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Abstract

A family of syntactic complexity metrics which contains a

number of current metrics is defined. The family is used as a

basis for experimental analysis of metrics. Once the family has

been implemented, several metrics may be readily formed and com-

puted. This paper uses the family to compare a few simple syn-

tactic metrics to each other. The study also indicates that

individual differences have a large impact on the significance of

results where many individuals are used. A metric for determin-

ing the relative skills of programmers at handling a given level

of complexity is also suggested. The study uses the metrics to

f.emonstrate differences between projects on which a methodology

was used versus those on which it was not.
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1. Introduction

As computer scientists attempt to understand the software

process and product, it is natural to try to measure those

aspects of software which seem to affect cost. A major problem

in computer science is the intellectual control of design which

is directly related to the complexity of the product. Many

attempts at quantifying the complexity of computer programs have

been made [Basili & Reiter 79, Chen, Curtis et al, Dunsmore &

Gainon 80, Halstead, McCabe, Sunohara et all. A good complexity

metric could be used as a quality assurance test by software

developers and even as a contractual obligation. Current com-

plexity metrics may be roughly divided into two basic groups, (1)

static metrics which are measures of the product at one particu-

lar point in time, and (2) history metrics which are measures of

the product and process taken over time. This paper will deal

with static complexity metrics, based upon the physical attri-

butes of a software product. These fall into three basic

categories: volume, control organization, and data organization.

Each of these categories will be discussed briefly below.

Volume metrics are measures of the size of a product; for

example, the number of lines of code, the number of statements,

or the number of operators # and operands [Halstead]. Of course,

the software science volume metric is in this group. Even

cyclomatic complexity [McCabe] can be placed in this category

since it is the number of decisions plus.one. The number of pro-

cedures, the average length of procedures, and the number of



variables are examples of volume metrics. The number of

input/output formats [Carriere & Thibodeau] and other abstraction

metrics are volume metrics as well. Note that these are measures

of the logical size, rather than just the physical size, of a

program.

Control organization metrics are measures of the comprehen-

sibility of control structures. Thus cyclomatic complexity, when

viewed as the number of control paths, is also a control metric.

Knots [Woodward et al] and Maximal Intersection Number [Chen]

attempt to measure the control complexity by visual properties of

program control, either as it is written (in a computer language)

or as it would appear in a planer flow graph. Average nesting

level has been shown to be a useful control organization metric

[Dýunsmore]. Essential complexity [McCabe], which will be dis-

cussed later, falls in this category as well.

Data organization metrics are measures of data visibility

and use as well as the interactions between data within a pro-

gram. Data binding [Basili & Turner 76; Stevens, Myers & Con-

stantine] is an example of a module interaction metric. A span

SEls hoff] ..ia. attemp._tomeasure the _pro ximi ty of references, to

each data item. As such it qualifies as a data organization

metric. Slicing [Weiser] can also be considered as a data organ-

ization metric. A slice is that (not necessarily consecutive)

portion of code which is necessary in order to produce some par-

tial output from the program.
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2. Definition and Analysis of a Structural Metric Family

All of the above metrics have failed to gain full acceptance

as a valid measure of program complexity for at least two rea-

sons. First, there is a lack of experimental evidence to deter-

mine what aspects of the system life cycle the metric actually

explains. While a metric could correlate well with debugging

time, it might still be a poor predictor of the effort required

to do maintenance. We need experimental evidence that is focused

on the expected uses of thýe metrics. Second, existing metrics

are static (non-parameterized) so they cannot be tuned to the

results of exploratory analysis.

A complete development of the structural family of complex-

ity metrics may be found in [Basili & Hutchens]. The structural

family includes many metrics from the volume and control organi-

zation groups. The data organization group is a subject for

future research.

If the family is to include many of the metrics in the

literature it must incorporate length, nesting level, control

paths, types of control structures, and decomposition simplicity.

The family should transcend languages (although specific members

may not). The various members may relate to many aspects of

software development and maintenance although any one metric may

only be useful in a limited way.

