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Abstract - This paper presents a recursive algorithmic
implementation of the prewindowed high performance
method of ARMA spectral modeling as described in Part 1.
This algorithm provides updates of the ARMA models
optimal autoregressive coefficients (in actuality pre-
diction errors) as each new data point becomes
available. The algorithm is computationally fast in
the sense that it requires O(p) multiplications and
additions for each update. It 18 shown that this fast
recursive algorithm may be implemented using a lattice
filter arrangement, and it therefore exhibits several
of the ''nice” properties associated with lattice type
slgorithms such as numerical robustness and good con-
rergence properties.

I. INTRODUCTION

In Part 1 of this paper we described an algorithm for
‘btaining an estimate of the power spectral density
ssociated with a given time series (x(n)}. In parti-
ular, the following ARMA (p,q) spectral density model
as hypothesized
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A closed form algorithm for estimating this model’s
a4 and by parameters was then developed in which the
finite set of time series observatioas

x(1), x(2),. . ., x(n) (2)

were used in the parameter selection process. This so
called "high performance” algorithm operates on a data
block of length n to obtain the model's coefficients
in a single computational effort. It is therefore
called a block processing algorithm,

There are many situations, however, in which a block
processing algorithm for spectral estimation is not an
appropriate tool.
measurement 1s an ongoing process and it is therefore
desirable to recursively update the autoregreasive and
moving average parameters as each new data point
becomes available. This capability is of particular
importance in those cases where one wigshes to adaptive-
ly model the spectrum of a long, ongoing time series.
Algorithms with this recursive updating capability are
called "recursive algorithms".

Recently, several fast recursive spectral estimation
algorithms have bean developed (1]-[{7]. Most of these
algorithms are based on so called least-squares AR
spectral estimation methods {8], although a few ARMA
algorithms have also been developed (4] & [6]. These
slgorithms seek to minimize a prediction error vector
in order to obtain the desired spectral estimates.

In this paper we develop a more effective ARMA
algorithm that efficiently computes the optimal auto-~
regrassive coefficilents by recursively updating a set
of prediction error elements as each new data point is
observed. This recursive algorithm is based on the
prewvindowed high performance method as described in
Part 1, and, therefore {s predicated on the approxi-
mation of the ARMA model's underlving Yule~Walker
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equations. Although similar algorithms may be derived
for the unmodified and for the two other modified
versions of the high performance method, the recursive
algorithm based on the prewindow version is a bit
easier to derive and is characterized by a "fast start-
up” capability in that spectral estimates are possible
with as few as two data points. The recursive algorithm
herein presented is computationally efficient in the
sense that O(p) multiplications and additions are
required to update the ''necessary” parameters as each
new data point is observed. This paper's recursive
algorithm was originally developed in [9]. A more
straightforward derivation is herein presented which
provides a greater degree of insight. In addition, a
lattice filter implementation of this algorithm is
developed. Moreover, because of this ladder-type
implementation, this algorichm is characterized by
several other nice properties associated with ladder
algorithms such as numerical robustness and good
convergence properties [10], [l1].

II. THE PREDICTION ERROR VECTORS

The recursive update equations herein presented do
not explicitly update the ARMA model's autoregressive
coefficients in obtaining optimal updated spectral
estimates. Instead, a set of “equivalenc" parameters
known as prediction errors are updated. In this
section, we discuss the relationship between the pre-
diction errors and autoregressive coefficlents.

As outlined in Part 1 of this paper, the optimal pth
order get of autoregressive coefficients for the pre-
windowed version of the high performance method are
obtained by solving the following system of p linear
equations in p unknowns

+ + -
[Yn.p xn.plép + Yn.p x *8 3
where
x, = (x), x@,. . . x@]' (4a)
Xq‘ - sq}“ (55)
- el . . oP
Yap = [SKaiSTx,t oor 157y (be)

el . .-}

Yn,p - [Szﬂ:S PALEPED ;S zﬂ] (4d)
in which 8 is the zero vector and $ is the down shift
operator. Here the dagger symbol (+) denotes complex
conjugate transposition and the prime symbol (') denotes
transposition. The subscripts p and n explicitly B
indicate that the denominator order of the spectral
model of equation (1) is p and that n data points are . *'—F
available. Whenever this explicit information (s not ~
needed, we will use x, y, X, and Y in place of x,., yn, O
Xn pr and Yq,p, respectively. N

t is recalged from Part 1, that the high performance 3
ARMA modeling approach is predicated on approximating t ° e

1

In this paper, matrices are denoted by capital letters
(e.g. X), vectors are denoted by underlined lower case
English letters (e.g. x) and scalars are denoted by

lower case Greek letters (e.g. a). Moreover, the down
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shift operator S i3 defined by -E!_eod.l
$xn = [0.x(1),x(2),. . .,x(a=1)]" Avail and/or
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Yule-Walker equations where t2p. Upon examination of
expression (3), it is apparent that we have here re-
stricted t »p. This restriction is required in order
to facilitate the davelopment of the fast recursive
algorichm. Unfortunately, by reaquiring t =p, the
spectral estimation performance suffers in comparison
to that achieved with larger values of t. As the dats
length n increases, however, this performance degrad-
ation diminishes and typically is of an insignificant
asture. Thie is indeed fortunate since it is precisely
for long data length cases that the recursive algorithm
would most likely be utilized.

