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SOME SEQUENTIAL SELECTION PROCEDURES FOR GOOD REGRESSION MODELS

Tong-An Hsu

National Central University, Chung-Li, Taiwan

Deng-Yuan Huang

Academia Sinica, Taipei, Taiwan

ABSTRACT

In the past decade a number of fixed sampling methods have

been developed for selecting the "best" or at least a "good" sub-

set of variable in regression analysis. We are interested in

deriving a sequential selection procedure to select a subset of a

random size including all good regression equations. Tables for

an example are given at the end of this paper.

1. INTRODUCTION

In the past decdde a number of fixed sampling methods have

been developed for selecting the "best" or at least a "good" sub-

set of variables in regression analysis (see e.g. Arvesen and

McL,ibe, (1975) and Spjotvll (1972)). In this paper, we are inter-

ested in deriving a sequential selection procedure to select a

random size subset including all "good" regression equations.
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Tables for an example are given at the end of this paper.

2.__ SEQUENTIAL SUBSET SELECTION PROCEDURE

Before discussing the regression problem, we develop general

results applicable to the selection of "good" or "superior" popu-

lations defined later.

Let 7T0 71 ....'R k denote k+l normal populations with unknown

2 2 2 2
means vO' 1 1 .'.k and variances ro0, I ..... k. Assume that 0

is known but a 2 (1 < i < k) are unknown. Let the ranked

2 2 2
values of u 2 be denoted by ail] 2 .. [k] . We wish to derive a

method to construct a sequential procedure to select a subset con-

taining all "superior" populations - the populations with smaller

variances, with a probability not less than P*, (0 < P* < 1), a

specified constant. We assume that a2 .

Let Xin denote the nth observation from population i. It is

assumed that the observations X il ..., Xin are independent random

variables. Define

Xin n jy1 1

and

2  1 n 2
in = ~ Y (X.-.)•in n--! j il in

j=l ~ i
2

The selection procedure will depend upon {Sin which is a suffi-

cient and transitive sequence and also invariantly sufficient for

L {,, 2

A population Ti is said to be "superior" (or "good") if
" 2 "or. .ba "2

A, to be 'inferior' (or "bad") if n > A, where A is a speci-

fied constant greater than 1. Let Q be the parameter space which

is the collection of all possible parameter vectors e

( ,) Let t denote the unknown number of inferior

k.



populations in the given collection of k populations. We have

0 < t _ k. Let

= lo 2 2 A 2 2t [ 1 1 ] ** '" [k-t] - ^  [k-t+l] <'"- [k]}"

k
ThenQ = U ot"

t=O

For the subset selection procedure R, two constants A and P*

with A 1 1, 1 > P* - 0, are specified and we wish to select a sub-

set containing all superior populations with a probability of at

least P*. When all the superior populations are contained in the

selected subset, we say a correct decision (CD) has been made.

Thus we require a procedure for which

Po(CDIR) > P*

for all o E si.

Let q 2(Sin) denote the probability density of S depend-
i

ing on the parameter o. We define the log-likelihood ratios

2 2 22.1)

nSi = log gAin) - log g1( ) (2.1)

upon which the procedure is based.

Elimination type sequential selection procedure R for selectinq
the superior oulations.

Begin by taking n1 (> 1) independent observations from each

of the k populations. Calculate the values of the k log-like-

lihood ratios n 2 , 1 i < k. For any i, if
n n (Sn_

E~ (s 2 > a,n I i

where a = log(k(k+l)/2(1-P*)), we eliminate the population i from

further consideration. We proceed to the next (second) stage by

taking n2 - nI independent observations on each of the remaining

populations. The log-likelihood ratios for the contending popu-

lations are again computed and the same elimination rule is used

!'J



s2 2 ) ecniu
except that t n(Sin2 ) everywhere replaces (Sin ). We continuen 2 in 2n Iin1

in this manner until the elimination is stopped, at which time the

procedure is terminated with the declaration that the remaining

populations are the superior populations. If after applying this

rule at the sth stage (say), the number of remaining populations

is zero, then we select the population m0 which is the control
population.

