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Abstract - In :hil'two—pc;y paper, a novel procedure
for generating an ARMA spectral model of a wide sense
stationary time seriea is developed. The parameters
of this model are selected so that they most closely
fit a set of Yule~Walker equations which sre estimaced
from a finite set of time series' observations. This
ARMA modeling method has been found to exhibit a spec-
tral estimation performance which is typically superior
to such alternatives as the maximm entropy (AR) method,
clasgical Fourier procedures (MA),and, the Box-Jenkins
method (ARMA).

One of the principal features of this spectral
estimation method is the elegant algebralc structure of
the linear system of equations which need be solved
when finding the ARMA model's parameters. This shift-
invariant type structure gives rise to an adaptive
algorithmic solution procedure whose computational
efficlency is comparable to that achieved by recently
developed fast AR algorithmic methods. The details of
the adaptive ARMA modeling procedure will be covered in
Part 2 of this paper. These dual characteristics of
excellent estimation performance and real time adaptive
implementation mark this method as being a primary
spectral estimation tool.‘

I. INTRODUCTION

In meny interdisciplinary applicatioans, 1t is desired
to estimate the essential attributes of a generally
complex valued wide~sense stationary time series
{x(n)}. Depending on the specific nature of the time
series, this characterization is often adequately
revealed through knowledge of the time series' associa-
ted autocorrelation sequence

t (a) = E{x(o+m)x*(m)} n=0, +1, +2,... (1)
in which E and * denote the operations of expectation
and complex conjugation, respectively. On the other
hand, the requisite characterization may often be
better made in the frequency domain through the spect-
ral density function

@
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which is recognized as being the Fourier transform of
the autocorrelation sequence. Either member of this
transform pair conveys the total second-order statis~
tical information relative to the underlying time
seriss. Frequently, this second order statistical
characterization provides all the information required
for a given application (e.g., optimal Wiener filtering,
one-step prediction, etc.).

The classical spectral estimation problem is con-
cerned with estimating the spectral densicy function
(2) from s finite set of time series observacions.
Without loss of generality, thess observations will be
taken to bs the following N contiguous elements
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A variety of procedures have been proposed for using
these observations to effect a spectral denaity esti-

mate. Invariably, the resultant estimate will take on
a rational model form as expressed by
2
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in which the ay and by are referred to as the model's
autoregressive and moving average coefficients, res-
pectively. We shall refer to this particular rational
form as an autoregressive-moving average (ARMA) model
of order (p,q). It is well known that any continuous
spectral deasity can be approximated arbitrarily
closely by this rational form if the order pair (p,q)
is selected adequately large. Thus, by imposing a
rational form on the spectral model, we incur no real
loss in spectral representation.

The preponderance of research and application inter-
est has been focused on two special cases of the above
ARMA model. They are the moving average (MA) model in
which all of the ay coefficients are set to zero, and,
the autoregressive (AR) model for which all of the by
coefficients except bg are set to zero. The spectral
density estimate arising from a MA model is seen to
possess no poles, and as such it is frequently referred
to as an all-zero model. Using similar reascning, the
AR model is referred to as an all-pole model, and, the
general ARMA model is referred to as a pole~zero model.

Classical Pourier approaches [1] and the periodogram
method {2] are procedures which ultimately provide &
MA spectral density model. Similarly, the maximum
entropy method and linear predictive coding are tech-
niques that result in AR spectral density models.
Undoubtedly, the primary reasons for interest in speci-~
al case MA and AR models lie in the fact that they:

(1) are amenable to a tractable analysis, (ii) typical~
ly provide adequate spectral estimation performance,
and ({i1) give rise to coefficient selection procedures
which are implementable by computationally efficient
algorithms.

Despite this predisposition towards MA and AR models,
a growing interest in ARMA models is evident [3]-[9].
This is in recognition of the fact that the more
genaral ARMA model usually provides superior spectral
estimation performance while at the same time requires
fewer model parameters to achieve that behavior. It is
because of these very factors that a numbar of ARMA
modeling procedures have been proposed. Thase include
the Box-Jenkins maximum likelihood method [}], whiten- ,
ing filter approaches (4], (5], and, more recently,
Cadzow's high performance method {6]-{9]. This latter
method has been found to provide a spectral estimation
performance which typically excels that obtained from
its MA, AR, and ARMA counterparts. n/
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In this paper, we first characterize the modeling of
3 pure ARMA time series. An analytical procedure is
presented for determining the underlying ay and by co-
afficients in which che time series' actual auto~-
correlation element values are used. This i{dealistic
gituacion then provides the justification for intro-
ducing the high performance method in which the ARMA
model’'s coefficients are estimated from time series
observations and not from autocorrelation values. It
is shown that the p autoregresaive a) coefficients are
obtained by solving a consistent syatem of p linear
equations. When using this direct approach, the com~
plete set of time series observations (3) are incorpor-
ated to effect a single spectral estimate in one
computational effort. This approach is typically
referred to as "block processing”. Moreover, by using
the generalized Levinson algorithm [10]-{11], it is
possible to solve the above mentioned system of linear
equations in a computationally efficient manner.

