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SECTION 1

INTRODUCTION

'I

This is the Fourth Quarterly Progress Report on Advanced Target Tracker

Concepts, NV&EOL Contract No. DAAK70-79-C-0150. It reports the results

of the work performed between 1 July 1980 and 1 October 1980.

Tracking targets in video from TV and FLIR sensors is essential for fire

control in weapon systems using electro-optical target acquisition.

Typical Army applications include the remotely piloted vehicle (RPV), the

advanced attack helicopter (AAH), and the combat vehicle (CV). Target

tracking in these applications yields the target position for accurate

pointing of a laser designator for a smart munition, such as Hellfire and

Copperhead, or for fire control of conventional weapons.

Currently fielded trackers rely on numerical correlation over successive

frames on a window around the target to be tracked. Several variations

of the basic correlation scheme exist, and a detailed survey can be found

in wAssessment of Tracking Techniques."1 Conventional trackers are

capable of tracking a manually acquired single target in relatively

clutterfree backgrounds. However, target tracking requirements for the
increasingly sophisticated weapon systems have grown beyond the

capabilities of the current correlation trackers.l' @

1Benjamin Reischer, "Assessment of Target Tracking Techniques,"
Proceedings of SPIE, Vol. 178, Smart Sensors, 1979, pp. 67-71.
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In this program Honeywell Systems and Rsearch Center is developing an

aovanced zarget tracker approach, oaseo on oynamic scene analysis, *inicn

,qill satisfy these requirements. This approach integrates tne target

screening ano tracKing functions wnicn can provice automatic acquisition

ano multiple-target tracking through low signal-to-noise ano nign clutter

conditions. This is done with a target screener and minimal additional

hardware.

Figure 1 is an overview block diagram of the basic approach which builds

the advanced tracking function upon the scene analysis functions

performed by the target screener. The basic premise is very simple: the

target screener segments and classifies significant objects (targets and

clutter) in real time on a frame-by-frame basis. Symbolic descriptions

of the objects in each frame are used to find the corresponding objects

in previous frames encompassing the history of the scene.

PREDICTED INFORMATION

MATCH NEW OBJECTS UPDATE
SEGMENT TO SCENE MODEL SCENE

NEWIMAGE INTO OBJECTS FROM THE PAST MODEL TRACK
FRAME HISTORY INFORMATION

9 UPDATE OBJECT CLASS

* PREDICT NEW SIGNATURES

rw. •-- * UPDATE STATE VECTOR

Figure 1. Overview of the Advanced Target-Tracking Approach
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Once the corresponding coject matches are made, the scene model, which

"nc"uces the sensor ano ocoject cynamics as well as tne target classes, is

updateo. Because we are keeping track of the positions of all tne

objects in the scene (targets ano clutter), we can predict impending

occlusion ano future target/background signatures. M;ultiple-target

tracking, of course, comes free. The scene model, based on the past

history of the scene, can extend beyond the current field of view. This

allows reacquisition and tracking of targets which wander in and out of

the field of view because of sensor platform motion.

A complete block diagram of the major functions necessary to implement

the advanced target-tracker concept is shown in Figure 2.

TARGET/
* BACKGROUND-- i I PREDICTION " !

STECHNIQUES

J MOTON- MULTIFRAME TARGETMOTION ENHANCE OBJECT- I SCENE MODEL WIT DETECTION/

IMAED MBCTN OBJECT AND PLATFORM RECOGNITION/IMAG MAEATHN -VDYNAMICS AND I i PRIORITIZATION AND
SEGMENTATION TECHNIQUES OBSCURATION CRITICAL AIMPOINT

SCHEMESSELECTION

Figure 2. Advanced Target Tracker Program
Overview with the Key Functions
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The functions representing the major thrusts of the current program are:

o Efficient motion-enhancec scene segmentation schemes,

0 Cbject-matching tech nlques capable of precise matchirg 3f

cojects in the new frame to the scene model derived from :

previous frames,

o A scene model capable of characterizing object and platform

dynamics, target/background signatures, and object occlusion,

o Target/background signature prediction techniques to improve the

probability of target acquisition in low signal-to-noise ratios,

o Advanced target detection/recognition/prioritization and

critical aimpoint selection algorithms which can exploit the

dynamic multiframe information.

