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A

Chapter I
INTRODUCTION

This paper reports the results of a rather lengthy and
detalled investigation of some problems that arise in the defense
of targets by Interceptors when attackling weapons arrive at each
! target sequentially. TFor some time there has existed a parti-
cular interceptor deployment, generally known as the Prim-Read
deployment, that equallizes the probabllitles that each of a
prescribed number p of attacking weapons actually destroys the
target. (See the discussion of related research in Chapter VIII.)
The parameter p 1s chogen by the defendlng side, The Prim«Read
deployment has long been suspected to possess (some sort of)
optimality properties for the defending side, but these proper-

‘ ties had never been carefully formulated or rigorously estab-

B lished. 1In this paper we f1ll both gaps, at least partially.

A number of optimallity propertlies are formulated and shownh to

be satisfled, in many cases unlquely, by Prim-Read deployments.

We also pregsent extenslve discusslons of the physical interpre- ;

tations and practical implications of our optimality results. !

- e E B irgetilind” Fow ¥

L ey i -

A. THE UNDERLYING PHYSICAL PROBLEM

Let us begin with a discussion of the physical real-world g

problem that has motlvated essentially all work on Prim-Read
! deployments. That problem 1s the defense of point targets ;
E_ agalnst attacking ballistic missiles by means of interceptors,
which are missiles (ABMs) themselves. On the national scale, .
one 1s deallng with the defense of a nation's entire population
K and industrial capaclty. Because of the defending slde's
“ e limited interceptor resources, it will thus be impossible (in
general) to defend all of the targets. The defending side

1




must choose which targets to defend and, for each defended tar-
get, how to allocate interceptors assigned there among incoming
attackling weapons, all 1n a manner that attempts to minimize

some measure of target value destroyed. The situatlon is further
complicated by the defending slde's not knowing how the attacking
slde will ailocate 1ts weapons among the targets and alsc by the
possibllity that the attacking slde may be able to discern the
interceptor deployment and may allocate its weapons on the bagis
of such knowledge.

Yet another complication arises 1f attacking weapons arrive !
sequentially in time at each target. To each attacking weapon
there must be assigned some of the Iinterceptors deployed at the
target and this assignment must be mede without knowledge of
how many additlonal attacking weapons will follow. Such assigne- !
ments could therefore be prescribed in advance of any attack and
the defending side may 2ven wish to allow for the possibility of
thelr being known to the attacking side.

-~

Despltfe all the difflcultlies which the structure described
above imposes on the defending side, we shall show that there
exlst reascnable and in some cases even optimal deployments
that can be undertaken. Such deployments can (1) minimize the
expected target value destroyed, (2) limit the use which the
attacking slde can make of 1ts knowledge of the deployment,

(3) limit the effects of rational actions availlable to the at=-
tacking side, and (4) force the attacking side to choose actions i
known to the defending side. That Prim-Read deployments possess '
such properties, and in precisely what form, 1s established in
Chapters III through VII of this paper. Often, i1t is only Prim-
Read deployments that have these properties.

We have not yet considered in detall what the defending
side's objective should be. 1In general, that objective should
be to make optimal use of limited interceptor resources accord- .
ing to some measure of target value destroyed. As discussed O
below 1n this Chapter and at some length in Chapters IV, V and :

2
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VI, we shall deal wilth two such criterla: target value destroyed
and target value destroyed per attacking weapon committed. At
the moment, however, we wish to conslder the defending side's
objective in somewhat more general (albeit vaguer) terms.

Let Vd denote the payoff function, 1n terms of target value
destroyed, to the attacking slde when the defending side imple-
ments the deployment d (& precise definition of a deployment 1s
unnecessary at this point; e¢f. Chapter II). For each number 1
of attacking weapons, Vd(i) 18 the maximum expected target value
destroyed by 1 attacking weapons, where the maximum is over all
allocations of those weapons among tlie targets, with the deploy-
ment d held fixed. We propose, as has been proposed elsewhere,
that the deployment d be chosen so that the graph of Vd is of the
form shown 1n Figure 1. That is, d should be chosen such that

_—

Vg(t)= MAXIRAM EXPECTED TARGET VALUE DESTROYED

'. I.'

2187921

Figure 1, PROPOSED FORM OF PAYOFF FUNCTION
3
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Vd has the followlng properties:

1) Vd 1s continuous, concave and lncreasing (the latter, of
course, ls unavoldable);

2) There 1is some i* such that Vd is linear on the interval
[0,1'] H

y 3) On the interval (i%,1¥%], V, is strictly concave.

Although 1t 1s not clear yet, the linear portlon of Vd represents
attack and deatruction of defended targets, while the strictly
concave segment corresponds to destructlion of undefended targets.

The reasoning underlying thls proposed payeff function
merits more detalled explicatlion, some of which follows here,
and more of which appears in Chapter V and also in Chapter VIII.

In general, the defending side will not possess sufficlent
interceptor regources to defend all the bargets. If there are
targets of different values (as there will be in moct cases),
then the more valuable targets should be defended and the less
valuable targets must be left undefended. The reason for this
1s that the attacking side must never find 1lnitially undefended
targets more attractlve than defended targets, for otherwlse
the defending side's resources are being wasted. Cruclal to
this line of argument, and a tenet of many philoscphies of
defense, 1s the ldea that the purpose of defending some targets
1s to force the attacking side to expend so much of its resources
attacking the defended targets that not all targets can be
attacked. Therefore, the deployment of interceptors at defended
targets must be such that the attacking side will commit enough
attacking weapons to destroy all the defended targets before 1t
attazks any of the undefended targets. This is the target
defense principle upon which many of our results rest.

In Figure 1, 1i* is the number of attacking weapons neces-
sary to destroy all the defended targets, and i** is the number
of attacking weapons rneeded to destroy all the targets. To the

3
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right of 1##%, the payoff function 1is constant. Between i* and
i##* the payoff function 1is strictly concave. However, we have

not yet Jjustified linearity of V4 on the interval [0,1*], which
corresponds to destructlon of the defended targets.

To make that Justiflcation, we begln with two observations.

1) Regardless of precisely which targets are defended, they
must be defended in such a manner that the slope, s, of Vd Just
to the right of i%*, which corresponds to the point at which unde-
fended targets are flrst attacked, be less than or equal to
the slope of V, everywhere on [0,i*]. This is a consequence of
the tenet that defended targets must always remaln, even account-
ing for possible prior destruction, more attractive than unde-
fended targets, up to the point where sll defended targets are
destroyed. 1In particular, therefore,

» "
Vq(i%) > 1%s,

2) The value of i% determines Vd(i*), which 1s simply the
total value of the defended targetst

The restrictions engendered by these observations are
deplcted graphically in Figure 2. Because of the slope requlre-
ment, on [0,1%*] the payoff function must lie everywhere above
the dotted line, which has slope s, in Flgure 2. Moreover, if
the graph of Vd ever Intersects the dashed line, whlich extends
the graph of Vd backward from i* to 0 with slope 3, it must
remain along this line up to the point 1%, The payoff function
must then be of general form shown in Figure 3.

There are (at least) three ways to force linearity of Vd
on [0,1i*], which we now discuss.

1) If

Vd(i*) = ¥g,
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which would essentlally always be the case were it not for dis-
creteness difficulties (targets are discrete in our model and
nearly discrete, at least, in reality), then the dotted and
dashed lines in Figure 2 coincide, which entalls a payoff
function of the form shown in Figure 1, whose derivative is
continuous at i%,

2) With i*% and hence s and Vd(il) determined, the defending
side should seek to minimize the maxlmum slope of the payoff
function Vd on the interval [0,1%]. The rationale for this goal
1s that by doing so the defending side limits the maximum effec-~
tiveness of any single attacking weapon. To realize this goal,
the defending side, in view of the limitatlions »r epresenfed in
Flgure 2, should choocse the deployment d in such a manner that
Vd is linear on [0,i*]. When this 1s done, the slope of Vd on
[0, 1#] will be

V(i)
sk = -
In general, 1t will then be the case that s* > s, which 1s cone
aistent with the previously discussed principle that defended
targets always be more attractive than undefended targets.
Consequently, the derivative of Vd willl be dilscontinuous at
i1*, but will remain decreasing, preserving concavity.

3) Also with i* previously specified, the defended targets
should be made equally attractive, attacking weapon by attacking
weapon, to the attacking side; this leads directly to linearity
of V4 on [0,1%], with slope there the s* given above. Arguments
supporting this particular assumption are somewhat vague grounds
of symmetry and uniformity and also analogiles to a large number
of decision-making models in which optimal solutions tend to

possess an appropriate (and often obvious) uniformity property;
cfo Eu,s,?].

Any of the three lines of reasoning Just described suffices
to yleld a payoff functlon Vd of the form shown in Figure 1.
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Questions that naturally arise at thils poilnt concern possible
optimality of deployments with payoff functions of the given
form and implicatlons of optimality results for the decision=-
making processes of both sides and on the underlying problem of
interceptor defense of point targets. It 1s such questions that
are addressed 1n this paper. Deployments with payoff functlons
of the form shown in Figure 1, when more carefully defined, B
will be called Prim-Read deploymente. Our principal mathe-
matical results establish that Prim-Read deployments possess a
number of (theoretical) optimality properties; ensulng discus-
glons attempt to clarify and illumlinate important practlcal
consequences of the optimality properties. In many cases, we
are able to demonstrate that Prim-Read deployments uniquely
possess certalin optimallty properties. Finally, nonoptimality
of Prim-Read deployments 1n some situations of interest 1s also
demonstrated.

" In terms of the mathematlcal model to be presented in the
next Sectlon, an absolutely essentlial feature is our assumptlon
that attacking weapons directed at each target arrive there
sequentially in time. For the underlying physical problem intro-
duced -at the beglnning of thils Sectlion, this 18 a plausible
assumption because the attacking side will not wish to reveal
i1ts allocation of weapons earlier than necessary; otherwise the
defending side could possibly alter 1ts lnterceptor assignments
and decrease the target value destroyed. Consequently, it is
nonoptimal for the attacking slde not to have attacking missiles
allocated to each target arrive there sequentially. Of course,
"sequential" 1s a relative term; the absolute time scale of the
attack may still*be short.

B. MATHEMATICAL ASSUMPTIONS

We now present the mathematical model to be analyzed in
thls paper. The prototyplical physical situation we wish to cone
sider is that of the defense of a nation's centers of population
and production against attack by incoming ballistic missiles,

8
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using interceptors that are presumably (but not necessarily)
missiles themselves. Other potential applicaticns of the model
wlll be discussed briefly in Sectlon D of this Chapter.

Some essential physical properties of the prctotypilcal
process to be studied are the following:

1) Attacking weapons arrive in the vicinity of each target
sequentially in tine.

2) A certain number of interceptors (possibly zero) must be
deployed against each attacking weapon as it arrives in the tar-
get vicinlty, in order to attempt to destroy the attackling weapon
before it reaches the target. This number must be chosen without
knowledge of how many more attacking weapons might arrive later;
once asslgned, interceptors are irrevocably committed and cannot
be reassigned even 1f the target is destroyed before intended
engagements can take place.

3) The numbers of interceptors deployed against various
attacking weapons need not be equal.

4) Each interceptor can be deployed agalnst only (at most)
one attacking weapon. If 1t falls to engage or destroy the
attacking weapon, it is of no further use.

5) When several interceptors are deployed against a single
attacking weapon, the resultant engagement consists of indepen-
dent one-on-one engagements, one for each interceptor. If the
attacking weapon 1s destroyed by one interceptor, the other
interceptors are rendered useless and cannot be redeployed.

6) When there are multiple targets, each interceptor must
be assligned in advance to defense of some particular target.
Interceptors cannot be shifted from target to target as an
attack progresses.

The model with which most of this paper deals will incor-
porate not only these assumptions but also some additional
agssumptions. In Chapter VII we discuss ways whereby certaln

9
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of the hypotheses can be weakened. Additlonal assumptions will
incorporate into the model the followlng effects:

1) There 1s a central detection system (whether a single
system for all targets or separate systems for individual tar-
gets 1s immaterial) that warns of the approach of each attack-
ing weapon, whereupon the interceptors assigned to it are
activated agalnst 1t. All attacking weapons are detected.

2) The defending side is able to discarn with certainty
the intended target of each attacking weapon. Agalnst each
weapon only interceptors assigned to its intended target can
be deployed,

3) Neither side has the capabllity to adaptively reassign
its resources during the course of an attack. Attacking weapons
allocated to a target that has been destroyed cannot be retar-
getted, and interceptors assigned to the target cannot be
redeployed at some other target.

4) An unintercepted attacking weapon destroys wlth cer-
talnty the target at which 1t 1s directed. Only one penetration
1s required to destroy each target.

We will discuss below the plausibility and physical inter-
pretatlions of the aasumptlons, but to give that discussion suffi-
clent focus and specificity, we first state those assumptions,
beginning with the single target case,

(1.1) ASSUMPTIONS. a) Attacking weapons arrive at the target
sequentially, one at a time, with sufficilent time between succes-
sive arrivals that interactions involving different attacking
weapons do not overlap in time.

b) The defendlng slde decldes in advance the number of
interceptors that willl be deployed against the ith attacking
weapon to arrive, 1 = 1,2, «++y provided that such an attack-
ing weapon be in fact committed. Interceptors designated
for deployment ageinst attacl:ing weapons that do not arrive

10
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cannot (within the framework of the proceas under immedlate con-

N sideration) be used for other purpcses. (The knowledge that may
be avallable to the defending side when thils decision 1s taken
will be discussed below.)

¢) Each interceptor can be deployed against (at most) one
attacking weapon, which it engages and destroys with probability
1l - q, where 0 < q < 1. Different interceptors assigned to a
glven attacking weapon are (probabilistically) independent.

\ d) An attacking weapon that is not intercepted destroys the
target with probability one.

e) Interactions involving different attacking weapons are ‘
mutually independent. i 3

Consequently, an attacking weapon against which there are
deployed d interceptors penetrates the defense and destroys the
target with probability q:

|
P{penetration and target destruction|d interceptors} = qd .

and 18 intercepted and itself destroyed--~without any harm done

to the target--~ with the complementary probability 1 - qd.

For the multiple target case, the hypotheses are analogous
but slightly more complicated.

L (1.2) ASSUMPTIONS. a) The targets are separated to the

; extent that each attacking weapon must be directed at only one

. % target and each interceptor must be assigned in advance to defense
of a single target. The attacking =ide has no shoot-look=-shoot
capability to redirect attacking weapons during the course of an
attack, while the defending side 1s unable to reassign intercep-
tors from one target to another. "

b) Attacking weapons directed at each target arrive sequen-
tially in time with sufficient gaps that interactions involving
different attacking weapons do not overlap in time. Whether and

1l
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how interactions at dlfferent targets coinclde or overlap in
time are immaterial.

¢) The defendling silde decldes ir advance the number of
interceptors to deploy against the ith attacking weapon to arrive
at each target, provided that 1t actually arrive.

d) Each interceptor must be assigned to a single target for
deployment agalnst at most cne attacking weapon. The probabllity
that an interceptor engages and destroys an attacking weapon
against which it 1s deployed is 1 « q, where 0 < q < 1. Differ-
ent interceptors deployed agalnst a glven attacking weapon are
independent. The probatility q 1s the same for all targets,
Interceptors and attacklng weapons.

e) An unintercepted attacking weapon destroys with proba-
bility one the target at which it 1s directed. There is ne
collateral damage.

) Interactions involving different attacking weapons at each
given target are mutually independent.

g) The entire interception/target destruction processes at
different targets are mutually independent. I

c. DISCUSSION OF THE ASSUMPTIONS

The asgsumptlons are restrictive in physical terms in order
that we obtalin a specific and tractable muathematical model.
While this paper does not contaln detailed consideration of
possible appllcabillity of the model, we do treat that question
in slightly more detall below. In Chapter VII we discuss ways
of relaxing some of the assumptlons.

Others of the assumptlons, however, are for our purposes
immutable. These are the assumptions of sequential arrivala of
attacking weapons, and of preassligned targets to defend and
dttaoking weapons to be deployed agalnst for lnterceptors. The
extent to which these hypotheses are plausible depends not only

o
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on the time and geography of the physlcal process under study
but also on the knowledge avallable to the attacking and defend-
ing sides. ©Since this 1s a fairly important polnt, especilally
in the context of the min-max optimality properties dilscussed

in Chapters V and VI (and also elsewhere in this paper), we
wish to consider it in somewhat more detall.,

In terms of the attacking side, Assumption (1.2a) does not
allow representation of shoot-look~shoot processes, i.e., the
attacking side cannot during the course of an attack make use of
any information it may acquire about which targeta have already
been destroyed. If such informatlion were usable, the attacklng
side could adaptively reassign its weapons to undestroyed tar-
gets., If the length of the attack 1ls sufficlently short or the
targets are sufflclently far away from the sttacking weapons or
the cost and effort necessary to re-target attacking weapons
are sufficiently great, this assumption will not be unreasonable.

Whether the attacking side has knowledge of the defensive
deployment to be followed by the defending side 1z not yet speci~
fled. The defending side, however, will often wish to protect '
itself agalnst this possibility. It will be shown below that
Prim-Read deployments have the property that the attacking aside
can make only minimal use of such information; <¢f. Theorems
(4.7), (4.8) and (4.10) for specific manifestations of this
lack of abllity of the attacking slde to use 1ts knowledge of
the defending slde's cholce of deployment.

Especially if the attacking side knows the interceptor
deployment, it 1s plauslble to assume that attacking weapons
are pre-targetted. However, the assumptlon that a pre-attack
allocation cannot be changed during the attack still remains
both in effect and open to question. '

To the author, it 1s initlally more difficult to accept the
assumption that the defending side must in advance asslgn each
interceptor not only to a target but also to a specific-~but

13
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hypothetical--attacking weapon directed at that target. This may
lead to interceptors being deslgnated for use against attacking
weapons that are never launched against the target and thus, 1n
effect, being wasted. One consequeﬁce of this "waste" may be

gseen in Theorem (6.13). However, the extent to which there really
is waste depends on the knowledge available to the defending side;

if there is, as we assume, incomplete knowledge a priori, the
waste may exlst only ex poat faoto, and may therefore be unpre-
ventable.

Moreover, sequential arrival of attacking weapons at each
target not only can be brought about by the attacklng side (by
means of i1ts launch procedures) but also 1s desirable to the
attacking slde because thls procedure maximally delays full
revelation of the allocation of attacking weatpons to targets,

If the defending side belleves that the attacklng slde will so
act (or if the defending side at least wishes to protect against
the possibllity), 1t 1s then forced to make advance assignments
in the manner assumed above.

In the situation to which we envislon the model as applica=-
ble, the defending side does 1ndeed possess relatively less
informatlion than the attacking side. At most, the defending
side knows the total stockplle of avallable attacklng weapons,
but never knows the targets to which those attacking weapons are
assigned, except to the extent that 1ts own deployment can force
an attacking side assumed to use certaln speclfic decision rules
to make particular allocations. It 1s even possible that the
defending silde does not know the slze of the attacking side's
stockpile. Many of our results are valld in either case.

That there should exlst asymmetry in the information avail-
able to the two sldes about each other's resource assignments
1s not unreasonable physically. Interceptors must be located
near to the targets they are assigned to defend, while attack-
ing weapons may be dlrected at specific targets by navigational
means and not by the initilal position of the attacking weapons.

14

g{
<}ﬂ
("]

o



S ey

e g W~

v

T e n w A AREL e gmilec

While 1t 13 posslbly unreallstic to assume that the attacklng
slide know how many'interceptors are assligned to each (potential)
incomlng weapon at each target, 1t 1s extremely Interesting
that-~as we show in Chapter V--~there are defensive deployments
that minimize target destructlon even 1f this knowledge were
avallable to the attacking side.

Most of the other assumptions are falrly stralghtforward.
Independence of interactions involving different targets or
different attacklng weapons seems quite plausible. The simplls-
tic attrition structure, which decomposes an attacking weapon/
interceptors lnteraction into independent cne-on-one interactions,
may be less plausible in some circumstances. However, this 1s
one assumptlion that we are able to relax; c¢f. Chapter VII. The
aggumption that an unintercepted attacking weapon destroys the
target at which 1t 1s directed can also be weakened, but this
requires a re-interpretafiion of the idea of the "price" imposed
by a deployment, as defined in Chapter II. In view of the impli-
catlione of the assumption of preassigned interceptors in regard
to target separation, the assumption of no collateral damage is
entirely natural.

When there i1s more than one target, the targets must be
asgigned values 1n order that the defendling side be able to
choose which of them to defend, and how to deploy interceptors
at defended targets. The mathematical results we derive below
involve (expected) target value destroyed when the attacking
side optimizes its allocatlon of weapons against a given defen-
slve deployment. To do so in practice, the attacking side would
need to know the values of the various targets, which may be
fairly clear in some cases (e.g., centers of population) but
less clear in others (e.g., industrial centers of different
kinds). We assume that either the attacking side does possess
fairly accurate estimates of target values or that the defending
glde wlshes to guard against thls possibllity. 1In regard to
Prim-Read deployments this will be seen not to be restrictive,

15
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since a Prim-Read deployment, in effect, reveals the (relative)
values of at least the defended targets.

As explalned and explored Iln more detall in the Chapters
below, the defending slde's goal 1s taken to be to make optimal
use-=according to a criterion that must be speclifled--of 1ts
limited interceptor resources. Two principal optimallty criterla
will be considered in thils paper, each of which the defendlng
side will attempt to minimize:

1) Expected target value destroyed by an allocation of
attacking weapons that 1s optimized agalnst the chosen
deployment.

2) Expected target value destroyed per attacking weapon
committed, with the allocation of attacking weapons
optimized against the chosen deployment.

The physical interpretation 1s that the defending side chooses
its deployment (which assigns both interceptors to targets and
interceptors at each target to sequentially arriving attacking
weapons) and the attacking slde then allocates lts weapons, with
knowledge of the deployment, so as to maximize elther target
value destroyed or target value destroyed per attacking weapon
commltted. The defending side seeks to minimize this maximum.

The principal results of this paper show that Prim-Read
deployments are essentlally always optimal for the second cri-
terion and are optimal for the first criterion provided that
one assume that the target defense principle stated above be
satisfied and that the attack size be less than 1s required
to destroy all the defended targets. Recall that the target
defense principle states that targets should be defended in
order of dezreasing value 1n such a manner that no defended
target 1s ever less attractive than an undefended target, even
when one accounts for the possibility that previous attacking
weapons may have destroyed the defended target.

16




It will further be secn that Prim-~-Read deployments achileve

. certain goals that are of secondary importance, but nice to
achleve nonetheless. Among these are specifying the commitment
of attacking weapons required tc destroy the defended targets,
limlting the number of actilions that might be undertaken by the

| attacking side and in general limlting effects of the uncertainty
and lack of information imposed on the defending slde by the
fundamental asymmecry of the cholce probhlem we treat,

Whichever criterlon is established by the defending side,
it will be necessary in general to leave each target defenseless
after a certain number of attacking weapons have been dlrected
at it. Possibly not all targets can be defended. The defending
slde must therefore choose, for each target,

. . .
BNt

- f.wé—...-':-i&—

1) the number of attacking weapons against which the
target will be defended (possibly zero);

2) the number of interceptors to be assigned to each
! attacking weapon against which the target 1s defended.

This 18 the choice problem with which this paper 1s concerned.

Under the target attrition model defined by (l.le) or (1.24),
R - commltment of one more attacking weapon than the number of attack-
) ing weapons defended agalnst assures destruction ¢f the target
(since @ < 1, no smaller commitment assures destruction). The
effect 1s to speclfy a "price" for each target: the minimum
{ commitment of attacking weapons by which destructlon of the tar-
get 13 certalin. By deploying interceptors in such a manner that
the attacking slde~~under the assumption that it use certaln
forms of declsicn rulezg--will pay the full price of each defended
y G target, the defending side thereby gains control (despite its hav=
] ing to choose first) of the attacking side's resource allocation.

0. POTENTIAL APPLICABILITY OF THE MODEL

Although this paper contains no detalled analyses of possible
applicabillity of the model to specific physical combat processes,

17
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we do wish to discuss briefly and in a falrly general manner

the kind of situations it might be used to represent. As
previously noted, this opaper 1s motivated by and directed
primarily t¢oward defense of national populatlon and production
resources agalnst a strateglc nuclear attack. We have dlscussed
several of the assumptions in the context of thils particular
appllication and concluded that the assumptlons were at least
plausible and in many cases rather reasonable. We belleve,
therefore, that our results are applicable and are of some
importance to the problem that motivated thls research.

However, 1t 18 posslble, that the model may be appllcable
to other, and perhaps smaller scale, situations. Those situa-
tions, 1t seems to the author, must, like the prototypilcal
missile/ABM problem, involve defense of point targets by inter-
ceptors. That defense must in some sense be a barrier through
which attacking weapons attempt to penetrate; destruction of the
barrier 1s not important and not necessarily attempted. However, [
the attacking side may attempt to "exhaust" the barrier by com=
mltting enough weapons to force deployment of all the intercep-
toers. The cruclal aspects ere that each interceptor be deployed
against exactly one (or, more accurately, not more than one)
attacking weapon and, of course, that attackling weapons arrive
sequentilally at the barrier.

An altemiative model of barrler penetration processes
appears in [1], to which the reader 1s referred for comparison.

To conslder a concrete situation, let us examlne defense of
an aircraft carrier task force by alrcraft statlioned on the
carrier. The carriler 1s the target. Agalnst an attack by enemy L
aircraft, the interceptors might be deployed on pacrol. If we
assume that there 1s also present an efficlent central detection
system, such as AWACS, then detection of all penetrators seems

reasonable. Not so reasonable 1s the assumptlicon that penetrators “f

(enemy aircraft) arrive sequentially in time. Presumably the

18




enemy might attempt to saturate and confuse the defense by

! attempting many penetrations simultaneously. Hence if the model
were used in this situatlon, it should be with the explicit
understanding that 1lts hypotheses are only imperfectly satisfiled.
If penetrations are attempted over a sufficiently short period

‘ of time, it 1s plausible that each interceptor can be involved
in only one attempted engagement. Destruction of the target by
a successful penetrator 1ls not certain, but we lndlcate in
Chapter VII how to weaken this assumption.

A T N < T T .
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In the same context, the model might be applied to close-
in defense of the carriler by surface-to-alr missiles launched
from the assoclated escort ships. As in the preceding example,
the greatest dlfficulty 1s with the assumption that penetrators
arrive sequentially in time; the other assumptions seem rela-
tively plausible,

T T

Much the same analysils might apply to defense of an air
| base against an attack by enemy aircraft, using elther aircraft
or surface-to-alr missiles, Once agaln, the troublesome assump
tion 1s that of sequential arrivals of attacking weapons. The
. assumptlon concerning "unreusability" of interceptors seems
é better satlisfled when Interceptors are SAMs than when inter-
ceptors are aircraft.

It 1s 4ifficult to Justify applicability of the model to
any process in ground combat; the author (though his knowledge
1s limited) 1is unable to find a ground combat process for which
the assumptlons of the model are less than patently untrue.

’ Nonetheless, the previously noted tenet that one aspect of a

defense 1s to force a known--and also possibly unacceptably f
large--commltment of the attacking side's resources 1f the

attack 1s undertaken at all seems very important to us. Its
consequences 1in other combat situations need to be explored.
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E. STRUCTURE OF THE PAPER

In order to improve accessiblllty of the paper to readers ]
without advanced mathematical training or without interest in
detalled derivations of our results, we have attempted to provide
sufficlient summary information so that the content and interpre-
tations of the principal results are understandable without a
line=by-line reading of the paper. To this end, we have pro-
vided a summary at the end of each Chapter that describes the
important results of that Chapter in both mathematical and
physical terms, but not in full detall. Therefore, a substantial 1
understanding of the paper could be obtalned by reading: {

1) Chapter I;
2) The summaries of Chapters II, III, and IV;
3) The general discussion in Chapter V, Sectlon A and the
summary of Chapter V;
4) The summaries of Chapters VI and VII; ‘
5) Chapter VIII. L

Both the Chapter summarlies and Chapter VIII 1llst by number
the principal mathematlical results so that they may be located
easlly for further detalls.

We emphasize, however, that the "substantlial understanding"
noted abcve 1s only a minimal substantlial understanding. Many
examples, 1llustrations and dilscussions of practical consequence _
appear 1n the body of the paper and would be mlssed in a partial g
reading. We urge the reader who has background and interest to ﬁ
read the entire paper, or at least Chapter V.

As for speclflic content, Chapter II contalns derivations (
of Prim-Read deployments from uniformity hypotheses on expected S
target values destroyed by various attacking weapons, and also ?
introduces a number of important concepts, the most important :
belng that of the target prices imposed by a deployment. In

Chapter III we present optimallty propeprtlies of Prim-Read
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deployments in the single target case. Although this case 1s
perhaps of relatively llttle intrinslc interest, the results

and derivations presented there serve as useful motivatlons

for the more complicated results appearing later 1in the paper.
Chapter IV develops optimallty properties in the multiple target
case, but under the assumptlon that either all targets are
defended or only targets of unlt value are left undefended. The
mathematical and practical heart of the paper, we believe, 1s
Chapter V, in which we treat optimality properties of Prim-

Read developments when many targets must be left undefended

and when the target defense princlple 1s assumed to hold. In 1
these circumatances, the Prim-~Read deployment 1s shown to be

the unique solution to several optlmization problems, each of
which 1s of c¢lear practical lmportance. We also show that there
are important problems to which Prim-Read deployments are not
optimal solutions. Chapter V also contalns a discusslion,
extending that of Chapter I, Sectlon A, of deairable properties
of payoff functions and ways of attalning them. Some addltional
optimality results complementary to those in Chapters IV and V
are given in Chapter VI. Finally, in Chapter VII we obtaln the
form of Prim-Read deployments under hypotheses weaker than those
given in (1.1) and (1.2); we allow inclusion of target-dependent
intercept probabilities, unreliable attacking weapons, and alter-
native attrition structures. The entire paper 1s summarized in
Chapter VIII, where we also discuss related literature and some }f'
aspects of the problem (which do exist) that are not treated here. -
An Index of Notation is given following the referennes. Appendix

A contains numerical examples and Appendlx B contains some addi-

tional results comparing Frim-Read and proportional deployments.

