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ABSTRACT

It is shown in our model that there are two types of optimal stationary
programs--boundary type and interior type. There exists a critical dis-
count factor 6' for each type of optimal stationary program such that
when the discount factor 6- is less than 6' , the corresponding optimal
program will be unstable. Examples are given to demonstrate this.
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CHAPTER 1

INTRODUCTION

We started to work on this paper with the interest of studying the

sensitivity analysis of a convex programming problem over infinite

horizon with discounted utility. It turns out that in our simple

model we are able to find some conditions such that if these conditions

hold, the optimal stationary programs will be unstable. Sutherland [7]

gave a similar example in his thesis, but it is not easy to interprete.

There have been discussions of how the optimal program can be a

continuous function of the initial stock that it starts with, under

a suitable topology defined on the space of all feasible programs.

Takekuma [8] proved it in the case of weak* topology, but that is not

sufficient to show the stability property of the steady state. We

need a finer topology like the one induced by L~ norm. Araujo and

Scheinkman [1] showed that this is indeed possible under the condition

that the steady state lies in the interior of the technology and the

utility function satisfies some dominant diagonal property, which is

needed for applying the implicit function theorem in the proof. Yet

we know very little about the real meaning of these conditions.

Evers [2], in a model similar to ours but with linear utility function,

proved that every optimal stationary program is stable by showing that

the optimal program is a continuous function of the initial condition

in the sense of L norm, but he made an serious error in his proof.

Our result could be served as an counterexample to his theorem.

Nevertheless we are benefited from some of his ideas.

In a different approach, Scheinkman [6] proved that for the
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discount factor 6 close enough to 1, stability property holds, but

we still don't know the behavior of the optimal program for 5 away

from 1. The examples we present in our paper show that when 6 is

less than some critical discount factor 6' , which is less than 1,

the optimal stationary program will be unstable. We have shown this

for each type of optimal stationary programs as will be defined in

the next chapter. For more references concerning this problem, see

McKenzie (5].

Also included in this paper are some interesting results about the

total number of optimal stationary programs in our model. We show that

the total number has to be odd; and under a special condition, it is in

fact unique. Because we try to make this paper as self-contained as

possible, we have confined our result to a 2-sector model, even though

some theorems in our paper can actually be generalized to n-sector model

without much effort. We will try to expand some of them in the future

when it is worthwhile to do so.

In Chapter 2, we give a discription of the model and study the

behavior of the optimal stationary program. We have shown that there

are two types of optimal stationary programs--boundary type and interior

type, we have also shown that the existence of competitive prices for

any optimal program can be obtained from Weitzman [8]. Chapter 3 shows

that instability theorems for both types of optimal stationary programs

could be obtained by designing a two-stage argument--forward argument

and backward argument.
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CHAPTER 2

THE MODEL AND OPTIMAL STATIONARY PROGRAM

2.1 The Model

In our model, there are two production goods and one resource which

is labor. The technology consists of two activities, each of which

produces exactly one production good but could use various amounts of

production goods and labor. It is natural to assume that the ith activity

produces the ith production good. In each period, the production goods

produced in the previous period are used in two ways. Some for pure

consumption and the rest for production of production goods for the next
2[

period. Utility function is assumed to be a concave C 2-differentiable

function of the production goods consumed in each period and is assumed

to be the same for every period. We also assume a constant supply of

labor in each period, which is one, and also a constant amount of labor

used to operate activity j at unit level, which is also one. The

objective of this model is to choose a feasible program which maximizes

the discounted sum of future utility.

To formulate the model mathematically, we will need the following

notations.

Let 6 e (0,1) be the utility discount factor and

a ll  a 12) 2x2

\a21 a22

where aij denotes the amount of good i used to operate activity

J at unit level.
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99
Utility function u(c I c2 ) defined on R+2 is assumed to be

2+

strictly concave and C -differentiable and, furthermore, u1  and

;u
u, are assumed to be positive, here ui  i c = 1,2.

The model can now be given as follows:

Given an initial stocks X(0) , find a program (X(t),C(t))t=O

which solve the following optimization problem.

max 1 6 tu(C(t))
t=0

Subject to:

(2.1) AX(t + 1) + C(t) < X(t)

(2.2) eX(t + 1) < 1

X(t) > 0 t = 1,2,

C(t) > 0 t = 0,1,2,....

Note: e (1,1)

We will need the following definitions.

Definition:

A program (X(t),C(t))t=o starting from X(0) is 'asible if it

satisfies the above constraints.

Definition:

A feasible program is optimal if it maximizes 1t.l 6u(C(t)) over

the set of all feasible programs starting from the same initial stocks.
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Definition:

A feasible program is an crtimz. sratioraryg Frog=ar (OSF), if it is

optimal and (X(t),C(t)) = (X,C) for t > 0 for some constant (X,C)

Definition:

Afeasible program (X(t),C(t))o is cor~etivive if there exists

a set of nonnegative prices (P(t),W(t)) =Owhere P(t) = (Pi.(t),P2() E

R2and W(t) c R+ which satisfies the following constraints.

