
ADAO 5 ASSACHUSETTS INST 'OF TECH CAMBRIDGE LAB FOR COMPUTE-ETC F/B 12/1
.1 PRELIMINARY ANALYSIS OF A BREADTH-FIRST PARSING ALGORITHM: THEO--CTC(U)

.JUN 81 W A MARTIN.p K W CHURCH, R S PATIL NOOOI-75-C-0661

UNCLASSIFIED MIT/LCS/TR-261 NL

LABRATRYFORA (ILEL)I L I

0M 111,1 1
CO PTRSINE011(NLG

I U0
PRLMNRYAAYI

1OFA

7*PFR-*LNAI RESULTS

W iliamti A. UlM t

- -~ ~RanTc.i. S. Pati

SECURITY CLASSIFICATION OF THIS PAGE (ihSmmi Dos Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONSt.RP RTUdlERT ,OMNA NPG BEFORE COMPLETING FORM
1. REPORT NMBER 2. GOVT ACCESION NO. . RECIPIENT'S CATALOG NUMBER

MIT/LCS/TR-261 / A)- . 21.
4. TITLE (and Subtitle) TYPE OF REPORT & PERIOD COVERED

) Preliminary Analysis of a Breadth-First Parsing June 1981
Algorithm: Theoretical and Experimental Results. _

S. PERFrORMING ORG. REPORT NUMBER

R IT/LCS/TR-261
7 AU THOR() a
William A./Martin /9')/PA N.4 - 1-75-C-06613S Kenneth W./Church ,, b''

Ramesh S/ Patil j. .] P91 -LM--?3371 -p2
3. PERFORMING ORGANIZATION NAME AND ADDRESS
Laboratory for Computer Science AREA G WORK UNIT NUMBERS

Massachusetts Institute of Technology
545 Technology Square, Cambridge, Mass. 02139

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
DARPA 1) June 1981
1400 Wilson Blvd. is. NUMBEROPAGES --
Arlington, Va. 22209 86 (

14. MONITORING AGENCY NAME & ADDRES(If diffeelnt from Controllnlg Offlie) IS. SECURITY CLASS. (of this toport)

Office of Naval Research
Department of the Navy Unclassified
Information Systems Program IS. DECLASSIFICATION/ DOWNGRADING
Arlington, Va. 22217 SCHEDULE

IS. DISTRIBUTION STATEMENT (of thile Report)

This document is approved for public release and sale; distribution is
unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Slock 20, if different -%in Report)

19. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reveree side if neceemary md Identity by block nuiiber)

Parsing, chart parsing, natural language processing, Earley's algorithm

21 ABSTRACT (Continue an reverse side It necessary and Identify by block number)
"We will trace a brief history of context-free parsing algorithms and then
describe some representation issues. The purpose of this paper is to share
our philosophy and experience in adapting a well-known context free parsing
algorithm (Earley's algorithm and variations thereof) to the parsing of a
difficult and wide ranging corpus of sentences. The sentences were gathered
by Malhotra in an experiment which fooled businessmen users into thinking they
were interacting with a computer, when they were actually interacting with
Malhotra in another room. The Malhotra corpus is considerably more difficult

FORM 1473 EDITION OF NOV 65 IS OBSOLETE O,
DSCI JAN C3 F

SECURITY CLASSIFICATION OF 'THIS PAGE (IWhen Date Entered)

iS cu~n TCLA W ICA7
t I

O OF ToM PA - & *"--*

than a second collection published by the LADDER Group. Both collections are

given in the appendices. Section 4 compares empirical results obtained from

these collections against theoretical predictions.

Accession For--

NTIS GRA&I

DTIC TAB [J
Unannounced
Justification ,

By .

Distribution/

Availability Codes '" .

Avnil and/or
Dist Special

V

I9CURITY CLAS11PICATION OP THIS PA~(Uhli' DOet BRIer.)

buti''lI ' lI ' T ,t-"-
'-

Preliminary Analysis of a Breadth-First Parsing Algorithm:

Theoretical and Experimental Results

William A. Martin

Kenneth W. Church

Ramesh S. Patil

Massachusetts Institute of Technology

Laboratory for Computer Science

Cambridge, Massachusetts 02139

June 1981

Abstract

We will trace a brief history of context-free parsing algorithms and then describe some representation

issues. The purpose of this paper is to share our philosophy and experience in adapting a well-known

context free parsing algorithm (Earley's algorithm [8, 9) and variations thereof [28, 13, 26, 27]) to the

parsing of a difficult and wide ranging corpus of sentences. The sentences were gathered by

Malhotra [22] in an experiment which fooled businessmen users into thinking they were interacting

with a computer, when they were actually interacting with Malhotra in another room. The sentences

are given in Appendix I. The Malhotra corpus is considerably more difficult than a second collection

given in Appendix II (originally published in [15]). Section 4 compares empirical results obtained from

these collections against theoretical predictions.

Key Words: Parsing, Chart Parsing, Natural Language Processing, Earley's Algorithm

V.

This research was supported (in part) by the National Institutes of Health Grant No. 1 P01 LM

03374-02 from the National Library of Medicine, and by the Defense Advanced Research Projects

Agency (DOD) monitored by the Office of Naval Research under Contract No. N00014.75-C-0661.

Table of Contents -2-

CONTENTS

1. An Introduction to Chart Parsing .. 7

1.1 Enumeration Order.. 9
1.1.1 Depth First vs. Breadth First.. 9
1.1.2 Top-down vs. Bottom-up------------------------------.....................10

1.2 N-ary Branching---11.............................I
1.3 Dotted-grammars and ATN States---------------------------------......................13
1.4 Example I (with Doted-Rules)------------------------------------........................14

2. Taking Advantage of Restricted Grammars---------------------------------.......................14

2.1 imTime ram ars .Gram m a..15
2.1.1 Grammar aAa': An Example of Bounded Direct Ambiguity-------.....15

2.2 Grammar 'AA': An Example of Unbounded Direct Ambiguity---------------..........16
2.3 Examples from Psycholinguistic Literature---------------------------..................17

2.3.1 Noun-Noun Modification------------------------------.....................18
2.3.2 Prepositional Phrase Attachment and Conjunction-------------........18
2.3.3 Reduced Relative Clauses-----------------------------....................20

2.4 Taking Advantage of Bounded Direct Ambiguity-----------------------................21
2.5 imTime amman .Gram m ars..22

2.5.1 Taking Advantage of Useless Phrases---------------------..............24
2.6 epRepresentationIssues..25

2.6.1 Diagonal Entries------------------------------------........................27
2.7 Compilation vs. Interpretation------------------------------------........................28

3. T aTransformationsxica Rand .Lexical....Rules..22

3.1 Features--29................................ 2
3.1.1 Overriding Features in Exceptional Cases------------------.............29
3.1.2 Representation of Features----------------------------...................30
3.1.3 The Features in EQSP---................31

3.1.3.1 Subcategories-------------------------------32.....................
3.1.3.2 Subcategorization-----------------------------...................33

3.1.4 Transformational Context-----------------------------....................34
3.1.5 Adjunct Contexts-----------------------------------........................34

3.2 NP-Movement--36.............................. 3
3.3 Wh-Movement--36............................. 3

3.3.1 Gazdar's Formulation of Wh-movement--------------------..............37
3.3.2 Wh-movernent in EOSP--................39
3.3.3 Adjacent Filler-Gaps: A Special Case.................................... 40
3.3.4 Complemient Clauses, Relative Clauses and Questions----------......41

3.4 Conjunction--42.............................. 4

Table of Contents .3-

3.4.1 The General Mechanism.. 42
3.4.1.1 Coverage.. 42

3.4.2 Idiosyncratic Cases.. 43
3.4.3 Conjunction and the Size of the Grammar.............................. 46

4. Experimental Results.. 46

4.1 A Comparison of the LADDER and MALHOTRA Corpuses,......................... 50
4.2 Synthetic Sentences ... 53

4.2.1 Catalan Numbers .. 53
4.2.2 Fibonacci Numbers.. 54
4.2.3 Worst Case for Number of Parses.. 55

4.3 Analysis of CPU Time .. 56

5. Conclusion ... 60

6. Acknowledgments .. 62

Appendix 1. Results with the MALHOTRA Corpus ... 63

Appendix 1I. Results with the LADDER.TODS Collection... 71

Appendix 1ll. How to Understand the ATN Charts ... 73

References .. 74

-5.

This paper will trace a brief history of context-free parsing algorithms and then describe some

representation issues. Finally we will present a new parser (EOSP) 1 which has better average case

performance because of its improved representation. The purpose of this paper is to share our

philosophy and experience in adapting a well-known context free parsing algorithm (Earley's

algorithm [8, 9] and variations thereof [28, 13, 26, 27]) to the parsing of a difficult and wide ranging

corpus of sentences. The sentences were gathered by Malhotra [22] in an experiment which fooled

businessmen users into thinking they were interacting with a computer, when they were actually

interacting with Malhotra in another room. The sentences are given in Appendix I. The use of

constructions and punctuation varies widely from user to user and contrasts sharply in its variety with

the sentences in Appendix II, which originally appeared in [15]. These sentences, which we will call

the LADDER-TODS Collection, were chosen to make a wide variety of constructions possible while

limiting the difficulty of parsing. To move from the LADDER-TODS to the MALHOTRA corpus required an

approximate doubling of our code.

We believe that syntax, semantics, and pragmatics are all required to parse a corpus like the

MALHOTRA. However our view is that, computationally, syntactic constraints are in general the

cheapest to apply, while semantics and pragmatics are progressively more expensive. Therefore, we

have chosen to step aside from our long term development for a couple of months and explore just

how much can be done by syntax alone. What is the general behavior of a purely syntactic parser and

for what constructions is it strongest and weakest? This has given us a clearer idea of just where

semantics and pragmatics would help the most.

We have chosen to implement a sentence-level parser which finds all parses of the sentence. We feel

that, at least for the short run, this will be best for the practical question answering system we are

trying to build. Our view is that current computer semantics and pragmatics will be too weak to

determine in all cases the intended interpretation when they see it. For example, experience with the

commercially offered ROBOT [14] system indicates problems such as confusion of the abbreviation ME

for Maine with the pronoun me in sentences like (1). By finding both interpretations we can ask the

user for a clarification.

(1) Print for me the sales of stair carpets.

When all parses are to be found it has generally been profitable to maintain a chart, or well-formed

substring table. This approach has been carried fairly far in approaches based on standard

1 FQSP is the syntactic parser for an Englir.h queiy system currftenly under development

-6-

transformational grammar, but to our knowledge, no one has built a large parser for a grammar like

LFG [191. This we have done by adapting the well-known context-free algorithm of Earley to a very

efficient form for parsing English.

Linguists have long viewed language as full of marked exceptions to powerful general rules. This we

think is a general property of most large natural systems. No one algorithm can cover everything

unless it is so general as to be terribly inefficient. The best approach to parsing is to split the problem

into cases. There will be a primary algorithm (context free parsing in our case), important secondary

algorithms (wh-movement and conjunction for us), and many minor algorithms (eg. for idiomatic

expressions such as per cent and for arithmetic expressions). In this paper the reader will see how

we have worked this out for the difficult MALHOTRA corpus.

As will be mentioned below, we have implemented our parser in a compiled rather than an interpreted

form. This means the grammar is written directly as programs rather than as a data structure which is

then interpreted by a separate parsing program. Richard Burton [4] first applied this technique,

obtaining approximately an order of manitude improvement in parsing time over the interpreted

implementation. We believe that we have relized a similar speed increase or perhaps a little more.

One advantage of the compiled form is that it is easier to add special case processing algorithms. As

stated above, we have added quite a few of these. It would be desirable to have a compiler program
which could convert an abstract grammar into many different parser programs. This remains for

further work.

There have always been questions of how complex natural language systems should be evaluated.

One way, we think, is to run them on standard corpuses. This is why we give our results on the

MALHOTRA and LADDER-TODS corpuses in the appendices. But in Section 4 we have tried to go beyond

this and identify which constructions are the most difficult for our parser and why. A syntactic parser

finding all parses always takes more resources per word as the length of the sentence grows. We

have found specific sentence forms which demonstrate the best and worst cases, ie. they bracket the

MALHOTRA data. For these sentences it is possible to analyze exactly why they are hard or easy for our

parser. In this section we feel we have advanced, at least to some extent, the art of parser analysis.

It is very unlikely that people parse sentences the way our parser does. It proceeds breadth first

keeping all options open. Nevertheless we feel a study of our paper may help people in cognitive

science to appreciate the variety of issues that go into the construction of a parsing algorithm. In

addition it is possible that people do proceed breadth first for one or a few words. One path may be

considered most likely and brought to consciousness, but others could be Linder consideration in

-7-

parallel to facilitate local back-up. Anyone pursuing this idea may find our paper of some help.

Finally, cognitive scientists may find our analysis of difficult constructions of some help in planning

experiments, or they may want to run our parser to see just what syntactic structures certain

sentences have in a LFG-like grammar. We are always surprised by some of the analyses found.

1. An Introduction to Chart Parsing

Let us define a very general context-free algorithm for comparison with historical landmarks such as

Woods' ATN model (33] and Earley's algorithm [8, 91. This discussion is intended as a review of the

literature, in order to establish a common terminology which will be useful when we introduce some of

our own ideas in the later sections. The organization of this section strongly follows that of [13, 27,

28].

A context-free parser takes as input a context-free grammar and a sentence and produces as output a

chart2 of labeled phrases. A labeled phrase is a sequence of words delimited by two brackets and

labeled with a category symbol. Let the triple <i, j, c> denote a phrase of category c spanning the

words between the ith position and the th. For illustrative purposes these triples will be represented in

a two dimensional matrix (i by j) as illustrated below for the sentence (2). For example, the entry

[NP, VP) in Chart(2, 4) represents two analyses of the words between positions 2 and 4, namely

[NP flying planes] and [vP flying planes]. (More efficient representations will be discussed shortly.)

(2) Input Sentence: 0 They 1 are 2 flying 3 planes 4

(3) Grammar:

N -* they V - are N - flying A - flying V -- flying N -- planes

S--NPVP VP--VNP VP-'VVP NP-+N NP -APNP NP--+VP AP- A

(4) Chart:

0 (1 {NP,N,they) IS) (SI (S)
I I I I VPV,arel {VP) (VP)
2 { (1 { {NPVPAP,NV,A,flying) [NP,VP)

3 { (1 } 1) {NP,N,planes)

0 1 2 3 4

2 Some autlhors prefer the term well-formed substrinq table (wfst) to chart.

An Introduction to Chart Parsing -8- Section 1

If there is a comp!ete parse of the sentence, the chart will have an S in the top-most right hand corner

to represent the fact that the parser found an s spanning the words from before the first one (0) to

after the last one (n). Otherwise, the sentence is rejected. There are no entries in the lower left half of

the chart because there no phrases which end before they start. The diagonal entries correspond to

phrases of zero words (eg. trace and other empty categories).

There are many well-known parsing algorithms that produce a chart like that above in time O(n3)

(proportional to the cube of the number of words). One such algorithm is given below. It finds a

phrase between positions i and j by picking a position k in between and testing whether there are two

phrases, one from i up to k and another from k to j, that can combine according to the grammar. For

example in (2), the algorithm will determine that there is an s from 0 to 4 because there is an NP from 0

to 1 and there is a vP from 1 to 4 and the two phrases can combine according to the grammar rule

S -- NP VP. The general entry in the chart is:

(5) chart(i, j) = U chart(i, k) * chart(k, j)
i<k<i

where 'a * /8' combines phrases from a and #3 according to the rules of the grammar. That is, it

returns the set of phrases whose left daughter is from a and whose right daughter is from /f. (For the

present discussion we will assume that phrases have one or two daughters, or more formally, that the

grammar is in Chomsky Normal Form [1].) This algorithm can be performed in 0(n3) time by choosing

all combinations of i, j and k, each of which have n possible values. (The multiplication step requires

constant time, independent of the actual input words. It only depends on the grammar and hence it is

often known as the grammar constant.)

for j:= ton do

chart(j-1, j): = {A I A - word,) lexicon

for i: = j-2 downto 0 do

chart(i,j) := U chart(i,k) chart(k,j) invariant
i~k<j

if S is in chart(O,n) then accept

else reject

This formulation of chart parsing is convenient for showing the parallelism between CF parsing and

matrix multiplication. This is an important result, originally due to Valient [321, which allows us to take

advantage of advances in matrix multiplication algorithms, currently a very active area of research in

computer science. Intuitively, the parallelism comes from a very strong similarity in invariants; (6) is

the invariant for chart parsing and (7) is the invariant for multiplying two matrices A and 13 to pioduce

An Introduction to Chart Parsing -9 - Section I

a resulting matrix C.

(6) chart(ij) = U chart(i,k) * chart(k,j)
k

(7) c1 i = Z ik*bki
k

1.1 Enumeration Order

1.1.1 Depth First vs. Breadth First

This algorithm is similar to several well-known algorithms dating back to the early 1960's (eg. Harvard

Predictive Analyzer1211 and the Cocke-Younger-Kasami[1]), though these algorithms tend to

enumerate the chart in slightly different orders. From a computational point of view, the enumeration

order is of surprising little importance. Sheil [29] showed that the 0(n3) time bound can be achieved

by any algorithm that limits its search space to points in <i, j, k>-space. From this perspective, there is

no difference between depth first enumeration of <i, j, k>-space, breadth first enumeration, best first,

or even random order, for that matter.3

So far, much of the psycholinguistic literature has concentrated on basically depth first (serial)

models [17, 10, 23, 6] for reasons that are intuitively appealing, though difficult to formalize. The

parser to be presented here is an extreme alternative to depth first; it is completely breadth first.

Though we don't believe this particular enumeration order to be realistic with respect to

psycholinguistics, it offers a useful milestone for comparison with the more popular depth first

models. If one wanted to argue that depth first was realistic on functional grounds, then he ought to

be able to show that it is computationally more efficient than breadth-first. We find plausible the

hypothesis that human processing proceeds breadth-first for a few words before selecting the best

alternative to follow in a depth-first fashion; our parser may be helpful to someone exploring such a

compromise position.

3 This claim needs a slight qualification; it doesn't hold if the equality ielation in the invariant is replaced with an assignment
statement because the former is associative while the latter is not. That is, every order of evaluating equality relations
produces the same results, but this is not necessary tiue of assignment statements. Hence the equality sign in the algorithm
ieally means equ3lity and not assignment (There is a recent trend in computer science to replace assignment statements with
i(tiality constaints [311, thus side-stepping a large number of ordering prohlems and similarly, in linguistics theie is a trend to
*ieplir'e strict ordering of transformations with well foinedness constiaints sich as Chomrky's conditions on binding, case,

govrnment, and thematic relations 151 ni [lie'snan Kaplan's completeness. coherence, and rol isishency [191.

Depth First vs. Breadth First - 0 - Section 1.1. 1

We have chosen an extreme breadth-first position for two reasons. First, it happens to be very

convenient for certain representation issues. Secondly, because we want to find all parses of multiply

ambiguous sentences, there are few (if any) advantages of depth-first. Depth-first has better average

case behavior if only one parse is desired, because it can stop searching when it finds the first parse,

but this doesn't apply in the "all-parses" problem. When seeking all parses, it is more productive to

discuss the search space itself, rather than particular strategies of enumerating the space.4

1.1.2 Top-down vs. Bottom-up

The psycholinguistic literature has also paid considerable attention toward the top-down/bottom-up

question. This distinction becomes considerably less important when a chart is introduced, because

each phrase will be found once and only once, for both enumeration strategies. Without a chart, the

top-down/bottom-up distinction might be much more important because a strictly top-down parser

will find a phrase multiple times, once for each place that it can be used in a larger phrase whereas a

strictly bottom-up parser will find a phrase just once. However a strictly bottom-up parser has the

dual problem of proposing a larger phrase multiple times, once for each way that it can use a phrase

that has been found. All efficient parsers combine both top-down and bottom-up information in some

way (using the chart, for example), so that it is useless to classify these parsers as one type or the

other. This may be part of the reason that this question is so difficult for psycholinguistics to resolve.

This paper will concentrate more on representation issues where it is much easier to formulate sharp

distinctions.

For example, is the chart algorithm above top-down or bottom-up? Well, most people would say that it

is bottom-up because it finds phrases from i to k and from k to j before it puts them together to form a

phrase from i to j. However, it is fairly easy to reformulate the multiplication step so that it looks more

like division. That is, one might replace a statement like (8) with something more like (9). (From a

formal grammar point of view, these pairs contrast Chomsky Normal Form [1] with Categorial

Grammars [2], and from a representational point of view, these pairs suggest two different ways of

indexing5 the grammar.)

