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MULTI-SERVER QUEUES

Sheldon M. Ross

Department of Industrial Engineering and
Operations Research

ABSTRACT

We will survey a variety of multiserver models in which the

arrival stream is a Poisson process. In particular, we will
consider the Erlang loss model in which arrivals finding all
servers busy are lost. In this system, we assume a general
service distribution. We will also consider finite and infinite
capacity versions of this model. Another model of this type is
the shared processor system in which service is shared by all
customers.

Another model to be considered is the G/M/k in which arrivals
are in accordance with a renewal process and the service
distribution is exponential. We will analyze this model by
means of the embedded Markov chain approach.

0. INTRODUCTION

We will consider some multiserver queueing models. In

Section 1, we deal with the Erlang loss model which supposes
Poisson arrivals and a general service distribution G . By use
of a "reversed process" argument (see (2]) we will indicate a
proof of the well-known result that the distribution of number
of busy servers depends on G only through its mean. In
Section 2 we then analyze a shared-processor model in which the
servers are able to combine forces. Again making use of the
reverse process, we obtain the limiting distribution for this
model. In Section 3 we review the embedded Markov chain approach
for the G/M/k model; and in the final section we present the
model M/G/k.
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1. THE ERLANG LOSS SYSTEM

One of the most basic types of queueing system are the loss
systems in which an arriv"l that finds all servers busy is pre-
sumed lost to the system. The simplest such system is the M/M/k
loss system in which customers arrive according to a Poisson
process having rate X , enter the system if at least one of the
k servers is free, and then spend an exponential amount of time
with rate w being served. The balance equations for the sta-
tionary probabilities are

State Rate leave - rate enter

0 XP 0 W P I
1 0 < i < k (A + iP)P i a (i + l)uIPi + XPi_

k kuP = XP
k ~k-l

k
Using the equation I Pi 1 1 , the above equations can be solved

0
to give

Pi k , i - 0,1, ... , k

j -O

Since E[S] - 1/,.i , where E[S] is the mean service time, the
above can be written as

(XE sl~i/i ,
Pi k ' 1 0,i, ., k .

* (XE[S])I /J!

j=O

The above was originally obtained by Erlang who then con-
jectured that it was valid for an arbitrary service distribution.
We shall present a proof of this result, known as the Erlang loss
formula when the service distribution G is continuous and has
density g

Theorem 1. The limiting distribution of the number of
customers in the Erlang loss system is given by

P{n in system} k (kEIS n!
I (XE[s])i/i!

ino

I
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and given that there are n in the system, the ages (or the re-
sidual times) of these n are independent and identically dis-
tributed according to the equilibrium distribution of G

Proof. We can analyze the above system as a Markov process
by letting the state at any time be the ordered ages of the cus-
tomers in service at that time. That is, the state will be x -
(x ,x ... , x ) x 1 < x2 < ... < x , if there are n custom-
er in" service, the most recent one Raving arrived x time units
ago, the next most recent arrival being x time uniks ago, and
so on. The process of successive states will be a Markov process
in the sense that the conditional distribution of any future state
given the present and all the past states will depend only on the
present state. In addition, let us denote by X(t) - g(t)/G(t)
the hazard rate function of the service distribution.

We will attempt to use the reverse process to obtain the
limiting probability density p(xl, x ... xn ) , 1 < n < k ,
X<X 2 X "" n , and P(,) t eIimiting probability that
the-system is empty. Now since the age of a customer in service
increases linearly from 0 upon its arrival to its service time
upon its departure, it is clear that if we look backwards, we
will be following the excess or additional service time of a
customer. As there will never be more than k in the system,
we make the following conjecture.