(2.3) P(t)A + W(t)e > P(t + 1)

ti

(2.5) C(t)(P(t) - 5tvu(C(t))) = 0

(2.6) X(t + 1)(P(t)A + W(t)e - P(t + 1)) =0

(2.7) P(t)(X(t) - AX(t + 1) -C(t)) =0

(2.8) (1 - eX(t + 1)) =0

(2.9) P(t)AX(t + 1) -~ 0 as t - c

We begin with the following existence lemma.

Lemma 2.1

Given any stocks X(0) , there exists an optimal program starting

from X(0)

Proof:

Let (X(t),G(t)) = be any feasible program starting from X(0)



(2.1) implies C(t) < X(t) , this together with (2.2) shows that

(X~t'C~t)'O is a bounded sequence. Since u is C -_differentiable,

there exists M > 0 (2.10) such that

(2.10) ju(C(t))I < M for all t

We define

U(X(0)) =sup 5t(C(t)) j(X(t),C(t)).o is any feasibleprga

starting from X(0)

By (2.10), we have

t=0 t=0 l

hence

IU(X(0))i <~ 1-5

Convergence of I 5tM implies, for any E1> 0 ,there exists
t=0

T 1> 0 such that

1t

(2.11) L 6 for t 0 > T 1t=t 0

By definition of U(X(0)) , there exists a sequence of feasible

programs (X n(t),C (t)= n - 0,1, ... starting from X(0) , such
M j =

that 6 t u(C n (t)) converges to U(X(0)) as n -~or for any

e >0, there exists N 2 > 0 such that



(2.12) 1 6,u C()) - U(X(O)) < c for n > N

We know {(X (t),C (t))n is a bounded sequence for each t Byn n n1l
diagonal converging process, we can find a converging subsequence

converging to a limiting program, (X (t),C(t))t 0 . It can be easily

shown that (X (t),CCO(t)) t= is a feasible program. If we can show that

thaO

I 6tu(C(t)) = U(X(O)) , then (X(t),C (t))* is optimal and we are
tO

done. By the property of diagonal converging process, given any T >0

and E3 > 0 , there exists N 3 > 0 such that

(2.13) 1 6tu(Cn(t)) - 5 tu(C(t)) < £3 for n > N3
t=O t=0

hence if we choose T > T1 then by (2.11), (2.12) and (2.13), for n

large enough we have

t t(C()) - U(X(0))t=O

< 0 6tu(C(t)) - i u(Cn(t)) + 1-6 U(X(O))
=Ot--O n

t I n

Stu(C(t)) - I 6 u(C (t) + " 6 u(COO(t))t=O t=O t=T

t=T n (

< e1 + :2 +E:3.

Since £VE2,£3 can be made arbitrary small, this concludes our

proof. U



The following lemma gives a sufficient condition for an optimal

program.

Lemma 2.2

Any competitive program is optimal.

Proof:

4
Let ((t),Z(t))=0 be any competitive program. By definition,

there exists a set of nonnegative prices (P(t),W(t))t=O  satisfying

(2.3)- (2.9). Let (X(t),C(t))t0 be any feasible program starting from

the same initial stock. Given any T > 0 , we can derive the following

T T
I 6tu((t)) - ( ctu(cvyo
t=0 t=0

T
> I 6tVu(C(t))(C(t) - C(t)) (by concavity of u)

t=O

T
> P(t)(Z(t) - C(t)) (by (2.4) and (2.5))

t=0

T
> I P (t)+1Xt) - -(t+1) X(t) + AX(t + 1)) (by (2.1) and (2.7))

t=O

= (0)(R(0) - x(0))

T-I
+ I (P(t + 1) - P(t)A)(XR(t + 1) -X(t + 1))

t=O

+ P(T)A(X(T + 1) - X(T + 1)) (rearrangement of terms)

T- 1

W(t)e(X(t + 1) - X(t + 1))
t-0

+ P(T)A(X(T + 1) - X(T 1 1)) (by (2.3) and (2.6))
tJ
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T-1
" W(t)(l - eX(t + 1))

t=0

+ P(T)A(X(T + 1) - X(T + 1)) (by (2.8))

> P(T)A(X(T + 1) - X(T + 1)) (by (2.2))

> -P(T)AX(T + 1)

Now let T tend to , (2.2) and (2.9) imply that -P(T)AX(T + 1)

would go to 0. Hence

I t (() I 6tu(C(t)) > 0 .

t=0 t=0

which means (X(t),C(t)) is optimal.•
t 0

2.2 Optimal Stationary Program

In this section, we will study the optimal stationary programs in

our model. We need to restrict our model to be 6-productive, whose

definition is given as follows.

Definition:

A is said to be 6-productive, if there exists X > 0 such that

(61 - A)X > 0 . In the case 6 = 1 , we say it is productive.

It is well known that A is 6-productive if and only if 61 - A

is Leontief.

Characteristically, we will show that there are only two types of

OSPs, they are defined below.

Definition:

An OSP (X,C) is called a boundary OSP if either cI = 0 or c2 0
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It is called an interior OSP if both c1  and c2 are positive.

To explore these two types of OSPs, we need to establish a necessary

and sufficient conditions for an OSP.