Under the assumption that YtX is nonsingular, the
optimal autoregressive coefficient vector which satis-
fies expreasion (3) is given by

° o ~(yT +
ay = -0vh X, TNt x (5
In what 1s to follow, it is beneficial to {aterpret

this autocorrelation coefficient selection procedure
from a prediction error viewpoint. Namely, we may re-
formulate expression (3) aa

yrf* 6
n,p =p,n 9‘ 2

{n which £, 1s the so-called forward prediction error
as specifin& by

X
ip,n nT xn p —p M

It is veferred to as the forward prediction error since
its kth component can be interpreted as being the error
resulting from a prediction of the element x(k) by a
linear combination of the p most recent time series
elements x(k-1), x(k-2),. vy x(k=p).

The optimal autoregressive coefficient vector (5) can
be then associated with an auxiliary minimization
problem involving the prediction error vector. Namely,
it is readily shown that this optimal vector minimizes
the following quadratic functional

x * x
8(a,) = EX WX (8)
vhere W 1is the
specified by

nxn positive semidefinite matrix

Wey *

a,p Yﬂ-P 2
To reinforce this prediction error interpretation, let
us define che following estimate of vector x,

X, = -xn.p ép (10)

which in turn generates the forward predicting error

X - - -

Lo " %0 " Xq ab
Upon substitution of expression (5) into (10) the opti-
mum forward prediction error vector is given by

)

=X

. S
% 2,0 n,p%n, 0! Ya,p %

- PXY X0 (12a)
while the minimizing forward prediction error for this
selection becomes

.x°
B e g .t (12b)
e pC
Pyy %q
We have here used the compact matrix product represent-
ations

Py = X o (13a)

.
XY n.p[Yn.pxn.p n,p

c -

PXY -1 PxY
Since we are only interested in the optimal gn nnd
g; ot Ve will drop the “*" symbol and aseums that x

and f" n oTe the optimal ones as given by equation (12)

w. may also define :he delayed backward prediction

error vector for x, by 2
b 4 -P+1 + b
LS Rth, 4

It can be seen that the ktP row of equation (14)
represents a prediction of x(k-p-1) by a linesr combina-
tion of the p most iomediate future values x(k-p),
x(k=-p+l),. . .,x(k=-1). The resulting error in this
backward prediccion is d‘ a(k). In this case the

optimum vector is :hc on. that ainimizes the
quadratic function

(13b)

(14)

(&) = 1wl | (1s)

where W is defined in equation (9)
In this case the optimal a is given by

0w o + P+1 6
R A b AN CLan S (16)
In a similar manner to the forward prediction error case
the op:imal estimate of 5P*lx; is specified by

P+l - - T e
U R &

and the optimal delayed backward prediction error vector
is

- P " x) (178)

X o p+l - p+l o pt p+l
ép,n S * S X, PXY(S 5n) (17)
where Pxy and P%Y are given by equation (13). Purther-
more, it can be shown that the optimal a, as given by

equation (16) also arises by approximating p Yule-
Walker equations in a wmanner similar to the approxims-
tion given by equation (3) for

It is clear that the forward prediction error vector
g; a and the autoregressive coefficient vector a, are

interchangeable in the sense that one can always be
found frow the other using equation (7). Similarly
dX  and QP are interchangeable since one can always
b8’Pound trom the other using equation (14). It is

also true that the 2p elements of gp and sp ars {nter-

changeable with the 2p elements £ (n). fz n(n)....,

f‘ a(® and df (a), a @, ..., dx RO {t.e., the

nth elements of the 2p prediccion error vectors EI o’

x x x 4% x *
gz'n,...,gp’n and d1 a’ —Z.n""'dp,n)'

We will show this last fact in Section VIII, where
we will also see that the prediction errors lead to a
lattice filter structure which {s related to the auto-
regressive coefficient vectors.

In the fast recursive algorithm, the sutoregressive

coefficient vectors a, and d; ars not directly updated.
Inatead the prediction ctror elements f‘ (n). ey

a(n), and d* Q@ ..o, 4 (n) are upd.:od.

