.

This is obvicusly incorrect, or at least inco plete; the

independent charge w1ll poarizo its surround.ings, especially if

those surroundins 1, ,v' svf: c.ct t..-5,ie to re!spond. The electronic-

pc.Iaror modo Oresscs the Co u.t~cn bi&rd electrons and valence

band holes with quznt--- of the p.-larization field. These quanta are

excitons. In the model we are using, the excited states of the

* (N)
crystal are simulated by a djsperslonless band of excitons. E (e)

(N-i)
and E (h) are the interaction energies of a bare electron and

nk

hole with this field.. Thesc. cner ies are called polarizaticn

energies. ThIs mo1el uses second.-order perturbation theory to

cal cvlhtc the self-cnurgt .,5.



These polarization energies ore calculated on the

basis of a model in which the hole or electron Is fixed in space.

This method, the Iott-Littleton method, uses a perturbative

approach to find the induced dipole moments on all ions of the

crystal due to the localized charges. This calculation takes into

account the field from the induced dipoles - it is self-consistent.

Since It takes a finite time for the crystal to respond to such a

change, moving charges should induce less polarization than the

Ltodel static charwc. Therefore, this calculation should give an

uner bound for the polarization energies of actual, mobile

electrons an holes.

This electronic-polaron model is basically a long-

range scheme. Only in the limit of large distance can wt find these

changes by assuming that they can be described by dipoles.

For short distances, the shape of the wavefunctions plays a major

role, and quadrupole and higher multipole effects cannot be

ignored. The changes in the central atom and its near neighbors

cert-.Inly cannot be modeled, by a dipole very successfully!

1"



Short-ran.7e correlation calculates the change of the

nearby orbitals when an electron is added or removed. To find these

corrections, we do simple atomic calculations of different

Ionization states, supplemented by cluster calcilations in the case

of negative ions where the added electron extends over a significant

region of space. In the limit of zero overlap between atoms, the

short range correl.t..on correction to the hole energy is

sr
R (h) = (4.10)

