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Abstract

In an earlier paper, an algebraic characterization cos y x .

was made of the problem of resolving closely spaced lT
plane waves incident on a linear array. The character- This angle defines a cone whose central axis liec alonr
ization suggests several data-adaptive processing meth- the linear array. This information alone is sufficient
ods and encompasses the Wiener, Maximum Likelihood, and for many applications. For example, the wave may be
Pisarenko methods. In this paper, the algebraic ap- known a priori to be traveling in the xy plane. Thi: is
proach is amplified and the results extended to consider the case we shall consider hereafte -

correlated noise. A recursive algorithm is given for a el hi
particularly effective processing method.. Z -

NTIS ~&
Summary DTIC tAB

An important array processing problem is that of iati

determining the directions of propagation of plane Waves Icatio ..
incident on a linear array of uniformly spaced sensors.2  y
Contemporary spectral analysis has led to the develop-
ment of several array processing methods that are able

to resolve plane waves with nearly identical directions Distributionj
of propagation. These methods include the Wiener Pre-
diction Filter method,

3 the Maximum Likelihood method,
3  Availab... Aj 8 &iba

and the Pisarenko method.4 This paper amplifies and AveIl and Nt
extends an algebraic approach given earlier' based upon ist
an algebraic characterization of the array processing X

D ist  Stecl

problem. The results encompass the methods mentioned
above and include the case of correlated noise. A re-
cursive algorithm is presented for implementation of a
particularly effective processing method.

Figure 1. Linear array aloi j
Model of the Array Data

Consider the complex sinsoidal time-space plane We have reduced the problem from four dimensions in
wave f(t,r) as represented by the variables to two dimensions, through the constraint

Jrwt+kr (1 of a linear array. We can further reduce the probler. to
f(t,r) = Ae() one dimension by noting that time and space are inde-

where A is the complex amplitude, t is the continuous pendent quantities in this model. Thus we can perfor.
time variable, r = + is the continuous our analyses for w and kx separately. Ordinary time

variable, w is the (temporal) frequency, and k k series processing such as filtering or spectral estima-(mr) r eya, x tion can be applied to each sensor to first determine
+k .k Zk is the wavenumber (spatial frequency). This the presence of signals at a particular temporal fre-

wave travels in the direction of -k with a speed of quency w. These outputs, one for each sensor, are then
propagation c =-- . Let us now monitor this wave with spatially processed to determine the directions of

IkI sources radiating at the frequence w. Hereafter, we

a linear array placed along the x-axis whereby Y I z - 0 shall suppress the time domain and consider only the
as shown in Figure 1. The detected signal is spatial dimension.3'5

J[-wt+kxX] Figure 2 depicts a linear array of p sensors uni-
f x (t,x) = Ae (2) formly spaced d units apart. A plane wave is impin.inc

0-.= Xupon the array with an incident angle 0. Noting that
aFrom this ideal data it is theoretically possible to the incident angle is complementary to the polar angle,

1 determine the values of the parameters w and k,. Fur- we have
thermore, if the speed of propagation is a known con- k k k
stant or a known function of frequency, we can then sine - = .1.. -A X
calculate the vavenumber's magnitude from TIk W/c 2F

1k a from which it is seen that• LLI _1= £ (3)
c k 2v sine (5)

Because we do not have comilete knowledre of the wave- x A

number k, we cannot unambiguously determine the direc- where A is the wavelenrth of the plane wave. Defining
tion of propag~at ion. However, we can determn th our o iatsn zero, the nth sensor will samrle

angle y associated with the ways as 0 2,0
1 ' U



the wave at the point x a nd. Hence, at any particular angles #km are uncorrelated random variables uniformly
in:itant in time the array output is, from (2) distributed on [-w,+w). Their random mature arises

from the independence of the sinusoidal sources and from
Ae,+2m sin$ n-- the approximate randomness of time-sampling far below

Y(n) = f x(nd) - A (6) the Nyquist rate.
Ot".p PIt is convenient at this point to represent the

where f is a phase angle dependent on the sampling problem in vector notation. We represent the rth snap-
In rit. shot (8) by the pxl column vector

4 " (y.(O) Y.(1) ... Y.(P-I)]
'  

(9)

and define the pure complex sinusoid vector an

Jw j~w I(p-l)w
S * [i ejw  eJ

2W ... e(- ]. (10)

YLastly, the noise vector associated with the mth snap-
shot is defined as

n = [(0~) n.(l) ... ,(-) . (11)

direction of With the above notation, we may compactly represent the
propagation snapshots by the data vector equation

q j km
Xm m + F A ke S 1 < m < M. (12)

k-1 k

The array data (12) is random 
due to its derendercy- - - - - - X on the random phase angles Okm and the contaminatir.