4, It may be useful to think about the search space as the competence of processing and the search strategies as the
performance of processing.
5 Indexing is a technical term borrowed from data-base management. Databases are indexed on certain keys so that it is

relatively ehti;y to find an item if you have its key A data hase index is analogous to an index at the back of a book, both make it
reltively c i,.y to ind a pai liculai item it you now what it miJht heb in dexed under

&I

Top-down vs. Bottom-up -It. Section 1. 1.2

(8) chart(i, j) = chart(i, k) * chart(k, j) bottom-up (Chomsky Normal Form)

(9) chart(k, j) = chart(i,) top-down (Categorial Grammars)chart(i, k)

Earley's Algorithm [8] can be viewed as (9) because it predicts phrases from the top (chart(i, j)) and

then divides (completes) them by phrases from the bottom (chart(i, k)) so that it can predict the next

phrase (chart(k, j)). Since the predict step precedes the complete step, this algorithm is often said to

be top-down, though it is really very similar to the chart parser presented here, and hence one really

wouldn't want to say that it has a completely different search strategy. Top-down/bottom-up

arguments are unconvincing because (8) and (9) are so similar to each other that it seems extremely

tenuous at best for an argument to depend crucially on a distinguishing trait. In fact they are so close

that it is often possible to make one strategy look like another by a clever recoding trick; one will be

provided for Earley's Algorithm at a later point. As noted previously, it is more productive to discu3s

the search space itself, rather than enumeration orders.6 Our analysis will attempt to follow this

approach in general, though we will mention a particular search strategy (bottom-up and breadth

first) in the representation discussion for concreteness. The reader is invited to reformulate those

results in terms of a top-down depth first strategy.

1.2 N-ary Branching

The previous algorithm has a rather awkward assumption that all phrases have only one or two

daughters (Chomsky Normal Form). This would appear to conflict with many linguistic analyses

which propose wider branching factors in cases such as:

(10) [,p [, give] [np it] [p to him]]

This section will relax this assumption by recoding a general context-free grammar into Chomsky

Normal Form in such a way that it should be clear that there are no linguistic and/or psycholinguistic

implications resulting from this assumption. In so doing, we will have generalized the previous

algorithm to work for all context-free grammars.

6 Much of the emphasis on enumeration orders stems from the heuristic search paradigm which is traditionally used in
Artificial Intelligenrce to improve performance by imposing certain cut offs in the eiumertion procedures, thus finding an
approximate solution in less time We would rather view the heuristics (when possihle) a; !.hnrirking the search space itself.
eiabliiig a complete enumieration of thu reduced space. Thus we can deal with heuirl;ict without brinqing (l processing

nntow; h0e enumeration orders.

N-ary Branching - 12- Section 1.2

The recoding trick is very simple. Define a dotted-rule to be a context-free grammar rule with a dot

inserted to indicate how much of it has been parsed. For example in (11)-(14) below, the dotted-rules

on the left correspond to the tree fragments on the right.

dotted rul I=e fragment

(11) VP-. V NP PP [vp

(12) VP --4V. NP PP [vP give

(13) VP-,VNP.PP Ipgive [npit]

(14) VP--+VNPPP. [3 give np it] [PP to him]]

Since this notation is fairly cumbersome, it will be convenient to introduce a few abbreviations. When

there can be no confusion, we will abbreviate initial and final dotted-rules ((11) and (14) respectively)

by placing the dot on the category itself (eg. .vp and vp.) rather than spelling out the entire rule. Other

abbreviations will be introduced as they become useful.

The multiplication rule will be redefined to combine dotted-rules rather than nonterminals as before.

It combines two dotted-rules, a partial and a final, by moving the dot past the next symbol as

illustrated below:7

(15) {VP --+. V NP PP) * {V.) = {VP --+ V. NP PP)

{VP - V. NP PP) * {NP.) = {VP --+ V NP. PP}

{VP -, V NP. PP) * {PP.) = {VP -+ V NP PP.)

It might be useful to view these dotted-rules as forming the nonterminal of a new grammar which we

will call the dotted-grammar. The combination rule above is constructed to have binary branching so

the dotted-grammar will be in Chomsky Normal Form. Now the algorithm above can be applied to the

dotted-grammar instead of the original, and thus meeting the binary branching assumption without

imposing any constraints on the original grammar. The resulting algorithm is a general parser for any

context-free based theory of processing since the dotted-grammar is a trivial mapping from the

original which imposes no linguistic and/or psycholinguistic restrictions.

7 Technically the multiplication rule is defined to apply to sets of nonterminals, rather than individual nonteiminals, and
conseqwtlly. dotted rule multiplication really applies to sets of dotted rules, not individual rules. This explains the set

tbacliels in lie example

1"1

Dotted-grarnmars and A TN States .13- Section 1.3

1.3 Dotted-grammars and ATN States

One particularly well-known framework is Woods' Augmented Transition Network (ATN) [33] and

hence it is worthwhile to reformulate the preceding explicitly in his terms. He introduces his model in

three stages. First he begins with finite state transition networks which consist of a set of states

connected by labeled arcs. The interpreter starts from the initial state and follows arcs labeled with

the category of the first input word. From there it follows arcs labeled with the category of the second

input word and so on until there are no more input words. If the machine is in the final state when

there are no more words, the sentence is accepted, and if not, the sentence is rejected. This machine

is strongly equivalent to a regular grammar.

Woods then increases the generative capacity by allowing arcs to specify other networks recursively.

For example, the s network could specify an NP network for its first transition, not just a lexical

category as in the finite state network model. Woods called this recursive model a Recursive

Transition Network (RTN) and showed it to be strongly equivalent to context-free grammars. He then

augmented it with registers and conditional jumps to construct the Augmented Transition Network

(ATN) which has the power of a Turing Machine (though there have been efforts to reduce its

generative capacity).8

There is a strong relationship between Woods' RTNS and dotted grammars. RTN states correspond to

sets of dotted-rules, and arcs perform the multiplication as illustrated below. (This paper will use the

terms state and dotted-rule interchangeably.)

states arcs RTN

(.VP) push {V.) to {VP - V. NP PP)
{VP -- V. NP PP) push {NP.) to {VP -4 V NP. PP)

{VP -+ V NP. PP) push {PP.) to (VP.)
1-.

dotted rules multipoiction table Dotted Grammar
- {.VP) {.VP) * (V.) = {VP -- V. NP PP)

{VP -- V. NP PP} {VP -# V. NP PP} {NP.) = {VP- V NP. PP}

{VP -- V NP. PP) [VP , V NP. PP) [{PP.) = (VP.)

The ATN employed a convenient naming convention for partial constituents (intermediate states) that

will be used here when there can be no confusion. Let S/NP abbreviate an S up to the NP (S - NP. VP)

and vP/v abbreviate a vP up to the V (VP V. NP, VP - V. AP or VP - V. NP). This abbreviation scheme

8 IK ip,'in (peisonal coImunication)]

It,-,. . ,. --- :,- - r J i'-r "" i

Dotted-grammars and ATN States .14- Section 1.3

combines several dotted-rules that are identical up to the dot. This is often a useful optimization,

though there may be times when it is more efficient to distinguish them. For example, it might be

better to combine dotted-rules that are the same after the dot.

1.4 Example I (with Dotted-Rules)

The chart with dotted-rules is given below for the sentence: They are flying planes.

0 .S, .NP, .VP, .AP NP., N., S/NP S. S. S.

.N, .V,.A they

.S,.NP, .VP, .AP V., VP/V VP. VP.
N, .V,.A are

2 S,.NP, .VP. .AP A., AP., NP/AP, V., VP/V NP., S/NP. VP.

.N, .V, .A N., NP., S/NP, flying

3 .S, .NP, .VP, .AP NP., N. S/NP
.N, .V, .A planes

4 ., .NP, .VP, .AP

.N,.V,.A

The diagonal of the chart takes on a very important meaning. Before it was only used for linguistically

empty phrases (e.g. traces). Now, it is also used for initial dotted-rules (rules with the dot in the left

most position) because they denote partial phrases dominating no words in the input stream (i = j).

By similar reasoning, there will be no initial dotted-rules in the off-diagonal entries. Traces are now

denoted by final dotted-rules in a diagonal entry.

2. Taking Advantage of Restricted Grammars

Though the 0(n3) bound is approximately the best known for the general context-free parsing

problem,9 it is possible to do much better with certain restricted grammars. For example, Earley's

Algorithm [8, 9] parses some context-free grammars in O(n) time, some others in 0(n 2) time and the

rest in 0(n3) time. This is an improvement over the algorithm outlined above which cannot take

advantage of these restricted grammars; it requires O(n 3) time in all cases because it enumerates

0(n 3) points in <i, j, k>-space even if many of them cannot enter into the complete parse due to some

restriction in the grammar. Pratt [26, 27] and Ruzzo [13, 28] have independently found a way to

incorporate Earley's ideas into an algorithm like the one we first presented; the modified algorithm will

9 Vatret 1321 found an O(M(n)) hound where M(n) is the time required to multiply two matrices of size n This is known to be
9 stIohtly Ib-thr than cubic. though the constants are pi otably prohibitive for practical appl ictions.

-'-

Taking Advantage of Restricted Grammars 15 - Section 2

use the grammar to decide which points to enumerate and hence it can be much more efficient for

certain restricted grammars. The next two sections will illustrate two ways that the grammar can

restrict the set of reachable points in <i, j, k>-space.

2.1 Time n2 Grammars

In general, there are 0(n) ways to pick k so that it partitions the words between i and j into two

phrases that can combine to form a single phrase from i to j. However, for some grammars there are

only a bounded number of ways of picking k; the grammar will not combine the other partitions and

hence there is no reason to consider them. This is a particularly useful restriction because if there are

only b ways to pick k, then there are only O(b * n * n) points in the <i, j, k> search space. Earley [8]

called this restriction Bounded Direct Ambiguity, observing that these grammars have limited "top-

level" ambiguity. (They can still be very ambiguous because each of the b top-level partitions can

themselves have b partitions, and each them can have b partitions, and so on.)

We will give an example and then compare it against the more general case. Then we will draw on

some examples from the psycholinguistic literature and speculate that they might be interesting

subcases of this restriction. Finally it will be shown how the algorithm can be modified so as to take

advantage of this restriction. The modified grammar takes 0(n2) time on restricted grammars, though

it still requires 0(n3) in the general case.

2.1.1 Grammar 'aAa': An Example of Bounded Direct Ambiguity

Consider grammar (16) which parses odd length strings of a's. This grammar is an extreme case of

bounded direct ambiguity; there is only one way to pick k between i and j because the grammar is

unambiguous. There are less extreme cases which are ambiguous, though this is a good example to

begin with. 10

(16) A--+aAa
A-a

10 In fact, any linear grammar has bounded direct ambiguity. (These grammars have at most one nonterminal on the right
hand side of a production.) See [81 for the proof.

Grammar "aAa': An Example of Bounded Direct Ambiguity -16. Section 2. 1.1

The following abbreviations will be used for this example:

abbreviation Iona forms

.A {A -. a, A --+.a A a)

A/a (A -a., A -- a. A a, a)
A/A {A a A. a)
A. {A-. aAa.)

The chart is given below for the sentence: "aaaaa".

0 .A A/a A/A A. A/A A.
1 .A A/a A/A A. A/A

2 .A A/a A/A A.
3 .A A/a A/A

4 .A A/a
5 A

0 1 2 3 4 5

Notice that there is only one way (at most) to pick k so that it partitions a set of input words into two

phrases that can combine. For example, between 0 and 5, only 4 will do (A/A * A/a = A.); for any

other k, chart(O, k) * chart(k, 5) {). This restricted grammar is parsed more efficiently by Earley's

algorithm because there are fewer k's to look for; it avoids looking for combinations that can't exist.

Notice that this improvement saves time, but doesn't save any space; the improved algorithm will find

just as many phrases as the original algorithm did. (There is a common misconception that Earley's

algorithm is faster just because it avoids constructing unnecessary phrases. This explanation is

incomplete because it doesn't account for the improved performance in cases like this where there

are still Q?(n2) phrases,'1 just as many as there were before.)

2.2 Grammar 'AA': An Example of Unbounded Direct Ambiguity

Contrast the previous example with one where there is no bound on the direct ambiguity. With a

grammar like (17) below, all choices of k will work out and hence Earley's algorithm will have to look

at all of them. This is one of the worst grammars for Earley's algorithm; it requires n3 time.

11. See 1201 for a for mal definition of this notation; it means that the growth is at least as fast as n2. This is a lower bound,
before we were disciissing upper bound% whe,) we said that the growth was no laster than n2 .

Grammar AA': An Example of Unbounded Direct Ambiguity - 17- Section 2.2

(17) A--AA

A-a

The following abbreviations will be used for this example:

abbreviation Iona forms

A (A -- .A A, A -. a)
A/a {a, A - a., A A. A)

A. {A --+ A. A, A -A A.)

The chart is given below for the sentencei "aaaaa"

0 .A A/a A. A. A. A.

1 .A A/a A. A. A.
2 .A A/a A. A.
3 .A A/a A.
4 .A A/a
5 .A

0 1 2 3 4 5

2.3 Examples from Psycholinguistic Literature

Psycholinguists have looked at quite a number of English constructs which have unbounded direct

ambiguity because they seem to provide some interesting differences between performance and

competence. It appears that unbounded direct ambiguity is difficult to process, a result that is

compatible with the theoretical discussion above. Furthermore, many computational linguists have

also found these constructs problematic for their respective models. These constructs are especially

difficult for Marcus' Determinism Hypothesis [23]; he and many of his followers [23, 6, 25, 30] have
worked out possible solutions to many of them, usually concluding that they have bounded direct

ambiguity in performance. 12 Some experience with our own model will be presented.

12 There is one exception; Church 16] has experimented with an alternative approach called pseudo-attachment which
attaches a phrase to an tnhoujdc'd nunibei of places in a sinle step. In certain cases, this approach has been enccded
difectly into the gi ammar of the pae.vr tu be p(esented here

Noun-Noun Modification - 18. Section 2.3.1

2.3.1 Noun-Noun Modification

This case is presented first because it is perhaps the closest analog of 'Grammar AA', though it may

not be the most important from a practical engineering point of view. These examples tend to involve

domain specific semantics; perhaps they are best resolved at some level other than syntax.1 3 (These

particular examples were taken from [23].)

(18) NP -NP NP grammar
NP- N

(19) ([(water meter] cover] adjustment] screw]

(20) [[ion thruster] [performance calibration])

(21) [[boron epoxy] [[rocket motor] chambers]]

(22) [1970 [[balloon flight] [[solar-cell standardization] program]]]

These are a well-known problem for processing. Some of the difficulties are discussed in [23] and

references therein; Robert Milne (personal communication) is currently working on some solutions

within a deterministic framework. This construction is also problematic for nondeterministic systems

because it requires considerable resources. The approach taken here is to flatten the syntactic

structure of these phrases as in (23), delaying the decisions for semantics. In this way, the parser will

not waste time trying all possible bracketings; it will be content with a canonical one that represents

them all. This is very similar to the "pseudo-attachment" approach in [6]. Notice that the canonical

grammar has bounded direct ambiguity.

(23) NP --+ (N) canonical grammar

2.3.2 Prepositional Phrase Attachment and Conjunction

There are many other cases of 'Grammar AA' from natural language; perhaps the most common are

prepositional phrase attachment and conjunction.

13 We haven't decided yet how semantic processing should be ordered with respect to syntactic processing. Although the
current EQSP system orders all syntactic processing first, we plan to experiment with some more interactive ,;cheduling
strategies

Prepositional Phrase Attachment and Conjunction - 19- Section 2.3.2

(24) NP -- NP and NP Grammar for Conjunction
NP - DET N

(25) NP -- NP PP Grammar for Prepositional Phrase Attachment
NP - DET N
PP -- P NP

Both of these grammars have unbounded direct ambiguity; there are an unbounded number of

choices for k. We have enumerated the top-level choices of k for the following two examples. Notice

that the number of choices grows with the number of words. (Let NP/and and NP/NP abbreviate the

dotted-rules: NP - NP and. NP and NP -- NP. PP, respectively.)

(26) plant 1 and 1 plant 2 and 2 plant 3 and 3 plant 4 and 4 plant 5 conjunction

[NP/and plant 1 and] [NP. plant 2 and plant 3 and plant 4 and plant 5]

[NP/and plant 1 and plant 2 and] [NP. plant 3 and plant 4 and plant 5]

[NP/and plant 1 and plant 2 and plant 3 and] [NP. plant 4 and plant 5]

[NP/and plant 1 and plant 2 and plant 3 and plant 4 and] [NP. plant 5]

(27) plant 1 with plant 2 2 with plant 3 3 with plant 4 4 with plant 5 PP attachment

[NP/PP plant 1] [pp. with plant 2 with plant 3 with plant 4 with plant 5]

[NP/PP plant 1 with plant 2] [pp. with plant 3 with plant 4 with plant 5]

[NP/PP plant 1 with plant 2 with plant 3] [pp with plant 4 with plant 5]
'NP/PP plant 1 with plant 2 with plant 3 with plant 4] [pp. with plant 5]

In both cases, the number of parses grows very quickly with the number of phrases. The actual

growth is exactly the Catalan numbers [20], the number of ways to insert parentheses into a formula

of n terms. The first few Catalan numbers are: 1, 2, 5, 14, 42, 132, 469, 1430, 4862, ... They are
generated by n (n2 1) which grows almost exponentially. These numbers have been
empirically verified with up to nine prepositional phrases. That is, the parser found 4862 parses for

the sentence: It is the number of products of products of products of products of products of
products of products of products of products. The parser uses a much more complicated grammar

for conjunction; consequently, it is harder to predict the number of parses in that case.

The canonical grammar approach (proposed in the last subsection) is also applicable here; this is

similar to the "pseudo-attachment" approach taken in [6]. This approach was not implemented for

prepositional phrases in this work because there are rarely more than three of them in a sentence,

which is only five ways ambiguous, and hence it does not seem to be worth the effort to canonicalize

them. The canonical grammar approach was implemented in some cases of conjunction; it appears

to save considerable amount of work in this case because sentences often contain more than three

potential conjuncts.

Reduced Relative Clauses -20- Section 2.3.3

2.3.3 Reduced Relative Clauses

It appears that one of the greatest proliferations of ambiguity is due to reduced relative clauses. Not

only do they tend to attach in every possible way (like prepositional phrases and 'Grammar AA'), but

they can also start wh-movement and they are often confused with main verbs. Furthermore, if that

isn't bad enough, a reduced relative is often just one word long and hence it is one of largest

contributors to the per word ambiguity (number of parse trees divided by sentence length). For

example, sentence (28) is 10 ways ambiguous, but without the word produced, it is only 3 ways

ambiguous. The effect is far more significant in (30)-(31) where there are two of them to interact with

a few more phrases. These sentences do not appear to be very difficult for most people to

understand. Perhaps people are using semantic constraints to reduce the direct ambiguity.

(28) List the sales of products produced in 1973. 10
(29) List the sales of products in 1973. 3

(30) List the sales of products produced in 1973 with the products produced in 1972. 455
(31) List the sales of products in 1973 with the products in 1972. 28

Reduced relative clauses don't appear to have the same direct ambiguity in performance as they do in

competence, especially when they can be interpreted as main verb phrases, as well-noted in the

psycholinguistic literature by a pair like the following:

(32 # h-osrcdps hebrel

(3)The horse raded past the barn fell.

Many researchers have argued that the unacceptability of sentence (32) is due to some difficulty in

locating the boundary between the noun phrase and the verb phrase. In our terms, we would say that

it is difficult to find the k which partitions the sentence into a noun phrase and a verb phrase. Notice
that the general case (33) has unbounded direct ambiguity.

* (33) The horse raced past the horse raced past the horse ... fell.

The general problem with all of these constructions (reduced relatives, prepositional phrases,

conjunction, noun- noun modification) is unbounded direct ambiguity and hence there is a

characteristic proliferation of interpretations (Catalan growth) and significant time requirements

(cubic growth). The general solution to this problem is to find other constraints (semantic,

performance, canonical izat ion) in order to bound the direct ambiguity. The parser to be presented

Reduced Relative Clauses -21 - Section 2.3.3

here is the result of considerable efforts in these directions; it generates far fewer parse trees than it

once did. It becomes particularly clear just how many parses there are when one is generating all

parses, rather than just the first one as most other parsers do.