Length can be measured by lines of code, with or without

comments. However, in a free format language this measure can be
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altered by cosmetic revisions of the code, so the number of

statements seems to be a more consistent measure. Nesting level

might be included explicitly or as a factor to be multiplied with

the complexity of the lower levels. Control paths and types of

control structures are closely related and are handled in a

variety of ways by current metrics, so the family must allow a

general mechanism for these concepts. Decomposition simplicity

is intended to measure the naturalness with which the intended

function is broken into smaller functions.

With these concepts in mind, a recursive definition of a

family of control structure complexity metrics (c) could be given

by:

k
c(p) - b >- c(pi) + f(n,lev,t,s)

where p is a program which is decomposed in some fashion into k

components pl, p2, ... , pk. The parameter b is used to generate

the multiplier for nesting level. The function f, the key to the

metric, has four arguments: n, the number of decisions in program

p which are not part of a particular subcomponent; lev, the nest-

ing level of component p; t, the type of structure instantiated

by p; and s, the structural "niceness" of p.

Some discussion of, and restrictions on, the parameters will

clarify their meaning. b is intended to penalize nesting so b >

1; where, of course, b-1 just removes it from the formula. Since-

an increase in the number of decisions should not decrease the
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complexity, f should be a nondecreasing function of n. At first

glance, one might be tempted to place a nondecreasing condition

on f with respect to the level, lev. However, there is reason to

believe that a concave up function (one which falls at first and

latter rises) of lev may be better [Dunsmore]. An example may be

found in [Basili & Hutchens].

It should be noted that b is in fact superfluous, for the

metric

k
c(p) - b -c(pi) + f(n,levt,s)

T-1

k
- c(pi) + f'(n,lev,t,s)
i-1

lev
where f'(n,lev,t,s) - b f(nlev,ts).

In this example, b is reduced to a constant in the function f'.

The use of the constant, b, makes the penalties more explicit

than does hiding that information in the function. Indeed, many

instantiations may use b instead of lev.

The values of t normally range over syntactic entities, such

as while, case, and if statements. The parameter s is used to

determine if the control structure is "nice." More specifically

it normally has two values, "structured construct" and "non-

structured" construct.

The control flow of a program may be described by a digraph.

A program (equating the program and its digraph) is called a
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proper rp.Lgram if it has a single entry and a single exit, and

every node of the program liec on nome path from the entry to the

exit. A proper program is called a prime program if it contains

no proper subprograms with two or more nodes. The usual while do

od and if then else fi are examples of common prime programs. A

prime decomposition is found by continually replacing prime sub-

programs by function nodes (a node with a single entry and a sin-

gle exit). A proper program has a unique prime decomposition if

successive sequences are treated as a unit [Linger, Mills &

Witt].

By letting the parameter s have the two values 1) proper and

2) not proper, the resulting (sub)family is given by:

k / f(nlev,t) ; p proper
c(p) - b > c(pi) + <

if-1 \ g(n,lev,t) ; p not proper

This restricted family will be the subject of the rest of this

paper. If one assumes that proper programs are less complex than

non-proper programs then f(n,lev,t) < g(n,lev,t) for all n, lev,

and t. The restricted family might reasonably be called a syn-

tactic complexity family since it is based on the syntactic

decompositions of the program.

3. Some Members of the Family

The decomposition of p into pl, p2, ... , pk can be based on

the syntactic structure of the language. One major benefit of

this approach is the ease with which a compiler can be changed
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into an automatic metric tool. As a simple example, consider the

decomposition of programs into statements (and statements into

substatements) where

k / I ; p a statement
c(p) - 5-c(pi) +

i-I \ 0 ; otherwise.

Note that this uses the t parameter of the family. The resultant

measure is nothing more than a statement count volume metric.

Cyclomatic complexity may be generated by counting the deci-

sion constructs in the program plus the number of segments

[McCabe]. The measure is just

k / 1 ; p a decision or segment
c(p) - >-c(pi) + <

i--I \ 0 ; otherwise

and eventually each decision will be counted exactly once.

