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Abstract
4/ i
In an earlier paper,® an algebraic characterization
was made of the problem of resolving closely spaced
plane waves incident on a linear array. The character-
ization suggests several data-adaptive processing meth-
ods and encompasses the Wiener, Maximum Likelihood, and
Pisarenko methods. In thic paper, the algebraic ap~
proach is amplified and the results extended to consider
correlated noise. A recursive algorithm is given for a
particularly effective processing methecd.

S

Summary '

An important array processing problem is that of
determining the directions of propagation of plane waves
incident on & linear array of uniformly spaced sensors.2
Contemporary spectral analysis has led to the develop-
ment of several array processing methods that are able
to resolve plane waves with nearly identical directions
of propagation. These methods include the Wiener Pre-
diction Filter method,3 the Maximum Likelihood method,3
and the Pisarenko method.¥ This paper amplifies and
extends an algebraic approach given earlier™ based upon
an algebraic characterization of the array processing
problem. The results encompass the methods mentioned
above and include the case of correlated noise. A re-
cursive algorithm is presented for implementation of &
particularly effective processing method.

Model of the Array Data

Consider the complex sinsoidal time-space plaene

vave f(t,r) as represented by
wteker

f(t,r) = Ae Juteker) (1)
where A is the complex amplltude, t is the continuous
time variabdle, r = x1¢yJ+zk is the continuous space
va*iable, w is the (temporal) frequency, and k= k by
+k_J+k_k is the wavenumber (spatial frequency) This
wave travels in the direction of -k with a speed of

propagation ¢ = Let us now monitor this wave with

I
Ikl
a linear array placed along the x-axis whereby y = z = 0
as shown in Figure 1. The detected signal is

Jwt+x_x]
fx(t.x) = Ae . (2)
From this ideal data it is theoretically possible to
determine the values of the parameters w and k. Fur-
thermore, if the speed of propagation is a known con-
stant or a known function of frequency, we can then
calculate the wavenumber's magnitude from

k| =2 . (3)

Because we 3¢ not have comjlete knowledpe of the wave-
number k, we cannot unambiguously determine the direce-
tion of propagation. However, we can determine the
polar angle y associated with the wave as
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This angle defines a cone whose central axic liec alonp
the linear array. This information alone is sufficient
for many applications For example, the wave may be
known a priori to be traveling in the xy plane. Thri: is
the case we shall consider hereafte B
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We have reduced the problem from four dimensions ir
the variables to two dimensions, through the constraint
of a linear array. We can further reduce the problerm to
one dimension by noting that time and space are inde-
pendent quantities in this model. Thus we can perforrm
our analyses for w and k_, separately. Ordinary time
series processing such as filtering or spectral estima-
tion can be applied to each sensor to first determine
the presence of signals at a particular temporal fre-
quency w. These outputs, one for each sensor, are ther
spatially processed to determine the directions of
sources radiating at the frequence w. Hereafter, we
shall suppress the time domain and consider only the

gpatial dimension.3‘5

Figure 2 depicts a linear array of p sensors uni-
formly spaced 4 units apart. A plane wvave is impingine
upon the array with an incident angle 6. RNoting that
the incident angle is complementary to the polar angle,
we have

Ky L&
i —— T e ® == )\
sin 6 = k|  w/c 2

from which it is seen that

X = 2w _sin 8 (5)
x A

wvhere A is the wavelenrth of the plane wave. Defxning
the nth sensor will samp
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the wave at the point x = nd. Hence, at any particular
instant in time the array output is, from (2)

JB+§L%l£nq

yin) = fx(nd) = Ae (6)
oSN« P
wherc ¢ is a phase angle dependent on the sampling
fnutant.,
Y
direction of
propagation
i)
ﬂ «C»
—————— e X
0 ! 2 3 P-1

Figure 2. Plane wave with incident angle O.