:hese elements are Lnterchnngcablc with the auto-

regressive coefficients, there is no informstion lost

in updating only the prediction error elements. How-

ever, the prediction error elemeats may be updated in

a computationally efficient manner, requiring 0(p)

multiplications and additions for the update. More-

over, as ve shall see later, the 2p prediction error

elements enable us to find all of the a, and iy

vectors for ARMA denominator orders from 1 to p. It

is for these reasons that ve choose to update the

<We use the term "delayed” because although the subscript
n appears, x(n) is never used in (14). The undelayed back~-
wardiprediction error vector will be discussed in a later
section.

Since
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prediction error elements.

Ve may also obtain additional autoregressive co-
afficient eatimates similar to a and a by considering
the pradiction error vectors associated with the vector
Jpn given in equacion (4b). Specificslly, the optimm
forvard prediction error corresponding to y, is defined
as

LIRS (180)
whete
PR A anpxn (18b)

aod Xn,p Yn,p and Ju are defined in equation (4). As
in earlier cases, can be found by approximating p
Yule~Walker equations or, equivalently, by minimizing
the quadratic functiooal

t y
.p % 91[29 o)

Corresponding to this optimal autoregressive co-
o

efficlient vector £y ve may also define the estimate

n(ey) = [_f_;"nx*[x a9

iﬁ.' -Yn.P 5; Ya, P[ nfpvn P lxntpz“
Pyx 2o (20
which, in turn, gives rise to the optimum error vector
0" Prx tn
where PYX and PY; are defined as in equation (13)

Finally, the optimal delayed baclkward prediction
error vector for y, is defined by

g_;' “" Zn * Yo &S (21a)

where

- - t (gPHL
p 1% pTa,p! RN
Again, we can define the predicted value of Spﬂz by

(21b)

N
p+l o -1, 4+ ,.p+l p+l
$" Y, " Yn p[&,p n, p xmp(s 1) -?YX(S 2]
(22)

and 1t follows that
L]

dy - P (23)

p+i
7y
Just as for the xn vector, the 2p entities
f{ (m),..., fY (n). and d{ ..., dy (n) can be

efficiently updnud and enable us to dctemine the
optimal cy and ¢, coefficient vactors for all ARMA
model denoninar.or orders from 1 to p.

II1. THE HILBERT SPACE SETTING

The problem of recursively updating the prediction
error vectors in the fast algorithm can be more easily
understood by casting the problem in a Hilbert space

setting. Consider the n dimensional complex
Euclidian space
Halleroegx,.. x (26)
with the standard vector inner product defined by
a »
x,y> =xy= [ x(1) y(0) $1))

i=1

throughout the remainder of the paper, the "*" symbol

will be dropped and the prediction error vectors
£x, d%, £Y, and dY are assumed to be the optimal ones.

We note that the nxl vactors x,, $%x,. yp. end S%y, are
all elements of ¥. Moreover, the p columns of matrix
Xy,p are alsoc elements of H. The set of all linsar
o-gtmtim of chese p elements is & subspace of &.
which we denote by My. Similarly, My is the subspace
spauned by the p columns of Yn

Let us now consider the forvard prediction of x,. From
squation (12a) we ses that x,1s formed by & matrix
multiplication involving Xp. The matrix Pyy 1# seen to
be a linear opsrator onm tha Hilbert mco“ It 1e ap-
parent that P, maps elements of £ into elements in the
oubopuce My, t 1is

- (26)

Also, 1: is evident from equation (13) chat Pn = Pyy
so that the operator Pxy is a projection operstor ounto
the subspace My. In general, Pyy is not the orthogonal
projection operator onto subspace My. Instead, the as-
sociated ditvection of projection is determined by the
matrix Y, ,. It can be seen from equation (6) that the
diucuon of projection of Pxy is orchogonal to My.
Thus, Py is the projection operator outo the subspace
My along Myl (the orthogonal complement of My).

With these thoughts in mind, we can provide a simple
geometric interpretation to the four error vectors
described in the last seccion. In paxticular. the
geometric relationship between x,, En' and _f; n
depicted in Figure 1

My

“r ¥

Geometric Relationship Betwaen xp, Xn, and
the optimal prediction error is ixp a

Figure 1:

The vector .’:‘n is seen to be that projection of x,onto
My that {8 orthogonal to My. We note from Figure 1chat

» 3

Gl (272)
or, equivalently, that

<gp o s"z“> =0, m=1,2,...,p (27v)

The geometric relationships for d ar £ , and d are
similar to Figure 1. AN ;,n ‘.n

Since Py and Pn are projection operators, so are
their cc-p ¢mts P and P§x It follows that
(P ) “ (28s)
(P ) Yx (28b)