scf

where { is the enerz-v of the level the electron was re:.ioved from

and 1 is the o:ree-Fock lonizaticn en.o'ry. The ionization
scf

energy is the difference ez.een the Ia r. ee-,oc], energy of the
- ~~~C L. ye ofupe anttehe

systo,,' with the level occupied and the iiartree-Fock energy with

that same level iu"-, The s"- ort-range energies so calculated

are again upper bon-.s, since electrons and holes are not as

localized as this mo4el potrays them.

The Hartree-Fock calculation and the following

correlation correctio:ns give a set of one-electron energy bands.

They must now be co:'-.ared to experiment to test the adequacy of

our c: ;rox 57, tio.,



CADMIUM SULFIDE

At room temperature and standard pressure CdS

c[-[.-s t .I s in the zinc-blendc Tt'ce .."ith a lattice constant

o 5.818 ongstroms (10.99 atomnic units) and in the hexagonal

fcr,. .iwth lattice constants of 4.13 3 and 6.7234 angstroms

7.2136 and 12-7054 atomic units). The zinc-blonde form, the

subject of these calculations, is composed of two interpenetrating

++ -

face-centered cubic sublattices occupied by Cd and S ions,

disj-aced relative to each other by 1/4 of the diagonal of the

unit cube. The symmetry properties of the zinc-blende lTtt~ce.
I

2
( stice group T ) have been discuszed by Parmenter ( ), and in

d

..t., fol~o:Wing discu;slons of the bind structlure , srid notation of

.C ~Cret, SmoluchownLi and Wigncr ( ) will. be used.



We first examine the energy states at the Prillouin

10
zone center, the point. Cadmium ions contribute a filled (4d)

shell to the valence energy region, and sulfur ions contribute

2 6
a (3s) (3p) configuration. The p and d levels hybridize to

some extent, since they are separated by less than nine ev; still,

the valence bands are not strongly hybridized. The top valence

band is predon'nnntly p-like ( ever 75%) and the next lower band

is Predominantly d-type, again over 755. We expect the lowest

cond1uctlon band to be derived frown the cadmium 5s levels, as is

usv-wl in c.:::2cu::-s that have any ionic character. in the zinc-

ble..-,.ii- structure, the crystal field splits the fivefold degenerate

d levels into a triply degenerate state and a doubly degenerate15

state. The threefold degenerate p states stay degenerate under
12

this crystal field and transform like . The zinc-blende lattice
15

has no inversion syr:retry, so the bands at the gamr.ra point need

not . ve a defin~te parity. Tho conduction band contains
-5

bot' r and d contributions, in fact.

Several rrevlous calculiticns h.ve been ccne. The valence

I~r.I: Cs tr. ]: t}.. ',]:per onws, Fnc-i the low;er ¢on-1uct.Ion bnnds



have been -sred yvarious pseudoootentiol calculations.

That is, they accord with cur:.ent ex-', l.--er, since

the pseudopotentlal method is basically a parametrization scheme,

in which the .arameters are determined by experiment, little

critical new information can be obtained. If the experimental

evidence has been misunderstood or misinterpreted, the

pseudopotential will simply predict the mistakes or misunder-

standings that it sprang from. A pseudopotential calculation

is an aid to undeistanding, but it tends to not be falsifiable.

Such calculations, such as those by Cohen and ?ergsstresser ( )

also depend on tll. validity of the carellaicn theorem, which

Is not exact and .hich is much less valuable for systems that

have localized states that are closely comparable in energy with

the valence states - here, the cadmium d states are the ones

/- not easily described because of their local nature.

A related but more theoretically rigorous technique,
A

the orthogonalized plane wave method, has somae of the same errors.

In this method, the valence and conduction states nre described

by rn2ne w-aves orthoE.onalized to the core states, taken as constant.I'
' '!I



in these :cvious 0?,., calcu llt.ons, a- performed 1y Lu.O ; , and

Stukel ( ), Euwema and Collins c5 aC ( ) and by Stukel et al ( )

there have been errors of up to three ev in the p-like valence

and conduction bands in compounds mnide of first-row atoms.

Also, the 4d states are inisplaced by about a rydberg - probably

related to their core-like nature. The level ordering of the

cadnium 4d and the sulfur s bands seems to be reversed from

that r easured by photoemission by about 6-ev. Altogether it

is easy tc s .-e that there Is a need for a first-principles

c3J-to.- that co-rectly -- cdicts the m ajor features of

Therefore, the flrst ,ll-electron, self-consistent

nonepirlRcal bond calculation usin - nonlocal exchange has been

perfor:ed on CdS. The emthods of calculation are as discussed

earlier Jr. this work. It should be menti-ned that a self-conistent

bhrn_ cn]culaticn has been perforrred by Zunger and Freeman ( )

usin; , local density approximation for the exchange potential.

Th,*... results, as well as earlier ones, will be discussed in the

4%

.... .. . . II "i I I 3 '' I "l l-r, . . . . . .



STC BASIS FUNCTICNS O1. CA-'.;1i 2U": AI'D LOCAL OCf-IrAL COEFF1CIE..TS

s Basis p Pasis d Br, sIs

n z n 7 n Z
Oj Oj Ij 1j 2j 2j

1 1 70.66 3 31.29 3 20.99
2 1 45.69 2 19.62 3 11.48
3 2 38.00 3 10.48 3 7.67
4 2 20.71 3 6.83 4 5.75
5 3 1S. - 7.00 4 2.50
6 3 10.05 4 4.55 5 2.00
7 4 5. 31 5 2.90
8 5 2.90 5 2.00
9 5 1.90

10 20 30 40 50 21
C C C C C C

0 0 3,o 01447 0 c' -. .,, 0.071 0.00:37 -.17167
2 0.95].7 0.37037 -. C '3- -.01190 -.o0n 65 -.e6027

-.03'c 7 .0' 0.41231 0. 1- 0 .03936 0. 1057
0019 5r 1.1'% 6 .- , -. 54694 -. 0767 -.23043

-.00903 -.02754 0.7293 0. 35572 0.07401 O. 0 72,4
0c-. 0. 3< 0. 3579 0.914 .0281. 5

7 -. 0 005 0.00355 -.17L2 -1 .21004 -.22539 0.00925
* 8 0.00033 --.00172 0.0.,'351 -.03467 0.04950 -.00394

-.00015 00rOr")3 -.,-519 -.00954 0.95921

31 41 "_ 32 42

0. -. C5253 O.C 8, 0. 0.0 0700 -. 03349
2 -46798 0.1 9 69o o.0 c 01 9>6~6, -. 16153

I .21641 - 52 3 C-, 5, - 0.3 001 -.23294
4 -.30972 . 69;'3 -.37?52 0.01590 0.6524C
5 0.3019' o.i'7 , 0 W-31 -.0499 0.733'22'" : 05-795 0 7' 0 _ f-,1.,1 _.
, . -.... C3 ,., 0. 0C302 -.i 5,-.56
7 0.0:.794 0. 0'63 C. 9>4-

- -. 00775 -05L-?iC



']A bLE !/. 2

S :O 12AS.3S FcUIC''1NS FOB ,.,41'r",, AN:' L0Cj L C-3]I~i. CF 'iI'P3 '1 -

s Basis p iS

n z n Z
oj oj j 1 j

1 I 17.60 2 38.00
2 2 15.45 2 13. 42
3 3 9.68 2 10. o
4 2 5.36 2 7.75

3 2.59 2 4.8o
63 1.63 3 2.32
7 3 1.32

3.0 20 30 40 2o 31
C C C C C C

i i J J i

C. 022 --. 32( 04K7' CZV00o< -.. 32
2. C. C .39 C 0-,,.2 0

~ ~ -23 7 0:.07 .c
-. .- . ,2 ,- f

"' C c " -, 3 -- 4 64.'..

0.0C235 0. 937 -.. ') -. 3C.26 C ... _'. C57430
z -. CcoC5', 0. 0% 0 O 0 1 O. o : 1, . 66 2: -. 06509

0 .'..Cr, .00005 0.59220 --. 62170 0. 005 -,.9300
7 -. 0007L" -,Q4226

41I 32
C . C

J1 j

. 0,3-0 0.00
2 -. ?2.59 0.00
3 0..L,2 0.00

-, .5011 h OO0

0 27 00
-0.15o37

7 0.3LC76



:-olnrizab.It I " -:d 1:y Tess-ian et al ( ) were then used for

++ -

Cd and S along with th.e i. e 'ielectri. - -*int of 6.32

to ca2]ulate the polarization energies usik.t t.: '.tt-Littleton

method. We obtained values of 0.1.866 -y and 0.2584 ry were

obt'.;-;-ed as the Polarization energies associated with the S

++
and Cd holes respectively. 1'eing less tightly bound, the

sulfur anions polarize to a greater extent around a hole at the

Cd cption site thmn do cadmium ions around a sulfur hole,

producing a lerger poiarizatlicn energy for the cation. We also

caiculated short-r-,n,-e relaxat-ion ener;ies for the states of

sr ---torest in ti-e valence region; these tire E (S )=0.72ry
3p

s- sr ++
E (S ) 0.06302 ry, and E (Cd ) 0.116 ry. These corrections

35; 4s

were added to the 'Hamiltonian matrix which was then rediagonalized

to gAve the correlated valence bards. Conduction bands were

co.uted by shifting the 1artrce-Fock conduction bands by -. 2584 ry,

the r-o,'r1ztLion er-rgy of a conduction band electron on a

++
Cd site.

Show:n in figure 4.1 are the correlated energy bands

of C.IV. The calcul,,ted band stLrcturc shcw ecdmium -sulfide to be



K7

Figure 4.1 Correliated energy bands of CdS for the normal

lattice constan't- Of 5.181 angstromns (10.994 a~u).
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P. dIrect '-rd ga-t semiconductor with the g o it the r' roint.

This conc).uslon Is in agreement with the previous bpnd calcultioons.

Three rijor non-overlopping regions constitute the valence bonds

in this system. The S 3s derived band lies 19 eV below the

vplence band edge and is about 1.4 eV wide. The next region

++
is rrimarily derived from the Cd 4d, ond lies 12 eV below the

to-, of the valence band. This band is about one eV wide. The

urrerr.ost valence b.ind is nrimari3y, derived from S 3P levels,

and is about 3.9 eV wide. The lowest conluction ban, is s-like

a.n'd is derl; ,ed from*, the Cd 5s, S > a.id S 4s levels.

-h h-',''d gap is found to te direct and equal to 7.1 eV.

^ -.. .ic.l volue of the go' == 2.55 eV ( ), obtained from:
g

exerl:.ent, is in serious d~sa-rreerent. The correlrtion model

here used,.the electronic-ohiron model and it limit,

|.ott-Littleton theory, is adapted to insulators and ignores

*srhort-r'tzc pol-jrizotion effects. Such effects should be smra!l

Jn oto.s an in systems where the loca. orbitnts nre only slightly

. fro the fre otr or Joi;, but in pnar semiconductors

...... .. tT) .. .... - the local orbitals are



Figure 4.2 Density of'states of CdS
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Figure 4.3 XPS spectrum for CdS according to Ley et al ( ).

I And I describe fine structure of the highest valence-band
2

peak. S is a shoulder on the high-binding side of this peak.
1

II represents the second va).ence-band peak.

p"
I * I I



--i--c ---. -

N

4
-'

C. I

4,,-

* . //

* t- 7
/

I

i -



(

that similar to the free ions. in this class of compounds, there

is s-;bstsntial chnrge density in the internuc)ear region.

It has been argued that such effects act to narrow the band gap.

The density of states for CdS as calculated fron the

original band structure calculation is given in figure 4.2. For

comr-rrlson, figure 4.3 shows the corrected XPS spectrum obtained

by Ley et al ( ). The experimental evidence clearly shows the

two teaks in the density of states of the upper valence band.

The rositions of these peaks are also in reasonable agreement

with experiert. The upper peak lies 1.6 cV below the top of

t.he valence bp:d by Ley's inesu.rements, while our calculation

g:ives . peal: at approximately 1.4 eV. Experimentally, the second

rek Is at 4.1 eV, while this calculation has a peak at 5.4 eV.

It also seems possible to Identify the shoulder of the upper peak.

From our band calculation, this shoulder seems to be at about

2." C., while Ley"s measurements put it at 2.1 eV.

The position of the d-like levels Is also correctly

pr,1.!-te "l in these cncul<tions. These levels, primarily formed

frc- c.r,diun 4d z:tat:s, are found to peak at 9;6h eV below

the t'n of the valetnce band exnercnte].lly, according to Ley.



Figure 4.YJ joint dens1~tY of states 
of CdS
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Figure 4J.5 Iryaginarry p-rt of the diel~ectric constarnt of CdS

this caleulhtion)
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Figure 4.6 Experimentally derived irmginary part of dielectric

constant in CdS, from Cardona et 91 )

Derived from ultraviolet reflection mensurements.
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Cnur c--t1cu3- -ion gi.ves _n va The of I Q.2 e7 bcelow thec ',c)-- of the

valence 1--n-d, In very good n;-reement with experir-ent. This is

in. sharp contrast wit~h previoUs pseudopotential and OF-'-,

cailculations, which misplaced this band as much as 12 eV below

Its actual Position. It should be mentioned that Lev'ls

photoemiss~on studies vere done on CdS in the hexqgonal form,

but since thp first toshells around the central atom are

idevnticaJ3 In the hcxoflzonal and zinc-blenle structure, the atom

IS eXm~oSed to aj vrpry siMilaEr notential, and no substantial change

in tedensit of" stertes Is e:x)ce. t, e d

lIn fiz"Ire~ Of4 th ctdut :St .-Lt"S SS calculanted

frorv our, beind structu.re is shw.In f c4. 5, the Irmginary

r'a7rt of the dielectric function Is calcu,.lated fron, the snme

theoretical 1band striucture, in figure 4.6, Cardoria et a1 extric t

* the -N,)~r trt of the die'lectric constant from ultraviolet

reflection :esrr-n on zinc-blenclc CdS ( .There is clear

* qu-1it~nt5ve ze!t especi,,Kjv,, *f t~h the central3 penk And the

twoSn-~opp01roxicate1%y ?_ rclid 5 ev abIovc thnt central prek.

T-he ta-Il h c;the ccrt-r-l r4#r;k Irn etiry is exoz;:era ted due to

~ vcc~ e ofthebnd war. In our cnl cula tlons



To sum up: these c~lculattons correctly r~redict the

rajor features of the energy bands in CdS, as determined from

