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Abstract .\In thism-e paper, a novel procedure x(1), x(2).. x(N) . - (3).

for generating an ARMA spectral model of a wide sense A been proposed for usin
stationary time series is developed. The parameters sec depsit
of this model are selected so that they most closely these observations to effect a spectral density *at,-
fit a set of Yule-Walker equations which are estimated mate. Invariably, the resultant estimate will take on

from a finite set of time series' observations. This a rational model form as expressed by
ARMA modeling method has been found to exhibit a spec- b+be-J+ . . + b-Jq

. tral estimation performance which is typically superior ix(eJw) 0
to such alternatives as the maximu- entropy (AR) method, i + a e-JW+ + J p w

y . classical Fourier procedures (MA),and, the Box-Jenkins 1 p
method (ARMA). jw 2
One of the principal features of this spectral

estimation method is the elegant algebraic structure of - (4)
the linear system of equations which need be solled 1A (ejW
when finding the ARMA model's parameters. This shift-
invariant type structure gives rise to an adaptive
algorithmic solution procedure whose computational in which the ak and bk are referred to as the model's
efficiency is comparable to that achieved by recently autoregressive and moving average coefficients, res-

developed fast AR algorithmic methods. The details of pectively. We shall refer to this particular rational

the adaptive ARMA modeling procedure will be covered in form as an autoregressive-mving average (ARMA) model

Part 2 of this paper. These dual characteristics of of order (p,q). It is well known that any continuous

excellent estimation performance and real time adaptive spectral density can be approximated arbitrarily

implementation mark this method as being a primary closely by this rational form if the order pair (p,q)

spectral estimation tool. is selected adequately large. Thus, by imposing a
r trational form on the spectral model, we incur no real

1. INTRODUCTION loss in spectral representation.
The preponderance of research and application inter-

In many interdisciplinary applications, It is desired eat has been focused on two special cases of the above
to estimate the essential attributes of a generally ARMA model. They are the moving average (MA) model in
complex valued wide-sense stationary time series which all of the ak coefficients are set to zero, and,
(x(n)}. Depending on the specific nature of the time the autoregreesive (AR) model for which all of the bk
series, this characterization is often adequately coefficients except b0 are set to zero. The spectral
revealed through knowledge of the time series' associa- density estimate arising from a MA model is seen to
ted autocorrelation sequence possess no poles, and as such it is frequently referred

r (n) - En-0, ±1. ±2.... (1) to as an all-zero model. Using similar reasoning, the
x E{x(n~m)x*(m)} AR model is referred to as an all-pole model, and, the

in which E and * denote the operations of expectation general ARMA model is referred to as a pole-zero model.

and complex conjugation, respectively. on the other Classical Fourier approaches [1] and the periodogram

hand, the requisite characterization may often be method [2] are procedures which ultimately provide a

better made in the frequency domain through the spect- MA spectral density model. Similarly, the maximum

ral density function entropy method and linear predictive coding are tech-
niques that result in AR spectral density models.

S(2 Undoubtedly, the primary reasons for interest in speci-
$x(e = rx(n)e-jn (2) al case MA and AR models lie in the fact that they:

n-  (i) are amenable to a tractable analysis, (ii) typical-
which is recognized as being the Fourier transform of ly provide adequate spectral estimation performance,
thihe ast co eda ene. ithermebertrano of and (iii) give rise to coefficient selection procedures
the autocorrelation sequence. Either member of this which are implementable by computationally efficienttransform par convys the total second-order stats- aloihs
tical information relative to the underlying time algorithms.
series. Frequently, this second order statistical a spite this predisposition towards MA end Ae models,
characterization provides all the information required a growing interest in AoMA models is evident 3]-[9 .* ora ivn pliaton(eg, ptma Weerfitein, This is in recognition of the fact that the more " -
for a given application (e.g., optimal Wiener filtering, general ARMA model usually provides superior spectral or
one-step prediction, etc.). estimation performance while at the same time requiresThe Classical spectral estimation problem is con-Thred clasicha l h spectrtimat bleis fncton fewer model parameters to achieve that behavior. It is
cotrned with estimating the spectral density function because of these very factors that a number of ARMA(2) from a finite met of time series observations,.eas fteevr fcosta ubro
Without los of fi nerslity, these observations wll be modeling procedures have been proposed. Theese include Q
thoun oss ofb enerality, the seoloi c o buseations i b the Box-Jenkins maximum likelihood method [3), whiten- .

taken to be the following N contiguous elements Ing filter approaches [4], [5], and, more recently,

Cadzow's high performance method [61-[9]. This latter
1 This work was supported in part by the Office of method has been found to provide a spectral estimation