0 1 P-1 noise %m(n). Assuming that these random varlabler are
pairwise uncorrelated and statistically invariant vith

Figure 2. Plane wave with incident angle G. respect to the snapshot index m, it follows that eacn
data vector - is a windowed realization of a wide-sen-ze
stationary random process. The mean value of this proc-
ess is the zero vector.

T.e set of p instantaneous spatial samples (6) as
mea.:ured by the array is referred to as a "snapshot." q lJ3k
In this case the snapshot is a sampled complex sinusoid Ely} E{ '1 AS k (13)
w!.eoe sampled spatial frequency is given by m V -k

'wj sin e k1l
- A Clearly, an estimate of the sinusoid's

frequercy directly yields an estimate of the direction 0
Mf rorcpagatlon of the plane wave if the wavelength A is while its covariance matrix is specified by
Kn- wz.. As such, spectral estimation is seen to play a
irrinent role in linear array processing. q

We now generalize our model to include multiple R - E(yy) I 21+ * S St.
*i,. waven incident on an array in which the sensor p -k- k

in,. -'itins are contaminated by white measurement noise. k-I
If there are a total of q plane waves and the kth plane where I Is the pp identity matrix and P A i
,ve ha. a direction of propagation 

8k- it follows by p sk 
=  k

.,tj--r;,-7ition that the snapshot will have the form the power of the kth incident plane wave. Since ti.t
random vector process is wide-sense stationary, t'.e

J+k Jnk covariance matrix R must be positive seri-definite,
y(n) = (n) + Ake ke , O<n<p-1 (7) Toeplitz, and Hermitian.

ksl We now describe three contemporary array processin.-
methods and then present an algebraic arproach to iden-

wreir the' q sinuosoid frequencies are given by tifying the frequencies (wk), based upon the structure

2wd sin ek of the data ym and the associated covariance marix F.

Wk A Contemporary Processing Methcdr

an,, nn) are uncorrelated zero mean random variables
with variance a' that represent the measurement noise. Wiener Filter Method
We ,irzumc that the wk are all different. The Wiener Filter method is based on filter'r the

Our objective Is to estimate the frequency parma- data such that the signal-to-noise ratio at the fi]ter
etvr: fw using these. snapshot measurements. We are output is maximized.6 It Is essentially a linear Vre-
particularly interested In the ability to resolve, or dicti a ach t t is essilla the e
distlnpu ):. between two plane waves with very similar diction approach that i quite siilart the nxiri
frequ,,,1ce,; (i e. , w1 ; w ). This estimation capability Entropy method of spectral estimation.-" Many adap'tivc.
repquir. the utlizaion o2f a number of snapshots taken array processing algorithms are equivalent to the Wiener
e lu'ntially in time. Our data then has the form Filter method, includin. Alam's orthonormal 1sit ice

filter algorithm.7  For the arrav processin- rrobler an

q Jkm Jnw k optimum welphting vector is obtained by
6 ,8

y"(r)) = n(n) + L Ae c l'm<M, 0 < nV4.E k..- a = UP- 1 (1 10

k.- (8) -
where h * [1 0 0 ... 01' and u i:i nn srl-itrary

where m ir th.' slatlshot index and M is the total number scalar. An in the Maximum gntropy NMetho,, the power
of snapshot :. In this model, we assume that the phase r.pectrum may be computed by
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In the Idealised noise-free case, the snapshot vee-p"(w) = m (16) tors are members of the q-dimenslonal subspace span-
Ist,12 St. tS

'mF' -r-----W ned by the q linearly independent sinusold vectors S

Maximum Likelihood Method 1 k<q. Thus, for q - p there always exists a pxl vector
a that is orthogonal to the noise-free components of the