optical and other measurements. Insofar, this first all-electron,

self-consistent non-empirical method has succeeded. The d-like

levels are correctly predicted, as was not the case with earlier

calcultions. Nothing in the pure bulk energy bands suggests

on exrlar tion of the anomalous diamagnetism, and it would seem

that the effect is not an intrinsic one. It may be hoped that

this better understanding of the electronic structure of the

p-vre solid will aid in the underst~rnding of the anor.rlous

di.- zretlc stete, perhaps by acting as necessary first step in

the ex- ::ination of the properties of defects and impurities in

cadmI,_ sulfide.



ZINC OXIDE

At room temperature and standard pressure ZnO

crystallizes in the hexagonal (wurtzite) form wlith lattice constants

of 3.249 angstroms (6.430 atoic units) and 5.193 an-zstro.1s (9.324

atomic units). The zinc-blende form with Identical nearest-neighbor

distance h-s a 1httice constant of L.595 aingstrorms ('3.6-4 atomic

units) and Is the su'-ject of these c:1culations. It Is comrosed of

two interpenetrating face-centered cubic sublattices occupied by

Zn and 0 ions, displaced relative to each other by 1/4 of the

dinaonal of the unit cube.

We begin again by examining the energy stetes at the

10
* Eriicun zone center. Zinc ions contribute a filled (3d)

shell to the valence energy region, and oxygen ions contribute a

2 6
(2s) (2 p') confi.yuration. In this cryst-nl. structure, the threefold

derrier rt s tts . '-y cie;;e7:rate and transforn li]kC'
15



-5

The crystal field splits the f.tvefold dceenerate dlevels Irtto

triply degenerate state nd a doubly degerr-rnte " :;tate.

1.5 12

The zinc 3d levels end the oxygen 2p levels lie quite close,

and this calcu7-ticn shows show.s all eight volen-le bands lying

within a five eV region. The zinc-blende lattice hes no Inversion

symmetry, so the bqnds at the gamma point need not have any

definite rarity. This calculation shows that this upper vnlence

region exhibits strong p-d hybridization. The band lying

breeath this upper valence region lies nearly 24 eV below the

top cf the valence band, and is primarily derived from oxygen

2s s-c.-:tes..

In generl, in !oic compounds such as ZnO we would expect

the lowest conduction band to bc primarily formed from the

zinc L-s level. The actuel calculation shows that although the

zinc L.s states play . major role, oxygen 2s and 3s states actually

play a larger role in this first conduction band. 'he next.

ciornd:ction.bar.d, triply degenerrite at the -,one center, &re formed

eI cst entircly from ;-inc 4p states This Is suggested merely

by C'v-!rrln ; zinc with its successor in the periodic table, alliu.



Several previous calculations have been porfor~ed on

zinc oxide. Attempts using local pseudopotential theory, such as

those by Rossler ( ) and Bloom and Ortenburger ( ) have not

beer. entirely successful. Since the pseudoootentiln theory depends

upon a cancellation cf the strong core Dart of the potential by

the us',al requirement that the valence electrons be orthogonal

to the core electrons, first-row elements would seem to be

uns;itg'ble for this approach. The point is that valence p-states

for first row eleri.rents are not required to be orthogonal to any

p-core states. Investigators have atteriipted to alleviate this

pro<!v by enr!rica! adjustments to the -seudopotentials, but

it h-sn't worked weJ. When nonlocal pseudopotf!ntials were used,

as in the calculqtio-s of ('helikowshy ( ), a better agreement

with experiment is achieved. Even so, much of the value of the

pseudTrotentla2 approach is lost. There is not the same confidence

th-,t the pseidonotentiil will retain its preditetive pnowers in

differer:t compounds, because the physical rationale is weakened.

The I -Mfied end rorlocnl cl,]culations still suffer from all the

ori-i'-il wakness of nscuilopotertials: relitince on ex:periment.
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STO FASIS FUNCTIONS FOR ZI.C AF) LOCAL OiiBiTAL CCEiFFICIENTS

s BasIs -. p Easis d Ri.sIs

Jn Z nZ n 7,
oj oj lj I j 2 2j

1 1 31.07 2 27.00 3 13. 0
2 2 26.50 2 16.42 3 7.01
3 3 21.00 2 11.39 3 3.7Q,,
4 2 12.01. 3 6.34 3 1.93

4 13.30 3 3.33
6 3 6.24 4 2.67
7 3 4.i 4
8 4 2.30
9 4 3.30
10 2 9.00

10 20 30 40 50 21
jC C C C C Cc 1 i J J c

1 -.93261 -.28821 -.10870 -.00331 0.00195 0.01564
2 -. ,61 -. 1.81)43 --.0958 -. 018.24 01406 0.26792
3 0l. C" 250 0.01.637 - .0-9 .0!1973 3 0.730
4 -. 01042 1 .13346 0.623 0 0. 34"5 0.10761 0.01326
5 0.0029 -. 01369 0.01456 -.-3220 -.033?3 -.00223
6 00191 .0121.9 -. 6,;944 .6-u 30 -67032 0 00105
7 0. 000^5 0. 0037S - .423S C'.3"07 0.4 ,,

0.0600:3 0.000L3 -. Q04 7 L' 0.29 4 0.15094
9 -. 00031 00074 0 01893 -.33905 -. 3603
10 0.00120 C.02540 -. 05712 0.365 5 0.38957

31 41 32 42
.1C C C C

1 -.00591 0.00896 0,03704 -.03503
2 -. 05590 -.06742 O.36525 0O0067'

3 -. 36510 0.00324 0.51665 -.58505
4 0.73105 -.00187 0.24958 0.81007
5 0.49766 0.49013
6 Q-.09303 -.86439



'A.' LE .. 2

STC~GS I C .YGE: AND LOCAL OBITAL COEFFICIENTS

s Basis p Basis

nr Z n Z
oj 0 ij ij

1 1 7.61 2 1.37
2 1 13.27 2 1.74
3 2 1.76 2 3.42
4 2 2.56 2 7.89
5 2 4. 36
6 2 5.94

10 20 30 21. 31
,- C C C C

j j .1 c

1 0.9 7',3 -. 17 52 -. 06146 1 .45654 -. 68094
2 0.0>-" -. 02, 0.02,0 -. 77955 0.72968

I-, 0 -."9o35 0.5 27 -. 061.06
- 0 0 0 3 5- C. ..1249 0.71 : 2 -. 00722 0.01303

~.- :, (: K. 3 i.-' . L3z
'. -. 32320 0.22209

i



Therefore, we perform an all-electron, self-consistcrt

nonenirical band calculation on ZnO. The methods of calculation

are the same as used previously on CdS.

The calculation was begun by calculeating local orbitnls

fcr zinc oxide with the normal lattice constant. The zinc and

oxygen basls sets of Bagus et al ( ) were used and were modified

for this calculation. Two additional diffuse STOs were added to the

s hbasis on zinc. The results of the local orbitals calculation

are listed in tables 5.1 and 5.2 for zinc and oxygen ions,

res oct- v'ely.

Fartree-Fock bands were calculated for 20 k points

in the irredcible w-dgc of the BrIllouin zone. The usual

ex zzerated band gap appears; we proceed to apply the correlation

net-hods previously discussed.

Polarizabilities listed by Tessman et .1 ( ) were" then

++

use' for Zn and O along with the optical dielectric constant

cf k.036 to calcuinte the posrlzation energies using the F,-ott-

Llttl-ton method. We obtained values of 0.2172 ry and 0.2864 ry

++
as t'. ,olhrization energies pssocisted with the 0 and Zn

Sh~e~ res-ectively. We also clcii]ated short-range relaxation



Figure 5.1 Correlated energy bands of ZnQ for the normal

lattice constant of 4.595 angstroms C8.684 au).
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ener ies for the state of Interest in the v,?.:-nco regicn: ths

sr ++
ds E (Zn ) 0.31402 ry. These corrections were added to the

3d

HamiltornXan matrix which was then rediagonalized to give the

correlated valence bands. Conduction bands were computed by shifting

the :-Hartree'Fock conduction bands by -.2864 ry, the polarization

++
energy of a conduction band electron on a Zn site.

Shown in figure 5.1 are the correlated energy bands

of ZnO. The calculated band structure shows zinc oxide to be

a direct band gap semiconductor w,:ith the gap at the gammas point.

This conclusion is in agreement w..ith previous band calculations.

Two r:. ior non-overlap-ping regionr constitute the valence bands in

this system, The highest region is about 4 eV in width, and is

divided into two subregions§'vith qlmost no overlap. The higher

end wider of these subregions is , approximately 3 eV in width,

-- ++
is composed of 0 2p and Zn 3d levels, while the lower subband

++
is alriost dispersionless and is of almost pure Zn 3d character.

The lowest valence band is about 2.3 eV in width and is composed

ILI ++
of 0 2p and Zn 3d levels.

The band gn is found to be direct a.nd equal to 10.86 eV.

Sr- th g...i. t-lly fonn" to be 3.3 eV, it must be



Figure 5.2 Density of states of ZnO
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Fizure 5.3 Corrected XPS spectrum for Zr~O accordin- to Ley et al( )
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that the conduction band structure here predicted is serlously

in error. Previously mentioned potential problems in our correlaion

model may expl]iin this discrerancy, but it seems most likely that

there is some flaiT in the estimate of the polar .zation energies.

The density of states for ZnO as calculated from our

band structure is given in figure 5.2. For comparison, figure 5.3

shows the corrected experimental density of states, deriled

from x-ray photoemission experiments conducted by Ley et al ( ).

The d-like levels have been subtracted out from the experimental

datD, since they dominate the spectra. The double peak in the

density of stetes of the uppermost band is clearly sho;'rn ir

ex~eriment and in ou:r calculation. The d-like levels In our

cslculation have soe structure, are not smoothed Into a single

.pepk as in the experiment. The experimental peak is centered

8.S! eV below the top of the valence band, according to Ley.

Our d-comolex Is situated approximately 5 eV below the top,

but the qualitative picture, that of a double-peaked valence

1%n. with a very shqrp d-band sbout 3 eV below, corresponds

closely with experir.ent.

. .



m'A
Our calculatiorn .lo give a band derived from 0 2s

states (not shown on figure 5.2) centered around 24 eV below

the top of the valence band - this corresponds to the lowest

pea1 in figure 5.3

In addition, we have calculated the joint density of

states ( figure 5.4) and the imaginary part of the dielectric

cor:stpnt ( figure 5.5) for zinc oxide.
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Figure 5.5'Inagirary part of the dielectric constant of ZnO
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CONCLUSIONS

We've used ab initio Hartree-Fock theory, as well as

relaxation and polarization correlation corrections to that theory,

to calculate the electronic band structures of cadmium sulfide and

zinc oxide. In the calculation of cadmiun sulfide, hybridization

of the Cd 5s, S 3s and S Ls Is a -ajcr factor in the lowest

conduction band. The calculetion shows that CdS is a direct gap

semiconductor with a gap of 7.2 eV at the gamma point. This tends

to show that the mechanism proposed by Abrikosov to explain the

anomalous diamagnetism originally seen in CuCl ( and discredited

there by Weidman ( ) ) is not applicable to CdS, since it requires

a small indirect gap.

The calculated one-electron energy bands are compared

with the published ontical date. The valence bands are in excellent

egreement with photoemission and reflection data, and, in particular



the ;-osition of the d-like band is correctly predicted, in contrast

with nrevious calculations.

The cnlculption for zinc oxide shows that there is

very significant mixing in the unper valence bands between the

++
C 2p and Zn 3d levels. It seems clear that previous pseudootential

calculations that could not correctly take into account the zinc

d levels were inc-oable of explaing the valence bands. The calculation

gives a band gaD of 10.86 ev, and predicts ZnO to be a direct gap

semiconductor with the gap at the gamtma point. In the case of both

CdS end ZnC, it should be recalled that we are essentially just solving

Dyscnls equaition, and thDt hizher order diagrams are quite caoable

of accounting for the difference between the (exoggerated) gaps

fro- our ca.lcu]ations and the measured experimental gaps. The fact

remains that these calculations predict the valence structure;

the one electron bands for zinc oxide also accord well with published

optical expoerirents. --- ein, the nosition of the d-lilie bands is

correctly predicted.

The --,nomlous diarmagnetism observed in CdS remains

t,'.exvoleined. It seems to be Pn extrinsic phenomenon



The observation of ferromagnetism upon an applied

field, as well as the anomalous diamagnetism, is intriguing.

It suzzests that the pairing mechnaism may favor a state with a

soin of one, as opposed to the Cooper pair, with a net spin of zero.

Each oair would have an intrinsic magnetic moment. This possibility

has been discussed for classical phonon-mediated superconductivity

by P. W. Anderson and P. Yorel( ) but seems not to have been

observed, except possibly at extremely low temperatures ( ).

An exciton-mediated Pairing might well favor the 1=1

or h1whar state. The superfluid state in He is suggestive.
3

As yet the details of the interactions are not know,

althcugh it does seem that chemical impurities play a role. It may

still be possible to test some of these ideas by a phenomenological

