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ABSTRACT

It is shown in our model that there are two types of optimal stationary
programs--boundary type and interior type. There exists a critical dis-
count factor &' for each type of optimal stationary program such that
when the discount factor & is less than §6' , the corresponding optimal
program will be unstable. Examples are given to demonstrate this.

——




e ates 7% VO

i3 o T W

5T MRS e -

T

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION .
CHAPTER 2: THE MODEL AND OPTIMAL STATIONARY PROGRAM .
2.1 The Model . . . . .

2.2 Optimal Stationary Program . . . . . .
2.3 Existence of Competitive Prices

CHAPTER 3: STABILITY ANALYSIS OF AN OPTIMAL STATIONARY PROGRAM
3.1 Imtroduction . . . . . .+ + « . o 4 0 e e 0
3.2 1Instability Property of Boundary OSP . . . . .
3.3 Instability Property of Interior OSP
3.4 An Example . . . . . . . « . .
3.5 General 2-sector Model . . . . . . . . . . . .
REFERENCES . . . .

Page

23

23
24
30
37
38

40




CHAPTER 1

INTRODUCTION

We started to work on this paper with the interest of studying the
sensitivity analysis of a convex programming problem over infinite
horizon with discounted utility. It turns out that in our simple
model we are able to find some conditions such that if these conditions
nold, the optimal stationary programs will be unstable. Sutherland [7]
gave a similar example in his thesis, but it is not easy to interprete.

There have been discussions of how the optimal program can be a
continuous function of the initial stock that it starts with, under
a suitable topology defined on the space of all feasible programs.
Takekuma {8] proved it in the case of weak* topology, but that is not
sufficient to show the stability property of the steady state. We
need a finer topology like the one induced by L_ norm. Araujo and
Scheinkman [1] showed that this is indeed possible under the condition
that the steady state lies in the interior of the technology and the
utility function satisfies some dominant diagonal property, which is
needed for applying the implicit function theorem in the proof. Yet
we know very little about the real meaning of these conditions.

Evers [2], in a model similar to ours but with linear utility function,
proved that every optimal stationary program is stable by showing that
the optimal program is a continuous function of the initial condition
in the sense of L_ norm, but he made an serious error in his proof.
Our result could be served as an counterexample to his theorem.
Nevertheless we are benefited from some of his ideas.

In a different approach, Scheinkman [6] proved that for the
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discount factor ¢§ close enough to 1, stability property holds, but
we still don't know the behavior of the optimal program for & away
from 1. The examples we present in our paper show that when ¢ is
less than some critical discount factor &' , which is less than 1,
the optimal stationary program will be unstable. We have shown this
for each type of optimal stationary programs as will be defined in
the next chapter. For more references concerning this problem, see
McKenzie [3].

Also included in this paper are some interesting results about the
total number of optimal stationary programs in our model. We show that
the total number has to be odd; and under a special condition, it is in
fact unique. Because we try to make this paper as self-contained as
possible, we have confined our result to a 2~sector model, even though
some theorems in our paper can actually be generalized to n-sector model
without much effort. We will try to expand some of them in the future
when it is worthwhile to do so.

In Chapter 2, we give a discription of the model and study the
behavior of the optimal stationary program. We have shown that there
are two types of optimal stationary programs--boundary tvpe and interior
type, we have also shown that the existence of competitive prices for
any optimal program can be obtained from Weitzman [8]. Chapter 3 shows
tnat instability theorems for both types of optimal stationary programs

could be obtained by designing a two-stage argument--forward argument

and backward argument.




CHAPTER 2

THE MODEL AND OPTIMAL STATIONARY PROGRAM

2.1 The Model j

In our model, there are two production goods and one resource which ‘
is labor. The technology consists of two activities, each of which
produces exactly one production good but could use various amounts of !
production goods and labor. It is natural to assume that the ith activity
produces the ith production good. 1In each period, the production goods
produced in the previous period are used in two ways. Some for pure
consumption and the rest for production of production goods for the next
period. Utility function is assumed to be a concave Cz-differentiable
function of the production goods consumed in each period and is assumed
to be the same for every period. We also assume a constant supply of

labor in each period, which is one, and also a constant amount of labor

TS A

used to operate activity j at unit level, which is also omne. The

objective of this model is to choose a feasible program which maximizes

the discounted sum of future utility.

To formulate the model mathematically, we will need the following

notations.

Let § ¢ (0,1) be the utility discount factor and

e s e ey o

where aij denotes the amount of good i used to operate activity

j at unit level.




2
Utility function u(cl cz) defined on R; is assumed to be

5
strictly concave and C -differentiable and, furthermore, uy and 4
C . _ Ju .
u, are assumed to be positive, here u; S i=1,2
- i

The model can now be given as follows:
Given an initial stocks X(0) , find a program (X(t),C(c))t=O

which solve the following optimization problem.

(=]

max ) §Tu(C(t))

t=0
Subject to:
(2.1) AX(t + 1) + C(t) < X(v)
(2.2) eX(t +1) <1
X(t) >0 ¢t =1,2,
c(t) >0 t=0,1,2,

Note: e = (1,1)
We will need the following definitions.
Definition:

A program (X(t),C(t)):=O starting from X{(0) <s feasible if it

satisfies the above constraints.

Definition:

A feasible program is optimal if it maximizes X:=l 6tu(C(t)) over ﬁ

the set of all feasible programs starting from the same initial stocks.