We believe that this paper presents a clear and compre=-
hensive analysis of the strengths and weaknesses of Prim«Read -
deployments, and belleve that 1t contributes to understanding ’
¢f the underlylng defense problem.

2l
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CHAPTER II
DERIVATION OF THE PRIM-READ DEPLOYMENTS

In this Chapter we derive the interceptor allocation and
requirement for Prim-Read defensive deployments, flrst for a
single target and then for multiple targets. The reader will
observe that the Prim-Read deployments equalize the expected
target values destroyed hy various attacking weapons and might
then conjecture (by analogy with various other game-theoretic
allocation problems) that this "equal risk" deployment possesses }
certaln optimality properties. Those propertlies constitute the
subjJect of Chapters III, IV, V, and VI,

Mok o P AT R R
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A. SINGLE TARGET CASE

Let us first conslder the single target case, An important.
idea in the Prim~Read defense strategy 1s that of the "price" of
; a target, which 1s a function of the chosen deployment. The
price of the target 1s the minimum number of weapons that must be
expended by the attacklng side to be oertain that the target is
destroyed. After introducing some notation, we shall glve the

precise definition.
f A deployment 1s speclfied by a vector d, where

d(1) = number of interceptors allocated to attempt to

: destroy the 1P attacking weapon.

C A deployment for the defending side conslsts of cholces da(l),
a(2),... that define an interceptor allocation. We explicitly
permit the d(1i) to have non-integzer values.

° (2.1) DEFINITION. The price imposed on the attacking side by
a deployment 4 = (d(1)) 1is




p(d) = min{i:d4(1) = 0}

In view of the Assumptilons (1.1), the attacking side can
be certain of destroying the target by launching against 1t an
attack of size equal to the price, and would, provided 1t knew
the price, never commit more weapons. To 1lmpose a price p the
defending side need only deploy (p-1) interceptors in the
deployment
(2.2) a(1) = 1, 1gi<p-1,

= Q, i>p.

This is true provided we require that d(1) > 1 whenever d(1) > 0,
a property not satisfled by Prim-Read deployments.

Given & deployment d, let

(2.3) pla,i) w'P{target 1s destroyed by attacking weapon 1}

. [tﬁ:: (l_qd(ﬂ.))]qd(i) . |

p{d)
Evidently p(d,1) = 0 for 1 > o(d); 1l.e., § p(d,1) = 1.
im]

EXAMPLE. Let & be the deployment given by (2.2). Then
p(d,1) = (1-9) g
for 1 =1, ..., p = 1, while
p=1
p(d,p) =1 -q } (1-q)11
il=]

. (1-q)°"1 .
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Much of our attention 1in this paper focusses on deployments
d that equalize the probabilities p(d,1l),...,p(d,p(d)); these
will be called Prim-Read deployments.

(2.4) DEFINITION. A deployment d* 1s a Prim-Read deployment if

(2.5) p(d¥,1) = Eqéwy

for 1 =1, ..., p(d%).

The followlng Theorem verifles that Prim-Read deployments
exist and also provides their explicit form.

(2.6) THEOREM. For each integer p > 1 there exists a Prim-
Read deployment d* such that

p(d*) = p
the deployment d* is given by ‘

log(p=i+1)
(2.7) d%(1) = - ——§3§—a———

for 1 = 1, ..., p.
PROOF. In order to satilsfy

for each i1, we must have, first of all,

1w p(av,1) = 3%

P
which 1s equivalent to

d* (1) log q = log p'l
= - log o,

or

) = ot

25




which is expression (2.7) for 1 = 1. Suppose now that (2.7)
holds for 1 = 1, ..., k - 1; then

'% o p(d*,k)

- [ (1-at®® )] KUY

L A=l
i -kﬁl (l _ __;__)]qd“(k)
[ 21 p=i+l

(by the induction hypothesis)

k-1
o= \] .d* (k)
) [zEl (p‘“+;)]q

\\M

L o=kt+t1 qd*(k)

P
. Therefore,
.
), — i -
which 1s the same as _ _ -
a* (k) = = log(p - k + 1)
log q
verifying (2.7) for 1 = k. I

(2,8) COROLLARY. The Prim-Read interceptor requirement is ,
given by 4

I(d*) = ~ log p!/log q .
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In order to ald the reader in understanding this require-

o ment we present the followlng Table of Prim-Read interceptor

requlirements for the case q = .50.

Table 1. PRIM-READ INTERCEPTOR
\ REQUIREMENTS

p(d*) I1(d¥)

0
1.00
2.58
4.58
6.91
9.49

- (p+1/2)10 -
P log %427 e

A N W NN -

' " The asymptotic expression for p + «» 13 obtained using
Stirling's approximation for p! [16, p.19%4] and drops a
conscant term of % log 2w,

Because, as evidenced by Table 1, the Prim-Read deployment
need not require integral numbers of interceptors, the results
there may be slightly misleading &s well as impossible to
implement physically. The following example 1llustrates.

! (2.9) EXAMPLE. Let @ = .50. For p = 5 we then have

d# (1) = 2,32
. a*(2) = 2,00
o A*(3) = 1.58

d* (L) = 1,00

Q*(5) = 0 .

The integral interceptor requirement is therefore

Ii(d“) - 8

27
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In most of our discussion below, we simply ignore such
"dlscreteness" problems, despite their obvious physical impor-
tance. For values of 'q (the penetration probability) and p that
are moderately large, the errors are probably not substantial.

The rationale for choice of a deployment satisfying (2.5)
is not entirely clear, although the results presented in
Chapters III through VI provide some clarification. One can
argue heuristically that (2.5) might be desirable because it
imposes an ineffectiveness of cholce on the attacking side.
That 18, 1f the Prim-Read deployment 1s implemented and the
attacking side 1ls to choose the number of weapons with which to
attack the target, no one weapon has gresater marginal effect
than any other., The preclse result of this "ineffectiveness
of cholce" 1s 'described by Theorem (4.10).

For one target, other than choosing the deployment and
thereby defining the target price, the defending slde has no
cholces to make. If there are many targets to be defended, more
cholces are required, but before consldering that situatlon, we
consider one additional'ﬁspect of the single target case.

In the previous discussion it was assumed that the defend-
ing slde first chose a deployment, based on whlch 1t computed
an interceptor requirement. In reallty, however, the avallable
number of interceptors may be fixed 1ln advance, say at IO. The
defending side could then implement & Prim-Read deployment 4%
as follows: Let p be the largest integer u for which

(2.10) - log u!/log q < IO .

Then Zmplement the Prim-Read deployment with price p. If
equallity does not hold for w = p in (2.10), then the above stra-
tegy does not utilize all avallable resources. The remaining
interceptors, however, can clearly be distributed in such a
manner that (2.5) remains nearly satisfied. 1In light of

28
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: Theorem (2.6) the defending side could, for example, make a
D choice such that

A
o+

p(d*,1) < 5, 1<i<p,

but

p(d¥*,p) > % .

In this case, if the target were attacked at all and if the
resources were avallable, the attacking side would expend the
full price necessary to destroy the target in order to obtain
the marginal return p(d#*,p) of the final weapon, which exceeds'm
those of the earlier weapons. See also Theorem (3.1), which
further conslders the effect of lncreasing marginal returns,

B. MULTIPLE TARGET CASE

We now conslder the more important, multiple target case.
. Suppose that there are targets numbered 1, ..., T with integer
| values v(l), ..., v(T), respectively, the latter according to
some scalar measure of target value. An interceptor deployment
is then specified by a matrix d = (d(J,1)), where

T

d(j,1) = number of interceptors deployed at target J
against the ith attacking weapon (if there

_ 18 one) directed at that target.
( The price vector for a deployment d 1s the vector p(d) =

‘ (p(d,1),...,0(d,T)) defined by
0(d,) = min{i:d(J,1) = 0} .

H Obsgerve that whlle the deployment d defines the price vector
p(d), 1t nonetheless makes sense to speak of a deployment d
for which p(d) equals a prescribed vector p.

The uniformity property (2.5) used in the single target
case can be extended to the multiple target case, up to a

29




scaling parameter, in a manner whlch we now descrlbe. Glven a
deployment d, let

p(d,J,1" = P{target J destroyed by ith attacking weapon

directed at it}

i-1
. [ . (l_qd(J,z))]qdu,i) ;
=]

recall that the attrition structure 1s glven by (1.2).

- i U S T Y PO X A bt RISt WIs IR AT i Sy " AN

By analogy with Definition (2.4) we introduce the following
terminology.

(2.11) DEFINITION. Let k be a positive integer. A deployment
d* 15 sald to be a Prim-Read deployment with scaling faotor k
provided that

P e e R A

(2.12) v(§Ip(ar,y,1) = &

for all J =1, ..., Tand 1 = 1, ..., p(d%*,J),

The content of (2.12) is that the expected target value
! destroyed by each attacking weapon 1s the same (namely, is
equal to 1/k) up to the point at which all targets are destroyed.
While the analogy of (2.12) to (2.5) 1s rather strong to begin
with, it 1s strengthened by the followlng result.

(2.13) THEOREM. PFor each integer k there exists a unique Prim-
Read deployment d* with scaling factor k. The deployment d#% is
glven by

w - log(kv())-i+l)
(2.14) A% (J,1) = = -—Sflog =

for J =1, ..., Tand 1 =1, ..., kv(J).

Before proving the Theorem, we take note of the following
consequences of it.
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(2.15) COROLLARY. If 4* 1s the Prim-Read deployment with
scaling factor k then A

(2.16) p(da*,J) = xv(J)
for § =1, ..., T. {'

(2.17) COROLLARY. The Prim-Read interceptor requirement is

T
- - log(lrv(g)l)
I(d%) JZJ Tor 5

The expression (2.16) states that for a Prim-Read deploy-
ment d¥, target prices are proportional to target values, and
this--as we shall see in more detall below-=leads the attacking
side to distribute its weapons among the targets in proportion
to their respective values. However, as [2.14) shuws, the
defending side does not dlstribute its interceptor resources

" among the targets 1n direct proportion to their values (except

in the speclal case when all targets have the same value).

We now prove Theorem (2.13).

PROOF of THEOREM (2.13). Conslder some target J. In order
that

v(J)p(d#,),1) = % ,
we must have

a0 L 1
q k_V-(—YJ ’

which 13 equivalent to

ar*(y,1) = - l2§6§Xéll .

Proceeding as in the proof of Theorem (2.6), suppose that
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log(kv(j)=2+1)

aw(y,1) = - 0BG

= v(d)p(a*,g,1)
k J

1-1 Ve

. kv(]) = 1 + 1 d¥%(j,1)
v ey

i
L=l

which in turn implies that

d#(J,1) _ 1
9 kv(J) - 1 + 1

and hence that

log(kv(j)=1+1)

a¥(§,1) = - BT

Since J was arbitrary, the proof is complete. I

REMARKS. There are two distinct ways in which one can
envision the defending side choosing the scaling factor k,
glven that 1t has chosen to have a deployment of Prim-Read
form. Filrst, 1ts interceptor resources may be fixed at some
level, say IO. The maximum parameter k such that

*
I(d*) < IO
would be chosen and the remaining interceptors either diverted
to other uses or allocated among the targets according to some
(more or less arbitrary) scheme. See alsc Chapter V.

Second, 1t might be the case that the defending side knows
the maximum number of attacking weapons that could ever be
launched against the targets in question. For example, the
number of attacking weapons might be fixed by negotilated
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agreement between the two sldes, as 1s done with strategic
nuclear weapons. The defending slde might then wish to con-
struct a deployment sufficiently strong that, 111 order to
destroy all the targets, the attacking side would have to
commit its entire stock of weapons. This would lead to the
defending side's choosing the minimal value of k for which
the total of the target prices exceeds the number of weapons
avallable to the attacking side. An interceptor requirement
could then be determnlned.

We observe once more that (2.12) above s3uffices to imply
that target prices be proportional to target values. When
k = 1, targets of unlt value are left undefended, but in
reality the defending side wlill be forced to leave many tar-
gets=«usually of differing values and some of values greater
than one~~undefended. 1In Chapter V we conslder in detall this
important problem of undefended targets. Chapters III and IV
are devoted to exploring mathematical optimallity properties of
the Prim-Read deployments and to understanding the practical
impilcations of such properties.

c. CHAPTER SUMMARY

In this Chapter we have defined Prim-Read deployments as
satisfying certain uniformity properties, namely (2.5) in the
single target case and (2.12) in the multiple target case. The
former eyualizes the probabllities of target destruction for
all attackling weapons agalnst which there 1is a defense with
that of the first agalinst which there 1s no defense. The
latter squalizes expected target values destroyed for all
attacking weapons that are defended against and those of the
first attacking weapon at each target that is not defended
against. The important concepts of the price of a single
target defense and the price vector of a multiple target
defense are also introduced in this Chapter.
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The main results of thls Chapter are the following:

e

iz eier

1) Theorem (2.6), whisch gives the form of a Prim-Read
deployment d* in the single target case:

d'(i) B - les(gé:*é‘i+l) > i-l,~on,p(d').

The assoclated Interceptor requirement i1s calculated in
Cerollary (2.8) and found to be

e

I(d%) = - log{géd;)!)

2) Theorem (2.13), which gives the form of Prim-Read
deployments for the multiple target case. If k is the scallng
factor, so that the equalization condition is

“
N
b
4
-
4
-

v(3)p(ar,y,1) = ¢, ESTIPNN F
. i-l,o-cgp(d'hj),

then

ar(3,1) = - TemlT(-14)

also for J =1, ..., Tand 1 = 1, ..., p(d*,J) = kv(J). The
interceptor requirement is

1t ¢
I(d*) = - o g le logl(kv(g))t] . : :

These results are Corollaries (2.15) and (2.17), respectively.
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Chapter III

OPTIMALITY PROPERTIES: SINGLE TARGET CASE

A. INTRODUCTION

This Chapter conslders some ways in which the Prim-Read
deployment represents an optimal use of the interceptor
resources of the defending side. To motivate the more compli-
cated results concerning the multiple target case (presenteda
in the next two Chapters) we first present here some results
concerning the single target case. In both cases (as the
reader will observe throughout this Chapter and the next two)
one must formulate optimallty questions wilth care and in the
correct context. The results of this Chapter are uf relatively
less intrinsic interest than those of Chapter 1V and; especi-
ally, Chapter V, and might perhaps best be viewed as a means
of motivation and introduction to the ldeas and mathematics
used ln the sequel.

Let the defending side be protecting a slngle target.
Throughout this Chapter we use the followlng notatlon: 1f d
1s a deployment,

a) p(d) = min{1:d(1)=0} is the price imposed by d. With-
out loss of generality (because attackling weapons are perfect)
we assume that d(L) = 0 for all & > p(d).

b) p(d,1) is the probability that the target 13 destroyed
by the 1th attacking weapon directed at 1t; cf. (2.3).

1
¢) P(d,1) = J p(d,k) is the probability that the target

k=],
1s destroyed by one of the first i attacking weapons directed a
at 1t. 1
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p(d)-1
d) I(d) = ] d(1) is the interceptor requirement.
i=]1

We use d* to denote Prim-Read deployments.

For p a positive integer, D(p) denctes the set of deploy-
ments d for which p(d) = p and if, in addition, o 1s a positive
number, D(p,a) denotes the set of those d ¢ D(p) for which
I(d) € a. Given p we denote by a*(p) the interceptor require-
ment of the Prim-Read deployment d¥% ¢ D(p), namely

a¥(p) = - log pl/log q .

Finally, let B(p) = D(p,a%*(p)). Deployments 4 5(p) require
at most as many interceptors as the Prim-Read deployment d¥.

B. RESULTS

We now proceed to our first optimallty resulv,.

(4.1) THEOREM. If d ¢ D(p) and P(d,') is convex on
[0,0], then d = 4%,

REMARK. Convexity of P means that for esch 1 = 2,...,p = l,|

P(d,1) ¢ & [B(d,1-1) + P(d,1+1)] ,

whlch 1s equivalent to
(3.2) P(d,1) - P{d,1-1) < P(d,1+1) - P(d,4)

It follows at once from (2.5) that the Prim-Read deployment d¥%
satlsfies (3.2), in fact with equality for each 1.

Implications of (3.2) for the attacking and defending
sldes, and its deslirability for the defending side, will bhe
discussed followlng the proofl of the Theorem.

PROOF of THEOREM (3.1). For a given deployment & ¢ D(p) we have




' ()

(3.3) p(a,1) = 31

for 1 = 2, ..., p we have

(3.4) P(d,1) - P(d,1i-1) = p(d4,1)
- [E ()
L=l '
The constraint
p=1
] d(1) < I(a%)
im]

1s equivalent to
P=l (1) BRACLY

(3.5) I q >
1wl
- q-log pl/log q
1
- ] -5-!— .

Suppose that d ¢ D(p) and that P(d,*) 1s convex. For
1 = p - 1, the inequality (3.2) becomes

P(d,p) - P(d,p-1) > P(d,p=1) = P(d,p-2) ,

which by (3.4) 1is equivalent to

p-l =2
(3.6) mo(1-qtd)y > [pn (1_qd(i))]qd(p-l) E
iu] iml

nder the assumption that d(i1) > 0 for 1 < p, (3.6) reduces t
(l-qd(p-l)) > qdfp-l)

or

(3.7) qd(p'l) <« i

37

e et vas s b e o VAR - o S L S 22423 1 et s o

0

S e i et A

v

T T, e rr et . o e

R —pemr




3imilarly, the requirement
P(d!p"'l) bt P(d)p"z) _>_ P(dsp"2) - P(d’p"3)
is equlvalent to
=2 a()Y] ale-1) , [P23 (,_a())] d(p-2)
[II (l—q )]q z_[ﬂ l-q qQ s
im] i=]
and hence to

d(p-2)

(l_qd(p~2))qd(p-l) > q .

By (3.7), this becomes

g3 (p=2) 5.% (1= (P-2))

which is the zame as ,

qd(p-2) < % .

Proceeding inductively, we Infer that

(3.8) A ¢ (purenyt

for all 1 whenever P(d,*) is convex. The requirements (3.5)
and (3.8) together imply that

qd(i) 1

B mme——on Sanm—

p « 1 + 1

for 1 =1, ..., p - 1, which completes the proof. U

REMARKS. 1) The convexity property (3.2) is that of
"increasing returns to scale." It ensures that a rational
attackling side with at least p weapons avallable will--provided
it attacks the target at all--expend the full price p necessary g
to destroy the target. This 1s because each attacking weapon, 1




when (3.2) holds, is more valuable to the attacking silde, in
terms of expected target value destroyed, than the previous
one. Therefore, i1 an ith attacking weapon 1s launched, it

s irrational not to launch an (1+1)%%. fTheorem (3.1) shows
that no deployment other than the Prim-Read can use the same
number of interceptors and stlll produce a convex payoff func-
tion on [0,p]. When the payoff function is convex, and if the
attacking side seeks to maximize target value destroyed per
attacking weapon committed, it 1s forced to expend the full
resources needed to destroy the target.

2) By using the Prim-Read deployment the defending side
reduces to two the number of actions that a rational attacking
side would choose, namely, "do not attack the target at all"
and "attack the target and pay the full price," and destroy 1it.
Thus the defending side, even though 1t must choose first, 1is
able to 1limit the cholces available to the attacking side. The
defending slde 1s thereby able to exert control over the attack-
ing side's expenditure of resources, If the attacking side seeks
to maximize elther expected target value destroyed or expected
target value destroyed per attacking weapon committed, it will
choose to destroy the target.

3) In the preceding discussion the price p was taken to be
exogenously determined. 1If a limited number of interceptors is
avallable, a sultable price may be calculated using (2.10).

Another manifestation of the uniformity of the Prim~Read
deployment 1s glven in our next Theorem, which deals with a
sltuation 1n which the defending slde wishes to minimize the
number of interceptors required while controlling the maximum
cumulative damage per attacking weapon. Recall that D(p) 1is
the set of all deployments with price »p.

(3.9) THEOREM. Let p be an integer. Then the Prim~Read
deployment d* uniquely solves the optimization problem




(3.10) minimize I(4)
s.t, d « D(p)
}? . max & drr) < % )
1<r<p

PROOF. Since (2.7) implies that P(a*,») = r/p for r = 1, ..., p
| the Prim-Read deployment a* 1s a feasible solution to (3.10).
Optimality 1s suggested, although not proved of course, by the
fact that all constralnts are satisfled as equalitiles,

Suppose now that 4 is an optimal solution to (3.10). Then Q
first of all we must have

) w ped,1) (
A % ’
which we write in the form

pq? (1) 1.

LN 3
Using this inequallity, the fact that qd ‘l)- 1,y and the v
conatraint (f

1 - (131 (1-q%(®)) « p(q,2)

< 2/p

we see that 1
d(2) _ 2/p - g3V

o
LA

2/p - gfi(l)
(l-qd.(l))

_ o d(1)

2

- m—

P - L 4
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which we write as

d(2) d(1) ¢ 5

(p=1)q + pq

By an inductive continuation of the procedure above we can
conclude that for each 1 = 1, ...,r - 1 the inequality

(p-3+1)q%) ¢ 4

T

J=l

is valid. Note that so far optimality of d has not been used. )

Ir a is optimal, then in addition to the preceding inequali-
ties, I(d) < 1(d*), which 1s the same as
P=l  §¢ p=1 a#
d(1) | Y

I q > I
jm] i=]

Together, the previous p -« 1 linear inequalities and this one
nonlinear inequality imply that 4 = d*. For an 1llustration, :f
see the proof of Theorem (3.11) below. i

HEMARKS. 1) Theorems (3.1) and (3.9) are evidently rather
cloaely related to one another; they are nearly, but not quite,
dual optimization problems. See also Theorem (3.1l) below.

2) If one supposes that the attacking side, once the
defensive deployment 18 chosen and implemented, 1s able %o
discern that deployment and then choose & number of attacking 3
weapons that maximizes k.

P(d,r)
r
over {1,...,p}, then Theorem (3.9) Jtates that by employing the
Prim-Read deployment, if there i1s a constraint 1/p on the per-
attacking weapon payoff for the optimal cholce of the attacking
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side; the defending side minimizes the requlrement for inter-
ceptors.

3) Since
P(d*,r)/r = 1/p

for all r, the Prim-Read deployment does not, according to the
attacking side's criterion of maximizing P(4d,r)/r, limit the
number of actions that are then feasible (indeed, optimal) for
the attacking side; 1t does, however, ensure that all actions
have the same effect. This 1s yet a different way in which the
Prim-Read deployment limits the decislon-making abllity of the
attacking side: in this situation no alternatives are precluded,
but all actlons lead to the same outcome.

) The content of Theorem (3.9) is that--for a given target'
price--the Prim-Read deployment minimlzes the defending side's
Interceptor requirement subject to a constraint on the maximum
(cumulative) damage per attacking weapon. Theorem (3.11) below
states that, in effect, the constraint and the ohjective func=
tion in (3.9) can be interchanged. That 1s, the Prim-Read
deployment uniquely minimizes the maxlmum cumulatlive damage
per attackling weapon, subject to an upper bound on the number
of avallable Interceptors. This result should he compared with
the various results in Chapters IV, V and VI, which treat min.-
max optimallty propertlies in the multiliple target case.

(3.11) THEOREM. The Prim Read deployment d* is the unigque
solution to the optimization problem
(3.12) minimize .max E{daf)

1<r<p

s.t. d « D(p) .

PROOF. Feasibility of d* is obvious. If d ¢ D(p) then

P(d,p) . L
P

P
42

1o e

= ————




o

which obviously implies that

max BLQ;EL >
l<r<p

hod | o

This shows that d* is an optimal solution to (3.12) and that 1if

d 1s any other optimal soluticn, then

(3.13) max Bﬁgggl -

1<r<p

o |+

To show that d* 1s in fact the only optimel solution to
(3.12), let d be any optimal solution and define

xi-qd(i) » . i-l’ ..-,D"l ]
The equality (3.13) implies the inequality

% > P(d,1)

« QA L,
which we rewrite as
(3.14) pxy < 1.
The inequality
L, B(d,2)
p 2
P~ ~ ~
. 2
_% (L) +(l_qd(l))qd(c.)]
«1f
5%, + (l«xl)xa] )

. e
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which also results from (3.13), can be rewrltten--with the ald
of (3.14)== as

2 p=1
and hence as
pX, + (p—l)x2 < 2.

By continuing this procedure we obtaln the following set of
(linear) inequalities (one of which must hold as equality):

X, £1

A

px, * (p-l)x2 + (9-2)x3 <3

Xy + (p--l)x2 + ...+ 2xp_l <p=-1.

‘Together with the nonlinear inequalilty

p=1
T %y 2 1/p! ,
i=]

which is but a rewritten form of the constraint I(d) < I(d%),
the preceding inequalities and optimality of d imply that

S
X1 % o131

for each i, l.e., that d = d*,

To 1llustrate (rather than overwhelm the reader with tech-
nica) detalls) let us congider the case p = 3. The relevant
lnequalities are then -

.
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and
1,
X)X 2¢ i
the only point (xl.xz) satlisfying these three inequalities 1is
(1/3,1/2), which does indeed correspond to d = d*., The higher

dimensional cases are notationally more complicated but con-
ceptually the same. 0

It 1s important to realize that the Prim-Read deployment
is not a universal solution to every optimization problem
involved with interceptor defense of point targets. The
followlng discussion shows, however, that for some problems
to which it 18 not an optimal solution, it 1s stlll a reason-
ably good choice.

(3.15) EXAMPLE. The optimizatlon problem we wish to treat
in this case 1s the following: fix the attacking side's
resources at some integer level p and the defending side's
interceptor resources at

I =« Jog pl/log q.

These are the levels of resource expenditure for the two sides
when the defonding side lmplements a Prim-Read deployment with
price p. The optimization problem to be considered 1is

a 3
(3.16) minimize max [ - I (1_qd(i))] , 5
a lwl ‘

where the maximum 1s over a < p and the minimum is over all
deployments d for which I(d) < I. The objective function

a
P(d,a) w 1 - T (1-q%(%)y
1=]
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1s the probabllity that the target i1s destroyed (and is hence
directly proportlional to the expected target value destroyed)
when the defensive deployment 1s d and the attacking side
commits a attacking weapons. It 1s assumed in (3.16) that
p and I are known to both sides.

Thils optimization problem is certainly a natural problem
that one mlght pose in a target defense problem: the defend-
ing side wants to minimize, and the attacking side to maximize,
the expected target value destroyed. Formulatlon of (3.16)
4s & min-max problem rather than a (simultaneous move) game repre-
gents our assumptlon that the attacking side can dlscern the
defending side's deployment before the attack o¢ccurs. The princil-
pal difference between the problem (3.15) and those discussed
above in this Chapter (especilally in Theorems (3.9) and (3.11) is
that the latter account for the level of expenditure of attacking
weapons by replacing P(d,a) in (3.16) by P(d,a)/a, the expected
target value destroyed per attacking weapon expended.

What we will do is to compare the solution to (3.16) with
the Prim-Read deployment d* with price p which solves (3.12)
above.

The solution to (3.16) may be obtained by the methods of
calculus once gsome prellimlinary analysls is used to slimplify
the problem., For any d,

max P(d,a) = P(d,p) , B

asp
so (3.16) reduces to the minimization problem H
[o] {y
(3.17) minimize 1 - 1 (l-qd(i>)

1=1

s.t. I(d) <TI.
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To solve (3.17) we may restrict attention to those¢ d for which
d(1) = 0 for 1 > p; there is no point in deploying interceptors
agalnst nonexistent attacking weapons. Note that since d¥(p) =
0 we have ' &,

P(d“,p) =1,

whereas 1f d 1s any feasible point for (3.17) such that
d(1) > 0 for 1 =1, ..., p, then

Consequently, the Prim-Read deployment ls not an optimal solu-
tion to (3.17).

To find the optimal sclution to (3.17) one may use the
classical methods of calculus (eilther Lagrange multipliers or

p=1
substitution of I - J d(1) for d(p)). The resultant solution
=]

1s the uniform allocaticn d given by

~

(3.18) d(1) = % , 1 =1, ..., p . 3

We observe that at thé optimum, the obJective function value
for the problem (3.17) is

" 1/p4°
(3.19) P(d,0) =1 -[1 -(%!-) ] .

We now wish to compare P(d*,p) with P(d,p) in order to
understand to what extent the Prim-Read deployment d%* falls to
be an optimal solutlon to (3.16). Since, as previcusly noted, ‘
P(d* p) = 1, to investigate the ratio ?(a,p)/P(d*,p) i1t suf- 1
fices to consider only the behavior of P(d,p) as given in
(3.19). The behavior we investigate 1s that of p(d,p) as
p + », Using Stirling's approximation
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and the fact that

1im /P = 1

p+®

?

ef. [16, p.57], we conclude that

(3.20) 1im P(d,p) = 1im 1 - (1 - £)°
P+ P+ e
-1 -ge"¢
~ ,9340 .

The practical significance of (3.20) 1s that for large values
of p, the Prim=-Read deployment 1s 93 percent optimal in (3.16)
and optimal in (3.12). In fact, the convergence in (3.20) 1is
extremely fast; F(d,p) > .92 oncep > 20.

On the other hand, let us consider how the solution d to
(3.16) fares as a possible candidate in the problem, (3.12),
to whlich the Prim-Read deployment a* 1s %he optimal solution.
For d as given by (3.18), the cumulative payoff function P(d,
to the attacking side is easily seen to be strictly concave on
[0,0], 1.e., 13 of the form of the payoff function given in
Figure U4a (Chapter V). Consequently

max ELQ%El - P(a,l)

r<p L [1-<%T)l/°]

- (L\1/p
\e!
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Once agaln using Stirling's approximatlon, one can see that
(3.21) max ~ % .

Since

%
rsp P

the inference to be drawn from (3.21) 1s that the uniform
deployment: a 18 nonoptimal for the problem by a factor of
1~ % ~ .63, This should be compared with the factor e~® o .07,
by which the Prim-Read deployment fails to be optimal for the :
_problem (3.16). |

M —— ey

C. CHAPTER SUMMARY

This Chapter is devoted to development of optimality prop-
erties of Frim-Read deployments in the slngle target case, As
previously explained, this case is of less Interest in its own
right than as a motivation for and simplification of the mult;ple
target case. The results derived here are, for the most part,
qualitatively simllar to the results appearinz in Chapter IV,
but are mathematically less complicated and lmposing. A reader
who wishes to understand the flavor of the rderlvations given in
this paper could read those in this Chapter and omit those
in the following Chapters.