Lemma 2.3

(X,C) is an OSP if and only if there exists (p,,w ) > 0 such that

the following conditions are satisfied

(2.14) (a) (A I e (primal)•e 0 C -- 1

X>0 C>0

(2.15) (b) (p5 ,w) (A e 0) 2- (,uC) (dual)

(2.16) (c) (p61w )((0)- (A - I 0)(X)) = 0

(complementarity)

A- 61 e)- (V~)I(X) = 0

Theorem 1 in Hansen and Koopmans [3] gave a necessary and sufficient

condition for any OSP which is more than reproducible (see the definition

on page 494 in [3]). But Lemma 6.1 in Jones [4] shows that any OSP in

our model is more than reproducible. Lemma 2.3 can then be obtained by

rewriting Theorem 1 in [3] in our terminology. We will not give a formal

proof here.

Note: (1) If (X,C,p6 ,w6 ) satisfies (a), (b) and (c) in Lemma 2,3, then

the stationary program (X,C) is competitive and is supported

by (P(t),W(t)) - 6t(p 6 ,w 6 )

(2) By assumption on u and Lemma 2.3(b), we have p6 > Vu(C) > 0

hence (c) implies



(2.17) (A - I)X + C = 0

Lemma 2.4

Let (X,C) be an OSP, then x + x , here X = (xl,x 2)

Proof:

If x1 + x2 < 1 , then by (2.16), w6 - 0 (3.15) implies

p6(61 - A) < 0 and P6 > Vu(C) > 0 . By assumption, 61 - A is a

Leontief matrix, this implies that (61 - A) -1 >0 hence p,
-l

p5(61 - A)(5I - A) < 0 , which is a contradiction.E

We need to make one more assumption.

Assumption:

A is indecomposable, i.e., a12 and a21 have to be positive.

From Lemma 2.4 we can see that for the model to have boundary OSPs,

they should come from the solutions of the following two systems of

equations

(A - I)X + C = 0

(I) x + x 2 =

'I -- 0

(A - I)X + C = 0

(II) x + x2

c 2  0•

We can compute their respective solutions as follows

_j
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11- a22  a2 1  det (A -I)

(XIC1) = " + a21 - a 12 + a21  a22 1 + a2 1  a22 )
( 2' 2 a 12  -a 11  0 det (A -I)

(X+,C) = ,12 a 1 + a12 - a 1 1 + a12 a

1 1 2 2The following theorem tells when (X ,C ) or (X ,C2) will be

an OSP.

Theorem 2.1

1 U 1(C) 6 + a21 -a22
(a) (XIC I) is an OSP iff --

2 0) T+a12 a11

2 2 ul(O) 6 + a2 1  a 22
(b) (X,C) is an OSP iff 2 2 < +a -a

u2(C) +a12 a11

Proof:

Since A is assumed to be indecomposable and productive, it

implies X1 > 0 and c1 > 0 . Therefore, by the complementarity conditions
1

in (2.16), 1,w1 can be uniquely solved and we have
(6 -

I + a 12 a11 u(C1 det (61 - A)U(C1
6 (C) ' 6 + a21 - a22 d1  6 + 2 - a u1(

For p,wl) to satisfy (2.15) and (2.16), it is necessary and sufficient

that

6+a12 a11 1
+a1 22al u1 (C

1) > u2 (0)r+ a21 a 22

or
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U1 (C ) 5 + a2 1  a2 2
122u2 ( ) --6 + a 12 a 1ll

this proves (a). (b) can be shown similarly.n

From the proof of the above theorem, we also observe that the

nonnegative vectors (p6,q6 ) obtained for (a) and (b) are uniquely

determined. We will denote then as (PlWl) and (P2,W2) for (XI,CI )

and (X 2,C 2) respectively.

To find interior OSPs, it turns out that they have to be convex

combination of the boundary OSPs obtained above.

Theorem 2.2

A stationary program (X,C) is an interior OSP iff there exists

E (0,1) such that

1 1 2 2(a) (X,C) (1 - X)(X ,CI) + A(X ,C )

(b) -U(C) = +  a 21 a22

u2(C) a 12 a 11

Proof:

"sufficiency"

It can be shown that (a) and (b) imply (X,C) is feasible and is

supported bde (61 A) u (C) in the sense of( u2(C) + a21 a 22

Lemma 2.3, hence (X,C) is optimal. Since C is positive, (X,C) is

an interior OSP.

"necessity"

Let (X,C) be any interior OSP. By Lemma 2.4, x1 + x 2 = 1 , hence
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we can eliminate X, 2  from (2.17) and write c1  as a decreasing
1

function of c. Since c < c I , it implies there exists E (0,1)
21

such that c I = (1 - X)c . Using (2.17) agaim implies (X,C) =

1 1 2 2
(1 - X)(X ,C ) + X(X ,C ) is the unique stationary program having that

property, this proves (a). (b) follows immediately from (2.16).U

Combining Theorems 2.1 and 2.2, we will now be able to count the

total number of OSPs.

Theorem 2.3

Except in degenerate cases, the total number of OSPs is odd.