Definition:

A feasible program is an ortimai statiorary rrogram (0SP), if it is
optimal and (X(t),C(t)) = (X,C) for t > 0 for some constant (X,C)
Definition:

A feasible program (X(t),C(t)):=O is competitive if there exists

a set of nonnegative prices (P(t),w(t))z=0 where P(t) = (P1(t),P2(t)) 3

Ri and W(t) ¢ R+ , which satisfies the following constraints.
(2.3) P(t)Aa + W(t)e > P(t + 1)
(2.4) P(t) > 6§ 7u(C(t))
(2.5) C(t) (B(r) - 3°Tu(c(t))) = 0
(2.6) X(t + 1)(P(L)A + W(t)e = P(t + 1)) =0
2.7 P(t)(X(t) - AX(e + 1) - C(t)) =0
(2.8) (1 -eX(e+1) =0
(2.9) P(E)AX(t + 1) >0 as t >«
We begin with the following existence lemma.
Lemma 2.1
Given any stocks X(0) , there exists an optimal program starting
from X(0)

Let (X(t),C(t)):=O be any feasible program starting from X(0)

[
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(2.1) implies C(t) < X(t) , this together with (2.2) shows that
(X(t),C(t)):=0 is a bounded sequence. Since u is C2~differentiab1e,

there exists M > 0 (2.10) such that

(2.10) ju(C(t))| <M for all t
We define
L(X(0)) = sup ' T dru(c(r)) (X(£),C(t)) o, 1is any feasible program‘
t=0

starting from X(0)

By (2.10), we have

I sfucen| < I sf= s
t=0 t=0

hence

M

v | < 77—

o

Convergence of 2 GCM implies, for any el > 0 , there exists
t=0

T, > 0 such that

1
Lt
(2.11) l §™ < e for t, > T
1 0 1
t=t
0
By definition of U(X(0)) , there exists a sequence of feasible
programs (Xn(t),Cn(t)):=0 n=20,1, ... starting from X(0) , such
o
that Z Gtu(Cn(t)) converges to U(X(0)) as n + = or for any
t=0

€y 2 0 , there exists N2 > 0 such that




(2.12) T stu(c(e)) - u(x(0))
t=0

< EZ for n > N2 .

We know {(Xn(t),cn(t))}:=l is a bounded sequence for each t . By
diagonal converging process, we can find a converging subsequence
converging to a limiting program, (Xm(c),cw(t)):=O . It can be easily

shown that (Xm(t),Cw(t)):=0 is a feasible program. If we can show that
z étu(qm(t)) = U(X(0)) , then (&w(t),cw(t)):=0 is optimal and we are
t=0

done. By the property of diagonal converging process, given any T > 0

and €4 > 0 , there exists N3 > 0 such that

T T
(2.13) I osfucc_(o) - T sfuc_(en] < e, for n >N
t=0

£=0 3

hence if we choose T > Tl , then by (2.11), (2.12) and (2.13), for n

large enough we have

o«

I sfuc () - U(X(0)>‘
t=0

I sfuc () - T sfucc <t>>! +
=0 t=0 n

<

pod |
T s%u(c () - ux(o))
£=0 n

T
sfu(c () - 1 sfuce (t))} +
t=0 t=0 "

<

i ~1

T sfuce ()
t=T

° t
+ §Tu(C (el + ¢
tZT n 2

<2, te

1T et

3 -

Since €1°€2€5 can be made arbitrary small, this concludes our

proof.




The following lemma gives a sufficient condition for an optimal
program.
Lemma 2.2

Any competitive program is optimal.

Proof:

Let (i(t),E(t)):so be any competitive program. By definition,
there exists a set of nonnegative prices (P(t),W(t)):=O satisfying
(2.3)-(2.9). Let (X(t),C(t)):=O be any feasible program starting from

the same initial stock. Given any T > 0 , we can derive the following

T T
oS u(C(e)) - ¥ &u(c(r))
t=0 t=0
T _
> Z §7Vu(C(t)) (C(t) - C(r)) (by concavity of u)
t=0
T -
> 1 P(o)(C(t) - c(t) (by (2.4) and (2.5))
t=0
T - -
> ¥ P(e)(R(t) - AX(t + 1) - X(t) + AX(t + 1)) (by (2.1) and (2.7))
=0

P(0) (X(0) - X(0))

T-1
+ ) (P(t+ 1) - P()A)(X(t + 1) - X(t + 1))

t=0
+ P(T)A(X(T + 1) - X(T + 1)) (rearrangement of terms)
T-1
> ) W(t)e(X(t + 1) - X(t + 1))
t=0

+ P(T)A(X(T + 1) - X(T + 1)) (by (2.3) and (2.6))




e

Vi we

1

s L
9
T-1
> ) W(E)(L -~ eX(t + 1))
t=0
+ P(MAX(T + 1) - X(T + 1)) (by (2.8))
> P(T)A(X(T + 1) - X(T + 1)) (by (2.2))
> -P(T)AX(T + 1)
Now let T tend to = , (2.2) and (2.9) imply that =~P(T)AX(T + 1)
would go to 0. Hence
o - -]
§osfu@(e)) - I stucc(e)) >0 .
t=0 t=0
which means (i(t),a(t)):=o is optimal.
2.2 Optimal Stationary Program
In this section, we will study the optimal stationary programs in
our model. We need to restrict our model to be 46-productive, whose
definition is given as follows.
Definition:
A 1is said to be 6-productive, if there exists X > 0 such that
(I - A)X >0 . In the case 6 =1 , we say it is productive.
It is well known that A is &-productive if and only if &I - A
is Leontief.
Characteristically, we will show that there are only two types of
OSPs, they are defined below.
Definition:
An OSP (X,C) 1is called a boundary OSP if either ¢, =0 or «c, =0 .