In Part 2 of this paper, a recursive procedure is
developed in which the ARMA model's coefficients are
updated as each new time series observation becomes
available. In this "time-update processing” mode, an
adaptive form of spectral estimation is thereby
achieved. One of- the particularly attractive features
of this time-updating mode is its computational
efficiency. Specifically, the p autoregreasive co-
efficients (in actuality prediction errors) are
optimally updated with each new time series observation.
The number of multiplication and addition computations
required in this updating is of the order p. Thus,
the computational complexity of the high performance
ARMA method 18 competitive with recently developed
"fast" AR methods, but, its spectral estimation per-
formance is typically far superior. The time-update
aode is particularly attractive in those situations in
which the time series being characterized is a long
ongoing process and one wishes to generate a time
evolving sequence of spectral estimates in a real time
setting.

II. ARMA TIME SERIES: PERFECT MODELING

In this section, the second-order statistical char-
acterization of an ARMA time series will be presented.
This characterization will play a central role in the
high performance spectral estimation procedure that is
to be developed i{n subsequent sections. The time
series {x(n)} is said to be an ARMA time series of
order (p,q) if it 1is generated according to the causal
linear recursive relationship

P

x(n-k) (5)
kzl. e

in which {w(n)} 18 a zero mean white noise excitation
whose individual elements have variance one. It is
readily shown that the spectral density corresponding
to the response time series {x(n)} is given by ex-
pression (4). Thus, there 18 seen to be an equivalen-
ce between a rational spectral density wodel and the
response of a causal linear system to a wvhite noise
excitation.

We will now direct our attention to developing a
systematic procedure for identifying the recursive
system's autoregressive coefficients (i.e., the ay)
and moving average coefficients (i{.e., the by) from
the response time series’' autocorrelation elements.

It will be beneficial to consider separately the tasks
of identifying these two different sets of coefficients.

- q
x(n) = b, w(n-k) -
k-z-o k

Autoregressive Coefficient Identificacion

The autoregressive coefficients can be determined
directly upon examining the autocorrelation character-
ization of recursive system (5). This is achieved by
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first multiplying both sides of this recursive ex-
pression by x*(n-m) and then taking the expected valus.
This is found to result in the well known Yule-Walker
equations

P
r_(m=k) = -r_(m)
L, ax x

where it is important to note that the lag parameter s
i3 here restricted to exceed the numersator order para-
meter q. As a side note, the Yule-Walker equations
will involve the moving average coefficients by in a
nonlinear manner for lags 0 < m < q. The characteristic
equations of expression (6) provide a straightforward
procedure for obtaining the ARMA model's ap auto-
regressive coefficients. This formally entails expres-
sing the first "t" Yule-Walker equations (i.e., q+l < =
< q+t) in the following matrix format

for m > q+l (6)

-tx(q) tx(q-l) rx(q—pﬂﬂ 8 -rx(q*l)-‘
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tx(q-O-t—l) r‘(q+t-2) rx(‘I‘P'ﬂ’.) ) rx(q-n)

- -4 - -

in which the integer t is taken to be equal to or
larger than the model's denominator order (i.e., t 2 p).
This linear system of equations may be compactly
expressed as

q P §
Rtp 1, - L, (8)
where R: P is a txp autocorrelstion matrix, 52 is a txl

autocorrelacion vector, and, s, 18 the ARMA model's pxl
autoregressive coefficient vector. In this representation
the subgcripts t and p are appended to designate the num—
ber of Yule-Walker equations being used, and, the ARMA
model's denominator order, respectively. Similarly, the
superscript q depicts the ARMA aodel's numerator order.
To obtain the ARMA model's autoregressive co-
efficients, one then simply solves the consistent sys-
tem of linear equations (8). Valuable insight relative
to rational spectral density modeling is provided upon
closer examination of the autocorrelation mstrix's
(1.a., Rgp) algebraic structure. It is couvenient to

expreas this characterization in the following theores.

Theorem 1: Let {ry(k)} designate the auto~-
correlation sequence which is associated with
an ARMA time series of order (p,q). The
corresponding system of t linear equations
in m unknowns as specified by

n [
lu a-r (¢)]
has a unique solution provided that w=p and
n>q for any value of t2p. Moreover, the rank
of the txa matrix R‘t‘- is given by min (m,p.t)

provided that n>q and, by min (m,t) for Oga<q.

A proof of this cheores will not be given here, since
thase results are implicitly documented in various
textbooks and papers dealing with time series. It is
i{mportant to note that even if one has perfect auto-
correlation knowledge of an ARMA time series, the
evaluation of the associated autoregressive co-
efficients entails a determination of the order pair
(p,q). This ordering information is implicitly con-
tained in the algebraic structure of the autocorrela-
tion matrix Rg-, and, can be obtained by examining this




structure for various combinations of the nonnegative
integers ®© and n.