Naval Research, Statistics and Probability Program performance which typically excels that obtained from
under Contract N00014-80-C-0303. its MA, AR, and AnMA counterparts.
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In this paper, we first characterize the modeling of first multiplying both sides of this recursive ex-
a pure AREA time series. An analytical procedure is pression by x*(n-m) and then taking the expected value.
presented for determining the underlying ak and bk co- This is found to result in the well known Yule-Walker
efficients in which the time series' actual auto- equations
correlation element values are used. This idealistic
situation then provides the justification for intro- E
ducing the high performance method in which the AREA k a.rx(m-k) - -rx(m) for e . q+l (6)
model's coefficients are estimated from time series
observations and not from autocorrelation values. It where it is important to note that the lag parameter a
is shown that the p autoregressive ak coefficients are is here restricted to exceed the numerator order par&-
obtained by solving a consistent system of p linear meter q. As a side note, the Yule-Walker equations
equations. When using this direct approach, the com- will involve the moving average coefficients bk in a
plete set of time series observations (3) are incorpor- nonlinear manner for lags 0 < m I q. The characteristic
ated to effect a single spectral estimate in one equations of expression (6) provide a straightforward
computational effort. This approach is typically procedure for obtaining the ARMA model's ak auto-
referred to as "block processing". Moreover, by using regressive coefficients. This formally entails expres-
the generalized Levinson algorithm [10]-[11], it is sing the first "t" Yule-Walker equations (i.e., q+l 1 a
possible to solve the above mentioned system of linear S q+t) in the following matrix format
equations in a computationally efficient maner...i

In Part 2 of this paper, a recursive procedure is r x(q) r x(q-1) ... r x(q-p+l) al x(q+l)

developed in which the AM model's coefficients are
updated as each new time series observation becomes ar(q)  . 2  , a 2 r (q+2)
available. In this "time-update processing" mode. r (ql) "( " r(q-p+2) rnqI-
adaptive form of spectral estimation is thereby (7)

achieved. One of-the particularly attractive features
of this time-updating mode is its computational ePJ
efficiency. Specifically, the p autoregressive co- -
efficients (in actuality prediction errors) are r x(q+t-1) r X(q+t-2) ... rx (q-p+t) r x(q+t)
optimally updated with each nev clme series observatio. L. _
The number of multiplication and addition computations
required in this updating is of the order p. Thus, in which the integer t is taken to be equal to or
the computational complexity of the high performance larger than the model's denominator order (i.e., t z p).
ARMA method is competitive with recently developed This linear system of equations may be compactly
"fast" AR methods, but, its spectral estimation per- expressed as
formance is typically far superior. The time-update
mode is particularly attractive in those situations in a - -()
which the time series being characterized is a long tP p -t

ongoing process and one wishes to generate a time where R
q  

is a txp autocorrelation matrix, r is a txl
evolving sequence of spectral estimates in a real time tpt

setting. autocorrelation vector, and, a is the ARMA model's pxl
autoregrassive coefficient vector. In this representation

11. ARM TIME SERIES: PERFECT I)DELrNG the subscripts t and p are appended to designate the num-
ber of Yule-Walker equations being used, and, the ARM&

In this section, the second-order statistical char- model's denominator order, respectively. Similarly, the
acterization of an ARMA time series will be presented. superscript q depicts the AREA model's numerator order.
This characterization will play a central role in the To obtain the AMA model's autoregressive co-
high performance spectral estimation procedure that is efficients, one then simply solves the consistent eye-
to be developed in subsequent sections. The time ter of linear equations (8). Valuable insight relative
series {x(n)) is said to be an ARMA time series of to rational spectral density modeling is provided upon
order (p,q) if it is generated according to the causal closer exsmination of the autocorrelation matrix's
linear recursive relationship (i.e., Rq ) algebraic structure. It is convenient to

tp
q P express this characterization in the following theorem.

x(n) - k bk~-k) - I akz(n-k) (5)
xn 0 bkv(n k-I Theorem 1: Let (rx(k)) designate the auto-

correlation sequence which is associated with
in which (v(n)) is a zero mean white noise excitation an ANNA time series of order (pq). The

whose individual elements have variance one. It is corresponding system of t linear equations
readily shown that the spectral density corresponding in m unknowns as specified by
to the response time series (x(n)) is given by ex- o
pression (4). Thus, there is seen to be an equivalen- Rnto m6 " (9)
ce between a rational spectral density model and the
response of a causal linear system to a white noise has a unique solution provided that m-p and
excitation. n>q for any value of tap. Moreover, the rank

We will nm direct our attention to developing a of the txu matrix Rn is given by *in (m,pt)
systematic procedure for identifying the recursive

system's autoregressive coefficients (i.e., the •k )  provided that n q and, by min (oat) for Osn<q.

and moving average coefficients (i.e., the bk) from A proof of this theorem will not be given here, since
the response time series' autocorrelation elements. these results are Implicitly documented in various
It will be beneficial to consider separately the tasks textbooks and papers dealing with time series. It is
of identifying these two different sets of coefficients. Important to note that even if one has perfect auto-

correlation knowledge of an AMA tme series, the
Autorearessive Coefficient Identification evaluation of the associated autorogressive co-

The eutoregreesive coefficients can be determined efflcients entails a determination of the order pair
directly upon exann the eutocorrelation c racter- (pq). This ordering information is implicitly con-
ization of recursive system (5). This is achieved by tained in the algebraic structure of the autocorrela-
itcion metrix n and, can be obtained by sxmining this

, t
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structure for various combinations of the nonnegative B (e W)B *(ejw) - A (eJW)C *(eJw) + A p*(e W)C(eJw )

integers m and n. q q (16)

Moving Average Coefficient Determination A spectral factorization of this expression will then

To determine the bk coefficients associated with the yield the prerequisite bk coefficients (assuming a

ARKA time series, it will be beneficial to introduce minimum phase B (eJw))
the causal image of the time series' autocorrelation In suary, the spectral density and the associated

sequence as defined by ak and bk coefficients which characterize the ARMA
time series of order (pq) may be determined by follow-