3 e
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and ¢

It is called an interior OSP if both 2

<y are positive.

To explore these two types of OSPs, we need to establish a necessary

and sufficient conditions for an OSP.

Lemma 2.3

(X,C) 1is an OSP if and only if there exists (Pé’”5) > 0 such that

the following conditions are satisfied

A-1 e)(X)

@1 @ 78I < (%) (prima)

X>0 C>0

2.15) ) (o) (P LT ) 2 (pde)  (duad

2.16) @ (g u((3) - (2T §)E) =0

(complementarity)
A - 4§81 0 X
l(pé’wé)( e o) (Vu(C))I(C) =0

Theorem 1 in Hansen and Koopmans [3] gave a necessary and sufficient
condition for any OSP which is more than reproducible (see the definition
on page 494 in {3]). But Lemma 6.1 in Jones {4) shows that any OSP in
our model is more than reproducible. Lemma 2.3 can then be obtained by
rewriting Theorem 1 in [3] in our terminology. We will not give a formal

proof here.

Note: (1) 1If (X’C’Pg’wg) satisfies (a), (b) and (c) in Lemma 2,3, then
the stationary program (X,C) 1is competitive and is supported

by (B(£),W(E)) = 6 (py,w))

(2) By assumption on u and Lemma 2.3(b), we have Pg 2 Vu(C) > 0 ,

hence (c) implies
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(2.17) (A-I)X+C=0.

Lemma 2.4

Let (X,C) be an OSP, then X + x, = 1, here X = (xl,xz)

Proof:

If x, + x

1 5 < 1, then by (2.16), w, =0 . (3.15) implies

8
p6(61 - A) <0 and Ps 2 Vu(C) > 0 . By assumption, 61 - A is a
Leontief matrix, this implies that (§I - A)“1 > 0 hence Pg =

ps(él - A)(S8I - A)_1 < 0 , which is a contradiction.@

We need to make one more assumption.

Assumption:

A is indecomposable, i.e., a and a have to be positive.

12 21

From Lemma 2.4 we can see that for the model to have boundarv OSPs,
they should come from the solutions of the following two systems of

equations

‘(A-I)X+C=O

(I) I x1+X2=l

Cl =0

‘(A -IDX+C=0

(11) I Xy + Xy = 1
c, = o .

We can compute their respective solutions as follows

.-~

A - v




12
l1-a a
1 .1 22 21 det (A - 1)
(X’C)=1+a ST T e A T+s - , 0
21 22 21 22 21 22
” a 1-a
x2.c2) = ( 12 ’ 1L, dec (a-1) )}
l+a,-a,; 1+a,-a, 14a,-2,
, 1.1 2 .2 .
The following theorem tells when (X,C7) or (X°,C7) will be
an OSP.
Theorem 2.1
11 ueh s+a, - ay
(a) (X,C") 1is an OSP iff ) e ~
) 812 7 %11
u. (0) § + a,, - a
®  &,ch is an 08P iff - < g2 22
u“(c) 812 7 25
Proof:

Since A is assumed to be indecomposable and productive, it
implies Xl >0 and ci > 0 . Therefore, by the complementarity conditions

in (2.16), (pé,wé) can be uniquely solved and we have

§+a ., -a
1 1 1 12
Pgo¥s) = (ul(c )

8§+ a '8+ a

_ a11 ul(Cl) det <6I-_3A) ul(Cl)).
21 22 21 22

For (pé,wé) to satisfy (2.15) and (2.16), it is necessary and sufficient

that

ta;,-ag

21 T 822

O

— ul(Cl) > u,(0)

(2]




1
+ -
ul(C ) . § 3y, " a5,
u2(0) ~ 06 + aj, T 2y
this proves (a). (b) can be shown similarly.l

From the proof of the above theorem, we also observe that the
nonnegative vectors (pé,qé) obtained for (a) and (b) are uniquely
. . sl =1 52 =2 1.1
determined. We will denote then as (P ,W") and (P°,W°) for (X7,C7)
2 2 ,
and (X",C”) respectively.
To find interior 0SPs, it turns out that they have to be convex

combination of the boundary OSPs obtained above.

Theorem 2.2

A stationary program (X,C) is an interior OSP iff there exists

A e (0,1) such that

(a) (x,0) = - nEheh +ax?ch

o) ul(C) N § + 351 7 359 .
uz(C) § + 31, 213
Proof:
"sufficiency"

It can be shown that (a) and (b) imply (X,C) 1is feasible and is

det (8I - A)
> 5+ 321 - a5,

Lemma 2.3, hence (X,C) 1is optimal. Since C is positive, (X,C) is

supported by (ul(C) . uZ(C) ul(C)) in the sense of

an interior OSP.
"necessity"

Let (X,C) be any interior OSP. By Lemma 2.4, xl + x2 = 1 , hence




we can eliminate Xy, X, from (2.17) and write c, as a decreasing

function of ¢y - Since ¢y < ci , it implies there exists * ¢ (0,1) -j

such that ¢, = (1 - X)ci . Using (2.17) agaim implies (X,C) =
a1 - x)(Xl,Cl) + X(XZ,CZ) is the unique stationary program having that

property, this proves (a). (b) follows immediately from (2.16).18

Combining Theorems 2.1 and 2.2, we will now be able to count the

total number of OSPs.

Theorem 2.3

Except in degenerate cases, the total number of OSPs is odd.