theory like the Ginzburg-Landau theory. One possibility seems

*i interesting; in the Ginzburg -Landau theory, two characteristic

lengths appear, the coherence length and the penetration length.

In such a model revised for a p-wave system, a third length arises,

the characteristic length for the change in spin direction.

The two lengths of Ginzburg-Landau theory allow the

existence of a distinctive surface, which may have a lower energy



tKan the bulk state, which leads to the interesting and

technologically useful type II superconductors. This still exists

with three characteristic icrzths, but another effect becomes possible.

A second surface layer is introduced; we may compare this to the

earth, with crust, mantle and core. If the mantle is energetically

favored, bubbles of a certain size would be energetically favored.

These sunerconducting domains right explain the very high but finite

conductivity seen in the anonalous states of CuCl and CdS, and

alignment of these domains might explain the feiromagnetism seen

in CdS under higz applied field. At tha .moment, this is all speculation.

We await further experiments.
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Ab Initio Energy rands and Ionization Energies

for AlP, GaP, and GaAs

J. C. Boettser and A. Barry Kunz

Department of Physics and 'aterials Research Laboratory

University of Illinois at Urbana-Champaign

Urbana, Illinois 61801 U.S.A.

ABSTaACT

Energy bands an.! ion_.-t_c., energics for elcetrons in AlP, GaP, and

GaAs are obtained using a ne- rethod proposed by Kunz, et a!. 1 The valence

bands and ionization energies ebtaincd are ,or.d, to be in good agreement

with experim.nt.. The conduit-4on bands vary substantially from experimert.

Finally, a nethod for obtaining better conduction bands is proposed.

4,



1. INTRODUCTION

A new ab initio method for obtaining correlated energy bands vas

recently proposed by Kunz, et a_.. 1 The need for a net: method becomes

apparent when the inherent problems associated with current ab initio

methods are considered. Existing methods can be broken into two classes,

those which use the ncnlocal Hartree-Fock (H-F) exchange potential and

those which use some local density approximation to the exchange or

exchange-correlaticn potential. The former class of methods requires

calculations which are toth lengthy and complicated. Once such a H-F

calculation has been perfor-d, there is still a need to obtain correlation

corrections. 'hose corrections are poorly understood for covalent

semiconductor s like the III-. c.n.pounds. On the other hand, local density

approximation calculations goive results which are highly dependent on the

choice of the exch r e--corr=lo tionstcttn . :o single potential has been

found to give goc res its for a~l clan5crt of ccnpo-. _s. For exanplc,

Herman, et al. 2 fc.,und that in using both the Sater 3 and the Kohn-SnaA 4

exchange potentiaIs for sev-ra _ sericonduo;tcr3, the Slater potential agreed

- more closely with xr,*riner.t for II-VI semiconductors, while Kohn-Sham

exchange gave bettCr results for the III-V compounds. Even in cases where

a given potential yields t.e correct valence and conduction banrd

structures, such calculation- have not always been able to place the core

levels in their correct locations relative to the valence binds. Finally,

local density calculations have not been successful in obtaining t'he

ionization energies for elztrons in most compounds. We believe that many

of these difficulties arr a result of using a Hartree potential which

incluc!c; a sntCrr., on the assumption that the potential from

V..". cicetron in an infinite cryst"l will be ner,!gfible. As has been shcwn



Page /

by Kunz, et al.1, this asnurq tion is not correct in many cases and is a

source of significant error for insulators.

The new method, which will be referred to as the }{artree-plus method,

uses the correct Hartree potential, i.e. with the self-repulsion removed,

along with a local exchange-correlation potential. The flartree-plus method

was applied by Kunz, et al.1 , to the solid rare gases and NaCI yielding

bands which are in good agreement with both experiment and previous H-F

plus correlation calculations. The III-V semiconductors provide a good

test of the range of applicability for the Hiartree-plus method since they

are wide band semiconducto-s, as opposed to the rare gases and NaCl which

are narrow band insulators.

In See.2, H-F theory is developed and correlation is discussed. The

Hartree-plus theory and detiis of the calculations are presented in See.3

and Sec.11 res.o *:tively. in Sec.5, the results of Hartree-plus band

caLiculaic;ns fc: AlP, GaP, n Ga.s are presented and compared to

experirent an previous theoretical calculations.

2. BASIC ThC-"

The sy;te.:- of interest contains n electrons and N nuclei. Using the

lBorn-Oppcnheiri- ap-proxi-ntiorn5, and neglecting relativistic effects, the

Haniltonian is:
' - : f.., - (1)

All, ' "  l

where:

Y1- I I -

The energy is in IRydbers,., e2=2, uppercase letters refer to nuclei,

lowercas,, letter-: denote electrons, and the prime on the sun indicates that

the se]f-r cpulsion term, iJj, is excluded. The problen not; is to solve the
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Schrodinger equation:
j- .ii.' - *.- Y 1) 4' Z (2.

where " ': is the exact n-electron wavefuretion for the ith excited state,

and the xi are taken to include both space and spin coordinates.

To simplify this proliem, we approximate the exact wavefunction

with a single Slater determinant formed fron a set of one-electron

orbitals, (Pi(xj)), i:I,'" ,n and j:1,",n:

The expectation value of I' , for the trial function ,Ar, will be a

rigorous upper bound to the exact ground state energy if the resu]ting

energy E.' is stable against variation in the Oi. Performin, such a

variation, subject to the constraint that the be crthonorma], yields an

equation for the-;Pi:

where F is the Fc& operator:

... 1o3/

/ ,-

In cq.(3), P(2,1) is an exchange operator, the ray be used as

operators, andp(>:>,×i2 ) is the Fock-Dirac density matrix. The Eecond tern

is known as the direct or ilartree term, and the last term is the exchange

term. Note that the prire is no longer necess-ary since the Fiartree

self-energy is exactly cancellcd by the self-exchange. Diagonalizing the

m.atrixAii gives the stard-ard Hartree-Fock equation:

(q9)

The eigenw2:ucn of eq.(I;) are given rmean~rl by Kooprnans' theore- .

.Labe]lirnr oCcup',-d statc," w-ith i=1, ,n and virtual states with a=n+l,*''

4
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the eigenvalues are:

wh-ere Ec' ;is the energy of the single Slater determinant approximation to

the total m-electron wavefunction obtained by adding or removing the o-th

orbital to the n orbitals used to form the H-F ground state. Thus, 6;* and

6., are the energies that an electron would have if its instantaneous

location were independent of the instantaneous locations of the other

electrons, and if no relaxation were allowed. To improve on the H-F

eigenvalues while retaining the independent orbitals, one defines

correlated energies by replacing the approximate energies in eq.(5) with

the exact energies:

Tne energics C; and 6,. are qu 'siparticle excitation energies. The

quasiparticles associated with these energies are referred to as holes and

conduction electrons respectively.

There are two basic approaches to finding the quasiparticle energies.

The better understood of the two is the H-F plus correlation method, which

is essentially a perturbative approach. In this method, eq.(4I) is solved

first, and then the correlation effects are added in as a small number of

corrections. Inis approach to obtaining correlated bands was reviewed and

developed in a formal way by Pantelides, et al.7 The correlation

corrections are fairly well understood for both metals and narrow-band

wide-gap materials. Unfortunately the III-V compounds do not fall into

either of these classes. The other approach is to use an equation,

analogous to the H-F equation, which somehow incorporates correlation into

.7A
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the potential. T"nis is the approach taken by the flartree-plus method.

3. THE HARTHEE-PLUS It.ETHOD

In the past, band calculations using local exchange-correlaticn

potentials have solved an equation of the form:

0a., Q, , =)"€ (,

,,.here:

is a single particle operator which replaces the nonlocal exchange in the

Fock operator with a function, Vxc , of the local density,/-)(F). Unlike

the Fock operator, eq.(7) no longer has an exact cancellation of the

self-repulsion by a self-exchange. It has generally been assumed that the

self-repulsion is negligible since it comes from one electron in an

infinite crystal. This is in fact true for an electron in a totally

dcI o 2 1 .ze JP. .state. However, what is actually desired is the energy

.. uircd to add one quasiparticle to the rround state system. For all

insulators, and nr7ny se.iconductors, these quasiparticle orbitals are

local. In this case it is reasonable to work in the local Heitler-Londcn

representation. For such local orbitals, the self-energy is not in fact

small and should be removed explicitly.

In the local representation, let ,( ) be the ith local orbital at

site A,. The corrected potential then is:

~~ + V 'C (g)

:here:

is the nonlocal EHrtrec potential. Although the flartree potential is

ronlocal, the nonlocality is easy to deal with by using a single Hartree

potential for all orbitals of the forn:

Yt~~,- . v;7 J, " " IZ;1
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where:

Here the bra-ket notation is used to emphasize the operator nature or the

self-repulsion term.

For Vxe we have used the local exchange potential of Kohn-Sham 4 and

the dielectric screening function of Robinson, Bassani, Knox, and

Schrieffer(RBKS)8. Thus:

where:

and:

Although it might seem inconsistent not to remove the self-exchange in

eq.(11), one can argue that the self-exchange will only be a significant

fraction of the total exchange potential in regions of low density where

F-) approaches zero.

4. THE CALCULATIONS

To calcul%te the Hartree-plus bands shown in Figs. 1-3, we first

performed an LCAO calculation using H-F atomic wavefunctions obtained by

Bagus, Gilbert, and Roothaan 9 . In this calculation Nesbet's symmetry and

equivalence restrictions I0  were applied. Also, the crystal potential was

approximated by the first term of its expansion in Ylm, i.e. 1=0. The

next tern in the potential would be 1=3 and should not have a large effect

on the s, p, and d orbitals, which are all that are of interest here. The

potential and matrix elements are evaluated using 10 shells about the

central site. .'e represent the remainder of the crystal by a re3idual

II " - ' '



PageS

tadclung potential. To obtain this potential, we used effective charges

given by Phillips1 1 . This LCAO calculation can not be expected to give

good results for the conduction levels due to the use of Nesbet's

restrictionsi0 . The self-energies of the atomic orbitals have been removed

for both the occupied and the unoccupied parts of the orbitals. This means

that the conduction energies have been obtained as though the conduction

electrons felt the potential from n-1 electrons, instead of all n valence

electrons. To remedy this the self-energies are explicitly reinserted for

the virtual states. At this point the Hartree-plus matrix is no longer

diagonal. However the coupling between the occupied and virtual states is

very weak and a second diagcnalization produces new valence bands which,

for GaP, differ in energy from the previous bands by at most 4%j. Taking

all this into consideration, we believe that the final Hartree-plus

operator so obtained is ccn.istent ,.,ith the confi.g:uration used. Finally we

forn a Hartree-plus ratrix usir. atcmic orbitals for the core states and 89

planewaves for the conduction and valence states, and diagonalize it to

obtain the final band structure. For AlP, we repeated this calculaticn

using 27, 51, and 65 planew:aves.

5. RESULTS

In all the band calculations performed here, energy levels were

obtained at 21 nonequivalent points in the Brillouin zone for an f.c.c.

lattice. The bands are drawn along axes of high symmetry which connect the

points of high symmetry in the Brillouin zone. The symmetry labels used

are consistent with Parnenter 12. In all cases the origin has been chosen

to be the cation site. In addition, the orbitals and their energies are

superscripted to indicate whether they are valence (v) or conduction (c)

states.