2.4 Taking Advantage of Bounded Direct Ambiguity

This section will modify the above algorithm to take advantage of bounded direct ambiguity. The

improvement results from ignoring null entries in the chart. Instead of enumerating all points in

<i, j, k>-space, the improved algorithm will only enumerate those k's that can partition the words from i

to j into two phrases that can combine. It accomplishes this by working "bottom-up"; 14 that is, it will

combine two phrases only if they are both already in the chart. Whenever the parser adds a new

phrase into the chart from k to j, it looks for phrases ending at k and combines them to form phrases

from i to j. These phrases are then completed with phrases ending at i, and so on. The combination

procedure is called completer (Earley's terminology) because it completes phrases already in the

chart. (For technical reasons, the chart is initialized with zero length phrases already inserted along

the diagonal because they can be precomputed without looking at the input and because the

completer, as defined here, is unable to find them. This technical point will be cleaned up shortly.

Recall that initial states are zero length phrases and consequently, they are all initially in every

diagonal entry.)

We can make the completer somewhat faster by precomputing which categories can combine with

which. Then the completer will only try to combine phrases of the "right" categories; that is, instead

of looking for just any phrase ending at k, it looks for phrases of a category that can combine with the

category of the phrase from k to j. The function left-sisters-of returns a precompiled list of dotted-

rules that can combine with a given dotted-rule. So for example, it would return .s and VP -4 V. NP PP

and a host of others as left sisters of NP., all of which multiply on the left of an NP. to produce some

other states.

This algorithm motivates a representation that allows efficient enumeration of phrases of a particular

category ending at a particular point. These representation issues will be discussed later. For now,

we will assume a few functions for manipulating the chart. These functions now take three arguments

(a state, an i and a j) unlike the previous chart functions which did not take a state argument. The

function chart(s,?kj) generates a list of ks, one for each phrase of category s ending atj.

14 Note that this algorithm can also be viewed as top down for reasons mentioned previously, top down information is used
to decide ,vhit should be put into the chart in the fiust place

VI

Taking Advantage of Bounded Direct Ambiguity .22 - Section 2.4

(34) parse: proc0

for j from 1 to n
for s in {A. I A -, wordi) do

add-chart(sj- t,j)

addchart: proc(s,ij)

if chart(s,i,j) = 'not found' then

chart(s,ij) : = 'found'

complete(s,ij)

complete: proc(s2,k,j)

for sI in left-sisters-of(s2) do
for i in chart(s1 ,?i,k) do

add.chart(s"*82,ij)

2.5 Time n Grammars

It has been noted [8, 27, 28] that the preceding algorithm is inefficient for certain restricted grammars

because it constructs phrases that cannot be used in a complete parse. For example, given the
grammar 'Aa' (below), it will construct approximately n2 phrases, most of which do not fit into a final

parse. The chart is given below with underlining used to denote useless phrases. These phrases do

not fit into a parse that spans from 0 to j and hence they are useless. (This usefulness constraint is

enforced by the predict operation in Earley's algorithm.) Notice that there is only a linear number of

useful phrases; there are n useful phrases on the top row and there are n - 1 on the off-diagonal. This

is typical of left branching grammars because the top row contains phrases starting at the left edge

and the off-diagonal contains single word phrases. Consequently, the chart can be represented in

linear space, which is a large improvement in space complexity over the general n2 bound. The time

bounds are also reduced to 0(n) as we will see.

=,1

I

Time n Grammars .23- Section 2.5

(35) A- A a Grammar Aa
A--+a

abre slong forms

A A -. A a, A-.a}
A/A (A -A. a)

a. [A -a., A A. a)
A. A -A a.)

A.* ° A. u A/A

0 A a. A.* A.* A.$ A.*
1 .A a. V A. A..

2 .A a. A.- A.-
3 .A a. A
4 .A .a
5 A

0 1 2 3 4 5

The usefulness condition reduces the complexity for a large class of grammars including all

deterministic grammars1 5 with one extra modification called lookahead. The usefulness condition

requires a phrase to be consistent with everything from position 0 to j. The lookahead modification

strengthens this to include a few more tokens to the right of j. This condition is important for right

branching grammars which require n time with lookahead, but n2 time without (on Earley's algorithm).

For example, consider a sentences such as (36) which has a right branching grammar similar in

structure to (37).

(36) He believes he believes he believes it.

(37) A-- aAIa

This sentence can be parsed in linear time on Earley's algorithm if the multiplication step looks ahead

one token, but otherwise it is just like Grammar 'aAa' which consumed square time. Lookahead is

crucially used in this grammar to determine the product of {.A) * {a). If there is another a, then the

result is {A --, a. A), but if not, the result is {A.). Without lookahead, the result would be

{A -- a. A, A.) in both cases and consequently the algorithm would not be taking advantage of the

fact that a completed A cannot be followed by another a in the input string. In these right branching

15 Formally, a deterministic grammar is a grammar that can be recognized on a deterministic push down automaton (DPDA).
This is slightly different from Mat(Aus' nction whose enchine is more powerful. Deterministic grammars can generate all finite
stale langiiages and almost all cnmpuier languages (#-g LISP) However. they are unambiguous and hence they are not a
good candid-ile for natural language and certain oltei computer lanuagjv,.; (eg FORTRAN).

Time n Grammars -24- Section 2.5

grammars, the lookahead condition has the same effect that usefulness has in left branching

grammars; that is, it reduces space bounds from n2 to n by making the parser behave

deterministically. This also improves the time bounds by a factor of n.

This lookahead condition has not been used in our parser except in a few cases such as arithmetic

expressions, numbers, ordinals, hyphenated words, and certain conjunction phrases (eg. and also).

We believe there are very few constructions in our grammar where lookahead helps. It is crucially

important for deterministic parsing of right branching structures [23, 6], though most of our right

branching structures are ambiguous and hence it doesn't do much good to look ahead. It really only

helps to look ahead if the parser is going to behave differently based on what it finds. But since our

parser is going to find all paths anyway, it doesn't do much good to look ahead and find out that the

structure is ambiguous. However, there are a few unambiguous right branching constructions such

as (36) where EQSP should look ahead. We will show in section 4 that EQSP pays the price for not

looking ahead; that is, it takes another factor n longer to parse sentences like (36) than it would if it

looked ahead. Nevertheless, even without lookahead, the class of time n grammars is very large.

Earley [8] showed the class to properly include LR(O) grammars (deterministic grammars that don't

need lookahead).

2.5.1 Taking Advantage of Useless Phrases

Earley's parser avoids looking at useless phrases by excluding them from the chart and thus

restricting the parser's attention to just useful phrases and no others. There are three cases of a

useful phrase:

(38) At position 0, .s is useful. initial condition

(39) It is the combination of two other useful phrases.

(40) It is the initial state of a phrase that can combine with a useful phrase. Earley's predictor

Earley calls this third condition, the predictor, though this term is somewhat misleading. For example

this third condition will cause .NP to become useful if .s were useful because .s can combine with NP.

and .NP is the initial state of an NP. This will then cause .N to become useful because .NP can combine

with an N. Notice that the new states (eg. .NP and .N) are both the initial state of a right sister of an

already useful state. For example, NP is the initial state of NP. which is a right sister of .s. (A right

sister combines on the right by analogy to a left sister which combines on the left.)

These "predictions" fall on the diagonal of the chart because they are initial states; the other useful

phrases fall in the upper triangle. Previously the chart was initialized with the diagonal containing all

Taking Advantage of Useless Phrases -25- Section 2.5.1

initial states; the modified algorithm below will add these initial states when they are known to be

useful, cleaning up the previous version of the algorithm.

(41) parse: proc0

add.chart(f.S}, 0, 0) Initially .S is useful
for j from 1 to n

for s in [A. I A -. wordi} do
add..chart(s,j. 1 ,j)

add-chart(s,ij)

if chart(s,ij) = 'not found' then

chart(s,i,j) : = 'found'
for prediction in right.sisters-of(s) do Earley's Predict

add.chart(initial-state-of(prediction),j,j)

complete(s,i,j)

complete: proc(s2,k,j)

for si in left-sistersof(s2) do
for i in chart(s,,?i,k) do

add.chart(s1,s 2 ,i,j) combination of useful phrases

This new algorithm takes linear time for left branching grammars because there is only a constant

number of phrases for each j, and each of them can combine with only a constant number of phrases

(chart(s,?ik) is bounded by assumption) and hence the total time is constant for each word, which is

linear with the sentence length. Similar arguments apply for all LR(0) grammars. The algorithm could

be extended to parse LR(k) grammars (deterministic grammars with lookahead of k)16 in linear time by

adding lookahead.

2.6 Representation Issues

The representation of the chart becomes very important for efficient parsing. There are only two

operations that reference the chart in the above algorithm:

(42) for i in chart(s,?ij) do enumeration

(43) if chart(s,ij) = 'not found' then check
chart(s,i,j) : = 'found'

16 The A tookahead is difterent than thep A which partitions i and j into two phrases.

4

...--- ' . . r-

Representation Issues -26 - Section 2.6

The analysis requires step (42) to take time proportional with the number of phrases found and step

(43) to take constant time. This could be assured if the chart allowed random access on s and j. For

example, the chart could be a two dimensional array, the first dimension ranges over choices of s and

the second dimension over choices of i. Each entry in the array would be a set of 'S.17 Unfortunately,

this array is probably too large for long sentences and hence it is often hashed in practice.18 We have

implemented an alternative proposal to the space problem; suppose the chart does not allow random

access on j, but rather, the chart allows random access on just s and then sequential access on j so

that the most recent j's are available first. That is, for each s there is a list of <i, j>-pairs, sorted on j.

An example is worked out below (except for diagonal entries terminals (words) which are represented

differently).

(44) o They 1 are 2 flying 3 planes. 4

rule ede rule
S. (<0, 4>, <0, 3>, <0, 2>) V. (<2, 3>, <1,2>)

VP. (<1,4>, <2,4>, 1,3>) A. (<2,3>)
NP. (<2, 4>, (3, 4>, <0, 1>) S/NP (<0, 1>)

AP. (<2, 3>) VP/V (<2, 3>, (1, 2>)
N. ((3, 4>, <0, 1>) NP/AP (<2, 3>)

Now, in order to enumerate phrases of category s ending at j, the parser fetches the list of phrases of

category s and then searches the list for those ending at j. The search halts when a phrase on the list

ends before the desired j. This representation is taking advantage of the fact that a breadth first

search is almost always referencing the more recent phrases, and only very rarely will it complete a

phrase ending very far back. This representation would be very inefficient for a depth first parser (if it

has to back up very often) because the chart would contain a large number of phrases ending after

the desired j.

The above example does not mention terminals (words) or initial dotted.rules. It isn't necessary to
represent terminals (words) in the chart explicitly if they are always dominated by a nonterminal

(eg. N, V, A) as they are in our grammar. The next subsection will discuss initial dotted-rules.

17 This doesn't actually allow constant time check because the list of i's might become very long, but it is fairly close since
the most intere.ting values are kept near the front of the list in practice If one were concerned with the theoretical behavior,
he couild also add a second table for checking which would be accessed differently from the table for enumeration.
18 Hi#.Vrg is a popular technique of comlpressing very sparse allays See 120] for an excellent analysis of its theoretical
propel ties

-~i

Diagonal Entries -27- Section 2.6.1

2.6.1 Diagonal Entries

Diagonal entries are represented differently for four reasons:

(45) They tend to be much denser

(46) They are checked more often

(47) They are not enumerated

(48) They contain less information

Notice that there can be at most one diagonal phrase for each s and j (because i equals j on the

diagonal), and hence, only one bit is needed to represent whether or not that phrase is in the chart.

Consequently these entries are stored in a bit array that allows random access on both s and j. These

bit arrays are a commonly used technique for representing initial predictions in many algorithms

(eg. [27, 28,13]). There are two exceptions where we represent a diagonal entry with the standard

data structure, not the bit arrays. The first exception is when a diagonal entry is being conjoined and

the second is when it is starting a relative clause (for wh-movement). These cases will be explained in

more detail when we discuss conjunction and wh-movement. There are a few other cases where we

don't bother to store the diagonal entries because these constructions are almost always useful, and

hence the parser simply assumes that they are useful without checking the chart.

construction example
classifier-name-phrase They are deb 2 red dresses.

conjunct-phrase even though; and also
head-name-phrase W A MARTIN

ie-phrase ie dogs, ie in the woods

other-phrase other than red; other than me

ordinal 3rd; 4th
very-phrase ver quickly

per cent per cent

hyphenated-word fire-plug

Actually the representation of edges is slightly more complicated; they are really records (random

access) including several other fields in addition to i and j. In particular, there is a field for features

(eg. person, number, etc.) and a field for a wh-element (the hold cell), and there is a slot for

conjunction. These fields will be discussed in more detail in a later section.

V.' .

Compilation vs. Interpretation - 28 - Section 2.7

2.7 Compilation vs. Interpretation

All of the algorithms presented so far interpret the grammar more or less directly as is, with almost no

pre-processing. In fact, only the left-sisters and/or right-sisters have to be computed in advance; the

rest of the grammar can be interpreted directly in context-free rule format. On the other hand, one

could imagine a parser which pre-compiled the grammar into some other format which was more

efficient for processing. The compilation process is a one-time operation which precedes the parsing

of any sentences. This approach can provide considerable efficiency improvements as Burton has

shown in his thesis [4].

Compilation is a very common notion in computer science where it is used to transform high-level

programs into more efficient machine-level programs before they are run on any input. Compilation is

to be contrasted with interpretation where there is no pre-processing; all transformations are

performed as they become necessary depending on the input data. Compilation avoids performing

the same transformations again and again; interpretation avoids preparing for input data that will

never occur.

We have compiled the grammar 9 so that there is an addchart procedure for each state in the

grammar. This makes it possible to pre-compile the loop (49) into a single bit vector operation which

marks a number of states useful in parallel. There are a number of other advantages from this move.

For example, there is no need to try to complete a state unless it is the final state of some network.

Therefore, the calls to the complete procedure are removed from the add-chart procedures except

for the add-chart procedures of final states.

(49) for prediction in right-sisterof(s) do

add-chart(initial-state-of (prediction),j,j)

We have found these very simple compilation techniques to be extremely important in improving the

runtime efficiency of the parser in exchange for a large increase in program size.

19. Ideally the compilation would be performed by a program so that it would be relatively easy to modify the grammar. In this
preliminary prolect, we have compiled the grammar by hand in order to avoid the very difficult task of designing a grammar

compiler.

" - 1 t•

Transformations and Lexical Rules .29 - Section 3

3. Transformations and Lexical Rules

So far we have limited our attention to pure RTNS; this chapter will discuss a number of useful

augmentations which capture a wide number of linguistic generalizations. Almost all of these facts

could be captured in a pure RTN by encoding more information into the states in a way analogous to

Gazdar's Generalized Phrase Structure Grammar (GPSG) [12], though we believe that it is more

efficient to factor these different components and thus reduce the number of states by a vary large

factor.

3.1 Features

For example, we could encode agreement facts by exploding the nonterminal set to distinguish

features such as person, number and gender so there would be 3*2*3 types of nouns, one for each

combination of features. Similarly, there would be an equal number of verbs, one for each of the

agreement possibilities. Though these numbers are finite, they are certainly rather large; 105 was an

estimate given by Kurt Konolige in a talk at the 1980 meeting of the ACL. This appears to be a

particularly inefficient representation of features; a more efficient representation would capture the

fact that features are strongly constrained objects which can be manipulated in just a few highly

restricted ways.

We will represent features as a separate component from the part of speech. Each feature is another

field in the chart, so now the chart contains n-tuples of the form: <s, i, j, fl, f2, ... > to represent a

phrase of category s spanning from position i to position i with features f,, f2, ... (We will occasionally

use the term record for these n-tuples because they are actually implemented as records.) The

multiplication rule is also modified to manipulate features in the appropriate way. For example, the

rule that multiplies an NP with a vp to form an s will check the features of the two daughters for

agreement and it will assign the appropriate features to the result.

3.1.1 Overriding Features in Exceptional Cases

Certain types of features tend to have idiomatic exceptions which a parser has to be able to deal with.

For example, certain verbs like die and sneeze are generally intransitive although they can take on

transitive interpretations under certain very restrictive idiomatic conditions such as:

(50) John sneezed a big sneeze.

(51) John died a horrible death.

t

1.

Overriding features in Exceptional Cases -30 - Section 3. 1. 1

The lexical entry for the verb die declares it to be intransitive except for this one case, which is

marked by placing a property on die to override the intransitive subcategorization when there is a

noun phrase whose head is the word death. In order to make this check more efficient, we have

added the head slot to phrases in the chart, so that it is relatively inexpensive to find the head of a

phrase. The exception handling mechanism has been generalized to accept other subcategorization

violations such as:I (52) They are [_Q13 brd [the ship]) now.
(53) They are [-n 10 [of it)) now.

(54) They are [within [5 miles] [of the ship)).

In these cases, a preposition is taking a second argument, either a NP as in (52) or a PP as in (54). The

former case is handled by adding a special phrase structure rule: PP --4 P N NP with the condition that

the N transition is permitted only if the iP (on in this case) is mark~ed for the particular head (board in

this example). In a case such as (54), we suppress the issue to semantics since 5 miles of the ship will

be accepted by the existing syntactic component, though it will have a slightly different structure,

namely: [within [[5 miles) [of the ship]]]. In semantics, we raise of the ship to within. With an

exception handling mechanism of this sort, it is much easier to express the facts; without such a

mechanism it would be almost impossible to impose any subcategorization restrictions because there

is almost always an exception of some sort or another.

3.1.2 Representation of Features

There are a few engineering issues that enter into the representation of features in the chart. We

have previously noted that the chart has random access on s and sequential access first on j and then

on i. How should we represent features? We have chosen to store one computer word full of features

for each combination of <s, i, j>. This is a somewhat arbitrary engineering decision, though it does

have some interesting implications. First of all, the multiplication rule will first generate states and

then filter out bad states using the features. One could imagine an alternative representation scheme

.4 where the features are used in the generation process and the states are used in the filtering.

Secondly, we have very little space to represent features so we will have to decide carefully which

ones Should be represented at this level and which ones can wait for semantic interpretation. We

have concentrated on the better discriminators, those features that weed out the most number of

combinations; it isn't worthwhile representing a feature at this level if it will almost always allow the

multiplication to succeed.

Ewa

Representation of Features -31- Section 3.1.2

The third consequence is somewhat more difficult to deal with, though one can imagine some

possible improvements which are probably worth exploring. Suppose there were two phrases that

were identical to each other in every way except for their features. Our scheme will represent both of

them with a single set of features, though ideally they should each have their own. Consider the

following example below where there are two ways to form an NP over the same words with different

values for the number feature.

(55) [Np Flying planes] make too much noise. plural
(56) 'NP [vp Flying planes]] is very dangerous. singular

Our representation will say that these two phrases are merged in a single n-tuple (record) which is

marked both singular and plural. That is, we will merge the two phrases together into a single record

with the union of the features. This is a bit too loose because sometimes it will include some

combinations that don't exist. For example, there is no way to represent the fact that (57) has only

two interpretations, not four. That is, the subject and the predicate can be either singular or plural,

but they both have to agree.

(57) Flying planes can be dangerous. ambiguous

Nevertheless, we have found this representation to be extremely effective and efficient. In practice

this union of features rarely causes us to over-accept. It may be reasonable occasionally to accept

too many parses at this level of processing and filter them out at a later level.

3.1.3 The Features In EQSP

EQSP currently uses 37 features. Since our PDP-i0 computer has 36-bit words, most features are

represented with a single bit, though two of them share the same bit. Most of the features are used for

subcategorization; there are very few agreement features because there is very little room and

because agreement features are relatively poor discriminators. Only 6 of the 37 features are used for

agreement: first -person -singular, third-person -singular, plural, present-tense, past-tense and plural-

object. It was decided that other agreement features such as gender and case do not weed out

V. enough combinations to justify keeping them in the feature vector at this early stage of processing.

Subcategories -32- Section 3.1.3.1

3.1.3.1 Subcategories

There are a number of features which are used to further subdivide certain parts of speech in order to

restrict and/or expand their usage. There are five features in this class: time-phrase, place-phrase,

pronoun, numeral, and converted-participle-adjective. The first two are good examples of how

features can expand the usage of a part of speech. These have three additional usages beyond those

of a normal noun phrase. They can be used adverbially as in (58), in post-modifier position as in (59),

and they can conjoin with semantically similar prepositional phrases as in (60).

