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ABSTRACT 

'Effects of surface heat transfer on boundary-layer transition 

are analyzed In a three-part study using the Saffman-Wilcox 

transition model.  In the first part of the study, model pre- 

dictions are compared with experimental data for cooled and 

heated aerodynamic boundary layers on smooth flat surfaces and 

for cooled aerodynamic boundary layers near the stagnation 

point of a roughened blunt body.  Consistent with measure- 

ments, tue model predicts, on the one hand, that heating 

destabilizes a smooth-surface aerodynamic boundary layer 

and, on the other hand, that cooling destabilizes a rough- 

surface aerodynamic boundary layer.  Differences between 

predicted and measured transition-point locations are with- 

in experimental error bounds.  Then, incipient transition 

conditions are determined for a small, heated hydrodynamic 

body.  Again model predictions agree with measurements which 

indicate that relatively small amounts of surface heating 

have a strong stabilizing effect on hydrodynamic boundary 

layers.  In the final part of the study, transition location 

is determined for a large hydrodynamic body; results indi- 

cate that large surface heating rates are not substantially 

more effective than smaller rates. 
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NOTATION 

SYMBOL DEFINITION 

I 
1 
I 
1. 

e 

fr 
F(n) 

J 
k 

kl 
P 
Pr 

L'_ 

%'   % 
r 

ri' rn 
R o 
Re 

Prr 

s' Re 

Re 

Re 

s 

t 

T 

Tt 
c 

T' 

V 

u 

Pressure coefficient, (p-poo)/(l/2pUoo
2} 

Specific heat at constant pressure 

Specific turbulent energy 

^arsons-Goodson-Goldschmied shape parameter 

Nondlmensional self-similar velocity profile 

0 for two-dimensional flow; 1 for axlsymmetric flow 

Roughness height 

Parsons-Goodson-Goldschmied shape parameter 

Pressure 

Laminar and turbulent Prandtl numbers 

Sur/ace heating rate; average value of qw 

Radial distance from symmetry axis 

Parson-Goodson-Goldschmied shape parameters 

Empirical constant 

Reynolds number based on arclength, plate length 

Reynolds number based on momentum thickness 

Incipient transition Reynolds number based on V" 

Arclength 

Parsons-Goodson-Goldschmied shape parameter 

Parsons-Goodson-Goldschmied shape parameter 

Temperature 

Freestream total temperature 

Freestream turbulence intensity 

Velocity component in x,y direction 

Boundary-layer-edge velocity 

Freestream velocity 

Body volume 

.1/3 

iv 
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SYMBOL 

NOTATION (cont.) 

DEFINITION 

x,y 

m l 
a,a* 

B,ß» 

n 
e 
K 

A.A» 

A 

M 

v 

P 

0,0* 

Q 

Distance parallel to, normal to body surface 

Parsons-Goodson-Goldschmied shape parameter 

Empirical parameters 

Empirical constants 

Similarity variable 

Momentum thickness 

Karman's constant; thermal conductivity 

Empirical parameters 

Modified Polhausen pressure gradient parameter 

Molecular viscosity 

Kinematic viscosity 

Fluid density 

Empirical constants 

Specific dissipation rate 

subscripts 

e 

t 

w 

Boundary layer edge 

Transition point 

Surface 

Freestream 

n i i 

i 

I 
i 
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1.  INTRODUCTION 

In recent years, substantial progress has been made toward 

maintaining laminar flow, and hence low drag, over aerodynamic/ 

hydrodynamic bodies at practical flow speeds.  In the case 

of aerodynamic bodies, the use of carefully designed air- 

foil shapes (e.g. to provide strong favorable pressure gra- 

dient) and the use of boundary-layer-control techniques 

(e.g. suction) has successfully delayed transition to cnord- 

length Reynolds numbers, ReSt, of the order of 10 million. 

Even larger values of Rest have been achieved for small hydro- 

dynamic bodies through the use of surface heating and pres- 

sure gradient.  For hydrodynamic bodies, extrapolations based 

on linear stability theory indicate that, with practicable 

amounts of surface heating, values of Res. in excess of 200 

million may be possible on relatively large hydrodynamic 

bodies . 