S- - -1I I I- I I I II i
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The valence band structures for AlPobtained using 27, 51, 65, and 89

planewaves/ are summarized in Table 1. No experimental or theoretical

values were available for comparison. The tands obtained with E9

planewaves are shown in Fig. 1. By comparin, the results for several

numbers of planewaves, we can estimate the size of the errors due to

incomplete convergence. For the top two p-derived bands, our results

appear to be converged to within 0.1 eV. The third p-like band is

converged to within about 0.3 eV, and the separation of the s-band and the

p-bands is converged to within roughly 0.4 eV. On the otherhand, the basic

structure is stable, as is the width of the s-band. We assume that this

convergence inforration is also valid for our' other calculations.

In Tables 2a and 2b, the valence band structures for GaP and GaAs

shown in Figs.2 and 3 are compared to experi-ents and previous theoretical

calculations. It is particularly interesting to conpare the Hartree-plus

results with the two first prli.ciples OK? calculations. For both GaP and

GaAs, the Hartrec-plus method gives valence band widths which are in better

agreement with experiment than those obtained in the first principles OPW

calculations, and are comparable in quality to the empirically adjusted

calculations, especially when the lack of convergence is taken into

consideration. All of the other calculations give better results than this

work for the separation of the s-band from the p-bands. This error in the

Hartree-plus results, 1.0 to 2.0 eV, is probably due to incomplete

convergence and relaxation effects that have not been included. None of

the other calculations listed give the position of the d-bands relative to

the top of the valence bands. For the Hlartree-plus results, we believe

that the errors in the d-bands, which are less then 15', are a result of

relaxation effects, which would be expected to shift the d-bands up
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relative to the top of the valence bands.

In Table 2c, the ionization energies for the cation d-levels of GaP

and GaAs are compared to experimental values. This informration is not

given by any of the previous band calculations mention(-(.. The differences

between theory and experirent are easily accounted for by relaxation and

surface polarization effects.

In Table 3, the lowest transition energies are compared to experiment.

Clearly the artree-plus conduction bands are in very poor agreement with

expa *ir ent. To test. for errors in the treatment of the self--energies, we

performed a calculation for AlP ith the self-energies set equal to zero.

This calculation yielded co:-duction bands which differ from those with

nozcro sl f-energy by no r:o:e than 0.2 eV. We theref-c.,: conclude that thc

errors in the conduction bands are die to the choice of the

~ vc "'~e.....:~, ptetial, V,,. t is rot reallY Sturprsing that our

Ce1ico of u'"r.....-.,eJat-sr .otor:t fives goCvo reu]lts for the valence

bands but not for the conduction bAt:s. .s .as sihovn by Pantelides, et

a,, .7, for both insul; tor, and w Ie gap ',.ccnuttorr, <orrelation eff-cots

in valerce bands are a result. of virtual soatt-in. of holes, wh'ile

correlaticni of the conduction bands cone.- pr.m..nrily froa, vJrtual scatteyrin

of elect rons. Since the rechanisms for corre-tio: , in valence and

con duction bands are different, it is unreasonable to expect one

exch !..;e-..!orre],t..ion potential to be valid for both cases. We suggest that

in future Hartree-plus calculations, it should be possible to obtain better

result, by using two separate potentials for the valence and conduction

st "at.

6 s:Oeupn PSryae

0Pased tpon the re.ult.,- gjven by Kurz, et al.1, for the rare gases nd
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the results for III-V semiconductors reported here, we conclude that the

Hartree-plus nethod should give good results for the valence bands of both

insulators and semiconductors when used with the RBKS screened Kohn-Shan

exchange. This method not only gives good results for the valence band

widths, it also gives reasonable values for the core d levels and the

ionization potentials. Based upon the calculations given, we suggest that

it might be possible to find a single exchange-correlation potential that

could be used to obtain good conduction bands for insulators and

semiconductors in a two-potential band calculation, Such a calculation

would use one potential for valence states and a second potential for

conduction states. This type of calculation not only would be expected to

give better Hartree-plus band structures, but would also be more consistent

with what we know about correlation in semiconductors and insulators.

* .
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CHAPTER 1

INTRODUCTION

The electronic structure of surfaces is important in many

scientific and technologcal fields, such as corrosion, semiconductor

devices, and catalysis. however, the understanding of fundamental solid

surface properties has lagged behind the progress in understanding of

bulk properties. This situation has been a result of the lack of

experimental methods for the quantitative characterization of the

surface structure, and the theoretical complexities resulting from both

the loss of symmetry at the surface and any possible reconstruction

occuring at the surface. Recently developed experimental techniques

such as electron energy loss spectroscopy (ELS) C ), two photon

picosecond spectroscopy ( ), surface extended x-ray absorption fine

structure (EXAFS) ( ), and extended appearance potential fine

structure (EAPFS) ( ) have made accessible the experimental study of

the structural and electronic properties of real surfaces. The

-.
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development of powerful computational methods has made possible the

theoretical study of these systems.

1.1 THE INITIAL ADSORPTION OF OXYGEN ONTO THE ALUMINUM (100) SURFACE

Aluminum surfaces oxidize readily upon exposure to molecular

oxygen. Several experimental studies have been performed on the initial

oxidation of aluminum surfaces ( ). Ultraviolet photoemission

spectroscopy (UPS) ( ) and Auger spectroscopy ( ) studies have been

reported for many crystal orientations of aluminum, including the (100)

surface. LEED (), EXAFS ( ), and EAPFS C ) studies have been reported.

Ultraviolet photoemission experiments ( ) have reported a valence

band resonance at 1.5 eV below the Fermi level for low oxygen exposure.

This resonance is attributed to the oxygen 2p band. The shift of the

aluminum 2p core level has also been measured for both low and high

oxygen exposures. This shift toward lower en-ergy is due to the dipole

moment arising from the charge transfer from the aluminum substrate to

the adsorbed oxygen. Work function measurements have also been reported

( ), with the work function found to decrease with increasing oxygen

exposure. This decrease has been interpreted as being a result of

incorporation of the electronegative oxygen adatoms beneath the aluminum

surface.

.. . .,4,
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LEED, EXAFS, and EAPFS techniques are able to probe the surface

geometry of the aluminum plus oxygen adsorbate system, and thus these

studies are of special interest as they will help to differentiate

between various theoretical models. For low oxygen coverage, the

reported Al-O bond length is 1.98 ( ), in agreement with previous

theoretical calculations ( ). For higher exposures, a value of 1.88

is reported (), which correspondsto the nearest-neighbor distance in

A1203 •

For theoretical studies the (100) surface is ideal: calculated

electronic properties can be compared to existing Auger and UPS results,

and calculated bond positions and lengths can be compared with LEED,

EXAFS, and EAPFS results.

Lang and Williams (4) have studied theoretically the adsorption of

oxygen onto a jellium surface. Ehile jellium is a good approximation to

bulk aluminum, it is not adequate to describe the local adsorption

process. For this reason, cluster studies, which are particularly well

suited to describe such local phenomena ( ), have been performed.

Harris and Painter ( ) and Messmer and Salahub (), have studied the

* I adsorption of atomic oxygen onto the hole site of the Al (100) surface,

reporting electronic structures which agree with existing UPS data for

the initial adsorption of oxygen onto this alimunum surface. Studies of

the adsorption of oxygen at the remaining two high-symmetry sites of

this surface have not previously been reported. An accepted explanation

of the incorporation of oxygen atoms beneath the aluminum surface does

not yet exist: the calculated electronic structure and binding

4. i I I
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potential curves for the on-top and bridge sites presented here should

shed light on this problem.

In this study, the interaction betwee adsorbate atoms (in this

case oxygen) and the aluminum (100) surface is theoretically

investigated by modeling the surface with a small number of atoms and

then using the unrestricted Hartree-Fock approximation to calculate the

electronic structure and potential energy curves. From these potential

energy curves the binding energy, bond distance, and force constants of

the interaction are determined. The calculated one-electron orbitals

give added insight into the chemisorption process, and calculated

densities of states are compared with photoemission data. This

calculational procedure is able to accurately describe the localized

bonding of an adsorbate onto a surface site, the aspect of chemisorption

considered most important ( ).

The localized nature of the chemisorptive bond is indicated by

several kinds of experimental evidence. An adsorbed atom or molecule

can be observed to hop from one localized site to another ( ).

Infrared spectroscopy studies have found that the vibrational spectra of

intermediates on surfaces are often very similar to the spectra of

isolated molecules ( ). These experimental results reinforce the

intuitive notion that the chemisorptive bond is similar in nature to the

familiar, localized chemical bond.
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In general, the loss of symmetry in the direction perpendicular to

the surface leads to the choice between two drastic approximations in

theoretically modeling the surface-adsorbate interaction. The

maintenance of translational symmetry in the plane parallel to the

surface greatly simplifies the computational difficulties and allows for

the use of the powerful methods developed for bulk band structure

calculations. The alternative approximation, simulating a small section

of the surface by a cluster of atoms, can more effectively describe the

localized interaction of the surface with a single atom.

Numerous calculations of the electronic structure of surfaces using

the approximation of a semi-infinite surface have been reported ( ).

The major drawback of this approach is that, in general, a semi-infinite

rlnolayer of adsorbed atoms must be considered in a chemisorption

calculation. This limitation is a direct result of the symmetry

assumed, and therefore only qualitative calculations can treat a single

adatom on a semi-infinite surface.

By relaxing the syametry requirements of the semi-infinite surface,

one gains increased flexibility and freedom. For instance, atoms can be

brought down over a variety of possible bonding sites. Roughened and

stepped surfaces, exposed corners, and small particles, which

experimental work indicates are often sites favored for chemisorption,

can easily be simulated by the cluster approach. Use of the

semi-infinite surface, by contrast, is limited to studies of the perfect

surface.
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Once the appropriate cluster has been chosen to simulate the

surface, the electronic structure of the cluster-adsorbate system must

be calculated. The method used here is the unrestricted Hartree-Fock

approximation, from which electronic wavefunctions, electron energy

eigenfunctions, and the total electronic energy are calculated. This

calculation is repeated at varying adsorbate-surface separations, and

the potential energy curve can be generated from the differences in

total electronic energy.

The Hartree-Fock approximation as the method of calculation is

attractive due to two important advantages. The method is a convenient

first step towards an ab initio solution of the n±,ny-particle