The Maximum Likelihood method is based on filtering snapshot vectors If q1p, there generally does not
the data such that power at the frequency of interest is exist such a vector a. Furthermore, when noise is

passed and all other frequency components are rejected present, even if q p, there generally doe= not exint a
in an optimal manner. In our notation, the power spec- vector a that is orthogonal to each of the noise-
trum is given by 8,9,10 contaminated snapshot vectors .. Nonethelens, it Is

1 intuitively desirable to select a coefficient vector
PML(W) = -1 (17) which is nearly orthogonal to each of the snapshot vec-

S R-S tore in some well-defined manner, and to determine the

plane wave sinusoidal frequencies by examination of the

Pisarenko Method zeros of the z-transform of this coefficient vector. A
convenient method to evaluate these zero locationr is to

The Pisarenko method has not found as widespread search for nulls in the magnitude of the Fourier trans-
use as the Wiener Fi ter method and the Maximum Likell- form of the coefficient vector. Since there can be more

zeros than plane waves (i.e., p-l>q), we can estimate
hood method. Haykin recently applied part of the the (P ) in order to separate "signal zeros" fro "noise
Pisarenko method

I1 
to the array processing problem via k

a special autoregressive-moving average (ARMA) model, zeros".

The completel51sarenko method is based on a theorem of To obtain a mathematical measure of closenec= to

Caratheodory that allows decomposition of the expsct orthogonality, it is beneficial to define an ortho,-

truncated covariance sequence r(n), 0 n<q-, into a nality error vector e(a) whose mth element is the inner

positively-weighted sum of q complex sinusoids andwhite product of a and , denoted by • .yr. >. We define the

noise. The method has three steps: optimum a to be the vector a
0 that rinimizes rome posi-

tive definite functional f of e(a). Hence we write(i) identifying and removing the noise contri--

bution to the covariance matrix, e(a) = [e(1) e(2) ... e(M)]' (20)where

(ii) forming the qxq covariance matrix Rq and e(m) = < ,.>
and analysing the single eigenvector corre-
ponding to the unique minimum eigenvalue and

, = 0 to determine the sinusoid frequencies, f(e(a
-
)) = min f(e(a)) (21)

min atA
ai4d where A is a constraint set for the solution vector so.

(iii) solving a set of q simultaneous linear A constraint is generally necessary for the minimization
equations for the sinusoid powers. to be well-defined, that is, for a to be unique and

Algebraic Processing Approach nontrivial.
We must choose an inner product for (20) and an

We now formulate a generalized minimization prot'em error functional f for (21). Let us choose in particu-

which suggests several particular methods. Under dif- lar the standard vector inner product < R.4'. i,;
ferent constraints, the solution of this problem encom- which case we have
passes each of the methods in the previous section.

Let us consider a general nontrivial pxl coeffi- !. i
cient vector a that is orthogonal to the noise-free

component of each of the data vectors ym. From (12), a, 7
this orthogonality is defined by the inner product

relationship (a) •(22)

q km <
kl k A convenient positive definite functional for an error

vector is the mean square error criterion
O Since the {w are all different and the (# ) are ran- 2

dom in nature, a little thought will convince oneself f(e) - E( II (23)
that a must be orthogonal to each of the q sinusoid
vectors S, l1k< q. We next define the general z-

6 k where 11 e I - 'e(l)12. .. e(M)l 1 , the Euclidean~transform A(s) of the coefficient vector a by
A(z)= a, z

e  
(19) norm of e.14 It will be computationally expedient to- - <A. 1normalize this criterion by the length M of the vector

where z = 1l z z ... z I P]. It is thenreadily .Fro (22) and (23) we have

shown that the orthogonality of a to each S ., 1 <k<q, M
'i'mplies that A(z) must have q finite zeros located on f - E -I' Ii

the unit circle at the points zk = e , l'k<q. With

* this in mind, the required frequencies can be deter- -a
mined by examination of the zeros of A(z).

