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Selection Procedures For A
Problem in Analysis of Variance*

Shanti S. Gupta Purdue University
and
Deng-Yuan Huang Academia Sinica, Taipei

1. Introduction
For a completely randomized block design with one observation per
cell, we express the observable random variables Xia (i =1,...,k;

a = 1,...,n) as

ne1x
~
]
o
-

(1.1) Xp, =u + B+t * €, L

where y is the mean-effect, B]""’Bn are the block effects (nuisance

parameters for the fixed effects model), Tys...sT) are the treatment effects,

and €, 2re the error components. We assume that the errors within each

block are jointly normally distributed.

We assume that the quality of a treatment is judged by the largeness of

the ri‘s. A 'population' m is called the best if Ty is the largest. In general,
it may be complicated to derive suitable tests for appropriate hypotheses, in
which the experimenter may really be interested. We apply the subset selection
approach (using certain basic hypotheses) and thus obtain more appropriate infor-
mation regarding the treatments. A subset selection procedure is designed to
select a subset so as to include the best population. Selection of any

subset that contains the best is called a correct selection (CS).
Koughly speaking, any two populations that are in the same selected subset,

will be considered as "equivalently good". If all populations are selected,
we claim that all treatments are homogeneous. In general, for achieving the
objective of the experimenter, one should establish a suitable set of basic

hypotheses. Depending on the objective one should proceed to consider different

*This research was supported by the Office of Naval Research contract
NOD0O14-75-C~0455 at Purdue University. Reproduction in whole or in part
is permitted for any purpose of the United States Government.




ways of formulating the basic hypotheses. In this paper, we discuss a
method based on subset selection rules for the purpose «f making a claim
of the type: Ty = * > T; + A forall i€l and j € J, where I and J form
a partition of {1,2,...,k}. The process of making such a claim will be

called hypothesis identification. This is achieved by setting up certain

basic hypotheses regarding the ri's and using a subset selection procedure
to test these basic hypotheses. It should be pointed out that in identifying
an appropriate hypothesis, we assume that the constant A in the claim is

specified by the experimenter, say, based on past experience. Associated with

the tests of the basic hypotheses using a selection rule, there are error
probabilities and the infimum of the probability of a correct selection for
the rule employed. These are related to the power function of these tests.
The sum of the average (over the basic hypotheses tested) of the error
probabilities and one minus the infimum of the probability of a correct

selection is called the identification risk. The main theorem of the

paper discusses the derivation of an optimal selection rule in the sense of
minimizing the identification risk. For a more general theory of

multiple decisions from ranking and selection approach, one can refer to a

recent monograph by Gupta and Huang (1981). A general survey of the entire
field is provided in Gupta and Panchapakesan (1979).

Let Y be a random observable vector with probability distribution depending
upon a parameter t'= (r],...,rk) € 2. Consider a family of hypotheses testing

probiems as follows:

(1.2) Ho: TENy vs Hyr 1 €Q

T j» 121 <k,

where 9, = (1|1, =...= 1.} and @; = {1]v; > max 1.}, 1 = 1,2,...,k. A test
0 - k i -1 3t
of the hypotheses (1.2) will be defined to be a vector (5](¥)’-‘-’5k(¥))’

where the elements of the vector are ordinary test functions; when y is observed

k- by <




s ap

we reject H0 in favor of H; with probability Gi(x), 1 < i < k. The power

function of a test (61,...,6k) is defined to be the vector (B](I),...,Bk(z)).
where g.(x) = E 8;(Y), 1 < i <k. For 1€ a, 8;(z) is the probability of
a correct selection P(CS) and ci(y) is the individual selection probability of

selecting the best population my. Let SY be the set of all the tests

(6]""’5k) such that

(1.3) EIai(y) Sys TE 8y 1ic<k,
where vy is the upper bound on the error probabilities associated with the

treatment effects.
For each i, (1 < 1 < k), we would like to have g.(z) large when 1 € .,

subject to (1.3). For 1€ Q;, if we make Bi(;) large, then Bj(g) should be

small for j # 1.
It should be pointed out that in the formulation and proof of the optimal

selection procedure, results from Neyman-Pearson theory are used.

