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Bounded Error Adaptive Control

Part II

Kumpati S. Narendra and Benjamin B. Peterson

Abstract

The nonlinear adaptive algorithm suggested in Part I is extended

to more general adaptive control problems with external disturbances.

Conditions for the boundedness of all the signals of the overall adaptive

system are derived. The prior information needed to determine the size

of the dead zone in the adaptive law is briefly discussed.
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I. Introduction:

The global stability of adaptive control schemes for deterministic systems

was recently established by several authors [1-4]. This report examines the

effect of external disturbances on the stability of such schemes and proposes a

nonlinear adaptive law which, under certain conditions, assures the boundedness

of all signals in the overall system. These conditions may be stated in terms

of the prior information needed regarding the plant transfer function and the

external disturbance. In particular, it is assumed that the order n, relative
,

degree n and high frequency gain k of the plant transfer function W (s) areP P

known and that the zeros of W (s) lie in the open left half of the complex plane.

Further it is also assumed that a bound on the disturbance is known and that

adequate prior information regarding the plant transfer function is available to

determine a bound on the effect of the disturbance at the output.

In part I of this report [5] an error model containing an output disturbance

was analyzed in detail. When the input to the error model is uniformly bounded

sufficient conditions were derived for the stability as well as instability of

the system. Such an error model finds direct application in adaptive observers

where the input to the error model can be assumed to be bounded without loss of

generality. In the control problem, however, where such an assumption cannot be

made, it was shown that the parameter error can grow in an unbounded fashion.

The principal difficulty in the adaptive control problem discussed arises

while determining the direction along which the control parameter vector is to

be adjusted when the output error is small. The nonlinear adaptive law suggested

in part I uses a dead zone so that adaptation takes place only when the output

error is large and a decrease in the magnitude of the parameter error vector is

assured. This approach is extended in this report to more general adaptive control

problems. In section II the case of a plant in which the entire state vector can
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be measured in the presence of disturbance is considered and provides the motivation

for the subsequent analysis. The principal result of the report, concerned with

sufficient conditions for the stable adaptive control of a single-input single-output

linear time-invariant plant with output disturbance is contained in section III.

When the amplitude of the output error is smaller than the size of a dead zone,

adaptation ceases and the overall system is linear and time-invariant. When the

output error exceeds the size of the dead zone, adaptive adjustment of the control

parameters takes place and the overall system is nonlinear and time-varying. In

view of these two modes of behavior exhibited by the adaptive loop, the proof of

stability in [1] for the disturbance free case cannot be directly extended to this

problem. The proof of stability in section III is by contradiction. It is shown

that the augmented error must lie outside the dead zone for an infinite time if

the signals within the system are to become unbounded and this in turn results in

the contradiction.

Concurrent work at Yale [6], which complements the results presented here,

considers the same adaptive control problem of a linear time-invariant plant under

similar assumptions. The adaptive law, in this case, is similar to that used in

the disturbance free case when ll(t)I <ll1 max and is modified only when

1Ict )hl > hell max . Using such an adaptive law it is shown that all the parameters

and signals of the feedback system remain bounded. However, due to the presence

of the disturbance, the parameter vector 0(t) continues to be adjusted for all time.

When the external disturbance is not present (or tends to zero) the approach yields

zero output error in the limit. In contrast to the above scheme, the adaptive law

in the present case is modified (by the dead zone) only when the output error is

small. This results in the parameter vector 0(t) tending to a constant value in

most cases and adaptation ceasing altogether as t - . The presence of the dead



-3-

zone in the adaptive law however precludes the possibility of the output error

becoming zero in the limit even when the external disturbance is not present.

Combining the ideas contained in [6] and the present report appears to have

considerable potential for practical applications.

II. Adaptive Control Using the State of the Plant:

To complement the approach used in section III for the adaptive control of a

single-input single-output plant we shall consider here the r2latively simple case

of a plant whose state variables can be measured in the presence of a vector addi-

tive disturbance.

The plant and model are assumed to be described by the equations

x =Ax +bu
p P P )Plant (1)

X x +v
p p

x =Ax + br Model (2)
M. mm

where v is a vector of uniformly continuous bounded disturbances, (A ,b) is con-p

trollable, A is a known constant stable matrix, b a known constant vector, A ism p

a constant matrix with unknown elements, and r is a piecewise continuous bounded

reference input. It is further assumed that a vector k exists such that

,T
[A + bk A =A (3)

p m

The structure of the adaptive controller is shown in Figure 1.