Tne set of p instantaneous spatial samples (6) as
mea-ured by the array is referred to as a "snapshot."
Ir. this case the snapshot is a sampled complex sinusoid
wiore sampled spatial frequency is given by

L=crisin® Clearly, an estimate of the sinusoid's

frequenc§ directly yields an estimate of the direction
of nrepagation of the plane wave if the wavelength X is
Kr:wL.. As suchk, spectral estimation is seen to play a
irominent role in linear array processing.

we now generalize our model to include multiple
;.w.. waves incident on an array in which the sensor
iniirations are contaminated by vhite measurement noise.
if there are a total of q plane waves and the xth plane
w.ve ha. & direction of propagation Gk. it follows by
suy-rpesition that the snapschot will have the form

L ey Jnw,
#(n) = n(n) +ZA e e » O<ngp-l (1)

wihere the q sinuosoid frequencies are given by
. 2nd sin ek
k A
ant n{n) are uncorrelated zerc mean random variables
2]
with variance 0° that represent the measurement noise.
We ansume trhat the w, are all different.

Our objective is to estimate the frequency param-
eters wo uning thes> snapshot measurements. We are
rarticularly interested in the ability to resolve, or
diztinpuich between two plane waves with very similar
frequencies (i.e., w, 2 wz). This estimation capability
requires the utiliza%ion of a number of snapshots taken
sequentially in time. Our data then has the form

q

w,

Jeo, _ Jnw
y {n) = n(n) + E Ae kﬂ~ k.l<m<M,0<n<p4
n m k - = - -
k=1 (8)
where m is the snapchot index and M is the total number
of snapshote.  In this model, we acsume that the phasc

angles ¢, are uncorrelated random variables uniformly
distributed on [-n,+w). Their random nature arisec
from the independence of the sinusoidal sourcec and fror
the approximate randomness of time-sanmpling far dbelow
the Nyquist rate.

It 1s convenient at this point to represent the
problem in vector notation. We represent the mth snap-
shot (8) by the px1 eolumn vector

Y, =y (0) y (1) ... y (p-2)) (9)
and define the pure complex sinusoid vector a:c

s = 169 20 Jdlp-lleyt (10
s,

Lastly, the noise vector associated with the mth snap-
shot is defined as

n = [n,(0) n (1) ... nm(;-l)]' . (11)

With the above notation, we may compactly represent the
snapshots by the data vector equation

q
Jé
= m -
Y, nm*E Ake §Uk, l<meM, (12)
k=l

The array data (12) is rendom due to its derendercy
on the random phase angles ‘km and the contaminatir;
noise nm(n). Assuming that these random varieabler are
pairwise uncorrelated and statistically invariant with
respect to the snapshot index m, it follows that each
data vector is a windowed realization of a wide-sence
stationary rafidom process. The mean value of this proc-
ess is the zero vector,

2 J0,
E{y } = E{g } + E A S Ee } (13)
k=1
-g' :
vhile its covariance matrix is specified by
5 q
+ +
R=E{yyl}=o Ip + E Pkgu §w (1.
x=1 kK k

)2
k i
the pover of the kth incident plane wave. Since tin
random vector process is wide-sense stationary, tle
covariance matrix R must be positive semi-definite,
Toeplitz, and Hermitian.

We now describe three contemporary array processin:.
methods and then present an algebrajc arproach to iden-
tifying the frequencies {wy,}, based upon the structure
of the data xm and the associated covariance matrix R.

vhere Ip is the pxp identity matrix and Pk = |A

Contemporary Processing Methcdr

Wiener Filter Method

The Wiener Filter method is bascd on filterin~ the
data such that the signal-to-noise ratio at the filter
output is maximized.® It is essentially a linenr rre-
diction approach that is quite similar_tc the Maximue
Entropy method of spectral estimation.” Many adaptive
array processing algorithms are equivalent to the Wiencr
Filter method, including Alam's orthonormal lIanttice
filter llgorithm.7 For the array processins protler an
optimum weighting vector is obtained by’

as= uR-lh (1%)

where h=[1 0 0 ... 0]' and u is an arvitrary
scular. Ac in the Maximum Entrory Method, the power
spectrum may be computed by




1 1
P (w) = = . (16)
¥ Isfaj? s'aa's
== = S

Maximum Likelihood Method

The Maximum Likelihood method is based on filtering
the data gsuch that pover at the frequency of interest is
passed and all other frequency components are rejected
in an optimal manner. In our notation, the pover spec-
trum is given by 8.,9,10