2. Formulation of an Qptimal Selection Procedure

Assume that

ZG = (Xlu""’xka)’

a = 1,...,n, are independently and identically distributed random vectors

with the following distribution:
1. _} -
(2.1) (216%) XA Zexpl- — (x - @) (x - ©)],
20

where X' = (Xqqs.e0aXpqieees XypaeeaXp) and 81 = (837500058 950005 Oypaeiesp ),

,k; o = 1,2,...,n and A is a known positive definite

8. =y + +r., 1= 1,,..
Tu e ea i? * G T T T ). :
t
kn x kn correlation matrix defined as follows: % § l: .53 £E 35
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Ay 0 0
0 A] 0

= . . . . s where
0 0 A

[1 A ]
Ay = - .
! Ao ek

We rewrite the original model as the general linear model as follows:

X=98+¢g, € ~ N(0, 021\).

Since we are interested in the difference between all pairs of ri's, we

transform the linear model to the following: For any i, let

Y. =C 1, +n, no N(Q, 0221)9

where Ii = (Ti]’---:Tik)Q Tij = Ti = Tj, J# i,

YT Oy Y Yinne o Yikn ) 1x(k-1)n

Yijz = Xiz - ij, it iy id=T,....k 0 =17,...,n,
!1 = A1 5’ L Ai g
Ay
A, = A 0
o .
‘A, (k=1)nxkn

A
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[1,...,I](k_1)x(k-1)n

S PRT] P
(C'zi°C) "Clzy Yy,

S PO R R
c I C=n (Ail Ay Ail) K

(C'z}lc)'1

T

R Y
i

where each of the identity matrix in C' is (k-1)x(k-1).
The maximum 1ikelihood estimator of r; is as follows:

2
o
Ay AL = (1- :
Ajy Ay Ajy = () [1 ‘2 }(k-l)x(k-l)

k-1
-1

] (k’])x(k']))




el AP Uy . &SNS o

B SN

-
e it .

e e

T r Y N o ST

oy

2
.1
1 '] ‘] 1 -] - .I")\ [ . ]
(C )Z]- C) CZi = Tha 1 °2 [V.ia‘--av']

n i
_ 1
=5 [1,...,1]
Hence,
= fere~Toy=Tai -1
T T v Te o
221 it i X - %
= l N = = .
n : : . i
E v Yik Ry = Ry
I A (R R ]
- 1 N
where X, = ﬁ-j=1 Xij’ T<ic<k.

The joint density of Y111""’Yikl;"';yi]n""’vikn is the following:

- -% -
Pe, (4] = (200%) =Kz [ expl- 2—‘2 (¢i- Cry)'2; (yy- Cp)]

where

™
n

Ai A A% = (1-2)

J

r2 (k-1)x(k-1).

(k-1)nx(k=1)n

[
1]




Now, we specify the Qi's as follows (Note that this is a different

specification from that given earlier):

Q = {t]ty > max 7 + po}, 1 <1 <Kk,
J#i ’

and

——t
—d o
.

dnd,

Assume that ¢ is known. Llet

é,{ = (AO"“’AG)'Ix(k-]), i=1,...,k, 4> 0.
Thus
Py, i) 1 | ) ;
R AR e AR T TUL A R U AR ;
= 1 reret _]_ [Foll -1
= exply 2iC'2; Yy - — 7 43075 C 2y
[+ g

nA 1 el
eXPITT TR Y41 oot Vi) - 57 4i0TE Uk

Hence, we can rewrite

eh
CBE > d' as
PQ x-j 4
! Yip toeet Yix > d"o. 1
. 0_,.0 0 . ;
Let a selection rule § = (61,...,6k) be defined by i
0 1 i p, (yy) 2 d'pply;)s 1
85(y;) = - ) ]
0 otherwise .
such that
0 -
» (2.2) E 8 (Y) =y, 1 €0 Then
- 0

5§~ maximizes

h?... IO




7 (2.3) inf P(CS|6)
Q
among all selection rules s € S(y).

Note that Gg(xi) is also based on the maximum likelihood estimators

1; of T;. Since for any § € S(y),

1
m
0
1
n<C =

Q; implies 1 € Q; for some i, thus

b
"o
—~
()
wm

(=}

~—

il

f Gi(zi)pz(zi)dv(zi)

min inf [ &.(y.)p (y:)dv(y.).
]i'iik Ieﬂif i X] I ~Z'| Y X]

s
v

rc We have
E

X inf P(CS|s) = min inf 8:(y:)p_ (y:)dv(y.).
E: €Q | l<ick  1€R /8y Wi OV

For any § € S(y), it follows that

i

i

1 &
: 0 1
,j / (ai-ai)(péi - dpg) < 0

;!

which implies

4 0
. Foipy 21 "1y

. 0 . . .
% Since 6i(¥i) is nondecreasing in Y;» hence

.

