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ABSTRACT

We discuss somne properties of a certain physically interesting

nonlinear inteyro-differential equation vith periodic Dounddry

conditions. It is the natural periodic analogue of the intermedidte

long wave equation, and it provides a periodic analogue of the

Benja;nin-Uno equation in the appropriate linit. Uue to the speciality

integral operator, the equation admnits a Bkluid transformation, an

infinity of notion constants, etc. Two simple periodic solutions are

exhiDited. Finally we note that the equation nay be transformed into

more than one Kind of bilinear equation.
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The so-called intermediate long wave (I.L.W.) equation (Joseph,

1977; Kubota, Ko and Vobbs, 1976) can be written in the form

I
Ut + u x + zuu x + (Tu)xx = U (1)a

on -< ( x < -, where

ST u =coth 2 (x - y) u(y) dy

and te integral is evaluated in the principal-value sense. Tne

equation can be solved on (-ooo via an inverse scattering transtor:n

(1ST) (Kodama, Satsuma and Ablowitz, 1981), and has the analytical

structure associated with such equations (Joseph and Egri, 191 ;

Satsuina, Ablowitz and Kodana, 1979).

The physical derivation of (I), (i) as a model of the evolution

of long internal waves of moderate amplitude assumes that u(x) has a

classical Fourier transform, and that u vanishes as IxI . Even so,

one ;nay ask whether (1), ( ) admit spatially periodic solutions. This

was done by Joseph and Egri t191,), Chen and Lee (1979), and Nakainura

and Matsuno (198U), using for.hal algebraic methods. Unfortunately,

the solutions so obtained either contain errors or are subject to a

limitation that was obscured by these formal inethods.
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Alternatively, one maly seek an evolution equation for long

internal waves of inoderate amplitude that are spatially periodic.

Then a derivation similar to trie usual one leads to (1), but in the

periodic case (2) is replaced with

L

Tu -- f f. T(x - c.; 6,L) u(c.) d . (, oa)

-L

wn ere

T(x; 6,L) = - + dn Kx cs( i1 (3b)

LI4CtUdI ly, the physical derivation naturally leads to the Fourier

representation of f, given in 3c), which is then transformed into

(3b).J Tnis derivation also requires that IL u dx = U, which we inay
-L

inpose on (1) with (3) without loss of generality. In (Ju), K denotes

the complete elliptic integral of the first kind, Lka) is Jacobi's

Zetd function, and dn(a), cs(a) are Jacobian elliptic functions.

These all have modulus k, determined by the condition Cthat

K'kk)/rK(k) = 6/1-, where s.'(k) is the associated elliptic integral of

the first kind. (All of these functions are uiscussed by Byrd and

Friedmnan, 1911.) The purpose of tnis note is to discuss some of tile

indthemnatical structure of (1) with (3).



An alternative, but very useful, representation of T is its

Fourier series,

T(x; 6,L) i 2: coth (2 L exp~2!x L (ic)

nU

so tnat

Tu = E coth V n .__)n exp(LX) L kJd)

nU

where tOni are the Fourier coefficients of u. This representation

follows from the identities (c.f., 6yrd and Friedman, 1971, #90b.ul

and VAd.51)

Goi

Za qin sin (n

,lK I zK

II Cot lid _ .21 '"n, d
cs(a) dn(a) ct - K + sin

2K ZK K m:i I+ nK

where q = exp(-1fK'/K) = exp(-,o/L), and from the formal representdtion

(Gel'fand and Shilov, 1964, p. JZ)
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co t -  = 2 sin inu .

in 2/2
mn=1

The usual operator on (-m -) nay be recovered simply by replacing the

sum in (3d) with an integral and rescaling. Sinilarly, we nay recover

(2) froin (3) by letting L + -, o fixed. rhen k + 1, K + fL/10, and

one nay snow that

T(x; o, L-) + coth -, k4a)

which reproduces (Z). On the other hand, for o -, L fixed, ve have

k + J, K - a12, and

f(x; o-, L) + - cot 2L "

This is the well-known Hilbert kernel on (-L,L). .4itri this kernel,

(1) is the natural periodic extension of the Benjamin-Ono equation

(Benjaiiin, 1967; Ono, 1975). As one would expect, (1) with (4)

reduces to the (periodic) KdV equation if 6 + U, L fixed.

