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o 8t-ao- This paper presents a recursive algorithmic equations. Although similar algorithms may be derived
mplementation of the prewidowe high performance for the unmodified and for the two other modified
method of ARMA spectral modeling as described in Part 1. versions of the high performance method, the recursive
This algorithm provides updates of the ARA models algorithm based on the prewindow version is a bit
optimal autoregressive coefficients (in actuality pre- easier to derive and is characterized by a "fast start-

,. diction errors) as each new data point becomes up" capability in that spectral estimates are possible
- available. The algorithm is computationally fast in with as few as two data points. The recursive algorithm

the sense that it requires O(p) multiplications and herein presented is computationally efficient in the
additions for each update. It is shown that this fast sense that O(p) multiplications and additions are
recursive algorithm may be implemented using a lattice required to update the "necessary" parameters as each

~'- filter arrangement, and it therefore exhibits several new data point is observed. This paper's recursive
of the "nice" properties associated with lattice type algorithm was originally developed in [91. A more
algorithms such as numerical robustness and good con- straightforward derivation is herein presented which
rergence properties., provides a greater degree of insight. In addition, a

lattice filter implementation of this algorithm is
I. INTRODUCTION developed. Moreover, because of this ladder-type

In Part 1 of this paper we described en algorithm for implementation, this algorithm is characterized by

obtaining an estimate of the power spectral density several other nice properties associated with ladder

ssociated with a given time series (x(n) . In parti- algorithms such as numerical robustness and good

ular. the following ARMA (p,q) spectral density model convergence properties [10], (11].
as hypothesized +1. THE PREDICTION ERROR VECTORS

S b0 +beb 1 2 The recursive update equations herein presented do

SX(b) b . (l) not explicitly update the ARMA model's autoregressive
14+a e-J+. +a e-jpw coefficients in obtaining optimal updated spectral1 p estimates. Instead, a set of "equivalent" parameters

A closed form algorithm for estimating this model's known as prediction errors are updated. In this
ai and bj parameters wa then deveoped in whch the section, we discuss the relationship between the pre-
findte set parmeer as tedvelopdns wdiction errors and autoregreselve coefficients.
finite set of time series obserations As outlined in Part I of this paper, the optimal pth

x(1), x(2)..... x(n) (2) order set of autoregressive coefficients for the pre-

were used in the parameter selection process. This so windowed version of the high performance method are

called "high performance" algorithm operates on a data obtained by solving the following system of p
block of length n to obtain the model's coefficients equations in p unknowns
in a single computational effort. It is therefore ['t  X ia +- Y - 8(3)
called a block processing algorithm. n,p n,p n " (

There are many situations, however, in which a block where
processing algorithm for spectral estimation is not an -x(l) x(2). x(n)] (4a)
appropriate tool. In a variety of applications, the data _n -
measurement is en ongoing process and it is therefore _ x
desirable to recursively update the autoregressive and sn (b)

moving average parameters as each new data point 2
becomes available. This capability is of particular X = [Sx :S x '.-...x I (4)
importance in those cases where one wishes to adaptive- -fl1

ly model the spectrum of a long, ongoing time series. - S .. (ad)
Algorithms with this recursive updating capability are n,p . n n . : n

called "recursive algorithms".
Recently, several fast recursive spectral estimation in which 8 is the zero vector and S is the down shift

algorithms have been developed (l]-[7]. Most of these operator.T Here the dagger symbol (') denotes complex
algorithms are based on so called least-squares AR conjugate transposition and the prime symbol (') denotes
spectral estimation methods [81, although a few ARMA transposition. The subscripts p and n explicitly
algorithms have also been developed (4] & 6]. These indicate that the denominator order of the spectral or
algorithms seek to minimize a prediction error vector model of equation (1) is p and that n data points are
in order to obtain the desired spectral estimates, available. Whenever this explicit information is not
In this paper we develop a more effective ARMA needed, we will use x, y, X, and Y in place of x. n, 0

algorithm that efficiently computes the optimal auto- Xn ,p. and Tn p, respectively.
regressive coefficients by recursively updating a set t is recalled from Part I. that the high performance .3
of prediction error elements as each new data point is ARHA modeling approach is predicated on approximating t
observed. This recursive algorithm is based on the

I prewindowed high performance method as described in IIn this paper, matrices are denoted by capital letters
Part 1, and, therefore is predicated on the approxi- (e.g. X), vectors are denoted by underlined lower case

- ation of the AMA model's underlying Yule-Walker English letters (e.g. 1) and scalars are denoted by 'n/
L. , lower case Greek letters (e.g. a). Moreover, the down .