The reduction in drag which can be achieved by maintaining 

laminar flow over any vehicle is attractive because of the 

reduced power requirements to move the vehicle.  However, a 

penalty is generally paid in maintaining laminar flow on 

lifting bodies in that a laminar boundary layer separates 

much more easily than does a turbulent boundary layer, re- 

sulting in a significant reduction in lift.  Hence, main- 

taining laminar flow is practical mainly for nonlifting 

bodies.  Submarines and torpedos or, more generally, hydro- 

dynamic bodies fall into the latter class. 

This study focuses on the observed pronounced effects of 

surface heat transfer on boundary layer transition.  Most 

importantly, this report includes transition predictions 

based on a relatively new transition theory for small and 

large heated hydrodynamic bodies. 

1 
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Section 2 presents the transition equations, including a 

modification needed to improve transition-prediction ac- 

curacy when surface heat transfer is present.  Included in 

Section 3 are transition computations for various aero- 

dynamic and hydrodynamic boundary layers.  The concluding 

section summarizes results and conclusions. i 
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FORMULATION 

2.1 EQUATIONS OF MOTION 

The Saffman-Wilcox transition model2" is the basic tool 

used in this study to analyze effects of surface heat 

transfer on boundary-layer transition.  The model's accuracy 

has previously been demonstrated for a wide variety of flows 

ranging from incompressible boundary layers to hypersonic 

blunt-body flows.  These applications have tested the model's 

ability to predict transition sensitivity to effects of free- 

stream turbulence, suction, surface roughness and pressure 

gradient.  In all cases, accuracy acceptable for most en- 

gineering purposes has been obtained. 

For incompressible boundary layers (i.e., for very small Mach 

numbers), the equations of motion which constitute the tran- 

sition model are: 

Mass Conservation 

^(r^u) + ^(rjv) » (1) 

Moaentum Conservation 

9u 9u     „ 
puä7+ pv3y " dx 

(2) 

I 
1 

n 

Energy  Conservation 

3(C  T) 

Pu-^-+   pV 

3(CpT) 

3y 
d£+1 i_rrj(_H_+^^^l =   Udt + 737[r   UrL + PrT;      3y     J (3) 

 ^ —-—•   "■*■—'—*—--—-..* ■         — ■ 
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Turbulent  Enen 

.U||*P'IF- [»•i0i-8-p"]- + 7MrJ(" + o,">^ 
(4) 

Tur b u lent_Dissi£aXion_Rate 

.«|S,
+Pv|S,.[.|^l-Bpo]pfl1^^t3<'' + 0l)l7j (5) 

in Equations 1-5, « and y are orthogona! coordinates parallel 

.o and normal to a body surface. The quantity r is the radla. 

coordinate fro. the body's symmetry axis while ,1-0 for two 

dimensional flow and J=l for axlsymmetric flow.  The velocity 

components in the , and y directions are denoted by u and v; 

fluid density, temperature, pressure, specific heat and 

viscosity are denoted by p. T, p. Cp, and u ^P"™- ™e 

quantities e and D are specific turbulent energy and peel c 

Lbulent dissipation rate; their ratio, e/fi, Is the turbuient 

eddy viscosity. 

Both air and water are considered in this study,  ^e variou* 

thermodynamic properties for air are reiated through he per- 

fect gas law and the Sutherland viscosity law. Appendix 

lists the pertinent thermodynamlc properties of water. 

Several empirical parameters appear in Equations 1-5 

transitional flows, past studies2-" have estabUshed the 

following values: 

For 

PrT =0.89 

0 = 0.15 

0 = 0.50 

ß« = 0.09 

o» = 0.50 

(6) 
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a*  ■   0.30   [1  -   (1  -   A»)U   -   Re-ZR  )H(1  -  ReT/Ro)] (7) 

a- .1638 [1 - (1 -X)(l - Re /R ) H (1 - ReT/Ro)] (8) 

where H(x) is the Heaviside r.tepfunction and ReT is turbulent 

Reynolds number defined by 

ReT = e/fiy (9) 

Finally, the parameters A* and Ro are constants whose values 

are 

x* = 0.105 , :'. = o.io (10) 