Proof:

To compute the total number of OSPs, Theorems 2.1 and 2.2 suggest

u 1

that we look at -- as a function of A . We already know that there
U2

are only two boundary OSPs. We now look at each possible case that

could happen.

Case 1 Only one of (X ,C ) and (X2,C ) is an OSP.
By Theorem 2.1, both endpoints of the graph of 1 are either

6+ a2 - a2

above or below the horizontal line y 6 + a21 22 simultaneousl.
12 11

Hence, except in degenerate case, the graph of - can cross that lineu 
2

only even number of times. Which by Theorem 2.2, means even number of

interior OSPs; therefore, the total number of OSPs is odd. See Figure 1.

("o" in the graph shows where the OSPs are located.)

1 1 2,2Case 2 Both (X ,C ) and (X , C ) are either OSPs or both are not.
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u1

This implies one and only one endpoint of the graph of -- is above
u
26 + a 21 a a22

the line y = 6 + a12 - a11  Hence, except in degenerate case, the graph
u
1

of - could cross that line only odd number of times. Hence, the total
u 2

number of OSPs is again odd. See Figure 2.E

We also find the following uniqueness theorem.

Theorem 2.4

Assuming that both production goods are complementary i.e.,

U 2(C) > 0 for all C > 0 , then there exists an unique OSP--either

a boundary OSP or an interior OSP.

Proof:

Let C (1 - X)C1 + XC2  define

u 1(C) u(l - )cI , Xc )
f()2(( X)c

f'(X) would then be

1 2 f(C) (u(C)c1 + U1 2(C)c2)- u (C)(-u2 (C)c 1 + u(~ )
(u 2 (C )) 2 1 2 ( 2 ,

u1

hence, f'(X) > 0 for X c (0,1) . Therefore, the graph of - is
-a21 22

increasing. This implies it either crosses the line Y + a - al

exactly once or lying entirely above or below that line. In each case,

there is only one OSP.
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Corollary:

If u is separable, then there exists an unique OSP.

In Chapter 3, we will assume that utility is separable. Hence we

will be dealing only with a single OSP--either a boundary OSP or an

interior OSP.

The following example shows that if the condition in Theorem 2.4

is violated, then it is possible to have more than one OSP.

Example:

Let u(clc 2 ) = log (1.3c I + c2 ) + 0.01c and A = ( -4) then

1 1 (5 4 3.4 )
(X , C )9,0

(X 2,C2 0 O 4-)

u(clc 2) can be shown to be strictly concave, but

-1.3

u-12 . 2 <0
(1.3c I + c2)

1 + .8
By Theorem 2.1, if 6 satisfies 1.3 + 0.013c > > 1.3 + .Olc'

1 6 +.4 2'

then both boundary stationary programs will be optimal. It can be easily

checked that the above constraint for 5 is feasible.

2.3 Existence of Competitive Prices

In this section, we will show that there exists a set of competitive

prices for any optimal program. Weitzman [9) established a duality

theorem in an infinite horizon convex programming to characterize an

optimal program. It turns out that his result -an be adapted to our model.
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First, we introduce the following notations

A= (A I) E P×4 b = 0 c +
e 0 t Q

Ih g 34 b (X) 3 2 ud
0 0 C + 0 +

C3

An induced utility function u of u is defined for all X in R[, such

0

the reachability condition, i.e., 5. Careful reading of Weitzman's

proof reveals that condition 05 is needed only to show that for T >0

( ) is finite for all X > 0 . Where, in our terminology, tT(M is

defined to be sup 6tu(C(t)) over the set of all feasible programs
t=T+l

((t),c(t))t=T+l starting from some initial stock. But the proof of

Lemma 2.1 has shown that Z 6tu(C(t)) is always bounded, hence
t=T+l

;T(X) is finite. Hence 05 is not needed in our model. Weitzman's

theorem can be restated as follows:

Let (uth(t))t=1  be an optimal program with initial stock g.

then there exists nonnegative prices (P(t)) such thatt=lsuhta
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(2.18) u1 + P(1)h(1) > u + P(1)h (gO,u,h) E Q

2.19 u + P(t)h(t) - P(t - 1)h(t - 1) > u - P(t)h - P(t - i)g

(g,u,h) E Q for t > 2

(2.20) lim P(t)h(t) = 0

3 2Let P(t) = (P(t),W(t)) e R+ where P(t) E and W(t) E R+.

Theorem 2.5

Any optimal program is competitive.

Proof:

Let (X(t),C(t)) t= be any optimal program with initial stock X(0)

t
for our model, then the program (6 u(C(t)),BX(t)) t 0 with initial

stock g3  (X(§)) is optimal for Q , where X(t) is defined to be

(X(t),C(t - 1)) . Hence there exists a set of nonnegative prices

(P(t))t=I such that (2.18), (2.19) and (2.20) hold. We will show that

(P(t))= is the set of competitive prices that we are looking for. We
t=l

will show it in two cases.