Therefore, the member is just the cyclomatic complexity.

The last example of the members of the family follows:

k / 1+log2(n+1) ; p proper
(1) c(p) > 1.1 - c(pi) + <

i-•I \ 2*(1+log2(n+1)) ; p not proper

This member exhibits some of the flexibility of the family. The

b value of 1.1 penalizes nesting by counting each statement 10%

more than it would be at the next outer level. Furthermore,

poorly structured code cost twice as much as well structured

code. Each statement must contribute at least one to the measure-

due to the addition of 1 in each of the functions f and g. The
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use of the logarithm encourages the use of case statements, the

only standard control structure with more than one decision node.

Thus, this metric includes consideration of nesting level, length

(statement count), structured programming practices, and bonuses

for use of an organizing construct (the case statement).

Several other members of the family, including essential

complexity and the software science count of total operators and

operands, are derived 'in [Basili & Hutchens].

4. Experimentation

This research focuses on the ability of product metrics to

explain the number of program changes made during development as

well as the differences in the metrics caused by different

development strategies. Program changes were defined by

[Dunsmore & Gannon 771 and shown to be closely related to the

number of errors made during development. The product metrics

used are from the syntactic complexity family. The syntactic

complexity family with proper verses not proper statement dis-

tinctions has been implemented in the SIMPL-T compiler [Basili &

Turner 75]. SIMPL-T is a GOTO-less non-block structured language

which allows statement nesting. Loops may be abnormally exitcd

using the EXIT statement and RETURNs are allowed at any point.

SIMPL-T is used in many courses at the University of Maryland.

The research reported in this paper uses a database of 19

compilers written by upperclassmen and graduate students at the

University of Maryland. The compilers were written under three
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different development methodologies: ad hoc individuals (AI), ad

hoc teams (AT), and disciplined teams (DT). The ad hoc individu-

als and ad hoc teams were not given any particular methodologies

or techniques to be used in the implementation. They were free

to organize the project in any way they desired. The disciplined

teams were required to use a list of methodologies and techniques

which were taught in their class. These methodologies included

chief programmer teams, walkthroughs, and top down design with

PDL, among others. Several metrics have already been tested to

see if they detect the differences among the groups [Basili &

Reiter 79,81].

The results reported here deal with the metric defined in

equation (1) (referred to as SC in the rest of this paper) as

well as statement counts (ST), call count (CA, the number of

calls including procedures and functions whether user defined or

predefined in the language) cyclomatic complexity(CV), and the

number of decision statements (DS). Appendix I contains the

coefficients of determination (r square) and the slope of the

lines for each of the projects and each of the metrics using sim-

ple regression analysis [Neter & Wasserman].

The five metrics considered here are highly correlated as

may be seen in the correlation matrix in Table 1. For this rea-

son, multiple regression equations tended to be erratic, with the

coefficients changing greatly with the addition of new variables,

while producing minimal increases in R square. Of the 19 pro-

jects, the addition of a second variable had one of three basic
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Correlation Matrix

for the product metrics

ST SC CA CV DS

ST 1.000
SC .975 1.000
CA .845 .770 1.000
CV .879 .893 .747 1.000
DS .873 .939 .617 .832 1.000

Table 1

resuits. Four of the projects found no second variable to be of

any value at all. Five of the projects found a second variable

that was moderately useful. The ten remaining projects added a

second variable whose coefficient was negative, while doubling or

tripling the coefficient of the original variable, indica.ting

that the two variables were highly related and making the regres-

sion mo'del questionable. Therefore, the rest of this paper deals

only with simple regression equations.

4.1. The Effects of Individuals

The first attempt at comparing the metrics with the number

of program changes was done between projects. That is, the

number of program changes for each project was determined and the

metrics were computed on each segment (procedure or function) in

each project. The complexity of the project was then computed by

several methods. These include summing the complexity of each

segment as well as summing only the most complex segments (such

as the top 10 or 20 percent). All of these attempts at correlat-
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ing the number of program changes to the complexity of thie pro-

ject were unsuccessful.