SThis work was supported in part by the Office of Haval shift operator S is defined by ty Codes
Research. Statistics and Probability Program under ' Aval and/or

at Contract N00014-80-C-0303. _n l Dist and/ia
Dist Special



Yule-Walker equations where t>p. Upon examination of PC - I - PX (13b)
expression (3), it is apparent that w have here re-

stricted t -p. This restriction is required in order Since we are only interested in the optimal i and
to facilitate the development of the fast recursive fy , we will drop the "*" symbol and asse that i
algorithm. Unfortunately, by requiring t-p. the ,u

spectral estimation performance suffers in comparison and f, are the optimal ones at given by equation (12)

to that achieved with larger values of t. As the data We may also define the delayed backward prediction
length n increases, however, this performance degrad- error vector for x by 2
acion diminishes and typically is of an insignificant
nature. This is indeed fortunate since it is precisely d x - S a
for long data length cases that the recursive algorithm -p,n -n n,p -p

would most likely be utilized. it can be seen that the kth row of equation (14)
Under the assumption that YtX is nonsingular, the represents a prediction of x(k-p-l) by a linear combine-

optimal autoregressive coefficient vector which satis- tion of the p most imediate future values x(k-p),
fies expression (3) is given by x(k-p+l),..,x(k-l). The resulting error in this

- n  backward prediction is dx, (k). In this case the
a .jyT X x (5) - n
-P a.p np n,p-u optlum A vector is the one that minimizes the

In what is to follow, it is beneficial to interpret quadratic function

this autocorrelation coefficient selection procedure (d x]t WdX (15)
from a prediction error viewpoint. Namely, we may re- -p -p p,n
formulate expression (3) as where W is defined in equation (9)

y,* fx -e (6) In this case the optimal a is given byVn,p -p~n ip -~ f± XnP ]1 .- yQ (SPI1x a (16)p nppn"- pp -

in which fx i s the so-called forward prediction erroras 3pecifi by In a similar manner to the forward prediction error casethe optimal estimate of SPlxn is specified by
(7 1:;1 (7 (p+l

-p. n n p -p S Xp A9 - P(S x) (17s)

It is referred to as the forward prediction error since and the optimal delayed backward prediction error vector
its kth component can be interpreted as being the error is
resulting from a prediction of the element x(k) by a d x • S nx - SO -= pC(s Xn1

linear combination of the p most recent time series -p,n -n . -n
elements x(k-1), %(k-2),..., x(k-p). where PXY and P y are given by equation (13). Further-

The optimal autoregressive coefficient vector (5) can more, it can be shown that the optimal ap as given by
be then associated with an auxiliary minimization equation (16) also arises by approximating p Yule-
problem involving the prediction error vector. Namely, Walker equations in a manner similar to the approxima-
it is readily shown that this optimal vector minimizes tion given by equation (3) for ap.
the following quadratic functional It is clear that the forward prediction error vector

fx and the autoregressive coefficient vector ap are
g(aw fx (8) -p,n
-p -p,o -p.n interchangeable in the sense that one can always be

where W is the nxn positive semidefinite matrix found from the other using equation (7). Similarly

specified by dx  end ip are interchangeable since one can always
te b'Qound from the other using equation (14). It is

Ynp Yn,p (9) also true that the 2p elaments of &and re inter-

To reinforce this prediction error interpretation, let changeable with the 
2p elements f', (n), f1 ,(n),..,

us define the following estimate of vector x. fX (n) and dx (n ), dx (n) ... , dX (n) (i.e.. the
p ,na l,n 2,na p,n

n" p -p (10) nth elements of the 2p prediction error vectors -,
.. fx andd x .. d

which in turn generates the forward predicting error fX f I--?,a dl,n' Z,'" d p1 n

We will show this last fact in Section VIII, where
n X -x (11) we will also see that the prediction errors lead to a

lattice filter structure which is related to the auto-Upon substitution of expression (5) into (10) the opti- regressive coefficient vectors.

mum forward prediction error vector is given by In the fast recursive algorithm, the autoregressive
• pY np" pcoefficient vectors a and are not directly updated.