1
I - (am)

SR

PML(w) =
S,

ém

Pisarenko Method

The Pisarenko method has mot found as widespread
use as the Wiener Filter method and the Maximum Likeli-
hood method. Haykin® recently applied part of the
Pisarenko method-l to the array processing problem via
a special autoregressive-moving average (ARMA) model.
The complete Pisarenko method is based on a theorem of
Caratheodory ~ that allows decomposition of the exact
truncated covariance sequence r(n), O<n<q-l, into a
pcsitively-wveighted sum of q complex sinusoids and white
noise. The method has three steps:

(i) identifying and removing the noise contri-
bution to the covariance matrix,

(ii) forming the gxq covariance matrix R, and

and analysing the single eigenvector corre-
ponding to the unique minimum eigenvalue

xmin = 0 to determine the sinusoid frequencies,

and
(iii) solving a set of q simultaneous linear
equations for the sinusoid powers.

Algebraic Processing Approach

We nov formulate a generalized minimization prot em
which suggests several particular methods. Under dif-
ferent constraints, the solution of this problem encom-
passes each of the methods in the previous section.

Let us consider a general nontrivial pxl coeffi-
cient vector a that is orthogonal to the noise-free
component of each of the data vectors y_. From (12),
this orthogonality is defined by the inner product
relationship

0:<2'xm-nm>
q
-Jé
‘Z";e a5, > ,1emaM (18)
k=1 k

Gince the {w )} are all different and the {¢ )} are ran-
dom in nature, a little thought will convince oneself
that & must be orthogonal to each of the q sinusoid
vectors §w » 1<k<q. We next define the general z-

transform A(z) of the coefficient vector a by
A(z) = <a, z%> (19)
- - - L]
where z = [1 2 1 z 2 ve z1 p] . Tt is thenreadily
shown that the orthogonality of a to each §w » 1<k<q,
k

!mplies that A(z) must have q finite zeros located on
Juk
the unit circle at the points zk = e vy 1£k<q. With

this in mind, the required frequencies can be deter-
mined by examination of the zeros of A(z).

In the idealized noise-free case, the snapshot vec-
tors xm are members of the q-dimensional subcpace span-

ned by the q linearly independent sinusoid vectors §”k'

1<k<q. Thus, forq<pthere alvays exists a pxl vector
a that is orthogonal to the noise-free componentc of the
snapshot vectors . If q2>p, there generally does not
exist such a vector a. Purthermore, vhen noise is
present, even if q<p, there generally doec not exist a
vector a that is orthogonal to each of the noise-
contaminated snapshot vectors y,. Nonethelezs, it is
intuitively desirable to select a coefficient vector
vhich is nearly orthogonal to each of the snapchot vec-
tors in some well-defined manner, and to determine the
plane wave sinusoidal frequencies by examination of the
zeros of the z-transform of this coefficient vector. A
convenient method to evaluate these zero location: is to
search for nulls in the magnitude of the Fourier trans-
form of the coefficient vector. Since there can be more
zeros than plane waves (i.e., p-1>q), ve can estimate
the {Pk} in order to separate "signal zeros" fror "noise
zeros”.,

To obtain a mathematical measure of closenec:c to
orthogonality, it is beneficial to define an ortho,o-
nality error vector e(a) whose mth element is the inner
product of a and N “denoted by <8s7p - We define the
optimum & to be the vector a° that minimize come posi-
tive definite functional f of e(a). Hence we write

ef{a) = [e(1) e(2) ... e(M)]’ (20)
where
e(m) = < e,% >
and ’
f(e(a®)) = min f(e(a)) (21)

atA

where A is a constraint set for the solution vector &°.
A constraint is generally necessary for the minimjization
to be well-defined, that is, for g? to be unique and
nontrivial.