Conjecture. In steady state, the reverse process is also a
k server loss system with service distribution G in which
arrivals occur according to a Poisson process with rate X
The state at any time represents the ordered residual service
times of customers presently in service. In addition, the
limiting probability density is

n
* nX n I G(xi)

i-1P(xI 9 . ... x n) k ' 1l x2 "' <  x n
S (XE(s])i/i! - - -

i-O

and

P(W (XE[S]) i/i!]
i00

To verify the conjecture, for any state x - (x, .. ,,let ~~ ~ ~ ~ o x'x x, , x '- igin
let..., x) . Now in the originali -- 1''j-1ih
process when the state is x , tt will instantaneously go to
ei( x) with a probability density equal to X(xi) since the

I
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person whose time in service is xi would have to instantaneous-
ly complete its service. Similarly in the reversed process if
the state is e.(x) , then it will instantaneously go to x if
a customer having service time xi instantaneously arrives.
So we see that

in forward: x - e (x) with probability intensity X(x.)
in reverse: e.(x) -1 x with (joint) probability intensity

Xg(xi)

Hence if p(x) represents the limiting density, then we would
need that

p(x)X(x i)  p(e i(x))Xg(x i)

or, since \(xi) - g(xi)/G(x i)

p(x) P(ei(x))AG(xi)

which is easily seen to be satisfied by the conjectured p(x)

To complete our proof of the conjecture, we must consider
transitions of the forward process from x to (O,x)
(0,xlx 2 .... xn ) when n < k. Now

in forward: x - (0,x) with instantaneous intensity A
in reverse: (O,x) - x with probability I.

Hence we must verify that

_ - p(O,x)

which easily follows since G(0) 1

Hence we see that the conjecture is true and so, upon
integration, we obtain

P{n in the system}

n
P(i)A ~ f f. f G(x)dx1 dx dx

Sff . f
... n i1 G(xi)dx1 dx2 . dx

xl,x 2 , .. ,xn

- P(P)(E[S])n/n! , n = 1,2, .... k
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where E[S] - fG(x)dx is the mean service time. Also, we see
that the conditional distribution of the ordered ages given that
there are n in the system is

P{x I n in the system} - p(x)/P(n in the system}

n
- n! R (G x )IEI)

i-1

As G(x)/E(S] is just the density of G , the equilibriume
distribution of G , this completes the proof. 1i

In addition, by looking at the reversed process, we also
have the following corollary.

Corollary 1. In the Erlang loss model, the departure
process (including both customers completing service and those
that are lost) is a Poisson process at rate X

Proof. The above follows since in the reversed process
arrivals of all customers (including those that are lost)
constitutes a Poisson process.

2. THE SHARED PROCESSOR SYSTEM

Suppose that customers arrive in accordance with a Poisson
process having rate X . Each customer requires a random amount
of work, distributed according to G . The server can process
work at a rate of one unit of work per unit time, and divides
his time equally among all of the customers presently in the
system. That is, whenever there are n customers in the system,
each will receive service work at a rate of 1/n per unit time.

Let XC(t) denote the failure rate fCinction of the service
distribution, and suppose that XE[S] < 1 where E[S] is the
mean of G

To analyze the above, let the state at any time be the
ordered vector of the amounts of work already performed on
customers still in the system. That is, the state is x -
(x1,x2 , ... , x ) , x1 < x2 < ... < x if there are n customers
in the system and x., . x is tRe amount of work performed
on these n customers. Let p(x) and P(0) denote the
limiting probability density and the limiting probability that
the system is empty. We make the following conjecture regarding
the reverse process.

Conjecture. The reverse process is a system of the same

p • ,
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type, with customers arriving at a Poisson rate X , having
workloads distributed according to G and with the state
representing the ordered residual workloads of customers
presently in the system.

To verify the above conjecture and at the same time obtain
the limiting distribution let e.(x) - (xI  ... , x .
x) when x - (xi, .... Xn) , xI <x <. < x . Note that

A(xi)
in forward: x - e.(x) with probability intensity n
in reverse: e.(x) -'x with (joint) probability intensityX(x i)

The above follows as in the previous section with the exception
that if there are n in the system then a customer who already
had the amount of work x. performed on it will instantaneously
complete service with probability X(xi)/n .