(58) I gave Tom a present yesterday. Adverbial

She must have done it next door.
*I gave Tom a present John.
*She must have done it John.

(59) The concert yesterday was very exciting. Post-Modifier
The party next door was very exciting.
*The concert John was very exciting.

*The party John was very exciting.

(60) We'll do it tomorrow and in the month.of May. Conjoined with PP
She must have done it either next door or a work.
We will be having a sale the rest f this week and in the month f My.

In contrast to the time-phrase and place-phrase features which expand the use of noun phrases, the

pronoun feature restricts the use of noun phrases. There are certain noun phrase positions which

exclude pronouns:

(61) *1 picked upit.
I picked up John.

(62) *Here comes jt,
Here comes John.

(63) *1 saw him who you like.

I saw the boy who you like.

(64) *1 saw [him from England].

I saw [the boy from England].

(65) *It was him two.20

It was plant two.

20. There is an exception for you and we which can take post.modiliers in a sentence like: You two seem to be having a good
time

-iI

Subcategories -33 - Section 3.1.3.1

The numeral feature is used to allow sentences such as (66) where there is no punctuation to signal

conjunction.

(66) Give results for lants 1 3

A converted-participle-adjective is used in a heuristic which avoids constructing adjective phrases

such as (67) when there is also participle reading as in (68). The AP parse will be constructed just in

case there isn't a corresponding participle phrase. This happens in two cases. First, there are words

like very which block the participle interpretation as in (69), and secondly, there are ce in adjectives

like fond and angry which have no particiole counter-part. We use the feature cqo :erted-participle-

adjective to distinguish words like fond or angry which are only adjectives, from y(ords like persuaded

which are both participles and adjectives.

(67) I was lAP persuaded]. adjective

(68) I was [vP persuaded]. participle

(69) I was MM persuaded. "very" selects for adjectives

(70) I was fond of candy. No Participle Counter-Part

I was angry at you.

3.1.3.2 Subcategorization

Most of the features are used for syntactic subcategorization, which seems to be a particularly good

discriminator.

feature examol

verb-is-intransitive John died.

verb-takes-sentential-f irst-object John thinks that I did it.
verb-takes-sentential-second-object John persuaded Bill that I did it.

takes-bare-infinitive John made them take the exam.
verb-takes-at-most-one-np-after-it *John forced Bill Sam

particle-possible John put the book down.
verb-doesnt-take.of 01 [put [the picture] lot him into the box]]

factive the fact that John did it; *the task that John did it

There are two kinds of semantic subcategorization. First, there is a notion of a responsibility-center,

1' an object that can own things like a person or a company. It is a very useful distinction to make in the

manaqement domain in which we are concentrating our efforts. There are two features for this notion

t
,e.

Subcategorization -34- Section 3.1.3.2

which have the obvious interpretation: first-of-two-nps-after-verb-must-be-a-responsibility-center and

responsibility-center. The second type of semantic subcategorization is for unknown words as in

sentences like:

(71) Define the term "tsum" to be the total sum of all products.

There are two features for parsing these sorts of constructions: introduces-unknown-word and quote-

head-noun. The former is assigned to words like define (as in define top to be) and let; the latter is

used for nouns like word (as in the word foop is), term, and phrase.

3.1.4 Transformational Context

It is useful to have a few features for keeping track of the context for certain "transformations." (We

are using the term "transformation" somewhat loosely since most of them are implemented with a

base generation approach.) These divide into three types: top level contexts, unbounded contexts,

and adjunct contexts. Many linguistic constructions are sensitive to these different contexts. For

example, there is a class of so-called root transformations (eg. auxiliary inversion, and imperative

deletion) which occur only at top level, and there is a class of so-called unbounded transformations

(eg. wh-movement and conjunction) which apply across several clauses subject to certain very strong

linguistic constraints (contexts). There is considerably less linguistic interest in the third class,

though we have found it to be very useful to be able to filter out certain pre- and post-modifiers. We

will discuss these features in more detail when we introduce the relevant transformations.

(72) top level structure: question -sentence, declarative-sentence, presentative-sentence21

(73) Wh-movement and Coniunction: wh-must-be.used, sequence-going, that-or-which-comp,
in-question, relative

(74) adiunct contexts: noun-phrase-rejects-post-modifiers, phrase-is- post- modified, noun-
phrase-has-numeral-modifier, noun-phrase-is-post-modified-by-clause, comma-appositive,
premodifier-needed

3.1.5 Adjunct Contexts

Adjunct contexts turn out to be fairly important since they are extremely common and hence it is

worthwhile to spend a little more effort in this area of the grammar. We have introduced several

features to deal with pre- and post-modifiers. These are important because the parser can almost

21 The term presentative is a gonvralilahon of impertive following Joos 1161.

Adjunct Contexts .35- Section 3.1.5

always find a potential modifier and it will significantly reduce the number of final parses if just a few

of these possibilities can be excluded. The simplest example is that pronouns usually reject post-

modifiers as in:22

(75) *He from England ...
The boy from England ...

(76) *He that you like ...
The boy that you like ...

(77) *He 5 is selling well.
Product 5 is selling well.

The feature premodifier-needed is used to accept (78), while rejecting (79).

(78) the big, red ball

(79) the big, ball

It is turned on after a comma and turned off when a following modifier is found. This is an example of

the point made by the Thompsons [7] that features can be used to avoid a further articulation of the

grammar rules themselves. The table below provides a quick summary of the features used to reduce

the possibilities of modification.

feature acet reiects

premodifier-needed the big, red ball *the big, ball

noun-phrase-rejects-post-modifiers item from England *he from England
noun- phrase-has-numeral-modifier *2 dogs 23 dogs
phrase-is-post-modified item 5 *[item from plant] 5

comma-appositive John, the baptist *John, the baptist, the great phophet

There are some undergeneration problems with these features. For example, the post-modifier

feature will exclude Jack in the box 1 because it will treat in the box as a PP, rather than as part of an

idiomatic noun. Similarly, the feature noun-phrase-has-numera V modifier will reject the phrase: 2 3

legged dogs. Fortunately, neither of these cases appear in the MALHOTRA Corpus.

In summary, we have introduced features to eliminate ungrammatical parses and also to exclude

extremely rare possibilities. It is much more efficient to undergenerate at the syntactic stage, and if

22 There is a proverbial meaning of he which permits relative clauses as in fie who walks under tall ladder will find himself in

a I rnp of trouble.

Adjunct Contexts -36 - Section 3.1.5

the parser should miss the appropriate parse, there would be a special procedure to backtrack over

the chart and recover the appropriate interpretations on a second pass. The alternative requires the

parser to carry along at each point every interpretation that could possibly be correct in some

completely wild and unlikely semantic context.

3.2 NP-Movement

NP-movement covers a wide range of linguistic phenomena including passive, there-insertion, and

raising. All of these transformations are relatively easy to process compared with wh-movement,

because they do not nest and hence they can all be performed locally within a lexical entry (as in

Lexical Functional Grammars [19]) or within a constituent (as in Phrase Structure Grammars [PSG]).

Our analysis is essentially identical to the lexical based generation approach currently advocated by

Bresnan and Kaplan [19]; the morphology routine decides which lexical entries are applicable and

assigns the subcategorization features appropriately. Predicate argument relations are determined in

another pass which combines additional subcategorization facts with semantics and domain

restricted pragmatics. This pass will be the subject of a forthcoming paper.

3.3 Wh-Movement

Wh-movement is one of the hardest transformations to parse because it is the source of considerable

ambiguity as we have seen with reduced relative clauses. Much of the psycholinguistic literature

attributes the problem to one of finding empty categories; there is an implication that wh-movement

would be much easier if the gaps were identified by some lexical object like the word gap or a

resumptive pronoun. Though this is correct, we have found that it is also difficult to locate the filler.

Consider a sentence like (80) where there is only one possible gap, but there are quite a number of

possible fillers.

(80) I saw the block in the corner of the kitchen near the yard that you liked.

One might think that such sentences are quite rare, but this has not been our experience. Consider

the following sentences taken from the MALHOTRA corpus [22] which illustrate that fillers can be quite

ambiguous.

(81) What are the components of the various t you know about?

(82) Print every pgo of information you have concerning plant 0 in 1972 and 1973.

4:

Wh-Movement -37. Section 3.3

It would be very inefficient to "move" all possible fillers into all possible gaps. It would be a very

serious mistake to enumerate the sub-trees for each possible filler times the number of possible gaps

because the number of sub-trees grows with the Catalan numbers. EQSP attempts to merge a number
of fillers together and move them all at once. For example in (81), EQSP will discover that all noun
phrases ending at the word costs are possible fillers and move them in one step downward until it

finds a gap in the embedded relative you know about. Then it checks to see which of the possible

filler-gap pairs are possible.

There is another serious source of inefficiency; it is important to avoiding looking for gaps where

there aren't any fillers because it is almost always possible to find a gap if you look hard enough. This

is a particularly easy mistake to make in a partially bottom-up parser like ours because the obvious

implementation would tend to find gaps first and then check to see if there are any fillers. The

solution to this problem is very similar to the usefulness notion introduced in the first chapter; the
parser should only look for gaps if they might be useful, that is, only if they are in the context of a filler.

There are many ways to implement wh-movement subject to these efficiency considerations. For

example, one could encode the relevant information into the non-terminals directly, as Gazdar does

[12], and then apply the general context-free algorithm to the resulting grammar. We have chosen a

slightly different approach for EQSP because we believe that his requires too many non-terminals,

though it is worthwhile to present his approach as a starting point for discussing our own solution.

3.3.1 Gazdar's Formulation of Wh-movement

Gazdar encodes the necessary information into the nonterminals by enlarging the class of

nonterminals to include a number of derived categories which are like normal categories except that

they dominate a gap. So for example, he would have a derived category for an s with an NP gap

(written S/NP), 23 and a category for a vp with an NP gap (VP/NP), and a category for an s with a PP gap

(s/pp), and so on. A trace of an NP is written NP/NP. He shows that it is possible, with these derived

categories, to write context-free rules for wh-movement constructions. We have given the analysis of

a simple example below.

23 This notation is different from the stash convention used earlier in this paper and it is also different from categorial
L. .amnars 12].

Gazdar's Formulation o! Wh-movement -38- Section 3.3.1

Grammar Rule Example

NP -+ NP S/NP [NP [the boy] [S/NP yOU like]

S/NP --+ NP VP/NP [S/NP [you] 'VP/NP like]]
VP/NP --4 V NP/NP [VP/NP [like] [NP/NP 11

Gazdar's proposal is currently a very exciting and controversial area of linguistic inquiry. Most of the

debate hinges on whether or not this system is an adequate model of linguistic competence. It is

unclear how such a model could handle multiple extractions from a single constituent or how it could

handle crossed movements, both of which are rare in English though one can find some possible

examples. We will give two examples of multiple extractions, the second of which appears to be

crossed.

(83) Which violins are these sonatas, easy [to play t, on ti?]

(84) What i don't you know [how to solve ti tj?]]

These are also somewhat problematic for our approach, as we will see. Currently we don't handle

form (83) though we could extend our system to handle it by stacking wh-fillers or by treating tj as

noun phrase movement recovered in semantics. Form (84) is parsed by raising how to know, as in

know the method to solve.

Though these issues are extremely interesting and important, their current resolution is beyond the

scope of this paper; we will avoid questions of linguistic competence and concentrate on processing

considerations for the time being. Assuming that Gazdar's model is linguistically realistic, how does it

fare on efficiency considerations? It has the obvious drawback that it approximately squares the

number of categories without taking advantage of a number of constraints on wh-movement. This

was the same drawback that led us to reject his proposal of encoding features directly into the

nonterminals; just as we believe that it is more efficient to keep category information separate from

features, it is probably more efficient to separate category and wh-movement. However, before

rejecting his proposal, we should point out that it fares quite well on the two points mentioned above,

merging multiple fillers and finding just useful gaps. We will adopt a modified solution which captures

most of the benefits of Gazdar's analysis without exploding the space of nonterminals. First, consider

the problem of multiple fillers as in the following example:

(85) Here is the block on the table in the kitchen on the first floor that you like.

Gazdar's Formulation of Wh-movement -39- Section 3.3. 1

This example is ambiguous because the gap could refer to any of the noun phrases. It is important

that the wh-movement transformation does not enumerate all possible fillers. Notice that Gazdar's

proposal fares well in this respect because it analyzes the gapped clause: [S/NP yOU like] just once,

even though there are quite a number of noun phrases that the gap might refer to.

Finally consider the problem of useless gaps. Again Gazdar's proposal performs well because the

previous implementation of the usefulness notion has exactly the desired behavior when applied to

Gazdar's derived categories. That is, the algorithm avoids looking for useless gaps because those

derived categories will not be marked useful without first finding a filler. (Fillers precede and

command their gaps in leftward wh-movement.) 24

3.3.2 Wh-movement in EQSP

Our solution is designed to achieve the virtues of Gazdar's proposal without exploding the space of

categories. The idea is similar to the approach taken for features; at a very global level, it is a fairly old

notion that has appeared in many systems (4, 18]. We will add another slot to the chart which holds

the "slashed" category; let us call this the wh-sent slot to suggest the ATN notion of send arcs. This

requires a slight modification to the multiplication rule and the usefulness procedure which are fairly

straightforward. The multiplication rule carries the wh-sent value down from a mother to one of its

two daughters. (Alternatively, one can think of it carrying the value up from one of the daughters to its

mother.) The usefulness procedure has to mark daughters with the desired wh-sent value. We will

not discuss these details here.

This system works fairly well though it is often important to know something about the internal

structure of the filler. For example, it is often useful to know about the features of the filler and

therefore the wh-sent slot should contain more information than just the category of the filler. The

following example illustrates the need for propagating number features along with wh-movement.

(86) What is happening?

(87) *What are happening?

EQSP uses these agreement features to find filler-gap relations in sentences like (88)-(89). The first is

using number features to distinguish between the complementizer use of that and the pronominal

24 This argument does not apply for riqhtward movement rules such as heavy NP shift or wh movement in Tuikish In these
c1,t-,. the algorithm wil look for u hel".,; (alis hit it won't look for tuseless fillers

Wh-movement in EQSP -40 - Section 3.3.2

use. The latter is using number features to decide whether the verb to be is inverted or not.25

(88) I saw the girls i that ei are changing. complementizer that
I saw the girls that i is changing ei, pronominal that

(89) What are the results e? inverted be
What is (e) the result (e)? ambiguous be

This sort of feature propagation is automatic in Gazdar's framework because his categories already

encode all the features, though it is somewhat more difficult for us because we have already factored

the features out of the nonterminals. We could also incorporate the features into the wh-sent slot,

though we have chosen to pass a pointer to the filler itself 26 This doesn't change the usefulness

condition, though it does complicate the multiplication rule. It is important to merge several fillers

together so that the parser finds the gaps just once, rather then once for each possible filler. This is

accomplished by filling the wh-sent slot with a list of possible fillers. For example, given a structure

like (90) below, the wh-sent slot would contain a list of noun phrases ending just before the word that.

This is actually implemented as a pointer into the chart, so it does not require too much additional

storage.

(90) Here is the block on the table ... on the first floor that you like.

We can manipulate this list as a unit without ever enumerating all its members. For example, we can

check agreement constraints by looking at the top level features of the fillers; it isn't necessary to look

deep down inside the fillers. This is an important theoretical point because there are the Catalan

number of subtrees ending at a given point, but only a linear number of top level phrases.

3.3.3 Adjacent Filler-Gaps: A Special Case

Consider examples like (91) where the filler and gap are unambiguous and adjacent. In this special

case, it is somewhat inefficient to use the general wh-movement mechanism which is fairly expensive.

Consequently, EQsP has a special case to look for these obligatory subject gaps. When EQSP finds

such a gap, it removes gap-finding from the useful things to do in order to block the normal gap

finding mechanism from coming into play and looking for a gap anyway. This turns out to be an

extremely useful special case because it applies to a very large percentage of the MALHOTRA Corpus.

25 In fact, EQSP canonicalizes the inverted and uninverted interpretations of sentence (89). The two interpretations can be
paralihia.od as What is it that the restilt is and What is it that is the result?
26 T lits may well take thf generative capacity outside the class of context-free grammars.

Adjacent Filler-Gaps: A Special Case -41- Section 3.3.3

(91) What is near ...

(92) What is going ...

(93) The girl who is going ...

3.3.4 Complement Clauses, Relative Clauses and Questions

There are several different types of wh-movement; these distinctions turn out to be very useful

because they can constrain the possibilities of wh-movement which is a relatively expensive

operation. There is a three way split between complements (94), relative clauses (95), and questions

(96).

(94) It is true that John is a nice guy. complement

(95) I saw a man who is a nice guy. relative clause

(96) What is true? question

In certain cases, the parser can determine which case is which by looking at the wh-word (eg. that,

who, what). That is, certain wh-words induce certaii types of clauses and not others. For example,

how, what and the determiner use of which do not start relative clauses or complement phrases:

(97) 1t is true how John is a nice guy.

(98) *1 saw a man what is a nice guy.

This constraint is implemented in EQSP by assigning each wh-word a feature for each type of wh-

clause that it can begin. So for example, the word how is assigned a feature for introducing questions

(called in-question), but not one for relative clauses (called relative).

This is another important lexical clue that distinguishes a minimal pair such as (99)-(100). The second

can be parsed as a complement clause or as a relative clause. The pair are contrasting the lexical

entries of girl and report; the latter optionally selects complement phrases unlike the former. This

distinction is represented in EOSP through the factive feature. In this way, EQSP can make the

grammatical distinctions necessary in order to find two parses for (100) and just one for (99).

(99) I saw that tirls that Bob changed. relative clause
(100) 1 saw the report that Bob changed. ambiguous

IL It has also been noticed that relative clauses will rarely center-embed more than two times. This turns

out to be a very useful filter for excluding certain possibilities of relative clauses.

.'

Conplement Clauses, Relative Clauses and Questions -42 - Section 3.3.4

(101) # [The man [who the boy [who the students recognized] pointed out] is a friend of mine.]

There are no cases in the MALHOTRA Corpus with more than one level of center-embedding, and

hence we block spurious analyses by excluding two deep center-embedding from the grammar. The

feature noun-phrase-is-post-modified-by-clause is set inside a relative clause so that EOSP will not

look for another modifying clause.

3.4 Conjunction

Conjunction is perhaps the single most difficult construction to parse. It has all of the combinatoric

problems associated with prepositional phrase attachment (unbounded direct ambiguity) plus the

problems associated with transformations of finding dependencies between fillers and gaps. We will

begin with a relatively simple general purpose mechanism and then we will complicated it with special

case modifications as they become necessary. Originally we had hoped that the general purpose

mechanism would cover almost all the cases, but experience seems to indicate that this is not

possible, at least with current linguistic understanding and current engineering technology. Our

implementation is sufficiently general to cover all cases of conjunction in the MALHOTRA corpus,

though it is far from the complete and definitive solution to conjunction.

3.4.1 The General Mechanism

Suppose we introduced a number of rules into the grammar as follows:

(102) NP -- NP CONJ NP

VP -4 VP CONJ VP

S-. SCONJS

PP -* PP CONJ PP

Now the normal context-free parsing algorithm would find most of the easy cases. Note that this

mechanism has two drawbacks: it is both incomplete and inefficient.

3.4.1.1 Coverage

Let us address the completeness issue first and then we will return to efficiency considerations. This

approach does not yet account for a wide range of linguistic transformations associated with

conjunction such as: vp-deletion, subject deletion, gapping, right node raising and the across the-

board convention. It seems that we will have to complicate the mechanism to account for these facts

t
2, Z

Coverage .43- Section 3.4. 1.1

in any case.

Linguistic Constraint Examoles

vp-deletion Jack saw Bill and Sam did e too.

subject deletion Jack saw Bill and e hit Sue.

gapping Jack saw Bill and Sam e Sue.

right node raising John gave Mary e, and Joan presented e to Fred, books which

looked remarkably similar.

Across-the-Board The kennel which [Mary made e] and [Fido sleeps in e] has

been stolen.
*What fork did John give Mary a knife and e.
*What knife did John give Mary e and a knife.

There are numerous ways to complicate the grammar in order to accommodate these facts. For

example, Gazdar [11] proposes that one can capture the across-the-board facts by encoding the

wh-filler information into the nonterminal (as he normally does for wh-movement) and then restricting

the conjunction mechanism to identical nonterminals. We use a similar technique, though slightly

modified because we represent the filler in the wh-sent, rather than encoding it into the nonterminal.