We must choose an inner product for (20) and ar
error functional f for (21). Let us choose in partxcu-
lar the standard vector inner product <a, W > =a lm in
which case wve have

— -~

ela) = . . (22)

e'x:,

- -

A convenient positive definite functional for an error
vector is the mean square error criterion

t(e) = E(l| e I} (23)

vhere || e} = ‘(I;kl)|2 + ...+ |e(M)]?, the Euclidean
norm of e.1¥ It will be computationally expedient to

normalize this criterion by the length M of the vector
e. TFrom (22) and (23) wve have

(a)--s‘ larol’
G

(2u)
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where R is the covariance matrix defined in (1k). Apply-
ing {21), the quadratic form (24) must now be minimized
according to some constraint that causes g? to beunique
and nontrivial. Next we consider two possible con-
straints, a linear constraint and a qQuadratic con-
straint.

Linear Constraint

The first constraint is that a°® lies on a hyper-
planc specified by

A= {ac CP:a*gfhf

a =2} (25)
where h is a nontrivial pxl vector that characterizes

the orientation of the hyperplane. The solution to
(21) with this constraint is given by

2o = T 1.1 R—lh (26)
hR R
and the criterion's minimum value is
£(8®) = o - (21)
h R h

Quadratic Constraint

The second constraint is that a° lies on the quad-
ratic surface specified by

A= {se CP:g*wg_ = 1) (28)

where W ic a positive definite, Hermitian matrix which
characterizes the quadratic surface. The solution to
(21) with this constraint is given by

1
0 o
8 = X in (29)

1-

X . Wx .

“min ~min
and the criterion's minimum value is

o
f(a®) = A, (30)

where ( ) is the minimum-eigenvalue and eigen-

vectcr pair of W-IR.

The above sclutions encompass the three contempo-
rary methods described earlier. Forh = [1 0 ol',
Ciouation (26) is precisely the Wiener Filter solution

*ninZntn

wit! u = Just as in linear prediction, this

2'Rn
corotraint implies that the first element of a° is
fixed at 1 and the other elements are unconstrained.
For b = € , (27) is preeisely the Maximum Likelihood
sclution. This constraint requires A°(z) to have unity
gain at z = eJ”, while the minimization strategy opti-
mally reduces the gain at other frequencies. For

W= Ip, the quadratic surface is the hypersphere of
radiuc one, and (29) is a generaulized version of the
Pisarenko method. There are several differences.
First, no special ARMA model is invoked, as is done by
Haykin,h Second, neither noise power removal nor ma-
trix order reduction are required, as they are in the
Pisarenko method. Third, this method is based upon a
minimization strategy and so Justifies estimates, gen-
erally even non-Toeplitz, of the covariance matrix R.
In the special case of a Toeplitz estimate matrix, a
pover identification technigue similar to the Pisarenko
method can be employed, as is shown later. Fourth, the
general constraint matrix W allows greater flexibility
in the solution. The quadratic constraint solution

generalizes the Pisarenko method and extends it to the
multiple~-snapshot array processing problem.

Extension to Correlsted Noise

Through selection of the constraint set, the alge-
braic approach extends quite readily to the case in
which the contaminating noise is correlated. Suech is
the case vhen the noise is due not only to sensor meas-
urement noise but also to a directional background
noise field in the array environment. Note that any
undesired signal (jamming interference, for example)
may be considered as correlated noise.

Generalizing (14), we have that the date covariance
matrix for the case of correlated noise is given by

q
R = 028 + E S S+
Ty Ty

(31}
k=1
where the noise covariance matrix B is defined by
o%B = E{n_n') . ()

We assume that the shape of the noise spectrur is known,
vhich implies knowledge of B.
Returning to the quadratic constraint (29,30), we
note (A ., , x , ) is the solution to
min® “min

(R-2_, W)x =0, (33)

min ‘“min <=
We have seen that for the choice W = I_ we have the

Pisarenko solution. In this case it is well known that

A = 02 and that we essentially have a white-noise

min 13
power cancellation algorithm.
step to choose

Hence it is & simrle

W=B (34)

and achieve a colored-noise correlation cancellation

algorithm. This step can be justified further by
rewriting (31) as
q
(R-0°B) -E s, 8 (35)
o K “k

and remembering that we seek a vector that is orthogonal

to the sinusoid vectors {§U }. Also, it is apparent
k

from the constraint ngg = 1 that we are apain specify-
ing a set of vectors with constant norm, but now the
norm is determined by the noise covariance matrix B.

