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TWO INTERFERING QUEUES IN PACKET-RADIO NETWORKS

M. Sidi and A. Segall

Department of Electrical Engineering
Technion - Israel Institute of Technology
Haifa, Israel

ABSTRACT
We consider several classes of interfering queues that appear in packet-radio
networks. We analyse the class of systems where one of the queues is given full
priority and obtain an expression for the joint probability distribution of the queue
lengths. For ALOHA-type systems with two symmetric queues we calculate the average
packet waiting time and queue lengths and for symmetric systems with an arbitrary
number of subscribers we develop a method to approximate these quantities. The

approximation turns out to be close to the analysis and simul.tion results.

N

\\
L~

The work of A. Segall was conducted on a consulting agreement with the Laboratory
for Information and Decision Systems at MIT, Cambridge, Mass., U.S.A., with
partial support provided by the Advanced Research Project Agency of the US Depart-
ment of Defense (monitored by ONR) under contract No. N00014-75-C-1183.

This paper has been submitted to the IEEE Transactions on Communications.




d . . 3
; R g
R NSNS AN

1. Introduction

The present study was motivated by the problem of investigating the behavior
of random-multiple-access systems and of packet-radio networks. These systems are
characterized by the fact that a number of radio stations exchange digital informa-
tion by using a distributed random access algorithm on a common radio channel. In
such situations, whenever a given station attempts transmission of a packet to
another station, the attempt may be unsuccessful, in which case the packet must be
retransmitted. In addition to channel noise, unsuccessful transmissions occur
because of interference from another station trying to send a packet over the
common channel at the same time or by the fact that the intended receiver is itself
in transmission mode, in which case it is not able to detect incoming packets. The
fact that-the activity at one node affects the behavior of the queue at other nearby
stations gives rise to statistical dependence between the queues at the nodes.

Unfortunately, in general,the queue length statistical dependence is quite
complicated and there is little hope to obtain explicit analytical results for general
topology networks. The purpose of this paper is to present several analytic as well
as approximation results for certain classes of interfering queues. We assume
throughout the paper that all packets have equal length and that the time is divided
in slots corresponding to the transmission time of a packet. A station may start
packet transmissions only at the beginning of a slot and the distances between stations
are assumed to be such that propagation delay is negligible. Also, we neglect channel
noise and assume no channel errors.

Because of the difficulty in the analysis of dependent queues of the type
introduced above, even the case of two queues cannot be treated analytically in the
general case. However, we consider here two classes of systems with two dependent
queues where such results can be obtained. The first is the case when the length of

one of the two queues is not allowed to decrease, unless the other queue is empty. A

two node ALOHA system where one of the nodes is given full priority is an example for
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such a situation; other examples are given in Sec. 2. No other restrictions are
recessary in order to allow for analytical solution of this class; in particular,

the inputs may have arbitra.y distributions and need not be independent processes.
For this class of problems we present a general methoa for deriving the generating
functions of the queue lengths and of the average delay times. Then these general
results are applied to three special cases of packet-radio networks that can be shown
to belong to the considered class of systems.

The second class of problems for which we can obtain explicit analytical

results is the case of a two node symmetric ALOHA system. For this situation we

cannot obtain the queue length probability distribution (or generating function),
but we give a method for calculating the average queue length and hence the average
time delay. The results are given in Sec. 3.

Since, as said before, explicit analytical results are hard to obtain for more
general situations, another way to approach the problem is to obtain good approxima-
tions. An approximation method appli:able to a symmetric ALOHA-type system with
arbitrary number of stations is introduced in Sec. 4. We obtain there the approximate
average queueing delay in such systems and compare this with the exact result for two
node networks and with simulation results for larger networks.