3



wh're R is the covariance matrix defined in (14). Apply- Ectension to Correlated Noise
ing (21), the quadratic form (24) must now be minimized
according to some constraint that causes a to be unique Through selection of the constraint set, the alge-
and nontrivial. Next we consider two possible con- braic approach extends quite readily to the case in
straints, a linear constraint and a quadratic con- which the contaminating noise is correlated. Such is
straint. the case when the noise is due not only to sensor meas-

urement noise but also to a directional background
Linear Constraint noise field in the array environment. Note that any

undesired signal (jaming interference, for example)
The first constraint is that a

0 
lies on a hyper- may be considered as correlated noise.

plane specified by Oenerallzing (i), we have that the data covarlance

P tmatrix for the case of correlated noise is given by
A a {aa C :a h+h a - 2) (25) q

where h is a nontrivial pxl vector that characterizes R a a
2
B + S (31)

the orientation of the hyperplane. The solution to -'k- k
(21) with this constraint is given by k-l

e - I ]R~lh(26)where the noise covariance matrix B is defined bya0o = 1 -h(26)

h _ -1 hao2 B a E{ ) . (32)

and the criterion's minimum value is We assume that the shape of the noise spectrum is known,

I which implies knowledge of B.

_ = I (27) Returning to the quadratic constraint (29,30), we
h R - note (Xin Xi) is the solution to

uadratic Constraint (R-AminW)x = . (33)

The second constraint is that a
0 

lies on the quad- We have seen that for the choice W = I we have the
ratic surface specified by Pisarenko solution. In this case it is well known that

{=at F:a W - 1) (28) Xmin ' a and that we essentially have a white-noise

wi,ere W is a positive definite, Hermitian matrix which power cancellation algorithm.
13 

Hence it is a simple
characterizes the quadratic surface. The solution to step to choose

(21) with this constraint is given by W a B (3)

a0  ] (29) and achieve a colored-noise correlation cancellation
-min algorithm. This step can be justified further by. Wrewriting (31) as

q
and the criterion's minimum value is (R-02 B) -E  S S+  (35)

f( = Xmin (30) k -k-1 k

where (X min' m) is the minimum-eigenvalue and eigen- and remembering that we seek a vector that is orthogonal

v p .to the sinusoid vectors {S ). Also, it is apparent
vectcr pair of W P. O

The above solutions encompass the three contempo- from the constraint a Ba = 1 that we are again specify-
rary methods described earlier. For h a [1 0 ... 01', ing a set of vectors-with constant norm, but now the
.Zuation (26) is precisely the Wiener Filter solution norm is determined by the noise covariance matrix B.

1 The linear constraint (26,27) may also be extended
wi t. h t R-1h . Just as in linear prediction, this for correlated noise. We shall only consider the

h--)l Wiener solution, since it has been shown to achieve

cor.-traint impliep; that the firot element of 0o is greater resolution than the Maximum Likelihood Method.
3 '5

fixed at 1 and ti,e other elements are unconstrained. We will show later that to extend the Wiener linear pre-
For h = F , (27) is precisely the Maximum Likelihood diction solution, a reasonable constraint h given B is
s' slution. This conctraint requires A0 (z) to have unity
gain at z eJ40, while the minimization strateey opti-
mally reduces the gain at other frequencies. For
W = I., the quadratic surface is the hypersphere of
radiuc one, and (29) is a generalized version of the
Pisarenko method. There are several differences. h - B (36)
First, no special ARMA model is invoked, as is done by
Haykin. Second, neither noise power removal nor ma-
trix order reduction are required, as they are in the

Pisarenko method. Third, this method is based upon a
minimization strategy and so justifies estimates, gen- Note that we no longer have a linear predictor.
erally even non-Toeplitz, of the covariance matrix R.
In the special case of a Toeplltz estimate matrix, a Example
power identification technique similar to the Pisarenko
method can be employed, as Is shown later. Fourth, the To illustrate the linear and quadratic constraint
general constraint matrix W allows greater flexibility solutions, let us consider the case of a single plane
in the solution. The quadratic constraint solution wave of power P1 and spatial frequency L, incident on
generalizes the Plsarenko method and extendr. it to the an array of two sensors in a correlated Aoise field.
multiple-snapshot array processing problem. For this case the noise covariance matrix is given by

14



a 2B = C12 [1(37) a2 1 ao * i (h3)
where )bj<l, and the data vector covariance matrix by P (e 1W - b)

I + 2 bi " Pl(l -3w1)1 + 2 U -b 2

H =1. (38) 2
I where v is a scalar function of P. 1  0 a and b.