Graph I gives an example of the scatterplot of a metric (in

this case. SC) with the number of program changes, where both

values are summed over each project. The relationship between

the metric and the number of program changes is almost non-

existent.

However, each of the complexities of the individual segments

in one project was correlated to the number of program changes

made in that particular segment. Only the 6 projects that were

developed by ad hoc individuals were used in this part of the

study. The coefficient of determination (r square) for SC as a

predictor of program changes ranged between .475 and .866 for

these 6 projects. The other metrics had slightly lower values

but a similar spread (see Appendix 1). Therefore, when an indi-

vidual is isolated it appears that these metrics do correlate

well with the number of program changes.

Graph 2 gives an example plot of a metric (again SC) with

program changes where only one ad hoc individual's project is

considered. Each point represents a segment (procedure or func-

tion) in the final delivered product. It is clear that this

approach yields a much closer relationship between the variables

of interest than the inter-product comparison of Graph 1.

It is somewhat surprising that a linear fit does better than

an exponential fit for almost all cases in terms of both r square
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nnd the distribution of the residuals. Many have argued that

segments should be made very smRll to control their complexity.

An exponential fit would imply that the argument is valid, since

the sum of the complexities of several very small segments would

be much smaller than the complexity of one larger segment with

the same amount of code. However, a linear fit implies that

there is no advantage to splitting a large segment into many

smaller segments unless duplication of code could be reduced.

The 19 projects did demonstrate a linear fit for all five

metrics. Only a couple of isolated fits yielded any improvement

using exponential fits. The straight lines do intersect fairly

close to the origins, so the poor fit of the exponential is not

caused by missing the low valued points due to forcing the curve

through the origin.

It is highly probable that the linear model appears to fit

best because the segments are so small (the average "maximum seg-

ment size" for the 19 projects is 66 statements). The exponen-

tial tail might show up if there were larger (more complex) seg-

ments. It is also possible that programmers naturally limit

themselves to smaller segments where they can handle the complex-

ity level.

More interesting, however, is the fact that the slopes of

the fitted lines varied from .157 to .729 for SC. Similar varia-

tion exists for the slopes of the other metrics. The slope of

the line may, in fact, be viewed as a measure of a programmer's

12



.4bility to cope with complexity since it is just the number of

program'changes he makea in developing a program for each unit of

complexity. This interpretation is possible because the inter-

cepts of the regression lines are close to zero. It is this

variation which accounts for the lack of results using several

projects produced by different people.

Experimentation which combines the work of different people

is likely to containa large amount of noise. Any results which

can be obtained are of course not invalidated by the noise. How-

ever, results may not show statistically even when they exist in

the underlying population. Indeed, this phenomena alone may be

the cause of many failed experiments.

4.2. Slope Metrics

Using the slope as an indication of a programmer's ability

to cope with complexity gives hope of producing an experiment

which can quantify a programmer's limitations with respect to

the complexity of various applications. The results might be

used for management decisions such as assignment of tasks.

The results presented here, however, do not give a total

picture of the individual's ability to cope with complexity. One

complexity metric is not powerful enough to represent the diffi-

culty of the task.

Since a single complexity metric is unlikely to cover all

aspects of complexity, it may be possible for a programmer to

13



shift the difficulty of development to unmeasured areas. A vec-

tor of metrics (and corresponding slopes) might give a better

indication of the ability of the programmer to cope with complex-

ity, In fact, such a vector may be useful in determining how to

allocate the available programmer resources so that each is work-

ing on problems where the complexity is expected to be of the

type that he is most capable of handling.

One advantage of a slope metric is its independence of the

specification (as long as the specification is not changing).

Note that in the case of this experiment, the specification for

each of the segments in a given product is different. It might

therefore be possible to take measurements from the regular work

of the programmers over a long period of time and avoid the need

for a special experiment. Thus the programmers will not need to

be specifically aware of the experiment so their performance

would not be affected by any reactions to the experimental situa-

tion.