We can also see from equation (13) that Pyy snd Pyx
are s:ron;ly ulacod. namely

and P - [P ) (29b)

in addltion :o the four prediction error vectors,
there are four inner products that are useful inderiving
the fast algorithm.
defined as:

X 4y - the reptl
opua 3 L5 171dY 1 = xR U7y

These complex-valued scalars are

(30)
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IV. THE PROJECTION OPERATOR THEOREM

From the results of the last section it is apparent
that the various prediction error vectors and scalars
are all described by the operators Pxy and Pyy. As a
new data point x(n+l) becomes available, we desire to
update the prediction errors vectors and scalars in a
computationally efficient manner. Because the opera-
tors Pxy and Pyy are used repeatedly and their struct-
ures change as new data points become available, we
prefer to update them and then obtain updated error
vectors by applying these updated projection operators.
Recursive update equations for the projection operators
Pyy and Pyx, are readily obtained by appealing to the
following theorem.

(Projecction Operator Theorem) Let A and
t:hermore, consider the aug-

mented matrices A = {A:a] and B = (B D] in uhich

a and 5 are nxl vectors. 1If [A* +*81-L and [A *8]-1

exist, then the associated projection operator corres-

ponding to the augmented matrices is given by

Theorem L.
B be nxm matrices.

E_. c - c +,
P15 PAB P.n E[EIP a] b PAB (34)
where PAB = A[{B"A] B (35a)
PAB - - PAB (35b)

The theorem may be straightforwardly proven by writing
(A-B] in terms of Schur complements and performing
some matrix algebra. Alternatively, the theorem may
be proven using Hilbert space concepts.

Using this projection operator theorem we may now
obtain all the necessary equations for the fast recur-
sive algorithm. Two types of recursive equations are
of interest. First, equations are needed that provide
the m+.3t order prediction error vectors in terms of
the mth order errors. These are called order update
equations. Second, equations are needed that enable
us to update the prediction errors as a new data point
becomes available. These equations are referred to as
the time update recursions.

These two sets of aquations are derived below.

V. ORDER UPDATE RECURSIONS

In this section the order update equations for gf.
£Y, ¢*, d¢”, u and v are derived by making use of the
projectxon operator theorem.

Consider firsct the error vector f¥ m+l,n assoclated
with the optimum m+13t order autoregtessive co-
efficients. Here, m can take on any value in the
range O, 1, ., p~1l, where p is the desired auto-
rec-essive coefficient order. From equations (4) and
112b), we see that

faelia " P29 % (360)
= . Lmrl

where X xn.m*l (xn.m :S _ﬂl (36b)
- . ool
ol * Mol Iyl (36c)

Applving the projection operator theorem to (36a) with

A»X, B=Y, a=s®lx, and b =5m*ly, we have
X - <
fm-rl,n Py % .
< pC oMl o Th mel L+ oc
PKY(S x)[(S !‘ XY(S 0] s Y Py X
x x Sm,n_ . x
foetin * fnn T 5%, daun (37)
™ a oy 1 -

As mentioned earlier, to implement the recursive al-
gorithm we only need the error element at time n, that

is fx n(n). From equacion (37) we see that
f:+1 n(n) ® f: ‘ dn a (@ (38)
m,n

Equation (38) is the desired order update equation
for fX,

In a similar manner, the order updste equation for
£Y 1g found to be

y -pSo
foel,n "PER In 39
where X and ¥ are defined in equation (36). Applying
the projection operator theorem yields
T
y T AL T1: 3 4
Em+l.n £m,n Yo a gm,n (40)

A\
The nth component of equation (40) 1is the desired
order update equation for the forward y prediction
error, that is

T
m
m+1 n(n) * fy (n) - ;ELE d: n(u) (61)

The order update equations for the delayed backward
prediction error vectors may be similarly derived.
These equations are, however, not as useful as the

combined order and time update equations. The combined
update equations give dX L) and dY 1,0+l in terms of

d*  and ¢”
—m,n ~m,n

update equation for the delayed backward x; estimate,
we first note that from equatioun (17b)

In deriving the combined order and time

o+l

x
Sorl,mel " PR X (42a)
where o .
= ] .0
LR WO | = 1 (42b)
I X P
Ja,m: ~nj
s o' 0
Y Yn+l,m+l Q ..... e (42¢)
n,m. A

We now apply the projection operator theorem to
equation (42a) with A=X and B=Y in equation (34).
After some simple algebraic manipulation, we get