Moving Average Coefficient Determination

To determine the by, coefficients associated with the
ARMA time series, it will be beneficial to introduce
the causal image of the time series' autocorrelation
sequence ag defined by

rx* (n) = £ (@u(n) -%rx(O)tS(n) (10)

in which u(n) and §(n) denote the standard unit-step
and unit~-Kronecker delta sequences, respectively. The
autocorrelation sequence may be recovered from its
causal image by using the complex conjugate symmetry
property of autocorrelation sequences (i{.e., r_(-n) =
rx*(n)). This reconstruction rule takes the form

r (a) = r:(n) + r: (-m)* (11)

Upon taking the Fourier transform of relatiomship (11),
we have the required spectral density expression

Ju, oot tw + Juy*
Sx(e ) Sx (e” ) + Sx (e’™)

- 2n.[s: ey (12)

where Sx+(ejm) denotes the Fourier transform of the
causal image sequence (tx*(n)).

In what s to follow, a parametric procedure for
representing Sx*(aJW) (and therefore Sx(er))vill be

given. This will first necessitate the introduction
of the auxiliary sequence
|4
+ +
c(n) = r_ (n) + ar
( e kgl ¢
in which the causal autocorrelation elements as gene~
rated by relationship (10) and the autoregressive co-
efficients as obtained upon solving the system of
equations (8) are used. According to the Yule-Walker
equations (6) and the causal image definition (10),
it {s seen that this auxiliary sequence 13 identically
zero outside the indexing range O<nimax(q,p). With
this in mind, the Fourier transform of relationship
(13) 1is next taken and results in

n~k) , O<nsmax(q,p) (13)

s -
c (3 = § c(uyedun (148)
-]

a=0

4
- =jwn,y .+, Jw
{1+ nzl ae ]Sx (e’™)

- Ap(e:“)sx‘*(e"w) (14b)

in which s = max(q,p). Upon solving this relatifonship
for Sy*(edw) and substituring this solution into ex-
pression (12), the desired ARMA spectral density is
obtained

¢, (e ¢, * el

Jw

S _(e’7) = +
x Jjw *, Jw
Ap(c ) Ap (™)

LR "] Jw Jw e Jw
Ap (e )C.(l ) + Ap(. )C. (e'™)

(15)
Jw *, Juw
Ap(c ) AP (e°™)

In order to determine the ARMA model's by moving
average coefficients, we next use this relationship in
conjunction with expression (4) to obtain

Juwyp ¥ Jwy Juy. * Jw *oodw Jw
Bq(e )Bq (e’") Ap(e )Cs (e’F) + Ap (e77)C (e")
(16)

A spectral factorization of this expression will then
yield the prerequisite by coefficients (assuming a
minimum phase Bj(elw)).

In summary, cge spectral density and the associated
ay and by coefficients which characterize the ARMA
time series of order (P,q) may be determined by follow-
ing the four step procedure as outlined in Table 1.

To carry out this model identification scheme, it {s
seen that knowledge of the order pair (P.q) and the
q+p+l autocorrelation elements ry(0), rx(l),...,rx(q+p)
need be available.

1. Solve relationship (8) for the p autoregressive
ag coefficlents. This will require setting t2p.

| 2. Generate the auxiliary sequence c(n) and its
! Fourier transform using expressions (13) and
! (l4a), respectively.

3. The desired spectral density is then given by
expression (15).

4. Perform s spectral factorization of the poly-
i nomiaqu(eJ“)B;(eJ“) as given by equation (16)
to obtain the minimum phase choice of the by

! coafficients. AAJ

Table 1: Generation of the spectral density and the
ARMA model parameters associated with a given
set of autocorrelation values.

III. HIGH PERFORMANCE METHOD OF ARMA SPECTRAL
MODELING

It 18 possible to adapt many of the ideas of
Section II to achieve an ARMA spectral estimate when
only the time series observations (3)are available
(and not autocorrelation values). We shall again treat
separately the cases of autoregressive and moving
average coefficient determination.

Autoregressive Coefficient Estimation

To implement the autoregressive coefficient selection
process as represented by relationship (8) 1t will be
necessary to compute appropriate autocorrelation esti-
mates from the given set of time series’ observations.
The high performance ARMA method effects these esti-
mates in the guise of a convenient matrix format which
lends itself to a particularly efficieant computational
realization (6]-{9]. In particular, the autocorrela-
tion matrix and vector required in expression (8) are
estimated according to

-
Rtp Yx 17

itq - Y'x (18)
wvhere the dagger symbol * denotes the operation of com-
plex conjugate transposition. The (N-p)xp Toeplitz
type matrix X is specified by

x(p) x(p=1) . . . x(1)
x(p+l) x(p) . . . x(2)

X= ' : : (19)
x(ﬁ-l) x(NLZ) x(k-p)

while the (N-p)xt Toeplitz type matrix Y has the form




x(p~q) x(p=q-1) . . . x(p~q-c+l)

x(p-q+l) =x(p-q) . . . x(p=-q-t+2)
Y- . : . (20)
x(N-q~1) x(N-q=2) . . . x(N-q-t)

and x 18 an (N~-p)xl vactor given byl
x = (x(D),x(ptD), . . . x0]' (21)

In formulating matrix Y, we have used the couvention
of setting to zero any elements x(k) for which k lies
outside the observation index range 1 < k < N.