A

Proof:

—

To compute the total number of O0SPs, Theorems 2.1 and 2.2 suggest

u

that we look at :i as a function of X . We already know that there
2

AP

are only two boundary OSPs. We now look at each possible case that

could happen. t

2
Case 1 Only one of (Xl,Cl) and (X“,CZ) is an OSP.
u
By Theorem 2.1, both endpoints of the graph of ;l are either
2
6 + a, - a

§ + a - a

12 11
u

. 1 .
Hence, except in degenerate case, the graph of . can cross that line
2

only even number of times. Which by Theorem 2.2, means even number of

above or below the horizontal line y = simultaneously.

interior OSPs; therefore, the total number of O0SPs is odd. See Figure 1.

("o" in the graph shows where the 0SPs are located.)

Case 2 Both (Xl,Cl) and (X2,C2) are either OSPs or both are not.




(2)1 NI

(DT D14

-t

(e)1 A4N914

W, _ 21, ,

=}

—4t

i, _ 17, + 0
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!
This implies one and only one endpoint of the graph of I is above
2
S *ay T 3 i
the line y = < = Hence, except in degenerate case, the graph
6 + a - a
u 12 11
of ;l could cross that line only odd number of times. Hence, the total
2

number of OSPs is again odd. See Figure 2.W

We also find the following uniqueness theorem.

Theorem 2.4

Assuming that both production goods are complementary i.e.,
ulz(C) > 0 for all C > 0 , then there exists an unique OSP~-either

a boundary OSP or an interior OSP.

Proof:

ol
Let C = (L - A)CF + ac® define

u, (C) ul((l - A)ci , Xcg)

©) 1 2
u2 uz((l - A)c1 , Acz)

£'()) would then be

1 1 2 1
3 |8y(0 (~uy; ©@c] + 0, (©@e5) = 0@y ©e) + “22(C)°§)] ’
(UZ(C))
Y1
hence, f'(A) >0 for A ¢ (0,1) . Therefore, the graph of = is
2
S+ ay; - a,,
increasing. This implies it either crosses the line y = 5+ 2 - a ~
12 11

exactly once or lying entirely above or below that line. In each case,

there is only one OSP. W

— ——




(d)¢ 2No14

(e)z TIN914

el

T

T, _ el

e+ 9

—‘\nN NS

2, _ 1¢

B 49



13

Corollarv:

If u 1is separable, then there exists an unique OSP.

In Chapter 3, we will assume that utilityv is separable. Hence we
will be dealing only with a single OSP--either a boundary OSP or an
interior OSP.

The following example shows that if the condition in Theorem 2.4

is violated, then it is possible to have more than one OSP.

Example:
0 4 .
Let u(cl,cz) = log (l.3c:l + c2) + O.Ol«.l and A = (.8 0 ) , then

«heh = (3.5, %0, 0)

2 .2 2 5 3.4
X ,C7) = (_7-’790)“—7'—) .

u(cl,cz) can be shown to be strictiy concave, but

v . = -1.3 <0 .

12 2
(1.3¢; + ¢,)

By Theorem 2.1, if & satisfies 1.3 + 0.0l3ci > g

+ .8
—*:—TZ > 1.3 + .01lc

[SS I 2

then both boundary stationary programs will be optimal. It can be easily

checked that the above constraint for & 1is feasible.

2.3 Existence of Competitive Prices

In this section, we will show that there exists a set of competitive
prices for any optimal program. Weitzman [9] established a duality
theorem in an infinite horizon convex programming to characterize an

optimal program. It turns out that his result .an be adapted to our model.




19
First, we introduce the following notations
0
N A I 3x4 ~ 3
a= (0 ) er] b-(O);R_’_
1
X,
- I 0\  _3x4 D SU o3
B=(5 o) c®; x=(¢)={x,) v
C
An induced utility function u of u 1is defined for all X ¢ Ri such
tnat u(X) = u(C) . To fit our model into that of Weitzman's, we define

a technology Q 1in each period as

Qt = {(g,u,h) | g >AX -b, u< dt—lu(X) and h < BX

for X>0, g>0 and h > 0}

. f e ey o o, .
It is easy to see that Q satisfies conditions 1 - 4 in [9], but not
. A s o . cr s
the reachability condition, i.e., 5. Careful reading of Weitzman's
- o, .
proof reveals that condition 5 is needed only to show that for T > 0

QT(X) is finite for all X > 0 . Where, in our terminology, ¢T(X) is

defined to be sup Z 6tu(C(t)) over the set of all feasible programs

t=T+1
(!(c),C(t)):=T+l starting from some initial stock. But the proof of
xA
Lemma 2.1 has shown that Z dtu(C(t)) is always bounded, hence

t=T+1

@T(X) is finite. Hence °5 is not needed in our model. Weitzman's
theorem can be restated as follows:
Let (ut,h(t)):=l be an optimal program with initial stock gg >

~ -}
then there exists nonnegative prices (P(t))t-l such that




(2.18) u + P(DR() 2 u+ PR (ggou,h) € Q

1

(2.19) u_+ P(c)h(t) = P(t = Dh(t = 1) > u+ P()h - P(c - 1)

(gyu,h) ¢ Q for t > 2

(2.20) lin__ P(0)h(t) = 0 .

Let g(t) = (P(t),Ww(t)) ¢ Ri where P(t) ¢ Ri and W(t) ¢ R+ .

Theorem 2.5
Any optimal program is competitive.