Discrete time systems involving inte;fering queues have been rarely treated in
the literature. In [2] a loop system using Asynchronous Time-Division Multiplexing
has been analysed. In this system user 1 may use a slot for transmission only if
all users 1,2,...,i-1 have nothing to transmit. 1In [3], the author investigates
the case of two queues in tandem where each queue always attempts transmission
provided it has a message in the buffer. Both systems considered in [2] (for two
users) and [3] are cases that belong to the first general class of systems considered

in the present paper. In [4] another system of two interfering queues is considered,

whereby only one event (i.e. an arrival or departure) may occur during a given slot.
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This system has been shown to have the product form solution. Finally, we may
aention [3] and [6], where a slotted ALOHA network with finite number of users has
been examined and a method was suggested for obtaining an approximate solution for

T1is system.
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Analytical Results

In this section we consider a class of discrete-time queueing systems consisting
of twe gueues with the following properties : packets arrive randomly at the queues
from two sources, that in general may be correlated. Let Al(t) and Az(t) be the ]
number of packets entering node 1 and node 2 <irom their corresponding sources in
| the time interval (t, t+1]. The input process [(A;(t)’ Az(t)] is assumed to be a
sequence of independent identically distributed random vectors with integer-valued
f‘ elements. Let

e

Prob (A, (t)=i,A,(t)=j) ; _ZO _Zoa(i,j) =1. (1)
1= J=

it

a(i,j)

*% and

F(x,y) = E[xAl(t)yAz(t)] = ] Za(i,j)xiyi (2)
i=0 j=O

We assume that F(x,y) cannot be x-independent, namely that packets arrive at the

first queue with nonzero probability and that the queues have infinite buffers.
Next, we describe the departure processes. It is assumed that no more than

one packet may leave each queue in any given time slot and the combined departure }

process is taken to be as follows : When both queues are empty, no departures may

occur (packets arriving during a given slot may depart only in the next one). When

only one of the queues is nonempty, a departure from that queue may occur and the

packet may be transferred either to the outside of the system or to the other queue.

We denote by pgl, pél the respective probabilities when the nonempty queue is queue

2 and by p?o, pio the corresponding probabilities when the nonempty queue is queue 1.

Clearly 1 - P81 - pél is the probability that nc departure occurs from the nonempty

queue 2. The spacific class of dependent queues considered in this section is

characterized by an assumption on departures when both queues are nonempty. For this

case it is assumed that a departure may occur only from qucue 2, We denote by p?l,

pil the probabilities that the departing packet leaves the system or joins the other

queue (queue 1) respectively.
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Consider the steady-state joint generating function of the queue lengths :

[-Ll(t) Lz(t)]
G(x,y) = lim E{x y (3)

)

where Ll(t), Lz(t) are the queue lengths at time t at nodes 1 and 2 respectively,
and where we assume that the Markov chain [Ll(t)’ Lz(t)] is ergodic, namely
G(0,0)>0. For the class under consideration we can compute the function G(x,y) and

in the Appendix it is shown that G(x,v) has the following form :

b(x,y)G(x,0) + c(x,y)G(0,y) + d(x,y)G(3,0)

G(x,v) = F(x,y) x-e(x,y)

(4)

where the fﬁnctions b(x,y), c(x,y), d(x,y), e(x,y), G(y,0), G(O,y) and the constant
G(0,0) are defined in the Appendix.

This general form can be made more explicit for certain special cases. We
next consider several examples of two node packet networks, where it turns out that
the general assumptions, given earlier, characterizing the class of two dependent
queues indeed hold. The networks under consideration are given in Fig. 1. 1In all
cases the nodes share a common radio channel and are equipped witH radio transmitter
devices and in systems 2 and 3, node 2 has also a receiving device. Node 2 can either
transmit or receive, but not simultaneously. The circle in Fig. 1 represents a station
equipped with a radio receiver that receives packets correctly provided that there is
no interference. Finally, instantaneous feedback to the transmitter is assumed,

meaning that a transmitter knows at the end of the slot if the packet has been received

. correctly.

In all three systems of Fig. 1 node 2 is assumed to have full access capability
to the common channel. This means that it always transmit a packet when its buffer is
not empty, while if its buffer is empty the node does not transmit and in systems 2
and 3 it is able to receive packets transmitted by node 1. Node 1 has only partial

access capability to the channel and its transmission policy is randomized as follows :
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At the beginning of each slot for which its own buffer is nonempty, node 1

tosses a coin with probability of success p, independently of any other event

in the system and in case of success the node attempts to transmit the packet at

the head of the queue. Both nodes are able to detect at the end of the slot if
their transmissions were successful. At any node, if the transmission is not
successful, either because the packet was sent to the other node while that node was
not ready to receive it, or because of interference with a packet transmitted by the
other node, the transmitter repeats the procedure described above.