Consequently, we capture the across-the-board facts by insisting that both constituents have the

same wh-sent values.

3.4.2 Idiosyncratic Cases

One could imagine similar proposals for the other transformations. We have basically adopted this

general approach, though we have chosen to implement it in a more efficient way that avoids

exploding the space of nonterminals. However, there is another class of problems that we have

noticed in practice which have not attracted much attention in theoretical linguistics. It appears that

the word and can be deleted in certain restricted cases such as:

(103) What was the total cost of raw material in 71, 72, 73?

(104) What was the total cost of raw material in 71 72 73?

This is very interesting from a computational point of view because it means that the conjunction

cannot always depend on the the presence of words like and. Note that almost every conjunction

mechanism has this basic flaw; they all trigger on a conjunction word like and. It would be an

extremely sei ious mistake to allow the conjunction markers to drop out uniformly in all cases because

1 A M =L

Idiosyncratic Cases -44- Section 3.4.2

this would find quite a number of absurd parses, especially if one considered interactions with the

other dletion rules mentioned above. This kind of example led us to believe that some of these

deletion rules have to be considered on a case by case basis. They occur where there is a strong

semantic context. For example, we will only allow the word and to delete in a sequence of several
"semantically similar" noun-phrases such as a sequence of dates as above, or in a phrase like: items

1234.

Actually the problem may be much more serious than this. One can argue that almost any syntactic

generalization involving conjunction can be overridden in a strong semantic context. For example,

there is a rather strong syntactic generalization that conjunction applies to two constituents of the

same part of speech. However, there are some possible counter-examples to this; time, place and

manner adverbs can conjoin with time, place and manner prepositional phrases as in sentence (105)

below. We have implemented an exception to the general mechanism to handle cases such as these.

(105) We expect difficulties [ADV now] and [pp in the future].

This we allow using the feature time-phrase. Similarly, it is tempting to claim that conjunction applies

to complete constituents, not fragments, though again there are numerous possible counter-

examples where the syntactician would be forced to resort to a deletion analysis. The gapping

sentences mentioned above are good examples; we've included two more cases below:

(106) John [drove through e] and [completely demolished e] a plate glass window.

(107) Mary expressed [costs] (in dollars] and e [weights] [in pounds].

The first of these we currently don't handle. The second we do handle by taking all conjunction as

between strings of constituents in a phrase rather than between constituents, and then restricting the

V strings to length 1 except in special places such as just after the verb. In some sense, a constituent

with a hole in it is a partial constituent, and so in this view, the deletion analysis is a way of conjoining

partial constituents, at least in some cases. Unfortunately it is very difficult to process deleted/partial

constituents because there are so many combinatoric possibilities. One seems forced to say that

deletion rules are greatly restricted by semantic constraints, and then one is left with almost no useful

syntactic constraints. If conjunction really is as bad as all this, and we certainly hope that it is not,

- then it is hard to imagine how one could do better than a case by case analysis. We have attempted

to use the general mechanism as much as possible, though we have taken some liberties in certain

restricted cases in order to combat the combinatoric nature of the problem.

Conjunction and the Size of the Grammar -45.- Section 3.4.3

3.4.3 Conjunction and the Size of the Grammar

Even if we were able to remove all the problems associated with deletion rules and other semantically

idiosyncratic cases, Gazdar's approach still leads to a radical increase in the size of the grammar

because every part of speech can potentially conjoin with another constituent of the same part of

speech and hence we have introduced a new grammar rule for every part of speech. Though this is

already very expensive, it gets significantly worse if we reintroduce deletion rules. It appears that

context-free grammar rules are a very inefficient way to represent conjunction; we would really like to

parse the meta-rule "XP - XP and XP," instead of expanding the meta-rule out for each possible part of

speech. We have essentially implemented this by adding a general purpose conjunction mechanism

that looks for states (a) ending just before the word and, and (b) initiated by the first word after the

cot-junction. It starts these states after the word and. So for example, it would start an NP and s after

the word and in (108) below because each of these categories end just before the word and and each

can begin with the word the. (Condition (b) is a classic use of lookahead.)

(108) [[The robot] [put [the block] [on [the box]]]] and the..

This is fairly easy to implement in terms of dotted-rules and the chart; we will not go into the details

here. In this way, we have reduced the size of the grammar in a significant way. When EQSP believes

that is has reached the end of the second conjunct, it checks that the two conjuncts are "syntactically

parallel." This is a somewhat complicated test that basically requires both conjuncts to have the

same part of speech and the same wh-gaps and so on, though there are some further restrictions and

some exceptions. In particular, there is an exception which allows time and place phrases to conjoin

even if they have different parts of speech, as mentioned previously. There is also a restriction for

numerals so that they don't conjoin with non-numerals and in: *John and 2, except after for as in:

for.1971 and Diant 2- Similarly, there are some restrictions for deletion rules so that both conjuncts

have the same number of constituents. Top-level clauses have some additional restrictions. For

example, EQsP accepts (109) but not (110). These restrictions are expressed in terms of the top-level

context features: question -sentence, declarative -sentence, and prese ntatfive -sentence.

(109) Who broke in here and what did he want?

(1110) *Who broke in here and I don't like it.

There is a very important added constraint on combinations of three or more conjuncts which blocks

arbitrary nesting as in (111). If we allowed all possible nestings. there would be the Catalan number of

possible parses. In fact, we limit the depth to 2, so there are the Fibonacci number of possible parses.

This number was empirically determined and will be justified in the next section, which discusses
It

Conjunction and the Size of the Grammar - 46- Section 3.4.3

empirical results.

(111) # ... [products and [products and [products and products] and products] and products] ...

Multiple conjuncts are somewhat easier to parse when there are commas instead of ands. In this

case, EQSP uses the sequence-going feature to distinguish (112) from (113) at the point where the and

is reached. In the first case (112) conjunction has already been initiated by the comma while in the

second case (113) it hasn't.

(112) x, y and z

(113)xand z

In summary, we employ three types of conjunction mechanism.

(114) Too level: What did he do and why did he do it?

(115) General: What did Bob hit and kick?
Express weight in pounds and height in feet.

(116) Context determined secial cases Items 1 23 and 4.

Results in 71 72 73.

4. Experimental Results

EOSP has been tested on the MALHOTRA Corpus [22] (appendix I) and the LADDER-TODS Collection [15]

(appendix II). Three statistics were kept: sentence length, number of parses and cpu time.

Theoretically, the time should be cubic (or better) with sentence-length and the number of parses

should be Catalan (or better) with sentence-length. Unfortunately, it is somewhat difficult to test these

predictions directly on the two Corpuses because there are too many interacting constructions such

as wh-movement, prepositional phrases and conjunction which combine in complicated ways that

make it very difficult to predict exactly how the three variables will be related. We have attempted to

isolate these various factors by constructing sequences of synthetic sentences such as (117) and

(118) which exercise a particular construction, and in this way we were able to compare various

constructions with each other and with the two corpuses. These two synthetic series are particularly

interesting because they completely bracket all of the sentences in the MALHOTRA Corpus. The

possessive noun phrases are faster per word than any sentence in the MALHOTRA Corpus, and the

gerunds are slower. See the plot below showing the synthetic points completely enveloping the

MALHOTRA Corpus. It was expected that possessive noun phrases would be fast because they are

LF?(o), but the gerund result was somewhat surprising; we had expected conjunction or propositional

-fr*

Experimental Results -47- Section 4

phrases to be the worst case. We will return to these examples shortly.

(117) It was margin's margin, best case

It was margin's margin's margin.

It was margin's margin's margin's margin.

(118) What was involving? worst case

What was involving involving?27

What was involving involving involving?

These synthetic sentences have led to some other very interesting observations. The number of

parses forms a mathematical series which we have been able to solve in certain cases, so that it is

possible to predict the exact number of parses for arbitrarily long sentences. Even though we have a

theoretical account for this series, it is quite remarkable that, even in practice, it describes the number

of parses exactly, despite all of the tuning that goes into a large engineering project of this sort. The

Catalan series is one such example; we have also constructed synthetic sequences which generate

products of two Catalan numbers and the Fibonacci [20] numbers. These will be presented in turn.

One migrt wonder why we should look for these series. They indicate a fundamental computational

process which describes the search space at a very abstract level. For example, the Catalan series

suggests that all possible parses are grammatical and hence the parser is not excluding much of

anything; the parser is enumerating all n3 points in <i,j,k>-space, and in this way, it is following a

grammar very similar to 'Grammar AA'. This claim can be made without looking inside the parser to

see if it is top-down, bottom-up, left-to-right, or whatever. Similarly, the product of two Catalans

suggest two independent subgrammars each of which behave like 'Grammar AA'. The Fibonacci

series suggests yet another class of abstract computations with certain other well-known

characterizations.

- 'Nevertheless, many of these series grow extremely quickly; it may be impossible to enumerate these

numbers beyond the first few values. And hence, it can be argued that it isn't worthwhile to make

distinctions between them; some of them are prohibitive and some of them are worse than prohibitive.

. From an engineering point of view, it doesn't make sense to distinguish between the Fibonacci series

and the Catalan series for large numbers; in either case, it will be impossible even to print all the parse

27 EQSP hs an ing ing filter which blocks many of possibilities, but it does not block the gerund and adjunct interpretations.
hI haps the sig ing filter should he more general

V'

:4

Inn

t~l a)
C:C
> Q)

- +j)
0 r-

co)

aWI o

4%

4x.

4C

4 44
4 4 4

4A4

>~41 <443

00 4-M4 01-W4< 4

sas.ed j Aaqnu 1 60

Experimental Results - 50 - Section 4

trees, and harder still to perform semantic interpretation. Therefore, the argument goes, it must be

necessary to introduce some techniques for shrinking the search space such as canonicalization,

semantic constraints, determinism, etc. Although we are extremely sympathetic with some or all of

these techniques, we believe that it is worthwhile to establish what will happen without them. With

this baseline, it becomes much easier to evaluate a particular technique. Presumably the more useful

ones will drastically reduce the number of parses from the baseline, and less useful ones will have

little effect.

Finally, it is worthwhile to look at these series carefully because some of them are tractable over

practical ranges and some of them are not. For example, the Fibonacci series remains tractable over

a much larger range than the Catalan does, and hence if we can show that most of the practical

examples lie within the tractable range for a Fibonacci process, but not for a Catalan process, then it

would be a real accomplishment to reduce the search space from the Catalan numbers to the

Fibonacci, as we have done for conjunction.

4.1 A Comparison of the LADDER and MALHOTRA Corpuses

It appears that the LADDER-TODS Collection is considerably easier on the whole; the sentences are

shorter, they have fewer parses, and they take less time. Furthermore, the LADDER-TODS Collection is

more compact; the standard deviations are smaller for each of the three statistics: sentence length,

number of parses, and cpu time in seconds. The histograms are given in figure 3 and a table is given

below showing the means, standard deviations, minimums, medians, and maximums. The histograms

of number of parses and cpu time are plotted on a log scale in order to bring in a few points with very

large values. The data have been normalized to account for the different sizes of the corpuses. Each

point on the MALHOTRA plots corresponds to five sentences, and each point on the LADDER-TODS plots

corresponds to a single sentence.28 The higher number in the table below represents the MALHOTRA

Corpus and the lower number represents the LADDER-TODS Collection. It is particularly interesting that
the medians for number of parses and time are much smaller than the means; this suggests that most

of the data are well behaved and just a few extreme points are causing most of the trouble.

28 Round off errors weie taken to the next higher integer. That is, the last point on the MALHOTRA plots corresponds to

between I and 5 sentences

-iz ma~~ a ~"-

A Comparison of the LADDER and MALHOTRA Corpuses -51 - Section 4.1

Fig. 3. Histograms of MAIHOTRA and LADDER Corpuses

MALHOTRA LADDER-TODS Sentence Length
40.0

30.5

2.0

3.0.

1.5

..........

2.0

MALHOTRA LADDER-TODS Log Nme of Prsie

2.0

2.5

..
I.

.0........I......

A Comparison ot the LADDER and MALHOTRA Corpuses -52- Section 4.1

Mean Standard Deviation Minimum Median Maximum

Sentence Length: 11.2 5.1 2 11 39
9.3 3.0 4 9 18

Number of Parses: 22.5 81A1 0 4 958
3.3 4.5 1 2 30

CPU Time: 1.2 3.1 .0 .6 58.5
.5 .5 .1 .3 4.1

The differences between the two corpuses may be due to the ways in which they were collected.

Ashok Maihotra. gathered his sentences by fooling a number of management experts into believing

that he had solved the natural language problem. They were then asked to try out his new program,

called the Perfect System. In fact, his program was a fake; it actually connected the subject directly to

an experimenter sitting in the next room, and in this way he was able to gather an interesting set of

sentences which may be fairly representative of a typical query in the management domain. This

approach works very well with computer naive domain experts:

"In fact, surprising as it may seem, few subjects realized that the experimenter was

creating the responses until they were told so after the experiment. Until this secret was
revealed, many subjects were extremely impressed by the range of capabilities displayed

by the system. Thus, the Perfect System could be said to be a success as the subjects

behaved as if it were an ideal English language question-answer system." [22: pp. 57]

On the other hand, the LADDER subjects had a more realistic expectation of the machine's capabilities,

and consequently, they may have adjusted their responses appropriately. The LADDER Group has

noted that their sentences seemed somewhat biased, though they offer another possible account:

"Fortunately, our users have been very helpful by tending to avoid the use of the long and
complex constructions that are most likely to lead to ambiguities. Perhaps this is because

the teletype medium inclines users to prefer short, simple constructions." [15: pp. 133]

Both LADDER and EOSP perform very well on the LADDER-TODS Collection. It is difficult to compare EOSP

with LADDER without more data. The EQsP results are given in Appendix 11.

Synthetic Sentences -53- Section 4.2

4.2 Synthetic Sentences

As mentioned above, it is very difficult to compare parsers with these corpuses because there are too

many different factors averaged together. We have explored a new technique for isolating particular

factors. In this way, we were able to make some concrete predictions. First we will discuss the

number of parses and then cpu time.

4.2.1 Catalan Numbers

As we have mentioned before, the number of parses is perfectly described by the Catalan Numbers

for the following series of sentences:

1 It was the number of products?
2 It was the number of products of products?
5 It was the number of products of products of products?
14 It was the number of products of products of products of products?
42 It was the number of products of products of products of products of products?
132 It was the number of products of products of products of products of products

of products?
429 It was the number of products of products of products of products of products

of products of products?
1430 It was the number of products of products of products of products of products

of products of products of products?

We have also determined that the number of parses is exactly the product of two Catalans for

structures like (1119) and (120). This is to be expected because the two ambiguities are completely

independent. Structure (120) is a very good example illustrating that gap finding is not the only

problem for wh-movement; there is only one possible gap (in subject position), but there are the

Catalan number of possible fillers.

(1 19) The number of products of products ... of products was the number of products of
products ... of products.

(120) What number of products of products ... of products was the number of products of
products ... of products?

This result seems to be very stable; it works for many prepositions and content words. (One might

have suspected some variation due to lexical ambiguity.)

Catalan Numbers -54- Section 4.2.1

4.2.2 Fibonacci Numbers

The number of parses is exactly predicted by the Fibonacci numbers for the following series:

3 It was actual products and actual products and actual products.

5 It was actual products and actual products and actual products and actual

products.

8 It was actual products and actual products and actual products and actual
products and actual products.

13 It was actual products and actual products and actual products and actual

products and actual products and actual products.

21 It was actual products and actual products and actual products and actual

products and actual products and actual products and actual products.

34 It was actual products and actual products and actual products and actual

products and actual products and actual products and actual products and

actual products.

55 It was actual products and actual products and actual products and actual

products and actual products and actual products and actual products and
actual products and actual products.

89 It was actual products and actual products and actual products and actual
products and actual products and actual products and actual products and

actual products and actual products and actual products.

The next sentence in the series requires too much memory, though by Engineer's Induction, the next

sentence ought to generate 55 + 89 parses. In this case, lexical ambiguity has been carefully

controlled; the word products must be a noun and not an adjective or a verb which have different

morphology (ie. producing and produce). We find a very different series if we replace the word

products with the word costs, which can be construed as a verb as in: That costs too much. In this

case, the series is: 3, 7, 15, 30, 58, 109, ... Unfortunately, we have not solved this series yet. Also, it

should be noted that the word actual is playing a crucial role; without it, EQSP will find exactly one

parse no matter how many conjuncts there are.

Where does the Fibonacci series come from? Previously, we noted that conjunction ought to grow

with the Catalan numbers. However, there is a performance constraint in EQSP that blocks arbitrary

nesting such as:

(121) # ... [actual [products and actual [products and [actual products]j

C

-V-0-- . .

Fibonacci Numbers -55. Section 4.2.2

The maximum depth in conjunction is set to 2, as noted near the end of the conjunction section. That

is, the nth conjunct can conjoin at its current level or it can conjoin one level higher. The

Prepositional phrases differ in that attachment is possible at any depth, not just 0 or 1, and hence they

generate the Catalan number of parses. With this restriction on conjunction, there are the Fibonacci

number of parses, because the number of ways to conjoin n conjuncts is the sum of the number of

ways to conjoin the conjuncts at the current level plus the number of way to conjoin those at the

embedded level. How many conjuncts can be at each level? There are at most n - 1 at the current

level and at most n - 2 at the level before that. Therefore, the number of parses of n conjuncts is the

sum of the number of parses of n - 1 and the number of n - 2 which is the Fibonacci series. In the

lexically unambiguous case, the initial case (n < 2) is 1 and hence we get the familiar numbers. Notice

that this analysis fails with lexical ambiguity for two reasons. First the initial cases have several parses

and secondly, the inductive cases can combine in more ways than just the sum of the two parts

because these ambiguities trigger deletion possibilities and multiple grammar rules, etc.

4.2.3 Worst Case for Number of Parses

As we have mentioned before, the worst case that we have found is (122), which generate more

parses per word than any sentence in either corpus as illustrated in the plot above. It can be argued

that many of the parses are ungrammatical because the ing-ing filter should be stronger than the one

in EOSP. However, we have noticed that (123) are almost as bad, and there is no infinitive-infinitive

filter in English (though there is one in Italian). EOSP'S ing-ing filter excludes ing participles as verbal

complements to an ing participle phrase, though it allows them as gerunds and adjuncts. The gerund

and adjunct possibilities alone would make these sentences worse than the prepositional phrases

sentences because there would be the combination of two Catalan series, not just one. However,

there are some more ambiguities. First, the wh-movement can go almost anywhere and secondly, the

auxiliary was can invert around any string of involvings. Finally, involving also has an adjectival part

of speech, so there are quite a number of other parses where a few of the involvings are taken as

prenominal adjectives modifying a gerund.

(122) What was involving involving involving involving ...

(123) What was to total to total to total to total ...

It is a very interesting fact that there will be many fewer parses if we insert a closed class word such as

of, with or even and after the first few involvings because it restricts wh-movement, inversion, and

lexical ambiguity.

1'. - * '" .. r-, r -- I -, ' " , " F , -, " . - -= " ' ' -' -

Analysis of CPU Time .56- Section 4.3

4.3 Analysis of CPU Time

As we have noted, in chart parsing, grammars fall into one of three classes: time n, time n2 and time

n3 . We have found the same three classes, though the times appear to be slowed down by a factor of

n, due to the representation of the chart which is optimized for average case, not worst case. Recall

how we organized the chart. For each state, there is a list of records containing i and j and other

useful information such as features, wh-sent, conjunction, and so on. These lists are sorted on j and

then on i to improve average time performance. It is also assumed that these lists don't tend to be

very long because sentences tend to vary constructions, so that it is unlikely that the same state will

be used very often in the same sentence. However, this assumption is incorrect in these synthetic

sentences where we have intentionally used the same state again and again. In these cases, it can

take n2 time to search down the list of records attached to that state in order to compute chart(s,?i,j),

whereas a matrix representation could find the answer in n time by enumerating each i and checking

that square in the matrix. Hence, this algorithm has a worst case behavior of time n beyond that of

Earley's algorithm. However it is much better than Earley's algorithm when the lists are short because

it can compute chart(s,?i,j) in constant time, whereas a matrix representation would require linear

time. The fact that our representation is more efficient when constructions are varied is compatible

with the intuition that sentences are easier for people to understand under the same conditions. It is

certainly true that these synthetic sentences are extremely unnatural; it is hard to imagine a context

where one would utter such a sentence even with more meaningful content words.