The quantity A depends upon the freestream turbulence level, 

T', and pressure gradient parameter. A, defined by 

3 ul V (11) 

and 

dUi 
1 " Pw 

ve  dx 
(12) 

i 

The   functional  dependence  of   A  upon  A and  T'   is 

A = .105(l + 2H(A)   jl-exp   C-M0A]( exp  [-3T'2]) (13) 

Equations 1-3 are the time-averaged conservation equations 

with classical eddy-viscosity and eddy-heat-diffusivity clo- 

sure approximations.  Equations 4 and 5 are -onlinear diffusion 

equations for e and ß which provide a description of the growth 

•~ ■- ^ -—"-^ 
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of disturbances in a laminar flow up to, through, and beyond 
2 

transition.  Wilcox  presents a thorough discussion of the way 

in which the model equations are used to predict boundary- 

layer transition.  Boundary conditions suitable for flow over 

both smooth and rough surfaces are piven by Wilcox and 
Chambers . 

2.2 NEUTRAL STABILITY CONSIDERATIONS 

Qualitative features of model-piedicted transition can be 

conveniently determined by dropping the convection and dif- 

fusion terms in the turbulent-energy equation (Equation 4). 

In doing this we can determine the neutral-stability point 

which is defined as the point in a boundary layer where tur- 

bulent energy generation, a*pe|3u/3y|, Just balances turbu- 

lent energy dissipation, ß*p2ne.  Hence, neutral stability 

is defined by the following condition: 

: 

max a' 
r 31 9u/9y| m   1 

pfi (14) 

Then, noting for laminar boundary layers that ft and a* are 

approximately 

(15) 

a*= 0.30X« (16) 

Equation  14  simplifies   to 

max T v    'ay1 
40 

(17) 

J 
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For zero-pressure-gradlcnl boundary layers in air, the velocity 

distribution can be written as 

where 

u = UeF(n 

1  vwx 

(18) 

(19) 

Using Equations 18 and 19, Equation 17 simplifies to the 

following: 

'U itO/X< 
vw 2 1?F max n 

n 1 dri 
(20) 

Now for Incompressible flow, F(n) is only weakly dependent 

upon surface heat transfer.  Hence, Equation 20 implies that 

the neutral stability Reyi.olds number, Uex/vw, varies Inversely 

as X*2.  Experiments5 indicate that transition Reynolds number, 
p 

U x^/v , is inversely proportional to (T /T ) .  Assuming that etw *   r     r we 
the transition Reynolds number is proportional to the neutral 

stability Reynolds number (as it often is) implies that A* 

should be proportional to T /T . 

Computations with A* independent of Tw/Te verified that such a 

dependence is needed.  The unmodified model predicted that 

heating (cooling) has a stabilizing (destabilizing) effect on 

aerodynamic boundary layers, in contrast to the measured de- 

stabilizing (.stabilizing) effect.  These predictions were un- 

surprising as Shamroth and McDonald*^ find a similar reversal 

in predicted transition sensitivity to heating and cooling 

with their turbulence-model transition method.  Shamroth and 

McDonald resolve the problem by making a parameter similar to 

i 
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X* an increasing function of Tw/Te.  While this model re- 

vision is sufficient to yield accurate transition location 

for aerodynamic boundary layers, It is inadequate for the 

hydrodynamic case.  That is, according to Equation 20, tran- 
2 

sition location, x. , is proportional to VJ/A* .  For a 
fl 

liquid, u  varies as T   near room temperature (see Appen- 
w w 

dix k.   :.ence, assuming A* is proportional to T would ir.rlv 

that \ varies as T ~^L.  Therefore, increasing surface tem- 
t w 

perature would decrease xt, i.e., heating would destabilize 

a hydrodynam:: boundary layer.  Since heating stabilizes 

such a boundary layer, a different modification is clearly 

needed. 

The parameter A* should more appropriately depend upon u /p . 