Since node 2 has full access capability to the channel and node 2 cannot
receive and transmit packets at the same time, it is clear that in all cases no
packets can leave node 1 whenever the queue at node 2 is nonempty and therefore all
cases of Fig. 1 belong to the class of queues considered earlier in this section.

We now turn to calculate the parameters {p?j, 0<i,j,ksl, i+j>0} in each of
these three systems. System 1 depicted in Fig. 1(a) represents a two node non-
svmmetric ALOHA network, where both nodes send their packets to the station. Since
no packets are sent from one node to the other we have pio = pél = pil = 0. When
one of the nodes has packets to transmit while the other is empty, any attempted
transmission is successful. Since node 2 transmits with probability 1 and node 1
with probability p, we have p?o = p; pgl = 1. When both nodes havé nonempty
queues, successful transmission occurs at node 2 whenever node 1 does not attempt
transmission and thereforel p?l = ﬁ. System 2, depicted in Fig. 1(b) represents a
situation of two tandem nodes where the station that is the '"sink" for the packets
transmitted by node 2, is out of the transmission range of node 1. Therefore node 1
cannot interfere with the transmissions of node 2. However node 2 does interfere
with the transmissions of node 1 since when it is transmitting, it does not accept
packets transmitted by node 1. Consequently pio = p; pgl = p?l = 1;

p?o = pél = pil = 0. System 3, depicted in Fig. 1(c) differs from system 2 only in

that the station is in the transmission range of node 1, therefore node 1 does




interfere with the transmissions of node 2 in this case, and therefore the parameters
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Numerical Results

Although the results of this section hold for general input processes, the
equations become much simpler when one considers independent Bernoulli processes.
In this case we have

F(x,y) = (xrl + f‘l)(yr2 + 52) (5)
where ry» T, are the input rates. For this example we calculate for each of the
three systems the aveéage delays (in units of slots) Tl’ T, at nodes 1 and 2

respectively and the total average delay T in the network. This is done by first
calculating the average queue lengths at the nodes and then applying Little's Theorem
[7]. After straightforward but tedious algebra the following results are obtained :

System 1 (Fig. 1(a))

() %+r,p r,T,pp
- -+ — 57— - (6)
p(p-r,)-T,p (p-1,) " [p(p-r,)-1,P]

-
i
s
+

2 (7

and

T = — (8)

where these equations hold for p(ﬁ-rz) > rlﬁ which is the ergodicity condition in
this system,

In Fig. 2,3,4 we plot Tl’TZ and T respectively versus p, the transmission

probability at node 1, for r = 0.1 and r

1 , Tranges from 0.01 to 0.4. As expected

the average delay at node 2 increases when p increases since then its transmissions

are more frequently interfered with transmissions from node 1. More interesting is

T

Py
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: the behavior of the average delay at node 1. Here p has some value for which Tl
! is minimized (for given T and rz), When p either increases or decreases from this

' value Tl increases. The reason is that when p becomes small, node 1 attempts

to transmit relatively rarely, so its queue increases. When p becomes large, then

node 1 attempts to transmit more frequently, thus interfering with the transmissions

of node 2, and the queue lengths at both nodes are large. As we see from Fig. 4 the
i parameter p 1is a very critical design parameter of this system and for given values

for r, and r,, there exists an optimal p, denoted by p*, that minimizes the

1 -
total average delay in the network. In Fig. 5 p* is plotted versus Ty for various
values of r,. Notice that p* 1is much less sensitive to changes in T than to
changes in r,., When r, 1is small, then p* should be large for all values of Ty,

since interference between transmissions is rare. When T, increases, p* should

decrease in order to reduce the interference. Finally, in Fig. 6, Tmin the minimum

total average delay is plotted versus vy the total throughput of the system, when

T, =T, =T (clearly Yy = 2r).

1
System 2 (Fig. 1(b))

The average delays are :

rlp+f,(1-p§2) :
rj T, =1+ - = (9)
& rylp(l-r)-1;y)-1)]
g T
1 1
T. = —m {r + (10)
2 Ty+T, \ 2 l-r2
| and
k. rl
. T = T T, + T, (1)
!
[ where these equations hold for p(l—rl-rz) > 1y which is the ergodicity condition
E : for this system.
* In this system node 1 does not interfere with the transmissions of node 2.
j Therefore, it is optimal to always attempt transmission at node 1 as well, namely to -

s

take p = 1. Eq. (9) indeed shows that T, 1is monotonically decreasing when p ?f




increases, and it achieves its minimum value for p = 1.