However, it is somewhat difficult to verify time bounds directly by running the parser and measuring

time versus length because several factors interfere with the time measure such as paging and

garbage collection. Although we have attempted to factor these out, it is extremely difficult to remove

all of them. Hence we have taken an alternative approach of inserting a counter into the inner-most

loop that searches down the list of records, and in this way we have computed the exact number of

records that are examined. It appears that the parser spends almost all of its time searching down

records and hence this statistic, henceforth called the record count, is a good idealization of cpu

time. In fact it is almost linear with time, though it is impossible to find an exact mathematical relation

because the cpu time measure is somewhat noisy for reasons mentioned above and for a few other

small factors such as a linear overhead for reading the input words and looking them up in the

lexicon. Henceforth we will use record count instead of time because it is easier to work with. One

record count corresponds to a time unit on the order of a millisecond, though it can vary by an order

fs " " I, .. ' ': • " -- '-

Analysis ot CPU Time .57- Section 4.3

of magnitude as we will see.29 Record count is a fairly good replacement for cpu time for most of the

synthetic sentences, though it is better for simpler sentences like possessive noun phrases (124) and

worse for more complex conjunction (127) where relatively more time is spent in heuristic sections of

the parser which are not measured by the record counter. We have plotted the record count against

time for four sets of synthetic sentences, progressing from simpler constructions to more complex.

The slopes are: 1.6, 5.4, .7 and 21.4 milliseconds per record traversed. The important point is that the

lines are almost linear and that the slopes are on the order of a millisecond; we have no explanation

for the variability in slopes or the non-linear residues.3 °

(124) It was margin's margin's ... margin's margin.

(125) He believes he believes he believes ... he believes it.

(126) It was products with products with products ... with products.

(127) It was costs and costs and costs and costs ... and costs.

Record count turned out to be a very useful abstraction because, with the aid of MACSYMA [241, we

were able to find an exact mathematical relation for record count in terms of sentence length. By

substituting time for record count, we have an approximate relation for cpu time in terms of sentence

length. We then performed regression analysis to find the constants in the relations. The fits were

extremely encouraging (R-square = .9999). These results suggest that (128) is 0(n2), (129) is 0(n3)

and (130) is 0(n4). (The function odd distinguishes the odd and even length sentences; it returns 1 if

sentence length is odd and, 0 otherwise. This term is usually important for sentences with inversion;

we have no explanation for it in this case.)

Sentenc Record Count ag function of Sentence Length

(128) It was margin's margin's margin's ... i n2

(129) He believes he believeshe believes ... n3- 1 n
2 + n - 1

(130)ltwas products with products with ... _n L n + n 2 Ln + + !odd(n)
96 - 16 n 24n 16 32 2

These three cases are very similar to the three classes of grammars for Earley's Algorithm, except that

ours are slower (in the worst case) by a factor of n. For example, (130) is similar to 'Grammar AA' in

29 Also, much of this time (perhaps a half millisecond) can be attributed to the computation involved in incrementing the
record counter itself because of a technical error in the implementation of the counter. A millisecond is approximately 500
machine instructions on our KA PDP- 10.
30 These lines were filled with r squares of 9960, .9994. 9995. and 9533, respectively We have much less confidence that
the last line is linear becauio a plot of the iesidues shows a strong parasitic effect ihis couild be explained by showing that
the conjunction mecharniin is taking a considerable amount of time which seems to be the case. though we have not uoxrplored
ft If ; I iypnlhieis, adequately,

t -I '("'" "" , .. !

"cost"
sentences

U

margins" sen nces

"with" se nces

W1In *0 AXaxA 1000 Ymin *0 Ymiax *10

record count

Analysis of CPU Time -59. Section 4.3

that it is every way ambiguous. This is known to require n3 time on Earley's Algorithm, and because

our algorithm is slower by a factor of n, it requires time n4 on EQSP. The table below compares the

three synthetic cases above with grammars that behave similarly on Earley's Algorithm (with no

lookahead).

Grammar Synthetic Sentences Time a Erley Algorithm

A-- AaI a It was the margin's margin's ... n

A -- aA I a He believes he believes ... n
A - AA I a It was products with products with ... n3

The analogy for the first and third case should be fairly clear. The first case is a left-branching

structure where the usefulness condition (Earley's Predict) works very well and hence the chart has

only O(n) entries, as opposed to the normal O(n 2). This also brings the time bounds down to time n

for Earley, though we need time n2 because all n records happen to be associated with the same state

in the grammar and hence we have to look down all of them in order to find chart(s,O,j). Similar

comments hold for the third case, which is the worst case for both algorithms, though the constants

are significantly worst in the involving sentences mentioned above where there is more lexical

ambiguity.31 These constructions are every way ambiguous and hence Earley's Algorithm will have to

enumerate every point in <i,j,k>-space. EQSP has the same problem with these constructions, not

surprisingly, though it has the additional problem that all the records happen to be attached to the

same state so it requires another factor of n.

The believe sentences are somewhat more interesting because they illustrate a case where

lookahead would be very helpful. With lookahead there are only n entries in the chart, but without

lookahead there are n2 entries because the parser can't know which rule to expand, unless it can

lookahead to see if there is another input afterwards.32 If there is another input token, then it should

expand the recursive rule (A - aA), and otherwise, it should expand the terminal rule (A -- a). In this

case the parser knows exactly what to do at each point, and hence there will be only n records in the

chart. But if the parser didn't look ahead, it would have to expand both rules, and consequently there

will be n2 records in the chart. As we mentioned in section 2, the lookahead condition has the same

effect on right branching grammars that usefulness has on left branching grammars; that is, it

reduces space bounds from n2 to n by making the parser behave deterministically. This also

- improves the time bounds by a factor of n.

31 The actual relation for the involving sentences is: n4 - 3 n3 + -2 16 - +5
3 2 6

32 In othet words. 'Grammar aA is not LRF(). bnt it is LR(k). Theefore, it will behave deterministic if the parser looks ahead,
but other wise, it will not.

.

Analysis of CPU Time 060- Section 4.3

In summary, we have shown that cpu time grows with n , n , and n' depending on the grammar in

much the same way that Earley's Algorithm depends on the grammar. We have also shown that the

number of parses can grow as fast as the Catalan numbers. Finally, we have found a best case and a

worst case which bracket the two corpuses in both cpu time and number of parses. This provides an

attractive empirical verification of the theoretic predictions (of time and space bounds) discussed in

the first two sections. In addition, we have found these synthetic sentences to be a very effective tool

in analyzing the parser's performance.

5. Conclusion

Perhaps the conclusion is a good place to summarize some of the strengths, limitations, and

uncertainties we believe would be encountered in proceeding to further develop the EQsp parser. As

strengths we can cite the parse time and the coverage.

It is now clear that if a parser is written in compiled rather than interpreted form it will be fast enough

for many practical purposes on the bulk of sentences it receives. This has already been shown for

parsers which find only one parse or have a limited grammar [4]. We have shown that it also holds for

a parser which finds all parses in one of the more complete grammars extant. We have, in fact, shown

that this is true if only syntactic constraints are used. Some people state that parse time is no longer

critical, but for reading large volumes of text (eg. proof reading), it is still an issue.

With regard to coverage, careful study of the well known English grammar books, linguists' examples,

and corpuses of actual input has led us to the informal conclusion that our current EQSP System

covers a major portion of the syntactic constructions one would want in a parser. Discounting the

- lexicon, the EOSP system occupies about 87 pages Of LISP code and took about 10 man months to

program. The transition network defining the grammar has about 131 nodes. This is a small program

in comparison with other systems which have been built in Lisp. There seems to be no question that

we can extend the syntax as far as necessary without running into the so called complexity barrier,

where the program becomes so complex that it cannot be kept coherent using current programming

tools.

There are, of course, some potential problems with EOSP which further work may or may not resolve.

- For one, all our constraints are hard and fast rules; they are either met or they are not. This means

that there are four sentences in the MALI-OTRA corpus which we currently reject as syntactically

unacceptable.

Conclusion -61- Section 5

(131) *What would have 1972 prices have been?

(132) Produc 4 and 5 show greatest variance, why.)

(133) Give me two tablea, the contribution margin in each plant for the years 1972 and 1973.
(134) Which years do you have cost.* figures for?)

In each of these the offending element is underlined. The first of these exhibits a serious confusion of

two constructions. The remaining three involve problems of agreement. In the second, a singular

noun is in apposition with two product names. In the third, a plural noun tables is in apposition with a

singular noun margin. The construction involving margin is, however, semantically plural because

two years are given. In the fourth a plural noun has been used as a modifier of a head noun. This is a

very rare construction. It occurs with pluralia tantum, eg. scissors blades, but not often with other

nouns. We were willing to make sales a pluralia tantumn to handle sales figures because one could

possibly say, sales is the most important thing. But to make costs a pluralia tantumn seems wrong.

The fact is that plural modifiers are syntactically acceptable, although rare. As we further extend the

grammar to rare constructions, more situations of this type will undoubtably arise.

We could accept these sentences by loosening our constraints, but then many extraneous parses of

other sentences would be found. Our plan is to build a second diagnostic pass which operates when

no acceptable parses were found on the first pass. The first pass will rule out rare constructions

which produce many false parses. It will also rule out grammatical errors. This two pass plan will only

work if, when the intended parse is so ruled out, no other acceptable parse remains. This is true for

the sentences we have tried but we don't know if it will be true in almost all cases. Perhaps when

such a situation arises people would also be fooled. However, as we stated above, they have better

semantics and pragmatics than we can mount in the short run.

Another problem we face is to reduce the parse time of long sentences full of explosive constructions.

Surely, applying all semantics and pragmatics as we go would greatly help, if not solve, this problem.

However, our guess is that this will extend the parsing time for the typical sentence, where cheap

syntactic constraints alone eliminate almost all parses and thus give semantics and pragmatics an

easier job. One solution to this would be to use different strategies depending on the length of the

sentence, but this would require us to have the sentence in hand before we begin parsing. We would

prefer to parse the sentence as it is being typed, in an on-line fashion, rather than waiting for the

entire sentence to be input and only then decide what to do with it.

Our current thinking is to do part of the semantics as the sentence is parsed and the rest on a second

pass. We feel that the semantics and pragmatics of noun phrases up to the head nouni will be critical,

Conclusion .62- Section 5

but this is just a guess. We will also apply predicability constraints in filling slots of a subordinate

clause. Determining the correct use of PP'S would be very helpful in reducing the number of parses,

but we feel it may be too expensive for the first pass.

Yet another uncertainty arises when we have to apply semantics to a sentence which has a large

number of syntactic parses. Using a chart naturally leads to combining all parses into one structure.

Thus instead of having the two separate parses (135) we have the combined structure (136).

(135) This is [NP [A flying] IN planes]]

This is [NP [VP IV flying] [NP planes]]]

(136) This is (OR 'NP [A flying] IN planes]]

[NP [vP [v flying] [NP planes]]])

We hope that the semantics module can cut off whole branches of combined structure, thus

eliminating more than one parse at a time. This has been true for the limited semantics module now

implemented. However this operates more at the level of LADDER-TODS rather than MALHOTRA. Going

from one to the other greatly increased the demands in syntax and this might happen in semantics.

We found it very complex to try to maintain a factored structure combining alternative semantic

interpretations. This can perhaps be done, but for the moment we have opted to construct separate

semantic interpretations. If there are a great many of these we are again faced with a blow up of

required resources.

So far, we are pleased with the EQSP parser. The results in the appendices are very encouraging.

Time will tell how well the above problems can be solved. If they can, we will have a very useful

parser.

6. Acknowledgments

We would like to thank Glenn Burke and Peter Szolovits for their discussion, comments, and

programming assistance both on this parser and its predecessors. Peter Szolovits also helped us

proof read this final draft which was completed after the death of the first author.

4"A

-63-

References

References

1. Aho, Alfred V. & UlIman, Jeffrey D., The Theory of Parsing, Translation, and

Compiling, Prentice-Hall, Inc., 1972.

2. Bar-Hillel, Y., Gaifman, C., and Shamir, E., On Categorial and Phrase Structure

Grammars, The Bulletin of the Research Council of Israel, 9F,1-16.

3. Bresnan, J., The Passive in Lexical Theory, Occasional Paper #7, Center for

Cognitive Science, 1980 and also to appear in Bresnan (ed), MIT Press, 1981.

4. Burton, R., Semantic Grammar: An Engineering Technique for Constructing
Natural Language Understanding Systems, BBN Report No. 3453,1976.

5. Chomsky, N., On Binding, Linguistic Inquiry, 1980.

6. Church, K., On Memory Limitations in Natural Language Processing,

MIT/LCS/TR-245, 1980.

7. Dostert, B., and Thompson, F., How Features Resolve Syntactic Ambiguity, in

Proceedings of the Symposium on Information Storage and Retreival, Minker, J.

and Rosenfeld, S. (ed), 1971.

8. Earley, Jay, An Efficient Context-Free Parsing Algorithm, Unpublished Ph.D Thesis,

CMU, 1968.

9. Earley, J., An Efficient Context-Free Parsing Algorithm, Communications of the

ACM, Volume 13, Number 2, February, 1970.

10. Ford, M., Bresnan, J., and Kaplan, R., A Competence-Based Theory of Syntactic

Closure, paper presented at the Sloan Workshop on Parsing Long Distance

Dependencies at University of Massachusetts at Amherst, 1981 and also to

appear in Bresnan (ed), MIT Press, 1981.

11. Gazdar, G., Unbounded Dependencies and Coordinate Structure, to appear in LI,
12.2,1981.

12. Gazdar, G. Phrase Structure Grammar, to appear in P. Jacobson & G. Pullum

(eds.) The Nature of Syntactic Representation.

13. Graham, S., Harrison, M. and Ruzzo, W., An Improved Context-Free Recognizer,

ACM Transactions on Programming Languages and Systems, pp. 415-462, Vol 2,

No. 3, July 1980.

14. Harris, L., Experience with ROBOT in 12 Commercial Natural Language Data

Base Ouery Applications, pp. 365, IJCAI-79.

-64-
References

15. Hendrix, G., Sacerdoti, E., Sagalowicz, D., and Slocum, J., Developing a Natural
Language Interface to Complex Data, ACM Transactions on Database Systems,
Vol. 3, No. 2, June 1978, pp. 105-147.

16. Joos, M., The English Verb: Form & Meanings, The University of Wisconsin Press,
Madison, Milwaukee, and London, 1968.

17. Kaplan, R., Augmented Transition Networks as Psychological Models of Sentence
Comprehension, Artificial Intelligence, 3, 77-100,1972.

18. Kaplan, R., A General Syntactic Processor in Natural Language Processing,
Rustin R. (ed.), Algorithmics Press, 1973.

19. Kaplan, R., and Bresnan, J.,' Lexical-Functional Grammar: A Formal System for
Grammatical Representation, Occasional Paper, Center for Cognitive Science,
1980 and also to appear in Bresnan (ed), MIT Press, 1981.

20. Knuth, D., Fundamental Algorithms, Vol 1 in The Art of Computer Programming,
Addison Wesley, 1975.

21. Kuno, Susumu, and Oettinger, A. G., Multiple Path Syntactic Analyzer, in
Information Processing, North-Holland Publishing Co., Amsterdam, 1963.

22. Malhotra, A., Design Criteria for a Knowledge-Based English Language System
for Management: An Experimental Analysis, MIT/LCS/TR- 146,1975.

23. Marcus, M., A Theory of Syntactic Recognition for Natural Language, MIT Press,
1980.

24. Mathlab Group, Macsyma Reference Manual, Laboratory for Computer Science,
MIT, 1977.

25. Milne, R., A Framework for Deterministic Parsing Using Syntax and Semantics,
DAI Working Paper 64, Department of Artificial Intelligence, University of
Edinburgh, 1980.

26. Pratt, V. R., A Linguistics Oriented Programming Language IJCAI-3, 1973.

27. Pratt, V., Lingol - A Progress Report, IJCAI-4, 1975.

28. Ruzzo, Walter L., General Context-Free Language Recognition, unpublished PhD

Thesis, University of California, Berkeley, 1978.

29. Sheil, B., Observations on Context-Free Parsing, Statistical Methods in
Linguistics, 71-109, 1976.

-65-

References

30. Shipman, D. and Marcus, M., Towards Minimal Data Structures for Deterministic
Parsing, IJCAI79, 1979.

31. Steele, G., The Definition and Implementation of a Computer Programming
Language Based on Constraints, MIT, AI-TR-595, 1980.

32. Valient, L., General context free recognition in Less Than Cubic Time, J.
Computer and System Sciences 10, pp. 308-315, 1975.

33. Woods, W., Transition Network Grammars for Natural Language Analysis,

Communications of the ACM, Volume 13, Number 10, October, 1970.

.

4-

IIV

-66-

Results with the MALHOTRA Corpus Appendix I

Appendix I - Results with the MALHOTRA Corpus

The first number is the number of parses and the second is cpu time in seconds on the MiT-ML

Machine, which is roughly a half MIPS; (million instructions per second) KA PDP-10 machine. The symbol

""is used when EQSP was unable to produce results in a reasonable amount of time and space.

12 3.4 What was the percentage of overhead costs to total sales for the last five years?
2 1.2 What were the profit margins for each product for the last five years?
14 0.9 What are the overall profits on operations for the past 5 years?
2 0.7 What were the gross sales figures for the past five years?
152 2.4 What are profit margins as a percentage of sales for each manufacturing installation?
5 0.7 What is the profit contribution of each manufacturing installation?
1 0.0 OK.
6 0.9 What data do you have on operations as a percentage of gross sales?
3 0.1 Yes and for each plant.
1 0.0 Can you calculate percentages?
14 0.6 What are the production costs as a percentage of sales?
7 0.5 What are the deviations of production cost from actual?
1 0.1 Cancel this question.
16 1.7 What is the ratio of actual cost to budgeted cost for each product?
10 1.5 What is the percentage change in sales for each product for the past year?
7 0.4 What are variable costs for manufacturing operations?
16 0.5 Have transportation costs increased during the past years?
7 0.6 What are the ratios of production costs to sales?
6 1.0 What has the average selling price for each product been for the past two years?
12 1.4 What quantities were produced for each product for the past two years?
8 0.8 Please display overhead costs for all plants for 1972 and 1973.
7 0.6 What was budgeted overhead for all plants for 1912?
1 0.2 What were sales and profits for 1973?
1 0.1 Do you have variable budgets?
3 0.2 Do overhead costs vary with volume?
12 0.6 1 believe your overhead variance accounts for your lower than expected profits.
4 0.2 1IsupposelIshould.
2 0,9 What were contribution margins by product for 1972 and 1973?
2 0.2 How are contribution margins calculated?
3 0.7 What is the difference between list price and average selling price?
1 0.0 For 1972?
3 1.6 What is the difference between plant and plant 3Sand plant 2 and plant 4?
7 0.4 What are the components of overheads for the plants?
9 0.5 Is transportation cost part of operating expenses?
1 0.2 Where does transportation cost get included?
5 0.4 Give me the constituents of overheads for each plant?
2 0.2 1 would lik~e to end the interview.
5 1.2 List sales for product 1 through product 5 for the last two years?
85 2.0 List prices of single unit prices for both 72 and 73.
22 1.8 What was cost of producing each product for both 1972 and 1973?9
2 0.3 Production cost first for one unit.
48 0.9 Did one plant assume more production of batteries from the other plants in 1973?.
1 00 In 1972?)
28 1 9 What was the rate of increase of shipping cost between 1972 and 1973?
6 0.6 Are shipping costs reflected in production costs?
2 0.3 Do you have any information on customer satisfaction?
3 20 What is the percentage of repeat customers in 1973 and 1972 and in 1971 and 1972?.
1 0.3 What was the unit price in 1973?
63 24 What's rate of unit cost for each year and the ratio of this production increase to product price?
62 2.0 What is the percent of increase of each product for each year studied?

-2 0.7 What was percent decrease in sales for last 5 years?
L1 0 1 Cancel this question.

5 08 What was % of profit for each of last 5 years?
2 0 2 Increase over last year.
1 04 What were overhead costs for last 5 years?
5 1 3 What is list price vs selling price for last 2 years?
1 0 5 What's difference between list price anid average quotation price?
0 06 Product 4 arnd 5 show gieatesf difference between list and quotation prices, why?
9 0 7 Do yen haive fist of changes in sales force for each branch?

V-1 0.0 It should be included.