- *
x -1.0 “m.n
do+l, 04l ’-x .= éio" (43
Lﬂn.nJ Mg, | @B

The n+1St component of equation (43) yields the desired
update equation
*

T
X X m,R X
dm+l,n+l(n+l) - dm.n(n) - :;*— fn.n(n) (44)
m,n

The delayed hackward time and order update equation
for y, is derived in a similar manner. The details are
omitted, but it is readily shown that

%
4
(n) - ;—*— 24 (n) (45

a7 (n+l) = dY
1 a,n ™"

o1, n+

Finally, the order update equations for the scalars
vm,n and vy o are derived. From equation (32)

e 1R o
. .l

where X Kn el [xn.m L (s En)] (46b)
- . . ol

P e * (o 6™ g (s6c)

. . B s o [P v T NS
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Applying the projection operator theorem gives the
desired result

a ytp¢
Ya+l,n ZPXY-’E

_otet (om*l wl o poc cmbl (o7l abl L toc
Pry(S (ST Pry(S )} Ty Pey X

e, _t
- _‘m,n’mn
unﬂ..n un.n v* (47)
®,0
Also, from equation (33)
v - ™l teSo ™y ) (48)
whl, ol %P5y %
where X and ¥ are defined in equation (46). Applying

the projection operator theorem yields the combined
order and time update equatiom for v.
g T

N -y __mnmn
o+l, nel ®,n *

m,n

49

VI. TIME UPDATE EQUATIONS

The remaining recursive equations update the forward
and delayed backward errors as a new data point is
obtained. For this reason these equations are called
time update equations.

When a new data point becomes available, the effect
on the prediction error vectors is to append a row to
the bottom of their defining matrix equation [see, for
example, equation ( 7)]. Appending a row to the
mactrices X n and Y, p does not seem to fit in the
Eramewotk of the projection operator theorem, in which
columns are appended to Xp,p and Y, ,p. It turms out,
however, that we can accomplish the task of annihilat-
ing a row in the error vector matrix equation by
appending to X, , and Y, , the nth basis vector defined
by [
_eﬂ-[o 0...0 1] (50)
To see how this works, let us consider as an example
the forward prediction error vector for xn. If we
append the axl vector en to Xp j, in equation (7) we
have

fnatD| |x o . .9 toflagm
x(i!.) ‘0 : 0 am(2)
- L S 169 (s1)
At
: l : : S 0lLe
.f:‘n(n)J .-x(n)J :((n-l) x(a-m) - 1_1

where ix is used instead of g" ro indicate the presence
of the es vector. The optimal _f‘f'n vector is given by

£f - pSe x (52a)
where :m,n Xt =a

K= (X 0 (52)

¥ - (¥q,m 2] (52¢c)
From equation (27b) we know that

<fpn. Sy, >0 . 1sl,2,...3  (53a)

<fan.e >=0 (53b)

Equation (53b) (s satisfied only if we force
E: a{® = 0. This can always be done because the
’
scalar £ appears only in the last row of equation (51).

In particular, 'f:.n(n) = 0 1f we choose

n
£=- ] a (x(a-) (54)

i=1

Since E=,n(n) =0, equation (53a) is seen to depend
only on the first n-1 components of the vectors. It is
easily seen, then, that f: oK) for k=1,2,...,n-1 are

]

determined using the first u-1 rows of (51) i{n such a
manner that the vector [f:'n(l).....f: 2@ 'is
1]

orthogonal to the first n-l1 components of each column
of Yn,m- But this is exactly the problem of determin-
ing the forward prediction error based on n-l datas
points. Thus, we see that

X
L. im,07l
~u,n 0

Similar arguments show that this time annihilationm
praperty aleo holds for gz , 4%, and t_lz o Vith re-

»a’ “m,n’ ,

sulting formulas similar to equation ( 55). We finally
note that the scalars og,n, Ty, ,n» Ym,ns 80d vg g are
formed as inner products of the pndi_ction error

2 4 y x
\.rectors. Since the last element of _f"n (or gn.n’ 41"',
gz n) is zero, it follows that

N

(55)

o (56)

m,n-1

and similarly for Tm,n° Ym,n’ and Vm,a-
With chese thoughts in mind we are’in a position to

derive time update equations for o, t, u, and v. Firet,
let us define the augmented matrices

X = [xn'm 521;] (57a)

T (i) (s78)
Then it foliows that

- [t ] = xpSo(s™)

9, n-1 [g'.n] [dn,n] Enpn(s Zn) (58)

vhere X and ¥ are defined by equation (57). Application

of the proje’ction operator theorem yields

-1
o «FIpS _ pC +C c i+l
%,n-1 = %a(Pxy = Py %al% Pyt &PpCST Ly

- S * -y, Y
%,n-1 " °m,n fm,n (=) (1 Ym,n] dm,n(n) 9
- tpS
where 1 Yn.n de PXY e (60)