SUMMARY OF PROCRESS

In this reporting period we have accomplished the following results:

0 Velocity estimator improvement: We have developed an algorithm

which promises to be a robust estimator of the target velocity

even in the presence of extensive scene motion. The technique

is capable of measuring subpixel target motion between frames

and averaging the velocity estimates over several frames. We

have demonstrated consistent velocity estimates for the

200-frame tracking sequence. The improved velocity estimator

makes possible reliable prediction of shapes and occlusion in

future frames.

o Target Homing and Critical Aimpoint Selection: We have begun

work on the terminal homing and critical aimpoint selection

facets of the tracking system. We are addressing two

issues--avoiding the drifting of the target track point as the

44
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sensor approaches the target and automatically selecting the

critical aimpoint itself. The tracking technique oaseo on our

object models makes possiole the association of the aimpoint

from one frame to the next over several frames ano thus prevents

tre drifting of the aimpoint common to all conventional target

trackers. We have oigitized a FLIR sequence from a terminal

homing run to evaluate this tracking simulation in the terminal

homing application. We have also processed these frames through

the segmentation program as a first step in the simulation.

We have devised a model-based approach for autonomous selection

of the critical aimpoint, extenaing our results from the

advanced pattern matching techniques (NV&EOL Contract

#DAAK70-79-C-O114) and the syntactic target recognition results

from the automated imagery recognition system (DARPA Contract

#F33615-76-C-1324).

PLANS FOR THE NEXT REPORTING PERIOD

In the next reporting period we intend to complete all system simulation:

o Process the 200-frame sequence with the new velocity estimator

incorporated into the system simulation,

o Complete the terminal homing tracking part of the system

t simulation and apply it to the result of the segments on the

homing sequence obtained in this reporting period,

o Perform limited simulations of the model-based critical aimpoint

selection technique on representative FLIR imagery,

o Perform systems analysis with typical missile parameters to

evaluate the feasibility of the proposed critical aimpoint

selection technique,

'2
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QRCANIZATION OF THE REPORT

The remaining sections of 
the report are organized 

as follows:

o Velocity Estimation

o Terminal Homing

o Critical Aimpoint Selection
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SECTICN 2

VELOCITY ESTIATION

In previous reporting periods we have developed techniques for estimating

platform dynamics between frames, using the object matches in those

frames. With these techniques we have successfully demonstrated that

scene motion can be determined to within several pixels. We have also

shown that when this scene motion is removed, a moving target is easily

distinguished from stationary clutter. We have incorporated the

information from several frames into a useful model of the objects in the

scene. The model includes shape, position, and velocity data.

In this reporting period we have modified the velocity estimation

algorithm to give a more accurate estimate. Previously, computation of

the velocity of an object was based on a match between the current frame

and the previous frame. The velocities computed by this technique were

small for all objects in the scene, both moving and stationary, because

of the small translation of the target between frames. The velocity

estimation approach we currently use is based on object matches between

frames which are more widely spaced. This approach gives a better

estimate of the target velocity.

The target velocity approach, described in the previous report, is

diagrammed in Figure 3. The silhouette matcher finds object matches

betwen frames 1 and 2. It also computes the displacement of the object

between frames. The effects of the scene motion are removed from the

computed displacement to yield the object velocity in the image.

Similarly, matches between frames 2 and 3 determine the velocity of the

objects in frame 2. The output of the velocity estimation is averaged

S-'
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.. .sveral fr.mes and tren stcred i4. the Scne mocl. The s:_cr:
velccity is then used for shape prediction, occlusion reccgniticn, 3nc

position estimation as described in the previous report.

This velocity estimation approach is adequate for frame-to-frame tracking

of moving targets and for targets which are partially obscured. Examples

of the successful application of this approach were presented in the

previous quarterly report. However, for prolonged obscurations of the

entire target, a more accurate estimate of the target velocity is

required. Without an accurate velocity estimate, the error between our

predicted position of the obscured target and the actual position will

increase with every frame. Since our shape prediction algorithm relies

on knowing an accurate position for the target, we will be unable to

mactch the obscured target when it does appear.

There are several sources of error in our velocity estimation procedure.

First, the small interframe motion of a moving target (usually less than

1 pixel) is lost in the 1 to 3 pixel error associated with the scene

motion estimate. Further error is introduced in the silhouette matches.

This algorithm rounds all object motion to the nearest pixel. Thus, for

small interframe target motion, we can introduce up to 50 percent

roundoff error. The effect of roundoff error is also shown in Figure 3.

The actual target motion over six frames is 2.2 pixels; however, because

of roundoff we only see a 1 pixel translation.

In order to minimize the effects of scene motion and roundoff error on

the velocity estimation, we use the approach diagrammed in Figure 4.