In Fig. 7,8 T, and T are

1

plotted respectively versus T, for p =1 when r, ranges from 0.01 to 0.8. T

is5 not plotted here since it takes values from 1 to 1.5 only when 0.01lgr

2
2s0.8,

¢ <r;=<0.5. From Fig. 7 we see, as expected, that Tl increases when the arrival
rate r, to node 1 1increases. When r, increases, then the time spent by node 2
in the transmitting mode increases. Therefore, packets transmitted by node 1 are
rarely received by node 2 and the average time delay T1 at node 1, increases in

this case as seen in Fig. 7.

System 3 (Fig. 1(c))

puryToEy) ¢ Bor) B ey, Fy )]

Ty =l — - - - - (12)
{ptp-r;)-r{] (p-1y) [r,&,)"-p(1-r T,) 1 (pzry)
( , - - )
;o1 jrl*rzrz plr+r,(r*r 1) 1P (p-Tp) -7y ] (13)
2 - + - - .= - .2 -
T*Th [ p-T, (p-rz)[rl(rz)“-p(l - rlrz)]
and
rl
T=;—F—‘,T1+T2 (14)

where these equations hold for p(ﬁ—rz) - > 0 which is the ergodicity condition
for this system. Similarily to System 1, Tl’ T2 and T are plotted in Fig. 9,10,11
for System 3. The behavior of the average delay in this system is very similar to

that of Svstem 1, therefore we will not give here more detailed explanations.
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Svmmetric Two-Node ALOHA Network Delay Analysis

In this section a two node symmetric ALOHA network is consicered. This network

is similar to System 1 with the following modifications. Here node  uses the same

channel access scheme as node 1, i.e. at the beginning of each slot, if its buffer is
not empty, node 2 tosses a coin, independently from any other event in the system,

with probability of success p. According to the outcome, the node either transmits

or remains silent during the current slot. In addition, it is assumed that the
arrival processes to the nodes are independent Bernoulli processes with equal rates,
denoted by O<r<l/}. Therefore we have for this system F(x,y) = (xr+r)(vr+r). By
the same method used in the Appendix it is easv to see that for the current system
we have

[x(v-1)-p(2xy-x-¥)]G(x,0)+[y(x-1)-p(2xy-x-y) ]G(C,y)+p[2xy-x-v]G(0,0)
_ 7 - 2
xy-F(x,y) [ (x+y)pp+xy(p™+(p) )]

G(x,y)=F(X,)’)P (15)

In this case we cannot obtain an explicit form for G(x,0), G(0,y), G(0,0) and hence
for G(x,y). However we can exploit the symmetry to obtain an expression for the
average delay in the system. If we denote by Gl(x,y), Gz(x,y) the derivative of
G(x,y) with respect to x and y respectively, we clearly have Gl(l,l) = Gz(l,l)
and Gl(l,O) = Gz(O,l). Then from (15) we obtain

rlp+ (%) - p%6,(1,0)

G,(1,1) =+ - (16) -
PP - T é

and ;

. | G, (1,0)p(1-2p) r2e2r-drpp

o] = 2r s . (17)

X _ - -
1 x=1 pp - T 2(pp - 1)

for pp > r.

Now, if we use the fact that

{60,001 =G (1,1) * Go(1,1) = 26,(1,1) (18)

x=1
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we can solve for Gl(l,O) and hence for Gl(l,l) and obtain

-.2 1
(P)” + 5 rp
G (1,1) = G,(1,1) = 1 + r——— (19)
PP - T

Therefore, applying Little's Theorem we obtain the average system delay

G,(1,1) 3% + 7 rp ]
T="2 " 21+ ——®  for pp>r (20)

T -
pp - T

From (20) it is found that p* = 1-{0.5r + [0.5r(1-r+0.5r2)]}/?

}/(1-0.5r) minimizes
T for 0<r<0.25. 1In Fig. 6 the minimum total average delay Tmin is plotted versus
v, the total throughput of this system. Comparing the curves in Fig. 6 it is clear
that the non-symmetric access scheme used in system 1l provides very slight  better
performance than the symmetric access scheme, when the arrival rates into the nodes
are equal (the difference in the minimum delay is less than 3.5%‘1n the range 0<y<0.5).
However the former scheme is unfair, giving priority to queue 2, although the arrival
rates into the two queues are the same.