Case 1 t = 1

(2.18) can be restated as follows

u(C(0)) + P(1)BX(l) > u(X) + P(1)BX for all X > 0

such that g. > AX - b . By Kuhn-Tucker Theorem, there exists P(0) > 0

such that (2.3) - (2.9) hold for t = 0
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Case 2 t > 2

(2.19) implies

5t- u(c~t - 1)) + e- it)-e - -B( - l
5 UC~ 1) +P(t)BX(t) -P(: - )BX(t -1)

(2.21) -..... .
> u + P(t)BX - P(t - 1)(AX - b) for all X > 0

Ziow BX(t - 1) - AX(t) - b + Z(t - 1) for some Z(t - 1) >_ 0 , (2.21)

becomes

St-1u(C(t - 1)) + P(t)BX(t) - P(t - l)AX(t) - P(t - l)Z(t - 1)
(2.22) ..

> u( + P(t)BX - P(t - l)AX

t-l
Plug in (u tX) = (6 u(C(t - 1)) , X(t)) we can show P(t - l)Z(t - 1)

= 0, which is just (2.7) and (2.8) for t > 1 The first order maximum

conditions for (2.22) then gives (2.3) - (2.6) for t > 1 . (2.9)

follows easily from (2.20).U

Definition:

(X(t),C(t))t= is called a stable optimal program if it is optimal

and (X(t),C(t)) converges to an OSP as t tends to =

For the purpose of stability analysis in the next chapter, competitive

prices for a stable optimal program need to possess the following property.

Theorem 2.6

Let (P(t),W(t))t=0 be any competitive prices for a stable optimal

program (X(t),C(t)) t=0  then

{ 6-t (P(t) ,W(t) ))}
-tt

is a bounded sequence.

-i
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Proof:

Since A is assumed to be indecomposable, (X(t),C(t))t..o can

never be stable if x i(t) = 0 for some i and t , hen~ce (2.6) implies

(2.23) P(t)A + W(t)e - P(T + 1) = 0 for t > 0

Without loss of generality, we assume that (X(t).C(t)) -~ (X ,C)

as t -~,hence there exists T > 0 such that c (t) > 0 for t > T

(2.5) then implies pl(t) = 6 tu (C(t)) for t > T ,hence

16-t Pit is a bounded sequence. (2.18) and indecomposability of

t=T+l

A imply that {6- (p(t) ,W(t))}t= is a bounded sequence.E
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CHAPTER 3

STABILITY ANALYSIS OF AN OPTIMAL STATIONARY PROGRAM

3.1 Introduction

In this chapter, we study the instability property of a special two-

sector model. We choose this special model for it's simplicity. We will

also discuss how it can be extended to any two-sector model at the e ,d.

We will need separate arguments of instability property for each type

of OSP. For each type, we will show that there exists a critical discount

factor 6' such that when 6 < 6' , the OSP is unstable. In the case of

boundary OSP, 6' depends only on A , while for the interior OSP it also

depends on the utility function. We assume that the utility is separable,

hence by the corollary in Chapter 2, there exists an unique OSP.

The instability argument is composed of two parts. First part shows

that for 6 < 6' , any stable optimal program would have to lie on the

turnpike eventually, we call it the forward argument. Second part shows

that for an optimal program to have the above property, it can only start

from a set of measure 0 , this is called the backward argument.

Example will be given toward the end of this Chapter.

We now describe our special two-sector model and rewrite the con-
0 a a nstraints and competitive conditions again. Let A = 0 ) and

u(clc 2) = l(C1) + 2(c2)

Primal constraints are

(3.1) CLx2(t + 1) + c1 (t) = xl(t)

(3.2) ax1 (t + 1) + c2(t) = x2(t)

(3.3) x (t + 1) + x 2 (t + 1) < I

x(t) , C(t) > 0 for t > 0
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modified dual constraints are

(3.4) ap2 (t) + W(t) - 5p (t + 1)

1 1[3.5) ceP1(t) +- W(t) = 5p2.(t + 1)

(3.6) >(t) > 01(Cl(t))

(3.7) P2(t) > 0 (c2 t))

P(t) , W(t) > 0 for t > 0

and the complenientarity conditions are

(3.8) W(t)(l - xl(t + 1) - x2 (t + 1)) = 0

(3.9) cl(t)(pl(t) - 4{(cl(t))) = 0

(3.10) c2 (t)(P 2 (t) - 0 (c2 (t))) = 0

Note: Here (P(t),W(t)) are "present" prices, the "true" competitive

prices are 6t(p(t),W(t))

3.2 Instability Property of Boundary OSP

From Chapter 2, we know that there are two boundary OSPs in the

1 1 2 2
two-sector model, namely (XIc I) , (X,C) . Without loss of generality,

we will only show the case when (XlC I) is an OSP.

We state the main theorem as follows:

Theorem 3.1

1 1(X ,CI ) is unstable if the following conditions are satisfied

(3.11) (a) ( < > < +<

(3.12) (b) 1 (0"-" ) >  6 +'

I/11|1111(0 
6---I +.. ....
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Note: (1) (b) implies that (XIc I ) is an OSP.

9 2
(2) Symmetric condition of (a) for (X,C') is

(3) 6 > a is the 6-productivity: condition

(4) Condition (a) can be better understood in the n-sector

model, the critical discount factor 6' - a is actually

an eigenvalue of a reduced matrix.