Le 1+,2b PJ+ 2 Thus A*(z) has a zero located at

First we consider the linear and quadratic con- z a eJ1  . SNPU-be W) (44)
straint solutions without accounting for the correlated 3wI- 1 12
noise (i.e., the Wiener and Pisarenko methods). For SMH(1-be +I- lb

the linear constraint we choose h = [1 0 ... 0]'
and find from (26) that As in (40), we see that pure white noise will still

cause the zero to migrate away from the unit circle,
and that correlated noise will introduce frequency bias.
However, as the noise becomes "more correlated" (i.e.,
Ibl .1), the zero moves closer to the unit circle and

a (39) asymptotically indicates the exact plane wave spatial

Pejl +o 2 b frequency wl, regardless of the signal-to-noise ratio.
Note that the effect of an interfering harmonic source

PL + °2 (i.e., b h eJW2 ) is completely removed.
-- For the quadratic constraint we choos, W - B an-2

"efinirg the signal-to-noise ratio by SrJR = P1/0 2 , we find that

see that A0(z) has a z.ero located at

z = eJ 
1 SN R+ ] . (40) 

= L (5

As has been noted elsewhere,1 5 this linear-ejW
prediction solution suffers from zero migration away

from the unit circle even when the noise is white (i.e.,
b = 0). This migration degrades resolution, since where P is a scalar function of w and b. Thus A°(z)
applying the Fourier transform to evaluate zero loca- has a zero located at
tions may indicate only a single null when in fact
there are two zeros close together somewhat off the jW1
unit circle. Furthermore, we see there is a frequency z a e

bias introduced by the correlated noise. This bias We see that the zero indicates the exact plane wave
becomes greater as the signal-to-noise ratio decreases. spatial frequency w1 , regardless of the signal-to-noise

For the quadratic constraint we choose W = I and ratio or the particular value of b. For this reason,
find from (29) that P we expect the quadratic-constraint solution to obtain

high resolution.
1 To summarize the development to this point, the

algebraic approach is based on approximating an orthog-
onality condition between a solution vector and each

a° = (41) of the data vectors. This approach encompasses three

p ob extends to the case of correlated noise.

j4I eJ'l + 2 bi Implementation of the quadratic-Constraint Solution

In the previous section we saw that the quadratic-

Thus A0 (z) has a zero located at constraint solution (29,30) is a promising array proc-
easing method in terms of its perfect resolution given

J3W exact covariance values. However, it requires an

Z e + k- . (h2) eigenvalue-eigenvector computation that seems to be
3w1  quite burdensome. Fortunately, a simple recursive algo-

JSNE e +b rithm can be derived usinr the nature of the array

We see in this case that the zero lies directly on the processing problem.

unit circle, regardless of the signal-to-noise ratio. First we recall the standard "inverse iteration"
'(

In fact, when the noise is white, the zero perfectly method for finding the minimum elgenvalue and eiten-

indicates the plane wave spatial frequency w . How- vector pair of a complex matrix D. Consider the se-

ever, when the noise is correlated, there is a fre- quence of vectors (3k) defined by

quency bias present that again becomes greater as the D k40
signal-to-noise ratio decreases. (17)

Let us consider now the linear and quadratic con-
straint solutions which account for the correlatedwhr isanzeondrbtry Acknres,
noise. For the linear constraint we choo:;e we have

h a Bi, 0 ... 0]' and find that

5



tIt can be shown that 6A is approximately given by

* and Akk-i
-'=In min (6D)x4-----..... 6) - - ( ?)