, - =Xn,p(Yn t xn Instead, the prediction error elements ft.n(n)....
fX (n), and d (n) .... ( d n) are updated. Since

P xn (12a) pnInp .n1
XY n (these elements are interchangeable with the auto-

while the minimizing forward prediction error for this regressive coefficients, there is no information lost

selection becomes in updating only the prediction error elments. How-
ever, the prediction error elements may be updated in

ix I - Xn (YtX ]'pl (12b) a computationally efficient manner, requiring O(p)
-p,n n.p n p n~p np -n multiplications and additions for the update. Kore-

over, as we shall see later, the 2p prediction error
XY A elements enable us to find all of the _% and &

vectors for ARMA denominator orders from 1 to p. It
We have here used the compact matrix product represent- is for these reasons that we choose to update the
ations ZWe use the term "delayed" because although the subscript

P1  - X n tXn.p]Yn~p (13a) n appears. x(n) is never used in (14). The undelayed back-
ward prediction error vector will be discussed in a later
section.
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prediction error elements. We note that the ndl vectors &, S%. yo, sad gan are

We my also obtain additional autoregressive co- all ele-mnts of H. Moreover, the p colmm of matrix

efficient estimates almilar to a and a by considering X, are also elements of H. The set of all Itear

the prediction error vectors associated vith the vector co=£nations of these p elemats ts a aubepace of f.

_vn given n equation (4b). Specifically, the optimm which we denote by My. Similarly, My is the subspace
forward prediction error corresponding to .u is defined spanned by the p colums of Yn.p-
as Let us now consider the forward prediction of %. from

f Y + Y () equation (12a) we se that _nis formed by a matrix
.+ l~p multiplication involving s s. The matrix FIT i seen to

where be a linear operator on the RIlbert space. It Is ap-

t t ~parent that P maps almost& of U into elmts in the
- (n,P n.p n.p (lab) subspace Lt. atoi

and Xn,p Yn,p and yn are defined in equation (4). As P XY: NX  
(26)

in earlier cases, S can be found by approximating p Also, it Is evident from equation (13) that Fly
2 

- PXy

Yule-Walker equations or, equivalently, by minimizing so that the operator PXy is a projection operator onto

the quadratic functional the subspace M . to general, PXy is not the orthogonal
projection operator onto subspace NX . Instead, the eas-

h(s) [fy 1t 1 I X ][f, 1 (19) sociated direction of projection is determined by the
=-9, aft f p -pnk matrix Ynp" It can be seen from equation (6) that the

Corresponding to this optimal autoregressive co- directin of projectiOn of P1y is orthogonal to My.

efficient vector S we may also define the estimate Thus, PXY is the projection operator onto the subspoce
HX along Myl (the orthogonal complement of MY).

S n,p - Yn (K Y With tphose thouhts in mind, we can provide a simple
geometric interpretation to the four error vectors

" PYX (20) described in the last section. In particular, the
geometric relationship between , =, and fz is

which, in turn, gives rise to the optimum error vector depicted in Figure L. p'n

f y ,.. c

where P and P are defined as in equation (13)Yx PYx
Finally, the optimal delayed backward prediction

error vector for 1n is defined by

d S*~ + Ynpa(21a) *()

where 1

, - X (s (21b) p n

c s"'Z)(23) the optimlal prediction error is L1p~

P %-.p n"" OpX

itasThe vector is seen to be that projection of onto

: " , tcfY (n o.r (he ndor h d p (a)..., e dY ()cnb X that is orthogonal to Ny. We note from Figure i that

efficiently updated and enable us to determine the ~ LH 2e

optimal c and _ coefficient vectors for all AlMA or, equivalently, that
model denominator orders from 1 to p. 3  x aS < 0  S > = 0, a - 1,2,..p (27b)

IaI. T HILBERT SPACE SETTING The geometric relationships for dp n a.n and

The problem of recursvly updating the prediction si prection eror s
error vectors in the fast algorthm can be more easily Se i anedaeno projection ofors ar

understood by castin the problem in a onbrt space tsetting. Consider the o dmensional complex (pM) (2Wm)

Euclidian space a 2 ( (2)b)

"R- C
n

= ''... ,C (24) 14e can also see from equation (13) that PTand PyX

a . PnT f [PXmy (29a)

m xo > xd z "m-i t xi) y(i) (25) and - P2,.p (29b)