To prove Theorem 3.1, we need the following lemma, which is due to

David Gale.

Lemma 3.1

Consider the following recursive relation

(3.13) xt+l = -mxt + b + t

where m > 1 and l ti < C for t > 0 . If

(3.14) ix> -m - 1 then Ix,

Proof:

Let z x m + then (3.13) becomes zt+I  -mz t + ct so

we have

(3.15) 1z t+1 1 > miz - for all t , from (3.14).

We have mLz 0 j - E > 1z0 j , so there exists m > 1 such that

mJz 0I - E > mjz 0j . Applying this repeatedly to (3.15) shows that

Iztj M ti oI so ztj - hence IxtI -I
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Forward argument of Theorem 3.1 is given in the following lemma.

Lemma 3.2

Given any optimal program (X(t),C(t))t= starting from an initial

stock X(O) , if (X(t),C(t))= converges to (X ,c I ) as t tends
t=O

to , then there exists T > 0 such that

(a) (X(t),C(t)) = (X ,C ) for t > T

(b) Let (P(t),W(t))=O be any competitive prices (modified) for

(X(t),C(t))t=0, then (P(t),W(t)) = (pIw I ) =

6 + a 9~1 det (61-A) frt> T
6 + a 1,cfl , + q Pi fr

Proof:

Theorem 2.5 assures the existence of competitive prices

(P(t),W~t))t 0  for (X(t),C(t))t . Sincett=0

ii l

(3.16) (xl(t),x 2(t),cl(t),c 2(t)) - 1 x 1,x ,c1 ,0) as t-

there exists T > 0 such that c (t) > 0 for t > T (3.9) implies
11 1.

p =(t) -- 4(cl(t)) for t > T1  Continuity of and (3.16), then

gives

(3.17) pl(t)4 P as t

Substracting and rewriting in (3.4) and (3.5),we get

P2(t + 1) = - - P2 (t) + Pl(t + 1) + p )

(3.18)

6 P2 (t) + (i + +
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where

et= Pl(t + 1) +T pl(t) -

(3.17) implies E t 0 as t - ,hence for any e > 0 , there exists

T2 > T1  such that letl < E for t > T 2  By Lemma 3.1 we have

P 2+1 - -
'B

since otherwise Ip2(t) I - as t - , contradicting to Theorem 2.6.

Therefore,

(3.19) (t )  b - 1 = +a j(cl) as t -
-+1 2 6+ 5 11

Continuity of 0 and (3.16) gives

2'(c2 (t)) - (0) as t-

By (3.12) and (3.19), there exists T 3 > T 2 such that

p2 (t) > 0(c 2 (t)) for t > T3

this implies, by (3.10), c2 (t) = 0 for t > T 3 . Also since > 0

there exists T4 > T 3  such that

x1 (t) - 1 - x2 (t) for t > T4

By using this in (3.2), it gives

x (t + 1) (1 - xl(t)) for t > T
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but this recursion diverges unless xl(t) = x I  It follows that

1 1 1
(X(t),C(t)) - (X ,C ) for t > T4 since c 1 > 0 , it implies that

Pl(t) l'l) for t > T, . From (3.18), et = 0 for t > T, This
- -i

implies, by Lemma 3.1, p2 (t) = p2 , hence we have

( -pt)'P2 (t)1 W(t)) (p 2 ,W ) for t > T4

this completes the forward argument.E

We now complete the proof of Theorem 3.1 with the backward argument.

Proof of Theorem 3.1:

Let T be the smallest T that satisfy (a) and (b) in Lemma 3.2.

We will prove the theorem in two cases.

Case 1 T - 0

We claim that c2 (0) has to be 0; by definition, it implies that

(X C ) is unstable.

If c2 (0) > 0 , then

(3.20) P2(0) (c2(o)) < (o)

for any e > 0 , we can find a neighborhood N(XIc I ) of (XIC 1 ) so

small that

I 1(0 -p 1 1 = c9!Cc1(0)) - -11

But by (3.20) and substracting of (3.4) and (3.5), we have

-l -- - - -1-l - -l
(3.21) 6 p2  (0) 6p a (0) > p 60'(0) > 6p( 0p

1 1 2 1i 2 1 2
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-I -i -il -i
be choosing E small enough, (3.21) would imply 

6p2 - p1 > 
6 P1

-1 -1which is impossible, since by (3.4) and (3.5), we know 6p, - cpl =

-1 -l -1I
p - 2 hence c,(O) = 0 , this proves our claim.

Case 2 TO > )

Again, we claim c2 (T0 ) = 0 If not, then from (3.1)- (3.3), we

1
have c1 (T0 ) < c1 , this implies, by strict concavity of

PI(T0 ) q q!(cl(T0 )) > €I\(Ci 1 p.