4 &

. 0 . 0 ) 1
inf P(CS|8°) = min §:(ys)p, (y:)dv(y.) :
bt I e [ o530y (y)avly

'_...'!

i‘l???k / Gi(li)péi(li)d“(li)

min inf [ §5.(y. No(v.
et gon ] S0P 9y

b

fv

inf P(CS|s).
3

0

We rewrite 6§  as follows:

] 1 if y” +...4 yikz_d"o,
. 0 -
iy Gi(xi) -

0 otherwise
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Thus, the optimal subset selection rule is as follows:

. - ] -

I_ if Xiim ; Xj+d0,
Jj#i

0 otherwise s

where d = Fg;‘
Now, we wish to determine d and n. We make the following transformation:
Yi1
Z_ik = [].-.]]]x(k_]) 'y and
Yik

T = Ti~l+...+T.ik = (k“])'l'i = j;i Tj.

Since the distribution of

Y,
SN I I (c'zle)y e oy
4 : ) i i
Yik

1-2

=22y,

L -1 - S T
is (2n0%) dklzh.l 2exp[- Ei? (1; ~ 15) 21}(31'31)]’ where I, =

Then the distribution of Zik is

2 113 n 2
2m0“(1-2)k(k-1) =172 - (z.,-1)°].
[2n0"(1-2)k(k-1) ] =exp[ ) 2o ot

Hence
EQG?(Xi) = P(Z;, > d")
(2.4) < o[- 9 5.,
YO 2k (k-1)
and



inf p_(cs|s?)
€T -

= min fes?(xi)pA (y;)dviy;)
1<i<k =i

= min P, (Z;,, > d"o)
1<ick 29 K=

- min P ((Zik'(k‘])A)/ﬁ . (d";(k-])A)/ﬁ)
l<i<k 21 To0k(k=1) — AT-2)K(k-1)

(2_5) = q,[_ W] = p*,
Y{T-2)k(k-T)

For given r, P*, k, x, and A, we can find d" and the smallest number of
blocks, n, to satisfy equations (2.4) and (2.5). Note that this n is

also the minimum sample size for the case of one observation per cell in

the completely randomized block design.

We rewrite {2.4) and (2.5) as

‘D[‘]:Y
Y{1-27k

and

Q[_]z p*
Y(T-))k

Let Zpx and zY represent the upper percentage points corresponding to

P* and y, respectively of the standard normal distribution. Then we have

2

>,

where <a> is the smallest integer greater than or equal to a.

(1'>\)k(2p* - zl)
(k-l)A2

n =&

-
kit e kb ima it o il
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Summarizing the previous results, we obtain the following theorem.

Theorem: Under model (1.1) with the stated assumption on €,» an optimal
procedure for selecting a subset of the "best" or "worthwhile" treatments
based on the observed data x and satisfying the conditions (2.2)

and (2.3) is: Select the population m; with probability 6?(5)

given by

0 otherwise .

where the smallest values of d and n are given by

Z A

d=- —L—— |
Zps - 2
and
2
(1-M)k(zpe - 2.)
n = el >

(k-])Az
Furthermore, we have established the following connection between the
s¢ lection procedure and the hypothesis identification problem as follows:
If . .n: (J - k) are selected, we say that these populations are

1], H_iz‘... 1j .
homogeneous and make the hypothesis identification

H{: Ty T T T2 max 1, + Ac.
1 3 T<p<k
2¢{1],...,1j}
Note that the overall identification risk connected with this problem is

2y + (1-P*).

Remark: It should be pointed out that for some pairs (v,P*), 60 may not select

any population. This is to be interpreted as not identifying an, one of the

appropriate hypotheses.
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We consider some special cases to provide an idea as to the appropriate
identification of one of the hypotheses. For y = 0.05,» = 0.5 and P* = 0.95,0.90,
0.80; then
(i) k=2,

H

0° T1 T T H]': T]_>_T2+A0,Hé: 12>_1]+Ao.

In this case, for specified a-values, the smallest d and n needed for the

optimal selection rule are given in the following table.

A 0.1 0.5 1.0 2.0 '
d(0.95,0.90,0.80) | 0.05,0.06,0.07 | 0.25,0.32,0.33 ] 0.50,0.64,0.66 | 1.00,1.29,1.33
n(0.95,0.90,0.80) | 1089,858,620 44,35,25 11,9,7 3,3,2

(ii) k = 3,
H Hiy: >

O: T] = T2 = T3’ ]o T'I max(12313) + Ao,

maX(T],T3) + Ag, H'3: T3

|V
|v

2l Ty max(r],rz) + Ao,

4: T~|=T21T3+A0', H5- T]‘T3>_T2+A0,

6° T2 T T32 T + Ac.
For optimal selection rule, the minimum value of d and n are computed (for specified

values of &) and given in the following table.