In addition to the four prediction error vectors,
eo vther e rfour innar products that are useful nderivin
'Throughout the remainder of the paper, the "" symbol the fast algorithm. These complex-valued scalars a re
unll be dropped and the prediction error vectors defined as:

ti, dx, Y, and dY ar e a optimal ones. [fE ]dy ] n [cop Pe[S (PC (30)
- np, p,n- "-,n" (29

W. . ....'... +

3n C-IP 2b



T dn 1 Id,-[[Sn] - in] t 1 (31) As mentioned earlier, to implement the recursive &I-p~n pgorithm we only need the error element at time n, hat

, - -p,nl  - ,n l [ .n P [Yal (32) is f +l,n(n). From equation (37) w ee tt
f~ - n fX n - T- a d x,n(n) (38)

pn nn. (33) XY m
Equation (38) is the desired order update equation

TV. THE PROJECTION OPERATOR THEOREM for fx.

From the results of the last section it is apparent In a similar manner, the order update equation for

that the various prediction error vectors and scalars fY is found to be

are all described by the operators PXy and PYX" As a fy (
new data point x(n+l) becomes available, we desire to -m+l.,n " Zn (3)
update the prediction errors vectors and scalars in a where X and Y are defined in equation (36). Applying
computationally efficient manner. Because the opera- the projection operator theorem yields
tors PKy and PyX are used repeatedly and their struct- fY * fY tm'n dy  (40)
ures :hange as new data points become available, we -m+ln -m,n v -m,n
prefer to update them and then obtain updated error m,n

vectors by applying these updated projection operators. The ,th component of equation (40) is the desired
Recursive update equations for the projection operators order update equation for the forward y prediction
P-.y and Pyx, are readily obtained by appealing to the error, that is
following theorem.
Theorem n. (Projection Operator Theorem) Let A and fy (n) - fy, (n) - mn dy, (n) (41)m41,O m~n ~,(41)
8 be n-m matrices. Furthermore, consider the aug-
mented matrices A - (A : a] and B - [B :bJ in which The order update equations for the delayed backward
a and 5 are nxl vectors. If [A tBIl a7nd (I ]-I prediction error vectors may be similarly derived.
exist, then the associated projection operator corres- These equations are, however, not as useful as the
ponding to the augmented matrices is given by combined order and time update equations. The combined

S c c C - update equations give d+,+1  and dy in term ofPL -PC P kt c a] _L P B (34) dX, ~
AB AB AB AB AB dx and dy In deriving the combined order and time

-l -m,n -mn
where P AB A[B'A] B (35a) update equation for the delayed backward x estimate,

PC I - P (35b) we first note that from equation (17b)
PAB " AB(3b

d x  .pC .m+Ix(42a)
The theorem may be straightforwardly proven by writing ;+l,.n+l Y( -)

[A -BI in terms of Schur complements and performing
some matrix algebra. Alternatively, the theorem may where 1-, 0
be proven using Hilbert space concepts. X XI - ... (42b)

Using this projection operator theorem we may now I X X-n

obtain all the necessary equations for the fast recur-

sive algorithm. Two types of recursive equations are - • 21
of interest. First, equations are needed that provide n Y : I(42c)
the m+i t order prediction error vectors in terms of L'n,m: .j
the nmi order errors. These are called order update
equations. Second. equations are needed that enable We now apply the projection operator theorem to
us to update the prediction errors as a new data point equation (

4
2a) with A-X and B-Y in equation (34).

becomes available. These equations are referred to as After some simple algebraic manipulation, we get
the time update recursions.
These two sets of equations are derived below. X

~m~l~n! - ... jf (43)
V. ORDER UPDATE RECURSIONS ,n n-mn J '"n n

In this gection the order update equations for fXm
fY, dX , dY, p and v are derived by making use of the The n+iSt component of equation (43) yields the desired
projection operator theorem, update equation

Consider first the error vector _ m+l,n associated *
with the optimum m+ 1t_ order autoregressive co- dx (n+l) - d' (n) - fx (44)
efficients. Here, m can take on any value in the m+l,n+l m ,n a . (n )

range 0. 1 ... , p-I, where p is the desired auto- m'n
rec-:essive coefficient order. From equations k4) and
ki:b). we see that The delayed backward time and order update equation

- PC for .n is derived in a similar manner. The details are
ru*Ln P R n (36a) omitted, but it is readily shown that

where XX - [X s x n] (36b) dy (n+l) - dy (n) - n fy (n) (45)
-nm~N (Xn.m. -Sm M4l.n+l m ,n 7m1 M,n

