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SOME LOCALLY OPTIMAL SUBSET SELECTION RULES*

By Deng-Yuan Huang and S. Panchapakesan
Academia Sinica, Taipei and Southern Illinois University

1. Introduction. Let noTl .... 'k be k + 1 independent populations

where ni has the associated density function f(x,o i) with the unknown para-

meter 6. belonging to an interval a of the real line. In this paper, we

are concerned with two types of goals. The first is to select from 7 1 ,....

irk those populations, if any, that are better (to be defined) than -a which

is the control or standard population. The other is to select a subset

(preferably small in size) of the k populations 'Tl .... k that will contain

the best (suitably defined) among them. In the recent years, the attention

has increasingly been focussed on the construction of optimal selection

rules. Some of the important papers in this direction are Bickel and Yahav

[1], Chernoff and Yahav [2], Goel and Rubin [4], Gupta and Hsu [5], Gupta

and Huang [6,7], and Gupta and Kim [10]. These investigations deal with

the symmetric case which implies equal sample sizes. There have been some

investigations in the unequal sample sizes case but these relate to ad hoc

and heuristic procedures and are not generally successful in establishing

the least favorable configuration (LFC) for the probability of a correct

decision. For many classical procedures in the literature for selecting

a subset containing the best, the LFC turns out to be 01 : ... 0 k  This

provides the motivation for seeking selection rules which are optimal in a

suitable sense in a neighborhood of every equi-parameter point. When com-

paring these populations with no' the local optimality concerns with the

*This research was supported by the Office of Naval Research Contract

N00014-75-C-0455 at Purdue University. Reproduction in whole or in part is
permitted for any purpose of the United States Government.
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ability of the rule to reject any population that is inferior to i o , and

to choose a population which is superior while all others are inferior.

Section 2 deals with selecting populations that are superior to a con-

trol and as the applications indicate we can handle unequal sample sizes.

The next section discusses the usual goal of selecting a subset containing

the best and locally optimal rules based on ranks. Though the density func-

tion f(x,e) is assumed to be known but for the value of e, a rule based on

ranks is justified on the basis of usual robustness considerations in that

the ranks are insensitive to outliers and there could be possible deviations

from the model.

For detailed discussions on multiple decision problems and general de-

cision theoretic approach, the reader is referred to Gupta and Huang [8]

and Gupta and Panchapakesan [12].

2. Comparison with a control. We want to construct a rule to select

all populations that are better than the control. Let X j = ...

denote the sample observations from wi' i = O,l,...,k. The selection rule

will depend upon the observations through the statistics Tio, i = 1,...,k,

where T i is suitably defined to indicate the difference between 7i and nj.
For fixed no, . nk, we assume that Tij has a density function g i j ) de-

pending on the parameter Tij. Usually the Tij are invariantly sufficient

for Tij. We use the parameter Tij as our measure of 'distance' between i

and nj. Now, Tii is the same for all i and this common value is denoted by

T*. In the case of a location parameter 0, we may have Tij = lei - ejI and

in this case, T* = 0. On the other hand, if o is a scale parameter, we can

define ij = max , - which gives T* = 1. We define population i.

to be superior if Tio > T* and inferior otherwise.

------ M a
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Let s f l (To . tk) , Iio : {TITio T*} and Qo

{!TTjo= T*< tio,j=l,... ,k;jtiJ. In other words, sio is the set of configura-

tions for which 7i is inferior and 0 is the set of configurations for

which i is superior and all other populations are 'just inferior'.

2.1. Optimality requirement. Let 0 < y < 1 be given. We wish to

derive a rule which satisfies

(2.1) sup PT [7i is selected] < y for i = l,...,k, and

io

kk a p[r sseetd~~
(2.2) maximizes iP [i is selectedlIo]i=1 aio T Tio-T*

among all rules satisfying (2.1). We note that the condition (2.1) con-

trols the error probabilities and the condition (2.2) maximizes the ef-

ficiency in a certain sense of the rule in picking out the superior popu-

lations in a neighborhood of the configuration T = (T*,.. ,.