If the autocorrelation matrix and vector estimates
(17) and (18), respectively, are substituted into the
Yule-Walker relationship (8), however, it is generally
found that the resultant system of t equations in the
p autoregressive coefficients is inconsigtent for t>p.
This is due to inevitable inaccuracies in the auto-
correlation estimates, and, to a possible improper ARMA
model order choice. In any case, the system of
equations with these estimate substitutions will give
rise to the txl Yule-Walker approximation error vector
as specified by

e=Y'Xa+ytx (22)

Upon taking the expected value of e, it is found that
for the ARMA modeling order choice in which q2p, that
this expectation results in

p -
Ele(k)} = (N-q-k)|r (q+k) + | a r (qtk-m)| , lskse
a=1 J (23)
while for the modeling order case q<p this expectation
produces

P -
(M-p) |r (q+k) + [ a r (q+k-m)| , lsksp-q
Ee®)} = =l

p
(N-q-k) [rx(q-ﬂt) +nzlanrx (q"‘k"ﬂ)] » p=q<kst

(24)

In either ordering case, it is seen that when the time
series is an ARMA process of order (p,q), the expected
value of the error vector e can be made equal to zero
by a proper choice of the autoregressive coefficient
vector a. Namely, this selection would be such that
the underlying Yule-Walker equations (6) are satisfied.
This implies that the system of equations (22) with
e = 8 provides an unbiased and a consistent estimate of

the Yule-Walker equations (8), where § is the zero vector.

With the above thoughts in mind, an appealing
approach to selecting the autoregressive coefficient
vector is immedistely suggested. Namely, a is chosen
so as to make the error vector '"as close" to its
expected value of 6 as possible. This is of course
predicated on the assumption that the time series is an
ARMA process of order {p,q) or less. In order to
attain a tractable procedure for selecting an

1A more generalized version of chis estimation scheme
can be obtained by substituting the integer k for p
wherever p appears in relationship (19)-(21). For ease
of presentation, k is here restricted to be p.

2A lictle thought will convince oneself that this same
conclusion will be reached 1if both q and p are at

least equal to the numerator and denominator orders,
respectively, 0f the underlying ARMA time series.

appropriate autoregressive coefficient vector, ve shall
introduce the following quadratic functional

f(a) = efre (25)

1o which A 18 & txt positive-semidefinite diagoual matrix
with diagonal elements Apy that is introduced in

order to provide one with the option of weighting
differently the various error vector components. It is
a simple matter to show that an autoregressive co-
efficient vector which will render this quadratic
functional & minimum must satisfy

XtYAYtX i = <xtyarfx (26)

One then simply solves this congistent system of p
linear equations in the p unknown autoregressive co-
efficients to obtain an estimate for the denominator
of the ARMA model.

Moving-Average Coefficient Estimation

There exist several procedures for estimating the
ARMA model’'s moving average coefficients. We shall
now briefly describe two procedures which have pro-
vided satisfactory performance and in a sense comple-~
ment one another.

1) ¢, Method

The procedure which has provided the best fre-
quency resolution behavior is a direct adaption of
the cy method as described in Section II (see ref.
(8]). In particular, using the set of auto-
regressive coefficient estimates as obtained from
expression (26) and a suitable set of auto-
correlation estimates ry(n) for n=0,1,...,n8x(q,p),
one computes the Cp coefficients using expression
(13). These coefficients are then usad to achieve
the desired ARMA spectral estimate when incorporated
into relationship (léa) and ultimately relatiounship
(15). Alchough providing an excellent frequency
resolution behavior, this procedure suffers the
drawback of not having a guaranteed nonnegative
defipite spectral density estimace3. It is wich this
in mind that the following procedure was evolved.

(14) Smoothed Periodogram Method

In the smoothed periodogram approach, ome first
computes the so-called "residual time-series
elements according to the relationship (see ref.[9])

P
e(n) = x(a) + | i.k‘x(n-k) for p<ngN 27)
k=1

in which the ‘;k. autoregressive coefficients as ob-
tained by solving expression (26) are incorporatad.
From this relationship, it is apparent that the
following spectral density expression holds

o
S (e7)
Jw €
S (e7") = — (28)
x IA;(ej“)lz

1f S,‘(cj"') is to correspond to an ARMA spectral model
of order (p,Q, it is clear that a ath order MA
spectral estimate for the residual spectral density
S (a}u) must be obtained and them substituted into
relationship (28). The smoothed periodogram has
been found to be a useful tool for this purpose.