The linear constraint (26,27) may also be extended
for correlated noise. We shall only consider the
Wiener solution, since it has been shown to achieve 3,5
greater resolution than the MaximumLikelihood Method.”’
We will show later that to extend the Wiener linear pre-
diction solution, a reasonable constraint h given B is

o

(36)

||-4
N
-]

Note that vwe no longer havc a linear predictor.

Example

To illustrate the linear and quadratic constraint
solutions, let us consider the case of a single plane
vave of power P, and spatial frequenc) w, incident on
an array of two sensors in a correlated Aoise field.
For this case the noise covariance matrix is given by




r

0B =0 (31)

C a2 R P
ll+o Ple +0 Y
R = . (38)
Jw
“le 1+02b P1+02

First we consider the linear and quadratic con-
straint solutions without accounting for the correlated
noise (i.e., the Wiener and Pisarenko methods). For
the linear constraint we choose h = [1 0 ... 0]'
and find from (26) that

-

(39)

®
!

Definirg the signal-to-noise ratio by SIR = P1/02, we
see that A°(z) has a zero located at

~ju. 1
_ 9 omreve ! (40)
z=e stR+1  J°

As has been noted elsevhere,l5 this linear-
prediction solution suffers from zero migration away
from the unit circle even when the noise is white (i.e.,
b = 0). This migration degrades resolution, since
applying the Fourier transform to evaluate zero loca~
tions may indicate only a single null when in fact
there are two zeros close together somewhat off the
unit eircle. Furthermore, we see there is a frequency
bias introduced by the correlated noise. This bias
becormes greater as the signal~to-nolse ratio decreases.

For the quedratic constraint we choose W = I and
find from (29) that P

~ N -
a° = L . (41)
a Jup 2
P e +0b
R DA
Juw
L l?le 1+02b|
Thus A°(z) has a zero located at
le
2w HEE_tD (u2)
|SNR e 1ebl

We see in this case that the zero lies directly on the
unit circle, regardless of the signal-to-noise ratio.
In fact, vhen the noise is white, the zero perfectly
indicates the plane wave spatial frequency w,. How-
ever, when the noise is correlated, there is a fre-
quency bias present that sgain becomes greater as the
signal-to-noise ratio decreases.

Let us consider now the linear and quadratic con-
straint solutions which account for the correlated
noise. For the linear constraint we choose
h=38[1 0 ... 0)' and find that

a® =y

Jw
Pl(e l-b)

-

-Juw
P (1-be hyedfa- |!:»|2

vhere y is a scalar function of P., w_, 02, and b.

Thus A%{z) has a zero locatedat 1

—Jw
oy SNR(1-be 1)

2 =g -JW .
SNR(1-be 1)+1-[b]°

As in (40), ve see that pure white noise will still
cause the zero to migrate away from the unit circle,
and that correlated noise will introduce frequency bias.
However, as the noise becomes "more correlated” (i.e.,
|v] 1), the zero moves closer to the unit circle and
asymptotically indicates the exact plane wave spatial
frequency Wy regardless of the signal-to-noise ratio.
Note that the effect of en interfering harmonic source

("]
(i.e.,b=e 2) is completely removed.

For the quadratic constraint we choos. ¥ = B anl
find that

o=y ' (45)

vhere u is a scalar function of w and b. Thus A°(z)
has 8 zero located at

Jw.
zee 1. (L)
We gsee that the zero indicates the exact plane wave
spatial frequency wys regardless of the signal-to-noise
ratio or the particular value of b. For this reason,
we expect the quadratic-constraint solution to obdbtain
high resolution.

To summarize the development to this point, the
algedbraic approach is based on approximating an orthog-
onality condition between a solution vector and each
of the data vectors. This spproach encompasses three
contemporary array processing methods and readily
extends to the case of correlated noise.

Implementation of the Quadratic-Constraint Solution

In the previous section ve saw that the quadratic-
constraint solution (29,30) is a promising array proc-
essing method in terms of its perfect resolution given
exact covariance values. However, it requires an
eigenvalue-eigenvector compytation that seems to te
quite burdensome. Fortunately, a simple recursive algpo-
rithm can be derived using the nature of the array
processing problem.