The main mathematical results presented irn Chapter III are
the following:

1) Theorem (3.1), which states that 1f 4 ¢ D(p) and the
payoff function P(d,:) 1s convex on [0,p], then d is the Prim-
Read deployment d*,
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2) Theorem (3.9), which asserts that for each p the Prim-
Read deployment d¥* is the unique solution to the optimization
problem '

minimize I(d)
s.t. & ¢« D(p)

max SdaT) o % .

r<p T
That 1s, subject to the upper bound 1l/p on the cumulative
probablllity of target destruction per attacking weapon com-
mitted, the Prim-Read deployment d¥* uniquely requires the
fewegt lnterceptors.

3) Theorem (3.11l), whlch shows that for each p the Prim-
Read deployment d* is the unique solution to the optimization
problem

minimize max ELQLRL
r<p r

s.t. 4 e B(D) .

That 1s, among deploymerits 4 with price p and lnterceptor
requirement at most that of the Prim-Read deployment 4%, the
deployment d* uniquely minimizes the maximum probabllity of

target destfuction per attackling weapon committed.

4) Example (3.15), which contains several conclusions of
interest. First, 1t i1s shown that the Prim-Read deployment 1s
not a solutlon to the optimization problem

minimize P(d,p)

s.t. I(d) < I(d#%)
p(d) < p + 1
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and that the solution to this problem 1s the uniform deploy-
ment d defined in expression (3.18). However, it is shown that
d* 1s 93 percent optimal for this latter problem-~in which the
obJective function 1s the probability of target destruction
rather than probability of target destruction per attacking
weapon committed -~ whereas the uniform deployment d is only 37°
percent optimal for the optimization problem of Theorem (3.11)
and result 3) presented above. This 1s a useful robustness
proberty of Prim-Read deployments. '
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Chapter IV
OPTIMALITY PROPERTIES: MULTIPLE TARGET CASE

A. INTRODUCTION

The objective of this Chapter 1s to present analogues,
for the multiple target case, of the optimality results derived
in Chapter III. In this Chapter we concentrate on the situation
ﬁ where all targets, except posslbly those of unit value, are
defended. The more important situation in whlich many targets
of differing values must be left undefended 1ls treated in
detall in Chapter V.

I R R S

Wl

We first derive analogues of Theorems (3.1), (3.9) and
(3.11) for the multiple target case. As in Chapter II we
v assume that there are targets 1, ..., T of positive, integral
values v(1l), «.v, v(T). An interceptor deployment is a matrix
‘ d= (d(J,1)), where d(J,1) 18 the number of interceptors
deployed at target J to attempt to intercept the 1th attackinm
weapon directed there. The deployment d specifies a price
vector p(d,+) defined by

p(d,J) = min{di: d(J,1) = 0}

without loss of' generality we assume that d(j,%) = 0 for each
J and all & > p(d,]).

For each integer k we dencote by dﬁ the Prim-Read deploy=-
ment with scaling factor k, given by Theorem (2.13) as

. - - Log(kv(])-1+1) - LT
ag(s,1) = - 2R , Il e T
1 =1, ..., kv(J) .
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The assoclated price vector and interceptor requirement are

PSR A U

p(d®,3) = kv(J)

and

e ol e e S o

T
I(af) = - Toeg L, osller1l |

respectively, as glven by Corollaries (2.15) and (2.17).

Throughout what follows, a caret over a vector denotes
the sum of 1ts components; for example,

n T
ve 7 v()
J=l
1s the total value of the targets.

Agalnst a deployment d, the attacking slde can be certain
of destroying all of the targets by committing

T
p(d) = T p(d,d)
J=1
properly allocated weapons. In what follows, therefore, it
Seems more reasornable that one should fix the total of target
prices (l.e., the commitment of offensive resourses required
to destroy all of the targets) rather than fix the individual

target prices (which, in effect, was done in Chapter IIT).

Consequently, for each k, let Dk denote the set of deployments
d for which

p(d) = p(ah)

and

I(d) < I(ad) .

54




B r-r'-'?w-n T

‘ Deployments in Dk impose the same commitment of attacklng weapons
E to destroy all the targets as does the Prim-Read deployment dﬁ ‘ jﬁ
and require no more interceptors.

S e

Given a deployment 4, define

T -

T
(4,1) V(d,1) = max Zl v(J)P{target J destroyed} ,
a J=

el e B

where the maximum 1s taken over all allocations a = (a(l),..., A
a(T)), of attacking weapons among the targets such that
R T
a= ) a(J) 1.
! J=1
This i1s the payoff function discussed in Chapter I,A and
Chapter V,A. More specifically,

T (J) :
(4.2)  V(d,r) = max ). v(J) [1- 1 (1-qd(3’“))] , I
a J=l 2wl .

and 1s the maximum expeoted target value that can be destroyed
by 1 attacking weapons. When we treat optimization problems
whose objective functions inveolve V, the attacklng side is
assumed to optimlize 1ts allocation of weapons among targets,
based on knowledge of the deployment d. As noted in Chapter I,
we suppose that elther the attacking side 1s in fact able to

\ 50 optimlze or the defending side 1s guarding against this g

' particular possibility.

i .

! B. OPTIMALITY RESULTS ;

;c The first result of thls Chapter 1s the following, which | ﬁ
. is analogous to Theorem (3.1). We emphasize that we fix only K.
K the total of the target prices and not, which could be less ﬁ
! reasonable, the individual target prices. 3
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(4.3) THEOREM. Let k > 1 be fixed. If d ¢ D and V(d,-) is
convex on [O,S(dﬁ)], then d = d¥.

PROOF. From Theorem (2.13) we have that
‘o
7wy

v(ap,1) = 1

p(at,d)
by Pk

~

v
NETL
p(dk)

-
k

for 1 < 1 < p(dl); that is, V(d¥,.) is linear and, in particu-

lar, convex. Here v = Z v(J) 1s the total of the target values.
Suppose now that 4 « Dy and that V(d,:) 1s convex. We

shall first show that

(b.4) p(d,J) = p(drcsd)

for each J = 1, ..., T. If (4.4) falls, then since d Dy» we
must have p(d,Jo) < p(dﬁ,Jo) for some j,, which would imply
that

V(d,p(d,J4)) 2 v(y)

k .

On the other hand, convexity of V(d,.), together with the fact
that V(d,p(d)) = v, implies that

p(d,Jo)
V(d,0(d,J,)) < —

D(dﬁ:io_)_ .

<
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Since the two preceding expressions are contradictory, (U4.4)
(. must hold.

Convexity of V(d,+) further implies that:

R Ty

)

! max v($)a® 1) w vee,1)
3] ! .
b

}

)

!

1
| £E
|
‘! for all J, which 1s the same as
| (4.5) a(3,1) > ad(y,1) .
|

However, strict inequallty in (4.5) rgr some J would lead to a
violation of the constraint that d e Dk and therefore

R T

d(J:l) - dﬁ(d,l)
for J = 1, «v.y, T.

The remainder of the proof follows by induction. 0.

;Vg A crucilal property of the Prim-Read deployment in the
; multiple target case 1is that

B S A T . 7 e

) . (4.6) p(dﬁ:d)/V(J) = k

for all j, L.e . the price of a target i1s proportional to 1ltsas
value. As Theorem (2.13) shows, the defending side dces not
then distribute its interceptor resources among the targets
- in proportion to target values. What the defending aide does
ls to distribute its resources among the targets in a manner
that forces a ratlonal attacking side to dlstribute 1ts attack- §
1) ing weapons proportionally to target values. The point is an _
B important one: being forced to choose first, the defending ;
; side chooses s0 as to limit the alternatives availlable to the }
.W; attacking side when the latter hehaves ratlonally. For the
) multiple target case, (4.6) 1s an important effect of the defend-

<\ ing side's cholce.
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By analogy to Theorem (3.9) we obtain the f»llowing result,
which states that 1n the mulilple target case as well as the
single target case, Prim-Read deployments (uniquely!) minimize
the number of interceptors required by the defending side, sub-
Ject to a constraint on the maximum average target destruction
per attacking weapon committed.

4.7 THEOREM., Let k be a positive integer and let ¥ be the
total value of all targets. Then the Prim-Read deployment dﬁ
uniquely solves the optimization problem

minimize I(4)
s.6.  A(d) = p(dd)

max vid,r) L.
l<r<p(d) r -k

PROOF. Recall also that S(dﬁ) » k3. It follows from earlier
results that a# is a feasible solution to this problem.

Conslder now an optimal solution d'. Taking r = 1 in the
second constraint gives the requirement

max  v(3)q? (Js1) < % '
Jul,...,T

Hence for each J we must have

' log kv(J])
ar(1,1) » - tegkell)
= dﬁ(d,l) .

Since the Prim-Read deployment 1s feaslible, we infer that
d' (Jsl) ™ dﬁ(J 1)

for § =1, ..., 7. The remalnder of the proof follows by
induction in the manner of the proof of Theorem (3.9). il
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In the same way that Theorem (3.11) is related to Theorem
(3.9), the next Theorem i1s a complementary version of Theorem
(b.7).

(4.8) THEOREM. The Prim-Read deployment dﬁ is the unique
solutlion to the optimization problem

(4.9) minimize  max !LQ#El
l<rgp(d)
s.t. deD, .

We omit the proof.

A further property of Prim~Read deployments, whlch has no
analogue 1in the single target case, is that Prim-Read deployments
uniquely prevent the attacking side from being able to beneflt
from its belng permitted to optimize 1its allocation of attacking
weapons among targets based on knowledge of the deployment
chosen by the defending side.

(4.10) THEOREM. Let k be a positive integer and for an
integer-component vector a = (a(l),...,a(T)) let

- T a(J)
(4.11) V(d,a) = z V(J)[l- n (}_qd(J,ﬂ))]
J=1

fiml

which 1s the expected target value destroyed by the allocation
a of attacking weapona. Then of all deployments 4 « ﬁk, the
Prim-Read geployment dﬁ is uniquely characterized by the prgp-
erty that V(dﬁ,') depends on the allocation a only through a,
provided that a(J) < p(d,J) for each J.

PROOF, From (2.12) we have

G(dasa) -

i
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for all a. Suppose now that d ¢ Dk satisfles the stated property.
By considering (1,0,...,0), (0,1,0,...,0),+4.,(0,...,0,1) as ,
successive cholces of a, we conclude that [

(4.12) v(1)g3 1) gyt L)

for all J and J'. Consider next two targets J and J', and the
two allocations

l-(o,...,l,...,l,...,C)) .(-.

J!

a

and ¥

a2-<0"",2|'li’o,"v,0) .

Jl

J i
We must then have 1
. 2 5
1.13)  w(ad) b y(gngdli HY . V(J)[l-zﬂ <1-qd‘3'“>] Ci
w] .
Using (4.12) we may transform (4.13) to ?
()
d(d,1) |

(4.14) 12 ;
1T 1
of course, a similar expresaslon holds for j'. ‘ﬁk

We may continue this process of simplification, which

beocomes harder notationally but not conceptually, to conclude ﬁ

that ' 1

{ a(d,1-1)

d{J,L) g s )

(4.15) qQ : - LT y
1-q V2 °7
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for all J and 1. PFinally, (4.15), together with the constraint
that d e Bk’ impliee that d = df. 0

The interpretation of Theorem (4.10) is not that the Prim-
Read deployment restricts the attacklng side in its cholce of
actlons, given a fixed stockplle of attacklng weapons, but rather
that the Prim-Read deployment limits the range of effects of
those actions. In particular, the attacking side, when con-
fronted by a Prim-Read deployment, cannot galn from being able
to allocate 1ts weapons among the targeté. According to Theorem
(4,10), 4in chls case the target value destroyed depends only on
how many attacking wearons are committed and not on how those
weapons are distributed among the targets, provided only that no
weapons are wasted by belng directed at targets that are certailn

to have been destroyed.

c. ADDITIONAL PROPERTIES

As 1s also true for the single target case, in the multiple
target case the Prim-Read deplcoyment does not solve every optimi-
zZzatlon problem arising from the baslc target defense model, The
following Example parallels Example (3.15), to which the reader
is referred for background and comparison.

(4.16) EXAMPLE. In this Example we consider an optimization
problem that stands in the same relation to the problem (4.9)
solved in Theorem (4.8) as does (3.16) to the problem (3.12)
solved in Theorem (3.11). Specifically, that problem is the
following: Let k be a fixed positlive integer, fix the attack-
ing slde's resources at

A = kv = B(dn) ,

and fix the defending side's interceptor resources as

T
L
I = I(dﬁ)‘-iBE"E le logl(kv(3))!]
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These are the resources expended by the attacking side (to
destroy all of the targets) and required by the defending side,
when the latter uses the Prim-Read deployment dﬁ. Then, con-
slder the optimization problen

T a(d) '
(4.17) minimize max 21 V(J)[l- 1 (l_qd(d,i))]

a J i=1
T
s.t 1 a(d) < A
3=1
p(d.d) logl[(kv(3))1] y
e 1 R A CIRA

In the problem (4.17) the defending side seeks a deployment
d that:

1) At each target deploys at most as many lnterceptors as
does the Prim-Read deployment dﬂ.

2) Minimizes the maximum expected target value destroyed
when the attacking side 1s eble to optimize 1ts allocatlon
a = (a(l), ..., a(T)) of attacking weapons among ¢the targets,
given knowledge of the defending side's denloyment.

We observe that, in keeping with Assumptions (l1.2a) and
(1.2d), interceptors cannot be reassigned to different targets.

We have not been able to solve (U4.17). However, conslder

by analogy with Example (3.15) the uniform deplcvment 3 given
for each J by

I
(4.18) : a(g,1) = T
for L = 1, ..., kv(j), where
b o o Llogl(kv(J))t]
(h.19) IJ 10g q
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i3 the total number of interceptors deployed at target J, as
an alternative to the Prim-Read deployment d%., Agalinst the
deployment a, the optimal allocation of attacking weapons
remains the same as it was against the Prim-Read deployment
d%, namely

(4.20) a(d) = kv(l) , y =1, ..., T.

The optimal value of the associated objective functlon ls
1 kv(J)

.. T L \EV(3
(b.21) Vv(d,a) = le v(d)|1- l'(WW!) : k

By comparison with (3.19) and the subsequent anelysis we can
see that as k + e

(4.22) v(d,a) « (1-e"%)%
=.93G .

Therefore, for large values of k we have

(4.23) V@,3) g3,

v(d¥,a)
so that for the problem (4.17), the Prim-Read deployment is 3
demonstrably 93 percent as effective as the uniform deployment {
d, as it was in the single target case.

On the other hand, let us consider the problem (4.9) to
which dﬁ is the optimal solutlon. The optimal objective func-
tion value 1s

*~
nax V(E%.8.1) |

1< 1

b L

For the problem (4.9) the uniform deployment d derined by (4.18)

63 Q




R T St

B ey

is far from optimal. In fact,

V(d,a,1) 1 L ()
?gx 3 = m?x V(J)[ﬁaﬂ3777]

sl

as k + =, Moreover, the maximum value 1s attained for 1 = T
with one attacking weapon directed at each target.

One may draw the same robustness conclusion as was valld
in the single target case; cf. Example (3.15). ﬂ

REMARK. A more sensible alternative to the problem (4.17)
1s the problem

T a(J)
(4.2) minimize max } v(J) [1_ n‘j (1_qd(.1 ,i))]
d a J=1 1=l

T
s.t. ] a(J) <A
J=1

I(d) <1I.

In this problem, the defending side 1s constralned to the number
of interceptors required for the Prim-Read deployment, but not on
a target-by-target basis, as was the case in (4.17). Since the
defense constructs the deployment from scratch, luterceptors can
initially be assigned to any target, even though they may be dif-
ficult to move from target to target thereafter. One can view
(4.17), therefore, as belng restricted to possible improvement of

a1 existing Prim-Read deployment. Unfortunately, the problem
(4.24) has been intractable.

We do wlish to observe, however, that 1t l1s a consequence of
Example (4.16) that dﬁ 18 not an optimal solution to the problem
(4.24)., As would be expected, d* 1s relatively less optimal for

k
the latter problem than for the problem (4.17), since the only
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difference between the two 1is that (4.24) has a larger con~
straint set. However, we have not been able to obtain lower
bounds for this case such as obtained in Example (3.15).

D. CHAPTER SUMMARY

This Chapter contains a development of mathematical optil-
mality properties of Prim-Read deployments in the multiple
target case, but under the assumption that elther all targets
are defended or only targets of unit value are left undefended.
To read the summary below, recall that for each integer k > 1,
dﬁ is the Prim-Read deployment with scaling factor k (as given
in (2.14)), D, 1s the set of deployments with the same total
of target prices as dﬁ and interceptor requlrement not greater
than that of d¥, and V(d,1) 1ls the target value destroyed by
an attack consisting of 1 attacking weapons that 1s optimized
against the deployment d. The principal results of this Chapter
are then the following.

1) Theorem (4.3), which &sserts that if k is fixed, if
d ¢ ﬁk’ and 1f V(d,:) 1s convex on the interval [O,B(dﬂ)],
then d = di. That 1s, of deployments with a prescribed total
of target prices (i.e., a prescribed commitment of attacking
weapons required to destroy all of the targets) and needing no
more lnterceptors, only the Prim-Read deployment entalls a
convex payoff functilon, wilth the associated Ilncreasing rsturns
to scale, for the attacking side. Faced with such a payoff
function the attacking side would choose to expend its resocurces
in order to destroy the defended targets and not divert those

regources to other uses.

2) Theorem (4.7), which demonstrates that for each k the
Prim-Read deployment d¥ ls the unique solution to the optimiza-

}(.
tion problem




minimize I(d)
s.t. p(d) = p(ak)

max IL%LEl < %

1<r<p(d)

In physical terms, thls result means that subject to a flxed
total of target prices and an upper bound on target value
destroyed per attacking weapon committed, the Prim-Read deploy-
ment uniquely requlres the fewest interceptors,

3) Theorem (4,8), in which 1s stated that for each k the
Prim~Read deployment dﬁ 1s the unique solution to the optimi-
zatlion problem

v(d,r)

minimize max -

1<r<p(d)

S.tc d. ¢ ﬁk .

The interpretation here 1s that wlth the total of target prices
and the supply of avallable interceptors fixed, the Prim-Read
deployment uniquely minimizes the maximum (over all attack
sizey) target value destroyed per attacking weapon committed.
This property 1s essentially argument 2) used in Chapter I, A
%0 Justlfy linearlity of the payoff function Vd‘

4) Theorem (4.10), which states that 1f for an allocation
8 of attacking weapons we defilne '

. T a(J)
V(d,a) = 1} v(j)[}- I (l_qd(J,2)>] ,
Jml

hml

which 13 the expected target value destroyed by the allocation
a, then of all deployments in ﬁk’ only the Prim-Read deploy-
ment makes ¥(d,a) dependent on the allocation a only through
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a T
its total size a = J a(J). That is, the Prim-Read deployment
Ju=l

dﬁ 1s characterized by its imposing on the attacking side a
"uniformity of effect," in the sense that the target value
destroyed 1s a function only of the number of attacking weapons
committed and not of the way those weapons are allocated among
the targets.

5) The nonoptimality statements gathered in Example (4.16).
Specifically, it is shown there that with the two sides'
resources fixed at appropriate Prim~Read levels, the Prim-Read

deployment d; is not a solution to the optimization problem

minimize V(d,A)

s.t. A= kv

p(d,d) p(djsd)
Lo Toan, gaam

That 18, with no reassignment of interceptors from target to
target permitted, the Prim-Read deployment does not minimize
the expected target value destroyed by an optimlzed attack.
However, the Prim-Read deployment 1s robust in the sense that
it 1s nearly as effective as the uniform deployment; by com-
parlason the uniform deployment is far from optimal for the
problems, cf. 2) and 3) just above, to which the Prim-Read
deployment is the optimal solution.

As & consequence of the results noted in 5), the Prim-Read
deployment 1s not an optimal solutlon to the corresponding
problem in which interceptors may be reassigned from one target
to another,

We emphasize, in concluding this Chapter, that in the dis-
cussion herein, essentlally all targets have been defended.
In reallty, however, the defending side will possess insufficilent




interceptor resources to defend all (or probably even most) of
the targets. It must, therefore, leave many targets, generally
not all of the same value, undefended. The cholce problem

faced by the defending side thus becomes yet more complicated.
The target defense principle discussed in Chapter I, A provides
a bagls for choosing which targets to defend and a partial basis
for declding how to defend them. The next Chapter 1s devoted to
exploration of the consequences and lmplicatlons of this very
important principle.

(1,‘.



Chapter V
CONSEQUENCES OF THE TARGET DEFENSE PRINCIPLE

As observed in Chapter I, the important practical problem
in nationwlde target defense concerns the case when many tar-
gets, almost always of differing values, must be left undefended.
The discussion in Chapter IV did not include thls case; there
we assumed that either all targets were defended or only targets
of unit value were left undefended. In this Chapter we dlscuss
in detall properties of Prim-Read deployments when there are
many undefended targets and when the target defense principle
1s assumed to be satisfled. We ¢obtaln not only results analo=-
gous to those of Chapter IV but also some additional results.

A. GENERAL DISCUSSION

Before presenting the mathematical results of thls Chapter,
we will discuss the target defense problem in falrly general
terms, but more mathematically than in Chapter I, A. At this
point we refer the reader to PFlgure U4, which deplcts several
payoff functions corresponding to different defensive deploy-
ments. Recall that

T (3)
V(d,1) = max V(.‘J)[l- aIIJ (l—qd(d’“)];
arami jml Lml

which 1s the maximum expected target value that can be destroyed
by commitment of 1 attackling weapons. To obtaln the payoff
V(d,1), the attacking side optimizes its allocatlon of weapons
among targets given knowledge of the deployment d.

In Figure 4a we show the payoff function V(0,+) corres-
ponding to the case when no targets are defended ("0" denotes
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a. NO TARGETS DEFENDEYD

vi)

I
" b. SOME TARGETS DEFENDED
e
Eg
L i
i* ¢. MORE TARGETS DEFENDED
5187618

Figure 4. POSSIBLE PAYOFF FUNCTIONS
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the deployment which deploys no interceptors). This payoff
funetion 1s strictly concave on (0,»), since when there i1s no
defense (and attacking weapons are assumed to be reliable) the
attackling slide's optimal response 1a to¢ destroy the targets in
order of decreasing value. To maximize target value destroyed,
the attacking side commits as many weapons as posslble, whereas
to maximize target value destroyed per attacking weapon come
mitted, the attacking side should commit only one weapon
(directed at the most valuable target, of course).

T R .

-

PTG | R T

The payoff functions shown in Flgures Ub and Uc arise when
some targets, but not all, are defended using a Prim-Read deploy-
ment constructed in the manner descoribed below 1n this Chapter.
In Figure Uc, more targets are defended than in Figure 4b, For
both Flgures i* 1s the number of attacking weapons necessary to
destroy all of the initially defended targets. Detalls of the
construction of Prim-Read payoff functions wlill be given
presently.

SR

Underlying the defending slde's cholce of which targets
to defend, and how to deploy interceptors at each defended
target, 1s the target defense principle put forth in Chapter I,
which we restate here.

TARGET DEFENSE PRINCIPLE. a) Targets must be defended
in order of decreasing value.

b) If a target is initially defended, then up to the point
at which it 1s destroyed with certainty, the expected target
value destroyed by an attacking weapon directed at 1t must be
greater than or equal to the value of every initially undefended
target.

The ratlcnale for the target defense princlple 1s that 1if
.defensive resources are to be expended, it must be in such a
manner that the attacking slde be forced to commit 1ts weapons
"to defended targets rather than undefended targets, at least
up to the point that all defended targets are destroyed.
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In more mathematical terms, both parts of the target
defense principle may be combined into the following statement:
a deployment d satlsfles the target defense principle 1f when-
ever p(d,)) > 1 (i,e., target J 1s initially defended) and
p(d,J') = 1 (target J' is not defended), then

v(J') g V(J)?(§.J,i)

1-1
) V(J)[2n1 (1_qd(J,z>)] RICIES

for L =1, ..., p(d,J). Recall that p(d,J,1) is the probability
that target J 1s destroyed by the 1th attacklng weapsn directed
at 1t. In particular, v(J') < v(J), which is the first part of
the target defense principle,

For further discussion of the target defense principle we
refer to Chapters I and VIII and to references [15,19].

Figures 4b and le represent the payoff functions of Prim-
Read deployments that satisfy the target defense principle;
these payoff functlons are linear up to the point i* at which
all of the defended targets are destroyed and thereafter colnci=-
dent with a translated portion of the payoff function from the
undefended case. To respond optimally to a Prim-Read deploy-
ment, the attacking side should destroy the defended targets
in an arbiltrary order and then destroy the undefended targets
in order of decreasing value.

The more targets are defended, the lower the slope of the
linear segment of the payoff function, which 1z 1llustrated by
comparing Figures 4b and U4c. In fact, there are three ways in
which the defending side's cholce of a Prim~Read payoff function
can be interpreted:

(1) cholce of which targets to defend;

(2) specification of the slope of the linear segment of
the payoff function;

(s



(3) specification of the number of attacklng weapons
required to destroy all of the defended targets.
We will describe how to construct a Prim-Read payoff :
functlon based on each of these three methods of cholce. k.

For the first method of construction, based on choosing
which targets to defend, we refer the reader to Figure 5. If
V(0,:) denotes the payoff function for the undefended case,
then the procedure 13 the followlng:

1) According to the target defense principle, the defended
targets must be the 11 most valuable targets for some il < 7T
(T 13 the total number of targets).

Vi i)

Vo« PAYQFF FUNCTION WHEN N
TARGETS ARE DEFENDED

HORIZONTAL TRANSLA

"

S1%75-10

Figure 5. CONSTRUCTION OF PRIM-READ PAYOFF FUNCTION }
BY SPECIFYING DEFENDED TARGETS

73




2) Let

vy * V(O,il) R

which 18 the total value of the targets to be defended.

3) The Prim-Read payoff function 1s to be linear on the
interval [0,1%*], where 1% is the (yet to be determined) number
of attackihg weapons needad to Jdestroy the defended targets.
By the target defense principle, the slope of the linear
segment, namely

must be greater than or equal to the slope of V(0,+) at 11.
This 1s because the payoff funsction V(d*,.) for the Prim-Read
deployment will be a translation of V(0,:) once all the
defended targets are destroyed. Hence we must have

8 2 V'(O,il) ’

where the prime denotes differentiation. The defending side Q
will now ohoose 1* as large as possible but such that N

vy
o 2 V0, 1)

Ignoring possible dlscreteness difficultles, 1t will be possible
for the defending side to take :

\'s .
1
L
g v"—-!'-——y'(o’il ’ ¢
which coﬁbletes determinatlion of the Prim-Read payoff function. |
Specifically, the Prim~Read payoff function is then given
by



V(d¥,1) = 1V'(0,1,) on [0,1%]
= V(0,1-(1¥-1,)) on (i%,w) ,

D o ATl T

n

SO S,

where 1% = vl/V'(O,il). Orie must then derive a deployment having

this payoff function, which we do 1n Section B below.

e oy -
R -~

' The second construction of Prim-Read deployments requires

)

fh first speclfylng the slope of the linear segment; this 1s 1illus-
ﬁﬂ trated in Flzure 6. The procedure to be used 1s the followlng: 1
- .
i

vl

N V{0, ¢)= PAYORE FUNCTION WHEN 1
N0 TARGETS AME DEPENGED 3
.Jéi

1

" presescsensens;

-' - '
Iy !
N L WTIAL COSTAUCTION

_ . v{))
’4
%
3
!
. PR !
f“ b PNAL NESULT
l:rl‘ (313, 3}
R 1o Figure 6. CONSTRUCTION OF PRIM-READ DEPLOYMENT BY |
i SPECIFYING SLOPE OF THE LINEAR SEGMENT g
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. 1) Let s* be the prescribed slope of the linear segment. .
-9 By strict concavity of V(0,*) there 1s at most one point il '&
Fy such that ‘

V'(O,il) = gk |

ﬂ If there 1is no such point, it 1s impossible to construct a
. Prim-Read deployment for which the llnear segment has slope s¥,

j} 2) If there exists a unique 1, such that V'(0,1,) = s¥,
' then the 11 most valuable targets must be defended and the
remalnder of the construction follows the preceding case.
Alternatively, as shown 1n Figure 6, one takes the linear
portion to the left of il and V(0,°) to the right of il and
translates this graph to the right untill the linsar segment e |
. passes through the origin. The flatter the linear segment '
the more translatlon and the greater the commitment of attack-
g, ing weapons required to destroy the defended targets.

The final method for constructing a Prim-Read deployment (
Involves specification of the commitment i* of attacking wea-
pons necessary to destroy the defended targets, and 1s carried
out as follews:

1) By concavity of V(0,') there i1s at most one point i,
such that

g V(0,1,)
o 1% u ) 3
I v (6’11)

If there 18 no such point, 1t 1s impossible to construct a
} Prim-Read deployment with the prescribed value of 1%,

2) If there is such a point il’ proceed as in the two pre-
= . vious constructions, defending the 1, most valuable targets.

: R The reader will observe that all three procedures yield

. payoff functlons of the same form; they differ based on what is
';?- prescribed at the start by the defending side. Some other

' relevant points are:
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1) The amount by which target value destroyed 1s decreased
relative to the undefended case, i.e., the difference V(0,1) -
V(d*,1), initlally increases in 1 untll 1t attains 1ts moximum
at 1 = il and thepresiter devraanes to zero as 1 + o,

2) The more targets the defending side has the resources
to defend (or, equivalently, the flatter the linear segment of
the payoff function, or the greater the ccmmitment of attacking
weapons needed to destroy all of the defended targets), the
greater the decrease relative to the undefended case.

3) For Prim-Read deployments the maximum value of
V(d*,1)/1 is attained for all 1 ¢ [0,1*]. The attacking side,
1f 1t seeks to maximize target value destroyed per attacking
weapon committed and 1f destroying more targets 1s preferred to
destroying fewer, wlill then expend the resources requlred to
destroy all of the defended targets, but will not attack any of
the undefended targets.