Hence, if p(x) is the limiting density then we need that

X(xi )
p(x) -- = p(ei(x))XG'(xi)

n 1

or, equivalently,

p(x) =nG(xi)p (e i (x )) \

= nG(x i(n - l)G(x )p(eW(x))' 2\, i # i

n
n -x

n!Xn'( ) II G(x.) (1)

Integrating over all vectors x yields

P{n in system} = (XE[S] )nP()

. Using

P() + P{n in the system} 1 1
n-l

gives

P{n in the system) - (,\E[S])n(l - XE[SI) n > 0

Also, the conditional distribution of the ordered amounts ofI:
.41,
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work already performed, given n in the system is, from (1)

p(x I n) - p(x)/P{n in system!

n
- n! T (G(x.)/E[SI)

i-l

That is, given n customers in the system the unordered amount
of work already performed are distributed independently according
to Ge , the equilibrium distribution of G

All of the above is based on the assumption that the con-
jecture is valid. To complete the proof of its validity, we
must verify that

1
p(x)X - p(O,X)

The above being the relevant equation since the reverse process
when in state (e,x) will go to state x in time (n + l)c
As the above is easily verified, we have thus shown

Theorem 2. For the Processor Sharing Model, the number of
customers in the system has the distribution

P{n in system) - (XEIS])n(n - XE(S]) , n > 0

Given n in the system, the completed (or residual) workloads
are independent and have distribution G The departure
process is a Poisson process with rate

If we let L denote the average number in the system, and
W , the average time a customer spends in the system then

L - [ n(XE[S])n(I - *E[S])
n-0

1 - XE[S]

We can obtain W from the well-known formula L - kW and so

W - - E[S]
1 - XE[S]

Another interesting computation in this model is that of
the conditional mean time an arrival spends in the system given
its workload is y . To compute this quantity, fix y and say
that a customer is "special" if its workload is between y and
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y + E By L = XW , we thus have that

Average Number of Special Customers in the System

Average Arrival Rate of Special Customer x Average
Time a Special Customer Spends in the System.

To determine the average number of special customers in the
system, let us first determine the density of the total workload
of an arbitrary customer presently in the system. Suppose such
a customer has already received the amount of work x . Then
the conditional density of its workload is

f(w I has received x) = g(w)/G(x) , x < w

But, from Theorem 2, the amount of work an arbitrary customer in
the system has already received has the distribution Ge . Hence
the density of the total workload of someone present in the
system is

f(w) - g (w ) dG (x).0 G(x) e

w

g(w) dx , since dG (x) - G(x)/E[S]

0

wg(w)/E[S]

Hence the average number of special customers in the system is

E~number in system having workload between y and v + E]

- Lf(y)e + o(e)

- Lyg(y)E/E[S] + o(c)

In addition, the average arrival rate of customers whose workload
is between y and y + E is

Average arrival rate - \g(y)e + o(E)

Hence we see that

E[time in system : workload in (y , y + E)]

Lvt(Y)c + o(E)
E(S] g(y)t e

t!
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Letting E - 0 , we obtain

Ettime in system I workload is yI = L

I - xE[S]

Thus the average time in the system of a customer needing
y units of work also depends on the service distribution only

through its mean.

3. THE G/M/k QUEUE

In this model we suppose that there are k servers, each of
whom serves at an exponential rate u . We allow the time
between successive arrivals to have an arbitrary distribution G
In order to ensure that a steady-state (or limiting) distribution

exists, we assume /UG < kuj where P G is the mean of G .

To analyze this model, we will use an embedded Markov chain

approach. Define X as the number in the system as seen by
the nth arrival. Then it is easy to see that {X , n > 0} is
a Markov chain.

To derive the transition probabilities of the Markov chain,
it helps to note the relationship

Xn+l - n + 1 Yn , n> 0

where Y denotes the number of departures during the inter-
arrival time between the nth and (n + l)st arrival. The

transition probabilities can be calculated as

Case (i): j > i + I . In this case, P.. = 0ij

Case (ii): j < i + I < k . In this case,

P.. - P{i + 1 - j of i + l} services are completed in an
ij interarrival time

f P{i + 1-j of i + 1 are completed interarrival

0

time is t}dG(t)

f e+ i+l-j (e- t) dG(t)