+ (n) - r(n)u(n) --ir (O)(n) (10) ing the four step procedure as outlined in Table 1.
x xTo carry out this model identification scheme, it is

in which u(n) and 6(n) denote the standard unit-step seen that knowledge of the order pair (p.q) and the

and unit-Kronecker delta sequences, respectively. The q+p+l autocorrelation elements rx(O), rx(l),...,rx(q+p)

autocorrelation sequence may be recovered from its need be available.

causal image by using the complex conjugate symmetry
property of autocorrolation sequences (i.e., r (-n) -1. Solve relationship (8) for the p autoregressive

rx*(n)). This reconstruction rule takes the form &k coefficients. This will require setting tip.

rx(n) - r + (n) + r (-n)* () 2. Generate the auxiliary sequence c(n) and its
x x Fourier transform using expressions (13) and

Upon taking the Fourier transform of relationship (11). (14a), respectively.

we have the required spectral density expression 3. The desired spectral density is then given by

Sx(eJ) - S +(eJw) + S+(ejw)* expression (15).
x XX

+ 4. Perform a spectral factorization of the poly-
2Re[Sx (eJw)](12) nomialBq(eJw)*(eJ

w
) as given by equation (16)

4 W to obtain the minimum phase choice of the bk
where Sx (e

J 
) denotes the Fourier transform of the coefficients.

causal image sequence (rx+(n) _

In what is to follow, a parametric procedure for Table 1: Generation of the spectral density and the
representing S x+(eJW) (and therefore S x(eJw))will be ARMA model parameters associated with a given

given. This will first necessitate the introduction set of autocorrelation values.

of the auxiliary sequence III. HIGH PERFORMANCE METHOD OF ARMA SPECTRAL

P MODELINCc(n) - rx+(n) 4. arx+(n-k) , 0Smax(q,p) (13)
k-I It is possible to adapt many of the ideas ofSection II to achieve an ARMA spectral estimate when

in which the causal autocorrelation elements as gene- only the time series observations (
3
)are available

rated by relationship (10) and the autoregressive co- (and not autocorrelation values). We shall again treat
efficients as obtained upon solving the system of separately the cases of autoregressive and moving
equations (8) are used. According to the Yule-Walker average coefficient determination.
equations (6) and the causal image definition (10),
it is seen that this auxiliary sequence is identically Autoregressive Coefficient Estimation
zero outside the indexing range On~max(q,p). Withthis in mind, the Fourier transform of relationship To implement the autoregressive coefficient selection
(13) is next taken and results in process as represented by relationship (8) it will be
3 necessary to compute appropriate autocorrelation esti-

s mates from the given set of time series' observations.
Cs(eJw) - c(n)e

-
jwn (14a) The high performance ARMA method effects these esti-

n-O mates in the guise of a convenient matrix format which
p lends itself to a particularly efficient computational

S[1 + a e-Jwn s+( w) realization [61-[9]. In particular, the autocorrela-n-I n x ( tion matrix and vector required in expression (8) are
estimated according to

A (e_0)S +(e J) (14b) Rq _ YX (17)
,) x tp

in which a -max(q,p). Upon solving this relationship 
-()

for Sx+(eJw) and substituting this solution into ex- t - Y+x (18)

pression (12), the desired ARMA spectral density is
obtained where the dagger symbol t denotes the operation of com-

plex conjugate transposition. The (N-p)xp Toeplitz

JW C (e) C *(e
J

) type matrix X is specified bySx(4J W s

A A (a A Ap(a x(p) x(p-l) . . . x(2)

A* (eJw)C(e
Jw) + A(,Jw)C*(e J) 5)x(p+l) X(p) (19)

p (-)x(N-2) XN'p

-a )(151w .

In order to determine the ARMA model's bk moving

average coefficients, we next use this relationship in
conjunction with expression (4) to obtain while the (N-p)xt Toeplltz type matrix Y has the form

4 ..



x(p-q) x(p-q-1) . . . x(p-q-t+l) appropriate autoregressive coefficient vector, we shall

x(p-q+l) x(p-q) x(p-q-t+2) introduce the following quadratic functional

Y (20) f(a) - etae (25)
in which A is a txt positive-semidlefinite diagonal matrix

x(N-q-1) x(N-q-2) x(N-q-t) j with diagonal elements Akk that is introduced in
Lj order to provide one with the option of weighting

differently the various error vector components. It is
and x is an(N-p)"1 vector given by1  a simple matter to show that an autoresressive co-

efficient vector which will render this quadratic
[x(p+l),x(p+2), . . )]' (21) functional a minimum must satisfy

In formulating matrix Y, we have used the convention XtYAYtX" -- XtYAYtx (26)
of setting to zero any elements x(k) for which k lies
outside the observation index range 1 j k I N. One then simply solves this consistent system of p

If the autocorrelation matrix and vector estimates linear equations in the p unknown autoregressive co-

(17) and (18), respectively, are substituted into the efficients to obtain an estimate for the denominator

Yule-Walker relationship (8), however, it is generally of the ARMA model.

found that the resultant system of t equations in the
p autoregressive coefficients is inconsistent for t>p. Moving-Average Coefficient Estimation