Schrodinger equation for a fermion system, and -gives a useful

ze:'oth-or 4er wavefunction for a perturbation calculation of the

many-body problem. Second, it is the most advanced calculational method

in which elementary physical intuition is applicable. In more complete

calculations, there is no longer a one-to-one correspondence between

particles and one-particle wavefunctions, and the independent particle

approximation is no longer applicable.

1.2 THE ELECTRONIC PROPERTIES OF THE SILICA SURFACE

The electronic structure of crystalline silica (Si02 ) is of

technological interest in, for example, the manufacture of solid state

electronic devices. Consequently, there has been considerable

I.
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experimental effort in this area. In a recent review of experimental

and theoretical results, Griscom ( ) has compiled much of the existing

data on the bulk properties of silica. The band gap has been found to

be about 8.9 eV, with a valence band width of approximately 11 eV.

Ultra-violet photo emission spectroscopy (UPS) studies by Ibach and Rowe

( ) have detected no occupied surface states within the band gap.

Williams ( ) has studied silica surfaces grown on crystalline Si and

found traps at 2 eV below the bulk silica conduction band edge. These

traps act like Coulomb centers with a positive charge. It is with the

silica surface and its defects that the current investigation is

concerned.

Several recent experimental studies have investigated surface

state- of silica ( ). Shwi~tFt ( ) has found a radiation-induced

feature at 91 eV on the high-energy side of the Si L23 VV (V=valence)

transition in the Auger electron spectrum (AES), and suggests that it is

due to an Si L23 VD (D~defect) transition. He further suggests that

this defect. is the E center, which is a dangling singly-occupied sp3

orbital of silicon. Ibach and Rowe C ), Fujiwara and Ogata ( ),

Lieske and Hezel ( ), and Bermudez and Ritz C ) have measured electron

energy loss spectra (ELS) and found peaks in the second derivative

spectrum at about 3.5, 5.0, and 7.4 eV (Fig. 1). Ibach and Rowe have

attributed these transitions to a partially oxidized surface region,

SiOx, where 1Bx-2. Fujiwara and Ogata C ) have shown the states

associated with these transitions to be at the surface, and concluded

they were due to metastable SiOx. Lieske and Hezel ( ) have associated

_
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the final states with Si-Si bonds found in SiO x . Most recently,

Bermudez and Ritz ( ) have studied this transition, and found the final

state to be due to "a chemically stable species formed after rupture of

the silica network," and attributed these properties to a surface Si=O

double bond. For this bond to exist, the silica surface must undergo

reconstruction. Evidence for such reconstruction from low energy

electron diffraction (LEED) measurements is due to Janossy and Menyhard

( ). Also, Hochstrasser and Antonini ( ) have observed what they

believe to be recombination luminescence due to the rearranging of the

surface Si-O bonds imnediately after cleaving. They measured the

lifetime of this luminescence to be less than 10-6 seconds.

Theoretical studies of the silica bulk electronic properties have

been perfcrmed ( ), and the calculated densities of states are in

good agreement with experiment, except for the AES peak at 91 eV and the

ELS peaks at 3.3, 5.0, and 6.8 eV. hoth of these discrepancies can be

accounted fo- by allowing for the existence of islands of silicon in the

bulk SiO2. Bennett and Roth C ) have calculated, u,,ing the Huckel

approximation, the electronic properties of many clusters which

approximate silica, and in particular gave attention to defects. These

calculations were performed in the bulk; however, the clusters were

sufficiently small that they can be interpreted in terms of surface

defects, or in terms of a surface SiOx  region. For oxygen deficient

clusters with a relaxation of the silicon atoms near the defect, the

calculated energy levels showed transitions at approximately the same

energy values. These are, however, probably due to small clusters (2-3

4
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atoms) of silicon in the Si~ x . Laughlin, etal. ( ), using a tight

binding method, have calculated similar defects and have also found

states which appear in the gap, at about 5 eV above the valence band

edge. They have also studied the E' center, and found a level lying

just below the bulk conduction band. Pollmann and Pantelides ( ) have

performed a calculation using a Green's function formulation on the

ideal terminated cubic ,-cristobalite) surface. Using an admittedly

crude model for the surface, they found no states in the band gap.

The purpose of the current investigation is to study the silica

surface, giving particular attention to the three ELS peaks observed at

3.5, 5, and 7 eV. The cluster model is again employed, for the same

reasons given in section 1.1. Of the three models proposed by

experimentalists to account for these transitions, the only one which

has previously been calculated theoretically is theSiO x model. In

chapter 4 are presented calculations of the one-electron energy levels

for the remaining two models, the E' center, and the Si=O surface

double bond. A comparison is then made between the three models and

experiment.

.7
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METHOD OF CALCULATION

An exact solution to the wave equation for a large cluster of atoms

is not at present attainable. In fact, such a solution, while nice in a

mathematical sense, would be difficult to interpret physically. The ab

initio Hartree-Fock theory provides an approximate nethod of solution to

determine the electronic structure of a large cluster of atoms which is

both easily handled by contemporary computers and well suited for

straightforward interpretation.

2.1 HARTREE-FOCK THEORY

Ab inj iQ 1Hartree-Fock theory is used to calcu'ate the electronic

wavefunetions and energies for the finite clusters studied in this work.

The solids studied contain atoms of low atomic number; therefore

relativistic effects are small and will be ignored. Using the
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nonrelativistic Schrodinger theory, the many-body wavefunction IT, which
is a function of electronic and nuclear space-spin coordinates, is

determined by the equation

where H is the many-body Hamiltonian

with

t.r

~-

Here we have used atomic units, whereAh, me, and e=1, the unit of length

is the bohr (1 bohr.-0.529A), and the energy is given in Hartree (1 Hy

27.2 eV). Upper case letters refer to nuclear properties: R, is the

position of the Ith nucleus, and M, is its mass. Lower case letters

refer to electronic properties: ri is the coordinate of the jth

electron. The four-vector xi denotes both the spatial coordinates and

the spin of the Ith electron.

The Schrodinger equation is simplified by employing the

Born-Oppenheimer approximation ( ) to separate the nuclear and

electronic coordinates. The total wavefunction is assumed to be
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separable:

The nuclear wavefunction i(X), is now a solution of the equation

while the electronic wavefunction, q(x,X), is a solution of the equation

.. Z.

L

A solution of this electronic Schrk6dinger equation depends on the

nuclear coordinates R and in turn defines a potential energy function of

the coordinates:

which determines the motion of the nuclei. The problem is now reduced

to solving the electronic Schrbdinger equation for a particular set of

nuclear coordinates. This equation cannot in general be solved exactly;

one therefore takes refuge in the independent particle model for a

method of obtaining an approximate solution.

This approach is mathematically equivalent to a separation of

variables technique. The many-electron wavefunction, which is a

functional of the space-spin coordinates of all of the electrons, is

assumed to be a product of orbitals which are functions of one-electron

space-spin coordinates. However, the Pauli principle requires that the

many-electron wavetunction be antisymmetric under the exchange of any

two electrons. Therefore, the total electronic wavefunction is

approximated by an antisymmetrized product of one-electron orbitals:
'p

'1
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where Vyis the antisymmetrizer. Since the Schrbdinger equation is still

not in general solvable analytically, the variational principle is

introduced to obtain approximate solutions. The variational principle

states that the normalized expectation value of the Hamiltonian using

approximate wavefunctions is a rigorous upper bound to the exact energy.

The approximate wavefunction can then be varied to minimize the energy

and thereby be the best approximation to the exact wavefunction.

Applying the variational principle to the electronic Schridinger

equation, and using an antisymmetrized product of one-electron orbitals,

we obtain the Hartree-Fock equationst

where F is the Fock operator:5 L -- i

J0I

The matrix elements Xij are Lagrange multipliers, and have been

introduced to insure the orthonormality of the one-electron orbitals.

In general, a unitary transformation can be performed on the orbital

space which diagonalizes this matrix. The Hartree-Fock equations can

then be written in the standard form:

,

These integro-differential equations are normally solved via an



Page

iterative procedure. Thus, the electron orbitals are determined in the

average field of all the other electrons. The only constraints imposed

on the wavefunction are that the orbitals be orthonormal and be

functions of the space-spin coordinates of only one electron. This

level of approximation is called generalized Hartree-Fock (GHF) and has

yet to be solved, so further constraints are imposed to simplify the

calculation. The simplest constraint which can be imposed is to require

that the orbitals be eigenfunctions of Sz, i.e., the orbitals be of the

form:

where ,I(r) is the spatial part of the orbital, and d and ( are the

spin-up and spin-down eigenfunctions of Sz, respectively. The form of

the Hartree-Fock equations is unaffected by this constraint, and this

level of approximation is known as the unrestricted Hartree-Fock (UHF).

The UHF method has been used for numerous practical calculations of

atoms, molecules, and solids ( ), and is the method used in this

study.

Additional restrictions may be placed upon the one-electron

orbitals in order to further simplify the calculations. The spatial

parts of the orbitals may be required to be symmetry eigenfunctions of

the cluster under consideration, i.e., each orbital must transform as an

irreducible representation of the space group of the cluster. Finally,

for doubly occupied orbitals the spin-up and spin-down spatial orbitals

may be assumed to be equivalent. This level of approximation is called
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the restricted Hartree-Fock method (RHF). One advantage of RHF is that

the one-electron orbitals are eigenfunctions of both spatial symmetry

and spin. However, for singly occupied orbitals complications arise in

that the Fock operator differs for open and closed shells of the same

symmetry, thus not allowing the single determinant to properly describe

the wavefunction. The UHF method, while not necessarily obtaining a

wavefunction which is an eigenfunction of spin and spatial symmetry,

does give a lower (i.e., better) eigenfunction of energy. Since the

"best" solution to equation 2.6 is the wavefunction which gives the

lowest energy, the UHF method has therefore been used in this

calculation.

2.2 CLSTER MODEL

Localized phenomena in solids, such as point defects or surface

adsorbates, can be modeled effectively by using a finite cluster of

atoms ( ). Since the cluster is intended to represent a much larger

system, one must apply appropriate boundary conditions for the cluster

to simulate the effects of the environment. These have been discussed

by Kunz and Klein ( ), and will be briefly reviewed here.

The solution to the Hartree-Fock equation (2.11) is sought for a

finite cluster. Suppose the region of the cluster is termed A, and the

remainder of the system, the environment of A, is termed E. The problem

is to partition the system rigorously into a cluster and an environment.

Let us consider the method of local orbitals of Adams, Gilbert, and

....
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Kunz( ). Here the Fock operator, F, of the entire system is divided