Frames which are widely spaced in time (usually 3 to 10 frames or 0.3 to

1.0 second) are matched.

9
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Ouring this time the moving taroets will have moved several oixels

relative to tne stationary backoround oOnects. In this manner tne

rounOoff error can be reduced from 0.5 pixel in one frame (50 percent) to

0.5 oixel in three or four frames (12 to 15 percent).

Furthermore, we have found that the error in the scene motion

transformation is independent of the number of frames between two

frames. We have successfully aligned frames which have been separated by

30 frames and displaced by over 60 pixels. Therefore, if we match frames

which are separated by several frames, then the relative motion of the

target will have increased and the effects of errors in the scene motion

transformation will be diminished.

Frame-to-frame matching is still performed in order to have accurate and

current position and shape information. The frame-to-frame matching also

provides links between the frames used for the velocity estimation. The

matching objects in the two widely separated frames can be found by the

successive frame matches. Using these links, we can rapidly find

matching objects in the two frames used for velocity estimation, even

though these frames may be as far as 1 second apart.

SIMULATION RESULTS

The velocity estimation algorithm described in the previous paragraph has

been implemented as part of the Advanced Target Tracker Simulation in the

Honeywell Image Research Laboratory. The velocity estimation procedure

is controlled by several parameters which are set when the simulation is

initialized. These parameters control the frequency at which velocity

estimation is performed and the delay between frames which are used in

the calculations. The results discussed in the following paragraphs were

obtained by performing the velocity estimation every other frame and
matching frames which were 0.8 second apart.

- 11



In order to demonstrate the improvement in our velocity estimator, .-ie

have made histograms of the distribution of coject velocities using tne

two estimation techniques. These are shown in Figures 5 ano 6. The

histogram in Figure 5 contains the velocities as computed by the old

metnoo. Notice that both tne stationary background oojects and tne

moving targets have very small computed velocities. These velocities are

based on the motion of the objects between successive frames (0.1 second

in our simulation). As we expect, the motion of the targets between

successive frames is very small.

The histogram in Figure 6 contains velocities as computed by the method

described in the previous paragraphs. Notice that the computed velocity

of most of the background objects is less than 3 pixels over the eight

frames. The moving targets have shown a velocity of 4 or more pixels.

The velocities in this histogram are a more accurate representation of

the actual velocities of the objects in the scene than are those in

Figure 5.

Ir
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SECTION 3

TER:.1INAL HC;"iING

This section addresses the terminal homing facets of the advanced target

tracking system. As we have seen earlier, the advanced target tracking

system being developed in the current program has applications not only

in stand-off platforms, like combat vehicles and attack helicopters, but

also in remotely piloted vehicles and terminal homing munitions

(projectiles and missiles). In the latter applications, the key issues

are:

o Tracking a target (or targets) as the sensor rapidly moves

toward it,

0 The selection of a critical aimpoint on the target either to

guide a terminally homing munition or for laser illumination for

a laser seeker.

Tracking while homing and critical aimpoint selection are addressed in

Section 4.

TRACKING IN THE TERMINAL HOMING MODE

With conventional trackers the principal hurdle to successful tracking in

the homing mode is that the target grows in size as the munition

approaches it, almost filling the field of view. Conventional trackers

(centroid, edge-based, and correlation trackers) are essentially designed

to track small objects in a small 16 x 16 to 32 x 32 pixel tracking

window. For various reasons they tend to lose track as the sensor

approaches the target. Centroid-based trackers which depend on a

thresholdable target contrast with respect to the background do not work

at all when the target itself fills the field of view. Edge-based

15



trackers, on the other hand, tend to drift to the edge of the target and

upon impact only glance it, lowering the probability of kill.

Correlation trackers, which utilize correlation against a reference

vinoow from one frame to the next, do possess the aoility to update the

-reference, in an attemot to keep the continuity of the track point on tne

target. While this works reasonably well at long ranges, at closer

ranges, when the target is growing rapidly, the usual form of recursive

filter applied for reference prediction breaks down. Further, even

correlation trackers require internal target contrast. As the target

almost fills tIe field of view, the tracker has no.way of knowing the

location of the track point it has been following from the longer range.

The symbolic object model-based tracking technique developed in the

current program offers a consistent framework for successful tracking in

the terminal homing mode as well. The approach is based on the fact that

large extended objects in the field of view can be represented by the

network structure connecting the object models in each frame. This

provides a framework for representing large multicomponent objects in the

terminal phases of a terminal homing mode. Even more important, the

object model (with its links to the past frames) provides a natural means

* for associating the track point in the current frame with the previous

track points at longer ranges.