Proof:

Let (X(t),C(t))t_O be any optimal program with initial stock X(0)

for our model, then the program (6tu(C(t)),BX(t)):=O with initial

stock gy = (XES)) is optimal for Q , where X(t) 1is defined to be
(X(t),C(t - 1)) . Hence there exists a set of nonnegative prices
(P(c))7., such cthat (2.18), (2.19) and (2.20) hold. We will show that

(P(t)):=l is the set of competitive prices that we are looking for. We
will show it in two cases.
Case 1 t=1

(2.18) can be restated as follows

u(C(0)) + P(1)BX(1) > u(X) + P(1)BX for all X > O

such that &g > AX - b . By Kuhn-Tucker Theorem, there exists P(0) > 0

such that (2.3) - (2.9) hold for t =0 .




to
P

Case 2 t>2

(2.19) implies

557 1u(c(e - 1)) + P(e)BX(t) - P(r - 1)BX(c - 1)
(2.21) - - - - - .
> u_+P()BX - P(r - 1)(aX - b) for all X >0 .

How BX(t - 1) - AX(t) - b + 2(t ~ 1) for some Z(t - 1) > 0 , (2.21)
becomes

st Lu(c(e - 1)) + P(e)BX(t) - P(t - 1)AX(t) - P(r - 1)2(t ~ 1)
(2.22) - - - .-
> u, + P(£)BX - P(t - 1)AX .
Plug in (ut,i) = (ét-lu(c(t ~ 1)) , X(t)) we can show P(t - 1)Z(t - 1)
= 0 , which is just (2.7) and (2.8) for t > 1 . The first order maximum
conditions for (2.22) then gives (2.3) ~ (2.6) for t > 1 . (2.9)

follows easily from (2.20).H

Definition:

(X(t),C(t)):=0 is called a stable optimal program if it is optimal

and (X(t),C(t)) converges to an OSP as t tends to <« .

For the purpose of stability analysis in the next chapter, competitive

prices for a stable optimal program need to possess the following property.

Theorem 2.6

Let (P(t),W(t)):=0 be any competitive prices for a stable optimal

program (X(t),C(t)):=0 , then
(675 R0 WEN T,

is a bounded sequence.

—x

vE




Proof:

Since A is assumed to be indecomposable, (X(t),C(t)):=O can

never be stable if xi(t) = (0 for some i and t , hence (2.6) implies
(2.23) P(t)A + W(t)e = P(T+ 1) =0 for t >0 .

Without loss of generality, we assume that (X(t).C(t)) -~ (Xl,Cl)

as t - = , hence there exists T > 0 such that cl(t) >0 for t>T.

(2.5) then implies pl(t) = étul(C(t)) for t > T , hence

{6_tpl(r.)} is a bounded sequence. (2.18) and indecomposability of
t=T+1

A imply that {G—t(p(t),W(t))}t=0 is a bounded sequence.l
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CHAPTER 3

STABILITY ANALYSIS OF AN OPTIMAL STATIONARY PROGRAM

3.1 Introduction

In this chapter, we study the instability property of a special two-
sector model. We choose this special model for it's simplicity. We will
also discuss how it can be extended to any two-sector model at the eud.

We will need separate arguments of instability property for each tvpe
of OSP. For each type, we will show that there exists a critical discount
factor &' such that when & < &' , the OSP is unstable. In the case of
boundary 0SP, &' depends only on A , while.for the interior OSP it also
depends on the utility function. We assume that the utiiity is separable,
hence by the corollary in Chapter 2, there exists an unique OSP.

The instability argument is composed of two parts. First part shows
that for 6 < §' , any stable optimal program would have to lie on the
turnpike eventually, we call it the forward argument. Second part shows
that for an optimal program to have the above property, it can only start
from a set of measure O , this is called the backward argument.

Example will be given toward the end of this Chapter.

We now describe our special two-sector model and rewrite the con-
straints and competitive conditions again. Let A = (g g) and
ulegsey) = ¢,(ey) + ¢,(cy)

Primal constraints are

(3.1) axy (€ + 1) + ¢p(€) = x(¢)
(3.2) By (t + 1) + c,(t) = x,(t)
(3.3) x (6 + 1) +x,(c+1) <1

x(t) , C(t) >0 for t >0

i



modified dual constraints are

(3.4) ssz(t) + W(t) = 551(t + 1)
(3.5) ap, (t) + W(t) = 3p,(c + 1)
(3.6) p1(t) 2 91 (e ()
(3.7) Py(t) > 0)(c, (1))

P(t) , W(t) >0 for t >0

and the complementarity conditions are

(3.8) W(E) (1 = x (t+ 1) = x,(t + 1)) =0
(3.9) ¢ (B (py(t) = 01(c (£))) =0
(3.10) e, (£) (P, (t) = 65(c,())) =0 .

Note: Here (P(t),W(t)) are "present' prices, the "true'" competitive

prices are s5(B(r),H(c)) .

3.2 Instability Propertv of Boundary OSP

From Chapter 2, we know that there are two boundary OSPs in the
two-sector model, namely (Xl,Cl) s (XZ,CZ) . Without loss of generality,
we will only show the case when (Xl,Cl) is an OSP.

We state the main theorem as follows:

Theorem 3.1

(Xl,Cl) is unstable if the following conditions are satisfied

(3.11) (a) @ < vag <6 <B <1
et
41 (e1)
1\71 § + 8
(3.12) (b) ¢é(0) et

. B — __,,,“_J.




Note: (1) (b) implies that (Xl,Cl) is an OSP.
(2) Symmetric condition of (a) for (XZ,CZ) is
B< Va8 < 6 <a <1,
(3) & > Yag 1is the §-productivity condition
(4) Condition (a) can be better understood in the n-sector
model, the critical discount factor &' =8 is actually

an eigenvalue of a reduced matrix.

To prove Theorem 3.1, we need the following lemma, which is due to

David Gale.