into a part which includes the kinetic energy, nuclear attraction of the

electrons and nuclei inside A, along with the electron-electron

potential for the electrons assigned to A, FA; and another part which

is the potential in A due to the environment, UA:

I 1 (1 (4).3)

It is desired to study only part of the system, so instead of the normal

Hartree-Fock equation (2.11), consider instead the local orbitals

equation:

where W is an arbitrary Hermitian operator. Consider now an ionic

system. The potential due to the environnent, UA, may be divided into

two parts: V is an ionic (.ade.lung) contribution and is long range,A

and V is the remainder and is short range. Let W = V . Making use

of the projector properties of O, ('j ' , and solving for the occupied

orbitals, equation (2.14) becomes

Considering only the orbitals of equation (2.15) which lie in A, the

solutions should penetrate only weakly into E. Because VA does not

appreciably penetrate A, and because VA i is cancelled by V S in the

limit of self-consistency, the approximate equation for the cluster,

including the interaction with the remainder of the system, is then

'j.,D
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This approximate equation is simply the equation for the wavefunction in

the cluster of interest imbedded in the Madelung field of the remainder

of the solid. The eigenvalues' i of equation (2.14) or the approximate

equation (2.16) represent the eigenvalues Ci of the infinite solid only

in the limit that the orbitals are localized in the region A.

A basis function expansion is used to determine the unrestricted

Hartree-Fock orbitals. Here gaussian type orbitals have been used for

this expansion. This type of function offers the advantage of having

analytic solutions for the required integrals; however, many such

functions are required to achieve the desired accuracy. Cartesian

gaussian functions have been used. The spatial part of these functions

has the form:

The determination of the gaussian exponents, oej, for atoms and ions has

been the subject of considerable study, and tabulated sets exist in the

literature. An all-electron calculation including the core electrons of

aluminum and silicon would be impractical, so the ab initio effective

potential of Topiol, et al. ( ) is used to replace these core

electrons. The integrals are performed using the standard POLYATOM

integrals program, and the unrestricted Hartree-Fock calculations are

done with the G. T. Surratt program UIIFONE.
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THE INITIAL ADSORPTION OF OXYGEN ONTO THE

ALUMINUM (100) SURFACE

Aluminum crystalizes in the FCC form, with a lattice constant of

4.05 A. Aluminum is a metal, and the bulk electronic structure is

approximated very well by the "jellium" model. However, attempts to

employ this model to describe the local chemisorption process (10) have

produced results which are not consistent with experiment (6). Cluster

techniques have been used to study the chenisorption process (11,12,40),

with results which agree well with experiment if care is taken in

choosing the cluster.

Chemisorption is a localized process, and as such the cluster model

should provide an accurate description. The difficulties that one

encounters here are resultant from the fact that aluminum is a metal,

and as such is not well described by a small cluster of atoms (fig.

3.1). One must, therefore, take into account the size of the cluster

*1
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used to describe the substrate. These effects will be discussed, along

with the binding energy of the oxygen atom for each surface site

considered. Calculated one-electron energy levels for these binding

sites are compared with the results of photoemission experimemts.

3.1 RESULTS OF CALCULATIONS

The positions of the aluminum centers in the clusters are chosen to

reproduce the unreconstructed structure of the aluminum (100) surface.

It has been assumed here that the lattice does not undergo signifigant

distortions at the surface. This has been shown to be true from

comparison of experimental and theoretical LEED studies of clean

aluminum surfaces (411).

As possible surface sites for the adsorbed oxygen atom, considered

here are the three high-symmetry points of the (100) surface (fig.

3.2). These are a position directly above an aluminum center of the

first substrate layer (on-top position); the position central to four

aluminum atoms of the first layer, above a second layer atom (hole

position); and above (or below) the midpoint of a line connecting two

nearest neighbor aluminum centers (bridge position).

The interaction of oxygen with the aluminum surface at the on-top

position has been modeled here using two clusters: AlO, with a single

aluminum atom representing the surface; and A190, with five first layer
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atoms and four second layer atoms modeling the surface. The binding

energy of the oxygen atom to the aluminum surface is shown as a function

of its distance above the surface in figure 3.3. For both surface

clusters, the equilibrium distance is about 3.5 bohr. The binding

energies differ between the two clusters; this energy is 2.25 eV for

the A1O cluster, and 1.36 eV for the A190 cluster. The charge transfer

from the aluminum surface to the oxygen atom is about 0.7 electron in

both cases.

For the hole site, the aluminum surface is modeled with two

clusters: A150, which has four aluminum centers in the first surface

layer, and the central aluninum in the second layer; and A190, which is

the A150 cluster, to which four additional second layer aluminum centers

are added. The importance of including the second layer atoms at this

site has been shown by previous theoretical studies of the interaction

of oxygen with metal surfaces (145). The oxygen binding energies as a

function of the distance above the surface plane are shown for these

clusters in figure 3.4. Both clusters have a minimum total energy

(maximum binding energy) when the oxygen center is about 0.2 bohr below

4. the plane of the first surface layer. The cluster with only one second

layer aluminum atom is found to bind the oxygen adsorbate by 5.4 eV,

uwith a charge transfer to the oxygen of 1.4 electrons. The larger

cluster is found to bind the oxygen by 4.8 eV, with a charge transfer of

1.3 electrons to the adsorbed oxygen.

Y 4
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The binding energies computed for this site, as well as those for

the bridge site, must be carefully extracted from the calculated total

energies. Since the oxygen atom penetrates into the cluster of aluminum

centers, the basis functions used to describe the electronic

wavefunctions associated with the oxygen adorbate may improve the

description of the substrate electronic structure, thus lowering its

total energy. This improvement in the substrate wavefunction can be

integrated into the caculation of the binding energy by simply including

the basis functions of the oxygen atom when calculating the total energy

of the substrate cluster.

The bridge site has been modeled here with three different

clusters. The first cluster consists of two nearest neighbor aluminum

centers of the surface, and. an oxygen atoz above the midpoint of the

line connecting these centers. The second cluster contains these two

centers, as well as two additional centers beneath them from the second

aluminum layer. For the final cluster, two aluminum centers from the

third layer are added. The inclusion of the deeper layer aluminum

centers at this bonding site is necessary because the oxygen atom

penetrates the surface, and can move vertically in a "tunnel" between

pairs of aluminum centers (see fig. 3.2). The binding energies of an

oxygen atom interacting with these aluminum clusters are shown in figure

3.5. For the cluster with two aluminum centers, the oxygen adsorbate is

bound 1.3 bohr above the plane of the surface. A charge of 1.25

electrons is transfered to the oxygen atom, which is bound by 3.1 eV.

With the inclusion of the two second layer aluminum centers in the

.. . .-...4 '
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cluster, the equilibrium position of the oxygen center moves to 1.65

bohr beneath the surface, which is just above halfway between the two

aluminum layers. The binding energy is found to be 3.8 eV, with a

charge transfer of 1.4 electrons to the oxygen. Inclusion of the third

aluminum layer produces no signifigant change in these results;

however, this cluster does show that the oxygen center does not want to

move deeper into the bulk material, as the total energy of the system is

found to be lowest for an oxygen center position just below the first

surface layer.

3.2 DISCUSSION OF RESULTS

For the initial stages of adsorption, the oxygen adsorbate is

clearly bound below the aluminum surface. The binding is strongest at

the hole site. An electric charge of about 1.35 electrons is also

transfered to the adsorbed oxygen. These results are in agreement with

4 previously reported work function studies, in which a reported decrease

in the work function of the aluminum surface with increasing oxygen

exposure (up to one monolayer of coverage) has been attributed to the

penetration of negative oxygen ions beneath the aluminum surface (6).

The ultra-violet photoemission spectrum has been 'reported for low

oxygen coverage on the aluminum (100) surface (5); this spectrum is

shown in figure 3.6. Also shown is the projected density of states for

the oxygen adsorbate previously calculated by Messmer and Salahub (12)
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for an oxygen position at the aluminum surface at the hole site. These

authors did not calculate the electronic structure for an oxygen

position below the surface, nor did they study the interaction of an

oxygen adsorbate with any of the other high-symnietry (100) surface

sites.

As reported elsewhere (40), the one-electron energy levels of this

calculation are in agreement with experiment and previous theory. These

energy levels are shown in figure 3.6 for both the hole and bridge

sites, with the oxygen position corresponding to the minimum total

energy for the cluster. For both sites, the energy levels reported here

are those of the largest cluster calculated.

Photoe.mission experiments studying the aluminum core levels at low

oxygen exposures have been reported, with a reported shift in the

aluminum 2p energy of 1.3eV toward lower energy (5). In the present

calculation, the shift of the aluminm core levels is found to be 1.1 eV

in the same direction. The cause of this core level shift is the

electric dipole produced by the charge transfer from the aluminum

substrate to the oxygen atom upon adsorption. It has been noted by

Flodstr6m, et al. that the aluminum core level shift increases to a

value of 2.6 eV at higher oxygen exposure (about one monolayer of

coverage), thus lowering these orbital energies to the values found in

A1203 . These results are evidence for a two stage oxidation process,

with the first step being chemisorption at the hole site, and the second

step being incorporation of oxygen beneath the aluminum surface.

4,.
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The agreement between the calculated one-electron energies for the

hole site presented here, along with those of Messner and Salahub, and

reported experimental UPS spectra tend to support the idea that the

initial chemisorption of oxygen occurs at the hole site, as one would

expect from the binding energies reported in section 3.1.

The hole site is also favored by extended appearance potential fine

structure (EAPFS) measurements. Using this technique, den Boer, et al.

(4) have reported a nearest neighbor oxygen-aluminum distance of 1.98 R,

or 3.74 bohr. Mssmer and Salahub have reported a value of 2.02 A (3.82

bohr), and the results of the calculations presented here place the

oxygen at 1.92 A (3.63 bohr) from the nearest aluminum center for the

hole site. For higher oxygen exposure, den Boer. et al. have reported

an experimental value of this nearest neighbor distance of 1.91 9. This

figure is probably an average of the two nearest neighbor spacings found

in A1203 ; these being 1.86 A (3.51 bohr) and 1.97 R (3.72 bohr). The

longer of these spacings corresponds to oxygen binding at the hole site,

while the shorter corresponds to oxygen adsorption at the slightly less

energetically favorable bridge site. The present calculation places the
V

nearest neighbor distance at the bridge site at 1.71 A, or 3.25 bohr.