Figure 7 illustrates our concept, which is now being implemented. At

very long ranges, a target is only seen as a blob (which could correspond

to the engine on a tank). The autonomous acquisition capability built

into the tracker detects the blob and the system keeps track of it as a

distinctive object in the field of view. As the sensor approaches the

target, lower contrast parts of the target (and also the background)

become visible and are segmented and become part of the scene model. The

proximity association rules allow the representation of multicomponent

objects like a hot engine and a cold hull. When this happens, note that

we can still distinguish the original track point in relation to the new

16

tt



cau

z 
to

CD:

-4

.4-j

-4

go 0

o 0o

r a I.-c
2t zcc
-a II A1

00~ .jJAA% C

U

17



4

object model. As the sensor draws even closer, the ooject components

.,icn ,ere segmented as inoivicuai oojects tend to oreaK up OecauSe inrer

contrast witnin the oloos oecomes apparent. The cojecL mocel, nD.,ever,

matcnes the new components to the older extendte c.Ponents ac

eszaolishes links as shown in Figure 7. These links help associate tr-e

original track point in relation to the new object models. Thus, even

when a target entirely fills the field of view, we still know where we

are relative to the original track point because the history of the track

point has been associated through the object model. This is the key to

the success of this approach, which prevents the drifting of the aimpoint

as the sensor approaches the target (as happens in the conventional

target trackers).

TERMINAL HOMING SIMULATION

We are now implementing the above approach in the system simulation. The

current simulation requires minor modifications to accommodate the

history of the object models over several frames as required in the

terminal homing scenario. To develop and evaluate the above approach, we

have digitized a 45-frame sequence containing a homing run on a tank from

our FLIR video tape library. Figure 8 shows a representative set of

images from this sequence from long range (with the target approximately

20 pixels wide) to near-in (200 pixels wide). This sequence illustrates

the problem which a conventional target tracker in a terminal homing mode

would face. For example, as the sensor approaches the target, the

perspective changes. The gun barrel which was hardly visible at long

ranges becomes a dominant feature at close ranges. Further, the internal

contrast of the target is vividly seen in the close-up frames in the

sequence.

The terminal homing tracking system will operate on the object models

extracted by the scene segmenter. Therefore, we have processed 45 frames j
from this sequence through the PATS segmentation simulation

18 3



Figure 8. Representative Frames From Homing Sequence.
The target grows from approximately 20 pixels
wide to almost 200 pixels with a marked increase
in internal contrast.

19
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Figure 8. Representative Frames From Homing Sequence (continued)
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Figure 8. Representative Frames From Homing Sequence (concluded)

21



as a first step in the simulation. Figure 9 shows the result of the

segmentation for the sequence of images shown in Figure 8. These results

corroborate the basic premise upon which our concept for homing is

based: at long ranges the targets appear as contiguous blobs and tend to

break up into multiple components as the sensor approaches the target and

its internal contrast becomes visible. The breaking up of the target as

the sensor approaches is due not only to the inherent detail in the

.. target but also to the fact that PATS has a goal-oriented segmentation

scheme designed to find small blobs. The thresholds within the

segmentation simulation tend to break up large targets into small

pieces. However, the proximity criterion for associating object

components will link the multiple components corresponding to each object

with directed links within each frame.

The next step in the simulation process will be to modify the cbject

model algorithm to extend the history of the object model over several

frames and apply it to the output of the segmentation process on the

above sequence. As seen above, association of the object components over

the frames as the target grows larger allows the location of the track

point on the target even as it fills the field of view.

MODIFICATIONS TO THE SIMULATION

In order to apply the tracker simulation to the homing sequence, we must

have complete outlines of the objects in the scene. Without complete

outlines it would be impossible to perform the associations we have just

described. The current version of our segmentation algorithm limits the

object length to 70 scan lines. This is a reasonable constraint when we

are processing only long range views where a target spans only several

scan lines. However, for these experiments we will process frames with

targets of several hundred scan lines. The segmentation algorithm will

be modified to find a complete outline of all extracted objects.

22
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Figure 9. Segmentation Results for Images in Figure 8.
Note that at long ranges the target appears as

a contiguous blob and tends to break up as its
internal contrast becomes visible.