This is due to inevitable inaccuracies in the auto- There exist several procedures for estimating the
correlation estimates, and, to a possible improper ARMA AR iA model's moving average coefficients. We shall
model order choice. In any case, the system of now briefly describe two procedures which have pro-
equations with these estimate substitutions will give vided satisfactory performance and in a sense comple-
rise to the txl Yule-Walker approximation error vector ment one another.
as specified by

eY~XaY~x 22) i) ck Methoda - YtX a + Ytrx (22) ()ckMto

The procedure which has provided the best fre-
Upon taking the expected value of a, it is found that quency resolution behavior is a direct adaption of
for the ARMA modeling order choice in which q.p, that the ck method as described in Section 1I (see ref.
this expectation results in (8]). In particular, using the set of auto-

p regressive coefficient estimates as obtained from

E{e(k)) - (N-q-k) Fr(q+k)+ I a r (q+k-m)l skit expression (26) and a suitable set of auto-
x + 1  m x (23) correlation estimates rx(n) for n-0,l....max(q,p),

one computes the 8k coefficients using expression
while for the modeling order case q<p this expectation (13). These coefficients are then used to achieve
produces the desired AP14A spectral estimate when incorporated

P into relationship (14a) and ultimately relationship

(e-p) x(q+k) + I amrx( q+k-m) ,] lkp-q (15). Although providing an excellent frequency

E~e(k)} IM-1 M I resolution behavior, this procedure suffers the
drawback of not having a guaranteed nonnegative

r definite spectral density estimate3 . It is with this
(N-q-k) rx(q+k) + amrx(q+k-m , p-q<kSt in mind that the following procedure was evolved.

- l (i) Smoothed Periodogram Method

(24) In the smoothed periodogram approach, one first

In either ordering case, it is seen that when the time computes the so-called "residual time-series

series is an ARKA process of order (p,q), the expected elements according to the relationship (see ref.[9])

value of the error vector a can be made equal to zero p
by a proper choice of the autoregressive coefficient e(n) - x(n) + kx(n-k) for p<n:.N (27)
vector a. Namely, this selection would be such that k-l
the underlying Yule-Walker equations (6) are satisfied.

2

This implies that the system of equations (22) with in which the ak autoregressive coefficients as ob-

a - 8 provides an unbiased and a consistent estimate of tained by solving expression (26) are incorporated.
The Yule-Walker equations (8). where 8 is the zero vector. From this relationship, it is apparent that the

With the above thoughts in mind, an appealing following spectral density expression holds

approach to selecting the autoregressive coefficient S (e
j )

vector is immediately suggested, Namely, I is chosen Sx (eJ) - _ (28)
so as to make the error vector "as close" to its IiA(eJ) 2

expected value of 0 as possible. This is of course
predicated on the assumption that the time series is an If Sx(eij ) is to correspond to an ARMA spectral model
AlM4A process of order (p,q) or less. In order to of order (p.q, it is clear that a qth order MA
attain a tractable procedure for selecting an spectral estimate for the residual spectral density

Sc(e.Ow) must be obtained and then substituted into
A more generalized version of this estimation scheme relationship (28). The smoothed periodoxrm has

can be obtained by substituting the integer k for p been found to be a useful tool for this purpose.
wherever p appears in relationship (19)-(21). For ease In the smoothed periodogram method, one first

of presentation, k is here restricted to be p. partitions the computed residual elements (27) into
2 A Little thought will convince oneself that this same
conclusion will be reached if both q and p are at This shortcoming may be superficially avoided by
least equal to the numerator and denominator orders, taking the absolute value of the spectral estimate.
respectively, of the underlying ARM time series.
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L segments each of length q+l as specified by coefficients will be less sensitive to autocorrelation

ek(n) - r(n+p+l+kd) OEn~q (29) estimate errors which are embodied in Y+X and Yx than
k0%kIL-1 would be the case if t were set to p (as in the Box-

Jenkins method). This anticipated improvement in

where "d" is a positive integer which specifies the spectral estimation behavior when using the high per-
time shift between adjacent segments. These indivi- formance method has in fact been realized on a rather
dual segments will overlap if dlq and will perfectly large number of numerical examples [6]-[9). As we will
partition the residual sequence when d-q+l. In order see in part 2 this high performance method also lends
to include only computed elements, the relevant para- itself to a particular fast adaptive implementation
meters must be selected so that q+p+l+(L-l)ds.N. mode when t-p. With the two attributes of improved
Next the periodogram for each of thee L segments is spectral estimation performance and computational
taken and these are averaged to obtain the desired qth efficiency, this new procedure promises to be an import-

order smoothed periodogram, that is ant spectral estimation tool.
It is of interest to note that when q-0 and t-p, the

) 2 high performance ARM& spectral estimation method re-
'w(n)EkWe- (30) duces to the well known AR covariance method. Moreover,

k n- I J upon letting t exceed p, the resultant set of
expanded AR Yule-Walker equation approximations will

where w(n) is a window sequence that is normally typically result in better spectral estimates than the
selected to be rectangular (i.e., w(n)-l for Onjq). standard AR covariance method. To the authors know-
The required ARMA spectral model is then obtained by ledge, this approach has not been used in the various AR
substituting this approximation into relationship spectral estimation procedures developed to date.
(28) thereby giving

§ (e UW)IV. ORDER SELECTION

Sx e (e(j))12 (31) One of the important considerations when using the
high performance method is that of selecting the ARMA

model order pair (p,q). This selection process can be
It is readily shown that the smoothed periodogram made by utilizing properties of the ARMA autocorrelat-

procedure results in a desired nonnegative qth order ion matrix as outlined in Theorem i. In particular,
MA spectral density estimate. Unfortunately, its fre- one examines the column rank behavior of the auto-
quency resolution capability is generally not of the correlation matrix estimate
same quality as that of the Ck method.4 On the other
hand, the smoothed periodogram method provides more q _ YtX (32)
smoothly behaved spectral estimates which contain fewer tp
spurious effects. that is being used in the high performance method.