If u(x) is periodic with period 2L and with zero nean, then (ru)

according to (2) and to (s) are identical. That this is so inay be
,I

seen by rewriting (2) in its Fourier transforin representation, and

recalling that the F.T. of a periodic function is a sun of Uirac

V delta functions (Gel'fand and Shilov, 1964). Thus (1) with (J) ,nay oe



regarded simply as the nost natural way to write the 1.L.4. equation

when periodic solutions are of interest.

The operator I given in (li) is the nost general periodic operator

we have found which satisfies the "T-conditions":

T(uTv + vTu) = uv - uv jr)

(uTv + v u) dx U, Ilj

where u,v have zero inean. We find that (TI), (T2) are necessary

conditions on the T operator in order for (i) to have more than the

stdndard number of conserved quantities. With these conditions the

above evolution equations can be expected to be in the IST class.

Condition (T2) follows fro,n the fact that T(x) is an odd function. To

establish (TI) we use the representation (3c). Calling

Tn = icoth nio/L, and On, nq the Fourier coefficients of u, v

respectively, assuming 0 = 0= (i.e., zero mean) and using the

convolution theorem, then

b



T(u Tv) fn Z ~ finrm n- n exp (iL~

n

- -~ 21 Vlflexp iuIx)

n n

17 17 m fn n-mexp(inax~

n n

S7x) :~x) 7 (vru) t(Tu)kTv) )

where we have used the identity

cothA cothb3 I + cothkA-d3)(- cothA + cothl3).

The order of sulmation in (b) may Ue interchanged if JIG,,is FIQnl

exist.
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The need for the f-conditions can oe seen froin the fullowin,. Tne

usual I.L.W. equation on(--,-) was considered by Satsuina, ADlowitz,

and Kodamna (1979). They showed that the derivations of the constants

of notion and of the 88cklund transfornation do not depend on the

specific kernel of T, so long as T satisfies conditions (TI) and (Te).

This i.nplies that these fornulae will remain valid for equation 1)

with (3) since the T conditions are satisfied. Actually one easily

verifies (by aifferentiation) that the constants of notion given by

Satsuina, Ablowitz and Kodamna (1979) are also constants of notion of

ki) with (3).

One may use the yeneralized Miura transforination,

u = ( -Vx+iTVx+;eiV)/2 to derive a generalization of the so-called

modified I.L.W. equation. Namely if [u] = U represents ki), and

Al vj = Vt + (1/0+1)v x + kTV)x x + VX e i V + i~x(TV)x U

then usiny tUe T-conditions wre have:

l Luj kMVJ (U

where

II
x + iT x + ip ei V)

Similarly it can be proven, by using the results ot Fokas and

Fuchssteiner (1980) (whicn also apply to tne above Aiurd-type

transformation) that (1) adinits an auto-6cklund transforalation if and
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only if (Ti), (T) are satisfied.

The IST pair used by Kodaina, Satsu-na and ADIowitz (19 1) is also

valid here. However, the sinple compatibility drgunent does not

indicate the importance of the T-conditions. Namely, consider a

linear scattering problem and a sequence of associated time evolutions

of the form:

i ++ (u- X)( 7 d ,

L~n n- k~b)

t =, n ,, ...

(Ia) is to be thought of dS a differential Rie.nann-liilbert proDle.n to

find ,- (i.e., - are the boundary values of certain analytic

functions) given an appropriate funtion ukx). For each n,

* co:npatibility of kla,b) yields an evolution equation; naiely,

requiring Vxt = "txI and setting all coefficients of x, , V ,xx,

etc., to zero after using (7a) to elimiinate derivatives of .+, yives

an algorithmic procedure to determine coImpatible equations. Tne

equivalent to the first two equations of KdV nierarchy are obtained as

follows. First, d + A-, whereupon we find A+ - A- = U.

Taking A' = Ao = const, the conpatible evolution equation is ut = ux.