First we recall the standard "inverse iteration
method for finding the minimum eigenvalue and eigen-
vector pair of a complex matrix D. Consider the se-
quence of vectors (gk] defined by

L-
D_)_% = #_1 (L7)
vhere x. is a nonzero and arbitrary. As k increases,
we have

"¢
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This method is appropriate to the array processing prob-
lem, in which the data arrives sequentially. Assume
that from M snapshots we have estimated the covariance

A .

EN * 5min and min

matrix by R and obtained the desired pair (AM.¥M).

When the next snapshot is aveilable, we form RM+1 and

comjpute Xua1 from (47) using D = RM+1 and Xy " Xy

Since the inverse iteration method generally has fast
convergence, a single iteration of (47) for Xyey DAY be

sufficient as long as RM is only slowly time-varying.
To accelerate convergence, we can apply the "inverse
iteration of Wielandt"l® wherein an approximation of

Amin is subtracted from the main diagonal of D before

iterating. Given R , We use A

to approximate AM*l'
The iteration is given by

M

(Ryay = MyT)%gey = %o

Bye1 * Lnin® and
B
Rt .
Wt = Mol ” Mpine (L8)
K181

for a Toeplitz and Hermitian covariance matrix estimate,

each iteration can be performed with 0(p2) multiply-
edds ucing Zohar's algorithm.l7 An alternate algorithm
by SuerueniB can be used to avoid numerical difficulties

tta* may be associated with (RM#l- AMI).

For the case of correlated noise, we have

-17
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iteration to avoid calculation of B ~. Our general

iteration is given by

D=5 We suggest generalizing the accelerated

(Rpay = P layyy = Yy = By

a1 7 Ein and
K1y
+1
et * el ” min (49)
Eyo1lys)
Each iteration still only requires 0(p2) multiply-adds,

and B-l is never calculated.

In some applications, it may not be desirable to
calculate the solution vector after every snapshot.
For instance, forming a new covariance matrix estimate
and calculating & new solution only every L snapshots
reduces the average computation rate by a factor of L.
Unfortunately, if the new covariance matrix estimate
differs considerably from the previous, the previous
eigrnvalue may be a poor approximation to Amin' and

convergence will be slowed. To obtain a better eigen~
value approximation, we apply perturbation techniques.l9
Suppose that D and W are Hermitian matrices and that we
have solved the eigenvalue-eigenvector problem

Dx = AWx . (50)

Applying a Hermitian perturbation 6D to D we have the
new problem

(D+8D)(x+68x) = (A+8M)W(x+8x). (51)

It can be shown that &) is approximately given by

. 5'(6!))5
he— (s2)
X Vx

Our approximation to the new x.1n is then given by the

sum of &) and the previous ) With appropriate

min’
definitions, this approximation replacec 1, in (L49)

wvhen we expect the new covariance matrix ectimate to
differ considerably from the previous estimate.

Relationship to Linear-Constraint Solution

The iterative implementation of the quadratic-
constraint solution gives insight into the linear-
constreint solution. Namely, the first iteratior of
(47) with D=R and x . =h yields the linear-constraint
solution of (26) within a constant of proportionality.
Repeated calculation of the linear-constraint solutiorn,
vith h at each step equal to gf of the previous stey,
is in fact an iterative implementation of the quadratic-
constraint solution. It is apparent that at each steg,
the constraining hyperplane is realigned accordinrs to
the estimated solution. With these insights, it is
reasonable to choose

h=B ] (53)

as the linear constraint for correlated noise, since it
yields the first step of the iterative quadratic-
constraint solution (without acceleration) for corre-
lated noise given in (49). This Justifies the choice
made earlier in (36).

In this section we have presented a recursive
algorithm (49) for implementing the quadratic-constraint
solution. The algorithm makes use of the sequential
nature of the snapshot data to efficiently employ in-
verse iteration. The algorithm includes the case of
correlated noise. A modification to the algorithr (52)
was presented for the case where successive covariance
matrix estimates differ considerably.