The benefit of a derived metric like slope might still be

realizable even if the fits are nonlinear. For example, if the

relationship is exponential, the value of the exponent might pro-

vide a measure of the programmers limitations. The use of

metrics in the evaluation of programmer's ability to copy with

complexity is an area that warrants considerable research atten-

tion.

14



4.3. Comparison of Metries

The five members of the family have been compared to see how

well they predict the number of changes that were made to each

segment. The results are summarized in Table 2.

For each project, the coefficient of determination was com-

pared over the five metrics. Friedman's test [Conover] is

employed to determine globally (over all five metrics) whether

there is reason to believe that any of the metrics performs sig-

nificantly differently from the others. After concluding that

there is a difference in the metrics at the .02 level of signifi-

cance, a two-tailed sign test [Siegel] was used pairwise to test

the null hypothesis that the metrics have equal predictive value.

If the level of significance was less than .20, the alternative

hypothesis (that there is a difference) with the direction of

difference was listed in Table 2. Otherwise, the two metrics are

listed as "U", indicating that we may not reject the null

Metric comparisons
(using the sign test)

Friedman yields a .02 level

"SC = ST" (10/19)
"SC > CV" at .167 level (13/19)
"SC > DS" at .063 level (14/19)
"SC > CA" at .019 level (15/19)
"CV < ST" at .019 level ( 4/19)
"CV - DS" ( 7/19)
"CV - CA" (10/19)
"DS - ST" ( 7/19)
"DS - CA" (11/19)
"CA < ST" at .063 level ( 5/19)

Table 2
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hypothesis. The last column contains the ratio of tthe times that

the first listed metric had a better (higher) r square than the

second metric, to the total number of data points in the group.

It should be noted that significance levels of .2 are not

particularly strong, and in fact anything over .05 is perhaps

best read as indicative of a possible trend but inconclusive in

the current study.

The results show that ST does better than CV and CA in

explaining the number of program changes. Moreover, there is an

indication that SC is better than CA, CV, or DS. There is no

distinguishable difference between SC and ST or between CA, CV,

and DS.

Since the statement count is very easy to calculate and many

researchers have found that it does a credible job of measuring

the complexity, it must be considered as the metric to beat in

studies of this kind. This study has failed to find a metric

that is significantly better than statement count.

4.4. Comparison of Methodologies

The five metrics were used to compare the different groups

of teams. This part of the study uses the Kruskal-Wallis test

and the Mann-Whitney U test [Siegel] to determine if a particular

group appears to have a better value than another. The groups

were compared with respect to the values of the slope and the

coefficient of determination. Note that the slope of the line
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has units of changes per unit of complexity. Thus the lnrger the

slope, the more changes made in the face of a given level o-f com-

plexity and (supposedly) the worse the methodology or programmer

which produced it. Statistically, the coefficient of determina-

tion is a measure of the amount of variation in the dependent

variable (program changes) that may be explained by the variation

in the independent variable (the product metric). In this case,

we contend that the coefficient of determination is a measure of

the consistency of the -group with respect to spreading the prob-

lems evenly through the code (as measured by the complexity

metric). Under the hypothesis that methodology makes a group act

more like an individual in terms of the consistency, one would

expect that the disciplined teams would have a coefficient of

determination which is slightly lower (less consistent) than the

ad hoc individuals but larger (more consistent) than the ad hoc

teams. The results appear in Tables 3 and 4. The CALLS metric

does not appear in these tables because none of the statistics

are significant with regard to it. Appendix 2 shows the raw data

sorted and displayed to illustrate the contribution of each

group.

The Kruskal-Wallis test yields a significance level of

between .02 and .05 (depending upon the metric) in favor of there

being some difference among the slopes of the groups.