Second, = ia2 + izla x + iA, we find B - = J,

A+ - A- = -Ziu x .  Taking d! = Bo = i(ZA+1/o) = const,

A± = l-iUx - kTulx, the compatible evolution equation is (1), without

need for the T-conditions. The underlying reason why such conditions
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nust be added, and whether, in fact, (3) is the nost general singular

integral operator satisfying (TI), (T Z) are open questions. ',latsuno

(198U) has given a different algorithin to aerive sucn a hierarchy of

equations.

Next we consiuer some special solutions of (.1) with (3). For a

Wave Of permanent forn, Jt -* -cdx, and (1) nay be integrated once to

(I-c) u + u' + (Tu)x + A 0 zs

with A constant. It has been claimed (Joseph and Eyri, 1976; Chen

and Lee, 19/9) that

U(X -ct- (nnlL) sinh (nro0/L) (d

cosn(.n~~/ + CU cOLlhX - ct)/LJ a

is a solujtion of (6). its Fourier series representation is

n 2m nm , oYb

UlL~ +- 1)mfl exp L -2) Cs(b

Thdt ('J) does not solve (8) may be seen by computing dU/dO from (9a)

and (9b), and Tu from (3d), because it turns out that

dU/do -a(Tu)/Jx. The correct solution is

AW



U(X-Ct) -. In,/L) sinh n.O/L)U - =t kiOa)
cosh (nuo/L) + cosL(ni/L)(x -Ct - i )j

where < -o. Its Fourier series is

= n- I) m
T sinn --m-ii Exp tini(, , kiub)

and its validity nay be verified by computing du/d6 froin lia) anu

(IJb). rhis solution is complex-valued.

Periodic solutions nay be obtained systematically via Hirota's

nethod, revisiny sliyhtly the nethods of Cnen and Lee (191J), ldkanura

and Aatsuno (196u), and Satsu.na and Aolowitz k49d). Let

f-(x) - f(x;io), let f(x) be periodic (eL) dnd let f(z) be analytic in

the rectanyle: -L - Re(z) - L, -o 4 I.n (z) • o. Then by intesratiny

r(x-. io) f(,4o,, around this rectangle, one finds that

L

L T(x-z; o,L)Lf+(z) - f-(z)ldz i Lf+kx) + f-kx) j  JO

-L kilj

where Jo is an uninportant constant. It follows that if

u(x) : i Lf+(X f-(x)j (1e)

where

* 11
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and if f(x) is properly analytic, then (.1) with k~J) becomes a bilinear

eq1uat ion,

(lt + ±Dx - 0 + A)+ F = U1)

with the usual notation Le.y., Ox) a.b =_(dx-dx') a(x)b(x')IJs...j, dnd

A = A(t). We emnphasize that only those solutions of (13) that dre

analytic in tile rectangle yield periodic solutions of (1), a fact tnat

was overlooked previously.

The simplest real-valued solution of (1) withl (.J) Wds given by

Nakanura and Matsuno (1930). It may De written in the for~n

ut.; mn) iL&n L (Kni , i~;11) - L(n) + 14a)

where t.x-ct+x 0 , and n is the modulus. The analyticity condition is

that

L K(m) ' 1b

or, because o/L K'(k)/K(k), that tile nodulus of T exceed the aioduluS

of the solution. There seems to be no sinple formula for the speed of

the wave.



Finally, we note that (13) is not the only "bilinear" equation

that may be obtained from (1), (3). For exa;nple, let f(z) have a real

period (2L), and be analytic in -L 4 Re(z) 4 L, -o 4 I-n(z) 4 o except

for two poles at z = zo and z Lu < I[n(z o) < oi with residues b and

b*. rhen the integral of f T(x- ,+io) f(,j,. around tne rectangle

yields

L

LI.f T~ x-z)lf+(z) - f-(z)Jdz = i Lf+(xJ + f-kx)j + Jo-

-L

- Lb f(x- zo+ io) + * fI(x - z+ (b

instead of (11). In this case, (1Z) changes 4i) with (3) into

i Ut +iD x -2 + A + - Lb dx (X- z+ i) +
L

+ b*dx X - Zo + i6)i F+ F- U . (lo)

The analyticity requirenent is that F(z) should be analytic in the

uSudl rectangle except for siinple branch points at zo and z*, so that

f! has poles. We have not deter-nined whether (1b) yields any

solutions of (1),(3) that are not available via (13).
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