-67-
Results with the MALHO TRA Corpus Appendix I

10 0.3 Give me a breakdown of items in your overhead.
3 0.2 Include each of these by plants.
2 0.3 Compare overhead casts f or last 5 years?
9 0.7 Do you have further breakdowns of overhead attributable to each product within plants?
40 8.3 What % of each product is sold from each plant for each of the last 5 years?
7 1.6 What is total volume for each plant (sates) for each of the 5 years?
66 5.2 Compare plant overhead costs with total overhead costs for last 2 years, 1973 and 1972.
28 1,2 List increases in overhead for each plant for last five years?
5 0.4 Compare overhead costs for plants for last five years.
8 1.0 What are salary increases for each plant for last two years?
9 0.8 List increase in interest costs for last two years.
I1 0.9 List inventory of product at end of 1971 and 1972.
3 0.4 List all data it ems you know about.
1 0.2 How many plants are there?
9 0.5 For 1973 list the sales of products by plant one, broken down by product.
5 1.4 For 1973 and for products 1 through 5 list prices and percentage profit margin.
8 1.5 For 1973 and plant 1 list direct manufacturing expenses by product and also total overhead.
5 0.3 Are the prices the same from plant to plant?7
30 1.6 By plant, list overhead figures for 1972 and 1973.
'16 1.5 For each plant, list the ratio of overhead to sates in 1972 and 1973.
- - In the future, please express numbers of over 100000 in terms of units of millions, and numbers over 100 but less

than 100000 in units of thousands.
12 1.4 List production costs by plant for 1972 and 1973.
4 0.9 For each product. list the profit percentage for 1972 and 1973?
93 3.5 For each product list the ratio of total sales to total cost in 1972 and in 1973.
4 0.5 What is the definition at the profit for a product?
1 0.3 Were the prices the same in 1972 and 1973?
3 1.1 Why did you give me prices of $ 17, 18, 19.25. 20.25, and 18.0 earlier?
2 0.2 Do you have information about transportation cost?
2 0.9 What was transportation cost by plant for the last two years?
11 0.4 Is transportation cast included in overheads?
10 0.6 What are the components of the various costs you know about?
692 5.7 For each plant give the ratio of 1973 to 1972 figures for each type of production cost and overhead cost.
5 1.2 Why was there such a great increase in operating cost in plant 0?
40 2.3 Print every piece of information you have concerning plant 0 in 1972 and 1973.
2 1.2 Disregarding plant 0 totally, what is the difference in total profit between 1972 and 1973?9
1 0.3 What is the difference in profit percentage?
3 1.1 What was the percentage increase in overhead casts between 1972 and 1973?.
2 0.7 What was the percentage increase in the average price per product?
2 0 6 What was the average increase in the cost per product?
2 0.2 How did the product mix change?
2 1.0 What were the gross margin on each product in 1972 and 1973?
10 1.4 What is profit as a percent of sales in 1972 and 1973?
43 1.4 Are transportation costs included in overhead or cost of goods sold?
7 2.3 What components of the overhead costs go up more than 2% ?
10 1.8 What was overhead cost as a percent of sales in 1972 and 1973?
1 0.3 Wh,-' was the increase in interest cost due to?
17 2.8 Whai would have 1973 profits have been compared to 1972 if the product mix had not changed in those two years?

*6 1.0 How much did amount borrowed go up between 1972 and 1973 and how much did the average interest rate go up?
66 3 5 What percent of overhead cost is interest cost and what percentage is operating costs?
15 0.8 How much did operating costs go up between 1972 and 1973?
16 2.9 What were the five largest dollar increases in operating costs between 1972 and 1973?
14 1 3 How much was the dollar increase in operating costs and interest costs?
2 0.2 1 know what the problem is.
2 0.6 What is the total sales for the past three years?
1 0 5 What was the net profit in 72 and 73?
2 1.2 What was the total cost of raw material in 71, 72, 73?
8 1,0 What was the dividend paid in 1971, 1972, 1973?
2 0.5 What it any are outstanding loans, 1971, 1972, 1973?
3 0,5 What was the interest rate, 1971, 1972, 1973?
2 0 1 What are the outstanding shares?
8 0 5 Any equipment purchased for long term depreciation?
3 04 Do you have information abouit what these loans are fori
2 0 3 Do you have labor cost for finished products?
2 09 What was the total labur cost for 1971, 1972, 1973?
4 0.2 Are we lacing inflation?
4 0 4 What are we doing with the $16 million loan?
2 03 OK I think I know what the problem is.
1 0 3 What was toal overhead in 1973?
0 0 3 Which years do you have costs figures for?
2 0 9 What were the over head costs in each of the last five years?
4 09 What were total s;ales in (each of the past five years?*1 03 What was the most profitahle Ilioduct in 1973?
1 0.0 Yes.

-68-

Results with the MALHOTRA Corpus Appendix!1

2 0.6 What were the profit margins an each product in 19729
11 1-7 How much of each product was produced in 1972 and in 1973?
20 1.5 How much did the inventory level of each product change in 1973 from 1972?9
3 0,8 What were the sales for each product in 1972 and in 1973?
2 0.6 What were profits in each of the last five years?
1 0.6 What were total sales in the last 5 years?
1 0.1 Cancel that question.
2 0.4 What were sales of each product in 1971?
7 1.9 What were the percentage increases in sales for each product in 1972 and 1973?
2 0.7 What is the overhead cost for each type of battery?
1 0.1 Overhead for 1972.
5 0.3 Difference in overhead from 1972 to 1973?
3 0.4 List the product mix for 1972 and 1973.
5 0.8 Give me the profit margin on each product for 1972 and 1973.
2 0.8 What is the cost of each product for 1972 and 1973?
3 0.8 What were sales for each product in 1972 and 1973?
4 0.5 Give me the budget for each plant and the overrun if any.
2 0.0 Production costs.
1 0.5 What is the overhead budget for each plant?
4 0.7 What overhead costs were incurred by each plant?
1 0.5 What is the percent overhead overrun at each plant'
33 2 2 Give me sales percent increase at each plant for 1973 over 1972.
1 02 What information do you have on competition?
3 0 3 Do you have any info on production costs?
34 1 4 Table direct cost, overhead cost, and contribution per unit sold for 1973.
1 0.1 Flow doyou define margin?
36 9.3 Table sales in units sold, product mix, direct cost per unit and overhead cost per unit for the last 4 years?
5 2.7 Table unit sales, direct manufacturing cost, margin and product mix for the last 2 years by product.
1 0A1 Do you perform mathematical computations?
101 5.1 Please compute the following: percent change in unit sales, percent change in unit production cost from 1972 to

1973.
1 0.0 By product, please.
10 04 Do you have a forecasting model for demand?
2 0 2 Do you have any model at all?
1 0.2 List the functions you can perform.
19 1 6 Aie there any vai iances between actual prices charged our customers and the guideline prices?
1 03 Please tabie them for product 4 for the five major customers.
10 0.9 List actual sales price and guideline price by product.
654 30 Do you have a model to maximize contribution to the company subject to production and other constraints?
10 09 Why were the quotation prices lower than list prices in 1973?
2 0 3 Have they been this way for the past years too?
1 0.0 No.
2 0.2 Please give me the overhead cost for 1972.
8 0.7 Table profit before tax for 1972 and 1973.
- - Compute profit for 1972 and 1973 according to the following formula: actual unit sales by product times list price

minus production cost for the product summed over all products less overhead cost for the year.
2 0 2 1 think I understand the problem.
1 0.0 Thank you.
1 0.6 What was the contribution margin of product 1 in 1973?
3 1 6 What were the actual and budgeted contribution margins of products 1, 2, 3, 4, 5 in 1973.)
1 09 What wer e the contribution margins for products 1, 2, 3, 4, 5 in 1972?9
5 04 Give the product mix in 1972 and 1973.
63 3 1 Give the artual and budgeted overhead costs in 1973 and the actual overheads in 1972 for each plant.

*7 0.6 Give total contribution figure for 1972 and 1973.
1 0.0 Cancel.
7 06 Give total profit figure in 1973 and 1972.
12 0 7 Give list and actual prices for all products in 1973.
12 04 Give actual prices for all products in 1972.
3 0,3 Do you have a breakdown of overhead costs?
23 1 3 Give the breakdown of actual and budgeted overhead costs for plants 0, 2. 4.
556 58.5 Give actual and budgeted operating costs for all plants, and actual and budgeted management salaries and interest

costs
*.2 0 1 Give the budget profit.

2 0.2 Do you have data on transportation costs?
2 02 Do you have the data hy plant?

It4 04 Give budgeted and actual transportation cost by plant.
2 0 2 Give budgeted and actual sales revenue.
1 0 2 Give budgeted and actual inventory.
2 0 3 Give budgeted and actual se'lling costs.
1 0 2 How tai back does your information go?
5 1 1 What was the % of over head in each of the last five years?
2 02 Perc ent of over hoad to safes
211 1 9 Were there any changej(s ini thp product mix in terms of sates dollars?
2 1.2 What were the profit margins o1 f the live batteries in the last two years?

-69-

Results with the MALHOTRA Corpus Appendix I

14 1.1 What are the handling costs associated with each product and did they change over the last two years?
70 2.5 Handling costs are costs associated with products that are not reflected in direct MFG costs.
5 0.8 What are the actual selling prices of the five batteries?
48 1.6 How much was the additional revenue received from the 20% sales increase and where was it spent?
510 6.2 The intent of my question is to find out if you know if your accounting methods can relate the changes in sales to

changes in your expense structures.
2 0.1 Does this help?
39 1.7 Please give me changes in each type of cost associated with each product.
958 6.5 In as much as allocating costs is a tough job I would like to have the total costs related to each product.
130 54 I mean I would like the cost of each product broken down on a direct and indirect basis.
2 0.8 What was the total production costs in the most recent two years?
1 0.7 Have any plants been supplying batteries to other than normal customers ie outside of their normal sales district?
20 1.2 Please dsplay overhead figures (actual and budget) for all plants for the past four years.
12 1.7 Which plants were over budget on overhead by more than 5% ?
7 1.3 Please display the overhead budget variance in percent and absolute $ for plants 0, 2, and 4.
31 30 Which plants were over budget on fixed costs by more than 5% ?
15 1.2 Display the profitability of each plant divided by plant sales.
14 1.2 Display sales revenues for all plants for the past four years.
3 1.1 Display average company wide profitability for the last four years (%).
1 0.0 Yes.
4 0.9 Why is there such a difference between the company wide average profitability and the profitability of the

independent plants?
4 0.3 I suggest we get rid of plant zerol
18 20 Has product mix changed in any plant whose profitability has fallen off?
165 5 7 Has product mix changed by more than 1% in any plant whose profitability has decreased?
8 0.9 Display the direct cost variance (absolute $ and %) for all plants.
4 0.6 Has there been a decrease in contribution margins for any product?
10 1.2 Display the percentage overhead growth for each plant for the past four years.
20 1.2 Display the overhead divided by sales (%) for each plant.
4 1.1 Why are the OH figures for plants 2 and 4 higher than for 1 and 3?
1 0.3 Has the profitability of any plant decreased?
1 0.2 Which one(s)?
6 0.7 Display the margins for plant 2 for the past 4 years.
322 8.2 Display the difference between list price and actual costs (direct + overhead) divided by list price for plant 2 for the

past four years.
1 0.0 Yes.
5 0.6 Give me the breakdown of overhead expenses for the years 1972 and 1973.
16 1 0 Give me comparative numbers for operating costs for the years 1972 and 1973.
1 04 What was the profit margin for the year 1972?
1 0.0 Yes.
2 06 What was the sales revenue by product for the year 1972.
6 0.8 Give me the same revenue figures for the year 1973.
14 1.2 Give me the actual cost vs budgeted cost for each product for the years 1972 and 1973.
1 0.0 Yes.
25 30 Give me comparative figures for management salary, interest costs, and depreciation for 1972 and 1973.
1 0 5 What were the gross profit figures for the years 1972 and 1973?
5 1 3 What were the comparative figures for sales revenue vs direct costs for the years 1972 and 1973?
1 00 Yes.
76 1 9 Give me a breakdown of direct costs and overheads for each plant in the years 1972 and 1973.
76 1 9 Give me a breakdown of budgeted direct costs and overheads for each plant for the years 1972 and 1973.
2 0 9 Give me plant 0 production cost figure for the years 1972 and 1973.41 23 By what percent did the overhead expenses in 1973 increase over those in 1972.
2 0.9 What were the comparative figures for overhead expenses for the years 1972 and 1973?

5 05 Give me details of how the additional sales revenue in 1973 was spent.
2 0 8 What was the product mix in the sales for the years 1972 and 1973?
1 04 What were the selling prices of each product?
10 1 1 What were average manufacturing costs for each product?
4 13 What weie unit production costs for each product in the previous year?.
8 25 What were the relative percentages sold of each product in 1972 and 1973?
4 1 3 What were average quotatio prices for each product in 1972?
10 1 0 What were budgeted costs for each product in 1972 and 1973?
1 00 Roth.
9 0 5 Do you have budgeted production costs on a per unit basis?
31 39 What quantity of product I was sold by all plants in 1973?
.1 1 0 What were contribution margins for each product in 1972 and 1973?
31 1 9 What are the relative percentages of each product sold by each plant?
9 0 7 What are the relative percentages of sales by each plant?
2 03 Do you have list pirces for each product?
1 02 What were they in 1972 and 1973?
512 5 1 (1ve me a breakdown of difference between list and average quoted price for each product for 1972 and 1973.
1 0 2 How many plants atre thete')

I 1 1I 7 Whic It of the fm plants had Ifi t arg,'-,t vahie for total ,lles in 19739
22 4 5 At plant 2. which pod(i .t u ct c unt,.f fri h h laig ,,l ip,(1icit'alI, of total sales in dollars?
2 05 Does producl 2 also account for the largest percentage at plant 4?

-70-

Results with the MALHOTRA Corpus Appendix 1

4 1.7 What was the total overhead of production for product 2 at plant 2 in 1973?
1 0.4 Substitute "direct manufacturing cost" for "Overhead of pro42uction" in previous input.
382 15.6 What is the number of units of product 2 produced at plant 2 in 1973 times the unit cost of product 27
1 0.3 Define the terms "unit cost" and "unit price".
382 15.7 What was the number of units of product 2 produced at plant 2 in 1973 times the unit price of product 2.?
2 0.1 How is profit computed?
28 1.4 Can you produce a profit figure for a specific product at a specific plant in 1973?9
312 7.3 Print a table containing unit cost and unit price for each product at plant 2 in 1973.
10 0.5 Compute unit cost for each of the products in 1972.
2 0.5 Which unit prices were different in 1972?7
1 0.0 Print their values.
2 1.6 What were the total overhead costs at plant 2 in 1972 and 1973?9
4 0.2 How is overhead cost computed?
1 0.2 List the fixed, non- manufacturing expenses.
108 1.7 For each of the factors just listed give the total value incurred at plant 2 in 1972 and 1973.
29 1.8 Al plant 2 list the operating cost incurred in 1972 and 1973.
76 4.1 For depreciation management salary and interest cost list the amounts incurred in 1972 and 1973.
1 0.4 What was the operating cost at each plant?
72 4.0 What was the percent change in operating cost at each plant from 1972 to 197377
2 2.1 In 1973 what percentage of the direct manufacturing cost was accounted for by operating cost?
69 2 4 What was the change in total manufacturing cost from 1972 to 1973?
9 1.2 What was the percent change in total revenues from 1972 to 1973?
2 2.2 In 1973 what percentage of the direct manufacturing cost was accounted for by operating cost?
69 2.4 What was the change in total manufacturing cost from 1972 to 1973?
69 3 4 What was fhe percent change in total manufacturing cost from 1972 to 1973?
9 1.2 What was the percent change in total revenues from 1972 to 1973?
26 3.3 What was the percent change in total overhead costs from 1972 to 19739?
22 1.7 Define P-cost lo be the sum of overhead cost and manufacturing cost.
6 1.0 What percentage of the P-cost is accounted for by overhead cost.,
5 0.4 For what year was that figure?
4 0.3 Give me the same figure for 1972.
2 0.1 How is profit computed?
4 0.2 How is total cost computed?
1 0.4 Are production cost and manufacturing cost the same?
1 0.0 Hellof
0 1.7 Give me two tables, the contribution margin for all products in each plant for the years 1972 and 1973.
2 0.4 Give me the total sales for 1972 and 1973.
5 0.5 Give me the sales volume by product for the years 1972 and 1973.
33 4.7 Give me the following proportions: the sales of products one, two and five divided by the total sales for 1972 and

1973.
13 1.3 Give me the average costs and the budgeted costs for the five products for 1973 and 1972.
2 00 Unit costs.
9 0.5 Give me the distribution of the sales of product four by plant.
7 0.7 Distribution of the sales of product 4 by plant for the year 1972.
2 0.2 Give me the budget for plant 4.
3 0.5 Give me the direct costs and the overheads for 1972 and 1973.
7 1.1 Was the actual overhead expense in plant 4 higher than the budgeted amount in 1973?
1 0.1 By how much?
128 16.1 Suppose the sales in 1973 had remained unchanged, would the profit picture have altered if the selling price of

product 1 had been increased to allow a profit margin of $5.5, and by how much?
1 0.4 Next, would the sales have altered significantly if there had been this price increase?
28 1.5 Even though the plants are not operated as profit centers, could you tell me the contribution to profits from each

plant for the years 1972 and 1973?
9 0.7 Give me the sales by product for plant two for the years 1972 and 1973.
5 0.3 Give me the proportional increase in the sales of the various products.
5 06 Give me the prices for the various products for the last two years.
1 00 No.
2 0.5 Please give me the sales for 1969 70 71 72 and 73.
3 0 7 Total profit margin for 69 70 71 72 and 73.
2 0.1 Total profit.
1 0.2 Profit margins for each product?7
4 0.3 Sales form each plant during 73.
3 0.3 Sales from each plant during 72.
12 1.8 The ratio ot products costing $6 25 and $5.00 from each plant during 72 and 73.
5 0.5 Can you give me data on product mix from each plant?
7 1.4 Give me the overt ead costs front each plant during 72 and 73.
39 24 Give me the ialios of overhead cost- and sales from each plant for 72 and 73.
24 2.1 Give me the iatios of overhead costs and sales for plants 1 2 3 4 for 72 and 73.
1 01 For 72 and 73-
133 38 Give raitios of manufacturing costs to sales for plants 1 2 3 and 4 for 72 and 73.
37 1 1 Give perceoitage change in) sales lot each plant for yeais 72 and 73.
63 1 8 Give peicewiiltij chanire in overhead costs lot all plants for years 72 and 73.
1 03 Whatli total revenue for company?
5 0.3 What was the cost of goods sold?

-71-

Results with the MALHOTRA Corpus Appendix 1

2 0.1 1lwant the sum.
1 0.2 What was the net income?
2 0.6 What is the cost for each product in each planto?
1 0.1 Unit cost.
9 1.8 What was the actual unit cost change per product in 1973 over 1972.?
30 1.5 How much did overhead expense increase in 1973 over 1972 in each plant?
1 0.1 What is plant 0.
2 0.2 Wilt our customers pay more for the product?
1 0.0 Cancel.
9 0.9 What was the volume increase per product in 1973 over 1972?
9 0.9 What was overhead increase per location in 1973 over 1972?
2 0.3 Who are my customers and what are their volumes per customer?
1 0.3 What is the price of each product?
2 0.2 Display for 1972 and 1973.
6 1.9 Sales, overhead, selling price, overhead, direct manufacturing cost, and profit margin for all types.
1 0.3 Remember this request (call it request A).
2 0.1 Can you format reports?
2 0.4 Please respond to request A for years 1972 and 1973.
2 0.1 Display sales.
7 0.8 Display sales f or years 1972 and 1973 by battery types.
1 0.2 Call chas the ratio (overhead/sales).
1 0.0 Congratulations.
2 0.4 Please retain the results of specifications until I change them.
6 0.7 Display for years 1972 and 1973 sales and chas by battery type.
6 0.6 Display ((sales in 1972 - sates in 1973)/sales in 1972).
1 0.2 Remember to retain specifications of previous requests.
1 0.2 Call last displayed quantity "sales growth".
7 0.5 Display sales growth for all types.
3 0.4 Display average cost for 1972 and 1973.
4 0.4 Production cost averaged over sales.
1 0.0 Again by product please.
20 0.7 Display cost of goods sold for product 1.
1 0.4 What is the difference between "production cost" and "direct manufacturing cost"?
1 0.0 No they aren't.
2 0.1 Give me definition of margin.
1 0.0 Standard cost.)
5 0.5 Let scvar be difference between standard costs and production costs.
4 0.6 Display sevar and sales growth for 1972 and 1973.
1 0.0 Cancel.
5 0.7 Display scvar for all products and all years.
2 0.1 What are my expense categories?
2 0.1 Display overhead.
8 0.6 Let atloc be ((overhead /production cost)tIotal production cost) for each product.
3 0.4 What data do you have regarding overhead expenditures?
3 0.5 What data do you have regarding production cost?
3 0.5 What data do you have regarding product mix?
9 0.7 Do you have production cost per unit for each type of product?
7 06 Print production cost per unit for product 1.
3 0.5 Print list price for product 1.
14 0.9 Print total manufacturing cost for product 1.
28 1.4 Print total manufacturing cost per unit of product 1.
5 0.6 Print overhead cost per unit of product 1.

t16 1.2 What was the average budgeted cost per unit of product 1?
4 0.5 What does the average budgeted cost per unit include?
17 0.9 Print budgeted cost per unit of products 2. 3. 4.
7 0.9 Print direct production costs per unit for all products.
11 0 9 Print list prices per unit for all products.