Lemma 3.1

Consider the following recursive relation

(3.13) X = -mx + b+ ¢

t+1 t t
where m > 1 and letl <eg for t>0. If
(3.14) lxo . l = then |x_| - =
m+ 1 m 1 t
Let 2z _=1x_- , then (3.13) becomes z = -mz_ + ¢ SO

t t m+ 1 t+l t t

we have

(3.15) Z_m(zt{ - ¢ for all t , from (3.14).

241

We have m]zol - € > [zol , So there exists m > 1 such that
mlzol - € 1.&1201 . Applying this repeatedly to (3.15) shows that

Iztl z_r;ztlzol so Iztl + @ , hence lxtl - W
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Forward argument of Theorem 3.1 is given in the following lemma.

Lemma 3.2

Given any optimal program (X(t),C(t))t=O starting from an initial
stock X(0) , if (X(t),C(t)):___o converges to (X1,cl) as ¢t tends

to « , then there exists T > 0 such that

(a) (X(t),c(t)) = (x,¢h) for to>T
(b) Let (§(t),ﬁ(t)):=o be any competitive prices (modified) for

(X(E),C(e)) 7o + then (B0, F(®) = BLED = (5;(e])

§+ 8 ¢i(ci) ’ QSEEL%EE:“AL ¢i(Ci)) for t > 7T .

Proof:

Theorem 2.5 assures the existence of competitive prices

(B(e),W(e)) ) for (X(£),C(e))_, . Since

(3.16) (xl(t),xz(t),cl(t),cz(t)) - (xi,xé,ci,o) as t + @

there exists Tl > 0 such that cl(t) >0 for t > Tl . (3.9) implies

El(t) = ¢i(c1(t)) for t > Tl . Continuity of ¢i and (3.16), then

gives

(3.17) P, (6) » Ei as t @ .

Substracting and rewriting in (3.4) and (3.5), we get

Pt + D =-E5 45+ +55 (0

(3.18)
8 - a)-1
=-3 pz(t) + (l + 6)pl + €,




where
= a - ay-l
ep = by (£ + 1) + 5 p(0) - (1+3)p) .

(3.17) implies € 0 as t - = ,hence for any ¢ > 0 , there exists

T, > T, such that letl <e for t>T, . By Lemma 3.1 we have

52(t> -

since otherwise }Ez(t)} + ® as t + @ , contradicting to Theorem 2.6.

Therefore,

- b _-1_68+a 1 i}
(3.19) pp(t) > B,, "27%+s ¢1(cy) as €~
g

Continuity of @é and (3.16) gives
¢é(C2(t)) +¢,(0) as t- .

By (3.12) and (3.19), there exists T3 3-T2 such that

Ez(t) > ¢é(cz(t)) for t > Ty,

this implies, by (3.10), cz(t) =0 for t > T3 . Also since Wl >0,

there exists ’I‘4 > T3 such that

xl(t) =21 - xz(t) for t > T4 . ;‘
{

By using this in (3.2), it gives

4

xl(t + 1) = % (1 - xl(t)) for t > T
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< 4
but this recursion diverges unless xl(t) = El . It follows that
(X(t),c(t)) = (Xl,Cl) for t > TA since ci >0 , it implies that
= 1
= ' = .
Pl(t) Ql(cl) for t > TA . From (3.18), €, 0 for t > Ta . This

implies, by Lemma 3.1, Bz(t) = 5; , hence we have

(3, (1),5,(0),H(6)) = (B,53,@) for ¢ >T,

this completes the forward argument.@

We now complete the proof of Theorem 3.1 with the backward argument.

Proof of Theorem 3.1:

Let TO be the smallest T that satisfy (a) and (b) in Lemma 3.2.

We will prove the theorem in two cases.

Case 1 T0 =0

We claim that cz(O) has to be 0; by definition, it implies that
(XlCl) is unstable.

If c2(0) > 0 , then

(3.20) P,(0) = 93(c,(0)) < ¢5(0)

for any ¢ > 0 , we can find a neighborhood N(Xl,Cl) of (Xl,Cl) 50

small that

IBl(O) - Bi] - 'wi(cl(o)) - By <k

But by (3.20) and substracting of (3.4) and (3.5), we have

-1 - S R -1 L, -1 -1




be choosing € small enough, (3.21) would imply 65; - uai > 65} - BE% ,
which is impossible, since by (3.4) and (3.5), we know 65% - aBi =

651 - SE; = ﬁl hence c2(0) 0 , this proves our claim.

Case 2 TO > 0

Again, we claim c2(TO) =0 . If not, then from (3.1) - (3.3), we

nave cl(TO) < ci , this implies, by strict concavity of ¢l ,

l) =1

P(Ty) = ojc (1)) > o1(e]) = B) -

By similar argument as in (3.21)
-1 _ -1 _ -1 - -1 -1
§p, = apy 2 8py - ap,(Iy) > &p) - 8P,

this is again impossible, hence we have shown cZ(TO) =0 . Now by (3.3)

and the definition of TO , we have

' 1
(3.22) Cl(TO) < Cl ’

hence (3.1) and (3.2) imply

(3.23) %, (Tg) < xi and  x,(T,) = x; X

(3.22) implies B (Ty) = ¢J(c,(T)) > ] (cl) = p], eliminating W(T,)

from (3.4) and (3.5) gives
- 1 - -1 -1 1 -1, =1 =1y _ -1
(3.24)  py(Ty) =3 (apl(To) + (6p1 - sz)) > 8 (apl + 6p) - épz) =P, -