In the smoothed periodogjram sethod, one firse
partitions the computed residusl elements (27) imto

3Thtl shortcoming may be superficially avoided by
taking the absolute value of the spectral estimste.
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L segments each of length q+l as specified by

ek(n) = ¢ (m+ptlikd) O0<ngq (29)
O<ks<l-1

where "d" 18 a positive integer which specifies the
time shift between adjacent segments. These indivi-
dual segwents will overlap if d<q and will perfectly
partition the residual sequence when d=q+l. In order
to include only computed elements, the relevanc para-
meters must be selected so that q+p+l+(L-1)dgN.
Next the periodogram for each of thee L segments is
taken and these are averaged to obtain the desired qth
order smoothed periodogram, that is
2
(30)

q
I w)e, (n)e
n=0 J

where w(n) is a window sequence that is normally
selected to be rectangular (i.e., w(n)=1 for 0<n<q).
The required ARMA spectral model is then obtained by
substituting this approximation into relationship
(28) thereby giving

§ (ed¥)

$ (ej‘“) - (31)
X ('Y jw 2
Ay (e Y

L-1

& 1 1 ~juwn
§ () ar T 4=

€ L k=0 q+l

It i{s readily shown that the smoothed periodogram
procedure results in a desired nonnegative qth order
MA spectral density estimate. Unfortunately, its fre-
quency resolution capability is generally not of the
same quality as that of the ck method.4 On the other
hand, the smoothed periodogram method provides more
smoothly behaved gpectral estimates which contain fewer
spurious effects.

To summarize, the required ARMA spectral model is
obtained by following the systematic procedure out-~
lined in Table 2. The numerator dynamic estimation
procedure to be used will of course depend on the par-
ticular characteristic being sought (e.g., frequency
resolution, smoothness, etc.).

1. Specify values for the ARMA model's order
parameter pair (P.q), the Yule-Walker equation
parameter t, and, the weighting matrix's
diagonal elements .

2. Using the time series observations
x(1),x(2),...,x(N), construct the matrices
X, Y, and vector x according to relatiomships
(19), (20), and (21), respectively.

3. Determine the model’'s autoregrassive co-
efficients by solving relationship (26)

4. The numerator's dynamics are obtained by using
either the (1) ¢y method, or, (ii) the smooth-
ed periodogram method.

Table 2. Basic steps of the standard high per-
formance ARMA spectral estimation method:
The Block Processing Mode.

The improved spectral estimation performance ob-
tained in using this high performance method over con-
temporary ARMA techniques such as the Box-Jenkins
method 18, to a large extent, a consaquence of select-
ing the integer t to be larger than the minimal
value p. With the corresponding larger set of Yule-
Walker equations that are thereby being approximated,
it intuitively follows that the model's autoregressive

“A similar approach shares the same attributes as
does the smoothed periodogram. [12]

coefficients will be less sensitive to autocorrelation
estimate errors which are embodied in Y'X and Y*x than
would be the case if t were set to p (as in the Box-
Jenkins method). This anticipated improvement in
spectral estimation behavior when using the high per-
formance method has in fact bsen realized on a rather
large number of numerical examples [6]-[9]. As we will
see in part 2 this high performance method also lends
itself to a particular fast adaptive implementation
mode when t=p. With the two attributes of improved
spectral estimation performance and computational
efficiency, this new procedure promises to be an import-
ant spectral estimation tool.

It is of interest to note that when q=0 and t=p, the
high performance ARMA spectral estimation method re-
duces to the well known AR covariance mechod. Moreover,
upon letting t exceed p, the resultant set of
expanded AR Yule-Walker equation approximacions will
typically result in better spectral estimates than the
gtandard AR covariance method. To the authors know-
ledge, this approach has not been used in the various AR
spectral estimation procedures developed to date.

IV. ORDER SELECTION

One of the important considerations when using the
high performance method i{s that of selecting the ARMA
model order pair (p,q). This salection process can be
made by utilizing properties of the ARMA autocorrelat-
ion matrix as outlined in Theorem l. In particular,
one examines the column rank behavior of the auto-
correlation matrix estimate

89 .yt
R = v'x (32)

that 18 being used in the high performance method.
Upon setting q=t =p, it follows that the pxp auto-
correlation matrix estimate Rgp will start becoming

ill-conditioned when the order parameter p exceeds the
time series' inherent order value (assuming that q<p).
Thus, the model order determination caa be achieved by

investigating the conditioning of the matrix RBP as a

function of p. As p is increased, an appropriate
choice will be a value p for which there is a precipi~
tate decrease in matrix conditioning for p = p +1. This
approach, as applied to the high performance method of
spectral estimation, has been used successfully by Pao
and Lee [13].

There exist many matrix conditioning measures which
may be used for this order determination. One of the
more effective measures is the normalized determinant
as specified by

C(A) = det(A)/// ) Z |a (33

=]l j=l

where det(A) designates the determinant of the pxp
matrix A, It i{s to be noted that this normalized
determinant will be zero when the rank of A s less
than p.