To summarize, the required ARMA spectral model is Upon setting q-t-p, it follows that the pxp auto-
obtained by following the systematic procedure out- correlation matrix estimate RP will start becoming
lined in Table 2. The numerator dynamic estimation ill-conditioned when the order parameter p exceeds the
procedure to be used will of course depend on the par- imecserie ihent order a aming t qcpst

ticular characteristic being sought (e.g., frequency time series'inherent order value (ssumng that qp).
resolution, smoothness, etc.). Thus, the model order determination can be achieved by

investigating the conditioning of the matrix RP as a
pp

1. Specify values for the ARMA model's order function of p. As p is increased, an appropriate
parameter pair (p,q), the Yule-Walker equation choice will be a value p for which there is a precipi-
parameter t, and, the weighting matrix's tate decrease in matrix conditioning for p-p +1. This
diagonal elements Xkk. approach, as applied to the high performance method of

spectral estimation, has been used successfully by Pao
2. Using the time series observations and Lee [13).

- x(l),x(2),....x(N), construct the matrices There exist many matrix conditioning measures which
X, Y, and vector x according to relationships may be used for this order determination. One of the
(19), (20), and (21), respectively, more effective measures is the normalized determinant

as specified by//3.sDetermine the model's autoregressive co- a yP

3. DetrmineC(A) - dt(A) (33)efficients by solving relationship (26) e i-I J1-i

4. The numerator's dynamics are obtained by using where det(A) designates the determinant of the pxp
ither the (i) ck method, or, (ii) the smooth- matrix A. It is to be noted that this normalized

:d periodogram method, determinant will be zero when the rank of A i les
than p.

Table 2. Basic steps of the standard high per-
formance ARMA spectral estimation method: V. THE DOWN SHIFT OPERATOR
The Block Processing Mode. In the analysis to follow, extensive use of the down

The improved spectral estimation performance ob- shift operator S is made. This operator down-
tained in using this high performance method over con- shifts by one unit the elements of the vector upon
temporary ARMA techniques such as the Box-Jenkins which it operates and inserts a zero into the vacated
method is, to a large extent, a consequence of select- first component position. In other words, this opera-
in# the integer t to be larger than the minimal tion takes the form
value p. With the corresponding larger set of Yule-
Walker equations that are thereby being approximated, Sx -(0 x(l), x(2). . (N-1)) (34s)

it intuitively follows that the model's autoregressive where the Nxl vector being operated upon is given by

fA similar approach shares the same attributes as x - (x(l), x(2),.... x(N)]' (34b)
does the smoothed periodogram.[12].



The prime symbol here used denotes the operation of X s Cl*9q2 o qrt(
vector transposition. It is a simple matter to show
that the downshift operator has the following NxN Upon examination of these expressions for the modified
matrix representation matrices X and Y, it is seen that they possess a very

S - [02 a • e ] (35) simple shift type structure. It is this very structure3 . N - which renders the prewindowed modification amenable

in which 0 is the Nxl zero vector and 4k designates the to a computationally efficient adaptive solution algor-
kth standard Nxl basis vector whose components are all ithm. Furthermore, it is to be noted that lower
zero except for its kth which is one. If this down- triangular pxp and pxt matrices have been added to the
shift operator were applied sequentially m times to top of the original X and Y matrices to form the modi-
the vector x, it is clear that a downshift of m units fied X and y matrices, respectively. These augmenting
results, that is lower triangular matrices are uniquely specified so as

Sx - [0, 0. 0, x(l),x(2). x(N-m) (36) to make the modified matrices Toeplitz in structure
(i.e., the elements along any diagonal are all equal)
with zeros appearing in the upper right portion of each
matrix. It is this specific structure which makas an
efficient recursive solution possible. This method isVI. PREWINDOW MODIFICATION referred to as prewindowing since the implicit assump-

In many spectral estimation applications, it is tion that x(n) -0 for n<_O is being made.
necessary to update the ARNA model's coefficients as If these modifications are incorporated into expres-
new time series observations become available. If this sion (26), a modified set of p linear equations in the
is to be achieved in real time, however, it is general- p autoregressive coefficient unknowns is obtained, that
ly not feasible to apply the block processing imple- is
mentation of the high performance method as outlined in XtyAytXa- -X+$AtI_ (40)
Table 2. In Part 2 of this paper, a computationally This system of equations represents the least-squares
efficient algorithm for achieving this coefficient up- solution to the following statistical approximation of
dating is developed. In order to facilitate this real the first t Yule-Walker equations
time recursive algorithm, it is necessary to slightly
modify the constituent matrices X and Y, and the e - Y+Xa + Yx (41)
vector x which characterize the high performance method. The effectiveness of this approximation can be evaluated
These modifications provide the required algebraic by taking the expected value of this relationship. When
structure to render the resultant modified high per- the ARMA model order parameters are such that qjp, this
formance ARMA modeling method amenable to a compu- expectation is found to give
rationally efficient recursive solution.
Although a number of modifications are possible, we r q+k P

shall only treat the prewindoving method in this (N-q-k) I amrx (q+k-m) + I (N-m)amrx(q+k-m),
Section.5  In the premodification method, the x vector M-0 mq+k+l ljkrp-q
is modified to - Ve~k p