By (3.8) and (3.23), we have ﬁ(ro - 1) = 0 hence (3.4),(3.5) and (3.24)

imply
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- § - § -1 1 -1 =1 -1 _ a1
P1(To = 1) = 3 Bp(Tg) 25 Py =5 by + ) > 7y = o ey
and
’
- 5 - §-1_1 -1 -1 . ‘
Py(Ty = 1 =2 P (T 25 9] =35 (305 + W | > B, > 950
This would give us
c, (T, = 1) < c1 and ¢ (T. -1) =0
1Yo 1 2Y00 ,
:
!.‘
hence by (3.1), (3.2) and (3.23) ‘
X, (T, = 1) = ¢, (T, - 1) + ax.,{T.) < cl + axl = x
1*%o 170 2'%0 1 2 1
% (T, = 1) = ¢ (T, - 1) + 8x, (T) < Bx> = x& . ;
24%0 240 1Yo 1 2 3

Do P PN

Repeating the above argument TO times, we could show xl(O) <X
and x2(0) <Xy, which implies, of course, that (Xl,Cl) is unstable.

The proof of Theorem 3.1 is now complete. B

3.3 Instabilitvy Property of Interior OSP

i e e AR, v

Let (R,E) be an interior OSP and let (F,ﬁ) be its modified

competitive prices as shown in the proof of Theorem 2.2. As in the
boundary case, we will have forward and backward arguments in the
analysis of instability. The following statement constitutes the
forward argument. We will need a reasonable assumption, which will be

given in the process of proving the statement.

(A) There exists a &' ¢ (0,1) such that if the discount factor 3§

satisfies vaf < & < &' ,» then for any stable optimal program, there

exists a T > 0 such that




(a) (X(t),c(t)) = (X,C) for t >T
(b) let (-l;(t).;wl(t))u:a0 be any modified competitive prices for

(X(£),C()) [y -+ then (P(t).W(t)) = (B.) for ¢ > T .

Proof of statement (A):

First, we note that, by (3.9) and (3.10) it is legal to assume that
(X(t),C(t),P(T),W(t)) 1is any optimal program that converges to
(X,E,?,ﬁ) . Since both C and W are positive, it implies that there
exists Tl > 0 , such that C(t) and W(t) will be positive also, for

t>T hence the following equations should hold for t > T

1> 1

o) mxz(t +1) + cl(t) = xl(t)
(2) Bx (t + 1) + c,(t) = x,(¢)
(3) xl(t +1) +x(t +1) =1
(4) 6o;(c (t + 1)) +W(t + 1) = 8d,(c,(t))

(5) 6¢é(c2(t + 1)) + Wt +1) = a¢i(cl(t))

(1), (2) and (3) imply

scl(c + 1) + acz(t + 1) + cl(t) + cz(t) + aB

(3.25)
= axz(t + 1) + 3xl(t + 1) + cl(c) + cz(t) =1.

(4) and (5) imply

B3 (c,(8)) = adl (e, (1))
(3.26)  9;(c (e + 1)) - 9o(c,(t + 1)) = 3 .

We can use (3.25) and (3.26) to describe the optimal program. If
(X(t),C(t)) 1is given, then, by (3.25) and (3.26) we can solve for

C(t + 1) in terms of C(t) , also from (1) and (2) X(t + 1) can be




found in terms of (X(t),C(t)) . Hence a stable optimal program for
t > T can be obtained by solving a dvnamical svstem in (X(t),C(t))

We first need to check the existence of C(t + 1) in (3.23) and
(3.26).

Jacobian of the system formed by (3.25) and (3.26) is

8 a
= - ' - L]
det e ot en) 8%, (c,) a9y (cl) > 0
1 %4 2 '€2

by inverse function theorem, the existence of C(t + 1) 1is guaranteed.

Before we go on, we make the following notation changes. We let

(X',c") = (X(e¢ + 1),C(t + 1) and (X,C) = (X(t),C(t)) . The solutions

to (3.25) and (3.26) can then be expressed as

= cl(cl,cz)

1O
1

Ez(cl,cz)

By (3), (1) and (2) can be rewritten as

eliminating xi from (1') and (2') gives

LB-a, _8 g -
(3.27) x " +1 g = t(Xl,Cl)

therefore, the dynamical system we have described above can be reduced

to the following 2-dimensional system
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R —

(1 - X = t(xl,cl))

p——
»
=
1
W=

.

—
(2]
= -
"

cl(cl,t(xl,cl))

4

1 ]
axl sxl
Q- 3x1 ocl
aci sc!
3xl 8cl
Y 1
Q a
= ac sc dc
8 -a 1 1 871
o °c, Bcl a ocz

Applying chain rule on (3.25) and (3.26) we can compute the following

equations

3 2
By e
3¢ K 2 5§ "1
1
3¢
_2_ 1/ a8\ 4,
3c, K ( L+ 8 )¢1
1
3¢
1.1 aB Ly
vt e )
2
3¢ 2
__2=_l(¢vv+8__)¢vv
acz K 1 § 2

here K = a¢i' + B¢é‘

Hence we are able to compute
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2 I+

1
a

=1
Jak

a R
- b3

3~" o S5 ) PO
Y (a 7 + (fa - &2 + 23 )vz )

(-¢ + aB)o)’

The characteristic equation of Q is

(o3 +53) +gltsq + 8
a@i' + SQé'

e
ro

(3.28) det (Q - AI) =

)
>
+

£,(2)

Let the two roots of fé(k) be Al(d) s Az(é) , we choose the
indices of ), (8) such that [Xl(é)’ z_ixz(a)( . It is easy to see
that Ai(é) is a continuous function of § for i = 1,2 .

To continue our argument, we have to make a reasonable assumption.