V. THE DOWN SHIFT OPERATOR

In the analysis to follow, extansive use of the down
shift operator S is made. This oparator down-
shifts by one unit the elements of the vector upon
which it operates and inserts a zero into the vacated
first component position. In other words, this opers-
tion takes the form

$x = [0, x(1), x().. . ., x(N~1)]" (34a)
where the Nx1 vector being operated upon is given by

X o (x(1), x(Dyeeny x(M] (34b)
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The prime symbol here used denotes the operation of
vector transposition. It is a simple matter to show
that the downshift operator has the following NxN
matrix representation

Selgyieyi- - isyial 3

in which 8 1s the Nx1 zero vector and e, designates the
kth standard Nxl basis vector whose components are all
zero except for its kth which is one. If this down-
shift operator were applied sequentially m times to
the vector x, it is clear that a downshift of m units
results, that is

s® = [0, 0, ..., 0, X(1),x(2),. . .,x(N-m) (36)
e e ——
o zZeros

VI. PREWINDOW MODIFICATION

In many spectral estimation applications, it is
necessary to update the ARMA model's coefficients as
new time series observations become available. If this
is to be achieved in real time, however, it is general-
ly not feasible to apply the block processing imple-
mentation of the high performance method as outlined in
Table 2. 1In Part 2 of this paper, a computationally
efficient algorithm for achieving this coefficient up-
dating is developed. In order to facilitate this real
time recursive algorithm, it is necessary to slightly
modify the constituent matrices X and Y, and the
vector x which characterize the high performance method.
These modifications provide the required algebraic
structure to render the resultant modified high per-
formance ARMA modeling method amenable to a compu-~
tationally efficient recursive solution.

Although a number of modifications are possible, we
shall only treat the prewindowing method in this
Section.d In the premodification method, the x vector
i3 modified to

z= [x(1), x(2), . . ., x(®)]" Gn

while the X matrix is modified to the Nxp Toeplitz
type matrix

o 0 0 }
x(1) 0 0
x(2) x(1) )

X = * x(2)

: : x(1)
x(8=1) x(8-2) x(N-p)
) [S:_c_g Sza_: e Spg:] (38)

vhere S is the downshift operator. Finally, the Y
matrix is modified to the Nxt Toeplitz type matrix

[0 0 .. 0 7
0 0 0

r 0 0 :
x(1) 0 .
x(2) x(1) 0
: . x(1)
x(N-q-1) x(N-q=2)  x(N-q-t)

sThc postwindowing, and, pre & postwindowing modifica-
tion sethods are described in the Appendix.

- [sq+1£ : Sq+2£ P sqﬂ;] (39)

Upon examination of these expressions for the modified
matrices X and Y, it is seen that they possess a very
simple shift type structure. It is this very structure
which renders the prewindowed modification amenable
to a computationally efficient adaptive solution algor-
ithm. Furthermore, it is to be noted that lower
triangular pxp and pxt matrices have been added to the
top of the original X and Y matrices to form the modi-
fied ¥ and Y matrices, respectively. These augmenting
lower triangular matrices are uniquely specified so as
to make the modified matrices Toeplitz in structure
(i.e., the elements along any diagonal are all equal)
with zeros appearing in the upper right portion of each
matrix. It is this specific structure which makes an
efficient recursive solution possible. This method is
referred to as prewindowing since the implicit assump-
tion that x(n) =0 for n<0 is being made.

If these modifications are incorporated into expres-
sion (26), a modified set of p linear equations in the
p autoregressive coefficient unknowns is obtained, that
is

xtraptya®s -xteartz (40)

This system of equations represents the least-squares
solution to the following statistical approximation of
the first t Yule-Walker equations

e=1xa +yzx (41)

The effectiveness of this approximation can be evaluated
by taking the expected value of this relationship. When
the ARMA model order parameters are such that q<p, this
expectation is found to give

q+k 14
N-q-k) | ar (qte-m) + ] (N-m)a r (q+k-a)
=0 meq+k+l -
E(e(k)} = lgk<p-q
P
(Nq-k) § a_r (qte-m) p-qskst
=0 ¥
(462a)

where ag = 1. This implies that the Yule-Walker equat-
ion estimate (42) 1is biased in nature. As the data
length N increases, however, this estimate becomes
asymptotically unbiased. For the ordering case q>p, the
expectation is found to yield

P
E{e(k)} = (N-g-k) | a r (q+k-m) »  lcket (42b)
o0

which is unbiased in nature. Thus, the set of linear
equation estimates(4l) gemerally provides a satisfactory
estimate for the associated Yule-Walker equations.

In order to achieve the recursive update capability
as mentioned previously, it will be necessary to
"restrict"” the parameter t to be p. This i{n tumm
results in Y*X being a pxp matrix. When this matrix
is invertible, there always exists a unique auto-
regressive vector which will render the error vector to
be zero, that is

3 - -yt (43)

The update algorithm to be presented in Part 2, in
effect, allows us to recursively obtain the solutfon for
the N+1 data length case from the solution to the N
data length case [14]. Unfortunately, the restriction
of t=p also generally results in an associated
decrease in spectral estimation performance (relative

to t>p). Thus, in obtaining a computationally efficient
update recursive algorithm, an accompanying decrease in
spectral estimation performance is the price being paid.
One must therefore carefully consider the ramifications
of this tradeoff in any given application. It is note-
worthy, however, that this performance degradation

6
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diminishes as the number of time series observations N
grows.

