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ABSTRACT

" e discuss some properties of a certain physically interesting
nonlinear  integro-differential equation with periodic bounddry
conditions. It is the natural periodic analogue of the intermediate
lonyg wave equation, and it provides a periodic analoyue of the
Benjanin-Uno equation in the appropriate linit. Uue to the speciality
integral operator, the equation admnits a Bicklund transformation, an
infinity of motion constants, etc. Two simple periodic solutions are
exhipited. Finally we note that the equation .nay be transforamed into

more tnan one kind of bilinear equation.
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The so-called intermediate lony wave (l.L.W.) equation (Joseph,

1977; Kubota, Ko and vobbs, 1978) can be written in the form

; U * iux v 2uu * (Tu)gg = U ()

on -=» ¢ x < =, where

I O o(x-
Tu 7 f coth " (x-y) uly) dy \Z)

and the inteyral is evaluated in the principal-value sense. Tne
eguation can be solved on (-=,») via dan inverse scattering transtorn
(1sT) (Kodama, Satsuma and Ablowitz, 1981), and has the analytical
structure associated with such equations (Joseph and Eygri, 19/¢;
Satsuma, Ablowitz and Kodana, 1979Y).

The physical derivation of (1), (¢) as a model of the evolution
of long internal waves of moderate anplitude assunes that u(x) has a
classical Fourier transform, and that u vanishes as |x| * «. Even so,
one nay ask whether (1), (¢) admit spatially periodic solutions. This
was done by Joseph and Egri (19/8), Chen and Lee (197Y), and Nakanura
and Matsuno (1980), using formal algebraic methods. Unfortunately,

the solutions so obtained either contain errors or are subject to a

limitation that was obscured by these formal inethods.
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Alternatively, one may seek an evolution equation for long
internal waves of wnoderate amplitude that are spatially periodic.
Then a derivation similar to the usual one leads to (l), but in the

periodic case (2) is replaced with

Tu = i T(x-a;06,L) u(s) ds (3a)
-L

wlere

T(x; 0,L) = - 5£ {Z(KTX) + dn (%) cs(%)] ) (3b)

JActually, the physical derivation naturally leads to the Fourier
representation of T, given in (3c¢), which is then transforned into
(3b).J Tnis derivation also requires that fL u dx = U, which we .nay
impose on (1) with (3) without loss of gener;ll-ity. I[n (3v), K denotes
the conplete elliptic integral of the first kind, Z(a) is Jacobi's
Zeta function, and dn(a), cs(a) are Jacobpian elliptic functions.
These all have modulus &k, deternined by the condition that
K'(k)/K(k) = o/L, where K'(k) 1is the associated elliptic integral of
the first kind. (All of these functions are discussed by Byrd and

Fricdinan, 1971.) The purpose of this note is to discuss soine of tne

mathematicatl structure of (1) with (3).
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An alternative, but very useful, representation of T is its

Fourier series,

T(x; 6,L) = i EZI coth(ﬂfﬂ) exp (ﬂ%ﬁ? . (3¢c)
n#u

SO that

Tu

i j{: coth G%%g) U exp (ltfx) . (3d)

n#V

where (On; are the Fourier coefficients of u. This representation
follows from the identities (c¢.f., Byrd and Friedman, 1971, #9U5.uUl

and yJd.s1)

2 qm X (.nua
Z(a — E - sin|—
@) K &1 -qfn K

2 n ) O
cs{a) dn(a) = Lot 2. d s1n(ﬂli)
2K K K 1 +qP K

where q = exp(-1K'/K) = exp(-uno/L), and from the formnal representation

(Gel'fand and Shilov, 14964, p. 3¢)
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cot-:- = 2 :->_ sinmu .

n=1

The usual operator on (-=, =) nay be recovered simply by replacinyg the
sun in (3d) with an integral and rescaling. Similarly, we .nay recover
(¢) from (3) by letting L » », ¢ fixed. Then k + 1, K + a /20, and

one inay snow that

) 1 WX .
m T(x; 0, L+=) = S coth 70 i4a)

which reproduces (¢}. On the other hand, for o + =, L fixed, we have

Kk » \), K+ ,]/Z, and
T(x; o=, L) =+ - cot — . (4D)

This is the well-known Hilbert kernel on ({-L,L). ditn this kernel,
(L) is the natural periodic extension of the Benjamin-Uno eguation
(Benjanin, 1967; 0Ono, 1975). As one would expect. (l) with (3)
reduces to the (periodic) KdV equation if o + U, L fixed.