As a final point, we observe that when there are undefended
targets, there 1s no arbitrariness 1n the cholce of target prices,
as there was ln the unspecifled scalling parameter k of Definitlon
(2.11). The prices of the defended targets are made as large as
possible without violating the target defense principle.

MATHEMATICAL RESULTS

Before presenting our principal mathematical results, we
motivate them, and also illustrate the target defense principle,
by means of an example.

(5.1) EXAMPLE. Let there be four targets with values v(l) = 8,
v(2) = 4, v(3) = 2, v(4) = 1 and suppose that q = 0.8. We will
determine Prim-Read deployments for varilous choices of defended
targets and also the assoclated required numbers of interceptors.
In accordance with the target defense principle, the targets must
be defended in order of decreasing value, l.e., in the order
1,2,3,4.
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If only target 1 1s defended using a Prim-Read deployment
d*, then in order to satisfy the second part of the target
defense principle, its price, p(d*,l), must be (less than or)
equal to 2., Each of the first two attacking weapons directed
at 1t then ylelds an expected target value destroyed equal to 4,
which is the value of the most valuable undefended target. To

implement the resultant Prim-Read deployment requires 3.11
interceptors.

Suppose now that (only) targets 1 and 2 are to be defended.
To satisfy the target defense principle, d* must now satilsfy

p(d#,2) -%(% = 2 3

to malntaln parity between targets 1 and 2, both of which are
now defended, we must also have

The interceptor requirement becomes 17.35.

If targets 1, 2 and 3 are to be defended, which corresponds

to k = 1 in the notation of Definition (2.11), then the prices
must be

pla%,3) = Y31 a o |

i

p(d*,2) = v(2) - 4

]

and

p(d%,1) = %Y('IE‘%' =8 ;

the interceptor requirement 1s 64.87.

I7 more than 65 1nterceptors are to be used in a Prim-Read
deployment, then target U4 must be defended before additional
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interceptors can be deployed at the more valuable targets.
For k = 2, the Interceptor requlrement 1s 202.33, while those
for k = 3 and k = 4 are 372.60 and 564.71, respectively.

Figure 7 illustrates fbur of the cholces described above,
along with the payoff function when no targets are defended. In
that Figure, a "discrete" graph has been linearly interpolated
for clarity. Each Prim-Read payoff function is linear up to and
including the destructlon of the most valuable undefended target.

14

. B TARGET 1
DEFENDED

o e e il S G

10 TARBETS 1 AND 2
DEFENDED

v{d*, i)

3 »
“TARGETS 1, 2 AND 3
DEFENDED ~

6
/Gu. TARGETS DEFENDED

WITH o(4) = 2

L mtec® e e
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Figure 7. PRIM-READ PAYOFF FUNCTIONS FOR EXAMPLE (5.1)
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We now proceed to a precilse definition of Prim-Read deploy-
ments. Suppose that there are targets 1, ..., T of respectlve
integer values v(l1), ..., v(T), so that

(5.2) v(l) > v(2) >...> v(T=1) > v(T) > 1 ,
and that

vil
(5.3) | R €Ty

ls a posltive integer for 1 =1, ..., T = 1. Whlle the assump-
tion (5.2) 18 not restrictive, the assumption (5.3) 1is; however,
we have been unable to avold 1t in some form. Its usefulness
will become apparent momentarily and ways of minimizing 1its
undesirable effects will be dlscussed below.

'; By analogy with Definitions (2.4) and (2.11) we propose
the following. :

i (5.4) DEFINITION. Suppose that J, < T. A deployment d* is a
B Prim=-Read deployment defending targets 1, ..., JO provided

§ a) p(d%,3) > 2 for 1 =1, ..., 33

b) p(d*,3) =1 for J = g, + 1, ..., T

c) 1If 3 < JO’ then

g Jo
; v(L)
(5.5) v(§Iptarg,1) = 22
I p(d*,l)
L=
B for 1 = 1, ..., p(d*,3);
| ?’ﬂ d) IfJ <J,and i< p(d*,y), then
i
IF¥ (5.6) v(Ip(d*,3,1) > v(J*+Ll) .
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Some comments are in order bhefore we explore the conse- )
quences of Definition (5.4), 3

P P ey Ry

1) A Prim-Read deployment d* satlsfles the target defense
principle. By (5.2) the more valuable targets are defended and
the less valuable targets left undefended. The second part of

v the target defense principle 1s expressed by (5.6): the expected
yield from an attacklng weapon directed at a defended target, up
to the point where destruction of the target 1s certain, exceeds
the value of the most valuable underended target.

‘s _ .
Y T Wi Y i il e 3

2) Although (5.6) 1s stated as an inequallty, (5.3) will '£
allow us to construct deployments for which it holds as an '
equality.

. 3) The condition (5.5) is the Prim-Read equallzation . ' {
eriterion appearing in operationally different, but sonceptually

, identical, form in (2.5) and (2.12) above and in (7.1), (7.10)

‘ and (7.1%) velow. Given that targets 1, vees JO are defended

y | by a deployment 4,

P

Jo

i“ - Z p(d’z) _'1

L=l X

is the number of attacklng weapons needed to destroy them,
while

J0 g
¢ Gl - Z. v() ;

L=l 2
' 13 the total of thelr values. Therefore the ratioc Gl/i* is
the target value destroved per attacking weapon commlitted to
the defended targets, and (5.5) stipulates that each such
attacking weapon have this as its yleld.

'“;- L) Against a Prim-Read deployment, the attacking side's y'
" optimal response 18 to first destroy the defended targets and '
then destroy the undefended targets in order of decreasing
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value. Consequently, the payoff function V(d#,.) 1s given by

V(a%,1) = 1 for 1 < 1 < i¥
" <ics
30+1-1'
- I v(w) for 1 > 1%,
g1

That is, the payoff function 1s a llnear segment followed by a
translated portion of the undefended case payoff function and
i1s of the form dlscusgsed in Chapters I,A and V,A above.

The following analogue of Theorems (2.6) and (2.13) can
be proved using our earlier methods, so we omit a derivation.

(5.7) THEOREM. For each JO < T there exlsts a Prim-Read
deployment d* defending targets 1, ..., T, which i3 given by

log(n(j)-1+1) - .
logq ’ J l"",JO,

iml,...,n{J),

(5.8) d*(J,1) = -

where n(J) = v(J)/v(JO+l), which 18 an integer by (5.3). For
this deployment, (5.6) holds as an equallity for each J and 1.

In particular, we have p(d%,j) = n(j) for J = 1, ..., ARy
go that target prices for defended targets are proportional to
target values. Also, the interceptor requirement is

J

0
I(a%) = - loé 3 le logln(y)1] .

As noted in the statement of (5.7), the deployment d* given
by (5.8) satisfles (5.6) as an equality, which makes it the maxl-
mally strong Prim-Read deployment defending targets 1, ..., JO
and satisfying the target defense principle.

Our first optimality result 15 analogous to Theorem (4.8).

3
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(5.9) THEOREM. Let JO < T be fixed and iet d* be the Prim-
Read deployment given by (5.8). Then d% 1s the unique solution
to the optimlzatlion problem

| (5.10) minimize _ max  LGar)
; I<r<p (d¥)

s.t. I(d) < I(d¥) .

Before proving Theorem (5.9) we point out that the con-
straint does not include a requirement that d defend precisely
the targets 1, ..., Joi however, we will show that any optimal
solution to (5.10) has this property.

PROOF. We observe first that, from (5.6),

max v(at,r) v(30+1).

r

It will be shown that if

(5.11) max g r

_<_ v(dol"l) 3

then 4 = d*, which suffices to establish unique optimality of 4#
for the problem (5.10).

We begin by showing that if d satisfies (5.11), then . i
p(d,]) = p(d*,J) for all § = 1, ..., T. First of all, if
p(d,J) < p(d*,J) for some J < J, then

St 4t
> B%é%%HT = v(J,*tl) ;

which contradicts (5.11). Therefore p(d,J) > p(d*,J) for all
J;3 1in particular, p(d,J) > 1 for J < Iy |

On the other hand, if p(d,J)) > p(d*,3) for some J, then
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d(J,p(d*,3)) > 0 = a%(J,p(d*,3)),

so that in order that the constraint in (5.10) not be violated

there must be h with 1 < h < J, such that
p(d*, h)-1 p(d¥,h)-1
77 Tacn,1) < §

i=]1 =

(5.12) d*(h,1) .

However, (5.12) implies that

y_d d*,h)-1 v(d"p(d*gh)"‘ll-
L‘?‘E&"p a ,ni“z'-l L ICLURIE v(Igtl)

which again contradicts (5.11). Consequently, p(d,J) = p(a%*,s)
for all J.

It vremains to show that
(5.13) a(J,1) = a*(;,1)
for 1 € § €y and 1 <1 ¢ p(d¥,J). Since I(d) < I(a%) either

p(d*,5)=-1 p(d*, )=
e, = S

1wl 1wl

(5.142) a¥(3,1)

for all J < JO or there exlsts veme h for which

p(d%,h)-1 p(a¥, nj=1
(5.14b) P77 Tdtn, 1) < )

=l 1=

d*(h,1) .

If (5.14b) were true, the argument of the preceding paragraph
could be applied to yileld a contradiction te (%.11). Therefore,
(5.14a) holds for each § and Theorem (3.1l) may now be invoked
to conclude that (5.13) is satisfied. 1}

Consequently, when (5.3) holds, in order to minimize the
maximum target value destroyed per attacking weapon committed,
the defending side should implement a Prim~Read deployment.

84
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If I 1s the supply of avallable interceptors, the defending side
would then choose

(5.15) Jo = max{j: I(d*) < I} .

If 30 < T, targets 1, ..., Jo would be defended using the
deployment d* given by (5.8)., 1If Jo = Ts then all targets can
be defended, which can be done using a Prim-Read deployment as
described in Chapters ;I and IV.

To cilrcumvent the nondiscreteness difficultles that are
excluded by (5.3) but clearly do arise in reality, one could
do the following:

1) Determine g by (5.15). f
2) Take

p(d*,JO) = max{k: v(Jo) > kv(jo+l)} 'f

as the price of target JO’
3) For J < jo take eilther

p(d*,J3) » max{e: v(J) > zv(J0+l)}
or (by backward recursion)
p(d*,J) = max{&: v(J) > 2v(J+1)}p(d*,J+1) .

The first of the two methods in step 3) places greater
emphasis on (5.6), the target defense principle, and the second,
greater emphasis on (5.5), the Prim-Read equalization criterion.
Although we have not investigated the question in detall, we
suspect that the Theorems of this Chapter remaln approximately
true for such deployments.

In order to choose a Prim-Read deployment that forces
expsnditure of a known stockplle AO of attacking weapons, the
defending side would proceed in the following manner (assuming

85




R ’ N §
e L P

that (5.2) and (5.3) are satisfied):
1) If there exists Jo < T such that N

] 3
0 ]
(5.16a) Ay < 1 V%%%%TT ) 3

J=1

e am i Tan

then implement the Prim-Read deployment d* that defends targets
1, «vvy Jo, which is given by (5.8).

2) If

; P-1
; ,
. (5.16b) A, = le ;%%% 1,

then implement the Prim-Read deployment that defends taigets
1, +.++, T = 13 the last attacking weapon willl be used an the
undefended target T.

3) If (

T
v
(5.16¢) AO > zl F&% ’

then all targets must be defended, and a Prim-Read deployment b
may be chosen as described in Chapter II.

e i b R e W

It was demonstrated in Theorem (4.8) and Example (4.16) that
when all targets are defended, Prim~Read deployments do not €
golve optimlzatlon problems in which the objJective function 1s
target value destroyed, whereas they do solve problems in which
the objective function is target value destroyed per attaecking
weapon committed. Speciflcally, for problems of the forms ‘”Q
(4.17) and (4.24) Prim-Read deployments are not optimal. There- R
i fore, 1t 1s of interest to examlne the same sorts of questinns
. for the situation to which this Chapter 1s devoted.

gn (34
R b .
4 '
.(‘- -
g‘ .
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It will be shown, in Theorems (5.17) and (5.32), that when
the target defense princilple 1s assumed to hold, the following
properties are valid:

a) Prim-Read deployments minimize, in most cases uniquely,
expected target value destroyed by an attack that 1s not suffi-
clently large that 1t exhaust the Prim-Read def'enses.

b) There exists a deployment wlth the same interceptor
requlrement as the Prim-Read deployment that 1s uniformly better
(1.e., has a smaller payoff functlon) for all attack sizes
between the Prim-Read exhaustion point and the point (against
the Prim<Read deployment) at which all the targets are destroyed,
and whilch also satisfies the target defense principle.

The following result 1s one of the most lmportant results
in this paper; together with Theorem (5.32) it conclusively and
unambiguously delineates optimality properties of Prim-Read
deploymentis as a functlon of the number of attacking weapons
committed.

(5.17)  THEOREM. Let J, < T be fixed and let d* be the Prim-
Read deployment given by (5.6). Assume that for each § < 3o
there 1s a positive integer na(j) such tint v(J) = n(J)v(J0+l).
Then for each A such that

1 5
A < Z n(y) = Z p(d'ad) t
Jwl Jul

the Prim«Read duployment d¥ 1s a solution to the optimization
problem

T a(d) \
(5.18) minimize max ZV(J)[I-II (l_qd(J,\z))]
a:a<A Jw=l qml

g.6. I(d)<I(d")

(5.19) v($)p(d,4,1) 2 V(I *L) , J=lyevindy s
1ul,...,0(d4,3) .

e e s e Tt e mi - a3 e




If A > n(l) - 1, then the Prim-Read deployment d¥* 1s the unique
solution to «(5.18).

As indicated symbolically in (5.18), the maximization there
i1s over all allocations a = (a(l),...,a(T)) of attacking weapons
among the targets for which

n T
a = ] a(J) <A
J=l

of course, 4 = A for the maximizing allocation a.

The interpretation of Theorem (5.17) 18 that, given a
choice of which targets are to be defended and 1f the target

‘defense principle must be satisfied, then the Prim-Read deploy-

ment minimizes the expected target value destroyed, provided
that the number of attacking weapons not be more than that
required to destroy all of the defended targets. If the attack
gsize 1s large enough to exhaust the Prim-Read defense at thé
mogt valuable target (and hence at any defended target), the
Prim-Read deployment 1s unlquely optimal,

Wo now give the proof of Theorem (5.17).
PROOF of THEOREM (5.17). To establish nptimality of d¥% for the

protlem (%5,18), the following somputation suffices: 1f d satis-
fles the constraints there, then

T a(d) T a(l)
war v(J)[;- | (1~qd(J’z))] w max ) v(J) é p(d,d,%)

agch  Jwi pel J=1 el
T a(J)
> max | § v(J,+1)
Jul Qwl

[by (5.19)]

v(JO+1)A




T a(J)
= max T V(J)[l- T (l-qd“(3'1>)].
a J=1 ful
We now prove unlqueness under the assumption that
(5.20) A>n(l) =1=(maxn()) -1.
! I<d,

To this end, observe firat that the proof of Theorem (5.9) shows
that 1f d satisfles the constraints of (5.18) then

i el P G A i 3 AR it K i T
i -
- P

i p(d,J) < n(J) , Jmlyveindgs
i and
[ ! P
¥ ‘&
' a(g,e) > 1, ISP P ;
. " =TT l0 _

Q'l,-..,p(d,J) .

y For each target J, either (5.19) holds with equality for
- i=1, ..., n(J), in which case

p(d,d) = n(J)
' and

— ek e

d(J,e) = d%*(J,8)

for ¢ = 1, ..., n(J), or else there 1is 1, (depending on J) such
that

{5.21) V(J)P(dajaio) > V(J0+I)
and such that no smaller value of 1 satisfiles (5.21). If we put

%
P(d,§,2) = 1 - T (1-q3{dsT))
r=]1

which 1s the probability of destruction of target J by one of 3
the first 2 attacking weapons directed at 1t, then we may infer ?




from (5.21) that
v(j)P(d,J,8) = zv(30+1)

for =1, ..., 10 - 1, while

V(J)P(d,J,iO) > iov(Jo+l) .

In order that the target defense principle (5.19) remaln satls-
fled, we must then have

V(J)P(d,J:E) > ZV(JO+1)
for all 4 > 10, which 1s possible only if
B 0(d,1) < n(3) .

Suppose now that d ¥ d* satisfles the constrailnts of
(5.18) and that (5.20) holds. It follows from the preceding
paragraph that there 1ls some J < Jo such that

p(d,Jd) < n(J) - 1.

Consequently, with A weapons the attacking side can deséroy
gtrictly more target value than against the Prim-Read deploy=-
ment by destroying target J with (at most) n(J) -1 shots and
then destroylng one of the undefended targets. Therefore,

T
max 2 V(J)P(dgjsa(J)) > AV(JO+1) 3
a J=l

3 which completes the proof of the uniqueness assertion. ﬂ

REMARK. In response to the question whether the assumption
(5.20) 1s essential for uniqueness, it 1s easy to answer in the
affirmative. For example, 1f T = 3 with v(1l) = 8, v(2) = 4 and
v(3) = 1 and 1if Jo ™ 2 then we have n(l) = 8 and n(2) = 4. The
deployment d given by '
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d(l,i) % - lolog ; 1 (] i'l,...,S’
_ log 4
d<2’1) - 103 q b ]
and
d(2,2) = 0

satlsfles the target defense principle and also has the property
that

(3)
max } v(J)[l- "1 (l-qd(d’z)ﬂ =1

am] J A=l

(J)
' = max ) v(,j)[l- aIIJ (l-qd*('j’z))] s
a=l J L=l

and therefore d* 1s not the unique solution to (5.18) when
A =1 < max {n(J)=-1}
3=y

Yet another optimization problem of interest is uniquely .
solved by the Prim~Read deployment when the target defense
princlple 1s assumed to be satisfled: Prim-Read deplo&ments
uniquely maximize the number of attacking weapons that must te
committed in order to destroy the defended targets. We state
this property next, but omit the proof, which 1s rather lengthy
and tedious, albeit straightforward.

(5.22) THEOREM. Let 30 < T be fixed and assume that for
each j < J, there is a positive integer n(J) such that v(j) =
n(J)v(Jo+l). Then the Prim-Read deployment d* given by (5.8)
is the unique solutlon to the optimization problem

Jo

(5.23) maximize JZ p(d,d)
w]
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(5'24) 5.%. V(J)p(dajsi) 2 V(JO+1)9 J’l’--'sjo;
i‘l,..-,p(d,J)-

Here the target defense principle 1s embodled in the
constraint (5.24).

REMARKS. 1) One motivation for Theorems (5.17) and (5.22) -
was an attempt to discover to what extent the target defense ‘
principle alone determines the form of a deployment d. The
constraint (5.24), i.e., the second part of the target defense
princivle, implles that

(5.25) e(d,J) < n@y)
and

_ log(n(j)-a+l)
(5-26) d(J:z) < lOg 3

for J < 3, and & < p(d,J). (Incidentally, the first part of
the target defense principle ls embodled in ocur labeling the
targets in order of decreasing value.)

It 1s easy to show that there exist deployments satlsfylng 3
(5.25) and (5.26) that are not Prim-Read deployments. To con- 1
slder a specific example, let T = 3 with v(l) = 8, v(2) = 4, -
v(3) = 1 and let J, = 2. Then n(l) = 8 and n(2) = 4. One 1

deployment satlsfying (5.25) and (5.26), and not of Prim-Read
form, 1s given by

qd(l,l) - % qd(z,l) - % -
qd(lpz) - % qd(2’2) - % 'f
L3 L1 (23 Ly 1
qd(l,u) -1




. -

e A S il T VoY N P, VS A

Y. h.

NEY Seeres

Verification of (5.25) and (5.26) 1s easy; the assoclated inter-
ceptor requirement is I(d) = 17.876. Against this deployment
the attacking side should commlt 1lts weapons against the targets
in the order 1,1,2,2,2,1,1,3.

The deployment d glven by

SLL) %_ £2(2,1) | 3
AL L 42,2 o
IETE
QL8 oy

also satisfies (5.2%5) and (5.26), and has interceptor require-
ment I(d) = 10.608. The Prim-Read deployment d* with p(d¥*,1) =
L and p(d*,2) = 2 has interceptor requirement I(d®) = 17.348,

2) In general, uniform deployments such as that defined by
(4.18) do not satisfy the target defense principle. Suppose,
for example, that T = L4 with v(1) = 8, v(2) = 4, v(3) = 2 and
v(4) = 1. If targets 1 and 2 were to be defended, the Prim-
Read deployment d¥* chosen ian accordance with Definition (5.4)
would have p(d*,)) = 4 and p(d%,2) = 2, with interceptor require-
ment I(d%) = 17.348. A uniform defense for target 1 for 4 shots
(1.e., equal numbers of interceptors deployed against each of the
first four attacking weapons, along the lines of (4.18)), and of
target 2 for 2 shots, would lead the optimal order of allocatilon
of attacking weapons among the targets to be 1,2,3,1,4,2,1,2,1,1.
It 1s then lmmedlate that the target defense principle 1is
violated.

3) In the strictest scense, the assumption under which
Theorems (5.17) and (5.22) are proved, namely that V(J)/V(J0+l) :
be an integer for each J < JO’ 18 weaker than the assumption (5.3). ~
There do exist cholces of target values and of JO for which
the weaker assumption on only the ratios v(j)/v(J0+1) holds,
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but (5.3) falls. However, validity of the weaker assumption
for all j, implles that of (5.3).

c. ADDITIONAL PROPERTIES

In Theorem (5.17) it was shown that provided that

Jo
v
(5.27) A< le VT%%%TT ;

the Prim=Read deployment d* minimizes expected target value
destroyed by an optimized allocatlon of A attacklng weapons,
assuming that the target defense principle 1s satisfied. The
question of whether d* is similarly optimal when (5.27) fails
is resolved in this Section: not only is d% not optimal but
there even exists a deployment d such that

v(d,1) <_V(d*,i)
for all 1 such that

JO JO . .
(5.28) I n() <1 I n@)+ (T4,
J=l =1

which uses no more interceptors than the Prim-Read deployment
d%, and whilch satisfles the target defense principle. Of
course, d will defend more targets than does the Prim-Read
deployment 4%, For a discussion and lnterpretation of the
condition (5.28) the reader is referred to the dlscussion that
follows the proof of Theorem (5.32).

The optimization problem we consider in this Section 1is,
therelore,

(5.29) . minimize V(d,A)
s.t. I(d) < I(d¥)

(5.30) v(3)p(d,d,1) > v@3") ,
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Where the constraint (5.30) 1s to hold for 1 = 1, ..., p(d,J)
whenever p(d,J) > 2 and p(d,)') = 1. Here (5.30) represents

the target defense principle: the expected yleld from an
attacking weapon directed at a defended target that is not yet
destroyed with certainty exceeds the value of every undefended
target. It ls further assumed that Jo 1s fixed and that A satis-
fies (5.28).

The following Example 1llustrates nonoptimality of the
Prim-Read deployment d* for the problem (5.29) in a specific
case., Thereafter, nonoptimality in general will be demonstrated.

(5.31) EXAMPLE., Assume that T = 4 and that v(l) = 8, v(2) = 4,
v(3) = 2, v(4) = 1, For Jg = 2, the total of the Prim-Read
prices is n(l) + n(2) = 6. For A = 7 we have

V(a¥,7) = 14,

where d* is the Prim-Read deployment. The deployment d defined
by

qd(l,l) . % qd(a,l) o % qd(3,l) - %:
qd(l,a) . % qd(2,2) u % qd(3,2) -1,
413 oy (23 |
then satisfies
3?2 Q08 . 1
- J?L qd*(J’z) s

from which we infer that I(d) = I(d*). Further, the target
defense principle 1s satisfied by 4 since

v(1p(a,1,3) = § > 1 = vy, 3=1,2,3 ,
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v(2)p(d,2,1) = 2 > v(4) ,

and also

v(2)p(d,2,3)
v(3)p(d,3,1)
v(3)p(d,3,2)
=1

= v(4)

v(2)p(d,2,2)

N et B PR

d Finally, 1t 1s immediate that V(d,7) = 13 < v(d%,7) and
' therefore d* 1s not an optimal solution to (5.29) for A = T, ﬂ

The followlng result shows that in general the Prim-Read
deployment d* i1s not an optimal solution to (5.29) when (5.28)
holds, and actually shows more: we expllcltly construct a
deployment d such that V(d,A) < V(d*,A) for all A satis-

fying (5.28).

s (5.32)  THEOREM. Let J, be fixed and let d* be the Prim-Read {
deployment given by (5.8); assume that (5.3) holds. Then there

exlsts a deployment 4 such that:
\\ a) d satisfilies the target defense principle in the form 3
(5.30); , L
b) I(d) = I(d%);
c¢) V(4d,A) < V(d*,A) for all A such t'at

P 3

0
(5.33) n(3) < A< [le n(Jﬂ N ERE

)
J=l
PROOF. Recall that

n(J) = v(J)/v(JO+1)
96




and, from the assumption (5.3), that

v(jgtl) = m(Jo+l)v(Jo+2)
Note also that the requirement I(d) = I(d%) 1is equivalent to

Jo
(5.38) 1 00 o o @Y oo (1) .
58 N gml

}
The deployment 4 will defend targets 1, ..., JO + 1 and
1s deflined by means of the following equalities:

d(do_._l’l) - m(Jo+l) -1
1 My ¥l °

AUo*L2) oy

d(3:2) o A%, L) J=2,. 003043

wl,...,n(J),

a(1,1) . 1 m{J,+)
1 H-(I—)_ m(JO+I) -1

and

(5.35) gd(1:%) o 4% (1, 0) 2, ...,n(1).

It 1s immediate that (5.34) 1s satisfled. Provided that
the target defense principle be satisfied, 1t will then be
true that

Jot+l

VG,({ ’“39“0 = ) wv(y) -1
j=1 Jul

Jo
. V(d*,( T nd >)+1) -1,
151

which verifles that

= St Sl et 0.5 = i etk
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(5.36) V(d,A) = V(d*,a) -1

Jo .
for A= ( ) n(J» +1, The forms of the deployments d* and d 3
J=1

then imply that (5.36) holds for all A satisfying (5.33).
Therefore, to complete the proof of the Theorem, it sufflces
to show that d satisfies the target defense principle (5.30).

For target JO + 1 the definition of d implies that
V(Jo+l)p(d,JO+1,1) = v(JO+1) - v(jo+2)
and
v(Jotl)p(d,Jg+1,2) = v(J*2) .

Keeping in mind that target JO + 2 1s now the most valuable unde=
fended target and that, by virtue of (5.2) and (5.3), v(J,+1) =
m(j0+l)v(30+2) with m(J0+l) > 2, we infer from thu two pre-
ceding expressions that (5.30) holds for J = Jo * 1.

If 2 £J £, then the definltions of d and of the Prim-
Read deployment d* yileld

v(IIp(d,,48) = v(J,tl) > v(gq,+2)
for & = 1, ..., n(J), which verifies the target defense prin-

ciple for these values of J.

It 18 slightly less stralghtforward to verify that the
target defense principle holds for jJ = 1. To begin on this,
for 2 = 1 we have ‘

v(l)p(d,1,1) = v(l)qd(l,l)

_ vl m(Jo+l)
n m{Jg*l) - 1

m(JO+1)

" vUoth) myhy T
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C > vldp*L)
> v(JO+2) ,

which gives (5.30) for J = L = 1, The expected target value

that survives the first attacking weapon directed at target
1l is

da(1,1) n(1)[m(J4*+1)=11 = m(Jy+1)
i v(l)(l-q ’ ) - V(l) \n(l)Em(Jo+1)-1]

Together with (5.35) this expreasion glves

n(l)[m(J0+1)'1] - m(J0+l)

1
. v(1)p(d,1,2) = grryoy v(L) A(DTA(] gF1-T]

n(1)[m(Jo+L)=1]=m(J 5+1)
[n(1)-1Tm(3 *1)-1] v{igra)

- m(jo+l)

which 1s valld for & = 2, ..., n(l). Therefore, it now
sufflces to prove that

n(1)Im(Jg+1)=11 - m(J4+1)

(5.37) L emlo*) —Tay=iTImg 5+ =17

m(.jo+l) n(l
" WTgF-T [mUo*l) - AG -'1'] '

The assumptions of the Theorem imply that n(l) > 2, which gives

n(l 3
! A(L)-T 2%

Ir m(J0+l) > 3, 1t 18 then clear that the final expression in
(5.37) exceeds one; 1if m(J0+l) = 2 this expression becomes

2 n(l
-1 [2 - nZI5-1] 21

This completes the proof of Theorem (5.32). 0




In the condition (5.33), the leftmost term is the total 'Y
of the Prim-Read prices of the defended targets, whlle the
rightmost term 1ls the total of the Prim-Read prices of all of
the targets. We have already demonstrated that the Prim-Read

deployment d* i1s optimal for the problem (5.29) if ¢f
o Jo
A< [ n(3); for A> ] n(J) + (T-J,) the difficulties in :
Jul Jml A
obtaining a deployment better than the Prim-Read deployment W

are assoclated with having to satlsfy the target defense prin-
ciple. The content of Theorem (5.32) 1s that by defending one
additional target against (exactly) one attacking weapon, one
can construct a deployment d that 1s uniformly better than the ‘0
Prim-Read deployment for values of A satisfying (5.33). '‘Further-
more, thils deployment uses the same number of interceptors and
also satlsfles the target defense princlple. Here 1s a numeril-
cal illustration,

TN
B

(5.38) EXAMPLE. Assume that T = 4, v(1) = 8, v(2) = 4,
v(3) = 2, v(4) = 1 and JO = 2, The construction given in

Theorem (5.32) then ylelds the deployment d defined by w;
qd(l,l) - % qd(2,l) _ % qd(3,l) - %
qd(l,E) - % qd(2.2) -l qd(3.2) -1, O
) d(1,3) . 1
\ ! 3
qd(l,l&) .1 0
| Jg 3o
For this example ) n(J) = 6 and [ ) n(J)] + (T-3,) = 8 and )
Jel J=1 ;

from the easlly checked facts that
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) V(l)p(dslsl) =

]
N WwjE =

L:‘.
? v(1)p(d,1,%) , a=2,3,4,
J 3
b v(2)p(d,2,%) = 2 , L=1,2, ‘
and |
V(3)p(6,3,2) -1, i=1,2,

1t is seen that V(d,A) = V(d*,A) - 1 for A = 7 and A = 8, as
predicted by Theorem (5.32). In Flgure 8 we present a graphical
comparison of the payoff functions V(d*,:) and V(d,-).