Y'Yn ~ ~ " ,1 ~ (36c)
n . +l nm: Sm+ (6c Finally, the order update equations for the scalars

Applying the projection operator theorem to (36a) with wm,n and vm,n are derived. From equation (32)

A "X, B Y. a "Sl!x, and b -S1+Iy, we have

fx PC Ux+ l.,n n P n (46a)

l,n XY _
C i C siy+x ] -l m+l .c where R - x . [X. (s X A (46b)

"P: '(s x)[(sm )P P(S X)] (S p xkY  nm+l f_ -n%Y (Y m+1Z.
f x Ynm+1 , -Yn m (S yn(46c)-l. fx .mn dx  (37)

,n -,n v m, -,n

4



Applying the projection operator theorem gives the In particular, umX,n(n) - 0 if we choose
desired result

-l " - a (ixx(--i) (54)

only on the first n-I components of the vectors. It is
an t easily seen. then, that fx, (k) for k-1,2,. .. ,n-l are

Vam4 . n - Us.n - v (47) determined using the first n-1 rove nf (51) in such a

=,n manner that the vector [ n() 1)... __ (n-i)]' is

Also, from equation (33) orthogonal to the first n-1 component, of each column
of Yn,m. But this is exactly the problem of decermin-

(S 3+ ,.Pc(S 1) (48) ing the forward prediction error based on n-1 data
u4.l~n+l =points. Thus, we see that

where 1 and V are defined in equation (46). Applying ieto x "In
the projection operator theorem yields the combined f - i 1 (55)
order and time update equation for v.

amn13,1 Similar arguments show that this time annthilation
(4)- - ( property also holds for fy, d-, and dy with re-

m,n suiting formulas similar to equation ( 55). We finally
note that the scalars omn, TM no US n and V,,, are

VI. TINE UPDATE EQUATIONS formed as inner products of the prediction error -
vectors. Since the last element of-& (or fY d,

The remaining recursive equations update the forward v .n -*,n n
and delayed backward errors as a new data point is is zero, it follows that
obtained. For this reason these equations are called .n
time update equations. mn-i i' 3f I n (56)

When a new data point becomes available, the effect
on the prediction error vectors is to append a row to and similarly for Tmn, Um n' and vm a.
the bottom of their defining matrix equation [see, for With these thoughts in mind we are'in a position to
example, equation ( 7)]. Appending a row to the derive time update equations for a, T. M, and v. First,
matrices Xn m and Yn, does not seem to fit in the let us define the augmented matrices
framework 01 the projection operator theorem, in which X . : (5I
columns are appended to Xn, m and Yn,m. It turns out, n,m (57a)
however, that we can accomplish the task of annihilat- ( e (57b)
ing a row in the error vector matrix equation by = rYn.m .(-a
appending to Xn,. and Yn.m the qnth basis vector defined Then it folows that
by

2n- [0 0 ... 0 1] (50) a ( x (. t]'~dy J . tE(~ (58)-" "'" ,n-Z " t.n]+d n "p.So , y Z ,
To see how this works, let us consider as an example where I and f are defined by equation (57). Application
the forward prediction error vector for In. If we of the projection operator theorem yields
append the nxl vector e to Xn m in equation (7) we f c 1c -i c j +l
have n t " c - -n t -n (s z )

x(1)1 x M) 0 . 0 :0 aMM ~ - Yl)' 1 xA10 J Y

a a f _X2 *(n)(l -y 3-1 dY (n) (59)

(51) -0 an-l m,n , n m,n So (60
- +x() ( j 1) where 1 -ym,n 2 - XY ±C (60)

(n oBy rewriting equation (59) we arrive at the desired
ix , t , . ie update equation[ (n> x(n)] x(n-1) xin-m) I l ily(1

- +- - n n (61)

where ix is used instead of fx ro indicate the presence n,n u,n- 1 n
of the 2. vector. The optimal ?x.n vector is given by

x c (=2a) The time update equation for T is found in a similar
"manner by using I for A, V for B, SM+lfora, nd ]

where - RV for b in equation (34) to yield
= X , Xnm " ] (52b) (2

-dX e(n) (5ff (n) (62)V [*~ " :n]  (52c) t~ " *.n- + ui - 7mn
Fro en o,n (bn-) 

1 -tha

From equation (27b) we know that The update equations for u and v are found to be

-'.., Y • 0 i-(n. (3) [fX (f.(* ( )]< x, e > o (63)<. a > 0 (53b) mn ,n-l + - Y.n(3