By rewriting equation (59) we arrive at the desired

time update equatinn
y
Uiy @Ity @]

1 -yn.n

(61)

g =g

m,n m,n~1

The time update equation for t is found in a simflar
manner by using X for A, ¥ for B, S™*lx for a, and y,
for b in equation (34) to yield

x wpey

. .. (dn n(n)l (fn n(n)l (62)
m,n ®,n=-1 1l - Yn.n

The update equations for u and v are found to bde
(£ _@I*ed (n)]
. m,n m,0

um.n - “n,n-l + l -y (63)
m,n
x *, .Y

y . [dm,n(“” [d-,n(n” (64

@,n “ Vn.n-l

1= Yan




by using arguments analogous to those used in deriving
equations (61) and (62).

Finally, update equations for vy p are needed. To
obtain an order update aquation, we note that

- tpse
1 ym-l.n g PXY & (658)
whera
. ol
LN C IR C e ) (65b)
s . retl
LN SR Cle' ) (65¢)
Applying the projection operator theorem,
+ _C
1=Yoer,n " & Pxy &
458 oIl mHl 4.C¢ ombl -l o mel o eoC
—gnPXY(S X [(57 ") PXY(S x)1 (s Xﬂ) ny g,
(4} ((@114) )]
- - - e K.
1= vaaq . (66)

v
m,n

or, equivalently

* Y
(@ @1 ()]
\ T e (67)

v
m,n

To obtaln the time and order update equation for ¥y
we note chat

- e
L= Yael,nel " 20l PRE Savl (68a)
where _ o . 8" T
X = ey eT. : (65b)
o+l,m+l [_5“ xn.m_|
. o, ia" 1
b e i (68c)

Since the first element of e is zero, it follows

that e —otl
L= Vasl,oel T &0 PR S (692)
where _
X = [xn'mzzn] (69b)
LA S (69¢)
Applying the projection operator theorem yields
(£ @ty (n)]
-y -l-y L. mn m,n
m+l,n+l @m,n *
H m,n
or x ..y
(£ _(m)]°[£7 (n)]
m,n m,n
Totl, bl " Ymn YT o 70

Y a,n
These gix time update equations (61), (62), (63), (64),
(67), and (70) along with the six order update
equations (38), (41}, (44), (45), (47) and (49) obtain-
ed in the last section comprise the fast recursive
algorithm.

VII. SUMMARY OF THE ALGORITHM

At this point all necessary equations for implement-
ing the fast recursive algorithm have been derived. In
this section initial conditions are discussed and a
procedure for implementing the recursive equations is
given.

The implementation of the algorithm is conceptually
easier {f we replace the delayed backward error
quantities by (undelayed) backward error quantities.

The (undelayed) backward errors are defined by
X xJi, O

=p,n
Y o P 0 .1, . ceP=l_ .=
Qp'n S b + (s n :s P ARRTRE :s xn]gp (72)
where a, and ¢, are pxl autoregressive coefficient
vectors. By Egmparing equations (71) and (72) with
equations (14) and (21), it is readily seen thac the
(optimal) backward and delayed backward error vectors are

- P 0. .1 . . op-1
S x + [s X :S Xy seees :s

related by 0
a*  a ] (73a)
-m,n b
-m,n-l
and
RO A (735)
A\ by
| ~m,n-1

The nth components of equations (73) yield the
degired results

x x

dm'n(n) = bm,n-l(n'l) (74a)
Y o nY -

dm.n(n) bm,n-l(n 1) (74b)

Thus, using equation (74) we can replace tha delayed
backward error terms in the recursive aquations by
backward error terms.
It {s also helpful to replace v by another scalar
defined by
TS ST S 4
“a,n [Em.n] (Em.n] (75)
By congidering the defining equation for v, equation
(33), along with equation ( 73) it is a simple matter
to show that

(76)

w =y
m,n~1 m,n

Table 1 summarizes the complete set of update equations
with d¥, 4”7, and v replaced by bX, bY, and w.
The initial conditions for the various quantities
in Table 1 are obtained by considering the defining
equations for these quantities. For example, from
equation (24) we see that {f m=0 then gg R A
»

fg‘n(n) = x(n) an
From equation (71), it also follows that

bS,n‘“’ = x(n) (78)
Similarly, we can show that

£) oW = y(n) = x(n=q) 9

bg'n(n) = y(n) = x(n=-q) (80)

Furthermore, since yn is the zero vector for n<gq,
it follows from equations (30) - (33) that

g T 0 for n<gq (81)