1%

" /

L ] 1 - 1 L 1 1 1
8 ™ ] ] | ] ]
Zn)
=0
(3.2, 2]

Figure 8. COMPARISON OF PAYOFF FUNCTIONS FOR EXAMPLE (5.38)
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D.  CHAPTER SUMMARY -

In thls Chapter we discuss 1n detail the consequences of
the following two-part target defense principle:

1) Targets must be defended 1ln order of decreasing value. 4

2) The expected target value destroyed by an attacking
weapon directed at an initially defended target, even allowing
for possible destruction of the target by another (earlier)
attacking weapon, must always be at least as great as the value
of every Iinitlally undefended target.

We discuss optimality propertles of Prim-Read deployments under
the target defense principle and also some Important optimiza-
tion problems for which Prim-Read deployments are not optimal
solutions.

The beglinning of the Section presents a general discusslon
of the target defense problem and describes three ways whereby
Prim=-Read deployments may be constructed. This discussion
parallels and extends that in Chapter I,A; the reader is
referred to both discussions for further detalls concerning
the heuristlc Justification for Prim-Read deployments.

In the principal mathematical results of the Chapter
several optimality properties and one impertant nonoptimality
property of Prim-Read deployments are demonstrated. Specifi- (7,
cally, those main results are the following.

1) Theorem (5.7), which states that, subject to the
restriction represented by (5.3), if targets 1, ..., J, are

3
defended, the appropriate Prim-Read deployment d* is given by (

log(n(J)=2+1)
log g

d*(J,2) = -

for each J and 2 =1, ..., n(J), where
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Recall that targets are labeled 1n order of decreasing value.
The assoclated interceptor requircment 1l1s

4
v0
1 v
I(a*) = - 7555 le log [(v 3o )!] ‘

2) Theorem (5.9), which asserts that if targets J, ..., 3o
are defended, then the Prim-Read deployment d* is the unique
solution to the optimization problem

minimize max V(d,r;

l<r<p(d*) r

s.t. I(d) < I(a%) .

That 1s, of deployments requiring no more interceptors than the
Prim-Read deployment d%, the latter uniquely'minimizes the maxl-
mum target value destroyed per attacking weapon committed, even
when the allocatlon of attacking weapons 1s optimized agalnst
the chosen defensive deployment.

3) Theorem (5.17), which 1s one of the most important
results in the paper, and states that 1f targets 1, ..., JO
are defended and if

9
A< 21 R AGDVALGIAS DI

J-

then the corresponding Prim-Read deployment d* (given by (5.8))
18 a solution to the optimization problem

minimize V(d,A)

s.t. I(d)< I(a%)

v(p(d,d,1) > v(J,+1), 15.3_&3(2;-
121<p(d,J).
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Furthermore, provided that A > n(l) - 1 = [V(l)/v(JO+l)] = 1, the
} Prim-Read deployment d* 1s the unique solution to the stated opti-
! . mization problem. That 1s, 1f the number of attacking weapons is
at most that required to destroy all of the defended targets, then
among all deployments satisfying the target defense principle, the
i Prim-Read deployment minimizes the expected target value destroyed
by an allocation of attacking weapons that 1ls optimlzed against
the chosen defenslve deployment. If the number of attacking wea~
pons 1s sufficlent to exhaust the defenses at every individual
target (although not necessarily sufficlent to destroy the then
’ undefended target), the Prim-Read deployment uniquely minimlzes
the expected target value destroyed.

gy

2 g i

This 1s the one instance where it 1is shown that Prim-Read
deployments minimlze target value destroyed as well as target
value destroyed per attacking weapon committed , although only
rélative to deployments satisfying the target defense principle.

=z . ey i

L) Theorem (5.22), which states that if targets 1, ..., Jo
‘. are to be defended, then the corresponding Prim-~Read deployment
d* 1s the unique solutlion to the optimizatlon problem

o
meximize | p(d,J)

J=1

RN AN o ST o Y

P I v —

s.t. v(p(d,d,1) 2 v *tl) , 12J2d,5lcice(d,g).

el . P

The interpretation here is that of all deployments that defend
targets 1, ..., JO in a manner satisfying the target defense
principle, the Prim-Read deployment d¥* uniquely maximizes the
number of attacking weapons that must be committed in order to
destroy all of the defended targets.

e e s

5) Theorem (5.32), another very important result, which
demonstrates that 1f d* is the Prim-Read deployment correspond=-
ing to defense of targets 1,...,10, then there exists a deploy-
ment d, which 1s computed expliclitly, such that
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a) d satisfies the target defense principle;
n) I(d) = I(4%) . 3
c) V(d,A) < V(d*,A) for all values of A satisfying '

Jo Jo

v \'s '

The content of thls Theorem 1s that if A satlsfles the restric-
tions above, then the Prim-Read deployment d* 1s not a solution
to the optimization problem

mirimize V(d,A)

s.t. I(d) < I(d%)

v(J)p(d,d,1) > v(3") 1f p(d,J)>1
and p(d,J")=1,

The Prim-Read deployment, even among deployments satisfying the
target defense principle and not requiring more interceptors,
does not minimlze expected target value destroyed by an opti- i

‘mized attack when the attacking slde commits more weapons than

are necessary to destroy all of the defended targets. ]

Although the results listed above were all derived subjent
to the hypothesis (5.3) that v(])/v(J+l) be an integer greater
than or equal to 2 for each J, they all remaln approximately
valld without this restriction.

Perhaps the most important conclusion to be drawn from the
entire paper 1s obtalned by combining the lmplications of .
Theorems (5.17) and (5.32). Suppose that, glven its interceptor !
resources and the targets that are candldates to be defended, ;
the defending side elects to implement a Prim-Read deployment.

Based on the supply of avallable interceptors, 1t wlll do so by,
for some JO’ defending targets 1, ..., JO using the Prim-~Read
deployment d* given by (5.8); this choice leads to the payoff
function V(d*,.) 1illustrated in Figure 9.

105




e i e e

e e M A 2 i kit

3 %

V({d*, A)
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% - NOT OPTIMAL: -} NOT OPTIMAL -~

0 Am M M A

KEY
A =THRESHOLD FOR UNIGUE OPTIMALITY OF d* [of. Theerem (5.17)] 3
Ag = ATTACK SIZE REQUIED TO DESTROY ALL DEFENDED TARGETS .
vy =TOTAL VALUE OF DEFENDED TARGETS
A{ = ATYACK SIZE REQUWAED TO DESTROY ALL TARGETS
vy =TOTAL VALUE OF ALL TARGETS

RTE ] :
g

Figure 9. PRIM-READ PAYOFF FUNCTION AND
OPTIMALITY PROPERTIES
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Also as shown in Figure g9, 1if A 1s the number of weapons
commlitted by the attacklng side, then depending on the value
of A, the Prim-Read deployment may or may not, among deploy-
ments that require the same number of interceptors and satisfy
the target defense principle, minimize expected target value
destroyed. Specifically,

1) If 0 < A < Am’ where Am - [v(l)/v(do+l)] ~ 1, which is
maximum number of weapons agalnst whlch any target ls defended,
then the Prim-~Read deployment minimizes target value destroyed
by an attack of slze A optimized against the chosen defensive

deployment, but not unilquely.
2) If Ay < A <A, where

Jo Jo
v
Ad - le V<30+!s - le p(d*,3) ,

which 1s the number of attacking weapons required to destroy
all of the defended targets, then the Prim-Read deployment
uniquely minimizes expected target value destroyed by an
optimized allocation of A attacking weapons.

3) If Ay < A < A, where

d
J

0 T
b s [[1, ] g - 1 e

is the total of the Prim-Read prices of all targets, then the
Prim-Read deployment does not minimize expected target value
destroyed by an optimized allocation of attacking weapons,
Indeed, there exists a deployment d using the same number of
interceptors and satisfylng the target defense principle such
that V(d,A) < V(d*,A) for all A in the interval (A4,A.].
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L) If A > At’ then the Prim-Read deployment does not mini-
mize expected target value destroyed by A optimally allocated
attacking weapons, but there 1s no other deployment that 1s
uniformly better than the Prim-Read deployment for all A > At'
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Chapter VI
ADDITIONAL MIN-MAX OPTIMALITY PROPERTIES

A. INTRODUCTION

Chapters 1V and V developed optimality and nonoptimallty
properties of Prim-Read deployments for optimization problems
of the general form

m a(Jy)
(6.1) minimize max ) V'(J)[l— l't'j (l-qd(d’“)] >
a J=l ]

where the deployment d, and also the allocaticn a of attacking
weapons, satlsfy certain constraints, one of which, for example,
is the target defense principle underlying all of Chapter V. 1In
thils Chapter we treat one additional class of problems of the
form (6.1), in which we assume that target prices remain fixed
at thelr Prim-Read levels, and that

a T 7
a= J a()=1< 7 v,
J=1 Jul

where 1 1s treated as a parameter of the problem. We further
assume that we are in the situation of Chapter IV, rather than
that of Chapter V, and that k = 1; therefore, all targets except
those of unit value are defended. Consequently the results of
this Chapter apply, at most, indirectly to the nationwide
defense problem treated in Chapter V, but may apply to other
sltuations. Regardless of direct applicability, of course,
the results are of interest as further propertles of Prim-Read
deployments.

e ]
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3ince we do not assume the target defense principle to
hold, the results of this Chapter are complementary to those
in Chapter V., Our main result here agsserts that, of deployments
with the same interceptor requirement, the Prim-Read deployment
d* minimizes target value destroyed--barring a small number of
known exceptional cases--1f and only 1f there 1ls a set of tar=-
gets whose prices sum to 1. An emplrical observation, for which
we have indirect hut also inconcluslve theoretical support, ls
that in those cases in which d* is not optimal, the deviation
from optimality 1s nearly negligible.

The specific class of optimlzatlion problems to be con-
sldered is

(6.2) minimize V(d,1)
s.t. I(d) < I(d%)
p(d,J) £ v(y) , J=lyees, T,

where 1 < ] v(J) is fixed, and where d% is the Prim~Read deploy-
ment with scaling parameter k = 1, as given by (2.14). That 1is,
for each J

.
AM(q,1) = - log(zéi)aitll R 18Ll,...,v().

Recall also that

\

v(d,1) = max % v(J)[l-aéd'(i_qd(J.z))] .
ag:ami jwl i=l

A generalization of the main result of this Chapter (which is

Theorem (6.13)) asserts that the Prim-Read deployment d% is an

optimal solution to (6.2) 1f and only if there is JOCZ{l,...,T}

such that

1= 7 v(3) = § pla%,y) .
Jedg J'Jo
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; " In words, d* is an optimal solution to (6.2) for & gilven value
of 1 1f and only if there 1s a subset of targets that can be
exactly destroyed by 1 attacklng weapons.

*
i Of the problems treated in earller Chapters, the problem
] (4.24) 1s most closely related to (6.2). The difference between
b them is that in (6.2) target prices are fixed at Prim-Read
; levels, whereas in (4.24) they are not. The most important
) difference between (6.2) and the similar problems (5.18) and
(5.29) treated in Chapter V is that in the latter the target
@ defense princlple 1s assumed to be satlsfled. When the target
defense principle holds, then by Theorem (5.17) the Prim-Read
l deployment minimizes V(d,1) for all 1 < | v(J).

The problem (6.2) is of interest whether one envisions the
defending side's choosing a Prim-Read deployment in order to
make efficient use of a supply of avallable interceptors or in

t crder to force exhaustion of a particular stockplle of attack-
ing weapons in order to destroy the targets. In elther case
(because of faulty decision-making processes or incorrect esti-
mates by the defending side), the number of attacklng weapons
committed mlight not be large enough to destroy all of the
defended targets, so it 1s deasirable to understand broperties
of Prim-Read deployments in such contingenciles.

To avold overburdening (the author and) the reader with
mathematics at the expense of concepts and their impllications,
we restrict our attentlon for the remainder of this Chapter to
the case of two targets, which 1s sufficilently general to illus-
trate the range of complications when T > 3, but sufficiently |

simple to be comprehensible and computationally tractable.
Therefore,
b 2 () |
) ‘ a ..1
, %., L *] V(d,i) - max z v(J)[l_ I (1_qd(j;z))] . }
o a(l)+a(2)=i jul Lm]
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B. EXAMPLES C

ST s

Before stating the mailn result of thls Chapter we give some
illustrative examples.

e~

i (6.3) EXAMPLE. Suppose that v(l) = 3 and v(2) = 1, If we put "

" d(1,1) a(1,2) L

g o0 wq "', 0 =gq '€/, then the constraint I(d) = I(d#) '

" becomes

N

‘ af = 1/6. ‘
. {

: By direct calculation, V(d,1) = max{3a,1} > 1l; therefore

ﬁ the Prim-Read deployment d* does solve (6.2) for 1 = 1,

;j Suppose now that 1 = 2, Then .

V(d,2) = max{3[(1-(1l-a)(1=B8)],3a+1} .
Using elementary algebra one can show that if

V(d,2) < V(a¥,2) = 2,

then o = 1/3, B = 1/2, whioch implies that d = d* and hence that

d* solves (6.2) for L = 2. This turns out to be an exception

to the general case, since 2 weapons cannot exactly destroy .
elther one of the targets or both targets.

That the Prim-Read deployment d* solves (6.2) for 1 = 3
and 1 = 4 fcllows by the same reasoning used when 1 = 1. i f

The next Example gives an illustratlon of a case when the
Prim-Read deployment 4% does noct solve (6.2).

(6.4) EXAMPLE., Suppose that v(l) = 4 and v(2) = 2 and
observe that the constraint I(d) = I(d%) is equivalent to

.

(6.5) qd(l’l)qd(l’E)q(l’3)qd(2'l) = 1/U48




Since

V(d,1) = max{uqd(l’l),zqd(z’l)}

it 1s evident that by taking qd(l’l) greater than but nearly

equal to 1/8, qd(z’l greater than but nearly equal to 1/6,
and qd(l’Z), qd(l’B) less than but nearly equal to 1, all in
such a manner that (6.5) remain satisfied, one can force
V(d,1) < 1 = V(d#*,1), so that the Prim-Read deployment does
not solve (6.2) for i = 1,

That the Prim-Read deployment d®* satisfies (6.2) for
1= 2, as well as for 1 = § and 1 = 6, is obvious.

Conaslder now the case 1 = 3, in which we have
7(d,3) = max{4[1-(1-q3(2+27)(1q3(2+2))(1.q3(2:3)y;
B1m(1mqd (102)y (1oq8 (152D 7 4 qd(2,1)
gD 4 gl o e
8ince the attacking slde can allocate 3, 2 or 1 weapons to the

more valuable target 1. To find d such that V(4,3) < Vv(4a%+,3)
we must satisfy the three inequalitles

[* 3 y" 7
(6.6) by - 0 (1-qd(l'“> < 3,
L L=l §
| 2 act, )] a(2,1)
(6.7) by - 1 [1-g®'ted + 2q°'et < 3,
b Ro-l 'J )
and
(6.8) 4qd (1) L5 ¢ 3,

We were able to find such values of the d(j,%) by & perturbation
argument that alsc forms the basis for the omltted proof of

Theorem (6.13).
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The underlying reasoning 1is the following. The Prim-Read
deployment 4% satisfies (6.6) - (6.8) as equalities. Consider
a perturbed deployment 4 that can be written 1ln the form

AL | d* 1,0 |y

o2(1,2) LIC-D

8/3
RLICIS DI

=B

qd(1)3) - Y

3€2,1) d*(2,1)

- 5q = §/2 s

where in order to satisty (6.5) we assume that aBys = 1, which
we may use to eliminate y from the equationa (6.6) - (6.8).

Now make a first-order Taylor series expansion (in o, B
and §) of the left-hand sides of the equations (6.6) - (6.8).
The appropriate first partial derivatives evaluated at the Prim-
Read point o = g = § = 1 are

3(6.6) _ _ 2 3(6.6) . _ 1 3(6.6) _

U8l . 2 WL L. AL,
P! 3 ) 3

26:8) . ) 3(6.8) . 4 3(6.8) .
) Y EY '

By Taylor's theorem, cf. [16], we can satisfy (6.6) - (6.8) by
choosing perturbations Aa, 4B, AS sufficilently close to zero
and such that

(6.9) - %-Aa - 2 A8 - A8 <O

(6.10) 200+ 88 + 88 <0

(6.11) Ao <0 3
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we then take o = 1 + Ao, B = 1 + AR, & = 1 + AS.
By experiment, the cholces Aa = - .005, A8 = - .00125, and
AS = ,004167 zatisfy (6.9) « (6.11) and lead to the values
1) o ougrs
d(1l,2) = .332917
4(1,3) . 50105
d(2,l) = -5020835 s

a0 A

2 IR < R ST U AU

, which do satisfy (6.6) - (6.8). Consequently, the Prim-Read
deployment d* does not solve (6.2) when i = 3, One possible
reason is that the alternative deployment d 1s able to leave
the largest single payoff to the (irrelevant when 1 = 3) fourth

{ attacking weapon.

- € e AR Wy WG SN ant? T

For 1 = 5 we obtaln

3
M+2qd(2’l),l4ﬁ.- It (l-qd(l’a))] + 2
im]

L

V(4,5) = max

Because V(d,5) depends symmetrically on qd(lsl)’ qd(l’z)'and

qd(l’3), if we take
qd(l,l) - qd(l’2> - qd(l’3) = 34902

—n AT I et e g B K Fa e

qd(2,1) - .9,

‘ then we have V(d,5) < 5 = V(d%,5).

To summarize this Example, the Prim-Read deployment 4% is
. an optimal solution to (6.2) 4f and only 1f 1 = 2, 4 or 6, Li.e.,
i i1f and only if some subset of targets can be exactly destroyed
by 1 attacking weapons. {

Similar effects arise in the case of two targets with equal
values,
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(6.12) EXAMPLE. Suppose that v(l) = v(2) = 3, By symmetry we
may restrict attentlon to deployments d for which

qd(l,l) - qd<2,1) a 4

41,2 o a2,2) g

where ag = q3*(1,1)4%(1,2) _ d¥(2,1) a%(2,2) , /¢,

Since V(d,1) = 3a, it is possible to have V(d,1l) < 1, so
the Prim-Read deployment d* 1s not an optimal solution to (6.2)
when 1 = 1,

When 1 w 2 another exceptlonal case arises: even though
two attacking weapons cannot exactly destroy either target, the
Prim-Read deployment is an optimal solution to (6.2) when i = 2,
To see thils, note that

sl C 1 o

V(d,2) = max{6a,3a+3(l=a)B} .

If V(d,2) < 2 then on the one hand a < 1/3, while on the other
hand the inequality ¥

30 + 3(l-a)B < 2

implies that 1/3 < a < 1/2. Therefore a = 1/3, B = 1/2 and
d = d¥%,

For 1 = 3 and 1 = 6 1t is evident that the Prim-Read deploy-
ment 1s an optimal solution to (6.2). The case 1 = 4 1s another
exceptional case: the Prim-Read deployment can be shown to be
the unique optimal solution to (6.2), despite the impossibility
of exactly destroying a subset of the targets with 1 attacking
weapons. PFinally, for 1 = 5, a symmetry argument analogous to
that used in Example (6.4) for the case 1 = 5 can be used to
show that the Prim-Read deployment 1is not an optimal solution
to (6.2) ﬂ
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c. MAIN RESULT

We now present the maln mathematical result of this
Chapter, which states that--except for the anomalous cases
noted in Examples (6.3) and (6.12) above~~the Prim-Read
deployment d% is an optimal solution to (6.2), for a glven
value of 1, 1f and only if one or the other or both targets
can be exactly destroyed by 1 attacking weapons. By the
latter phrase we mean that L = v(1), 1 = v(2) or 1 = v(1)

+ v(2); 1.e., 1 18 the sum of the prices of a subset of
the tapgets.

(6.13) ' THEOREM. Suppose that T = 2 and that v(1) < v(2).
Then the Prim-Read deployment 4% is an optimal solution to
(6.2), that is,

V(d¥,1) = min{V(d,1): I(d) = I(d*),p(d) = p(d®)},

if and only if one of the following conditions is satisfied:
a) v(2) < 2;

b) v(1) = v(2) = 3 and 1 =2 or 1 = U;

c¢) v(1) =1, v(2) = 3 and 1 = 2;

d) 1 = v(1);

e) 1 = v(2);

£) 1 = v(1) + v(2).

The first three conditlons are the exceptional cases noted
in Examples (6.3) and (6.12), while the latter three conditions

state that 1 attacking weapons can exactly destroy some subset
of the set of targets.

The proof of Theorem (6.13) is lengthy, largely technical,
and rather unenlightening, so we have omitted it from this
paper. Its essentlal argument 1s a generalization of the
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perturbation method used in the analysis of Example (6.4) above.
The technical difficultlies arise ln having to prove that the
perturbed deployment d satisfies V(d,1) < 1 = V(d*,1i), rather
than belng able to verify the ilnequality numerically, as was
permissible in the Example. An analogous result holds for

T > 3 but it also is omitted.

As was done in Examples (3,15) and (4.16, in earlier
Chapters, 1t 1s of interest to study the extent by whlch the
Prim-Read deployment d* falls to be optimal for the problem
(6.2) whend* 1s in fact not optimal. Because we have been
unable to solve (6.2) in closed form when the Prim-Read deploy-
ment 1s not the optimal solution, we do not have rigorously
derived bounds on the possible deviation from optimallty. How-
ever, the techniques used in Example (6.4) and in the proof of
Theorem (6.13)=-and here the reader 1s asked to accept on faith
the fact that more simple-minded, straigﬁtforward approaches
were unsuccessful--strongly suggest that the deviation is
minimal. For all of the examples we have analyzed, lncluding
several that are not included here, if d 1s found such that

V(d,1) < V(d*,1) ,
then both the absolute deviation
V{d#*,1) - v(d,1)

and the (more upproprilate) relative deviation

ng*aiz - v(d,1)
as,

are quite small. A theoretical investigation of these devia-
tions might be pursued by examinatlion of second derivatives
corresponding to the first derivatives that were calculated in
Example (6.4). 1In view of the fact that (6.2) 1s not the most
important optimization problem treated in this paper, we have
not performed such an investigation.
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D. CHAPTER SUMMARY

. This Chapter describes optimality and nonoptimality proper-
tles of Prim-Read deployments, in the multiple target case, for
a partiocular class of optimization problems. In these problems, j
the objective functlion 1s expected target value destroyed by an
optimized allocation of attacking weapons and both the defending
side's resources and the individual target prices (not Just the
total of all target prices) are fixed at thelr Prim-Read levels.
The attacking side's resources are treated parametrically and
are at most the number of weapons needed to destroy all of the
targets. It is assumed that only targets of unit value are
left undefended. The target defense principle is not assumed
to be satisfiled.

There 13 only one mathematical result in this Chapter,
Theorem (6.13), which when generalized, states that the Prim-
Read deployment d* (with scaling parameter k = 1) is a solution
i to the optimizatlon problem

minimize V(d,1)
8.6, I(d) = I(d%)
p(d,J) = p(d*,3) = v(J) , J=l,.0.,T,

1f and only if one of a small number of known exceptional cases
holds (which can happen only for small values of 1) or there 1s W
' a set J, C {1,...,T} such that

: 1= ) e(a%y) = T v() .
| Jed, Jedy

‘. That 1s, save in the exceptional cases, the Prim-Read deployment,

among all deployments with the same target prices and interceptor .
requirement, minimizes expected target value destroyed by an attack '@
consiasting of 1 optimally allocated attacking weapous i1f and only

if there is a subset of targets whose prices sum to 1. When there
are many targets with relatively'low individual values, 1t becomes
fairly likely that the latter conditlons will be satisfied. 3
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Chapter VII

VARIATIONS

In thls Chapter we describe how some of the initial assump-
tions imposed in (1.1l) and (1.2) can be weakened in order to
represent certaln phenomena of physical interest and importance.
Speciflcally, we show how to extend the basic model specified by
(1.1) and (1.2) to permit target dependent intercept probabilities,
initially unreliable attacking weapons that may malfunction before
reaching the interceptor defense, terminally unrellable attack-
ing weapons that may fall to damage a target desplte having
successfully penetrated the interceptor defense, and alterna=
tive attrition structures. The latter, for example, may not
represent an engagement of an attacking weapon by n interceptors
simply as n independent, one=-on-one engagements,

To keep the size of thils paper finite, we have only derived
the forms of appropriately defined Prim-Read deployments and pre-
sented interpretive remarks concerning such deployments. Many
of the optimality and nonoptimality results of Chapters IV, V,
and VI extend with essentlally no difficulty to the cases of
target dependent intercept probabllities and unreliable attack-
ing weapons (of both kinds). Validity of these results for
alternatlve attrition structures, however, is open to doubt and
cannot be resolved without further research (which might have
to be done on a case~by-case basis).

We wish to emphasize that the principal structural assump-
tions put forth in Chapter I remain in effect. Attacking weapons
directed at each target arrive sequentially in time, interactions
involving different attacking weapons are probabilistically
independent, and neither attacking weapons nor interdeéptors can
be adaptively reassigned during the course of an attack. We
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have not examined possible ways of weakening these major
agssumptions.

A. TARGET DEPENDENT INTERCEPT PROBABILITIES

It 1is a simple matter to modlfy the basic model of (1.2) to
allow target dependent intercept probvabillities. This is desirable
in physical terms since different targets might be defended by J
different kinds of lnterceptors, or the same kind of interceptors
may have differing effectiveness at different targets because,
for example, of differences in warning time or local environmen-
tal conditlions. 1Introducing target dependent intercept proba-
bllities also allows representation of the case where different
types of attacking weapons are directed at different targets, :
provided that all weapons directed at a given target be of the
same type. Simllarly, there may be different tyres of inter-
ceptors at different targets, but all Interceptors at a gilven
target must be of the same type.

-

1 e e e P S

We assume that the Assumptions (1.2) are satisfied, except
that the one-on-one penetratlon probablllity at target J 1is now
| some q, ¢ (0,1). By analogy with Definition (2.11), a deploy- i
i ment da 18 sald to be a Prim-Read deployment with scaling factor '
f k, where k 1s a posiltive integer, provided that
1

(7.1) v(J)p(d*,J,1) = £ Jml,...,T}
i=],...,p(a%,}) .

Note that (7.1) and (2.12) are formally identical, but that now

1.1
p(dsdsi) “[ I (l-qg‘(-j’g'))]q?(.i.i)
fAm]

5%;; The counterpart of Theorem (2.13) is the following result.

(7.2) THEOREM. For each k > 1 there exists a unique Prim-Read
4 deployment d* with scaling factor k, glven by
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log(kv(])-1+1)
7. ) d*( ,i) = - > J-ls"':T5
(7.3 ! log q; 121, ... ,kv() .

The close resemblance between (7.3) and (2.14) 1s, of course,
not coinecidental. From Theorem (7.2) the following consequences
are immediate.

COROLLARY. If d* is the Prim-Read deployment with scaling
factor &k, then

p(d*,j) = kv(J) , J=l,...,T,

and

' T
- - logl (kv !
I(d¥) le o8 4y

Since the proofs of the Theorem and its Corollary are
virtually the same as those of Theorem (2.13) and its Corollaries
(2.15) and (2.17), we have omitted them.

As previously remarked, many of the results of Chapters IV,
Vv and VI extend--with virtually only notational changes--to the
case of target dependent lntercept probabllitles.

B. POSSIBLY UNRELIABLE ATTACKING WEAPONS

In this Chapter we show how to represent two forms of
possible unreliability of attacking weapons, whilch we call
initlal and terminal unreliability, respectively. Initial
unreliability accounts for the possibility that some attacking
weapons may be launched but never arrive at the interceptor
defense of their intended targets, so that no interceptors need
to be deployed against them. To be slightly more preclse, it
may develop during the ocourse of an actual attack that no inter-
ceptors have to be deployed against initlally unrellable attack-
ing weapons, but the defending side does not know 1n advance
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which attacking weapons, if any, will be unrellable and must con-
tend with the possibility that none will be. Initial unreliabllity
mlght result, for example, from an unsuccessful launch, an extreme
navigational error, or a distant defense.

Terminal unrellabillty is meant to represent the possibility
that an attacking weapon may penetrate the defense of interceptors
deployed against it and yet fail to destroy the target. For
example, there may be a local (but critical) navigational error,

a warhead may fall to detonate, or the target may have a single,
close~in defense,

We will deal first with initial unreliability, which 1s
the simpler of the two forms., For simplicity we consider mainly
the slngle target case, which nonetheless rather clearly illumi-
nates the problem. To represent initial unreliabllity we intro-
duce the following hypothesis.

(7T.4) ASSUMPTION. Each attacking weapon falls to arrive at the
interceptor screen of the target at which 1t 1s directed with
probablllty l-p, where 0 < p < 1. 1Initlal fallures of different
weapons are mutually independent and indeperndent of the entire
attrition/penetration process at all targets., No interceptors
are deployed agalnst initlally unrellable attacking weapons.

Except for this modification, the original Assumptions (1.1),
(1.2) remain in force.

In what follows, although we continue to call
p(d) = min{i:d4(1) = 0}

the price imposed by a deployment 4, we wish the reader to be
aware that commitment (i.e., launching) of p(d) attacking weapons
no longer ensures destruction of the target (unless p = 1). From
the defending side's point of view, however, the interpretation
remains nearly unchanged: p(d) - 1 is the number of attacking
weapons reaching the target vicinity against which interceptors
are actually deployed.
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We now say that a deployment d* is a Prim-Read deployment
with price p if p(d*) = p and

p(d*,1) = p(d#,2) = .., = p(d¥,p(d*)) .

The difference between this conditlon and {2.5) 1s that while
the marginal contributions p(d*,l), ..., p(d*,p(d*)) remain
equal to one another, they are no longer assumed to be equal to
1/p and their sum will now be less than one. In fact, as
Theorem (7.5) below demonstrates, each 18 equal to p/p. Let us’
emphasize, at thils point, that p(d%,i) i1s the probability that
the target 1s destroyed by the 1th attacking weapon launched

at it.