Let h (t,... tk) denote the joint density of Tlo ....Tko with respectTlI k o* k
to a a-finite measure w. A selection rule is given by 6(t)

= {61(t)... 6k(t), where 6i(t) is the probability of selecting 7i when

t= (tI .... ,tk) is observed. Further, let h ,(t) denote the density h (t)

when T = (T*,...,T*), and let h()(t) denote the partial derivative

a h (t) evaluated at T = (T*,... ,T*). Finally, we need to assume cer-
atio -

tain regularity conditions, namely, that h (T) is continuously differenti-

able with respect to each component of T and h (t) is integrable.

Under these regularity conditions, it is easy to see that

" P [. is selectedl o] f 6i(t)h)(t)dp(t)
aTio T 1 _o=T* T -

where z, is the sample space of (Tlo T Tko).lo' '_k
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Summarizing the above discussion, we are seeking a rule 6(t) which

satisfies

(2.3) f 6i(t)h,(t)dp(j) < y for TE~io, i = 1,...,k,

and maximizes, among all rules satisfying (2.3), the expression

k
(2.4) i . i(t  )"

2.2. A locally optimal rule. We now state and prove the main theorem

of this section.

Theorem 2.1. Under all the assumptions stated previously, a rule

so(!) which satisfies (2.3) and maximizes (2.4) among all rules satsifying

(2.3) is given by

1>

(2.5) 60(t) = x if h(i)(t) = cih *(t)- T - T

0<

where 0 < X < 1 and ci are determined by

(2.6) f 6?(t)h ,(t)dp(t) = y, i = 1,.... k.

Proof. The proof is straightforward by noting that for any rule 6

satisfying (2.3) we have

k
(2.7) [ c6(t)][*h*(t)d(t) < 0.

2.3 Applications to special cases. We consider the following cases:

(A) normal means comparison; common known variance and unequal sample sizes,

(B) normal means comparison; common unknown variance and unequal sample
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sizes, and (C) gamma scale parameters comparison; unequal degrees of free-

dom.

Case A: Normal means comparison; common known variance and unequal

sample sizes. Let i be N(oi, 2 ) and Ri be the sample mean based on ni

independent observations from il i = 0,1,...,k. We take Tio = Xi - Xo

and Tio = oi - eo. Here T* = 0. The joint density h(tl,...,tk) of

Tlo.... ,Tko is that of a multivariate normal distribution with mean vector

T and covariance matrix z given by

2
1+ C',

2
=+

where a2 = no/n i , i 1,..., k. It is easy to verify that

1k

T* (t)/h ,(t) tjo
j=l

where E-1 = (aij).

In the particular case in which no t n, =... nk, we have (l

a ak = c ( say). In this case, it is easy to evaluate E-l. The rule 60

is given by 4

1 k

where ci is determined by ohrie
i~I -_/C

0 othe"wis.,
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k

(2.9) PT* {Z i ka 2j-X ' Zj>c i }  ,

2 2

Z1 .,Zk being normal variables with E(Zi ) : 0, V(Zi ) = + 2 and

2 0

E(Z Z.) E-- . The left hand side of (2.9) is equal to

P*{kJc n lZi0
P*{(k+a2_-1)Zi - ji 7 > ci(k+)} 1 - (ci(k+ 2)In),

where s(.) is the standard normal cdf and

22= 2 2 2 222 2 -j +[(+a )(k+ -1) 2+(l+2)(k-1)-2(k-l)(k+l-a2)+ (k-l)(k-2)].
0

Thus,

(2.10) ci n 7 + D 0 - Y )

Remark 2.1. The rule 60 given by (2.8) is of the form: select

if andonlyift.a- tj - c, where c > 0 and a < 1. If, however,

we take a = 1, then we have the so-called average-type rule.

Case B: Normal means comparison; common unknown variance and unequal

sample sizes. As in Case A, Ri is the sample mean based on ni observations

from 7i. Let s2 be the usual pooled unbiased estimator of a2 based on

v = (k+l)(n-1) degrees of freedom. Define Z. i - o ) / nL
1 R 10 n .I

Tio = Zi/s, i = l,...,k. Let u = (pij) where Pij = Corr(ZiZ.). Then

2 2 2
Plj = [(l+ )(l+caj) ] - 2 where a i = n0/n i . Let A = (aij) be the inverse

of a. Then the joint density h (tl,...,tk) of the Tio is the multivariate

t-density (see Dunnett and Sobel [3]) given by

(2.11) h (t...,tk) - (T2.) [1+ 1 i a. (t -i)(tj Tjo) (v+k)
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where Tio = °i - E' i = 1,... k.