(I0
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Case (iii): i + I > j 2 k . To evaluate P. , in this

case, we first note that when all servers are busy the departure
process is a Poisson process with rate ku. Hence,

P f P(i + 1 - j departures in time t}dG(t)

0

0 (kut) i+l-j

e- k t i +1- J)7 dG(t)

0

Case (iv): i + 1> k > j Conditioning first on the
interarrival time and then on the time until there are only k
in the system (call this latter random variable Tk) yields

Pit uf Pti + 1 - j departures in time t}dG(t)

0

fj P{i + 1 - j departures in t I Tk " s}

00

kwe-ks (kus)i-k dsdG(t)
(i -k)!

t

V; k -(t-s) k - j  -)J
ff (k)(l - (e - 11( t -s

0 0

kwe-ks (kdus) i-k
(i - k)! dsdG(t)

We now can verify by a direct substitution into the equa-
tions i i 1T i Pi that the limiting probabilities of this

Markov chain are of the form

Irk-l+j ca j  O 0,

Substitution into any of the equations ij , IT iPij when J > k

yields that 3 is given as the solution of
1 4
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f f e dG(t)

0

The values c,'r **l "- , can be obtained by recursively
solving the first k - 1 of the steady-state equations, and c

x
can then be computed by using I 7 1

0

If we let W* denote the amount of time that a customer

spends in queue, 2hen we can show, upon conditioning, that

k-I

0 with probability a -

a) 0

) cS
Exp (kp(l - B)) with probability I i 1 -

k

where Exp (kui(l - 3)) is an exponential random variable with
rate ki(l - B)

4. THE FINITE CAPACITY M/G/k

In this section, we consider an M/G/k queuing model having
finite capacity N . That is, a model in which customers,
arriving in accordance with a Poisson process having rate X
enter the system if there are less than N others present when
they arrive, and are then serviced by one of k servers, each
of whom has service distribution G . Upon entering, a customer
will either immediately enter service if at least one server is
free or else join the queue if all servers are busy.

Our objective is to obtain an approximation for W_ , the
average time an entering customer spends waiting in queue. To
get started we will make use of the idea that if a (possibly
fictitious) cost structure is imposed, so that entering customers
are forced to pay money (according to some rule) to the system,
then the following identity holds--namely,

time average rate at which the system earns - average
arrival rate of entering customers x average amount
paid by an entering customer.

By choosing appropriate cost rules, many useful formulae
can be obtained as special cases. For instance, by supposing

._
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that each customer pays $1 per unit time while in service, yields

average number in service - \(I - P N)E[S]

Also, if we suppose that each customer in the system pays $x
per unit time whenever its remaining service time is x , then
we get

V - X(i - PN)E[SW* + (S - x)dx - X(l - PN)(E[S]WQ + E[S 2 ]/21

0

where V is the (time) average amount of work in the system and
where W* is a random variable representing the (limiting)
amount o2 time that the nth entering customer spends waiting in
queue.

The above gives us one equation relating V and W and
one approach to obtaining W would be to derive a second equa-
tion. An approximate secondQequation was given by Nozaki-Ross
in (3] by means of the following approximation assumption.

Approximation Assumption

Given that a customer arrives to find i busy servers,
i > 0 , at the time he enters service the remaining service times
of the other customers being served are approximately independent
each having the equilibrium service distribution.

Using the above assumption as if it was exactly true, Nozaki-
Ross were able to derive a second relationship between V and
W, which resulted in an expression for W as a function of P
B approximating P N by its known value iR the case where the
service distribution is exponential, Nozaki-Ross came up with the
following approximation for W

Q.
E[S] 21 - -xsn __N__-___

2E[S -k kkj - k kN-k
w - j kJ kk

- [ + I (k - XE[SI)
* j-k k!kjk

The idea of an approximation assumption to approximate
various quantities of interest of the model M/G/k was also used
by Tijms, Van Hoorn, and Federgruen [6]. They used a slightly
different approximation assumption to obtain approximations for
the steady state probabilities. Other approximations for the
M/G/k are also given in Boxma, Cohen, and Huffels [1], and
Takahashi [51. p

. . . . . . . . .. . . .
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