Assumption:

[Ki(l)l #1 for i=1,2.

Remark:

Without the assumption, turnpike property might not hold at & =1
(undiscounted case).
From (3.28), we have Al(l) . Az(l) = 1 , this, with the assumption

above, gives us
] > 1> Pyl
by (3.28) again, we have

(3.29) Al(d) . Az(é) ==>1.

o=

In order for the existence of &' that satisfies (A), &' has to

I P W

——

RNV
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satisfy the following conditionms

(a) for &' <8 <1 1x1(5)l > 1> \xz(ﬁ),
(b) for 3 = 3 A 8] > {28 =1
(c) for & < &' (A ()] 2 [A,(8) 0 > 1.

(3.29) and (b) imply that Al(é') and Az(é') cannot be complex conju-

gates hence Kz(é') must be +1 or -1, this gives us way to compute &'

Plug +1 in (3.28) and solve for ¢ , we get Sy s §_ as follows

a(l + o))" + B(L + B)oy'
T T T F weT + ¥ 8oy

ale ~ 1)e;" +8(8 -~ Doy’
- T G- Dy * (8 - Doy’

It is easy to check that

0<6_<1 and -1< 6+ <@
hence §' = é_ and (A) is proved.B

Backward argument for the interior case is similar to that of the
boundary case. First, we let TO be the smallest T such that

statement (A) is true. Again, we divide it into two cases.
Case 1 T, =0
By (4) and (5)
81(c,(0)) = = (&5, - W(0))
1'71 o 2

' 1 -
05(c,(0)) = £ (§p) - W(D))

Since ¢ll < 0 and ¢22 < 0, by inverse function theorem, there

L gigiea

[ s gl Ao

S WL



exists two differentiable functions g and h such that cl(O) = g (W(0)) ,
c2(0) = h(W(0)) where W(0) is a parameter, hence by (1) and (2), X(0)

can only belong to a l-dimensional manifold.

Case 2 TO > 0

By (4) and (5)

' 1 =
¢l(cl(T0)) = ; (5P2 = w(TO))
' =L 53 -
@2(C2(T0)) = 6 (5p1 W(TO))

We claim W(TO) < W . If not, then we have

81 (e (Tg)) < By = o1(cy)

¢é(C2(T0)) < Pz = ¢é(C2)

This implies cl(To) > El and cz(TO) > 22 . Hence, by (1) and (2),

xl(TO) + xz(To) > 1 1is impossible. Therefore,

' vy = i O i P -W) =0 = ¢'(c
¢1(C1(T0/ = a (sz N(To)) > o (5p2 w) Pl ¢l(cl)

05(cy(Tg)) =5 (5p) = W(T)) > 5 (55, - @) = 5, = 63(3,)

hence cl(To) < ¢ and cz(T) <c., (1) and (2) imply

1 2

(3.30) xl(TO) <x; and x,(Tj) < X, .

This gives xl(TO) + XZ(TO) <1 . By (3.8), W(TO - 1) =0 . (4) and

(5) again gives
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1, .- - -
9,(e  (Tg = 1) §p,(Ty) > 5 (8p, = W) = p;

. 1, .- -
OPZ(TO) > E (5Pl - w) = p2 .

= Rl

Hence ¢ (Ty - 1) < El and ¢, (Ty = 1) < 22 , from (3.30), (1) and (2)

we have

xl(T0 - 1) < Xy and xz(T0 - 1) < Xy

Repeating this argument TO times, we could show

x,(0) < il and x,(0) < X

)

Backward argument is now complete.

3.4 An Example

Let A = 0 a) = (

0 .4
s o )

8 0
uleyre,) = (-4c? + 15c )+ (-15¢2 + 15¢,) = 01(cy) + 0,(c))
172 1 1 2 2] = oplep) + ey(ey) -

The two boundary stationary programs given as before are

ateh = (2.5.3%%, o)
e = (3,2,0,3%)

Differentiating u(cl,c2) , Wwe get

a Y B -
¢l(cl) 8c1 + 15

¢2(c2) = —30c2 + 15 .
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By theorem 2.2, if (X,C) 41is an interior OSP, then there exists a

XA e (0,1) such that

x,0) = axt,chy + 1 - nx?c?

\
/
and

¢i(cl) ~ -8cl + 15

T - - =
cpz(cz) 30c2 + 15

Solving the above two equations for A in terms of § , we get

A= i?:g;g : ié?g7 for any 6 ¢ (0,1) . Since X e (0,1) , hence,

there exists aua interior OSP for & > VaB = § = .566 (S-productivity).

Now we compute &' as follows

a(a = 191" + 8(8 - o)’

VT TG Dl T G- Dey %

Hence for & € (0.566,0.622) , the interior OSP will be unstable.

3.5 General .-sector Model

We have seen in the last two sections the instability arguments for
both types of OSPs in the special two~-sector model. Most of the arguments
are still valid when we generalize it to any two-sector model. The argument
still consists of the same two stages.

We shall only briefly describe what will happen in each case. For
the boundary 0SP, condition (a) and (b) of Theorem 3.1 could be replaced as

follows

(a') 3 <8< laZl - 322‘ <1
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+
8 al

a
2 11 1
- ¢C)>¢<0)
§ + ay 22 1( 1 2

(®"

where & comes from §-productivity assumption.
For the interior case, again, we could set up a two-dimensional
dynamical system, a discount factor 3' could then be obtained similar

to the procedure in the special case. An appropriate backward argument

is needed to show that a stable optimal program can only start from a set

of measure 0. We will not go into the details here.

ae A e - i

~nd
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