E_- [x(l), x(2) ..... x(N)]' (37) p

while the X matrix is modified to the Nxp Toeplitz (N-q-k) ar x (q+k-m) p-qikst

type matrix (428)

0 0 0 where ao - 1. This implies that the Yule-Walker equat-
x(1) 0 0 ion estimate (42) is biased in nature. As the datalength N increases, however, this estimate becomes

x(2) x(l) asymptotically unbiased. For the ordering case q>p, the

X = x(2) expectation is found to yield

p
x(l) E{e(k)}- (N-q-k) I a r (q+k-m) l<kt (42b)

x(N-l) x(N-2) x(N-p) which is unbiased in nature. Thus, the set of linear
equation estimates(41) generally provides a satisfactory
estimate for the associated Yule-Walker equations.

_. . . s(38) In order to achieve the recursive update capability
• as mentioned previously, it will be necessary to

where r"restrict" the parameter t to be p. This in turn
eeS is the do hft operator. Finally, the Y results in P+X being a pxp matrix. When this matrix

" 1matrix is m dified to the Nxt Toeplitz type matrix is invertible, there always exists a unique auto-

0 0 . . . 0 regressive vector which will render the error vector to

0 0 0 be zero, that is

YX V" - -Y7. (43)

. 0 0 The update algorithm to be presented in Part 2, in

x(l) 0 effect, allows us to recursively obtain the solution for
the N+I data length came from the solution to the N

x(2) x(l) 0 data length case [141. Unfortunately, the restriction
of t-p also generally results in an associated

x(1) decrease in spectral estimation performance (relative
to t>p). Thus, in obtaining a computationally efficient

x(N-q-1) x(N-q-2) x(N-q-t) update recursive algorithm, an accompanying decrease in
I__ _ spectral estimation performance is the price being paid.

5 One must therefore carefully consider the ramificationsThe poatwindong, and, pre & postwindoving modifica- of this tradeoff in any given application. It is note-
tion methods are described in the Appendix. worthy, however, that this performance degradation

.6



diminishes as the number of time series observations N M

grows. Method Displacementgrows, iRank

VII. GENERALIZED LEVINSON ALGORITHM 
a

In the high performance AMA modeling procedures Standard 4

presented in Sections III and VI, the model's p auto- r
regressive coefficients were obtained by solving a sys- -________ 3

tem of p linear equations. In the special case in
which t -p and the pxp matrix YtX is nonsingular, this _ostwndow _ _3

relevant system of equations (26) simplifies to Pre & Postwindow[ 2

YtX - -Y
t x (44)

where the entries of the matrices X and Y and the Table 3: Displacement rank of the matrix YtX
vector x are dependent on the particular form being for the various high performance ARMA methods
used (i.e., unmodified, previadowed, postwindowed, etc.) When the parameter t is allowed to increase beyond p
If standard matrix inversion techniques such as the

Cholesky decomposition method are used, on the order of so as to obtainan improved spectral estimation per-
p3 multiplications and additions are required to com- formance, the displacement rank of each of the methods

pute the solution to relationship (44). These standard spelled out in Table 3 increases. It is readily shown

techniques are therefore said to possess a computation- that for t>p the displacement rank increases to

al complexity of 0(p
3). For relatively large values a2(YtX) in all cases. For example, the displacement

of p, this can result in an undesirable computational rank of the txp matrix Y
tX for the standard procedure

burden. On the other hand, if the pxp matrix YX has increases to (4)2 .16 and so forth. For excessively

a near Toeplitz structure, it is possible to utilize large values of p, it would then be advantageous to use
the generalized Levnson algorithm to obtain the the generalized Levinson algorithm to solve relationship

required solution using far fewer computations [10], (44) when case t>p. The computational complexity there-

[11]. Since the matrix YtX is being used to approxi- by obtained would be on the order of a2p2.
mate the Toeplitz matrix Rq there is good reason to

Sppo VIII. NMERICAL EXAMPLEanticipa te that Y X might possess this structura lTh un o i ed A M m d l ng et d of s c ra t -

feature.
To measure the degree to which YtX is Toeplitz in mation, as presented in Section IIl, has been found to

structure, it is necessary to introduce the concept of possess a significantly superior performance when com-

displacement rank. The displacement rank a(A) of the pared to such contemporary alternatives as the

pxp matrix A is formally given by periodogram, maximum entropy, and, the Box-Jenkins
methods when applied to "narrow" band time series (i.e.,

a(A) = minfa_(A), a+(A)] (45a) sumsof sinusoids in white noise (6]-[9] and [131).

where With this in mind, the effectiveness of both the un-
modified and modified ARMA modeling procedures will now

a-(A) rank[A - SAS')] (45b) be examined for a "moderately wide band" time series.
01(A) - rank[A - S'ASI (45c) In particular, we shall treat the time series as recent-

ly considered by Bruzzone and Kaveh [151. Specifically,
in which S is the aforementioned down shift operator their ARMA time series of order (4,4) is characterized
(35). When the matrix A is Toeplitz, it is readily by 1 2 (4a)
shown that its displacement rank is two (or less). xk ' xk I xk
Thus. a matrix whose displacement rank is near two is 2
said to be close to Toeplitz in structure and therefore where the individual time series x.k and xk are generated
amenable to efficient inversion using the generalized according to
Levinson algorithm. 1 . 1 0. 1 1