Equation (53b) is satisfied only if we force
jx (n)- 0. This can always be done because the [dx (n)],[d x y
M.n a V + u~ n(64)
scalar C appears only in the last row of equation (51). Mn uMn-l Y - on
€ v " - Ym5



by using arguments analogous to those used in deriving The (undelayed) backward errors are defined by
equations (61) and (62). 0
Finally, update equations for are needed. To - S x + (Sx :S -  

..
'

. (71)
obtain an order update equation, we note that -P,n -n -a p

l- P- (65a) by - 0,. 1 SV (72)1 yM+l~n -n ZY an -p'n - " S 1+ 1 Y SI

where m+ where a and _ are px4 autoregreesive coefficient
nK -x vectors. By coparing equations (71) and (72) with

equations (14) and (21), it is readily seen that the
. (Y : (S y.)] (65c) (optimal) backward and delayed backward error vectors are

L*.U. 11 related by ,

Applying the projection operator theorem, dx b... (73a)
n+c P - n LbY=+I n 

= 
, 

e -  
FX--in, n-I

-m1 XY --a
- C S( m +l X . .S n M -Y ) P c (S_ tx) l -1 .( + 

1  . c and r7 b
-eft ) t y)Y lXy Z)J1 n) +PXY In d y  

= "(73b)

[d x  
(n)]*[dy (n)] ,, n-

-mn M - n n (66) The nlh components of equations (73) yield the

m,n desired results

or, equivalently d' (n) - bX (n-I) (74a)

(dx (nfl* (n)fl mn mn-l

Ymr#-In Ym,n + m n m.n (67) d
v 

n(n) - b
y  

(n-I) (74b)
mm~ln Mm~n mVm,n m, me,n-l 7b

To obtain the time and order update equation for y Thus, using equation (74) we can replace the delayed
we note chat backward error terms in the recursive equations by

c P e (68a) backward error terms.ml'n+l -1• I XY en+l It is also helpful to replace v by another scalar

where|" 0 .8 ' - defined by

.|X nl,. : (68b) x ]*(by (75)
[i n Xn,m m,n -ma -mn
O 9' - By considering the defining equation for v, equation

Y.. ,  (68c) (33), along with equation ( 73) it is a simple matter

L4* .:,nj to show that

Since the first element of e+1 is zero, it follows %m,n-l . "men (76)

chat
C 6 Table 1 summarizes the complete set of update equations

I-In P -n with dx, dy, and v replaced by bx, bY, and w.

where The initial conditions for the various quantities

- [Xn,m x (69b) in Table I are obtained by considering the defining
equations for these quantities. For example, from

' [Ynm:4] (69c) equation (24) we see that if m-0 then f.xn i or

Applying the projection operator theorem yields f0,n(n) x(n) (77)

(fX (n)* fYn(n)] From equation (71), it also follows that

- "m+l,n+l "i - m, mn * bn(n) = x(n) (78)

or mn Similarly, we can show that
[fx ( ()]*[f,(n)] fy.(n) - y(n) - x(n-q) (79)

. , n n mn (70) On
m+ln+l mn * by (n) = y(n) - x(n-q) (80)

m~n 0 ,n

These six time update equations (61), (62), (63), (64), Furthermore, since vn is the zero vector for n<q,
(67), and (70) along with the six order update it follows from equations (30) -(33) that
equations (38), (41), (44), (45), (47) and (49) obtain-
ed in the last section comprise the fast recursive 0 * ' T On wOn - 0 for nq (81)
algorithm.

It is clear from Table 1 that no order update
VII. SUMMARY OF THE ALGORITHM equations exist from a and t. Therefore, initial

At this point all necessary equations for implement- conditions are needed for op,n and Tp,n for each p and

ing the fast recursive algorithm have been derived. In some corresponding n. A little thought will convince
one that fX (q+p) * 0 by using an argument similar

procedure for implementing the recursive equations is to the time annihilation argument presented in Section
given. VI. Moreover, we can also show that dx (q-p) - 0.