Finally we may mention that the method presented in this section for calculating
average delay times without obtaining explicitly the generating functions, can be used
in many other symmetric (i.e. G(x,y) = G(y,x)) two node systems. Specifically, we can
easily obtain average delay time in the symmetric two nodes ALOHA network for general

arrival processes into the nodes for which F(x,y) = F(y,x).
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4. Symmetric ALOHA Network with M Nodes : Approximate delay

Consider an ALOHA network consisting of M nodes, that share a common radio
channel. Assume that all nodes in the network use the same channel access scheme
as the two nodes in the previous section, i.e. each node tosses independently a
coin with the same probability of success p at the beginning of each slot when
its queue is nonempty. Also assume that the arrival process at each node is a

Bernoulli process, independent from node to node, with rate T For this case

.
we cannot obtain the exact average delay for M>2, and therefore we must consider
approximations. The approximation method proposed here is the following. Each node
i in the network may at any time be in one of M possible situations. Situation

j refers to the case where j-1 nodes other than 1 have nonempty queues, while
the other M-j nodes (not including i) are empty. The approximation considered here
consists of assuming that in steady state, while in situation j, node 1i behaves
as a discrete M/M/1 queue with arrival parameter r and departure parameter
p(l-p)j'l. If the transitions between the various situations are neglected then the

average number of packets at node i denoted by L.l is

M

L. = ___Ill;fl__. (21)
i LY 5-1
j=1 7 p(1-p)° "-r
for i=1,2,...,M and r<p(l-p)M-l, where ej is the probability of being in
situation j. We approximate ej as
r,M-j,r.j-1 .
8. = (1 - = = =1,2,...,M 22
; ( p) (p) j (22)

where % approximates the probability that a node has packets ready for transmission
and we assume independence between the nodes. Using (21) and (22) and applying

Little's Theorem we find that the approximate total average delay Ta is given by

P
g r,j-1 T M-j l-r

T = (=771 - 7T —— (23)

ap s o P P p(l-p)J-l-r
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The general formula (23) can be specialized to the case M=2, and for this case we

can com:are the approximate and exact results. For M=2 we have from (20)

-2 1
. () +357P
analysis b - (24)
pp - T
and from (23)
DR
T =1t IR (25)
pp - T
T and T are plotted versus p in Fig. 12, for various values of r.

ap analysis

It can be seen that although we have used a simple approximation, it is quite close
to the exact values. We also compare this approximation versus simulation results,
for networks having three and four nodes. This comparison is plotted in Fige 13

and 14 and shows again good results.
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Footnoteg

1. We use the notation Vv = 1l-v.

2. The subscripts 1 and 2 correspond to the derivative of the function with

respect to the first and second variables respectively.
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Appendix A

In order to describe the behavior of the queue lengths, we need several
definitions. Let Dgl(t) be a binary-valued random variable that takes value
11if Ll(t) = 0, Lz(t) >0 (Ll(t) and Lz(t) are the queue lengths at time
t at nodes 1 and 2 respectively), a departure occurs (from queue 2) and
the packet leaves the system. Similarly Dél(t) takes value 1 under the same
conditions, except that the packet is transferred to queue 1. In a similar way
we define the binary-valued variables D?O(t)’ Dio(t) for the case that
Ll(t)>0, Lz(t)=0 and D?l(t)’ Dil(t) for the situation when bo*h queues are

nonempty and departure occurs from queue 2. Then the recursive equations for

Li(t) are :
( A (1) if L (£)=0, L,(t)=0
0 1 .
A (t)+L, (0)-D2 (0)-DL (t) if  L.(t)>0, L,(t)=0
LeeD) = 1 1 10 10 1 2 AL
1 .
AL (£)+D5, (1) if L (1)=0, L,(t)>0
L Al(t)+L1(t)+Dil(t) if L (£)50, L,(t)>0
F A (L) if L (t)=0, L,(t)=0
Az(t)+D;O(t) if L (t)>0, Ly(t)=0
Ly(t+1) = | Az(t)+L2(t)~Dgl(t)-Dé1(t) if L ()20, Ly(£)>0 (A2)
L Az(t)+L2(t)—D?l(t)-Dil(t) if L (£)>0, Ly(t)>0

From (Al), (A2) and (3) we have for t-« that
- ] 10 -1 1 01
G(x,y) = F(xs)'){G(O,O)"‘LG(X:O)‘G(O:O)][x p10+x yp10+ (p10+p10)] +
-10 -1_.1 0 1
+ [G(O,)’)-G(0,0)][)’ p01+y xp01 + (p01+p01)] +

+ [6(x,5)-6(x,0)-6(0,)+6(0,0) [y 1pS +v Txpl | + (B3 +p1 )1} (A3)

(Remember that v denotes 1-v).