Note that nI is the sample size of that stage of the proce-

dure at which a decision may be made, for the first time, to

reject one or more populations. Let n2 > n1 be the sample size of

the next stage of the procedure at which such a decision may be

mdde, and in general let ns s ns- 1 be the sample size of the stage

of the procedure at which the sth decision to reject one or more

populations may be made. Let N be the stage at which the proce-

dure termindtes. It is clear that if there are k populations to

start with, then N < nk (see Gupta and Huang (1975)).
We assume that

P 2 i  n ( 
2

in2)n .n a for some n} (2.2)

is a nondecreasing function of o. A sufficient condition for

this is discussed by Hoel (1970). Without loss of generality, we

assume that r1 .. rTk-t are the superior populations. Since the

procedure R is truncated, we have

2
I-P(CDIR) PI n (s in) a for some i = ,...,k-t,

fo or some t, 0 t - k, for some n)

k k-t

< P2. 2 n (sin ) a for some ni
t:O ixl ,.

* , (-t~ea 1t-e i-I

S (k- t)e,-a k(k+l)e -a - *

t 2



3. APPLICATIONS TO SELECTION OF "GOOD"

OR "SUPERIOR" REGRESSION EQUATIONS

Assume the following standard linear model as follows,

Y =XU + E (3.1)

where X is an nxp known matrix of rank p < n, is a pxl parameter

vector, and c N(O, oln). Consider the models for any r,

2< r , p-l,

Y = Xri ri + Cri (3.2)

where X ri is an nxr matrix of rank r with X = [1... ]xn' Bri

is a rxl parameter vector, and cri - N(O, o2 In) , where i=1... r

(r-1). Let k= k The goal is to include all the designs Xrir=2 r"

(or sets of independent variables) associated with 2 j

1,.... ,k-t.

Note that for any r, 2 < r < p-l, if

SSri = Y'{I - Xri(X rXri)-IX'ri}Y = Y 'Q ri Y ,

then following Searle (1972, p. 57)

s 2 2 2SSri/00 X2fVr , (0)ri (Xo)/(20)),

where vr = n-r, for I i < kr . Note that the noncentrality
r ~ -_ r*parameter is not zero in general and that

2 =2ri = 0 + (X0)'Qri(X)/vr.

If a2 is not equal to 1, then we consider the linear model Y/O=

X/O+ ,0 ' + ' N(O,In ). Thus we assume without loss of general-

ity that a 2 1.

We know that the non-central X2 (x,x) with non-centrality

parameter x has monotone likelihood ratio in x. Hence the monoto-

nicity of (2.2) is satisfied. We can apply the sequential proce-2
dure R to select superior regression equations by replacing Sri,n

by SS ri/V r

ri

2'



4. COMPUTATION OF (2.1)

Let U ri SSri/V r' The probability density of Uri is

1 v1+k-I (VU

k 2Vr r2 r

g 2 (Uri) Vr k
i- v + k

ri k! 22 r 1 r  + K)
2

2where jri = 1 + (XW)'Qri(XB)/v r , vr = n-r and = (XB)'Qri (X)/2.

If 1, then 0- and if o2 = A, then X =(A-)vr/2. Hence1ri ri rA'~v2

kF. k F(1 Vr)
q (U.i)!ql(Uri) = - -J(4.1)

r k=O 1(2 Vr + k)

where ( -1)vr/2. Let

ak e --k,, _ r -r-i r)k = 0 1 2

2 r + k)

Since

ak+1 =_ A V U __1

- k+ r2Ji T 1 -+ 0 as -k-"',
ak k+l ( V + k)

then for any 0 1, there exists q such that

ak+l€k-a < A • 1, for all k > q.

a k

Let us consider the error due to the truncation of the series

in (4.1). Let q be the number of terms in the truncated series.

Then the error due to truncation of the series in (4.1) is given

by

a
k _q+kk=O



I.

Given , > 0, let k0 be the smallest positive integer k such that

a k  ak+ I  +a k
< I and -- +--< 1.nak n -

For this ko, it is easy to prove that

0 - g A(Uri)/g1(Uri) - Y. ak1 k ak +k L n.
I _O k 0 k=0 0

Thus gA (U ri)/g 1(Uri) ak with error less than n. To evaluatek=O

9(Uri)/q1 (Uri), the computation is very efficient.

5. EXAMPLE

In this section we present an example which will serve to
illustrate the sequential subset selection procedure. The data
set is taken from Neter and Wasserman (1974, p. 373), who used it
to illustrate several methods of finding a "best" set of indepen-

dent variables.