0.n " %0,n " Y0,n
It is clear from Table 1 that no order update
equations exist from ¢ and t. Therefore, initial
conditions are needed for op p and Tp,n for each p and
some corresponding n. A little thought will convince

one that fg q"‘p(qﬂ)) = 0 by using an argument similar
to the time annihilation argument presented in Section
VI. Moreover, we can also show that d: q+p(q-o-p) = 0.

by using this type of argument. Thus,
for m = 0,1,...,p (82)

4 - Tm.q*m =0

m, q+m
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3
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"

¢

o
aVa .

uﬂ-l n(n) - f:,n(n) - n n-l(n -1) am n :: o~-1 (T-1)
Ml.n(n) - f:.n(n) - n n-l(n L m, n “m,n-1 (=2)
b:&l.n(n) ¢ n n-l(n-l) - t:.n(n) t|:,n/“||.:.n (T-3)
b;ﬂ.n(n) - bz.n-l(“-l) - f:.n(n) an.n/“n.n (T-4y
Yp+l,n ® Yan - °m,ntm.n/“’u.n-1 (T-3)
“o¢l,n ® “g,n-1 - ’n,nrm,n/um.n (1-6)
%an - o A G DL UL CE S VIC RSN (T-7)
Tan " Thael + gy eeDIME) @)/ (T-8)
ban " gl e J@ITE (@)1 -yy ) (1-9)
Sarn = up + log 1) /-y ) (1-10)
Yarl,n " Ta,n + by m,n- l(n -01* [bm a- l(n'l)]/”;.n-l (1-11)
vl ool Yo.n + gy 1M @) /g (T-12)

Table 1: Summary

where p is the desired (maximum) autoregressive co-
efficient order.
Finally, when o = O,

Yo " 0 (83)

Although other initial conditions may be obtained,
these initial conditions are the only ones needed to
implemenc the algorithm.

The implementation of the update formulas can be
divided {nto three parts. First, for n<q the vector
Yo Ls the zero vector, 3o no operations are performed.
For q+1 <n<q+p+l, the maximum order m that cam be
used is n~q-1. In this time interval, as a new data
point arrives not only are time updates performed, but
also the model order is increased. For n>q+p+1l, the
model order remuins at p and the time updates only are
performed.

The implementation of the algorithm for n>q+1 {s
summarized below.

As the new data point becomes available:

1) Set n - n+l

2) These quantities are available from the last

iteration:
x _ y _ x _ y _ for
n-l(" l).fm'n_l(n l)‘bm,n-l(n 1)'bm.n-l(n l)l m=0,1
ey
‘m,n-1'"m,n-1""m,n-1""m,n~1 min(p,
n=-q-2)

3) New initial conditions: fg n(n) = x(n)
bg'n(n) = x(n)
fs‘n(n) = x(n-q)
bs'n(n) = x(n~-q)

0.0 =0

f n<p+q+2, :n-q-l,n-l - Tn-q-l.n—l =0

of Update Equations

4) For each m = 0,1,...,min{p~1,n~q-3] find

SRS SN o using (T-7)-(T-10)

a,n” m,n mnm

m+1 n(n) fm+1 n(n) bn+1 n(n) bm+l n(n) using
(T-1)~=(T-4)
Ya+l,n using (T-11) 3

5) For m = min{p,n-q-2] find

I T " using (T-7)-(T-10)

m,n’ ‘m,n’%m,n'“n,n
6) If n<p+q+]l we need to add a filter order.
Set m + n-q-2.

Find:
m+1 A f a(@, bm+1 a (@, bn+1 a(®) using
(T=1)=(T-4)
vm+1'n using (T-1)
“m+l,n’%m+l,n using (T-5), (T-6)
Set m + n-q-1.
Find:
am.n'fm.n using (T-7), (T-8) with cm,n-l -rn'n_l-o

At this point we are ready for the next data point
to arrive.

It is clear from the above summary that O(p) multi-
plications and additions are required to update the
prediction errors. More specifically, in the time up-
date mode ({.e., when n>p+q+2 g0 no filter orders
need to be added] l4p multiplications and 10p additions
are performed per update. In the time and order update
mode, [{.e., when n<p+q+2], 17p multiplications and
13p additions are performed. It should be noted that
this computational requirement may be significantly
reduced by using a normalized lattice forn similar to
chat in (2].