[f u(x) is periodic with period ZL and with zero .nean, then ([u)
according to (2) and to (3) are identical. That this is so inay be
seen by rewriting (2) in its Fourier transforn representation, dand
recalling that the F.T. of a periodic function is a sun of Dirac

deita functions (Gel'fand and Shilov, 1964). Thus (1) with (3) nay oe
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regarded simply as the .nost natural way to write the l.L.A. wquation
when periodic solutions are of interest.

-

The operator T given in (3) is the wmost general periodic operator

we have found which satisfies the "T-conditions":
T(uTv + vTu) = TuTv - uv iTl)

‘/(uTv+vru)dx = J, \e¢y

where u,v have zero mnean. We find that (Tl), (T¢) are necessary
conditions on the T operator in order for (l) to have mnore than tne
standard nunber of conserved quantities. With tnese conditions the
above evolution eguations can be expected to be in the IST class.
Condition (T2) follows fron the fact that T(x) is an odda function. To
establish (TL) we use the representation (3c). Calling
fn= icoth nno/L, and {n, Vp,, the Fourier coefficients of wu, v

respectively, assuming Q, = Vo = U (i.e., zero wmean) and using the

convolution theoren, then
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-~ - inﬂx
Z T Vn-m Un-n exp ( L_)

n=-« iN= =

- s a - i
= : ; un ;E: Tn Tn-m Vn-in exp ( qfx)

N n

_ E - E - inux
= = Up Vn-in exp( L )

n n

< < P - inax
- ! Un ! r.n Tn Vpn-in €XP ( L )
n n

1]

g fa Th-m Vn-n exp (l%%é)
n

= - y{x) v{x) - T(vTu) + (Tu)(Tv) {5)

where we have used the identity

cothA cothB = 1 + coth(A-B){(- cothA + cotht).

The order of summation in (5) may be interchanyed if 2|ﬁn|, $10a1

exist.
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The need for the T-conditions can pe seen from the following. Tne
usual [.L.W. equation on{(-~,») was considered by Satsumna, Ablowitz,
and Kodama (1979). They showed that the derivations of the constants
of wmotion and of the 3ddcklund transformnation do not depend on the
specific kernel of T, so lony as T satisfies conditions (Tl) and (T¢).
This inplies that these formulae will remain valid for equation (1)
with {3) since the T conditions are satisfied. Actually one easily
verifies (by aifferentiation) that the constants of notion given by
Satsuna, Ablowitz and Kodama (l1Y79) are also constants of .notion of
(1) with (3).

Une may use the generalized Miura transforination,
u = {X-Vx+iTVx+;eiV)/2 to derive a generalization ot the so-called
modified [.L.W. equation. Namely if K{u] = U represents (1), and
ALV = g+ (Lo RV + (TV)gy + aVy efV e iy (V) = 0,

then usiny tihe T-conditions we have:

Kiug = oiivy, (o)

where

b= (-9 + 1T, + iu elVy

Similarly it can be proven, by using the results ot Fokas and
Fuchssteiner (1980) (whicn also apply to tne above diura-type

transformation) that (1) admits an auto-Backlund transfornation if and
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only if (T1), (TZ) are satisfied.

The IST pair used by Kodama, Satsuna and Aolowitz (l4Y3l) is also
valid here. However, the sinple compatibility daryunent does not
indicate the importance of the T-conditions. Namnely, consider a
linear scattering problem and a sequence of associated time evolutions

of the formn:

X Ty * (u=A)v" = wy, dy

\r% = QfI]Y 1] n=lyz5 e k7b)

(/a) is to be thought of as a differential Rienann-Hilbert proolen to
find ,* (i.e., 4 are the boundary values of certain analytic
functions} given an appropriate funtion u.x). For each n,
N conpatibility of (7a,b) yields an evolution equation; nanely,
requiring vy = ,fx, and setting all coefficients of ¥, ,7, vxs wvxxs
etc., to zero after using (7a) to elininate derivatives of ', gives

- an algorithmic procedure to deternine compatible equations. Tne

t

) equivalent to the first two equations of KdV nierarchy dre obtained as
; follows. First, §f = ox + A%, whereupon we find A* - A~ = 0.
.1f Taking A* = Ag = const, the conpatible evolution equation is ug = ux.
.‘ Second, 3, = 1idf + idfay + A%, we  find 8t -8 = o,
- AY - At = -liuy. Taking B* = By = i(<atl/o) = const,
- At = +iuy - (Tu)x, the compatible evolution equation is (1), without
. need for the T-conditions. [he underlying reason why such conditions
!‘.
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nust be added, and whether, in fact, (3) is the most yeneral singular
integral operator satisfying (Tl), (T¢) dare open questions. Matsuno
(198U) has given a different alyorithin to derive such a hierarchy of
equations,