By similar argument as in (3.21)

6- 1 L1> .-l -p( > 6p1- BplP2  1  -op2  1-0 1

tnis is again impossible, hence we have shown c2(T0) 0 . Now by (3.3)

and the definition of T0 , we have

(3.22) c1 (T0 ) < C,

hence (3.1) and (3.2) imply

(3.23) xI(TO) < x1 and x2 (T) x
1 1 2 -0 i

(3.22) implies pl(T0) {(cl(T0)) > (ci) = PI' eliminating W(T0)

from (3.4) and (3.5) gives

(3.24) p2( T o) - > + 1 2 -

By (3.8) and (3.23), we have W(T0 - 1) - 0 hence (3.4),(3.5) and (3.24)

imply
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P1 (T O - 1) 2 (To) 0 - -i + > = , (c

and

5-5-1 _1 i- i+ 1 -1
p2 (To -1) = - PI(T O) >; P1 - .p > p2 > 2(0)

This would give us

cl(T 0 - ) < c1 and c 2 (T 0 -) =0

hience by (3.1), (3.2) and (3.23)

x (T - 1) = c (T - 1) + ax (T) < c +cax21 0 1 0 2 0 1 2 1

x(T 0 - 1) = c2(T - 1) + axI(T O) < x =x2

Repeating the above argument T times, we could show x (0) < x
0 1 21

and x2 (0) < x2 , which implies, of course, that (XI,c ) is unstable.

The proof of Theorem 3.1 is now complete.E

3.3 Instability Property of Interior OSP

Let (X,G) be an interior OSP and let (P,W) be its modified

competitive prices as shown in the proof of Theorem 2.2. As in the

boundary case, we will have forward and backward arguments in the

analysis of instability. The following statement constitutes the

forward argument. We will need a reasonable assumption, which will be

given in the process of proving the statement.

(A) There exists a 6' e (0,1) such that if the discount factor 6

satisfies a < 6 < 6' , then for any stable optimal program, there

exists a T > 0 such that
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(a) (X(t),C(t)) =(.X,C) for t , T

(b) let (P(t), W be any modified competitive prices for

(X(t),C(t))'t0 , then (P(t),W(t)) (P~)for t > T

Proof of statement (A):

First, we note that, by (3.9) and (3.10) it is legal to assume that

(X(t),C(t),P(T),W(t)) is any optimal program that converges to

(XCPW) Since both C and W are positive, it implies that there

exists T,>0 , such that C(t) and W(t) will be positive also, for

t > Ti hence the following equations should hold for t >T

(1) alx 2(t + 1) + c 1(t) = t

(2) Bx 1(t + 1) + c 2(t) -x 2(t)

(3) x 1(t + 1) + x 2(t + 1) = 1

(4) 601(c 1(t + M) + W(t + 1) = c()

(5) 6o (C2(t + 1)) + W(t + 1) = o~c~)

(1), (2) and (3) imply

a3c 1(t + 1) + acc 2 (t + 1) + c 1(t) + C 2(t) + aB

(3.25)
M aix2 (t + 1) + 3x 1(t + 1) + c 1(t) + c 2(t) 1

(4) and (5) imply

(3.26) j(cl(t + 1)) - 0 (c2 t + 1))

We can use (3.25) and (3.26) to describe the optimal program. If

(X(t),C(t)) is given, then, by (3.25) and (3.26) we can solve for

C(t + 1) in terms of C(t) ,also from (1) and (2) X(t -t 1) can be
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found in terms of (X(t),C(t)) . Hence a stable optimal program for

t > T can be obtained by solving a dynamical system in (X(t),C(t))

We first need to check the existence of C(t + 1) in (3.25) and

(3.26).

Jacobian of the system formed by (3.25) and (3.26) is

det )= -c) a'(c 2) - cL{'(c l ) > 0

by inverse function theorem, the existence of C(t + 1) is guaranteed.

Before we go on, we make the following notation changes. We let

(X',C') = (X(t + l),C(t + 1) and (X,C) = (X(t),C(t)) The solutions

to (3.25) and (3.26) can then be expressed as

1 -

c = c2 (cl,c1 )

By (3), (1) and (2) can be rewritten as

(' a 1-x) + cl X 1~
(2') 6x{ + c2  - x

eliminating xj from (1') and (2') gives

(3.27) c2  6 a B c + 1 - B t(XI,C I )

therefore, the dynamical system we have described above can be reduced

to the following 2-dimensional system
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xI -(i-x t(Xl,c)

Sc Cl(c I t(xl,cl))

Now we compute the Jacobian of this reduced system

ax i 3XI

ax 1 
1-

act ac

I e a a

Ot c 3c a;c 2)*

Applying chain rule on (3.25) and (3.26) we can compute the following

equations

ac_ K +

ac K +

1 1 + 21

ac 2  K~ 5

ac 2  1

here K = +

Hence we are able to compute
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=

++ (SZL - + 2)¢2

The characteristic equation of Q is

+ ;'2 ) + 1-  2 1 + i

(3.28) det (Q - XI) = 2 + 1 " + 1

CL

Let the two roots of f6 (X) be X1 (6) , 2 , we choose the

indices of Xi(6) such that Ixi(6)1 >_ X2 ()I It is easy to see

that (6) is a continuous function of 6 for i = 1,2

To continue our argument, we have to make a reasonable assumption.

Assumption:

jXi(1)j # 1 for i = 1,2

Remark:

Without the assumption, turnpike property might not hold at 6 = 1

(undiscounted case).