A 0.1 0.5 1.0 2.0
d(0.95,0.90,0.80) | 0.05,0.06,0.07 {0.25,0.32,0.33 {0.50,0.64,0.66 1.00,1.29,1.33
n{0.95,0.90,0.80) 817,644,465 33,26,19 9,7,5 3,2,2

(iii) k = 4,
HO: T] T Ty T T3 T T H']: T 1max(12,r3,r4) + Ao,
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]
Hy: 1, 2 max(ry,tgo1,) + 60, Hyt ag - max(ty.1,,1,) + b0,
Hat 1,4 _>_max(1],12,13) tae, Hptoy =, ﬂlaX(‘L3,I4) + Ao, 3
1 Hg: 1y = Ty somax(1y,1,) + 80, Hy:o 1y = 0y > max{v,,rg) + oo,
% Hgt 1o = 1g 2 max(ty,1,) + Ag, Hgt 1y = 1y s omax(ry,cg) +one,
i Higi 13 = 14 2 max{ty,tp) + roy Hlgt oy = 1y = g 2 g + 4, 5
3
: Mot 1y = mp=gzag e, Mgt = ag =g oyt b, '
5 H' - 4 - . ~ + %
3 14 T2"T3_ [4;T] iYe
g For the optimal selection rule, the minimum value of d and n are computed
} (for specified values of A) and given in the following table. ]
1
5 0.1 [ 05 “___F:_"_’_T.-LO;IZ;' .
§ d(0.95,0.90,0.80) {0.05,0.06,6.07 {0.25, ¢.32, 0.33{0.50,0.64,0.66]1.00,1.29,1.3 1
i n(0.95,0.90,0.80) | 726,572,413 l 30,23,17 l 8,6,5
. - Tt o mr - 4
»

Note that P* is the probability of correct selection for the associated subset i

selection rule, while the error probability y is controlled at 5 percent level. The ,

T s O

. identification risk is 0.05 + {1-P*). We can explain the cases described above as
follows: for k = 2, if the selected subset contains m only, we identify

H%, i=1,2; if it contains ™ and noa We identify HO. for k = 3, if the

selected subset contains s only, we identify H%, i=1,2,3; if it contains {
L and oy Ty and my, OF T, and s only, we identify H&, Hé or Hé, respectively.

i
Similar discussion applies to the case k = 4.

i

i
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Now, we discuss the case where o° is unknown. For any i, the maximum !
likelihood estimators of 1, and o? are: !
Y.
1
_rerpmtey=la=1 -1 .
Ty = (Crz0) e Y :
4 Yik
and
3 2. NP RS RO BV PO
o = I?:Tjrﬁ:Tj-!i [Zi - Zi C(C Zi C) C Xi ] !i.
_5 We know that 82 and ii are independent and the distribution f(s) of s = %
‘ is /Xg(s) with p= (k-1)(n-1). ' ]
b
As before, we define the selection rule as follows: ‘
y |
i 1 if Yi1 teeot Yik 3_d]8,
3 91(31’ a) =
.4 0 otherwise .
: ‘ or
| RTET N '
» 1 i2k-T L. %57 KT°
‘ 0 J#
?i(fs U) =
0 otherwise
! :
g Conditionally, for an observed value of o, we can discuss the optimality : !
as before. However, the constant d and n can be determined without any |
: difficulty by (2.8) and (2.9). Since ‘

0,~ ~
EI ¢i(£i9 O) =Y T € 90

we get




.y ]

DR Y i adt <. it LLTUCR

. e -

B ey T e o ott®

d]s/ﬁ
(2.6) fe[- ————] f(s)ds = v,
Y-k (k-T)
and

inf P(CSleY)

2

(d]s-(k-l)A)/ﬁ

(2.7) = [ o[- f(s)ds = P*,
[ ? YT-2)k (k=1) If(s)ds
This gives
d]/ﬁTH?TT
(2.8) tl[- —— ; (k-1)(n-1),07 = v,
Y(T-2)k
and
d,vn(n-1)
(2.9) - X ke, ATy
Y{T-1)k Y{T-27k

where t(a; b, ¢) is the percentage point of the noncentral t with b degrees

of freedom and the noncentrality parameter C.
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