The implementation of the algorithm is conceptually by using this type of argument. Thus.
a easier if we replace the delayed backward error

quantities by (undelayed) backward error quantities. am.q0 n - T 4- - 0 for m - 0,1,....,p (82)
me;u ~-4i

' " -'0" . .. " rT ' ' I = I6



f () - f x(n) - b (n-i) a * ,_* .(T-1)
ur.i, n , n i, u- n u~n-I 7i

fY (n) fY. (n) byn -)T /(-2
- un - bY,...i(n-) !m,n nl (T-2)

b x n) - bx (n-l) - f ( r * (T-3)u~nI. n-1 M.n it ,n/mun

by (n) - by (n-i) - f y (a) a /W. (T-4)
m+ln u'n-i Mn un ,(

Um+l,n u.n a Qn u u,n m.n-.i.

Wulin W m,n-i - 2 mnt,n/lum,n (T-6)

a am, + [fX (n)]*Cb (n-l) ] / (i-y ) (T-7)
u'n un-i m n u .n-i u~n

m,n tm,n-i , (-8)

4mn - m,n-i + mfx,n(n)]*[f ,n(n)]/ (I-ym,n) (T-9)

-mWn . Wm,n-1 + [bxn(n)]* [b Y.n(n)]/(l -yn) (T-10)

" Yun + (b, (n-l)]*by (n-1)]/uni (T-11)

Y l . Y +nIf (n)] *[f (n)]/u* (T-12)Ym+l, n~l n a n '

Table 1: Sumary of Update Equations

where p is the desired (maximum) autoregressive co- 4) For each m - 0,i...,min[p-l,n-q-31 find
efficient order. a ,T using (T-7)-(T-10)

Finally, when m - 0, m,n m,nl m ,n uTm,n
YO~n 0 (83) fX (n) fY (n) b (n) b (n) using

u+ln u+l,n , m+l,n ' m+l,n

Although other initial conditions may be obtained, (T-I)-(T-4)
these initial conditions are the only ones needed to
implement the algorithm. Ym+in using (T-1)

The implementation of the update formulas can be 5) For m - min(p,n-q-2] find
divided into three parts. First, for n<q the vector
Yn is the zero vector, so no operations are performed. a ,T , P, using (T-7)-(T-O)
For q+l _n q+p+l, the maximum order m that can be u~n u~n 3,0 u~n
used is n-q-l. In this time interval, as a new data 6) If n<p+q+1 we need to add a filter order.
point arrives not only are time updates performed, but
also the model order is increased. For n >q+p+. the
model order remains at p and the time updates only are Find:

. performed. fX-(n)fy (n)b (n)by (n) i
The Implementation of the algorithm for n q +1 is M+,n 'm+l,n 

)  
in 'M+l,n''us ag

4" sumIarized below.
As the new data point becomes available: (T-1)-(T-4)

1) Set n - n+l Ym+ln using (T-I)

2) These quantities are available from the last Um+l,n, m+l.n using (7-5), (7-6)
iteration: Set m - n-q-1.

f -
(
n-I),f ,-(n-l).b' (n-i),b n (n-i

)  for
,n-I u.n-I , n-I m.n-l M-0,1 Find:

73 . "''' using (T-7), (T-8) with a m,n_ 1 -m,-n0lO.umn_-I' n-v. mn-I, e, n- 1 nn[p, u~n' m~nun- uni

n-q-21 At this point we are ready for the next data point
New initial conditions: f n0 x(n) to arrive.

n (n) - It is clear from the above suIary that O(p) multi-
bn (n) - x(n) plications and additions are required to update the
0n prediction errors. More specifically, in the time up-
f v,(n) x(n-q) date mode [i.e., when n >p+q+2 so no filter orders

bn(n) - x(n-q) need to be added] 14p multiplications and lOp additions
u are performed per update. In the time and order update

Y O.n " 0 mode. [i.e., when n<p+q +2], 17p multiplications and

if a <pp+q +2, 0 Op additions are performed. It should be noted that
C n-q-l,n-l n-q-l,n-l this computational requirement may be significantly

reduced by using a normalized lattice form similar to
that in [2].