From (3.28), we have A1 (i) A2 (1) = 1 , this, with the assumption

above, gives us

Ix 1 W i > Ix 2(1)1

by (3.28) again, we have

1(3.29) ,1 (6) X2 (6) t > 1

In order for the existence of 6' that satisfies (A), 6' has to
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satisfy the following conditions

(a) for 6' < 5 1 X(6)I > 1 > IK2(5)i

(b) for 5 = ' 1(5)I > !X2(6) = i

(c) for 6 < 6' 1(6) >i 2 ( )J 2 1

(3.29) and (b) imply that AI(1') and X2( ') cannot be complex conju-

gates hence X2(V) must be +1 or -1, this gives us way to compute 6'

Plug ±1 in (3.28) and solve for 6 , we get 6+ , 6 as follows

U(l + a)011' + (l + B) '

S(l + )9i' + (1 +

(- l) '' + (O - 1) '
6 = - ) !'  + 0 - 1) ,O~

It is easy to check that

0<6 <1 and -1< 6+ <0

hence 6' - 6 and (A) is proved.E

Backward argument for the interior case is similar to that of the

boundary case. First, we let T be the smallest T such that

statement (A) is true. Again, we divide it into two cases.

Case 1 TO = 0

By (4) and (5)

S1- 6 - W(o))

c2(c2(0)) = 6 (~6p - W(O))

Since €1l < 0 and ¢22 < 0 , by inverse function theorem, there

11 022<



36

exists two differentiable functions g and h such that c1 (0) - g(W(O))

c2 (0) = h(W(0)) where W(0) is a parameter, hence by (1) and (2), X(0)

can only belong to a 1-dimensional manifold.

Case 2 T0 > 0

By (4) and (5)

l(Cl(rO)) = 7(6 - W(To))

( = - (5P1  - W(To))

We claim W(T0) < W . If not, then we have

Oj(cl(r0) ) < p1 = 4{(cl)

2(c2 (T0)) < P=

This implies c1 (T0 ) > c1  and c2 (T0 ) > c2 . Hence, by (1) and (2),

X1 (T0 ) + x2 (T0) > 1 is impossible. Therefore,

1- 1 (- -

i(cl(T.)) =- (6p - W(T0)) > - (P2 -) p ' )
1 0 2 0 -2 1 1

42(c 2 (T0)) (5-pl - W(T0)) > (5Pl - p

hence c1 (T0) < C1  and c2 (T) < c2 9 (1) and (2) imply

(3.30) xI(T0 ) < xI and x2 (T0) < x2

This gives x1 (TO) + x2 (T0) < 1 . By (3.8), W(T0 - 1) = 0 (4) and

(5) again gives
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91c(T -1)) 6P C p(TO) > I (6-P - W)=p

2(c2(T0- M - 6p2 (T 0 ) > -~(6p, - 14) p p2

Hence c 1(T 0 - 1) < c 1  and c,(T 0 - 1) < c 2 ,from (3.30), (1) and (2)

we have

X T0- 1) < x1and x 2(T 0 -1)< 2

Repeating this argument To times, we could show

x 1 (0) < x1and x 2(0) <x2

Backward argument is now complete.

3.4 An Example

Let A ~ 0) =(.8 0~~

u(c1,c)= (-4c 2 + l5cl)+ (-15c 2 + 15c) 1(C) + O(

The two boundary stationary programs given as before are

(X , C 91) (5 4. .4 0 )

Differentiating u(c1,c2) ,we get

q4I(c 1 ) - -8c 1 + 15

0 C)- -30c 2 + 15
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By theorem 2.2, if (X,C) is an interior OSP, then there exists a

c (0,1) such that

(XC) = X(XI,c I) + (1 - X)(X2,C

and

€I(c l) -8cI + 15 6 + .8
(c2) -30c 2 + 15 6 + .4

Solving the above two equations for X in terms of 6 , we get
14.576 + 5.66A = 17.596 + 12.87 for any 6 e (0,1) . Since X c (0,1) , hence,

there exists ac interior OSP for 6 > 6,-, .566 (6-productivity).

Now we compute 6' as follows

a(a- l)r!' + a( - i) I
6' = .622

(OL - 1) '  + (-61

Hence for 6 e (0.566,0.622) , the interior OSP will be unstable.

3.5 General Z-sector Model

We have seen in the last two sections the instability arguments for

both types of OSPs in the special two-sector model. Most of the arguments

are still valid when we generalize it to any two-sector model. The argument

still consists of the same two stages.

We shall only briefly describe what will happen in each case. For

the boundary OSP, condition (a) and (b) of Theorem 3.1 could be replaced as

follows

(a') 6 < 6 < ja21 - a2 2 1 < 1
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6 + a12 al1

+b 12a a 1  l,(c1 ) >02)6 + a21  22

where Z comes from 6-productivity assumption.

For the interior case, again, we zould set up a two-dimensional

dynamical system, a discount factor 3' could then be obtained similar

to the procedure in the special case. An appropriate backward argument

is needed to show that a stable optimal program can only start from a set

of measure 0. We will not go into the details here.

ft
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