As may be seen in Table 3, the slope of the line is larger

for the ad hoc individuals. This means that the disciplined

teams do a better job (by requiring fewer program changes) for a

17



Methodology Comparisons

(using the Mann-Whitney U test)

slopes

SC
Kruskal-Wallis at .05 level
Mann-Whitney AI > AT at .132 level

AI > DT at .014 level
AT = DT

ST
Kruskal-Wallis at .05 level
Mann-Whitney AI > AT at .094 level

AI > DT at .014 level
AT - DT

Cv
Kruskal-Wallis at .02 level
Mann-Whitney AI > AT at .180 level

AI > DT at .008 level
AT > DT at .074 level

DS
Kruskal-Wallis at .02 level
Mann-Whitney AI > AT at .026 level

AI > DT at .008 level
AT - DT

Table 3

given amount of complexity than the ad hoc individuals.

Furthermore, the ad hoc teams did better at coping with syn-

tactic complexity than the ad hoc individuals (particularly for

the DS metric), indicating that teamwork, even when undiscip-

lined, can show some advantages. The disciplined teams do show a

superiority over the ad hoc teams for the CV metric.

For the coefficient of determination, the Kruskal-Wallis

test gives a significance level of .03 to .10 in favor of there

being some difference among the groups. The ad hoc teams seem to

have a lower coefficient of determination than the ad hoc indivi-

duals. It is conjectured that this results from the differing

18



Methodology Comparisons

(using the Mann-Whitney U test)

r square

Sc
Kruskal-Wallis at .03 level
Mann-Whitney AI > AT at .016 level

AI > DT at .180 level
AT < DT at .052 level

ST
Kruskal-Wallis at .10 level
Mann-Whitney AI > AT at .026 level

AI - DT
AT < DT at .034 level

cV
Kruskal-Wallis at .10 level
Mann-Whitney AI > AT at .016 level

AI > DT at .128 level
AT - DT

DS
Kruskal-Wallis at .10 level
Mann-Whitney AI > AT at .042 level

AI > DT at .180 level
AT < DT at .138 level

Table 4

abilities of the members of the ad hoc teams causing different

parts of the system to be assembled with varying degrees of

effectiveness. It is interesting to note that the disciplined

teams appear to fall somewhere between the other two groups.

This also indicates that a team that works with a set of metho-

dologies tends to be more consistent than a team that does not.

In fact, the data indicating that the disciplined teams have a

lower coefficient of determination than ad hoc individuals is

very weak, lending more justification to the consistency

hypothesis.
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5. Orthogonality of the metrics

If the complexity of computer programs is to be measured, it

is necessary to develop metrics which have a degree of ortho-

gonality, i.e. metrics which measure different aspects of the

complexity. As was seen in the correlation matrix of Table 1,

the metrics considered so far lack this property. One possible

way to gain some orthogonality is to normalize the metrics. For

example, if cyclomatic complexity is normalized with respect to

length (by computing CV/ST) the resulting metric is a measure of

decision density in the code. One might then ask if code with a

high decision density requires more program changes than code

with a low decision density. For our data, the answer is no.

Similar results (or lack thereof) hold for CA and DS normalized

by ST.

A mild relationship does seem to exist between SC/ST and

program changes. It is conjectured, however, that this is so

because the nesting penalties as defined for SC produce a multi-

ple of length for nested statements, so that SC/ST is related to

nesting depth which is related to length. The normalized metrics

were also tried in multiple regression equations with the all of

the original metrics, using incremental regression techniques

[Neter & Wasserman]. The normalized metrics proved to yield lit-

tle additional information in the equations. Hence no truly

orthogonal metrics within the study of syntactic metrics which

help explain program changes have been uncovered.
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We believe that orthogonal metrics may exist outside the

realm of syntactic complexity. Metrics that measure other pro-

perties of programs and program development, e.g. data metrics

[Basili & Turner 76; Dunsmore; Elshoff; Stevens, Myers & Constan-

tine; Weiser], may prove orthogonal to the control structure

metrics studied here. We are currently investigating a variety

of metric classes.

6. Conclusions

A family of syntactic complexity metrics has been defined

which encompasses many of the current metrics. The family has

been used in comparing different individuals, metrics, and

development methodologies.