Theorem (7.5) also settles ahother question of interest.
Recall that a Prim-Read deployment can be thought of as being
elther as strong as possible subject to a limited supply of
avallable interceptors or as strong as necessary to force com=-
mitment of a prescribed number A0 of attacking weapons 1in order
to destroy the target. Theorem (7.5) below shows that, even
when there 1s possible 1initial unreliabllity, the Prim-Read
deployment is the same as when there is no initial unreliabllity
(1.e., 1s the same deployment given by (2.7)). There then
arlses the question of the appropriate cholce of the price p.

For the case of a deployment constralned by interceptor resources
it 1s clear that existence of initial unreliability should not
lead the defending side to change the price from that when p = 1.
What should be done by the defending side that attempts to force
full commitment of the stockpile of AO attacking weapons 18 less
clear, but two principal possibilities emerge:

1) Choose p = AO' the same cholice as 1f p were equal }
to one,.

2) Since pA0 is the expected number of attacking weapons
that are initially reliable (and against which interceptors
must be deployed), choose a Prim-Read deployment with p = pAo.
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The following result indicates rather decislvely that the
defending side should elect the first of the two alternatives.

(7.5) THEOREM. For each ilnteger p > 1, there exlsts a Prim-
Read deployment d* with p(d*) = p, which 1s given by

a¥(1) = - 193{555551 , 1wl,...,p.

The assoclated payoff function 1s given by

(7.6) p(d%,1) = 1';— , 1=1,...,0,
p=1 ' -
=By (1;1)p’“<1-p>1“1 o 1>p.
$ 2 1]

Recall that p(d¥*,1) 1s the probability that the target is
destroyed by the ith attacking weapon committed. This weapon
may fall in three ways to destroy the target: the target may
have glready been destroyed, the weapon may be initlally unrell-
able, or the weapon may be initially reliable but be destroyed
by the interceptors. Observe that when p = 1, (7.6) reduces to
(2.5). However, if p < 1 then p(d*,1) > 0 for all 1 and no
attack with finitely many weapcns 13 certaln to destroy the
target.

To understend the impllications of (7.6) for the defending
side, we note that for 1 > p(d*) = p (and provided that p < 1)
we have

-1
0 < % zzo (1;1>pz(l_p)i-1-z < %
and that the middle term (l.e., p(d*,1)) decreases to zero as
1 + »=, If the attacklng side 1s attempting to maximize target
value destroyed it would, as before, expend as many weapons as
posslible. But 1f the attacking side is attempting, in the
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manner of Theorem (3.1l), to maximize target value destroyed per
attacking weapon committed, 1t will expend p(d*) attacking wea-
pons. Therefore, of the cholces p(d¥#) = AO and p(d®) = pAO, the
former 1s deflinitely better for the defending side.

To summarize, when there 1s initial unreliability, the
defending slde should not modify the cholce of target price
for a Prim-Read deployment.

In the case, as well, of multiple targets and initial
unreliability, no changes should be made by the defending side.
A Prim-Read deployment d®* is deflined by 1its satlisfying an equali-
zation condition of the form

v(J')p(an,5',1)
v(J')p(a%,3",2)

v(J)p(d*,J,1)

v(I')p(a®,3',p(a%,3'))

for all J and J'. It 1s easily seen that--no matter what the
value of p--for each k the Prim<Read deployment d* with prices
p(d*,3) = kv(J), as given by (2.14), satisfles this condition.
The preceding discussion for the single target case therefore
applies also to the multiple target case,

The results above show that, regardless of the value of
the initial rellabllity p, the previously chosen Prim-Read
deployment should not be discarded in favor of the Prim-Read
deployment with price pAO. However, this does not preqlude
existence of some other deployment that 1s superior to the
origlinal Prim-=Read deployment,

The proof of Theorem (7.5), which 1s based on a straight-
forward conditioning argument (the 1th attacking weapon committed
destroys the target if and only if some number & of the previous
1 ~ 1 attacking weapons were initilally reliable but none of these
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destroyed the target, the ith attacking weapon 1s initially

reliable and it penetrates the interceptor defense), is
omitted.

We proceed now to consider terminal unrelilability, which 1is
introduced into the axiom structure of (1.1) and (1.2) by the
following hypothesis.

(7.7) ASSUMPTION. An unintercepted attacklng weapon destroys
its intended target with probabllity 5 ¢ [0,1], Terminal unreli-
abllitles of different attacking weapons are independent of one

another and of all other probabllistilc aspects of the intercep-
tion processes.

When 5 = ] we are in the case treated in Chapters II through

VI; assume now that there is no lnitlal unreliability. The single
target case wlll be treated first.

As for the case of initlal unreliability, one must correctly
interpret the price imposed by a deployment d. Destruction of
the target 1s not ensured by commitment of p(d) attacking
weapons or even necessarily by penetration of the interceptor
defense by p(d) attacking weapons, but only by penetration of
p(d) terminally reliable attacking weapons. While one might
introduce an alternative terminology such as "defense level"
(although, strictly speaking, the defense level should p(d)-l),

we continue to use "price" with the same mathematical defini-
tlon as above:

p(d) = min{l:d(1)w0}

In Definition (2.4), a Prim-Read deployment d% is defined
by the equalization condition

p(d*,1) = ST%VT , 1=1,...,p(d%),

which, in particular, implies that
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p(d#)
(7.8) l z p(d*:i) - 1.
i=]

To obtain ananalogous condltlon for the case of terminal unreli-
abllity we equate the probabilities p(d%*,1l),...,p(d%,p(d*)) to

one another but not to 1/p(d*), as a consequence of which (7.8)
will no longer hold.

We remind that p(d,L) is the probabillity that the target is
destroyed by the 1th attacking weapon launched at it.

(7.9) DEFINITION. A deployment d* 1s a Prim-Read deployment if
(7.10) p(d*,1) = p(d¥,2) =...= p(d¥,p(d*)-1) = p(a%,p(a%)) .

The effect of (7.10) is to equalize the target value
destroyed by each attacking weapon agalnst which there is a
defense with that by the first attacking weapon against which
there i1s no defense. It follows that '

0 < p(ak®,1) < p(d¥,p(d¥))

for all 1 > p(d%), so that the cumulative payoff function P
def'ined by

i
P(d*,1) = ] p(d*,)
A=l
is of the form shown in Figure 10. For purposes of comparison
we have shown the payoff functions for p = 51, P = 52 < 51 and P = 1
(the latter, of course, corresponds to no terminal unreliability).

The following result is analogous to Theorem (2.6) and may
be proved by similar methods.

(7.11) THEOREM. For each integer p > 1 there exists a Prim-
Read deployment d* with p(d*) = p, which 1s given by
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P(d*])

| | [
o(d*) :
[B1%; 3]
Figure 10. PRIM-READ PAYOFF FUNCTIONS IN THE "
CASE OF TERMINAL UNRELIABILITY 3
(7.12) a#(1) = - 2o@(1l+(p=1)p) 11,...,p. '

log q ’

It follows from (7.12) that the interceptor requirement is

(7.13) I(ak) = - 10; 3 iﬁl los(1+(p-i>5) N y ]

and that

~

(7.14) P(d*,p) = m'g‘gr)-pg s

which 1s the probabllity of the target's being destroyed by one
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ot the attacklng weapons against which there 1s a defense or the
first attack'.g weapon against which there 1s no defense. The
reader will note that i1f p = 1, (7.12), (7.13) and (7.14) reduce
to previously derived results. As one would expect, 1t 1s also
true that P(d*,p(d*)) increases as p does.

We turn now to terminal unreliability in the multiple target
case. As in Chapters II and IV there will be a scaling parameter
that 1s a cholce varliable for the defending side. However,
there now arise complicatlons even wilth exlstence of Prim-Read
deployments, which are surmounted with a technical assumption
similar to (5.3). Another alternative, which we have not pursued,
but which has a lengthy history of success 1n two-slded optimiza-
tion problems, 1s randomization; cf. [4]. An additlonul novelty
1s that--at least under the assumption we have chosen--target
prices are not quite dilrectly proportional teo target values.
Roughly speaking, the reason for this 1s that (7.14) implies
that the ratio P(d*,p(d*))/p(d*) 1s not independent of p(d%),
which 1t would be 1f there were no terminal unreliabllity, and
thils necessltates an adjustment of target prilces.

By analogy with earlier notatlon, let

i-1 . .
p(d,j,1) = [ I (l-pqd("’“)] pqd{ds1) s
L=l
which 1s the probability that the target j 1s destroyed by the
ith attocklng weapon launched at it. We then have the following {

analogues of Definition (7.9) and Theorem (7.11).

(7.15) DEFINITION. A deployment d* is a Prim-Read deployment =
provided that for each two targets J and j' .

v(J')p(d*,g,1)

v(J)p(a*,J,1)
v(J)p(d*,J,2)
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The meaning of this condition 1s that the expected target
value destroyed by each attacking weapon agalnst which there
are Interceptors deployed 1s the same and 1s equal to the target
value destroyed at each target by the first attacking weapon
agalnst which no interceptors are deployed.

Unfortunately, the dlscreteness difficulties now become
severe and a Prim-Read deployment may not exist. Nonetheless

we do have the following result.

(7.16) THEOREM. Let Vo ™ min{v(l), ..., v(T)} be the minimum
target value. If k > 1 is an integer such that for each } the
quantity

v(J) ~ 1
5;&—[1 + (k-1)p] - %

1s an integer, then there exlsts a Prim-Read deployment d* such

that p(d*,J) = k for all targets J for which v(J) = vy- Speci-
fically, for each J

(7.17a) (a%,9) = S0+ (k-1)p] + 1 -3
P J ﬁvO P B

and

(7.170) a*(J,1) = - los(l+<§ég*a3>~i>5)

for 1 = 1, ..., p(d%,3).
We omit the proof of Theorem (7.16),

REMARK. Although we have not checked the details fully, we
bellieve that Theorem (7.16) remains valid if everywhere--includ=-
ing in (7.17)--we replace the terminal reliability p by target-
dependent terminal reliabilities 53. Thlis modification 1s of
interest as a surrogate for targets that require more than one
hit, or differing numbers of hits, in order to be destroyed.
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C. ALTERNATIVE ATTRITION STRUCTURES .

The attrition structure specified by Assumptions (l.lc) and \
(1.2d4) may be too simplistic for some potential applications of |
our model, although it does seem fairly plausible for the nation-
wlde defense problem 1in whlch interceptors are anti-ballistic
missiles. However, even 1n thils situation Interceptor missiles
might be under the control of a single tracklng system and might
not be probablllistically independent. The independence assump=-
tion 1s also questionable if the interceptors are airceraft since
interceptor tactilcs would presumably involve various forms of
cooperation. Our purpose in this Sectlon 1s to indlcate how
to extend our basic model to include other forms of attrition
equations., We restrict our attentlon to the single target case
since the assumption of independence of intercept/attrition
processes at different targets in the multiple target case seems
reasonable in virtually all potentlal applicatlons of the model.
Also, we continue to assume that interactions involving different
attacking weapons are independent. h

Let r(2) be the probabllity that an attacking weapon pene-
trates to the target when % interceptors are deployed against 1t;
we previously assumed that

(7.18) r(z) = q* .

Note that the function r appearing in (7.18) can be defined and
makes sense for nonintegral values of 4, that r 1s continuous and
strictly decreasing as a function of 2 ¢ [0,®), and that r(0) =

1 and lim r(x) = 0. The latter properties entail existence
X
1

of an inverse function r'l:(o,l) + [0,») such that rr ~ and

r'lr are the ldentity functions on (0,1] and [0,w), respectively.

The next result shows that Invertibllity of the attritilon
function suffices to permit demonstration of existence and cal=
culation of a Prim-Read deployment.
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(7.19) THEOREM. Let r(&), the probability that an attacking
weapon penetrates when L lnterceptors are deployed agalnst 1t, Q
be given by a function r:[0,») + (0,1] such that

a) r(0) = 1;
b) r 1s contlnuous and strictly decreasing;

¢) lim r(x) = 0.
X0

Then for each integer p > 1 there exlsts a unlque deployment a# g
such that p(d¥*) = p and Q

(7.20) p(d%,1) = % 1=1,...,p.
The deployment d% is given by

de(1) = P‘I(B:%;T)

fOI‘i = l, a0y p(d')n

COROLLARY. The assoclated interceptor requirement is

s = B i -
k=2 Y
The proof of Theorem (7.19) 1s an entirely straightforward
modification of that of Theorem (2.6) and 1s therefore omitted.

The optimallty results obtalned in Chapters III, IV, and V
remain valid for more general attrition functions; a careful ]
Inspection of thelr varicus proofs reveals that the arguments
[ used do not depend on the specific form of the attrition functilon.
I | The nonoptimality results given in Examples (3.1%) and (4.16)
'y seem to depend essentlally only on the strict convexity of the
L attrition function given by (7.18) and may remain valid if
strict convexity 1s imposed as an assumption. It is likely (but
we have not worked out the details) that the results of Chapter
VI also renain valid provided that the attrition function be
strictly convex.

0y,
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0. CHAPTER SUMMARY

In this Chapter we derive the forms of Prim=Read deployments
under several variations of the basic Assumptions (1.1l) and (1.2);
these varlations permit representation of phenomena of physical
interest that were excluded (for reasons of economy and simpli-
city) by our original assumptions. Those phenomena treated in
this Chapter are target dependent intercept probabilities, ini-
tially unreliable attacking weapons (which may be launched but
never arrive at the interceptor defense), terminally unreliable
attacking weapons (which, even having penetrated the interceptor
defense, may fall to destroy the target), and alternative attri-
tion structures for representing the engagement of a single !
attacking weapon by one or more interceptors.

The principal mathematical results of this Chapter are the
following.

1) Theorem (7.2), which atates that if the penetration
probability at target j is q, ¢ (0,1) and if a Prim-Read deploy-
ment d* 1s defined by the condition that ‘

v(§)p(a¥,4,1) = ¢

for all J and 1, where k is a positive, integral scaling parame-
ter, then

o o log(kv(g)=i+l)
a%(y,1) ey

for § =1, ..., Tand 1 = 1, ..., p(d%*,J) = kxv(J). Target prices
remaln directly proportional to target values,

2) Theorem (7.5), which gives the form and payoff function
of a Prim-Read deployment for the case of a single target and
initlally unreliable attackling weapons. Let p be the probability
that each attacking weapon 1s initially reliable (i.e., reaches
the vicinity of the target and requires a reaction by the
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defending side). A deployment d* 1s by definition a Prim-Read
deployment 1f

p(d*,1) = p(d*,2) = ..., = p(d¥*,p(d*)) .

It 1s shown that for each p this condltion is smatisfied by the

cordinary Prim-Read deployment d* with p(d*) = p, namely, the

deployment d¥% given by

1og$g-i+12

#* -
A= - ogq

i=1,...,p.
Furthermore, the associated payoff function 1s given by

p(d.)i) = % ] i‘l,o-o’p’

p=l ,_ .
« By (2 Lyt (1epyi-1-% | 150 .
P gmp %

In terms of the defendlng side's cholce of a Prim-Read deployment,
no change from the case p = 1 of perfectly reliable attacking wea-
pons 13 called for; the defending slde should choose as 1f p were
equal to 1 and not as if the attacking slde's resources were
reduced by a factor of 1 - p. Thils conclusion holds also in the
multiple target case.

3) Theorem (7.11l), which gives the form of a Prim-Read
deployment when there 1s but one target and when attacking
weapons may be terminally unrellable. Let p be the terminal
relliability of each attacking wespon, 80 that 1 - p is the
probabllity that an attacklng weapon falls to destroy the target
given that 1t has penetrated the interceptor defense. A Prim-

Read deployment d%* 1s detf'ined by the condition
p(d*,1) = p(d*,2) = ... = p(d*,p(d*))
and 1s shown to be given by

log(l+(p(d*)=1)p)
log q

dﬁ(i) o -
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Here p(d#*) = min{i:4%(1)=0} i3 one more than the number of ;
s attacking weapons agalnst which interceptors are assigned to
; be deployed. If p(d*) attacking weapons are committed, the
target 1ls destroyed wlth probabllity

L P(d¥,p(dl)) = ——L(dDB
1+ (p(a%)=1)p

; | which 1s less than one 1if 5 < 1.

‘ ’ 4) Theorem (7.16), which glves the form of a Prim-Read
deployment (if it exists) for the case of multiple targets and
terminally unrellable attacking weapons. The equalization con-
dition defining a Prim-Read deployment d%* is that

v(J)p(d*,J,1) = v{J)p(d#*,3,2)

= v(J)p(d*,s,p(d",J))
w v(J')p(ak, I, o(d,31))

v(J")p(a*,y,1)

for all targets J and J'. If v0 is the minimum target value
A and 1f k > 1 1s an integer for which

| LU+ (k-1)5] - &
PV, P
is an integer for each J, then there exists a Prim-Read deployment
d* such that p(a*,J) = k if v(J) = v The deployment d* 1s gilven
by

N
o ocaw,g) = YU 1y 4 (k-1)p1 41 -1
! pvo P
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and by :
log[l + (p(d*,3)-1)p |
d*(J,1) = - ]
log q ¢
for J =1, ..., Tand L1 =1, ..., p(d*,)). Target prices are no

longer directly proportlonal to target values,

5) Theorem (7.19), which gives the form of Prim-Read deploy- ® |
merits for the case of a single target and a general attrition '
function (which must satisfy some mild and plausible restrictions).

The more general attrition structure applies only to an inter-

actlon involving oneattacking weapon and some interceptors; inter- (
actions involving different attacking weapons (or occurring at J
different targets in the multiple target case) continue to be

assumed to be independent. Let r(x) be the probability that an

attacking weapon is not destroyed (i.e., successfully penetrates) P!

1f x interceptors afe deployed against 1t. Under the assumptions
b that ,
a) r(0) = 1; (l

b) r 18 continuous and strictly decreasing (i.e., an
inverse function r~+ exlsts);
¢) lim r(x) = 0,

X-+oo

and if a Prim-Read deployment d* is defined by the condition

p(d¥*) - 1 + 1

P(d¥,1) = —rgyy fal,...,0(d%), |
then
A% (1) = r ¢ : ) l#

for 1 = l, sy p(d*).
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The optimality results of Chapters III, IV, and V extend
to include all four phenomena descrilibed in this Chapter. Under
the assumption that the attrition functlion r be strictly convex,
we belleve-~but have not verified in detall--that the nonoptimal-
ity results of Examples (3.15) and (4.16), and also the results
of Chapter VI, remain valid.
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Chapter VIII

SUMMARY AND CONCLUSIONS

This Chapter summarizes and synthesizes the main mathema-
tical results in this paper and thelr principal physical
implications and interpretations. We intend 1t to be somewhat
i more than a mere re-llisting of our most important Theorems, but
3 at the same time we urge the reader not to rely on this Chapter
f alone in attempting to understand the content of the paper. A
' Summary, no matter how cogent, cannot convey the full import of

the results and exanples and comments appearing in the body of
the paper. At the very minimum, the general discussions in
Chapter 1 and Chapter V, and the Summaries of Chapters II, III,
| E IV, Vv, VI, and VII are essentlal reading in order to obtain a 3
| usable knowledge of the paper. After that, we would recommend
reading Chapters II, V, IV, VII, VI, and IIT in that order.
Chapter III i1s anomalous in that 1t is important toc the concep-
: tual and mathematical development of the paper, but treats the
physically uninteresting case ln which there 1s only one target.

A

We have organized thils Chapter in the following manner.

Sectlon A 18 a conclse re-statement of the important physical

and decision-making aspects of the target defense problem treated ﬁ

in this paper. Sectlon B dlscusses the defining properties and ‘
! form of the Prim-Read deployments, whlle Sectlon C treats the Q
important target defense principle that 1s central to our main ﬂ
g results. In Sectlion D we re-state, and once more interpret,
ko the main mathematlical resulte of the paper, all of which appear
}ﬁf. in Chapter V. A number of secondary results are listed in
: ' Section E. 1In Section F we relate our work to previous research
'uf; ' and existing literature on defense allocation problems in °
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general and missile/interceptor allocation problems in parti-

cular. Finally, in Sectlicon G we mention briefly a few aspects
of the problem that are treated not at all or inadequately in

this paper. The reader who has read the whole paper may well

protest that there couldn't be any, but there assuredly are.

A.  THE UNDERLYING PROBLEM AND THE MODEL

The physical problem studied in this paper 1s the optimal
use of limited interceptor resources in nationwlde defense of
population and production resources agalnst attack by enemy
ballistic missiles. While the model and the results of this
paper may have applicabillity to other defense situations involve
ing attacking weapons and interceptors, 1t i1s toward analysis
and understanding of the nationwide defense question that our
research has been directed.

We have represented the optimization aspects of the problem
as a sequentlial, min~max optimization prohlem in which the
attacking side 1s permitted to optimize its allocation of
weapons among targets glven full krnowledge of the interceptor
deployment plans ¢f the defending side. Under the constrains
of the attacking side's subsequent opportunity to maximize
target damage, the defending side seeks to minimize target
damage, where the latter is measured by an appropriate
eriterion.

Table 2 indicates schematlcally the declsion-making

structure of the problem. Tc summarize that structure one

more time, the defending side, knowing that attacking weapons
will arrive sequentlally at each target and that 1t must deploy
interceptors without knowledge of how many more weapons may
follow, seeks a deployment schedule that minimizes the maximum
target damage that can be achieved agalinst the chosen deploy-
ment, l.e., seeks to minimize the target damage inflicted by
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Table 2. DECISION-MAKING STRUCTURE OF THE PROBLEM

DECISION MAKER: Defending Side

CHOICES TO BE MADE:
1. Which targets to defend
2. Allocation of interceptors to targets

3. Allocation of interceptors at each target to
sequentially arriving attacking weapons

INFORMATION AVAILABLE:

1. That attacking weapons directed at each target
will arrive sequentially

2. Possibly, the size of attacking side's stockpile
of weapons

GOAL:

Time To minimize the target damage that results from an ;
allocation of attacking weapons that is optimized on 3
the basis of full knowledge of the chosen 1nterceptor i

‘ deployment
BOROR RN RN

DECISION MAKER: Attacking side

CHOICES TO BE MADE: 4
| Ailocation of attacking weapons among targets
INFORMATION AVAILABLE: i

Complete knowledge of allocation of interceptors to i
sequentially arriving weapons at each target ‘

. GOAL: | i
E To maximize either target value destroyed or target ]
value destroyed par attacking weapon committed




an allocation of attacking weapons that 1s optimized on the
basis of full knowledge of the chosen deployment.

Two princlpal target damage criterla are studied in this
paper: expected target value destroyed and expected target
value destroyed per sttacking weapon committed. The former is
an absolute criterion, whereas the latter attempts also to
account for the generally diminishing yleld from commitment of
additional attacking weapons. Symbolically, we are studying
min-max problems with objJjective functions of the forms

minimize max %(d,a)
d a

and

minimize max 21%491
d 8 a

where d 1s the lnterceptor allocation, a 18 the allocatlon of
attacking weapons among the targets, G(d,a) is the resultant
target value destioyed, and 3 1ls the number of attacking weapons
committed. In both problems we have imposed restrictions on &,
which some of the time are treated parametrically. Similar
restrictions on d are cruclal to most of our results.

In physlcal terms, the most important underlylng assump-
tions are the following: '

1) Defensive interceptors must be assigned in advance to
various targets and cannot be reassigned, adaptively or cothevr-
wise, during the course of an attack.

2) Attacking weapons directed at each target arrive there
sequentially in time. When an attacking weapon arrives, the
defending slde does not know how many more attacking weapons
will follow 1t, but must nonethelegs allocate interceptors to
seek to destroy it.
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3) The attacking side must allocate. weapons among targets
in advance of an attack and cannot adaptively re-allocate
weapons as the attack progresses (even though weapons arrive
at each target sequentially).

4) Except in unrealistic cases, the defending side's
limited interceptor resocurces will prevent 1ts defending all
of the targets. Moreover, those targets that must be left
undefended will generally be of differing values.

The addltlional assumptions we have imposed in order to
incorporate these fundamental phenomena into a tractable mathe-
matical model are given in (1.1) ana (1.2). Of these, the
assumption that a target 1s destroyed with certainty by an
unintercepted attacking weapon has the clearest physical
import and 1is probably the most restrictive.

B. PRIM=READ DEPLOYMENTS

Assume that the defending side has a number T of targets,
with respective values v(1l) > ... > v(T), all of which are

assumed to be positive integers. Let 4(),1) be the number of
interceptors allocated to the 1th attacking weapon to arrive

at target J (of course, because of the afiocation chosen by

the attacking silde, the ith attacking weapon may never be com-

mitted). For each J let p(d,J) = min{i: d(J,1)=0}, which we |
have defined to be the price of target ] imposed by the deploy- -
ment d. By committing p(d,J) weapons to target J the attacking
slde can be certain of 1ts destruction. FMinally, for each J ]

and 1, and for an 1nterceptor deployment d, let

1-1 |
iml

where q 18 the one-on-one penetration probability. Then, p(d,J,1)
1s the probability that target j is destroyed by the 1D attaoking




o

weapon commltted to it, when the defending side employs the
interceptor deployment d. By virtue of our varilous assumptlons, R
p(d,J,1) = 0 1f 1 > p(d,J) and

pld,r)
)

(8.2) p(d,J,1) = 1,

i=]1 Ly
no matter what the derloyment d. t
The basis for a Prim-Read deployment can be stated 1n two g

ways. In the more physical sense, a deployment d* 1s a Prim-
Read deployment if the payoff function V(d¥*,-) defined by

T
(8.3) V(d*,1) = max § v(J)P(d*,3,a(y)) ;
dwi Jm=l .l

A G Sy e

1s such that its graph 1s of the form shown 1ln Flgure 9: ﬁ
linear sn an interval [0,i#] for some 1i* and strictly concave b
2 from i% up to the point i1#% at which all targets are destroyed.
(In (8.3), the maximum 1s over all allocations a = (a(l),..., :
a(T)) of attacking weapons among the targets, for which :
a = a(l) +...+ a(T) is equal to 1; P(d*,j,a(J)) is the cumu-
lative form of (8.1).) In the more mathematical sense, a deploy=-
ment d* is said (i.e., defined) to be a Prim-Read deployment 1if
for any two targets J and J' that are initially defended,

e o dwsiens o

(€.4) v(I)p(d*,3,1) = v(J)p(d*,J,2)

-
]

v(J)p(d¥,J,p(d¥*,3)) ‘
v( " )p(d¥, 31 ,p(d%,31)) SEENE

v(J')p(d*,J',1).

The important question of properly choosing initlally defended
targets and undefended targets will be discussed in'the next "?ﬂ
 §! Section. :




The interpretatlion of (8.4) i1s that the expected target value
destroyed by an attacking weapon committed to an initially defended
target does not vary, elther weapon-by-weapon or target-by-target,
provided only that no target 1s certain to have been destroyed. One
can infer from (8.2) and (8.4) that the ratio p(d*,J)/v(J) is inde-
pendent of J (if target J 1s initlally defended). For each cholce
of scaling parameter o for the common value of these ratios such
that av(J) 1s an integer for each initially defended target J,
there exists a corresponding Prim-Read deployment d&, which is

o el T R i e - P >

| lven b .
e plah,3) = av(y) .
and 'f
. log(av(])=1+1)
! (8'5) da(lj’i) = - log q ’

where (8.5)1s valid for all initially defended targets j and for
1 =1, ..., av(J). 1In Chapters II, IV and V we took & to be an
integer k, which, though a simplification, causes no loss of
generality.

It can easily be seen from (8.5) that a target of value 1
will not be defended if a < 1, but may be defended~~depending on
how the defending side chooses which targets to defend--if a > 1.
As previously 1lntimated, 1t 1s this cholce of which targets to
defend that 1s of particular physical importance and interest
since 1n the situations to which thls model 1s envisioned as
appllicable, the defending side will almost never have sufflcilent
interceptor resources to defend all of the targets. The next
i Cection discusses the mechanism we propose for choosing which
é targets to defend.
|

C. THE TARGET DEFENSE PRINCIPLE

Our proposed rule for choosing which targets to defend is
the followlng target defense principle, stated first in .verbal,
® then in mathematical form.




Verbal Form, Targets must be defended in order of decreasing
value 1in such a manner that the expected target value destroyved L
by an attacking weapon committed to an initlially defended target,
provided that prior destruction of the target not be certaln,
exceed the value of every iniltlally undefended target.

Mathematical Form. A deployment d satisfies the target
defense principle if, whenever J and J' are targets for which
p(dyJ) > 2 and p(d,J') = 1 (i.e., target J 1s initially defended
and target J' 1s not defended at all), then

(8.6) V(J)p(dsjai) >v@")

for each 1 = 1, ..., p(d,J).

Since 1t is impossible to satisfy (8.6) i1f v(J') > v(J),
this condition does incorporate the requirement that targets be
defended in order of decreasing value.

The reasoning underlying this particular target defense (
principle 1s discussed at some length in Chapters I,A and V,A,
to which we refer the reader. Briefly, the rationale is that
the purpose of defendlng some targets, but not all, 1s to force
expendlture of as many of the attacking slde's resources as |
possible 1n order to destroy the defended targets. That 1s, 1t
ls a patent waste of interceptor resources to defend any target
S0 heavlily that undefended targets wlll be attacked instead.
We also observe that the stated form of the target defense
principle l1ls consistent with the declslon-making structure of
the problem; under a different decislon-making structure the
same reasoning might lead to a qualitatively different defense
principle. ()

Recalling that v(l) > ... > v(T), we see that a Prim-Read
deployment d®* satisfles the target defense principle 1if:

1) There 1s some J, such that p(d*,1) > 2, ..., P(d*,do) o
> 2 but p(d*,J0+l) = ,,, = p(4d%,T) = 1; that 1s, the o most
valuable targets are 1lnitlally defended.




2) For J f_ Joa
(8.7) V(Jg*) < v(3)p(a,],1)

for 1 =1, ..., p(d*,J).

Since v(Jo+l) > v(J') for all targets J' that are not
defended at all, (8.7) does indeed imply (8.6). Since (8.5)
implies that

p(d'ljli) - 'p—z—ldljy ’

and since by the definition of a Prim-Read deployment, we have
p(d%,3) = av(]) for some a, (8.7) also implies that .

1 .
(8.8) nim

Our principal results, discussed in the next section, are proved
under an assumption that equality halds . in (8.8)..... .