VII. GENERALIZED LEVINSON ALGORITHM

In the high performance ARMA modeling procedures
presented in Sections III and VI, the model's p auto-
regressive coefficients were obtained by solving a sys-
tem of p linear equations. In the special case in
which t =p and the pxp mactrix Y'X is nonsingular, this
relevant system of equations (26) simplifies to

'R = -ytyx (44)

where the entries of the matrices X and Y and the
vector x are dependent on the particular form being
used (i.e., unmodified, prewindowed, postwindowed, etc.)
If standard matrix inversion techniques such as the
Cholesky decomposition method are used, on the order of
p3 multiplications and additions are required to com-
pute the solution to relationship (44). These standard
tachniques are therefore said to possess a computation~
al complexity of O(p3). For relatively large values
of p, this can result in an undesirable computational
burden. On the other hand, if the pxp matrix Y*X has
a near Toeplitz structure, it is possible to utilize
che generalized Levinson algorithm to obtain the
required solution using far fewer computations [10],
{11]. Since the matrix Y'X is being used to approxi-
mate the Toeplitz matrix Rgp, there is good reason to

anticipate chat vtx might possess this structural
feature.

To measure the degree to which Y'X {a Toeplitz in
structure, it 1s necessary to introduce the concept of
displacement rank. The displacement rank x(A) of the
pxp matrix A 1is formally given by

1(4) = ain{a_(A), a _(A)] (45a)
where

a_(A) = rank[A - SAs'] (45b)

a,(A) = rank(a - S'as] (45¢)

in which S 1s the aforementioned down shift operator
(35). When the matrix A is Toeplitz, it is readily
gshown that its displacement rank is two (or less).
Thus, a matrix whose displacement rank is near two 1is
gaid to be close to Toeplirz in structure and therefore
amenable to efficient inversion using the generalized
Levinson algorithm.

If the displacement rank of the pxp matrix Y'X is a,
it has been shown that one can use the generalized
Levinson algorithm to solve expression (44) with a
corresponding computational complexity of 0(592)6. 1f
3 18 sufficiently smaller than p, a significant com-
putational savings can be thereby realized relative to
standard matrix inversion routines. Fortunately, the
displacement rank of Y'X is adequately small for the
unmodified high performance ARMA modeling method and
its prewindowed version (as well as the postwindowed
and pre § postwindowed versions). This is a direct
consequance of the fact that the columns of matrices
X and Y are simply shifted versions on one another.
One may readily show that the displacement rank of
matrix Y'X for each of the high performance mechods is
as shown in Table 3. Since these displacement ranks
are so small, it 18 clear that the generalized Levingon
algorirthm may be advantageously used for solving the
linear system of equations (44).

6Al s byproduct of this solution procedure, the optimal

autoregressive coefficient vectors for all ARMA models
of autoregressive order k are obtained for lck<p.

Method Displacement
Rank
a(Ytx)
Standard 4
Prewindow 3
Postwindow 3
Pre & Postwindow 2

Table 3: Displacement rank of the matrix ¥tx
for the various high performance ARMA methods

When the parameter ¢t 1s allowed to increase beyond p
so as to obtain an improved spectral estimation per-
formance, the displacement rank of each of the methods
spelled out in Table 3 increases. It is readily shown
that for t>p the displacement rank increases to
a2(YtX) in all cases. For example, the displacement
rank of the txp matrix Y'X for the standard procedure
increases to (4)2 =16 and so forth. For excessively
large values of p, it would then be advantageous to use
the generalized Levinson algorithm to solve relationship
(44) when case t>p. The computational complexity there-
by obtained would be on the order of alpl.

VIII. NUMERICAL EXAMPLE

The unmodified ARMA modeling method of spectral esti-
mation, as presented in Section III, has been found to
possess a significantly superior performance when com-
pared to such contemporary alternatives as the
periodogram, maximum entropy, and, the Box~Jenkins
methods when applied to "narrow' band time series ({i.e.,
sumof sinusoids 1in white noise [6]-[9]) and [13]).

With this in mind, the effectiveness of both the un-
modified and modified ARMA modeling procedures will now
be examined for a "moderately wide band’ time series.

In particular, we shall treat the time saries as recent-
ly considered by Bruzzome and Kaveh {15]. Specifically,
their ARMA time series of order (4,4) is characterized
by 1, .2

xk - xk + xk + O.SEk (46a)
where the individual time series xi and xi are generated
according to

Xl = 0.xp_) - 0.93x_, + €

xZ=-0.5x2_ - 093, + ¢
in which the g, si, and ei are uncorrelated Gaussian

1
k (46b)
2
k

random variables with zero mean and unit variance. It
then fnllows that the spectral density characterizing
time series (46) is given by

-2
5 (@) = |1-0.4073% +0.93¢73 2|

2 -2
+1140.5e73¢ +0.9307 (0.2
Using the time series description (46), twenty

different sampled sequences each of length 64 were
generated. These twenty observation sets were then used
to test various spectral estimation methods. In Figure
1, the twenty superimposed plots of the ARMA model
spectral estimates of order (4,4) obtained using the
first iterate of the Box-Jenkins method, and, this
psper's unmodified mechod with Agk = (0.95)k=1 and
selections of t =4, 8, and, 20 are shown. For compari-

un

son purposes, the ideal spectrum (47) is also shown.
From these plots, two observations may be made:

(i) the unmodified method with t =4 yields a marginally
better spectral estimate than the Box-Jenkins method,
and, (1i) the unmodified spectral estimates improve
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A computationally efficient closed form method of
ARMA spectral estimation has been presented. It is
predicated on the approximation of a set of Yule-Walker
equation estimates which are generated from a given set
of time series observations. The ARMA model's auto-
regressive coefficients are determined by solving a
consistent system of linear equations. The displace~
ment rank of the matrix corresponding to these
equations is four thereby indicating that an efficient
algorithmic solution procedure is possible.