If the displacement rank of the pxp matrix YX is a, x ' .
4
k - O

93
xk-2 k (46b)

it has been shown that one can use the generalized 2 2 93 2 k
Levinson algorithm to solve expression (44) with a xk-1 93xk-l - xk2 k
corresponding computational complexity of 0(mp2)6. If inwihte~ 1 a 2 arunoeatdG sin
*. is sufficiently smaller than p, a significant com- in which the Ck' e' and re uncorrelated Gaussian

putational savings can be thereby realized relative to random variables with zero mean and unit variance. It
standard matrix inversion routines. Fortunately, the then fnllows that the spectral density characterizing
displacement rank of YtX is adequately small for the time series (46) is given by
u modified high performance ARMA modeling method and
its prewindowed version (as well as the postwindowed Sx(.) -11 -0.4. J +0.93 -  -
and pre & pootwindowed versions). This is a direct X 2
consequence of the fact that the columns of matrices Il+ 10.Seij +0.93e*j F+0.25 (47)
X and Y are simply shifted versions on one another. Using the time series description (46), twenty
Oemay readily show that the displacement rank of dfeetsmldsqecsec flnt 4wr

matrix Y+X for each of the high performance methods is different sampled sequences each of length 64 wereas shown in Table 3. Since these displacement ranks generated. These twenty observation ets were then used
ars shown iable 3. i ce these displmene e Lanso to test various spectral estimation methods. In Figure
are so small, it is clear that the generalized Levinson 1, the twenty superimposed plots of the ARMA model
algorithm may be advantageously used for solving the spectral estimates of order (4,4) obtained using the
linear system of equations (44). first iterate of the Box-Jenkins method, and, this

paper's unmodified method with Akk , (
0 .95)k

- 1 and

9' selections of t -4, 8, and, 20 are shown. For compari-6As a byproduct of this solution procedure, the optimal son purposes, the ideal spectrum (47) is also shown.
autoregressive coefficient vectors for all ARMA models From these plots, two observations may be made:
of autoregressive order k are obtained for l~kjp. (i) the unmodified method with t -4 yields a marginally

better spectral estimate than the Box-Jenkins method,
and, (ii) the unmodified spectral estimates improve



significantly as t is increased from the minimal (5] S. A. Tretter and K. Steiglitz, "Power spectrum
value 4. This latter observation is most noteworthy identification in terms of rational models", IEEE
and indicates that the incorporation of more than the Transactions on Automatic Control, vol. AC-12,

inima number of Yule-Walker equations for determin- April, 1967, pp. 185-188.
ing the ARMA model's autoregressive coefficients has (6] J. &. Cadzow, "ARMA spectral estimation: an effici-
the anticipated effect of significantly improving ent closed-form procedure", Proceedings of the RADC
spectral estimation performance. Spectrum Estimation Workshop, October 3-5, 1979,
Next, the modification methods developed in Section pp. 81-97.

V and the appendix were applied to these twenty differ- (7] J. A. Cadzow, "ARMA spectral estimation: a model
ant sampled sequences of length 64 to obtain ARMA model equation error procedure", IEEE 1980 International
spectral estimates of order (4,4). The resultant Conference on Acoustic, Speech and Signal Process-
spectra are shown in Figure 2 where it is apparent that ing, April, 180, pp. 598-602.
only "a modest" degradation in spectral estimation per- (8] J. A. Cadzow, "High performance spectral estimation
formance has accrued due to the transient effects in- - A new ANNA method", IEEE Transactions on
troduced by the modified methods. This is indeed Acoustics, Speech, and Signal Processing, vol.ASSP-
welcomed news given the ability to implement these 28, No. 5, October, 1980, pp. 524-529.
modified methods with exceptionally fast algorithms. (91 J. A. Cadzow, "Autoregressive moving average
It is to be noted that the "postmodified", and the spectral estimation: a model equation error pro-
"pre & postmodified" methods are identical in this cedure", IEEE Transactions on Geoscience and

example. Remote Sensing, vol.GE-19, No.1, Jan.1981, pp.24-28.
As a final example, twenty different sampled sequen- [101 T. Kailath, S. Y. Kung and M. Morf, "Displacement

ces each of length 200 were generated according to ranks of matrices and linear equations", Journal of
expression (46). With this longer data length, it was Mathematical Analysis and Applications, vol. 68,

. anticipated that an improvement in spectral estimation No. 2, April, 1979, pp. 395-407.
performance would result. A marked improvement is in [11] 8. Friedlander, M. Morf, T. Kailath and L. Ljung,
fact realized as is made evident from Figure 3 where "New inversion formula for matrices classified in
the ARMA model spectral estimates of order (4,4) are terms of their distance from Toeplitz matrices",
shown for the Box-Jenkins method and the unmodified Linear Algebra and its Applications, vol. 27, 1979.
method for selections of t -4, 8, and 20. pp. 31-60.

(121 S. Kay, "A new ARMA spectral estimator", IEEE Trans-
IX. CONCLUSION actions on Acoustics, Speech, and Signal Processing,

A computationally efficient closed form method of vol. ASSP-28, No. 5, Oct. 1980, pp. 585-588.