Next we consiuer some special solutions of (1) with (3). For a

wave of permanent formn, ot + -cdx, and (1) .nay be inteyrated once to
1 2 -
e u + uc + (Tu)y + A = U (3)

with A constant. [t has been claimed (Joseph and Eyri, 14Y70; Chen

and Lee, 19/9Y) that

Uix-ct) = - (nun/L) sinh {nao/L) (va)
cosh {nuof/L) + cosy nuix-ct)/LJ

is a solution of (3). 1Its Fourier series representation 1is

MNs o
) S(——-L ) . (Yb)

! _ _!1_11 v_‘ m _mnno
u(y) = "1 1+déi_'(-1) exp( )

That (J) does not solve (8) may be seen by computinyg ou/de fron (9a)
and  (9b), and Tu from (3d), because it turns out that

au/d6 = -9(Tu)/ox. The correct solution is

10
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u(x-ct) = - {na/L) sllrnhgn..o/l_) . (LUa)
cosh (nuo/L) + cos{nu/L)(x-ct-1iy)J

where < -0, Its Fourier series is

L

ule) = Z—E‘—‘ Z (- 1)m sinn(mnljm) exp (——s———Li'nn" oz v ) . (lub)
1

and its validity inay be verified by computing ou/¢d from (lua) and
(ldbj. This solution is comnplex-valued.

Periodic solutions nay be obtained systematically via Hirota's
method, revising sligntly the nethods of Cnhen and Lee (19/9), Wakanura
and  Matsuno (l¥8u), and Satsuna and Aplowitz  (lygu). Let
f:(x) =z f(xzio), let f(x) be periodic (<L) and let f{z) De analytic in
the rectanygle: -L < Re(z) <L, -o « [n(z) ¢« ¢. Then by inteyrating

[ T(x-,+io) f{,)d, around this rectangle, one finds that

L
)—1L f T(x=-2z;0,L)0F (z) - f(2)]dz = i(f(x) + f-(x)J + Jo »
-L (11

where Jg is an uninportant constant. It follows that if
u(x) = fT(x) - £ (x)y (1¢)

where

11




f5(x) = o, (loyF*j ,

and if f(x) is properly analytic, then (1) with (3) becones a bilinear

eguation,
(iDt t+ % Dy - Dﬁ + A)F+ F- = U (13)

with the usual notation [e.g., Uy a.b = (dy-ay') 3(x)b(x" )| royd, and
A = A(t). We enphasize that only those solutions of (l3) that are
analytic in tnhe rectangle yield periodic solutions of (1), a fact tnat
was overiooked previously.

The sinplest real-valued solution of (1) with (3) was given Dy

Nakanura and Matsuno (193U). It mnay ve written in the fora

ufs; m) = M[Z (KAL‘—“)*(\,-N);:H) - l(K—(IL—nL(»*N);-l)] (lda)

wnere ¢ = x-Cl+x,, and .n is the modulus. The analyticity condition is

that

0
- X< s 140
N (14p)

or, because o/L = K'(k)/K{(k), that the .nodulus of T exceed the wodulus

of the solution. There seems to be no sinple fornula for the speed of

the wave.
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Finally, we note that (13) is not the only “bilinear" equation
that may be obtained from (1), (3). For example, let f(z) have a real
period (2L), and be analytic in -L < Re(z) <« L, -o < ln{z) < o except
for two poles at z = z, and 13 (U < Iin{zg) < o4 with residues b and
b*. Then the integral of ff(x-‘,ﬂ'o) f(,)d¢ around tne rectanyle

yields

L
-ﬁf T(x=2)[f*(z) - f(zyddz = i fY(x)+ f(x)1 *+ Jg -
-L

- %E) T(x-zg+ io) + o*f(x-z{‘,+io)] (1v)

instead of (11). In this case, (1¢) changes (1) with (3) into

{iDt + % Dy - D + A + % Lbay T{x-zo+ i0) +

+ b*axf(x-zoﬁo)]}F*-F' = U, (lo)

The analyticity requirenent is that F(z) should be analytic in the
usual rectangle except for simple branch points at z, and 25, so that
ft has poles. We have not deternined whether (lb) yields any

solutions of (1),(3) that are not available via (13).

13
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