'I2 0.8 What was the expected contributiun margin for all products per unit?
2 0.9 What was the actual contribution margin for alt products per unit?
7 1.5 What was the average setting price per unit for all products?
2 0.2 What were expected overhead costs?
1 0.2 What was actual overhead cost?
1 0.2 What was the planned product mix?
1 0.2 What was actual product mix?

-23 1 4 Pi nt production costs per unit and per plant for all products.
6 0.7 Do you have a list of overhead cost for each plant separately?
1 0.1 Print this list.
1 01 What is plantO09
54 1.6 Do you have a list of production cost itemized per type of direct costs?
1 0,2 What was the budgeted direct material cost?
1 0 2 What was the ditect material cost?
1 0 I What was labor cost?
1 0i1 What was h an';pottalson cost?

4.1 03 What was material cost in 1972?

-72-

Results with the MALHOTRA Corpus Appendix I

1 0.3 What was labor cost in 1972?
1 0.3 What was transportation cost in 19729
16 1.0 Do you have records on sales per major customer in 1972 and 1973?
2 0.1 List data available.
3 0.8 Print the unit cost for battery type 1 at each plant.
27 1.5 List actual and budgeted unit costs for product I for 65 to 73.
32 1.5 List the data for the last 5 years for each product by unit cost.
192 1.7 Define equation discount (x) = (list price (x).selling price (x))/(list price (x)).
1 0.2 Solve discount (product 1).
2 0.3 Print discount (product 1).
2 0.5 Solve discount (product 2), then print discount (product 2).
2 0.4 Solve discount (product 3), then print answer.
2 0.4 Solve discount (product 4), print answer.
2 0.4 Solve discount (product 5), print answer.
10 1.0 Print profit margin for each product for 72 and 73.
32 0.9 Define %sales(x) = (total sales product (x))/(total company sales).
7 0.7 Solve %sales(x) for each product for 72 and 73.
39 1.2 Print the number of units of each product produced by plant.
3 0.4 Print total sales volume by plant.
3 0.3 List profit margins by plant.
5 04 List production costs by plant.
5 0.4 List overhead costs by plant.
8 0.9 Define %CHoverhead(T) = (overhead(T) - overhead(T-1))/(overhead(T-1)).
2 0.2 Why are there 5 plants?
2 0.6 What were the major increases in overhead in plant 1?
14 0.6 Give dollar figures for overhead expenses for plant 1.
2 0.3 Itemize overhead costs for plant 1.
8 0.8 Define %CH (item T) = (item(T)-item(T-1))/(item(T-1)).
1 0.2 Let item be depreciation, and T be 73.
1 0.2 Print the last answer.
3 0.2 Let item be operating cost.
1 0.1 Let management salaries be item.
1 0.2 Let item be interest cost.
8 0.5 Let item be operating cost by plant.
6 0.3 What makes up operating costs?
1 0.1 Let item be entertainment expenses.
3 0.4 Print for total, and each plant.
2 0.2 Let item be interest cost by plant.
1 0.3 What were the overhead expenses in 1973?
3 1.0 What was the percentage increase in overhead cost, 1973 vs 1972?
14 1.6 What was the percentage increase in freight and distribution costs for the same period?
7 1.3 What was the actual value of freight and distribution costs in 1973?
2 0.4 Was there an increase in truckers fees in 1973?
52 1.4 Are all increases from freight carriers passed on to the customer?
11 0.4 Is transportation cost included in overhead?
3 0.8 What were the sales by product (5 products) for 1972 and 1973?
2 0.6 What was the turnover by product for 1972 and 1973?
56 1.4 Divide cost of sales by average inventory for each year for each product and give us the result.
1 0.1 For 1972 and 1973.
3 1.0 What was the profit margin for each product for 1972 and 1973?
7 1.8 What was the percentage of total sales for each product for 1972 and 1973?
3 06 What cost items are included in overhead cost?
6 1.0 What were the overhead costs for 1972 and 1973 for each plant?
30 1.9 Can you give the percent of total overhead cost of each plant for 1972 and 1973?
4 1.0 What was the percent change 1972 vs 1973 for each plant?.
8 0.5 Do you have a model for measuring customer service?
77 1 4 Do you have a count of the number of sales requests and the number of requests filled?
1 0.3 What types of data do you have?
4 02 Is region recorded by product?
4 0 2 Is revenue recorded by product?
3 03 What are revenues for each product?
3 0.2 What are sales by plant?
7 0.4 What are sales by plant by product?
132 1 4 Can you subti act 1972 sales by plant by product from 1973 sales by plant by product?
132 1.3 Subtract 1972 sales by plant by product from 1973 sales by plant by product.
3 06 Did any product costs exceed budget in 73?
22 0 7 By plant by product which costs exceeded budget?
1 05 Which pioduct of the five had the largest percentage variance?
2 0.3 In 1972 which product or products had largest variances?
1 05 What were 1972 and 1913 piofit margins by product?
10 03 Can you give unit costs by plant by product?
2 08 Wh,t were actual costs pet unit for plant two?
1 02 What wetif. unit co!.th for 1972?
2 0.5 What was product mix by percent in 72?

-73-
Results with the MALHOTRA Corpus Appendix I

2 0.5 What was product mix by percent in 73?
15 0.3 Were prices raised in 1973 over 1972?
2 .6 What were 1972 and 1973 prices for each product?

9-74-

Results with the LADDER-TODS Collection Appendix ii

Appendix II - Results with the LADDER-TODS Collection

2 0.3 What kind of information do you know about?
2 0.3 Is there a doctor on board the Biddle?
3 0.4 Display all the American cruisers in the North Atlantic.
6 0.7 What is the name and location of the carrier nearest to New York?
1 0.3 What is the commanding officer's name?
1 0.1 Who commands the Kennedy?
1 0.2 What is the Kennedy's beam?
1 0.2 When will the Los Angeles reach Norfolk?
5 0.5 Tell me when Taru is scheduled to leave port.
4 0.2 Where is she scheduled to go?
2 0.4 When will Los Angeles arrive in its home port?
2 0.2 When will the Sturgeon arrive on station?
5 0.8 What aircraft units are embarked on the Constellation?
8 0.7 To which task organization is Knox assigned?
1 0.1 Where is the Sellers?
1 0.0 Where is Luanda?
4 0.5 What is the next port of call of the Santa Inez?
2 0.1 When will Tarifa get underway?
1 0.6 Which convoy escorts have inoperative sonar systems?
1 0.1 When will they be repaired?
2 1.8 Which U.S. Navy DDGs have casreps involving radar systems?
1 0.3 What Soviet ship has hull number 855?
2 0.4 To what class does the Soviet ship Minsk belong?
2 0.3 What class does the Whale belong to?
19 2.0 What is the normal steaming time for the Wainwright from Gibraltar to Norfolk?
3 05 What American ships are carrying vanadium ore?
1 0.1 How far is it to Norfolk?
1 0.1 How far away is Norfolk?
1 0.2 How many nautical miles is it to Norfolk?
2 0.3 How many miles is it to Norfolk from here?
2 0.3 How close is the Baton Rouge to Norfolk?
2 0.2 How far is the Adams from the Aspro?
2 0.3 What is the distance from Gibraltar to Norfolk?
1 0.2 What is the nearest oiler?
1 0.3 What is the nearest oiler to the Constellation?
3 0.4 How far is it from Naples to 23-OON, 45-00W?
2 0.5 What is the distance from the Kitty Hawk to Naples?
4 0.6 How long would it take the Independence to reach 35-OON, 20-00W?
1 0.1 How long is the Philadelphia?
4 0.3 How long would it take the Aspro to join Kennedy?
28 1.3 What is the nearest ship to Naples with a doctor on board?.
2 1 4 What is the nearest USN ship to the Enterprise with an operational air search radar?
1 0.2 What is known about that ship?
2 0.7 How many merchant ships are within 400 miles of the Hepburn?
4 0.3 What are their identities and last reported locations?
1 0.2 What cargo does the Pecos have?
1 0.1 Who is CTG67.3?
3 0.6 What are the length, width, and draft of the Kitty Hawk?
6 0.5 To whom is the Harry E. Yarnell attached?
2 0.7 What type ships are in the Knox class?
1 0.4 Where are the Charles F. Adams class ships?
2 0.1 What are their current assignments?
2 1.0 What subs in the South Atlantic are within 1000 miles of the Sunfish?
2 0.2 What is the Kittyhawk doing?
1 0.9 How many USN asw capable ships are in the Med?
1 0.0 Where are they?.
4 0.4 What are their current assignments and fuel states?
4 1.0 What ships are NOT at combat readiness rating Cl?
6 0.4 When will Reeves achieve readiness rating C1?
8 0.4 Why is Hoel at readiness rating C2?
1 0.2 When will the sonar be repaired on the Sterett?
5 0.8 What ships are carr ying cargo for the United States?
1 0.1 Where are they going?
1 O1 What are they carrying?
2 0.0 When will they arrive?
2 0.2 Where is Gridley bound?
14 1.3 Which cruisers have less than 50 per cent fuel on board?
1 0.1 Where are all the merchant ships?
2 03 When will the Kitty Hawk's radar be up?
1 0 4 What hihilp, are in the Los Antir-ks class?
1 0.3 What command does Adm. William have?

-75-

Results with the LADDER-TODS Collection Appendix II

3 0.3 Under whose opcon is the Dale?
1 0.2 Show me where the Kennedy isl
1 0.3 What ship has hull number 1489
4 0.7 What is the next port of call for the South Carolina?
4 0.2 Are doctors embarked in the Kawishiwi?
2 0.4 What kind of cargo does the Francis McGraw have?
5 0.9 What air group is embarked in the Constellation?
2 0.5 What do you know about the employment schedule of the Lang?
2 0.5 Which systems are down on the Kitty Hawk?
5 0.5 What ships in the Med have doctors embarked?
2 1.2 How many ships carrying oil are within 340 miles of Mayport?
4 1.2 What sub contacts are within 300 miles of the Enterprise?
9 2.0 List the current position and heading of the US Navy ships in the Mediterranean every 4 hours.
2 0.6 What is the status of the Enterprise's air search raciar?
1 0.2 Where is convoy NL53 going?
2 0.3 What convoy is the Transgermania in?
2 0.4 How many embarked units are in Constellation?
1 0.3 What ships are in British ports?
4 1.4 What U.S. ships are within 500 miles of Wilmington?
2 1.2 What U.S. ships faster than the Gridley are in Norfolk?
1 0.4 What is the fastest ship in the Mediterranean Sea?
2 0.3 How close is that ship to Naples?
1 0.1 What is its home port?
2 0.4 Print the American cruisers' current positions and states of readiness!
2 0.2 How is the Los Angeles powered?
11 4.1 What ship having a normal cruising speed greater than 30 knots is the largest?
30 1.6 Display the last reported position of all ships that are in the North Atlantic.
1 0.3 When did the Endeavour depart the port of New York?
1 0.8 What nationality is the ship with international radio call sign UAI D?
1 0.3 What ports are in the database?
2 0.8 What merchant ships are enroute to New York and within 500 miles of the Saratoga?
2 0.4 To what country does the fastest sub belong?

-76-

How to Understand the ATN Charts Appendix III

Appendix III - How to Understand the ATN Charts

The ATN Charts used in EOSP immediately follow this page. These charts only give the context-free

rules; the augmentations have been omitted except in a few cases. When two context-free rules have

the same left side, they have been merged into regular expressions. These new rules have the same

recognition power as the original rules, but not the same power to generate syntactic structures. For

example, the first rules would find the two expressions (137)-(138) while the second will find only

(139).

(137) [NP [N fire [NP [N plug] [N hose])]]

(138) [NP [NP IN fire] [N plug]] [N hose]]

(139) [NP [NP fire] [NP plug] [NP hose]]

Nodes have been elongated into bars so that there is enough room for the arcs. Labeled arcs can be

traversed when that part of speech is found (conditional on the augmentations). Unlabeled links are

jump arcs and can be traversed at any time. If a node has an arrow at its left, it is traversed from right

to left, otherwise it is traversed left to right.

J

-77-

0-0 C-3 029 02 0.19

I0em apostroph-S
comma

pp p0mg (to 0.14) lansed-be

tlrised-non-modal-auxifiry-verb (oCS
first-pediciple-phrase (toO-iS)nc-ader

00 (t C- 14 C-32 C-33
m to-i ecntive-hn post-prodcat-aejvetb pp am ~ (t

initial-sentence-advetb --t---- (to -14)

conjunct-phrase

post-predicadverb
go medial- ente oavr

C-31 (to 0-13)

bar-Weadio-on
modal-euxiliary-meb

PIU 00 -p. 0 CS)C-7 r.-23
(o C-14) 1

bare- wylnitlve-auxilar-do =not_____________ not

C-27

bae-nfnii e-ini pti e-nn -n -m a-
auxiliry-hav auxilsxilar y-veib

+to-onsede-iras -2 cotjun t--have to C 4

bare-infmitive-no-mda-axalec-nonmodll

auxikday-doy-av not

muxlw-do NPpro-predicate-aer

(to C.14) 30 (IoC.14)
conturict-ptwas. conj(to 0.15)

-(to-5 to-5

ten25 beec-b

bCr -2iltv bes-atcpl-e-is-prioeb

e .98

-78-

C8 C-10 C-13 C-14

cjnc-phrase C1

finalfisantenphromv am

ffnallsantncx-advar

CC-9

C-11

NP~ex~frorC-1Q) particie-phraseto
conjutict-phr-me

with-complemellizer-phrate,
unknown-NP please

firSt-pstWiptephraft
I inal-mor once-adverb

NP

to-witittve-phrameC-O

baritmnitive-Phrame oril r-uetn± ~ ~~~~adjective cmn nqSIr

adpectrve-phrome 5cn-w~pe
coniparagive-adjective-prase phrom

secorid-parliciplephrsee coriuncl-phras

L NP

C-12

adjective I_______________
adjective-phrase to-infintive-phrs

lb 4supeIrlve-adjectlvii f or-coniplernentizer-phrame clause advrb~l

conipartive-adjective-phraleno-

for-coflo mein r-phraa adverb iIui 08-
to- infinitive-phre

post-predicato-advarbsuborirate-clause

pr"ti-hrs

how-why-subordinet.-claumeN

poet-predicateadverb t-niltgprs

6. C-24

prepredicalle-adverb

s eond- pev*r',ptonrnodal-ui~vtae -e

Ifrorn C-20)

-79-

C-19 C-28 C-28
OwW (toC-14)

for-compIlewtizer-p4hran

pwticlgptwm C-15
NP___

not (to C.14)
conjunict-phrase

NP
i (to c-13)

S(toC-i3)
adjective

--2'(to C.13)
comparatlk-adiectrve-phrin

(to C-13)

-- w(to C.13)
to-intdve-phrm

so (toG-iS)
coneunct-ptwma

go (to C-16)
fit-p flcqp)enon-moda-auxilery-verb

w (to CSe)
second-paflce-non-oal-mimay-varbW,(oC6

Fpost -Pred "Wcatavwb
so

(to C.14)

.4

-80-

NP-O NP-4 NP-I NP-2 NP-3

attributlve-&edjev

commarat

clsirname- phas

prtredeeterminerrmir nount head-msenoun

classdoer-nams~pI'wes

heed-afneptir

hnam hra e

mmoney-son

heed-nou

unhead-name phrase

the perlatve-adjnume nme

number

NP-22 NP-23

Quote w Quote

NP-24CA-i

- N~lftPo NnP-e28peaorN

unknwnNP

ro a
,.P

NP-3

NP-3 NP-5 otwM

NP (d hedis quantity wCd) *NP-S hncmwwle-tae E

UP Ofmwae

NP-O P-iNP-3 relatpvg.CifedbUS~ u

NPP3
Ndetv I_-1____1_4____io-lus ED

arithetgcopfthf o.compernentzer-prase

lefft-anaclpopw E)

post-adjerbo tor2 N - co mdplem.CpizeIr rse E

numbe-ru conjun co ~Ohras ubr(detv ,rs

NP-l cirnparatI1prv e"clePr~

to-infinitive-phmi

number NP-29 ber er.29 (E
conjunctiofl-phrag number E

NP-20

sixtent-pS I number
NP-l8 NP-lB NP-17

comma numeberuc~~np~r~

coNPa N 151 NP-25

N12 NP-13 NP-14

colon NPcnuItnpneN

-82-

PP-i

how-why-suboedlflat-CIsu

both-eltt

PP-0 PP-2

pe itn NP complementizer-in

relative*C-tjse

PP.3

PF-3Iparticlev Pp-I p

CJTP-O

~c .2ur -7

con~juncion1 aiso -----

i j C8-o CS- CS-2
conitnuft-sentence conjurctof-phrae constlu*sen tence (to C-15)

IF-ANY-O IF-ANY-1

NEW-:51

-83-

BRC-O BRC-3

COteqnetlzr-tti
NP

cofTpementgzer-as
to-ntiitvephas g (to C-2)

NP (not in-question) opentir-r

(to C-2)
NP (wh.comag down) P- -) Ordpalcpeprs

cofnptsqentizer-that (o 7

BRC-l

compemenizerfor(to C-22)

A-0 A-2 N-0 N-1

___ __ __ __ per cant

nonajcieN-2 geru~nd

nooun

4A-

rime rdntmr

-84-

WM-3

NM-2

mdw

NM-O NM-i letter

letter NM-7

name NM6 head-naffe

noun I number j
NM-4 NM-5

coordinate corrmat coordfnte p

a-t

-85-

D-0 D-5

scae-obural-descrbbe-not-tt-quntgfterp

scale-plural-describable-not-ell-proroun0

D-6 D-9

basic-den"ontit i- p -escmtteetize rve. t
definite-determne adjective AP 1

too

scale-plurl-describabl-not-all-onoujn

D-4
D-10

comparative- Wecie than-comIptementizer-phrm u
D-03

-s cornpeetv-
determinrw more-less I djectiv

AP-0 AP-1

Si to-intinitive phrose ED)
*b' 4 v~~hras-edective ____________

sut~rttve-adjectve

I

-sr_

-86-

RC-O

NP (in question) -- -2
n-quelion o C27

RRCO0 RRC-1

corntenrtier-with

companentizer-of NIP 0-19

COORD-O COORD-1 I OORD-2

coordinate-part I ype coordinae-pa

0-0 o-1 0-2

othr voieffentizr-t,"n NP

DATE-PHRASE-0 DATE-PHRASE-i

month yearnumbeow~

PPN-O PPN-1 PPN-2 PPN-3 PPN-4

left-bracket Inumber Icomma number right-brad*e

IE-O IE-1

ie paticle-phrm

NP

PIP

W-0 W-1 W-2

wOrd. hypWe word (akt w oy

OFFICIAL DISTRIBUTION LIST

Director 2 copies
Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, Virginia 22209

Attention: Program Management

Office of Naval Research 3 copies
800 North Quincy Street
Arlington, Virginia 22217

Attention: Marvin Denicoff, Code 437

Office of Naval Research 1 copy
Resident Representative
Massachusetts Institute of Technology
Building E19-628
Cambridge, Mass. 02139

Attention: A. Forrester

Director 6 copies
Naval Research Laboratory
Washington, D.C. 20375

Attention: Code 2627

Defense Technical Information Center 12 copies
Cameron Station

-Arlington, Virginia 22314

Office of Naval Research 1 copy
Branch Office/Boston
Building 114, Section D
666 Summer Street
Boston, Mass. 02210

'4