7




VIII. THE LATTICE STRUCTURE

The fast recuraive algorithm lends itself to a digi-
tal filter structure known as the lattice filter. This
structure can be seen by considering equations (T-1) -
(T-4). It is clearly seen that thc filter that pro-
ducu the four outputs f" (n). (n). b" (n) and

(n) is given in Pigurc 2 whcre
t

P - + (84)
’ Ya,n

a*
x o mn
ey ()
y - a_mrﬂ (86)
“u,n bm,n

4
8)’ a - 2l (87)

* m,n-1

- X
ot
A"

b\:; aln) ‘1-.
y

f'.n o()

4

b 7

Figure 2:

Filter Realization of Error Order Update Equations

Thus, the entire pth order filter is given by p stages
of filter shown in Figure 2. This is depicted in
Figure 3

£3,n(n) SPGY L ’—L nla)

X

l a0 b 4(n) ] bp,n(n)
x(n)

£}, o) £y 5 (n) o £ ()

Z..'k' y Lv y
l’O.n(“ Lﬂ(" L ‘bg,n(n)

p stages

Figure 3:
Realization of the pth Order Filter

in the startup phase of the algorichm [i.e., when
the filter order is less than the desired order] the

filter of Figure 3} begins with one stage, and success-
{ve stages are added as new daca points arrive. Alter-
nately, all p stages may be in place at the beginning;
however, the four multiplier sections of each unused
stage is set to zero until that stage is to be used.
The lattice filter structure at Figure 3 nicely

depicts the relationship between the sutoregressive
coefficients and the prediction errors. To see this
relationship, let us denote the transfer functions from
x(n) to f: a(@) and from x(n) to b: n(n) by F:(z) and

B:(z). respectively. Let us also define the auto~
regressive coefficient transfer functions
A(2) = 1+ 8 (D2 +...+._(.)z" (88)

R =3 +3 -, 39

+o.4d (w12
where the a; and ‘1 coefficients are defined by
equacions (5) and (71) respectively. A little thought
will convince one that the tramsfer functions are
related by

Fl(z) = A (2) (90)
BX(2) = & () (91)

With this thought in mind we are now able to derive
equations that relate the error elemeats to the auto-
regressive coefficients. From Figure 2 it is clear
that

x

x
fl‘ll.n(n) -f (n) +Bm-l nbn-l n-l(n-l) (92
x

bm,n(n) =a m-l n m-l n(n) +bﬂ-l n- l(n-l) (93)

By taking z transforms of equations (92) and (93) and
using equations (90) and (91) we get

Ag(e) = A @ vzl ) A (@) (%)
-1 x
A (z) » z %10 n_l(z) +A ae1(2) (95)
Furthermore, we can see from Figure 3 that
Ag(z) = Ag(z) = 1 (96)
and from equations (94) and (95) that
X
3™ =8y (97
a_(0) = o> (98)

m m,n
Given the error elements f’t (n) and b (n) for

m=1,2,...,p we can use equations (92) and (93) to get
the am,n and By 4 elllentu. then use equations (94)-(95)
to get the am(kf and lm(k) elemants for m=1,2,...,p
and k=0,1,2,...,m. Thus, we are able to obtain the
autoregressive coefficients for all model orders from

1 to p.

Similarly, given the ap (k) and (k) coefficients for
k=0, 1,....p. we can use (96). (9;? (97), and (98) to
gec the af  and 8% o and then the p - 13t order auto-
regrassive cocfficgants by working down from order p
to order 0. Then, using (92) and (93) we can obtain
the desired error elements.

Thus, using equations (92)-(98) we are able to con-
vert back and forth betwsen the lattice error elements
and the optimal autoregressive coefficients.

As a final note, when q=0 ({.e., when an auto-
regressive model is chosen) it can be seen in Figure 3
that the top half and bottom half of the filter are
equivalent. In this case, only one half is needed, and
the filter in Figure 3 degenerates to the AR lattice
filter described in {1].

8
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IX. CONCLUSIONS

In this paper we have presented a recursive algorithm
for obtalning the autoregressive coefficients of an
ARMA model. The recursive algorithm is based on the
prewindowed version of the high performance method of
ARMA spectral estimation as described in Part 1. The
recursive algorithm is computationally fast, requiring
O(p) additions and multiplications to update the para-
meters. Moreover, the algorithm can be implemented
using a lattice filter structure offering numerical
robustness and nice convergence properties associated
with lattice type algorithms.

We have not yet discussed the problem of recursively
estimating the moving average coefficients in the ARMA
model. We do not at this time have such an algorithm.
However, it is worth noting that the moving average
information is present in the output prediction error
sequences, and the uctilization of this informatiom for
moving average coefficient estimation is currently
under study. Another area under study is the use of
various normalization procedures to effect a decrease
in computational requirements and in sensitivicy.

Finally, we note that the recursive algorithm pre-~
gented here is based on approximating a set of p Yule~
Walker cquations. It has been shown in Part 1 of this
paper that for short data lengths, improved spectral
estimates result from using more than p Yule-Walker
equations. For those cases in which the amount of data
is small, a fast recursive algorithm based on the
approximation of t >p Yule-Walker equations would often
prove useful. Such an algoricthm is currently being
pursued.
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