Arranging (A3) we obtain

| Gley) = Flx,y) X8R 6(0.1) a0 YIC(0.0) (A4)

! »Y)
} where

, 0 1 0 1 0 1 0 1
t o(x,y) = ¥(Pyg*yP1g) - X(Py;*XP1)*+xy(P{;*P]; P10 P10 (AS)
0 0 1 1 0 1 0 1
E’ c(x,y) = x[pOI'p11+x(p01'p11)] + x)’(p11+p11'p01'p01) (A6)
.
_ 0 1 0 0 1 1 0 1 0 1 0 1

L d(x,)') "Y(p10+YP10)+x[pll'p01+x(p11'p01)] + xy(p10+p10+P01+p01'p11'p11) (

e(x,y) = y-F(,) [p] +xp) +y (p]1+P) ;)] (48)

From (A4) we see that the steady-state generating functions for the queues' lengths

are .

ety

Y b -
" 7 . —
B S50l ARG Ry oF

For queue 1 :

b(x,1)G(x,0)+c(x,1)G(0,1)+d(x,1)G(0,0)

G(x,1) = F(x,1) X erx. D) (A9)
For queue 2 :
b |
; G(1,y) = F(1,y) b(1,y)G(1,0)+c(1,y)G(0,y)+d(1,y)G(0,0) (A10) !
.o e(l,)') 1‘ E
2 f]
We still have to determine the functions G(x,0), G(O,y) and the constant G(0,0). 5
To find G(0,y) let x»0 in (A3). Then
¥ G(0,y) = F(0,y){G(0,0)+G, (0,0) (p> +ypl ) + i
> Y IS4 ’ 1\ plo Yplo i
i .10 01 3
| + [G(0,y)-G(0,0)] [y Po1* (P01+P01)]} (A11) ;
] where G,(x,y) is the derivative of G(x,y) with respect to x.
From (All) we obtain
0 1 -10 0 1
(P *Pgy Y Pay)6(0,0)+ (p)g*¥P] )6 (0,0)
G(0,y) = F(0,y) e (A12)
1 - F(O,Y) [y par*(p8;*Ph;)] '
¢

i el 5

Before proceeding we need to prove the following Lemma.
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Lemna
For |x|<l1 the equation
e(x,y) =0
where e(x,y) is the expression of (A8) has a unique solution within the unit
circle |yl=1.
Proof
Since F(x,y) 1is nct independent of x, then there exists a(i,j)>0 for some

i and some j>0. Therefore for |x|<1 and |y| = 1 we have

0 1 0 1
!F(X’Y)[911+Pll+y (P11+P11)]’ §

o o0 o o ®©

s Fy ] = 1D Tapdxy s [ Tatnxlt < [ ] al,i=l=ly|  (A13)
i=0 j=0 i=0 j=0 i=0 j=0
Hence, applying Rouchés' theorem [8], e(x,y) has exactly one zero within |y|=1 for
fx, < 1.

Q.E.D.

Now let t be the solution of

-1 0 0 1 _
F(O,t)[t POl + (P01+P01)] =1
in the unit circle. Using the Lemma for x=0, it is clear that t 1is

Then from the analyticity of G(0,v) for |y|< 1 it follows that
-1.0 0 1
Y "Po17Po17Po1
0 1
P10**P10

Gl(0,0) = G(0,0)

Substituting (Al5) in (A12), G(O,y) is determined up to the constant
To find G(x,0) let f=f(x), be the solution for |x| < 1 of

e(x,f) =0
in the circle |[f| = 1. In the lemma it was proved that such a solution

unique,
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Then again from the amalyticity of G(x,y) for |x| <1 it follows that

G(x,0) = - C(X,f)G(gzi)’g(x.f)G(O,0) (A17)