There are n = 55 observations on p = 5 independent variables.

Then k = 24 - 2 14. For the subset selection procedure R, two
constants A and P* with A > 1, 1 > P* > 0, are specified and we
wish to select a subset containing all superior regression equa-

tions with probability at least P*.
Begin by taking n, (> 5) independent observations. Calculate

the values of the k ratios gA(Uri)/l(Uri) with error n (specified).

For any r, i, If
i~ A(ri)/gl(Uri) -

where b = k(k+l)/2(l-P*), we eliminate the regression equation
from further consideration. We proceed to the second stage by
taking n2 - nI independent observations on each of the remaining
regression equations. The ratios are again computed and the same

'S
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elimination rule is used. We continue in this manner until the

elimination is stopped, at which time the procedure is terminated

with the declaration that the remaining regression equations are

the superior regression equations.

Let n = 0.1. For the value of gA (Uri)/91(Uri), this error of

0.1 is small enough with respect to constant b. Table I-VII

are the subsets of independent variables of elimination for the

sequential subset selection procedure R.

Table III, we consider A = 1.2. If P* = 0.9, then the proce-

dure R eliminates (Xl , X5 ), (X1, X4 ) and (XI , X3) at stage 1

(nI = 11); eliminate (X, X4, X5) at stage 2 (n2 = 16) and elimi-

nate (Xl, X3, X4 ) at staye 3 (n3 = 21). No subset is eliminated

at stage 4 (n4 = 26). Thus the procedure is terminated. (Xl,X2),

(XI , X2 , X3 ), (XI, X2 , X4 ), (XI, X2, X5 ), (XI, X3 , X5 ), (X I , X2 ,

X3 , X4 ), (XI, X2, X3, X5 ), (XI, X2 , X4, X5 ) and (X1 , X3, X4, X5 )

are the set of variables of superior regression equations. We can

use Cp statistic to select one of good regression equations among

the set of superior regression equations. For this example,

(X I , X2 , X4 ) is the set of variable of a good regression equation

(cf. Neter and Wasserman (1974)). Table I-VII represents the

results for A 1.1, 1.2, 1.5, 2, 3 and 5; P* = 0.7, 0.8 and 0.9.

TABLE II

0.1, A 1.1.

n 16 21 26 31

0.7 -... .- 4 T i,3) T -- ,5)(1,3.4) no rejection(1,5) __ _ _ _ _ _ _ _ _

o.8 71 ,5)-,31) -75-,(,3,4)T no rejection
0 (1,4) 1

0 -T9 ' 7 1 -, 5 , (3,-3 - - - - -T5- i -._-- n o r e j e c t i o6 n

.. .. 'Um. . .. . .]_



TABLE I I I

n 0.1, A =  1.2.

* '11 16 21 26

0.7 . 1,4,5,- rejecti on
(1,4),11,3)

0 .-98 --- .. ( -, 4 - 5- T , -5 n o -r e j e c t io n . .. . . .
( 1,4), ( ,3)

0-.9 ( 1,4,5 ,3,4 no rejection

.. .. .. 0 ,31 __

TABLE IV

0.1, A = 1.5.

6 11 16
0..... , T , ( , .. T T , ,- - no rejecti on

(1,3,4)

S,3,4),( ) rejection

0-.9 ....----I3 .. .. - 5-, 5 ] no r ej e6ctioo ... (l ,3,4), (l,4)

TABLE V

= 0.1, A 2.

n 6 11 16

0.7 ... T -,495191,- T -,3,4 no rejection

H(,4 , 1 , 3 ) 
_ _ _ _ _ _

- -- T,- -,I3 ) no rejection

0-9 T, )...(1-,4--5T,-F-,3-4 no rejection



TABLE VI

n = 0.1, A 3.

6 11 16
_+,, 4 , TI --0. 7 4,5), (1, (1 ) no rejection

0.- .T4 2 , 5) 1, no rejection

J_ (1,4) , (1. 3) . . .. . .. . . ... . . . . . .

TABLE VII

,I 0.1, A = 5.

6 11

0.7 ... IT ,U -- ,TI7 _4 no7rejection
(I, 14) . ,I3)U-.; 1,£4, ,T,5--),T-3, noreecio4  , no rejection(l ,!),({,3)____

-9 -- 7T , 4,5T,--,-5)-,-,3-,-4-)- ...... n ejection
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