To conclude this sectlon, we note that a Prim-Read deploy-
ment d* satisfying the target defense principle possesses
a payoff function V(d*,.), as defined by (8.3), that 1s of the
form shown 1in Figure 9. Somewhat more specifically, V(d#,:)
1s linear on an interval [0,1%*] corresponding to destruction of
the initially defended targets; here 1% is the number of
attacking weapons needed to destroy all of the initially
detended targets. Thereafter, V(d%,-) 1s strictly concave up
to the point 1#**, which represents the number of attacking wea-
pons necessary (if optimally allocated) to destroy all of the
targets., Furthermore, only Prim-Read deployments satisfying
the target defense princilple have payoff functiona of thils
form.
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D. MAIN MATHEMATICAL RESULTS

The most 1lmportant mathematlcal results in thls paper
appear in Chapter V and concern optimality (and nonoptimality)
properties of Prim-Read deployments that satisfy the target
defense principle, relative to a set of comparable deployments
that also satisfy the target defense princlple. In Chapter V
we impose the hypothesls that

v(l) > ... > v(T) ,

which 1s not very restrictive, and the hypothesis that v(J)/
v(J+l) be an integer for each J. This latter hypothesis is
restrictive, but many of our results don't require its full
force and we also disgcuss In Chapter V several ways of minimiz-
ing its restrictive effects.

The main results establlished in Chapter V are the following.

1) Under the hypotheses noted above, for each JO there
exists a maximally strong Prim-Read deployment d¥* that satisfles
the target defense principle, ilnitially defends targets l,...,Jo,
and leaves targets J0+l,u..,T undefended. That deployment d* is
glven by

log(n =141
(8.9) d*(Jy,1) = - g(léé)q ) ’ i=1,...,n(3),
where n(j) = v(j)/v(Jo+l). In order that this deployment be
defined we are forced to assume that v(d)/v(30+1) is an integer
for each J < JO' The result which gives the existence and
explicit form of the Prim-Read deployment d* is Theorem (5.7).

2) If d* 1s the Prim-Read deployment corresponding to
initial defense of targets 1, ..., JO’ as given by (8.9), then
d* 1s the unique solution to the optimization problem
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(8.10) minimize max ELQ#EL
1<r<p(da)

5.6, I(Q) < I(a%) .
In (8.10), the quantity

T
B(a%) = | p(a¥,y)
J=1

1s the number of attacking weapons needed--against the Prim-Read
deployment d*--in order to destroy all of the targets. Observe
that in (8.10) the deployment 4 is not constrained to satisfy
the target defense principle. Therefore, the content of this
result, which 18 Theorem (5.9), 1s that among all deployments
requiring no more 1nterceptors than it does, the Prim-Read
deployment uniquely minimizes the maximum target value destroyed
per attacking weapon committed.

3) If d% i3 the Prim-Read deployment corresponding to
defense of targets 1, ..., JO} as given by (8.9), and if

Jo
A< I plat,y) ,
J=l

then 4% 1s a solution to the optimization problem

(8.11) minimize V(d4,A)
s.t. I(d) < I(d%)

d satisfles the target defense princil-
ple and defends targets l,...,Jo.

Moreover, if A > p(d%,1) -~ 1 (the latter is the maximum number
of attacking weapons against whlch any target 1s defended), then
the Prim-Read deployment d* 1s the unique solution to the
problem (8.11). This result, which is Theorem (5.17), states
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'f' ' that among deployments satisfylng the target defense princlple

'; and requiring no more interceptors than the Prim-Read deployment

| ‘ d%, the latter minimizes the target value destroyed by an

optimlized attack consisting of A weapons, provided that A be lesas
than or equal to the total of the Prim-Read prices of the initially
defended targets. If, 1n addition, A is greater than or equal to
the maximum number of attacking weapons against which any target

1s defended, then the Prim-Read deployment uniquely minimizes the
target value destroyed.

4) If d% 1s the Prim-Read deployment corraesponding to defense
of targets 1, ..., J,, as given by (8.9), then there exlsts a
deployment d, which can be calculated explicitly, such that d
satisfles the target defense principle, such that I(d) = I(d*),
and such that

V(d,A) = V(d#*,A) -~ 1 < V(d*,n)

for all A satisfying

3o . T
T oo(a%,y) < A < ] pld%,y) .
J=1 J=l

This recult, which 1s Theorem (5.32) and to the proof of which
the reader 1s referred for the expllclt construction of the deploy-
ment d, states not only that the Prim-Read deployment 4% fails

to minimlze target value destroyed by an sasttack of size A that 1s
large enough to destroy all of the inltlially defended targets
together with at least one of the initlally undefended targets
vet not large enough to destroy all the targets, but also that

in fact there exlsts a deployment d satisfying the target defense
principle and requiring no more interceptors than does d%*, that
is uniformly superior to d¥--in terms of target value destroyed--
for all such attack silzes.

In broad terms, the Prim-Read deployment minimizes target
value destroyed by an optimized allocation of attacking'weapons




if the attack size 1s at most sufficient to destroy the initially
defended targets and does so uniquely if the attack size 1s not
too small. However, the Prim-Read deployment does not minimize
target value destroyed by an optimized allocatlon of attacking
weapons 1f the attack 1s sufflclently large to be able to destroy
at least one of the initilally undefended targets. These opti-
mality statements are relative to the set of deployments satls-
fying the target defense principle and not requiring more inter-
ceptors than does the Prim-Read deployment. On the other hand,
for the criterion of maximum target value destroyed per attacking
weapon committed, the Prim-Read deployment 1s unlquely optimal
relative to the (larger) set of deployments not requiring more
interceptors (but also not necessarily satisfying the target
defense principle).

We emphasize that in most of the above optimality results
the alternative deployments are not constralned to defend pre=
clsely the targets 1, ..., JO'

Table 3 provides a final summary of these important opti-
mality properties.

There is one further lnteresting optimality property pre-
sented in Chapter V, namely Theorem (5.22), which asserts that
if 4% is the Prim-Read deployment that defends targets 1, ...,
Jo» 88 glven by (8.9), then d* 1s the unique solution to the
optimization problem

Jo
(8.12) maximize § p(d,J)
g1

8.t. d satlsfles the target defense principle.

That 1s, among all deployments satlsfying the target defense
principle and initially defending targets 1, ..., JO’ the Prinme-
Read deployment A% uniquely maximizes the resource commitment
thereby imposed on the attacking side in order to destroy the
initially defended targets.
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Table 3. SUMMARY OF OPTIMALITY PROPERTIES OF PRIM-READ
DEPLOYMENTS UNDER THE TARGET DEFENSE PRINCIPLE

RETAE A G = R L S e S

Criterion Optimality Properties of d*(1)

V(d,A) 1) Optimal relative to {d: I(d) < I(d*) and
d satisfies the target defense principle}
if A < p(d*,1) - 1 = mgx p(d*,dg -1,

Lo s ap e e ot

iquely optimal relative to {d: I(d)
I(d*) and d satisfies the targeg defense

0 :
cprinciple} if p(d*,1) - 1 < A < | pld*,d).

J=1

3) Uniformly inferior to a known deployment d
such that I(d) » I(d*) and d satisfies the
target defense principle, if

-

0 T :
p(d¥,§) < A < T op(d*,§).
121 J=1
ma x !Li%tl Uniquely optimal relative to {d: I(d)<I(d¥*)}.

1<rep(d*)

(1) d* = Prim-Read deployment that defends targets 1, ..., Jo; cf. (8.9).
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For further informatlion on the results summarized here, the
reader 1s referred to Chapter V.

E. MATHEMATICAL RESULTS OF SECONDARY IMPORTANCE

As we have stated several times previously, we bellieve that
the results of Chapter V are the most lmportant 1ln the paper
because they apply to the phyaically meaningful case wherein
many targets of differing values must be left undefended. The
results of Chapters IV and VI pertaln to the multiple target case,
but only when elther all targets are defended or only targets of
unlt value are left undefended., While this latter sltuation is
not necessarlily very interesting physically, 1t 18 quite inter-
esting mathematically. The results given in Chapters IV and VI
are lllumninating complements to the results in Chapter VvV, for
they clarify the sighificance of the undefended targets and of
the target defense principle. Furthermore, these results do
develop interesting and further optimality properties of Prim-
Read deployments., For these -reasons we wlll now give a brief
summary of the results of Chapters IV and VI.

Chapter IV is a general exploration of optimality properties

of Prim«Read deploynents dﬁ of the form

(8.13) ap(s,1) = __3(kgéjé -1+1)

for J w1, ..., Tand 1 =1, ..., kv(]) = p(d ,J), where k 1is a
posltive integer. Note that all targets are initially defended
unless k = 1 and that in this latter case only targets of value
1 are left entirely undefended.

The main optimality results established Iin Chapter IV are
the following.

1) It k 1s fixed, then the Prim-Read deployment dﬁ given
by (8.13) is the unique solution to the optimization problem
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(8.14) minimize I(4)
s.t. p(d) = B(dﬁ)

\ max YLQ?QL < % .
; 17#<p(df)

That 1s, subjlect to a fixed total of target prices and a con-
‘ straint on the maximum target value destroyed per attacking
weapon committed, the Prim~Read deployment uniquely requires
the fewest interceptors; this assertion 1s Theorem (4.7).

2) For each k, the Prim-Read deployment dff given by (8.13)
1s the unique solution to the optimlization problem

(8.15) minimize max YLQ?EL
1gr<p(d)

s.t. p(d) = p(d%)
k

Of all deployments with the same total of target prices and
interceptor requirement not exceeding that of the Prim-Read
deployment d*, the latter uniquely minimizes the maximum target
value destroyed per attacking weapon commlitted. This result 1is
Theorem (4.8).

Two interesting characterizations (not involving optimality
properties) of Prim-Read deployments are alsc established in
Chapter IV; they are the following.

1) Por each k, the Prim-Read deployment dﬁ glven by (8.13)
1s the only deployment d such that p(d) = p(df), I(d) < I(d}) and
V(d,*) 18 convex on [0,p(d)]. This particular result is demon-
strated in Theorem (4.3).

2) For a defensive deployment d and a target-by-target
allocation of attacking weapons a, let
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. T a(J) :
V{d,a) = 321 V(J)[} - IIJ (l*qd(d’z)>] )

Qm]

which 1s the expected target value destroyed. Then it is shown
in Theorem (4.10) that for each k, among all deployments d for
which p(d) = B(dﬁ) and I(d) < I(dﬂ), only the Prim-Read deploy-
ment d¥ given by (8.13) makes ¥(d,a) dependent on the allocation
a only through its total size a = J a(J). That is, with the
total of target prices and the defending side's interceptor
resources fixed, only the Prim-Read deployment dﬁ prevents

the attacking slde from benefltting by its being able to opti-
mize the allocatlon of attacking weapons among the targets on
the basis of full knowledge of the deployment chosen by the

defending side.

Finally, 1t 1s shown in Example (U4,16) that with k fixed
the Prim-Read deployment dﬁ given by (8.13) i1s not a solution
to the optimization problem

(8.16) minimize V(d,kv)
s.t. I(d) < I(a) ,

nor even to tHe more restricted problem in which interceptor
resources are constrained on a target-by-target bazls to their
Prim-Read levels, However, the Prim-Read deployment dﬁ is
robust in the sense of being within 10 percent of the uniform
deployment for the problem (8.16).

In Chapter VI we consider the effect of filxing individual
target prices at Prim-Read levels, flxing the defending side's
interceptor resources at the Prim-Read level, and employing the
ecriterion of target value destroyed, where the number of attack-
ing weapons 13 treated as a parameter in the analysis., Specl-
fically, we show in Theorem (6.13) that if d* 1s the Prim-Read
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deployment given by (8.13) with k = 1, then, except for a small
number of known exceptional cases, A% 1s a solution to the opti-
mization problem

(8.17) minimize V(d,1)
s.t. p(d,]) = p(da*,J) = v(J), J=ly.e ., T,
I(d) < I(d*)

if and only 1f there is a set JO of targets that can be exactly
destroyed by 1 attacking weapons in the sense that

1= 1 v .
J!JO

We will not re-state the results of the remaining Chapters,
namely Chapters II, III, and VII. In Chapter II we show how to
derive the form of Prim-Read deployments from hypotheses of the
form (8.4). Chapter III develops optimality properties of Prim-
Read deployments in the single target case. While thils case 1s
essentlally meaningless in terms of the physical problems that
motivated our research, 1t is important because the results and
the technlques of proof appearing in Chapter III provide f(as 1t
turng out) the correct point of view from which to approach the
multiple target case. Flnally, Chapter VII derives the forms
and investigates some extremely basloc properties of Prim-Read
deployments when certaln of the hypotheses given in (1.1) and
(1.2) are weakened. Specifically, we calculate Prim-Read
deployments for the cases of:

1) Target dependent intercept probabillities;

2) Initially unrellable attacking weapons that are launched
but may or may not reach the viecinlty of the target and require
interceptors to be deployed against them;
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. 3) Terminally unreliable attacking weapons that may fail to
destroy the targe% deaplte thelr not having been intercepted;

b) Alternative forms of attrition equations for the inter=-
action involving one attacking weapon and several ilnterceptors.

P S P 1 Vi

‘ We refer the reader to Chapter VII or to its summary for
the expliclt results obtained.

Table 4 below lists the major and many of the zecondary ]
results of the paper grouped by the general form of the result. g o
Using 1t, the reader may easily compare and contrast analogous
results in different ce:e4,

el ety S

F. RELATED RESEARCH ON INTERCEPTOR ALLOCATION PROBLEMS |

B e S

We emphasize from the beglinnling that this sectlon 1s not
intended to be (and is not) a comprehensive survey of the vast - O
existing literature on problenms related to allocatlon ol nombat :
[ resources, or even of problems related to allocatlon of lnter- L
~geptors as a defense agalnst attacking misslles. Rakher, the : ;
following dlscussion ' :

1) concentrates on work related directly or nearly directly
to Prim-Read deployments;

) s
D -

2) emphasizes papers dealing primarily with mathematical H
optimality questions as opposed to the "real-world" declsion
problem giving rise to those questions;

3) entirely excludes conslderation of the physical nature
of the interception process itself; and

| 4) draws almost exclusively upon the open literature.

So far as we can determine, the defenslve deployment we
have called the Prim-Read deployment was first proposed by
W.T. Read, Jr., in [15]. R.C. Prim seemingly performed much
of the fundamental mathematical research leading to [15],

&
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Table 4. ANALOGOUS RESULTS FOR DIFFERENT CASES

Kind of Result

Specific Instances

Form of Prim-Read deployment

Convexity characterization of -
P:im-Read deployment

Optimality properties for target
value destroyed

Optimality properties for target
value destroyed per attacking
weapon committed

Optimality properties for inter-
ceptor requirement

Optimaiity property for target
prices

‘Under target dofense principle:

Single target: Theorem (2.6)
Multiple target: Theorem (2.13)

Under target defense principle:
Theoren ?5.7)

With target dependent intercept
probabilities: Theorem (7. 2)

With initially unreliable attack-
ing weapons: Theorem (7.5)

With terminally unreliable attack-
ing weapons: Theorems (7.11), (7.16)

With general attrition function:
Theorem (7.19)

Single target: Theorem (3.1)
Multiple target: Theorem (4.3)

Single target: Example (3.15)

Multiple target: Example (4.16);
Theorem (6.13)

Under target defense principle:
Theorems (5.17) and (5.32)

Single target: Theorem (3.11)
Multiple target: Theorem (4.8)

Theorem (5.9)

Single targeit: Theorem (3.9)
Multiple target: Theorem (4.7)

Under target defense principle:

Theorem (5.22)
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desplite hls not belng named as a co-author. Attribution of the
C deployment to both men seems as failr as 1t 1s established. In
[15] the Prim-Read deployment 1s proposed on the grounds that:

1) Given an interceptor allocation, the attacking side
should commlt that number of weapons which maximizes the cumu-
lative penetration probability per weapon committed. That is,
the attacking side should choose 1* such that

'é where P(1) 1s the probability that one of the first 1 attacking
5 weapens destroys the target. Thls is one of the criteria we
have considered in this paper.

P e

2) Under the assumption that this wlll be done, the defend-
ing slde should in some undefined way attempt to make all ways
of maximizing P(1)/1 the same to the attacking side.

The deployment satisfying (2.5) 1s then asserted to achieve
the defending side's objective. We have seen in the preceding
Chapters that, in several senses, 1t does.

2L e e

In [15], Read also mentions that his proposed deployment
makes the probabillity of scoring a kill the same for all attack-
ing weapons. It i1s this property (and optimality properties
heuristlcally inferred to follow from it) that seems to motivate

‘ references to and applications of the Prim-Read deployment dur-
ing the 1960s. As representative examples we mention the mono=-
graph of Eckler and Burr [8], the two papers of Berger [2,3] and
_ the paper of Everett [9]. In [8] and [9] the Prim-Read deploy-
it, ment 1s referred to as the constant value decrement (CVD) deploy-
ment, especlally in the multiple target case. A recurring con-
Jecture in these works 1s that uniformity--as expressed in (2.12)==
implies optimalilty according to some objective function. In this
paper we have formulated and verified several zpecific versions of
thls conjecture.

2
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In the Air Force Syllabus of Equatlons for Force Effective-
ness Analysis [19] there appear several detalled derilvations of
formulas assoclated with the Prim-Read deployment, such as the
Interceptor requirement I* given in (2.8). Consideration 1s
also glven to possible use of decoys by the attacking side. 1In
(9], Everett treats the CVD deployment for "dilute" attacks, in
which a successfully penetrating attacking weapon 1s not certain
to destroy a target. His results appear to differ from those we
present 1in Chapter VII.

Essentlally none of these papers treats the multiple target
case under assumption of the target defense principle, and none
of them contains the detalled derivations and interpretations of
optimality propertles that are given in thils paper.

The general problem of allocating lnterceptors and attacking
weapons among targets has a lengthy and detalled history; work on
it before 1971 1s surveyed by Matlin in [1ll], and much general
information is contained in the Air Force Syllabus [19] and in
the books of Danskin [6] and Dresher [7]. Our particular problem,
with sequentilal arrivals of attacking weapons and local defenses
(1.e., interceptors that cannot be reassigned), is discussed in
the papers of Berger [2,3], Gorfinkel [10], Perkins [13], and
Shumate and Howard [17]. While some of these authors obtain
results similar to ours, none of them is particularly careful
about either formulation or establishment of optimality results.
Nonetheless, we suggest that these papers be consulted 1n order
that the reader develop a better understanding of the problem.

It 1is interesting to note, however, that Perkins in [13]
asjerts that (an 1ll-defined) optimality obtains when the ratio
of attacking strength to defending strength is the same at all
targets, which does not occur for Prim-Read deployments except
when all targets have the same value.

Several of the papers referred to above put forth concepts
of the role of defenses and the goal of committing resources to

.




def'ensive purposes that are similar to those followed in this
paper. Thils 1s particularly so in regard to the role of the
target defense principle of Chapter V in the situation in which
many targets must be left undefended., For example, Read in [15]
states that the purpose of a defense 1s to ralse the price of
destroying some targets to the point that not many targets can
be attacked. The defending slde, then, does not benefilt in
terms of the targets that are defended and attacked but rather
in terms of the undefended (and, under the target defense prin-
ciple, less valuable) targets, which the attacking side--it 1is
hoped=-=wlll not have sufflclent resources to attack. Brodhein,
Herzer, and Russ assert in [5] that "...an active defense system
cannot prevent a determined and powerful offense from destroyirg
a glven number of targets. Faclng such an opponent, the defense
obJective 1s generally to maximize the offensive cost of such an
attack." It 1s also well recognized that this entails defending
targets in order of decreasing value [19].

The 1dea that the defending slde should choose its deploy-
ment under the assumption that. the attacking side willl thereafter
optimize against it is a central idea of min-max theory [6,7].
Specifically in terms of defense deployment problems, one finds
in [14] the statement by Pugh that the defending side should
", ..choose that allocation of defense resources that will give
best protectlion when an attack 1s optimized against whatever
defenses are chosen." The concept that the proper decision
criterion 1s expected target value destroyed 1s so common and
accepted that 1t defles attribution to any individual, while
that the criterion should be (expected) target value destroyed
per attacking weapon committed 1s widely proposed; cf. [2,3,13,
19], for example.

It 1s virtually universally agreed that appropriate opti-
mality criterla involve expectations. This use of expectatlions
1s subtly related to the target defense principle: when the




criterion involves expected target value destroyed (regardless
of whether normallzed by the number of attacking weapons com-
mitted) 1t 1s sensible to defend the more valuable targets in
order to force expenditure of attacking weapons to destroy
those targets. It would not make sense to defend any target
(even the most valuable one) sc heavily that it will not be
attacked at all, for the attacking slde would then simply
attack the undefended targets, which renders the interceptors
essentially useless.
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Employment of the concept of the price of a target, in the
senge of price being a measure of the resources that the attack-
ing side must commit in order to bring about a certaln level of
target destructlion, goes back at least to Read [15]. In [15],
the price of the target 1s defined as

. -1 -l

} P(4) < [BgL¥

For Prim-Read deploymentgngﬁiémggihgzaéé~§ith price as deflned
by (2.1). For other deployments it seems best interpreted
through the egquatlon
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l.e., ¢ attacking weapons, each with the same probabllity % of

destroying the target, would destroy the target with certainty
under a linear payoff function.

Similar, although not always l1ldentical, definitions of
price may be found in the Alr Force Syllabus of Fguatilions for
. | Force Effectiveness Analysis [19] and in the papers of Berger
&ﬂ; [2,3], Everett [9] and Shumate and Howarda [17].

The i1dea that target prices, in the multlple target case,
should be proportional to target values has been harder for us O
to trace. It appears with no justification in the Air Force

Sm




Syllabus [19] and is assumed by Shumate and Howard [17], again
with absolutely no justifiocation, to be optimal in the sense of
minimizing maximum target damage per attacking weapon. In view

PO R O o S
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of the allegation by some authors that optimal defensive deploy=-
‘ ments require that interceptor totals (or possibly both inter-
ceptor totals and attacking weapon commitments) be proportional

|
-} to target values, 1t would be interesting to have a more detalled
t acocount of the development of these differing opinions.

g Min-max aspects of the misslle allocation problem are

j?! treated in the books of Danskin [6] and Dresher [7] and in the
j! papers by Pearsall [12] and Soland [18]. None of these authors,
X however, gilves expliclt consideration of interceptor deployments
v against sequentially arriving penetrators.

G. POSSIBLE QUESTIONS FOR FURTHER RESEARCH

The following are a few potentlally significant facets of
the basic problem treated in this paper that are discussed elther
not at all or too shallowly.'rFurther research on the problem
might profitably be directed to these questlons.

1) Except impllcltly when dealing with minimizing the number
of interceptors required or when imposing on the defending slde a
constraint on the number of interceptors avallable, we have not
included any discussion of cost structures. Especlally, we have
not considered how certain expenditures by cne glde can force
the other side into potentially equally or more gostly responses.
In general this 1s a neglected part of milltary modelling: ¢to
what extent 1s a resource expenditure valuable because 1t imposes
a compensating expenditure on the other side, which then may be
unable to meet other, important goals? In the context of the
problem treated in this paper, the defending side might wilsh to
increase the prices of the targets in order to attempt to force

165




the attacking side to allocate more attacking weapons to destruc-
tion of those targets.

et UL s o B bl

The whole question of attempts to force on the opposing
gide resource expendlitures or allocations 1t might not other-
wise undertake seems very worthy of further study in essen-
tially all c¢ombat contexts.

Finally, we d¢ not consider possibly large fixed costs
(e.g., for radar) that may render infeasible defense of certain k.
low value targets that would otherwlse be defended. Fixed Vf’;
costs could also create difficultles in completing defense of .T
a more valuable target.

o oY RIS AmE SAT AN e msicaicma
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2) We have consldered only local (i.e., point) defenses in
this paper. The case of mixed area/point defenses 1s physically
meaningful and mathematlcally Interesting, and therefore merits
some attentilon.

3) For a Prim-Read deployment, the payoff function is v a3
linear down to the origin. However 1in reallity 1t may be known
(or the defense may be willing to belleve) that the attack size
is certain to exceed some lower hound Amin' In thls case the
Prim-Read deployment 3is a misuse of resources because 1t protects s
against attack slzes less than Amin
a different deployment using the same number of Iinterceptors
ylelds a payoff functlon that 1s linear over the range of
possible attack sizes and lower over the same range than the
payoff function of the Prim-Read deployment. Such "modifled
Prim-~Read deployments" are certainly worthy of additional
research effort.

y which cannot occur. Perhaps

4) The assumption that attacking weapons arrive sequentially
at each target 1s so fundamental to our model that a major alter-
atlon of 1t would lead to an entirely new model. Nonetheless,
minor but physically meaningful varlatlions of 1t ought to be
investigated.




C

5) The model does not allow adaptive resource reallocations
by either side. Attacklng weapons dlrected at a target that 1is
known to have been destroyed cannot be re-targetted; and inter-
ceptors deployed at a destroyed target cannot be reassigned
to defense of a target that i1s 3till surviving. For many poten=
tial applications of the model this seems to be a serious weak-
ness. It would be extremely interesting to investigate the effect
of allowing various forms of adaptive reassignment of attacking
weapons and Ilnterceptors. Representatlon of shoot-look-shoot
capabllity for the attacking side would be particularly important.

6) Many discreteness (l.e., non-integrality) difficulties
have been glossed over, especlally in Chapter V. While in .
some cases these difficulties are minor, in others they may be
severe. Further work 1s necessary in order to elucldate the
solutions. An alternative approach worth pursuing is suggested
by L. B. Anderson in "Nationwide Defense Agalnst Nuclear Weapons:
Definition of Randy-Watch Deployments" (Working Paper WP=-lJ,
Project 2371, Institute for Defense Analyses, 1981).

7) Some physical effects that may be of interest in speciw
fle applications elther are not represented explicitly in the
model or are specifically assumed not to oscur. Among such
effects are decoys, group attacks, partial target damage,
collateral damage, c¢lock time, geography, undetected attacking
weapons and possible re-use of interceptors that fail to engage
(as opposed to engage, but fall to destroy) an attacking weapon.

8) Applicability of the basic model specified by (1.1) and
(1.2), or of the variations thereon which we described in Chapter
VII, to specific combat situations has been mentioned only briefly.
In carrying out our research we have thought of the model as
appropriate to defense of (essentlally point) targets against
attacking missiles, Possibly 1t 1is not applicable even to this
gltuation, but possibly 1t 1s ap.,licable not only here but also
to other combat processes. We hove endeavored-=by being explicit
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$' ' about our underlying assumptions and their interpretatlons-—-to 5;
i give the reader at least one basis for judglng possible applica-
bility to specific forms of combat. In any event, tfurther study
would be required to establish applicablility or credibility of
the model in speclfic physical siftuatlions.

I e
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9) The target defense principle should be studied more
carefully. Desplte its appeal, we have lmposed it as an assump-
tion; if 1t could be shown to be satisfled (or to be nearly
satisfled) by solutions to problems of the form (4.24), the
grounds for 1t would be much more compelling.
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INDEX OF NOTATION

The following 1s a llst of the notation that appears
throughout the paper; the page number assoclated with each
entry 1ls that of 1ts filrst occurrence. Additional, specilalized
notation is introduced in (and, in each casge, used only within)
Chapters III, IV, V, VII and Appendix B.

Notation
da(1)

d“

d

I(d)
p(d,1)

P(d,1)

d
p(d)

Notation

a(J)
a

da(J,1)

Notation for the Single Target Case

Page
23

25
b7
36
24

35

12
2u

Meaning

Number of interceptors assigned to 1th attacking
weapon by deployment d

Prim-Read deployment
Uniform deployment
Interceptor requirement for deployment d

Probability that ith attacking weapon destroys
target, given deployment 4

Probability that one of attacking weapons 1,
«vs,1 destroys target, glven deployment d

One-on-one penetration probability
Price of target for deployment 4

Notation for the Multiple Target Case

Page
55

55

29

Meaning

Number of attacking weapons assigned to
target J, given attack a

Total number of attacking weapons at all
targets, given attack a

Number of lnterceptors assigned by deployment
d to 1%h attacking weapon at target J
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Notation Page

d# 30
d 62
I(4) 3l
1» 4
L 4
Ig 80
k 30
n(y) 82

p(d,d,1) 30

P(d,J,1) 89

D 124
P 128
q 12
v(d,1) 55
V(d,a) 59
v(J) 29
v 54
o 147
p(d:-j) 29
6(d) 54

Meaning
Prim«Read deployment

Proportlonal deployment
Interceptor requirement for deployment d

Number of attacking weapons needed to destroy
defended targets

Number of attacking weapons needed to destroy
all targets

Number of defended targets
Scaling factor for Prim-Read deployments

Ratlo of value of target J to value of most
valuable undefended target

Probability that ith attacking weapon at
target J destroys it, given deployment d

Probabllity that target J 1s destroyed by one
of attacking weapons 1l,...,1 at that target,
glven deployment d

Iniltial reliability of attacking weapons
Terminal relliabllity of attacking weapons
One-on-one penetration probability

Maximum target value that can be destroyed
by 1 attacking weapons, gilven deployment d

Target value destroyed, givern attack a and
interceptor deployment 4

Value of target ]

Total value of all targets

Scalling factor for Prim-Read deployments
Price of target J, given deployment d
Total of all target prices, given deployment d
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EXAMPLES 1

In this Appendix we construct some Prim-Read deployments ‘
for defense of the princlpal centers of population in the k
United States and compare them with corresponding unitorm
deployments.

Table A=l below lists (according to [20]) the twenty=-nine
metropolitan regions in the U.S. with populations greater than jf
one million. The data were constructed from a table of popula=-
tions of SMSA's (Standard Metropolitan Statistical Areas) but
SMSA's that ere nearby to one another have been combilned. The
largest metropolitan area with population less than one million
has also been included.

Our first example deals with the case where the value of a
reglon as a target is a function of its population in the manner
indicated in Figure A-l. ‘That i1s, a regicn with pcpulation p
has value V(p) given by

Vip) = 1 if p < 10°

« 8p/10° 1r p > 10°.