Substituting (Al2) in (Al17), the function G(x,0) 1is determined up to the constant

G{0,0). To find G(0,0) let x»>1 in (A9) and y»1 in (Al10) and use the normaliza-
9
tion condition G(I,1) = 1 to obtain :
el(1,1)=b1(1,1)G(1,0)+c1(1,1)G(O,1)+d1(1,l)G(O,O) (A18)

and

62(1,1)=b2(1,l)G(l,0)+C2(l,1)G(0,l)+d2(l,l)G(O,O) (A19)

and from (Al2) we have

1 0 1
PA,G(0,0)+(p;~+piA) G, (0,0)
01 10710771 (A20)

6(0,1) = F(0,1) 9o
1 - F(0,1)pg,

Solving (Al5), (Al8),(A19) and (A20), we obtain G(0,0). The ergodicity condition

is that G(0,0) > O.
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Fig. 1 - Two-node networks, (a) System 1: non-symmetric ALOHA network.
(b) System 2: tandem network; no interference at the station.
{(¢) System 3: tandem network; interference at the station.




- 21 -

ry = 0.1

o
o ——
o T — 0
/)/l . E
—~— =
— Q
o ~ nuhu
o T —— =
T T —
Tl 'd
5 e N o
T o
i T \ %
o e | &
S 3 N =
U T T~ / ﬁ.— N
r2 //l/ ) 7/ \\ | ) O
’ —
J \ \\‘ \\ O S
4 e - -
- e e . e s
T - ) e w
- — T Nz
e - e - <
T - - T Ow
——mme T T e T T —
o
e e e e At
O o o v
0 Ta — - -
— (S107S NLY L 300N VvV AY130 39vy3IAY

i ams et » At & ¥ At ubiagia R A oy’ B <

T1 versus p.

Fig. 2 - System 1:




- 22 -

= 0.1

T e e
(- 1)

; Si01S NI)

. ,////////z
~
AN
— ~
— ,///, ,//
—— - “ .
- T~ ,./
////// .
~N
//
fo e

~ 300N

Py A It B¢ oial et o sl AP 2 A =

\

[V Av130 39VI3IAY

—P

1.0

.2

|

0.0

0.&
!

AT NOCE

0.6

0.4
TRANSMISSION PROB.

P

T2 versus

Fig. 3 - System 1:




o
oW
oa
! { (W)
///// \ =
\ —
\ o~
] = o QW
/ O %
.
/ o 3
=z b
L O >
O —
w =
S -
m —
» £
N = o
- L] < mr
..... Qe n
o |
I + o
) < (@] 1)
.u) -—
© (S107S NIY AVI30 39VH3AVY 1VI0L




I‘l.

.
versus

—

0.4
ARRIVAL RATE AT
p*

<

Fig. 5 - System 1:

o
Al

<0 00 0 o
ALTTTHYHONG NOTHSIWSNYYL TVWIT 1 d0

i




25

NP ¥

%4
- U o O
PR
Q.0
Q0 V
n
[ <
e O .
o
(S QD)
—
)T
m () m_
o AR
o &
b T
Q b
] J
o S|
O~
+
)
v,l.
B 3
] ,w
m TTTY T T T T Ty ¥ 1 T T T - -
SR SRR G Gy oo Lo
(177 N AY A d9VYH4AY Y01 WNAWINIW
- — —— Ehatadin anaunlll & SRR & S Actintty skl dUE TS [ K] - R g

y for non-symmetric and symmetric access

versus

min

6 -T

Fi

schemes.




- 26 -

8 3.7 0.6 0.5 0.4 0.3 0.2 0.1 0.01

- —

T

0.2

T

J N B
L L A
O
)

(S101S NI)

| 300N LV Av13d 39VYIAV

0.3

ARRTVAL RATE AT NODE

A

0

T1 versus rA.