Now, it is easy to verify that

h(i)(t) _ v+k ati_ + _ _ i i t

T - - __ JI 1  = z(t;v,k,{a ij1), say.

h ~ ~ 1 1V 3 1
T V ~ aiititj

Thus the rule 6 0 is given by

1 if z(t;v,k,{a ij}) > c

(2.12) 6i -

0 otherwise.

In the particular case in which no n ... -- n k ' we get

Pij= 1/(l+ 2); where , = = . This gives

(l+ 2 )(k-l+ 2) j i
a2 (k+,2 

2 i 2 j.
( k+a

2 )

The constant ci is given by

(2.13) PT*[Z(Tlol"T = Y "

It can be easily seen that (2.13) can be rewritten as

(2.14) P[diY'AY- AY+ vdi <0] = y

where d i  ci/(v+k), A' = [A1 ... Ak],and Y' = (Y ...Yk) has the multi-

variate t density given by (2.11) with Tio = 0, i = 1,..., k. The left

hand side of (2.14) is equal to

P[di --i A'Ai'A(Y- 2Ti- 1 Ai)+ vdi - i  -

s l s 1s2. 1

P[di(Z- 1 A-IAi )'A (z -  1Ai)+ s2 A A A-IAi < 0]

where Z - N(2,o2 ),

..............
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P[d s A1 -1 'A(' 1 s
PAi( Ai ) 'A Z-- A-IAi )

- 0 2di - a 2di/ 1-

+ 2- di -22 A'A-IA i < 0].

a Y2  4div i -

In order to evaluate the above probability, we note that U -- V s  X 2anth,2 2 V
2

conditioned on U = u, the quadratic form has a non-central x distri' ution

on k degrees of freedom with the noncentrality parameter x =(u,di)

- U A'A-IA. Thus the constant c. is given by

4vdi

(2.15) i P[di{Vi +u- x(u,di)}<O]g_ (u)du =y

2
where Vi has a noncentral x distribution on k degrees of freedom with non-

centrality parameter x(u,di), and g (u) is the central X2 density on v

degrees of freedom. Tables for the constant di are expected to be part of

a future paper.

Case C: Gamma scale parameters comparison; unequal shape parameters.

Let 7i (i = 0,1,..., k) be a gamma population with the density

vi-l

(2.16) f(x;ei,v i) = x 1 exp{-x/oi}, x > 0, e > 0.
r(vi)e i

We take Tio = ei/o 0 so that T* = 1. Let Xl..... Xk be independent observa-

tions from these populations. Define Tio Xi/X 0 , i = 1,..., k. The joint

density of T10,... ,Tko is easily derived to be

k vi -l

(2.17) h (t) r(m) i=l
(T) i=ok r(vi)Tio [+ i l m
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where m v + ... + From this, we get

h(i)(t) mt(2.18) T* - i
h.(t) l+t1+. .+t k  i.

Thus the rule 60 is given by

(219 6mti > (vi +c i ) ( 1 + t l +  + t k )

(2.19) 69(t) =

0 otherwise.

The constant ci is given by

(2.20) PT* ( >Vi + ci = Y
X o+...+X k

where X0 ... Xk are independent standardized (e
= 1) gamma variables with

degrees of freedom vo, .... "k , respectively. It is known that Xi/(X0 +...+Xk)

has a beta distribution with parameters vi and m - vi , denoted by
B(vim- v.). Thus (vi +c i)m-  is the upper 100 y% point of B(vi,m- vi) dis-

tribution. So ci can be obtained from the tables of the incomplete beta

function.

It should be pointed out that the above problem includes that of comparing

normal variances based on unequal sample sizes.

3. A locally strongly monotone invariant subset selection rule based

on ranks. In this section, we consider the goal of selecting a subset

containing the best population. Subset selection procedures based on ranks

have been earlier studied by several authors notably among whom are Gupta,

Huang and Nagel [9], Gutpa and McDonald [11], McDonald [13,14], and Nagel

[15]. A detailed account of these procedures is available in Gupta and

Panchapakesan [12]. Of these authors, Nagel [15] and Gupta, Huang and

Nagel [9] have discussed locally optimal selection rules but using
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different criteria from ours. The setup of our investigation is analogous

to that of Gupta, Huang and Nagel [9]. We assume a parametric model but

seek procedures based on ranks for robustness reasons as explained in

Section 1.