!+w

This method is appropriate to the array processing prob- Our approximation to the new .In is then given by the
lem, in which the data arrives sequentially. Assume
that from M snapshots we have estimated the covariance sum of 6X and the previous Amin' With appropriate
matrix by R and obtained the desired pair (AM ). definitions, this approximation replace in (49)

We t when we expect the new covariance matrix estimate toWdeenntheonextthnapshotoiimavailableawe form n and

Mn1 differ considerably from the previous estimate.
compute )£M+I from (47) using D = RM+1  and 4-l 4 Ro"

Since the inverse iteration method generally has fast Relationship to Linear-Constraint Solution
convergence, a single iteration of (47) for iM+I may be The iterative implementation of the quadratic-

sufficient as long as RM is only slowly time-varying, constraint solution gives insight into the linear-
To accelerate convergence, we can apply the "inverse constraint solution. Namely, the first iteration of
iteration of Wielandt''16 wherein an approximation of (47) with D= R and x m h yields the linear-constraint
min is subtracted from the main diagonal of D before solution of (26) within a constant of proportionality.
iterating. Given R , we use A to approximate X Repeated calculation of the linear-constraint solution,

M+I M i M+I .  with h at each step equal to aS of the previous step,The iteration is given by is in fact an iterative implementation of the quadratic-

constraint solution. It is apparent that at each step,
(RM+l - MM+I = 'M. the constraining hyperplane is realigned accordinp to

the estimated solution. With these insights, it is
44+1 -inand reasonable to choose

t

t M+l min (48) C

For a Toeplitz and Hermitian covariance matrix estimate, h=B (53)

each iteraton can be performed with 0(p 2 ) multiply-
a,4Js using Zohar's algorithm.

1 7 An alternate algorithm

by GueruenIB can be used to avoid numerical difficulties

that may be associated with (^,+i ) as the linear constraint for correlated noise, since it
.M+1 Y) yields the first step of the iterative quadratic-

For the cae of correlated noise, we have constraint solution (without acceleration) for corre-

D B_ P. We suggest generalizing the accelerated lated noise given in (49). This justifies the choiceM+" 1 made earlier in (36).
iteration to avoid calculation of P . Our general In this section we have presented a recursive
iteration is given by algorithm (49) for implementing the quadratic-constraint

- =solution. The algorithm makes use of the sequential
(R M+l IMP I xMM+I = = B44, nature of the snapshot data to efficiently employ in-

verse iteration. The algorithm includes the case of
X4+i x-M1n ' and correlated noise. A modification to the algorith. (52)

was presented for the case where successive covariance
t matrix estimates differ considerably.

M+1 1+(4)Covariance Matrix Estimate
~4+l44.l

2 To employ the proposed processing methods, an
Each iteration still only requires 0(p ) multiply-adds, estimate of the covariance matrix is required. Fro.
and -  is never calculated, this estimate, a solution vector i-; obtained and the

In some applications, it may not be desirable to zeros of the vector's z-transform examined to deterrmine
calculate the solution vector after every snapshot. the plane wave spatial frequencies. Given a pxl solu-
For instance, forming a new covariance matrix estimate tion vector and q plane waves, q<p, there will be q
and calculating a new solution only every L snapshots signal" zeros and p-q-i "noise" zeros. These zeros
reduces the average computation rate by a factor of L. must be separated from one another. It is well known
Unfortunately, if the new covariance matrix estimate that in the linear prediction solution, dominant fre-
differs considerably from the previous, the previous quency components will generate zeros closer to the unit
eigenvalue may be a poor approximation to Ai and circle than less powerful components; thus, a simple way

min to evaluate signal zero locations is to search for nulls
convergence will be slowed. To obtain a better eigen- in the solution vector's Fourier transform. For the
value approximation, we apply perturbation techniques.19  quadratic solution in white noise, it can be shown20

Suppose that D and W are Hermitian matrices and that we that all of the zeros will be on the unit circle when
have solved the eigenvalue-eigenvector problem the covariance matrix estimate is both Hermitian and

Dx - XWx . (50) Toeplitz. Thus the estimated frequencies can be di-
rectly employed in a power determination technique 1'

11
Applyin, - a Hermitian perturbation 6D to D we have the and the zeros separated on a basis of sirnn1 lowr or
new problem benfore.

(D)+6D)(x+6x) - (A+6A)W(x+ Ax). (51)

6



A standard covariance matrix estimate
3 

is solution. The quadratic-constraint solution appears to

M be particularly effective and suggests further investi-

gation of egen-analysis array processing methods and

RM = Y'Y •(53) their implementation.
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Figure 3. Two-source simulation with sources at 18 and 22 degrees.
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