7



VIII. THE LATTICE STRUCTURE

The fast recursive algorithm lends itself to a digi- filter of Figure 3 begins with one stage, and success-
tal filter structure known an the lattice filter. This ive stages are added as new data points arrive. Alter-
structure can be seen by considering equations (T-l) - nately, all p stages may be in place at the begiaing;
(T-4). Lt in clearly seen that the filter that pro- however, the four multiplier sections of each unused
duces the four outputs f4 (n), fy (), b39 (n) and stage is set to zero until that stage is to be used.

by (a) is given i f l 2, The lattice filter structure at Figure 3 nicaly
b.Fire 2, where depicts the relationship between the autoregressive

a: coefficients and the prediction errors. To see this
C -- (84) relationship, let us denote the transfer functions from
pn Pan x(n) to fn (a) and from z(n) to bx,a(n) by FX(z) and

o* Bz(z), respectively. Let us also define the auto-
a (85)

mn (85) regressive coefficient transfer functionsan a,-I- )
Am(z) 1+ a (l)z

- l 
+...+a&(U)z 

m  
(88)

y -(.n )(z) (8O 1 0(1)z- -...a+ (m-l)z- - (89)
n Pm'n m a I

where the a and 1i coefficients are defined by

s
y  

u.n (87) equations (5) and (71) respectively. A little thought
Mun W Mn-1  will convince one that the transfer functions arerelated by

F:'(z) - As(z) (90)

BX(z) - k(Z) (91)f x,,(n) fx ," f.n(n)_x
0 _ JWith this thought in mind we are now able to derive

x equations that relate the error elements to the auto-
m.n regressive coefficients. From Figure 2 it is clear

xX that

b
f (a~n ) . t a - x tkng (a) ra-n(o)ms of u al (n-) (92)

+ a~- bX (n) -a if (n) + b (n-1) (93)
u'n mln -l,n am-l~a-.

M+ ~ By taking z transforms of equations (92) and (93) and
using equations (90) and (91) we get

A (z) - A l(z) + Z-1 z~ () (94)

y~ 1 (z) -Z-c1CLx A (z) + (z) (95)
-~ by nn aM-l,n M-1 M-l

+- + I
,n (n )  

Furthermore, we can see from Figure 3 that

A0 (z) - ,0 (z) - 1 (96)

Figure 2: and from equations (94) and (95) that

xFilter Realization of Error Order Update Equations a (a) x (

Thus, the entire pth order filter is given by p stages a umn (97)
of filter shown in Figure 2. This is depicted in am(0) = a (98)
Figure 3

Given the error elements fx (n) and b- (n) for

fxn(n) m-l,2,...,p we can use equations (92) and (93) to get
the an,n and am n elements, then use equations (94)-(95)

to get the aa(kj and 1.(k) elements for mn1,2,. ,p

xbX and k-O,l,2... . Thus, ve are able to obtain the
nrnn autoregressive coefficients for all modal orders from

x(n) I to p.

a() Sim irly, given the ap(k) and a (k) coefficients for
k,l. . we can use (94), (95), (97), and (98) to
get the n ,n and O',n and then the p 1

s
t order auto-

regressive coefficeants by working down from order pE() to order 0. Then, using (92) and (93) we can obtain

... p~n the desired error elements.
Thus, using equations (92)-(98) we are able to con-

vert back and forth between the lattice error elements
and the optimal autoregressive coefficients.

p stages As a final note, when q-0 (i.e., when an auto-
regressive model is chosen) it can be seen in Figure 3

Figure 3: that the top half and bottom half of the filter are
Realization of the pth Order Filter equivalent. In this case, only one half is needed, and

the filter in Figure 3 degenerates to the AR lattice

In the startup phase of the algorithm [i.e., when filter described in [1].
the filter order is less than the desired order] the

8



IX. CONCLUSIONS

In this paper we have presented a recursive algorithm
for obtaining the autoregressive coefficients of an
ARMA model. The recursive algorithm is based on the
prewindowed version of the high performance method of
ARMA spectral estimation as described in Part 1. The
recursive algorithm is computationally fast, requiring
O(p) additions and multiplications to update the para-
meters. Moreover, the algorithm can be implemented

using a lattice filter structure offering numerical
robustness and nice convergence properties associated
with lattice type algorithms.

We have not yet discussed the problem of recursively
estimating the moving average coefficients in the ARMA
model. We do not at this time have such an algorithm.
However, it is worth noting that the moving average
information is present in the output prediction error
sequences, and the utilization of this information for
moving average coefficient estimation is currently
under study. Another area under study is the use of
various normalization procedures to effect a decrease
in computational requirements and in sensitivity.
Finally, we note that the recursive algorithm pre-

sented here is based on approximating a set of p Yule-
Walker equations. It has been shown in Part 1 of this
paper that for short data lengths, improved spectral
estimates result from using more than p Yule-Walker
equations. For those cases in which the amount of data
is small, a fast recursive algorithm based on the
approximation of t >p Yule-Walker equations would often
prove useful. Such an algorithm is currently being
pursued.
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