23
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Figure 9. Segmentation Results for Images in Figure 8 (continued)
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Figure 9. Segmentation Results for Images in Figure 8. (concluded)

25



The tracker simulation will be modified to include association rules

described in previous paragraphs. We expect the targets to be broken up

into separate components as the range decreases. Each of these

components will match some part of the model. In response to these

one-to-many matches, the program will link all the segments from the

current frame. This linked list of object segments will become the model

for matching in subsequent frames. The list of segments could also be

input to a syntactic model matcher to identify target components and

perform critical aimpoint selection as described in the next section.

26



SECTION 4

CRITICAL AIMPOINT SELECTION

Terminal homing is closely associated with the problem of critical

aimpoint selection, that is, the selection of the desired point of impact

on the target by an autonomous munition or the desired point of laser

illumination by an RPV or AAH-based laser designator. The requirements

for critical aimpoint selection depend upon the application. In terminal

homing munitions, depending upon the maneuverability and velocity of the

target, we can defer the selection of the critical aimpoint until the

distinctive components of the target become visible. This leads to a

model-based recognition and selection of the critical aimpoint using

syntactic techniques.

In 3tand-off applications such as the RPV and AAH, where the critical

aimpoint has to be chosen for laser illumination, the applicability of

the model-based techniques depends upon the resolution of the system and

the range. For extremely long ranges, when only the hot spot of the

target is visible, the choice is either the centroid of the hot spot or a

model-based approach which selects a point in the field of view relative

to the hot spot, depending on the target orientation relative to the

sensor and the class of the target being tracked.

MODEL-BASED CRITICAL AIMPOINT SELECTION

This approach requires a knowledge of the specific targets (like the T62

or T72), their radiance distributions, and the desirable critical

aimpoints within the target. This is especially important in suppressed

thermal signature targets where the hot engine is not obviously

distinctive as it is in the targets that we have processed in our

simulations. Briefly, the technique works as follows: each target class

27
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is represented by a model composed of isothermal components and their

- 2imensional spatial ralatLons. Tha syntactic mcdal-matc,ng

p:;oecure aztempts to matcn the components extracted Oy tne segmenter

,vit- the mocels of the sndi~ate targets and finds the critical ai-mpirt

for the specific class of tne target. The difficulty of this technique

depends upon the amount of a priori information available. If the

orientation of the target relative to the sensor is available, then the

model-matching process only has to allow for rotation, translation, and

scale change. For example, the orientation can be deduced either

through field intelligence or from the direction of the motion of the

target relative to the background. On the other hand, if the target

orientation is an unknown, then the model-matching process has to account

for viewing perspective differences as well.

In the next reporting period, we will attempt to develop a critical

aimpoint selection algorithm based on model matching. The principal

difficulty, however, is that radiance maps are not available for the

targets in our FLIR data base. However, critical aimpoint selection may

still be possible through recognition of distinctive components of the

target--especially the gun barrel as we see in Figure 10. The knowledge

of the elevation angle of the sensor and the position of the gun barrel

relative to the edge of the target can be used to deduce the orientation

of the target and hence the critical aimpoint of the target. Figure 11

shows the syntactic technique used for recognition of targets which will

be extended in this program to perform critical aimpoint selection. Each

target is represented as a hierarchical description consisting of its

components. This representation technique will be modified in the next

reporting period into a three dimensional model rather than merely a two

dimensional one as demonstrated in the AIRS contract (Contract No.

F33615-76-C-1324).

i i
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Figure 10. Critical Aimpoint Selection through Component Recognition.
- In many FLIR images of tanks the gun barrel would provide a

good cue for critical aimpoint selection. In the example
above, the barrel is clearly visible in the FLIR image and
has been clearly segmenteld by the segmentation algorithm.
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Figure 11. Syntactic Recognition Technique Which Can Be
Adapted to Perform Critical Aimpoint Selection
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SYSTEMS ANALYSIS FOR CRITICAL AIMPOINT SELECTION

As mentioneo before, the precise technique to be used for critical

-inpoint selection in a given application tepends upon the avai dle

resolution of the target at the minimum range at qhich the aimpoint has

to be selected. For example, in the autonomous muntion application,

limited maneuverability may preclude changes in course close to impact.

This, in turn, implies that the critical aimpoint has to be selected at

longer ranges. Therefore, the parameters which will impact the

effectiveness of a given critical aimpoint selection technique are:

o Velocity of the munition

o Maneuverability of the munition (new rate)

o Resolution of the sensor

o Field of view of the sensor

In the next reporting period we will assume typical parameters for these

system variables to determine the feasibility of a model-based critical

aimpoint selection technique for the missile application.
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