The results presented above, along with previous theoretical and
A

experimental results, show that for the initial interaction of oxygen

with the aluminum (100) surface, chemisorption takes place at the hole

site. The present studies have extended previous theoretical

understanding of the interaction of oxygen with this surface to include

the two additional high-symetry (100) sites. Work function, UPS, and
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EAPFS studies have reported that the nature of this interaction changes

when the oxygen coverage approaches one monolayer; the theoretical

results presented here lead one to conclude that at this coverage,

oxygen begins to adsorb at the bridge site, since the energitically more

favorable hole sites are already occupied. The chemisorption of oxygen

at the bridge site allows for the incorporation of the oxygen adatoms

beneath the aluminum surface at high levels of oxygen exposure, leading

to the formation of the oxide A1203.
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THE ELECRONIC PROPERTIES OF THE SILICA SURFACE

Silica occurs in six difrerent crystalline forms, as well as the

a:morphous form. All forms of Si0 2 are based on the S'O 4 tetrahedron,

and differ in the Si-O-Si bonding angle. The crystalline form most

often studied experimentally is i-quartz, and it is this form which we

have used here. -quartz is hexagonal in structure, with three SiO 2

molecules in each unit cell. The Si-O-Si bond angle is 141r.

The silica surface may be described accurately using a cluster of a

small number of atoms. Indeed, calculations on the bulk material ( )

have used the cluster approach. To take into account the effect of the

neighboring bulk, appropriate boundary conditions are imposed, as has

been discussed in chapter 2. In the case of silica, the cluster is

embedded in a point charge array, with the charge transfer determined in

a self-consistent manner. This gives the proper electrostatic potential

in the region of the surface cluster, and also provides for charge
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neutrality. Previous calculations have either employed a free space

termination, or imposed periodic boundary conditions which require

defects to be present in all unit cells of the crystal.

The clusters used here for the bulk calculations were an Si0 4

tetrahedron, and an Si-O-Si molecule. Both clusters were embedded in a

point charge array of 3"3*3 unit cells in size. The calculations of the

surface were done using a cluster consisting of the surface silicon

atom, its two neighboring oxygen atoms, arid the two adjacent silicon

atoms to form two joined Si-O-Si molecules. This cluster was embedded

in a point charge array of 3*3*2 unit cells. The position of the

surface silicon atom was adjusted in order to minimize the total energy.

An oxygen ato:: was then pl2aced above the surface silicon in order to

study the surface bonding state.

The one-electron energy levels calculated for the bulk SiO2 are in

good agreement with experiment and previous theory (fig. 4.1). The

calculated band gap is 9.4 eV, as compared to 8.9 eV for experiment.

The valence band width is calculated to be 9.2 eV, while experimental

measurements give about 11 eV. The oxygen 2s band is found at 30.3 eV

below the conduction band, while experiment places it 28 eV below. The

valence bands are found to be mostly oxygen 2p, with some silicon 3s and

3P character mixed in. This is expected, and agrees with the charge

transfer of nearly one-half of an electron from each silicon to each of

4 oxygen atoms, or a configuration of Si2+0-, as determined by a

:I.ulliken population analysis. This agrees with the observation that

4 silica has both ionic and covalent properties.

I I I II4Ii
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For the unreconstructed surface, the E' center is found to have a
S

singly occupied energy level 1.7 eV above the top of the bulk valence

band (fig. 4.2). Stephenson and Binkowski ( ) have observed, using

XPS, an occupied energy level at 0.75 eV above the bulk valence band

edge for samples cleaved in vacuum. They believed this level to be an

intrinsic feature of the bulk SiO 2. However, their sampling depth is

only about 30 A, so it is probable that this level is an E' center at or

near the surface ( ). The method of sample preparation which they have

used (grinding) could easily have caused these broken bonds to be formed

( ). It is energetically favorable for an oxygen atom to bind to this

surface silicon atom, with a binding energy of 5.1 eV, which is

cor!siderably greater than the 2.6 eV per oxygen atom necessary to

dissociate molecular oxygen. 1.1e shall now turn our attention to this

configuration, which is the Si=O surface double bond.

The occupied one-electron energy levels of the surface state are

all below the top of the bulk valence band. This is consistent with

optical studies, which have found no occupied surface states in the bar'

gap ( ). The lowering of the valence band can be attributed to the

O-Si-0 bond angle at the surface being greater than the perfect

tetrahedral 109 angle. The bottom of the conduction band for the

surface is found to be 4.6 eV below the bulk conduction band edge. The

occupied valence surface states can be described as bonding and

non-bonding states between the adsorbed oxygen and the surface silicon

atom (fig. 11.3a,b). When a surface electron is excited out of the

valence band, an anti-bonding orbital (fig. 4.3c) drops out of the

'1
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conduction band and is singly occupied. Its energy lowers considerably

due to relaxation, and is found at 1.4 eV above the top of the bulk

valence band (fig. 4.2). The position of the oxygen atom is 0.1 a. u.

farther out from the surface silicon atom for this excited state,

relative to its ground state position. This energy difference is in

good agreement with Bermudez and Ritz ( ), and the transition from a

non-bonding to an anti-bonding orbital of the surface bond is as they

have described. The energy change associated with this transition is

6.1 eV, which is in agreezent with the experimental value of 5.0 eV if

correlation effects are considered. The 7.4 eV transition can be

understood in terms of valence band structure, with transitions from

levels in th-e bonding part 3f the valence band to the same anti-bonding

orbital.

It is noted that this model, the Si=0 surface bond, does not

predict the surface electronic transition at 3.5 eV that is seen in the

second derivative ELS spectra. It has been shown by Gallon and

Underwood ( ) that this peak is in fact an artifact of the second

derivative mode of detection, and it is not seen in the non-derivative

ELS spectrum. They argue that the 3.5 eV peak is produced by the

overlap of the "wings" of the primary and the 5.0 eV peaks. The

calculations presented here agree with this interpretation.

One remaining point of controversy is the difference between XPS

and UPS in discribing the top of the valence bands of SiC2 (fig. 4.4)

There exists at this time no agreement as to the cause of this

discrepancy. The calculations presented here do, however, favor one

-I >1 II II
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explaination. The two spectra are spatially sensitive to different

parts of the sample: XPS is sensitive to the bulk for initial states

with small binding energy, while 40.8 eV UPS is surface sensitive. In

both the XPS and UPS techniques, the kinetic energy of the photoelectron

is sufficiently large that the final state may be approximated by a

plane wave. Therefore the difference between the XPS and the UPS

spectra must reflect the difference between the bulk and surface valence

band densities of states. Comparison between the XPS spectrum and the

calculated bulk density of states, and between the UPS spectrum and the

calculated surface density of states (for the reconstructed surface)

shows that such an explanation does indeed account for the difference in

the two spectra (fig. 4.4).

The reconstructed silica surface has been studied in order to

determine the nature of the low energy loss ELS peaks. We have found

agreement between the theoretically calculated one-electron energy

levels presented here and previous experimental results. Of the three

models which can account for the peaks, namely a partly oxidized surface

region SiOx, the Es center, and the Si=O double bond, we conclude that

the last is most likely. Support for this conclusion comes from

experimental evidence for reconstruction, and from the large binding

energy of the oxygen atom to the surface.

9I
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CONCLUSIONS

In this study, the ab in! tio unrestricted hartree-Fock method has

been used to calculate the bulk and surface electronic structure of of

silica, and to study the initial interaction of oxygen with the aluminun

(100) surface. In both of these materials, the cluster model has been

shown to be a useful tool in the calculation of the electronic

structures.

In studying the interaction af oxygen with the aluminum (100)

surface, the size of the aluminum cluster used had a considerable effect

on the results. Since aluminum is a metal, a fairly large cluster of

atomis is needed to describe the substrate accurately. That the cluster

model worked at all for this calculation is due to the fact that

chenisorption is a local process.

I.



It has been shown that an oxygen adsorbate is bound most strongly

at the hole site of the clean aluminum surface. The equilibrium

position of the adsorbed atom is about 0.2 bohr below the plane of the

surface. A charge of 1.3 electrons is transfered from the aluminum

substrate to the oxygen adsorbate. This charge transfer creates an

electric dipole which causes the aluminum core levels to be shifted

downward in energy by 1.1 eV. Previous experiments studying the work

function, UPS spectrum, and the EAPFS have reported results for the

initial adsorption of oxygen onto this surface which are in agreement

with the results of the calculations presented here.

These experimental results have also shown that the nature of the

adsorption process changes at about one nomolayer of coverage. The

theoretical studies reported here lead one to conclude that at this

coverage the energetically most favored sites for chemisorption, the

hole sites, become fully occupied, and adsorption continues at the

bridge site. It is adsorption of oxygen at this site which allows for

incorporation of oxygen beneath the aluminum surface, and leads to the

formation of the oxide A1203.

4 i Also reported here is a study of the bulk and surface electronic

* structure of silica (A-quartz). The cluster model was again used. The

bulk solid and the surface were both modeled with clusters of a few

atoms, plus the appropriate boundary conditions.- In this case, the

boundary condition imposed was a point ion array to provide for charge

neutrality and to provide the correct Madelung field.

1t



For the silica bulk, the calculated one-electron energy levels were

compared with experimental XPS spectra, and the agreement was found to

be excellent, as reported in chapter 4. For the reconstructed silica

surface, the structure of the Si=O double bond was found to be the

energetically most favorable surface configuration. The electronic

structure of this surface bond is able to explain the low energy ELS

peaks seen experimentally. This calculations reports a value of 6.1 eV

for the lowest energy transition, as compared to 5.0 eV for the

experimental result.

Finally, the difference in the reported valence band structures as

measured in XPS and UPS experiments is explained. The XPS method is

sensitive to the bulk material, while UPS is surface sensitive.

Comparison of these spectra with the calculated valence band energy

levels show:s good agreement between the theory presented here and the

experimenal spectra.

The ab initio unrestricted Hartree-Fock method, along with the

cluster model, has bcen shown to accurately describe the local

electronic properties cf many systems. In this report, this method has

been shown to be successful in describing the adsorption of oxygen onto

*the aluminum surface, and in describing the bulk and surface electronic

structure of Si0 2. This technique has also been used to successfully

calculate the electronic structure of semiconducting polymers, including

defects and impurities (46), and in the description of the excitonic

structure of crystalline silicon (117).

E
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