On the one hand, p /y  increases as T /T increases for air, 
W   G W   G 

while, on the other hand, Uw/we decreases as Tw/Te increases 

for water.  Thus, if A* were proportional to some power of 

y /y , the model could accurately predict effects of sur- 

face heat transfer on both aerodynamic and hydrodynamic 

boundary layer transition.  Since y^T-"  for air, the fol- 

lowing revised form of Equation -0 is proposed: 

X*  = 0.105 Cww/iie) 
V3 (10a) 

An additional, less obvious, modification is needed.  Note 

that the parameter A partially control^ the rate at which 

disturbances are amplified beyond the neutral stability 

point.  Furthermore, if A ever becomes sufficiently large 

(relative to A*) so that dissipation-rate production, 

apfi2|9u/9y|, overtakes dissipation-rate dissipation, ßp2^3, 

(see Equation 5) before the neutral stability point is 

reached, transition may never occur.  Thus, if A remains 

MUMM 
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unaltered, the possibility exists that a finite amount of 

cooling (heating) will cause an aerodynamic (hydrodynamic) 

boundary layer to forever remain laminar, a physically un- 

realistic prediction.  Hence, Equation 13 must be repxaced 

by 

X-.10 5(y /M )V3 {l + 2H(^)[l-exp(-i^0A)1exp(-3T•2)}   (13a) 

All of the computations presented in the next section have 

been performed using the transition model defined by Equations 

1 through 9, 10a, 11, 12, and 13a; as noted earlier, appro- 

priate surface boundary conditions are given by Wilcox and 

Chambers . 

ll 
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3.  APPLICATIONS 

In the first part of this section, the transition model Is 

used to predict transition sensitivity to surface heat trans- 

fer for smooth- and rough-surface aerodynamic boundary layers; 

computed transition-point locations are compared with cor- 

responding experimental data.  Then, effects of surface 

heating on a small hydrodynamic body are computed; qualita- 

tive comparisons are made with experimental data.  Finally, 

transition location is predicted on a large hydrodynamic 

body. 

3.-n. HEATED AND COOLED AERODYNAMIC BOUNDARY LAYERS 

One of the easiest of all flows to analyze is the incompres- 

sible flat-plate boundary layer (FPBL).  Furthermore, analyz- 

ing this flow provides a good test of the transition model 

as detailed measurements have been made  to determine transi- 

tion sensitivity to surface heat transfer.  Using an incompres- 

sible version of DCW Industries' EDDYBL computer code , tran- 

sition computations were performed for an incompressible FPBL 

with 

0*5 1 Tw/
Te - 3-0 (21) 

As in all computations in this study, the value of 0 at the 

boundary-layer edge, fie, was given by 

fie = .0185U^/Me (22) 

Re- a value generally used in EDDYBL transition calculations, 

suits of the computations are shown in Figure 1; experimental 

10 
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(ReXtV'(KeXt)( 

10 
9 

8 

7 - 

6 - 

5 - 

1.0 
9 

8 

7 

6 

5 

0.1 

  CALCULATEDjT^O.OB/K 

  CALCULATEDjT*«1.25I 
O ZYSINA-MOLOZHEN & 

KUZNETSOVA 

J \ I I I I I 
6  7  8  9 

1.0 
T /T w e 

■ 

i*  s 

Figure 1.  Computed and measured effects of surface 
heating and cooling on boundary layer transition In 
air; (ReXi.). = plate-length transition Reynolds num- 
ber based^oh surface conditions; (ReXt)0 = the value 
of ReXl. without surface heat transfer. 
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data of Zyslna - Molozhen  and Kuznetsova are included in 

the figure for comparison. 

Because the freestream turbulence level in the experiments was 

not available, computations were done for a relatively high 

level (T'=1.25^) and for a relatively low level (T'-.OSJJ).  As 

shown in the figure, free-stream turbulence level has only a 

slight effect on transition Reynolds number based on surface 

conditions, (Rext''w^e^^w*  Consistent with the measure- 

ments, computed (ReXt)w is approximately inversely propor- 

tional to (Tw/Te) ; computed values of (Rext)  generally are 

within about 20%  of corresponding measured values. 

A second, more subtle, test of the theory is to apply the 

equations to rougn-wall aerodynamic Doundary layers.  Surface 

cooling can actually reverse its stabilizing role to one of 

destabilization when the surface is rough.  The explanation 

for this phenomenon is well understood.  The destabil zation 

occurs because cooling thins the boundary layer, thus making 

the roughness look larger relative to a boundary-layer thick- 

ness such as momentum thickness, 6.  Hence, the surface looks 

rougher, whereby transition occurs earlier. 