Covariance Matrix Estimate

To employ the proposed processing methods, en
estimate of the covariance matrix is required. Fror
this estimate, a solution vector i obtained and the
zeros of the vector's z-transform examined to determine
the plane wave spatial frequencies. Given a pxl solu-
tion vector and q plane waves, q<p, there will be q
"signal" zeros and p-q-1 "noise” zeros. These zeros
must be separated from one another. It is well known
that in the linear prediction solution, dominant fre-
quency components will generate zeros closer to the unit
circle than less powerful components; thus, a simple way
to evaluate signal zero locations ic to search for nulls
in the solution vector's Fourier transform. For the
quadratic solution in white noise, it can de shown20
that all of the zeros will be on the unit circle when
the covariance matrix estimate is both Hermitian and
Toeplitz. Thus the estimated frequencies can be di-
rectly employed in a power determination techniquoll‘13

and the zeros separated on a basis of sifnal power as
before.
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A standard covariance matrix estimate” is

M

*
PIFAR (53
m=1

This estimate is unbiased, Hermitian, but in general
not Toeplitz. Furthermore, only one lag product from
each data vector is used in formulating each element of

RM. An alternate estimate is the matrix iM vhose ele-

ments are given by

x|+~

R, =

Ry(12d) = e(i-3),  1<i,5<p (5%)
where
M p-n=-1
[ ]
c(n) =§Zﬁ Z ym(hn)ym(z). O<n<p-1
m=1 =0
¢(n) = c*(-n) s =p+len<O.

This estimate is unbiased, Hermitian, and Toeplitz.
Also, p-n lag products from each data vector are used
in formulating each element c¢(n). Thus the estimate of
(54) has lower variance than that of (53).

In the follovwing simulations, the standard non-
Toeplitz estimate R, (53) will be used in the linear-
constraint solution in order to compare with previous
simulations.3 However, for the quadratic~constraint
solution the Toeplitz structure is important, hence the
Toeplitz estimate RM (54) will be used.

Simulation Results

To compare the performance of these two processing
methods, the data vectors (12) were generated by com-
puter simulation. The simulation model corresponded to
that chosen by Cabriel3 in his comparative paper.
Namely, the case of two sources incident on an array
with white noise was considered. The parameter selec~

tions were q=2, p=8, =1, A1=A2= 31.62 (30 4B SNR)
and 3.162 (10 4B SMR), °1=18°' 92=22°, M=50 (many

snapshots) and 10 (few snapshots), and d=1/2.

With white noise, the linear solution and the
quadratic solution correspond to the Wiener and
Pisarenko methods. The simulation results are shown in
Figure 3. 1In this figure, the linear solution has been
evaluated via its Fourier transform and the quadratic
solution via the power determination technique. Over~
layed solutions for ten different realizations of the
random data are shown to give a sense of each method's
consistency.

These results show that both methods work vell at
high SNR with many snapshots. However, the linear
solution performs poorly at low SNR with few snapshots,
wvhile the quadratic solution ¢continues to give good
resolution and good suppression of spurious effects.

In general, the quadratic solution has shown better
performance than the linear solution over a wide range
of conditions.20 Further simulations are undervay to
compare the performance of the methods in correlated
noise and to evaluate the recursive algorithm presented
above. The results will be given at the conference.

Conclusions

We have detailed an algebraic approach to array
processing based upon approximation of an orthogonality
condition. The approach encompasses several contempo-
rary, high resolution methods. Previous results were
extended to the case of correlated noise, and a recur-
sive algorithm presented for the quadratic-constraint

solution. The quadratic-constraint solution appears to
be particularly effective and suggests further investi-
gation of eigen-analysis array processing methods and
their implementation.
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Figure 3. Two-source simulation with sources at 18 and 22 degrees.

(A) 30 dB SNR, 50 snapshots

(8) 10 dB SNR, 10 snapshots Linear solution
(C) Single trial from (B)

(D) 30 dB SNR, 50 snapshots

(E) 10 dB SNR, 10 snapshots Quadratic solution
(F) Single trial from (E)
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