3.1. Preliminaries. Let l ... k be k independent populations where

i has the associated distribution function F(x,o i ) assumed to be absolutely

continuous with density f(x,o i) which is known except for the value of the

parameter i. The parameter e. belongs to some interval on the real line

containing the origin. It is further assumed that the density f(x,q) satis-

fies the set of conditions in (3.3). The population associated with the

largest o i is called the best population. In case of a tie, one of the con-

tenders is assumed to be tagged as the best. Let l {I (e1I ... ,ek)I and

0 =  6lel = " .. = ok0. Let {Xij , j = 1,..., n, be independent observations

from 7i and let Rij denote the rank of Xij in the pooled sample of N = kn

observations. The smallest observation has rank 1 and the largest N.

Definition 3.1. A rank configuration is an N-tuple A = (A1 9 ... AN),

Ai E{l,2,...,k}, where Ai = j means that the ith smallest observation in

the pooled sample comes from 7j.

Let C = {} dentoe the set of all rank configurations for fixed k and

n. For fixed A, let %A {xE Ax= A, where . {x: x = (xI,... ,xN)1

and A denotes the rank configuration of x = (xI,.... ,xN). The decision

space & consists of all 2k subsets (including the empty set) of the set

{l,2,...,k}. Any subset is denoted by d so that & = Idjdc{l,2,...,k1}.

Any decision d = {ili2 , .... ir} corresponds to selecting the subset of the

k populations comprising nil" ... Oi r. Let 6(A,d) denote the probability

1 r
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that the decision d is made if the rank configuration A is observed.

Definition 3.2. A rank selection rule is a measurable function de-

fined on C × Lsuch that for each AEC , (i) 6(A,d) > 0 and

(ii) 6 (A,d) = 1.

d E

Let pi(A), i = 1,...,k, denote the individual selection probabilities

of the k populations, where

(3.1) pi(A) = 6(A,d)
d D i

the summation being over all subsets containing i. Let P ( = l,...,k) de-

note the probability of including the population T in the selected subset;

in other words, PC = E [p (1)], , = l,...,k. Any decision d that corres-

ponds to the selection of the best population is called a correct decision.

We assume that nk is the best population and denote the probability of a

correct decision by P(CD16,A). Clearly, P(CD16,A) = Ee[Pk(A)].

Definition 3.3. A selection rule is strongly monotone if, for each

i = 1,... ,k,Pi increases in o when all other components of e are fixed,

and Pi decreases in ej, j t i, when all other components of e are fixed.

Let G denote the group of permutations g of the integers (1,2,...,k).

We write g(l,...,k) = (gl,... ,gk). Let h denote the inverse of g and de-

fine g(x..... xk) = (xhl ... X hk) and gd = {ilhi Edi, d E . Also, for any

AEC , let g be defined by gA = (gA ....,gAN). Thus g is induced by g.

Let be the group {g}. Finally, let G(ij) = {gEGIgi =j }.

Definition 3.4. A selection rule 6 is invariant under permutation if

and only if ((gA,gd) = 6(A,d) for all AEC, dcb, gEG and gEG.

An invariant selection rule is completely specified by any one of its

individual selection probabilities. We wish to derive an invariant rank
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selection rule 6 such that

(3.2) inf Po(CD16,A) P*
Ea o -we 

0

where P*( -T<P*< 1) is specified in advance and it is locally optimal in
2

the sense that it is strongly monotone in a neighborhood of any point eo in

Qo* Obviously, the infimum of the probability of a correct decision over

that neighborhood is attained at e0.

3.2. Derivation of a locally optimal rule. We assume that the den-

sity f(x,e) satisfies the following set of conditions:

(i) f(x,o) is absolutely continuous in o for almost every x;

(ii) the limit

(3.3) f(x,O) = lim [f(x,e)- f(x,O)]

exists for almost every x;

(iii) lim f If(x,e)ldx = f If(x,O)Idx < - where f(x,e) : - f(x,e).
0O -M -- Do

Now, we note that the distribution of the ranks does not depend upon

the underlying distributions of the Xi. when o Eo and thus P0 (CD6,A) is

constant in o" Hence we can satisfy (3.2) by choosing any point e0 in o

and satisfying P0 (CD16,A) = P*. With no loss of generality, we assume

that o = (0,.... 0).