To test the model's ability to predict this phenomenon, com- 

putations were performed for Mach 5 airflow past a roughened 

spherical body with nose radius of 2.5 inches; roughness 

heights, k, between 1.5 mils and 10 mils were used in the 

computations.  Freestream unit Reynolds number ranged from 

3 to 10 million per foot.  (The compressible version of the 

model equations  was used for these calculations).  The ratio 

of surface temperature to freestream total temperature, T, , 

12 
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was varied from 0.2 to 0.8.  Figure 2  compares results of 

the computations with a correlation of experimental data7 

Consistent with the measured effect, momentum thickness 

Reynolds number at transition, ReQ, Increases with de- öt 
creasing surface temperature. 

Ree, 

200, 

100 

50 

20 

10 

PANT Correlation 

Calculated 

1C 

T k /w 
et Te 

i 
Figure 2. Comparison between computed and measured 

effects of surface cooling on rough-wall 
aerodynamic boundary-layer transition. 

13 
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3.2  HEATED HYDRODYNAMIC BOUNDARY LAYERS ON SMALL BODIES 

The second round of applications is to a small heated hydro- 

dynamic body.  The body, shown in Figure 3, is a Parsons- 

Goodson-Goldschmied8 (PPG) minimum-drag hull shape which will 

be referred to as the H-2 body; the PPG body parameters are 

given in Appendix B.  The objective of the computations was 

to determine incipient transition conditions for various 

surface temperatures.  By definition, incipienc transition 

occurs when the transition point is located at the maximum 

body radius. 

All computations were performed with the following conditions 

specified: 

Ambient Temperature, Te 

Roughness Height, k 

Freestream Turbulence, T' 

Freestream Dissipation Rate, Q.e 

= 710F 

= lb yin 

= .01% 

0185 üg/ye 

The pressure distribution was obtained from the Douglas- 

Neumann9 potential flow program: Figure 4 shows the computed 

pressure coefficient, c . defined by 

(p-pJ/(l/2pU*) (23) 

In the figure, Z is axial distance from the stagnation point. 

Three series of computations were performed in *hlch surface 

temperature was held constant at values of 7101, 760F, and 

8l0F.  Incipient transition Reynolds number, Rev (based on 

freestream flow conditions and V1/3 where V is body volume), 

was computed for each value of V  Results of the calculations 

are summarized in Table 1; in addition to Rev, the table gives 

freestream velocity, Ü., transition Reynolds number based on 

m 
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arclength,   Res       and average  heating rate,   q   ,   defined  by w: 

qw "  s 
t J 

t  q is)   ds (24) 

In Equation 2kt   s    =H   feet (the maximum radius point), and 

q (s) is the local heat transfer.  Figure 5 shows computed Rev w v 

as a function of T -T and q .  As can be seen from the figure, 
W  G        W 

heating stabilizes the boundary layer and hence increases the 

value of Rev.  This prediction is qualitatively consistent 

with the observed stabilizing effect of surface heating when 

the fluid is a liquid.  The magnitude of the effect is also 

realistic . 

Table 1.  Computed Incipient Transition Conditions for 

the H-2 Body for Varying Surface Temperature. 

Tw-Te(OF) 
-  ^kwatts,, U   (knots) 

00 
10"6Rev 10-6Rest 

0 0.00 25.3 9.4 18.2 

5 0.31 35.0 13.0 24.5 

10 1.30 47.^ 17.6 33-8 

,4 
fl 

An interesting feature of the predictions is revealed in 

Figure 5.  Specifically, Rev  increases approximately linearly 

with T -T for tne range of temperatures considered.  However, 
we 

Re.. Increases much less rapidly with q .  Hence, increasing 
V 2 

the heating rate beyond about 2 kwatts/ft  may not yield 

substantial increases in Rev. 

17 
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3.3  HEATED HYDRODYNAMIC BOUNDARY LAYERS ON LARGE BODIES 

The final application of the transicion model is to a large 

heated hydrodynamic body.  Again, a PPG hull shape, referred 

to as the R-9a body, is used (see Appendix B).  The objective 

of these computations was to determine transition point lo- 

cation for specified flow conditions. 

Two computations were performed; in one, the freestream flow 

speed, Ü., was 35 knots and in the other Uoi was 30 knots.  In 

both computations, the following conditions were imposed: 

. 