The spectral estimation performance of this ARMA
modeling procedure has been empirically found to exceed
that of such counterparts as the maxipum entropy and
Box-Jenkins methods (e.g., see refs. (6]-{9] & (13]).

This behavior is to a large extent, a consequence of APPENDIX

the fact that more than the minimal number of Yule- I. Postwindow Modification

:;]t‘::: :::‘:.:::1::::"‘\;: ::;eie;:;:zz::fmud to Following a similar procedure as employed in Section
“ In order to achieve an im d : VI, the addition of an upper triangular matrix to the

. proved computational lower ion of th 1 ified b ti
- porction of the matrices spec y equations
- efficiency, a prewindowed modification of the proposed (19) and (20) yields th evindowed matrices
- ARMA model spectral method was next introduced. The y & pr °
* spectral estimation performance of this prewindowed Cx(p) . . . x)
{,‘ version has been found to be of high quality for . .
> moderate data lengths. As we will see in Part 2, this : .
. previndowed method may be implemented by an adaptive X= | x(N) . .. x(N-p+l) (A1)
. update algorithm whose computational efficiency is . .
R comparable to that achieved by recently developed LMS 0O T .
‘ fast algorithas. R ©ox(N)
] . X. REFERENCES Fx(p=q) . . . . x(p-q=t+1)]
: 1] R. B. Blackman and J. W. Tukey, "The measurement of
E? power spectra from the point of view of comsunica- x(pratl) . . . . x(p-q-t42)
;. tion enginsering”, New York: Dover, 1958. Y e . (A2)
; {2] A. V. Oppenbeim and R. W. Schafer, DIGITAL SIGNAL z(N) e e o v s X(Netel)
- PROCESSING, Englewood Cliffs, New Jersey, Prantice- s .
Hall, Inc., 1975. *

[3] G. Box and G. Jenkins, TIME SERIES ANALYSIS: C  x(® . . x(p=q-t)

L} PORECASTING AND CONTROL (revised edition) San - -

Prancisco: Holdén-Day, 1976,
- « [4] P. R. Gutowski, E. A. Robinson, and S. Treitel,
"Spectral estimation, fact or fiction”, I[EEE
Transactions on Geoscience Electronics, vol. GE-16, ;
' I April 1978, pp.80-84. z = [x(p+t), ....., x(N), O,...,0] (A))
¢
A -

p zeros

where X and Y are recognized as being (Nxp) and
(Nxt) Toeplitz type matrices, respectively. In a
similar manner, the columm vector x is modified to

? 8




The displacement rank of the matrix X is readily
found to be 3. A generslized Levinson procedure re-
quiring & computational complexity of 0(3p2) can then be
applied for solving the system of equations

r'rae-rz (A4

A more computationaily efficient algorithm assoclated
with the postwindvw modification has been daveloped {14].
It is ehown that the number of computations is reduced
to (p log p) {f p = q where p and q are the denominator
and numerator ovders of the ARMA model, respectively.

11. Pre & Postwindow Modification Method

The combination of the previously discussed pre-
windowved and postwindowed modification methods yields
the pre & postwindow modification method. The matrices
and vectors are modified in the following manmer.

"o e 0
LT
oo ix(e oL () (A5)
e - - xin)
!_ L T x(N)
[0 ... ....0 N
e I q rows
0L oL, .9 H
[x() ~ o ]
Y = ! . ° ; (A6)
X ex(l) !
PR . . .. x(Nec#l) l
[ . f
LD "= .. .x(tvepmg-1) |
[ J
= {x(1), ... x(M), 0, ..., 0) (A7)
———
p zeros

where X and Y denote (N+p)xp and (N+p)xt Toeplitz type
matrices, respectively, and r denotes a (N+p)xl column
vector.

It can be shown that YTX is a Toeplitz matrix. The
conventional Levinson algorithm may therefore be used
for solving the Toeplitz system of equations

xa ==tz (48)

in which the inherent computational complexity {s
O(Zpl).7 More recently, a fast algorithmic solution
has been developed which significantly reduces this
computational complexity.

7
The parameter t is here taken to equal p.
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Figure 1: Spectral estimates of order (4,4) by
the Box~Jenkins method and by the High
Performance method using various
values for t. N = 64 data points for
each estimate.
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wmethod with t = 4 and using the and by the High Performance method
- various data modification procedures. using various values for t. N ~ 200
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