The probability that the rank configuration A is observed under e with

6i f 0, i = 1,...,k, is given by (see Gupta, Huang and Nagel [9])

k
(3.4) Pe(A) = A0 + i eiAi(A'e)
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where

X N x2 N

A0 = f ... f ii f(xi,O)dx. ..dxN ,
-- -1, -- i=l

XN x2 f(x.,o )-f(x.j,0)

Ai (A,o) f f f

AP*

j-I N
xI f(x ,0) R f(x ,o )dxl...dxN, i = 1,..., k.

el e e=j+l e Ae

0
Here we define ii f(xi.,O) - 1.

i=l

The following lemma summarizes some results of Gupta, Huang and Nagel

[9] for an invariant rule.

Lemma 3.1. For an invariant rank selection rule,

(3.5) P0 (C016,A) = EoPk(A)

k
[Ao + ,, k iAi(Ag)]P (A).

A E C (k-l)! g E (k,k) i -k

There exists an E > 0 such that for all o with 0 joil < C , i =

k, Ai(A,Q) is approximately equal to Ai(A) Y B, where
j :Aj~

xN x2 N

Bj = f f ... f f(xj,O) if f(xeO)dx1 ... dxN.
. . e=l

eitj

In this case,

(3.6) P(CDI6,A) pk(A)[Ao + 1_ ((U-ok)V + (kok-U)Ak(A)1],

Ai-1 kV (kkU)kAf]
AE C

k k nk
where U = and V = )' Ai (A) = Bi , independent of A.

1=1 i--1 i=1
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Now, for deriving a locally strongly monotone selection procedure,

consider

(3.7) P U [Ao+Tk {(U- 0)V+ (koa - U)Aa(A)I]pU(A).
AEC

For any a = 1,..., k, we get

aP

Do~ C' A (A)p%(A)
a AE C(3.8)

a p a I
- {V-A (A)}p(A), 6#

AEC

For the strong monotonicity property, we need to define p (A) such that

A (A)p (A) > 0 and X {V-A (A)p (A) < 0. This is obviously accomp-
AEC AEC

lished by defining

1, A (A)>V+D

(3.9) pa (A) = p, A (A) = V + D

0, A (A) < V + D
ca

where D and p are to be chosen such that

(3.10) V + D > 0 and P 0o[A (A)>V+D] + P 0o[A (A)=V+D] P.

Summarizing the above discussion, we obtain the following theorem.

Theorem 3.1. Let f(x,e) satisfy the conditions in (3.3). Then the

invariant subset selection rule based on ranks defined by (3.9) is strongly

monotone in a neighborhood of any doint e0 Eo and inf P (CD16,o) = P*
ao E So 0

provided constants p and D satisfying (3.10) exist.

Remarks. (1) It is possible that D and p satisfying (3.10) may not

exist. In such a case, the rule selects the empty subset. (2) When D and
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p satisfying (3.10) exist, the rule (3.9) is also locally optimal in the

sense it has the maximum pe(CD16,A)in a neighborhood of o among all in-

variant subset selection rules based on ranks satisfying inf p0 (CDIS,A)
a E S2 0

This follows from the theorem of Gupta, Huang and Nagel [9]. (3) Rules of

the type (3.9) are shown to be "just" by Nagel [15] provided that Bi is non-

decreasing in i, which is true for location parameters if and only if f(x)

is strongly unimodal (i.e., -log f(x) is concave). Nagel [15] has also

shwon that for a just rule inf p,(CD(6,A) = inf pe(CD16,A).

0 EQ - -

3.3. A special case. If f(x,o) is the logistic density, i.e.,

f(x,o) = e-(X-o)/[l+e-(X-o)]2, then we get B. = r + is, where the actual

values of r and s > 0 are immaterial. The rule becomes

I n >

(3.11) P (A) = p X R.. C
j=l 

0 <

where p and C satisfy

n n
P - ( I Rij > C) + PP ( ] Rij = C) =P*.
_0 j=l 13-0 j=l 1

The above rule is a randomized version of the so-called R3 type rule of

Gupta and McDonald [11] who proposed it on an ad hoc basis. It should

also be pointed out that the rule is 'just' in the sense of Nagel [15]

which, as pointed out earlier, implies that the infimum of the probability

of a correct decision over Q is P*.
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