Ambient Temperature, Te 

Surface Temperature, Tw 

Roughness Height, k 

Freestream Turbulence, T* 

Freestream Dissipation Rate, ^e 

- 550F 

= 850F 

= 16 yin 

= .01% 

= .0185 U^/ye 

Figure 6 shows the Douglas-Neumann-computed pressure distribu- 

tion. 

TabU 2 and Figure 7 summarize results of the computations. 

For both flow speeds, transiton occurs well upstream of the 

maximum radius.  Computed arclength transition Reynolds num- 

bers, Res , are not much larger than the value achieved on 

the H-2 body with ^  = 1.30 kwatts/ft2 (see Table 1).  Noting 

the heating rates involved, the predictions are consistent 

with results of the preceding subsection. 
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Table 2.  Computed Transition Ccnditlors for 

the R-9a Body. 

U^   (knots) -  /kwattsf 
qw(-7t^) st(ft) IG"6   Relt 

30 

35 

1.40 

2.08 

13.9 

11.3 

49.1 

46.1 

*To facilitate comparison with the H-2 body heating rates, the 

value of q has been ci 

feet (see Equation 24) 

value of q has been computed by integrating from s = 0 to s = 4 
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H.      SUMMARY AND CONCLUSIONS 

Results reported in Section 3 demonstrate the transition 

model's accuracy for boundary layers with surface heat 

transfer, provided nonuniform viscosity effects are taken 

into account (Subsection 2.2).  With no parameter adjustment, 

the model accurately predicts transition Reynolds number 

for (a) incompressible smooth-wall aerodynamic boundary 

layers with surface heating and cooling, (b) cooled rough- 

wall boundary layers on blunt bodies in a hypersonic air- 

stream, and (c) heated hydrodynamic boundary layers on small 

bodies. 

Results of the hydrodynamic computations agree with the 

measured strong boundary-layer stabilization attending 

small amounts of surface heating.  The model also predicts 

that large amounts of heating are not significantly more 

effective in delaying transition than the smaller rates 

considered in the H-2 body computations of Subsection 3.2. 

The larger R-9a body computations support this prediction. 
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APPENDIX A 
THERMODYNAMIC PROPERTIES OF WATER 

The following thermodynamlc properties of water are perti- 

nent to boundary layer transition: nass density (p), speci- 

fic heat (C ), thermal conductivity, (K), molecular viscosity 

(u), \nd laminar Prandtl number (PrL).  Values used in this 

study for these quantities have been obtained from Schlicht- 

ing10and are valid for temperatures ranging from about 40oF. 

to 110oF. 

Mass donsity, specific heat, and thermal conductivity are 

approximately constant and have the following values: 

=   1.936 

C     =  1 

=   0.35 

Ibf-secVft1* 
Btu/lbf-0F 
Btu/ft'hr'0F 

(Al) 

(A2) 

(A3) 

Viscosity and Prandtl number, by contrast, are strongly tem- 

perature dependent over this range of temperatures.  An ap- 

proximate polynomial fit to the Schlichting data was used to 

calculate y in the computations of Section 3, i.e.. 

-6 -8 
y  =   7.943*10     (T/600)       Ibfsec/ft' (A4) 

with temperature, T, in degrees Rankine. Finally, the laminar 

Prandtl number follows from its definition, namely, PrL=uCp/K, 

wherefore, 

PrL = 2.51(T/600) 
-8 (A5) 

Figure Al compares Equations A4 and A5 with the measured de- 

pendences of y and PrL upon temperature. 
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APPENDIX B 
HYDRODYNAMIC BODY SHAPE PARAMETERS 

The two hydrodynamic bodies analyzed In this study are 

specified in terms of the eight dimensionless parameters 
o 

used by Parsons, Goodson, and floldschmled .  The values of 

these parameters are as follows: 

Parameter H-2 Body R-9a Body 

f 4.450 5.000 

X m 
ki 

0.427 

2.715 

0.600 

4.000 

^n 0.260 0.050 

ri 0.7^0 0.700 

si 
1.650 1.750 

xi 0.595 0.800 

t 0.180 0.150 

Additionally, the H-2 body is 9.^57 feet long and has a volume 

of 14.5 cubic feet; the R-9a body is 55 feet long and has a 

volume of 2500 cubic feet. 
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