Fig. 7 - System 2:




.4

1

/

(@)
(@]
o
N
, o
4
wJ
L " a
Q
© =
, M
<
n —
~ o T O«
[ ]
— v L -
! " — ~
o -
o, o ?
\Us] S N.-
OXL
o < 2
>
N — [3ad
x
o o I
— <
o0 _— m
o
o s
0 QV...;
o~
™ []
’ 0
o .
= H4++ +—+ } -

100 ]
50+

(S107S N1) A¥130 39vy3IAV 1vViOL




At A W M 3

=)
% .
o §
, o w 3
| @
i OD L
i o A
N +
; ¢
; &
i —
| o=
i - . 4
: ~ Om 8
1] oD (@] O . .T
4. ™ u (0 a8 (=9 !
) — Q. V
~ v [
< = 2 13
. O =
o >
wm LA
) —
— [
2
A ..
N = "
L~ < 5
O 4
— >
n
1
o
o .
T ——— At —— S =
O O 1) A
Q A 2
— (S{07S NIY | 300N LV AV13Q 3I9VYIAYV
— - —_ ]
1
:l.x...l].l, }I —— —— - Iy v ...N“‘"JMIA b e u?...df VT —— — —r—— . .
= - dala 2 Bl : ‘. -r . e~ e



- 29 -

e s e e e e

fma e e e et —— s e

B e e

T
-
~
—

(S101S NDY < 300N IV AVI30 30VY3AY

.01

()

(]
"

T

|

!

+

|

T

|

l

T

I

|

|
-+
0.0

—_—— -

/ /
4
~
.
0.4
TRANSEMISSION PROB

0.8
AT NODE 1

e
0.6

T2 versus p.

d
d

/S

s
e

-

Fig. 10 - System 3:

T T e

B . ¥ -~ N LAPY P P P? e e v e




e

Rt

- 30 -

o
Q 8.!
L -l
— oOaQ
N Q
< 2
—
?._ o<
(@] o .
~ K=
o (@]
1] (o) R
— . o
H o)
" < Z
~ | . O
- OT&
w
2
w
N =
- T <
Oa
[T,
Q
- Ht————t Attt + 2
o mw () \N
\ —
ot (S1077S N1) AV7130 39V¥3AV VIOl
v 5y T N“l‘".ﬂl‘ﬂmﬁng e T T T R —— .

T versus p.

Fig. 11 - System 3:




o o 7
I ISPl AN

—

< it et M gl B L0 ol

Y

. : . A ¢ s 0 Sl SIS 5 3 -
Pt ¥ b T As e

- 31 -
TWJd NODES
T
130 T
4 r=0.24 0.7 0.7 0.01
T i
i ‘ '
_r. \ J
| 50+ \\ /
o \\ /)
. \\J/
o 7T l
s \
. i P/f !
= ]
o x \ / {
ozt
e T
< 1
= 4
e
<
-
= 1 .
4 ! 1
Analysis ;
Approximation — — —— :
| T - T T mi P
Jed J. < C.4 C.C J.R i.J
TRANSMISSION PROB.

Fig. 12 - Comparison of analysis and approximation of two node
symmetric ALOHA network.

PP 10 ST NP 37 AP TN EERE T




e _ -~ _ . il et A St AL WL
e
A
=
o
V)
. | .
b o
O .
" a
W) . o
) @)
O g
= —
w
w
L Yo
L °©&
a — =z
T x
— § 5 -
ot o o
L4 L o4
g
P
[e] ol
- = "
T = T 2
e ,\\\o\ M‘
e T o
= H—4+—+——4—1—+ } -+ A 4 4
o O o wn — O
&) vy . M .
— (S107S ND)Y AV730 3J9YY3AY 1vi0l
l.lwf‘ .L.Hl o o N.“‘\‘Jm]]«d.‘%‘ g r- g ——— - e e —
. — —

13 - Comparison of approximation and simulation results for three-node

Fig.

symmetric ALOHA network.




¥

(o
-

A
=
5
()
m
i

‘ V- o T T T j%

()
X
O o

J-J J.Z . & J- i

T
i 13c>§ L
i = Vv
irq 4;‘
3 -
- ' SO_"'
1 | 4 :
’k ? ; ‘
R —v\
:! ; JT? \
b oz T
3 Lo P
4 | | |
; >
. I < ;
§ = } _ |
P K '\.l_:' H
) | f:‘q;'
‘ L |
4 e !
; <C, ! :
! B
: w
; -~ S""
i z
j i = L ‘;
l! — :
) | T
3 Approximation
3 ’ Simulation I '
3

I
|
A L~ TRANSMISSION PROB. ‘

Fig. 14 - Comparison of approximation and simulation results of
four-node symmetric ALOHA network.