AKA spectral estimation has been presented. It is [13] Y. Pao and D. T. Lee, "Additional results on Cadzow's
AR prectr the approximation of a set of Yule-Walker ARMA method for spectrum estimation", Proceedings
predicated onare gn f set IEEE International Conference on Acoustic, Speech,
equation estimates which are generated fro a given set and Signal Processing, vol. 2, March 31, 1981,
of time series observations. The ARMA model's auto-
regressive coefficients are determined by solving a [14] K. Ogino, "Co0- utatonally fast algorithms for ARA

consistent system of linear equations. The displace- spectral estimation", Ph.D. dissertation, Virginia
unt rank o u the matrix corresonding to hesf Polytechnic Institute & State University, June 1981.
equations is four thereby indicati that an efficient [151 S. Bruzzone and M. Kaveh, "On some suboptimum ARMA
algorithc solution procedure is possibles spectral estimators", IEEE Transactions on Acoustics,The spectral estimation performance of this ARMA Speech, and Signal Processing, vol. ASSP-28,
modeling procedure has been empirically found to exceed Dec. 1980 pp. 753-755.
that of such counterparts as the maximum entropy and
Box-Jenkins methods (e.g., see refs. (6]-[9] & (13]). APPENDIX
This behavior is to a large extent, a consequence of
the fact that more than the minimal number of Yule- I. Postwindow Modification
Walker equation estimates are being approximated to Following a similar procedure as employed in Section
obtain the resultant ARMA model parameters. VI, the addition of an upper triangular matrix to the

In order to achieve an improved computational lower portion of the matrices specified by equations
efficiency, a prewindowed modification of the proposed (19) and (20) yields the previndowed matrices
ARKA model spectral method was next introduced. The
spectral estimation performance of this prewindowed x(p) . . . x(l)
version has been found to be of high quality for I
moderate data lengths. As we will see in Part 2, this
prewindowed method may be implemented by an adaptive X - x, ) . . . x(N-p+l) (Al)
update algorithm whose computational efficiency is_

comparable to that achieved by recently developed LMS
fast algorithms. L (N)

X. REFERENCES x(p-q) . . . . x(p-q-t+l)

(1) R. B. Blackman and J. W. Tukey, "The measurement of x(p-q+l) .... x(p-q-t+2)
power spectra from the point of view of communica- F .A2)

tion engineering". New York: Dover, 1958. Y (A2)

[21 A. V. Oppenheim and R. W. Schafer, DIGITAL SIGNAL z(N) ..... .. x(N-t+l)
- PROCESSING, Englewood Cliffs, New Jersey, Prentice-

Hall, Inc., 1975. 0 x(N) x(N+p-q-t)
[31 G. Box and G. Jenkins, TIME SERIES ANALYSIS: I

FORECASTING A1D CONTROL (revised edition) San
Francisco: Hold~n-Day, 1976. where X and Y are recognized as being (Nxp) and

(4] P. R. Gutowski, E. A. Robinson, and S. Treitel, (Nxt) Toeplitz type matrices, respectively. In a
"Spectral estimation, fact or fiction", IEEE similar manner, the colum vector x is modified to
Transactions on Geoscience Electronics, vol. GE-16,
April 1978, pp.80-84. X - (x(p+l) ........ x(N), 0,...,Oj' (A3)

p zeros

' 8



The displacemnt rank of the matrix YX is readily
found to be 3. A generalized Levinson procedure re-
quiring a computational complexity of O(3p

2
) can then be

applied for solvilng the system of equations

YtX 1 - -Yt z (A4)

A more computation&ily efficient algorithm associated
with the postwindow modification has been developed 114].
It is shown that the number of computations is reduced Udfied
to (p log p) if p - q where p and q are the denominator Method
and numerator orders of the ARMA model, respectively.t 2

II. Pre & Postwindov Modification Method

The combination of the previously discussed pre-
windowed and poatwindowed modification methods yields Unmodified
the pre & postwindow modification method. The matrices Method
and vectors are modified in the following manner.

XW? 0 x! Unmodified

x(N) •..x(N-p)

L "x(N)

0 7)"0........0 ;
q rows

.....................0

x()Method

y . (A6)X(t) . . . ... x(1)

x(N) ...... xiN-t+l)

x(l4) ... x(N+p-q-r), Exact
-J Spectrum
[x(l) ... x(N), 0 ... ,0 (A)

p zeros 0.00 0.20 0.40 OSo 0.30 .0o
N0BIM.L ZZO FqE:UENC'r

where X and Y denote (N+p)xp and (N+p)xt Toeplitz type

matrices, respectively, and x denotes a (N4p)xl column
vector.

rt can be shown that YtX is a Toeplitz matrix. The
conventional Levinson algorithm may therefore be used Figure 1: Spectral estimates of order (4,4) by
for solving the Toeplitz system of equations the Box-Jenkins method and by the High

- Performance method using various
(0 -values for t. N - 64 data points for

in which the inherent computational complexity is each estimate.
" 0(2p

2
).

7 
More recently, a fast algorithmic solution

has been developed which significantly reduces this
t" computational complexity.

7 The parameter t is here taken to equal p.



Pre and Poetwindow

_i'' \ 'i 'Modification Umdfe

Unmodified
Method

Figure 2: Spectral Estimates of order (4,4) Figure 3: Spectral estimates of order (4,4)
generated by the Hitgh Performance generated by the Box-Jenkina method
method with t - 4 and using the and by the High Performance method
various data m odification procedures. using various values for t. N * 200

N - 64 data points for each estimate, data points for each estimate.

10

Unmodifie
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