One might employ such a functlion on the rationale that regions
of silze less than one million support insufflclient heavy indus-
try to be really important targets; each hasa the same value,
which is one-elghth that of a region of size one million. The
value one-eighth 1s, of course, arbitrary, but 1is convenlent
for 1llustrative purposes.
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Table A-1. REGIONS, POPULATIONS, VALUES

Region Population in Thousands Valye
1) New York 16691 134
2) Llos Angeles 9595 77
3) Chicago-Milwaukee 9014 72
4) Philadelphia 6531 §2
5) Detroit-Toledo 5700 46
6) Baltimore-Washingtaon 4978 40
7) San Francisco 4973 40
8) Cleveland 3279 26
9) Cincinnati 3101 25
10) Boston 2899 23
11) St. Louis 2410 19
12) Pittsburgh 2401 19
13) Dallas-Ft. Worth 2377 19
14) Buffalo-Rochester 2310 18
15) Houston 1999 16
16) Minneapolis-St. Paul 1965 16
17) Miami 1887 15
18) Atlanta 1597 13
19) Tampa-Orlando 1541 12
20) Seattle 1421 11
21) San Diego 1357 11
22) Richmond-Norfolk 1274 10
23) Kansas City 1271 10
24) Hartford-Springfield 1261 10
25) Denver 1237 10
26) Indianapolis 1109 9
27) New Orleans 1045 8
28) Columbus 1017 8
29) Portland 1009 8
30) Phoenix 967 T

A-2
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Figure A-1, TARGET VALUE AS A FUNCTION OF
POPULATION FOR EXAMPLE 1

Applicatlon of this function leads to the target values
in Table A-1l, each rounded to the neareat integer.

It should be carefully noted that this particular value
function has the rather arbitrary cuteff at the population
level of 106. This has been done in order to ensure that the
Prim-Read deployments we construct below will satisfy the
target defense principle. 1In reality, of course, the U.S.
might be forced because of limited interceptor resources to
implement a deployment that does not satisfy the target
defense principle. Some of our theoratical results do not
apply to Prim-Read deployments not satisfying the target
defense principle, but a Prim-Read deployment might be chosen

A-3
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nevertheless, on the basis that 1t 1s likely to be nearly
optimal, especlally against an attack of unknown size. Finally,
we note that these difficulties are a result of the discrete-

: ness of targets and attacking weapons, and do not arise in the

§ 1deallzed situation deplcted in Filgure 5.

! Suppose that the U.S., as drfendling side, chooses to con-
‘] struct a Prim-Read deployment that defends targets 1, ..., 29
_and satisfles the target defease principle. To do so, accord-

Then, 1t will construct the Prim-Read deployment dg glven by

ing to the discussion in Sectlons B and C of Chapter VIII, it <.‘.;

f will first choose a scallng parameter a such that 1
1) a < L/v(30) = 1; !

2) av()) is an integer for J = 1, ..., 29. }

)

|

1

log (av(J)=k+l)
log q

. (A.1) d&(d,k) - -

for 1 <J <29 and 1 < k < p(dg.d) = qv(j), where the values
v(J) are taken from Table A-l.

Below we present results for the cases a = 1, a = 1/2
and o = 1/4; these three cases appear as Tables A-2, A-3,
and A-4, respectively. In all cases, q =~ 0.8. In each Table
we glve target prices, Prim-Read interceptor totals for each
: target, and target-by-target interceptor allocations 1f the
: total number of interceptors (at all targets) for the Prim-Read
deployment were allocated among the initially defended targets
in direct proportilon to their respective values. In symbols,

| p(d%.3) R
. I(a%,d) = 2. d¥(d,k) |
; = 5

l G
1
|

iy

A=l




. Table A-2. RESULTS FOR EXAMPLE 1 WHEN o = 1
Target Price I{d*,J) 1(d,J) '
i 1 134 2356 1648
N 2 77 1168 947
i 3 72 1071 886
’ 4 52 701 640
: 5 46 596 566 ]
| 6 40 494 492 |
? 7 40 494 492
, 8 26 275 320 !
. 9 25 260 308 k.
10 | 23 231 283 3
1 19 176 234 3
12 19 176 234 3
13 19 176 234 :
14 18 163 221 .
15 16 - 137 197 ;
16 16 137 197 :
: | 17 15 125 185
“ 18 13 101 160
19 12 90 148
20 1 79 135
| 21 n 79 135
22 10 68 123
! 23 10 68 123 ]
3 24 10 68 123 |
.. 25 10 68 123
,; 26 9 57 m
i 27 8 48 98
o 28 8 48 98
i o 29 8 48 98
g 30 1 90 _9
-:;l' Totals 718 9558 9559
A=5




Table A-3. RESULTS FOR EXAMPLE 1 WHEN a = 0.5

. Target Price 1{(d*,J) 1(d,J)
1 67 977 635
2 38 461 360
3 36 429 341
4 26 275 246
i 5 23 231 - 218 3
! 6 20 190 190
’ 7 20 190 190 |
8 13 107 123
9 12 90 114 :
10 12 90 114
n 10 68 95
12 10 68 95 3
13 10 68 95
14 9 57 85
15 8 48 76 -
16 8 a8 76
17 8 48 76
18 6 29 57 L
19 6 29 57 :
20 6 29 57
21 5 21 47
22 5 21 47 g
23 5 21 47 /)
24 5 21 47 |
25 5 21 47 !
26 4 14 38 o
27 4 14 38
: 28 4 14 38
29 4 14 38 |
30 1 _0 0 ol
Totals 390 3687 3687
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Table A-4.

RESULTS FOR EXAMPLE 1 WHEN a = 0.25

Target Price I(d;,J) 1(d,j)
1 34 397 233
2 19 176 130
3 18 163 123
4 13 101 89
5 12 90 82
6 10 68 68
7 10 68 . 68
8 7 38 48
9 6 29 4

10 6 29 41
11 5 21 34
12 5 21 34
13 5 21 34
14 5 21 34
15 4 14 27
16 4 14 27
17 4 14 27
18 3 8 21
19 3 8 21
20 3 8 21
21 3 8 21
22 3 8 21
23 3 8 21
24 3 8 21
25 3 8 21
26 2 3 14
27 2 3 14
28 2 3 14
29 2 3 14
30 1 -9 —
Totals 200 1361 1364

——
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1s the number of interceptors deployed at target ] by the
Prim-Read deployment d* and

J
i 0
(A.2) 1(d,§) = L T 1(a¥,m)
o mal
T oov(R)
gs1

1s the number of interceptors allotted to target J by the
proportional deployment d.

A few explanatory comments are in order before the Tables
are dlscussed.

1) There are both inter- and intra-Table discrepancies
arising from our rounding target prices and interceptor allo-
catlons to be Integers. For example, the sum of target prices
for a = 1 should be twice that for a = 1/2, which in turn should

be twice that for a = 1/4, Also, wlthin Tables A-=2 and A-4
we have

] I, A7 T@)
j ]

even though (A.2) implles that equality must hold in principle.

2) Except when o = 1, the constraint that av(j) be an
Integer for J = 1, ..., 29 1s not satlsfied. What we have
done, as would be done (without any significant harm) in any
practical situation, is to round the values av(]) to the
nearest integer. (An alternative would be to always round
to the next hlgher integer, which would prevent the target

defense principle from being violated simply bhecause of
rounding.)

s
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3) The value q = 0.8 (recall that q 1s the one-on-one
penetration probabllity) is possibly too high. Later we will ' §
consider the case q = 0,2,

Perhapa the most striking features of Tables A-2, A-3 and
A-4 are the significant but systematic differences hetween the
Prim-=Read degloyments da and the corresponding proportional
allocations d. Although a theoretlical discussion of the exact
nature of these differences 1ls deferred to Appendix B, the
following aspects are especlally noteworthy.

1) The Prim-Read deployment devotes relatively more inter-
ceptor resources to defense of valuable targets and relatively
fewer to defense of less valuable targets. For example, for 1
¢ = 1 the ratio I(dg,J)/I(a,d) ranges from 1.43 for J = 1 to
0.49 when J = 29, :

2) As o decreases the discrepancy between d* and a ‘
increases so that, for example, when a = 0.25 the ratios I(a*,3)/ 1
I(d J) range over the interval [0.21,1.71], as compared to ,L
[0.49,1.43] when o = 1, . R

3) For a fixed value of a, the ratio I(d;,J)/I(a,J) §
is monotonically decreasing as J lncreases.

4) The value of J at which the ratlos I(dg,J)/I(a,J)
pass from a greater than one to less than one 1s independent
of a.

To illustrate these polnts In the numerlcal sense, we
present in Table A-5 a listing of ratios I(dg,J)/I(a,J) for the
cages o = 1, o = 0.5 and o = 0.25 treated above. The Table
fully conflrms the four polnts Just listed.

As previocusly mentioned, we give in Appendix B theoretical
statements of these proprerties and mathematical verificatlions
of those statements. Here, however, we wish to discuss some
heuristic arguments for thelr validity.

A-9




Table A-5. COMPARISON OF PRIM-READ AND
PROPORTIONAL DEPLOYMENTS

: - ' .
S N K i e s R KB

1(d4,3)/1(dyd)  I(d&,3)/1(dyd)  I(d*,d)/1(d,§) |
_Target for a = J for a = 0.5 for o = 0.2 !
1 1.4296 1.5385 1.7039 :
2 1.2334 1.2806 1.3538 )
b 3 1.2088 1.2581 1.3262
! 4 1.0953 : 1.1179 1.1348
: 5 1.0530 1.0596 1.0976 3
6 1.00417 1.0000 1.0000 &)
. 7 1.0041 1.0000 1.0000 1
1% 8 .8594 .8211 7917 ]
5 9 .8442 . 7895 .7073 3
10 .8163 .7895 .7073 ]
1 .7521 .7158 6176
12 .7521 .7158 6176
) 13 .752] .7158 .6176 }
14 7376 L6706 L6176 “
15 .6954 . . 6184 .5185 !
16 .6954 .6184 .5185 |
| 17 6758 | .6184 .5185 N
18 .6312 .5088 .3810 |
19 .6081 .5088 .3810 i
20 .5852 . .5088 .3810 ]
21 .5852 . .4468 .3810 )
22 .5528 .4468 .3810
23 .5528 .4468 .3810
24 .5528 .4468 .3810
25 .5528 .4468 .3810 ol
R 26 .5135 .3684 .2143
i 27 .4898 .3684 .2143
i 28 .4898 .3684 .2143
‘\ 29 .4898 .3684 .2143 | o
gf\ ! }

£
B
)
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Concerning the first (and, we belleve, most important)
point, we believe that it holds as a consequence of the target
defense principle and of Theorem (5.17). Pareto optimality of
the Prim-Read deployment for attack sizes less than or equal to
1% (d*), which 1s the content of Theorem (5.17), means that a
Prim-Read deployment 1s effective at protecting agalnst an
attack of unknown slze provided that the size not exceed
1#(d*). The proportlonal deployment a, on the other hand, can
be shown (cf'. Chapter IV for usome related results) to.-be optimal
against an attack of known size 1#(d%) when att cking weapons
are allocated among the targets as shown in the "Price" columns
of Tables A-2, A-3 and A-4, but may not be optimal againat
an attack of smaller size. The Prim-Read deployment, however,
protects agalnst preclsely that possibility (of an attack of
size less than 1#(d*)), and does so by devoting more resources
to defense of the more valuable targets. That ls, the Prim-
Read response to uncertainty about the slze of a potentilal
attack 1s to defend the higher value targets more heavily.

To 1llustrate numerlcally, suppose that under the propor-
tlonal deployment a, those Interceptors assigned to each target
J are deployed uniformly agalnst the first uv(J)(-p(d;,J)) attack-
ing weapons arriving there. That 1is,

d(,k) = %%—3—%—1 , k=l,...,av(]),

which implles in particular that
p(ahj) - Q(d&sj) + 1,

for J = 1, ..., 29. Suppose that a = 1 (Table A-~2) and consider
an attack of size a = 211 (-p(d&,l) + p(d&,a)). Then, of course,

V(dg,a) = 211,

while by trilal and error one can show that

A-11
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(A.3) v(d,a) > 4o8

1

Similar, but more pronounced, results hold for smaller values Lﬁ
of a. When a = 0.5 and a = 105 (-p(d;,l) + p(d:,a)) then i
V(d#,a) = 105 , cj

but ?
(A.4) v(d,a) > 211 . |
1

We also emphasize that the bounds in (A.3) and (A.U4) are far )

from sharp; they were obtalned simply by experimental calculations. 5

The preceding results demonstrate rather graphically the
extent to which the Prim-Read deployment mitlgates the undesira-
ble effects that could otherwlse ensue when the defendlng side
lacks knowledge of the slze of an attack.

To make the pnint once agaln, the differences between Prim-
Read and proportlonal deployments are consequences of the fact
that the former protect effectively agalnst a range of attack
slzes without being optimal against any single attack size,
whereas the latter are optimal for certain attack silzes but
extremely inefficlent against other, smaller attack sizes. O

The remalning three polnts will be considered only briefly.
We do not have a really good heuristic explanatlon of why the
disarepancy between dg and d increasges as o decreases; however,
' the effect 1s not sgpurlous, since we give a mathematical veri-
X fication in Appendix B. Monotonicity of I(dX,J)/I(d,)) as a
k funetion of J 18 not unexpected in view of the discussion of
A the first point. Finally, independence of the cross-over point
! from the value of o 1s pleasant but seems to have no clear
' ; physical basls.

'§= To complete this example we give in Table A-6 the results
s corresponding to those in Table A-2, except that now q = 0.2.
B No further comments are really necessary. Table A-7 shows

Q
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. - Table A-6. RESULTS FOR EXAMPLE 1 WHEN
',‘vx’ X q=0.2 AND a = ]
i
; ‘Target Price - I(dX,d) 1(d,J)
ﬁ | 1 - 134 327 228
i 2 77 162 131
@ 3 72 148 123
i 4 52 97 83
. 5 46 83 78
p 6 40 69 68
i 7 40 69 68
y 8 26 38 44
- 9 25 36 43
10 23 32 39
M 19 24 32
12 19 24 32
\ 13 19 24 32
14 18 23 31
. 15 16 19 27
. 16 16 19 27
‘. 17 15 17 26
] 18 13 14 22
19 12 12 20 :
i 20 1 N 19 o
l 21 1 R 19 -
22 10 9 17
23 10 9 17
; 24 10 9 17
; 25 10 g 17
| 26 9 8 15
27 8 7 14
28 8 7 14
¢ 29 8 7 14 |
30 1 90 0 3
Totals 778 1324 1322 1
‘ =




Table A-7. PRIM-READ INTERCEPTOR REQUIREMENTS FOR
DIFFERING PENETRATION PROBABILITIES ‘

i N g S O B i o i Wi e e IR i, e

Penetration Probability q I(dg) for o = 1
.95 41571 .
.90 20238
.85 13120
.80 9558
.75 7412 ‘
.70 5978
i .60 4174
| .50 3076
- .40 2327 .
’ .30 1771
8 .20 1324
10 926
.05 72 .

the dependence of only the total Prim~Read interceptor deployment
I(ak) = Y I(d¥,)) on the penetration probability q. Incidentally,
J

—'-‘rﬁ -

as will be shown in Appendlx B, all the observatlons above con-
cerning the ratios I(d&,J)/I(a,J) are entirely independent of
the value of q. However, I(d:) does depend on g as 1llustrated
in the Table.

Table A-T shows that once interceptors are sufficilently
effective that q < .6, there 1s relatively less payoff from
further lmprovements in effectiveness. However, if q is as

{ high as .9, then 1t seems wise to pursue improvements in the
interceptors. Of course in reality any such decision must be
made in light of the costs of various alternative choices.

e e
¥ =

T ST T

In our second example, which we present much more briefly
than the preceding example, we assume that target value as a

?f‘ A-lY
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function of population is given by the function depicted 1n
Figure A-2, Symbolically, we have

Vip) = 1 if p < 10

- (—9-5) if p » 10° .

10

The essential difference between the function and that used in

- the first example is that this one 1s quadratic, whereas that

of Example 1 1s linear.
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Figure A-2. TARGET VALUE AS A FUNCTION OF
POPULATION FOR EXAMPLE 2
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From this deflnitilon of the value functilion one obtains
the target values listed in Table A-8.

Table A-8. TARGET VALUES FOR EXAMPLE 2

; Target Value Target Value
i, 1 279 16 4
| 2 92 17 4
3 81 18 3
4 43 19 2 3
5 33 20 2 |
6 25 21 2 ]
7 25 22 2
,_ 8 1 23 2 Y
‘ 9 10 24 2
10 8 25 2 -'
1 6 26 1 8
12 6 27 L '
13 6 28 N o ;
14 5 29 1 ]
i 15 4 30 ] (7]

Given the target values listed in Table A-8, the only Prim-
Read deployment defending targets 1, ..., 29 and satisfylng the '
target defense principle 1s that corresponding to ¢ = 1 in .}
the expression (A.l1). 1In Table A-9 we present this Prim-Read
deployment. For the sake of comparabllity with Table A-2, we
! continue to use ¢ = 0.8 as the value of the one-on-one penetration ;
probabllity. 1In view of our extended discussion of Example 1 lf
we do not feel that further comments are really required at this 5
point. Observe, howaver, that 1in order to satisfy the target

defense principle, targets 26, 27, 28 and 29 must also be left :
undefended. O

R —




o g e

Rt e . o B mwﬂ‘w-ﬁmsﬁiﬂﬁf@ﬂ%‘;

- ige e sy .
e - S
e

" ey -

s

T R K,

Table A-9. RESULTS FOR EXAMPLE 2 (a = 1, q = 0.8)
Target Price I(d*,J) 1(d,j)

1 279 5805 4376

2 92 1466 1443

‘ 3 81 1246 1270
4 43 545 674

5 33 381 518

6 25 260 392

‘ 7 25 260 392
8 1 79 173

9 10 68 157

‘ 10 8 48 125
11 6 29 94

12 6 29 94

13 6 29 94

\ 14 5 © 21 78
, 15 4 14 63

' 16 4 14 63

17 4 14 63

18 3 8 47

19 2 3 31

20 2 3 31

21 2 3 3

22 2 3 31

23 2 3 31

24 2 3 3

25 2 3 3

26 1 0 0

27 1 0 0

28 1 0 0

29 1 0 0

o 30 1 0 0
Totals 664 10337 10333
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> To serve as one final comparison, we present in Table >
' A-10 the same results as 1n Table A-9, except that the pene- _
: tratlion probability 1s lowered to 0.5. »
} 3
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Table A-10. RESULTS FOR EXAMPLE 2 (o =1, q = G.5)

Target Price I(d;.d) 1(d,j)
1 279 1870 1411
2 92 472 465
3 81 401 410
4 63 175 217
5 33 123 167
6 25 84 126
7 25 84 126
8 11 25 56
9 10 22 51

10 8 15 40
1 6 10 30
12 6 10 30
13 "6 10 30
14 5 7 25
15 4 5 20
16 4 5 20
17 4 5 20
18 3 k| 15
19 2 1 10
20 2 1 10
21 2 1 10
22 2 1 10
23 2 1 10
24 2 1 10
25 2 1 10
26 1 0 0
27 1 0 0
28 1 0 0
29 1 0 0
30 1 _0 _0
Totals 664 3333 3329
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. \ APPENDIX B. COMPARISON OF PRIM=-READ AND
" PROPORTIONAL DEPLOYMENTS
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COMPARISON OF PRIM-READ AND PROPORTIONAL DEPLOYMENTS

This Appendix contains mathematical formulations and veri- ®
fications of various relationships between Prim-Rus" deploy=- i
ments and correspondling proportlonal deployments. Most of
these relationships were observed and commented upon in the
discussion in Appendlx A of the numerical results appearing i
Tables A-2, A-=3, and A=4,

To set the stage for the results in this Appendix, let da
denote by Prim-Read deployment with scalling factor a, given

by

(B.1) a3k = - BELGRLSIL Ly .y,

k=1,...,av(J) ,

where JO is the number of initlally defended targets and o 1s

chosen so that the target defense princlple is satlsfied and

80 that av(j) 1s (or 1s taken to be) an integer for each

J-l,...,JO. The total interceptor requlrement at target J 1s n

(B.2) I(ay,y) = - gDl -
Denote by Ea any deployment that allocates the total Prim«Read
interceptor requlrement, namely,
, o
T(a%) =~ - T Jfllos av(J)! ,

among the targets l,...,JO in direct proportion to thelr respec- f
tive values. That 1s, d
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(B.3) I(d,,4) = 75— 1(a®) .

o

e A e e 0 ngi

Jo

Iz log av(k)! 2

v{J3) kwl “

Jo -log q
Z v(k)

k=1

: for J-l,...,JO. It 18 not relevant to the results below
: preclsely how lnterceptors assighed to each target are allo-

| - cated among potential incoming weapons there. In order to com-
pare the deployments dg and da’ we introduce the ratlios r(J,a) .
glven by :
I(ad,3) ¥
(B. lt) r(J,0) = c—— 0]
I(da’\j) ¥
o
I v(k) (1) _,_
- K=l log av(j)! ( <5
V() T‘LO |
L log av(k)! y
k=]

whose behavicr, as functions of both J and a, we will analyze
in this Appendix., We observe, lncldentally, that these ratios
are independent of the ocne-to=-one penetration probability q,
50 that our results are valid for all values of q.

By way of motivation we recall the following empirical q_’,-'j
properties of these ratios r(j,a), as observed in the varilous '

Tables in Appendlx A:
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1) With o fixed, r(j,a) appears to be decreasing as J
increases (l.e., as target value decreases), with r(j,a)>l for
high value targets (low J) and r(jJ,a)<l for low value targets
(high J3).

2) As a decreases, r(J,a) increases and deviates farther
from 1 provided that J be a high value target and decreases,
but st¢ill deviates farther from 1, when J corresponds to a low

e

o A~ i G e iy i-

value target.
3) The value of J for which
r(y,a) > 1 > r(J+l,a)

el o
Gr I T Tw T W e e AT

(1.e., at which the decreasing ratios r(Jj,a) pass from greater
than one to less than one) appears to be nearly independent

g o~ i L

of a.

The principal results of this Appendix, which we now proe
ceed to develop, are confirmatlons of the observed behaviors
noted above. We first verify monotonicity of the ratios

r(J,a) in J with a filxed.

. (B.5) THEOREM. Assume that v(1)> ... > v(Jy) and let r(J,a)
~f be given by (B.4). Then for each fixed value of a,

(B.6) r(l,a) > r(2,a) >...> r(JO,a).

PROOF., To show that r(l,a)>r(2,a) it suffices hy virtue of
(B.4) to show that

log av(l)! | log avézz! ’
av(l ’ av

and thils expression holds by induction provided that

(B.7) log im+l!l N lo% L1

for each integer & > 2. To obtailn (B.7) we proceed as follows: ,

B-3
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1og(2+1)! _ log & . & log(4+1)! = (4+1)log 4!
T+1 ) TR+1) 1

« Lllog(R+l) + log 1] = & log ! - log &!
L(+1)

! % log(2+l) = log 21
, T(2+1)

L
20+ T [log(a+l) = log k] r

kml

PP ALY PP A,

e erdtiaC s

i

; > O )

: This completes the proof of the Theorem. U i

' We note that 1f we assume only that v(1)2v(2)2...2v(f4),
then the conclusion (B.6) of Theorem (B.5) must be weakened cor- )

I ' regpondingly, and becomes

q. r(l,a) > r(2,a) 2002 2(J4,a) , 0

v ‘where the inequality is strict whenever v(J) > v(J+l) .

The next result 1s not direct confirmation of any of the

properties listed above, but will be used in the process of
3 confirming the second property, and 1s also of some independent

interest.

(B.3) PROPOSITION. For each J=l,.v4,), we have
(B.9) lim r(J,a) = 1

-0
PROOF. We recall Stirling's approximation [16, p. 194]

) l‘ nl ~ (21‘,)1/2 nn+l/2 e"n

as n+», and substitute into each factorial term in (B.Y) to
obtain
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k
r(§,0) e 1om(am Y2 4 (ev(1)41/2) log av(i) = av(y)
» p JO
vid) z [1og(2w)l/2 + (av(k)+l/2) log av(k) = av(k)]
k=1
JO A 2Ty
I v(k
n k-lV( ) (av(]) + 1/2)log av(]) - av(i)
v(J) Jo : .
r [(ev(k)+1l/2) log av(k) = av(k)]
k=1
o
} kflv(k) (1+?E%TIT) log av(J) - 1
) v(d) 0 K 1 v(k
k§1E<X d + gy 1og avik) - K&
Jo
T v(k)
n k=l log av(])
v(J) Jo vlk
) -%3% lqog av(k)
kal V -
Jo
T v(k)
- Kel v(d)
v JO log avik)
ERCE o)
> 1
gince
Jo log av(k Jo y 14 log o + log vék)
iifo] kfl v (k) BE_W%T} - \,CEI_V(k a-pil log a + log v(J
Jo
= ¥ v(k). Il

! -
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One interpretation of Proposition (B.8) is that for
large values of o, the Prim-Read deployment d* and the propor-
tional deployment d do not differ greatly, at least 1n the
relatlve sense as described by the ratios r(J,a).

9 We can now confirm the second observed property of the
; ratios r(J,a); in fact, we shall prove more.
3 (B.10) THEOREM. Assume that v(l)>v(j0). Then,

a) For all sufficiently emall J (l.e., for all targets
of sufficiently high value), r(j,a) is a strictly decreasing
funetion of a, and therefore r(j,a) > 1 for all a.

~ % e

b) For all sufficlently large J (i.e., for all initially
defended targets of sufficlently low value), r(J,a) 1s a
strictly <Zmereasing function of «, and therefore r(J,a) < 1
all of a.

R

PROCF, We begln by noting that the second part of each con-
c¢lusion follows from the filrst part together wlth (B.9). For
example, in a), if a=+r(J,a) 1s decreasing as a increases and
(B.9) holds, then r(J,a) > 1 for all a. The first parts of the
two statements are proved using arguments that are essentlally
identlcal 1in pattern, so we can prove both parts simultaneously.

e n i

Monotonlclty of a+r(J,a) is equivalent to monotonicity
in the same direction of a+g(),a), where

g(d,a) = j-oﬁ F{av(])+l) ,

0
2 log T(av(J)+l)
kel

and where I' 1s Euler's gamma function given by

F iewepz: -
¥ po-Sl

ey

[- -]
r(x) = [ XL 7t gg,
0

E=8

b

e Y ma

B~6
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which has the property that

F'(n+l) = n!
for each integer n 2 0. Moreover, monotonicity of a+g(J,a) 13
equlvalent to monotonicity in the opposite direction of
a+h(J,a), where

1

(B.11) h(j,a) = m -1

Jo
- p LiO8 Péavék;+1\ .
+1
ka1 +08 T(av

Y

If we define
£(J,x) = log T(xv(J)+l),

then x+ £(J,x) 1s convex by [16, Theorem 8.18] and it follows
from (B.1ll) that '

£(3,0 Skl
(B.12) h(j,a) = 3 2t vqp
katd £(J,a)

From (B.12) and convexity of f(j,+) the following conclusions
are lmmedlate:

1) a+h(l,a) is strictly ilncreasing since each of the
ratios a+f(l,av(k)/v(J))/f(1l,a) 1s nondecreasing (by convexity
of £(1, *) and the fact that v(k)/v(1l) & 1) and at least one
of these ratlios i1s strictly increasing.

2) a*h(do,a) is strictly decreasing by an inversion of the
argument Just used.

3) If a+h(j,a) 18 strictly increasing, so is a+h(J-1,a),
whereas, 1f a+h(J,a) 1s strictly decreasing, then the same 1is
true of a+h(Jj+l,a).
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The Theorem follows at cnce from these statements. ﬂ

Theorem (B.10) confirms that as a decreases, the deviation
between the Prim-Read deployment d; and the proportlonal
deployment da increases, at least for all the highest value
targets and all the lowest value targets. For numerical evi-

. dence we refer the reader to Table A-5 in Appendlx A.

A - A - it e .

e

Our final result establishes that the cross-over point
for the ratios r(j,a) (from greater than one to less than one)
1s the same for all a. Table A-5 suggests that this might be
' } so, but falls to illustrate the property precisely because of
rounding.

O

(B.13) THEOREM. Assume that v(1)>v(2)>...>v(J,). Then Ol
there exists an integer J#* such that R
(B.14) r(J*%,a) > 1 > r(J%+1l,a)
for all o. R
Ca
We emphasize that both inequalitles in (8.14) are strict.
PROOF. For each a, let Ja bé the unlque integer such that

r(J,sa) 2 1> r(J +1,a) ; (1]

exlstence 1s clear and unlqueness follows from Theorem (B.5). :
Since a+r(J,o) is a continuvus function for each J it follows

that the u+Ju 1s continuous at every point 4y for which ()

r(Ja,a) > 1 > r(Ja+l,a) .

Therefore, if r(J,a) # 1 for all J and all a, then the function
a*da 13 everywhere continuous and integer-valued and, conse=
quently, must be constant, which suffices to demonstrate (B.ld).

Thus, it remains only to prove that

(B.15) r(J,a) ¥ 1

for all J and a«. If, on the contrary, (B.1l5) falls for some
J and o, then by (B.4) we have that
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(B.16) v(]) e _log av(j)!

Jo Jo
I v(k) I log av(k)!
kwl kml

That is, since T'(n+l) = n! for each integer n, (B.16) implies
that

J J

1 "9 1 g
26D kzl vik) = T Trav (e kz

log T(av(k)+l) .
1

Conaider now the functions

dg :
£.(a) = log M(av(J)+l) ] w(k) 1
1 ksl 4
and
J0
£,(a) = v(J) ) log I'(av(k)+l)
kwml
Then,
Jo
£1Ca) = v(Pw(av(g)+1) ] vik)
k=l
and
I .
£3(a) = v(3) I v(y(avik)+l),
k=1

where Y(x) = %; log F(x). Suppose that fi(u) were equal to
£5(a) for some a; this would imply that

J
(B.17) Y(av()+l) = 1 8 vik)p(av(k)+1l) .
Jo k=l
£ v(k)
k=l

B-9
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However, (B.17) violates strict convexity of the function

x + Y(ax+l). Therefore (once more with the v(k) fixed), we

have ri(a) ¥ f3(a) for all a, which implies that either fi(a) >
fé(a) for all a or f.‘]‘_(a) < fé(a) for all a, since these functions
are continuous. Finally, since fl(O) = £,(0) 1t follows that f,
and f2 can be equal for no other value of a, which completes the
proof of the Theorem. i
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