It was found that individuals differ widely in the number of

program changes required to implement a program of some given

complexity. This leads to the possibility of measuring a

programmer's ability to cope with complexity. This ability meas-

ure concept should be pursued with complexity metrics from other

groups of metrics (such as data complexity metrics).

Furthermore, we have some evidence that a team acts more

capably than an individual as measured by the slopes of the fit-

ted regression lines. This lends support to the argument that

even small projects which one person might be able to do will

none the less be done better if more than one person cooperates

in the development (at least when they take active steps, such as

the use of various methodologies to aid in their communication).
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Finally, it was shown that ad hoc teams show far less con-

sistency in their ability to cope with complexity than ind.ividu-

als or disciplined teams, giving further support to the claim

that a disciplined team tends to gain the advantages of a team

(lower slope) while maintaining the more consistent properties of

a single individual.
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9. Appendix 1
Slope and Coefficient of Determination Data

slope
SC ST CA CV DS

.729 1.162 1.411 1.776 4.567

.286 .397 .443 1.013 3.044
AI .157 .277 .469 .440 1.076

.576 .809 1.460 2.121 3.114
.499 .927 3.859 2.788 2.950
.437 .684 .406 1.318 2.774

.204 .319 .547 .531 1.060
.492 .785 1.775 1.244 2.904

AT .085 .121 .118 .289 .640
.173 .244 .242 .799 .841
.456 .743 1.736 1.992 2.840
.128 .254 .502 .621 .811

.155 .239 .510 .258 1.035

.142 .193 .362 .372 1.078

.161 .278 .390 .583 .887
DT .102 .143 .181 .281 .932

.297 .524 .823 .694 1.627

.189 .320 .542 .499 1.319
.141 .210 .323 .431 .812

r square
SC ST CA CV DS

.475 .447 .104 .288 .368

.866 .800 .556 .595 .852
AI .717 .679 .487 .525 .733

.521 .469 .454 .396 .372

.739 .838 .489 .683 .712

.592 .638 .075 .627 .450

.490 .504 .289 .257 .376

.322 .287 .380 .177 .325
AT .170 .149 .078 .187 .207

.054 .051 .024 .086 .042

.585 .551 .533 .589 .515

.207 .227 .319 .210 .232

.335 .358 .257 .065 .302

.351 .309 .312 .163 .382

.724 .790 .705 .522 .480
DT .660 .725 .872 .735 .531

.499 .558 .734 .321 .336

.682 .625 .398 .494 .672

.469 .484 .337 .350 .288
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10. Appendix 2
Sorted Raw Data

(used by Mann-Whitney U test)

r s quare

CV DS SC ST
AI AT DT AI AT DT AI AT DT AI AT DT

•065 .042 .054 .051
.086 .207 .170 .149

163 .232 .207 .227
.177 •288 .322 .287
.187 ._302 .335 .309
.210 .325 .351 .358
.257 .336 .469 .447

.288 .368 .475 .469
.321 1 .372 .490 .484
.350 .376 .499 .504

.396 .382 .521 .551
.494 ' .450 .585 .558
.522 .480 .592 .625

.525 515 .660 .638
.589 .531 .682 .679

.595 .672 .717 .725
A627 .712 .724 .790
,683 , •733 .739 .800

.735 .852 .866 .838

CV DS SC ST
AI AT DT AI AT DT AI AT DT AI AT DT

0258 .640 .085 • .121

.281 .143•21.811 •.102 •14
•289 .812 .128 .193

.372 .841 .141 .210

.431 .887 .142 •.239
.440 .932 .155 •.244

.499 1.035 .157 .254
.531 1.060 .161 .277

.583 1.076 .173 .278
.621 1.078 .189 .319

.694 I1•319 .204 .320
799 I1.627 .286 -397

1.013 2.774 .297 .524
1.244 2.840 .437 .684

1.318 2.904 .456 .743
1.776 2.950 .492 .785

1.992 3.044 .499 .809
2.121 3.114 .576 .927
2.788 4.567 .729 1.162
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