* In sections II and III the argument 't' is omitted in all the equations

except when necessary for clarity.
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r(t) e(t)

v(t) +

Figure 1

The basic idea of the adaptive controller is to determine a control input

u such that the error between plant and model outputs as well as all signals within

the system remain uniformly bounded. Due to the disturbance it is not possible to

insure that lima fle(t)U = 0 as in the noise free case [7] but only that it will

remain bounded. For purposes of analysis v(t) will be replaced by the equivalent

vector input disturbance and x will be the state vector which can now be measured
P

exact ly.

x -x +v (4)

= Ax + bu +v

b =Ax + bu + w (5)

P P~)

where w = v - A v is the equivalent vector disturbance at the input. If the control

Pinput u in equation (5) is u = r + kelx we hav

Defining the measured state vector error as

A -e=x - X
p m

= A x+ bui
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and the parameter error vector as

4(t) k(t) - k

the error model shown in Figure 2 is described by

e=Ae+ x +w (6)m p

wit)

x Tt(t)sb-Em(-l A e(t)

x p (t) +)

Figure 2

a) The Adaptive Law:

In the absence of the disturbance v it is well-known [7] that the adaptive law

= -e TePbx (7)

T T T -1
where P = P > 0, A P + PA = -Q < 0 and b P(sI-A ) b is a strictly positive real

m m m

transfer function, results in a globally stable system with lim e(t) = 0.
t-).

Following the results of Part I [5] the adaptive law is modified as follows.

=0 eT Pe < E

T-0 (8)
=-e Pbx e Pe > E

p 0

where E defines the size of a dead zone. In general E can be set larger than0 0

some minimum value for stability as shown in the following section. A larger

E0 implies that a larger output error vector is tolerated and adaptation takes

place over a shorter total time.

-L- . . . . , i - : -.m ,, ,7
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b) Analysis of Stability:

If E0 is chosen such that

4A 3w2
E > i0 + 6 6 > 0 (9)
0 A2

2

where A, = maximum eigenvalue of P
A 2 = minimum eigenvalue of Q

and w 0 is the uniform bound on IIw(t)If.

A T A TLet I 2 be defined as QI = {tlePe < o}, 2 = {tlePe > E } so that 0i2

+
is a partitioning of R .

Defining the function V(e,P) as:

V(e, ) = E0 + T e T Pe < E0  (t P)

= eTpe + T eTPe > E0  (t E Q 2)

V(e,O) has the following properties.

i. V > E0 > 0 (10)

ii. V is continuous in the 2n dimensional (e,O) space.

iii. V =0 t C

= -eT Qe + 2eTpw <-c(6) < 0 t E 2

iv. V A 3 1IeIl
2  + IIfI2

where A3 > 0 is the minimum eigenvalue of P.

Assuming that Ile(t 0 )U and 110(t 0)I are bounded, conditions (i)-(iv) imply that

IJe(t)II and 110(t~l are bounded for all t c [t 0,). Further since V <-E(6) < 0 for

t E 02 the total time during which adaptation takes place, defined by [02 ], is

finite.

A computer simulation illustrating the nature of the trajectories in a two-

dimensional space defined byJeTPe and irm is shown in Figure 3. For t c Q

is a constant and the trajectory is a horizontal line. Let the trajectory be on
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AE-o eTPe

0

3b. r =40 cos 5t
Figure 3
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the boundary of 21 for some time t2 i.e. e (t 2)Pe(t2 ) = E . Further, let

(t 2 ,t 3) C 2" If (t2) is finife, since V £ < 0, the length of the interval
(t 3 ) @(t 2 )

(t t ) must be finite (t -t < 3) and there exists a finite time t
2 3 3 2- C

at which the trajectory lies on the boundary of the dead zone i.e. t4 E Ql'

4 1
Since e (t2)Pe(t) = eT(t4)Pe(t) = E0 and V < C < 0 it follows that 110(t 4)llw(t2)l

and hence the norm of the parameter error decreases a finite amount every time the

trajectory leaves the dead zone and re-enters. In the limit 0 is a constant and

the trajectory is such that t E 0I for all t T, T E R

Example 1: In the adaptive system simulated, [Figure 3] the plant and model param-

eters are given by:

A ] A =[ ] b =[
1 0 m0 2-1

sin 5051
and w(t) = I

T sin 5tP 0 1 1_J

The desired feedback control parameter vector is

k =Land Q = 32

4A 3w2
The dead zone was calculated using (9) as 1 0 2.

'2

Figure 3a shows the trajectories for a reference input r = 16 cos 5t and 3b for a

reference input r = 40 cos 5t. In both cases the parameter error decreases when

the error lies outside the dead zone and in (3b) the final parameter error is

smaller.

The ideas in this section are also applicable to adaptive control of minimum

phase single-input single-output plants of relative degree n = 1 where the plant

output is measured in the presence of a bounded and uniformly continuous disturbance.
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If the relative degree is greater than one, or if the disturbance cannot be

assumed to be uniformly continuous, a more complex controller structure is

required. The stability analysis for this case is the main result of this report

and is presented in the following section

III. Adaptive Control of a Single-Input Single-Output Plant:

a) The Plant:

It is assumed that the plant to be controlled can be modeled by the linear

time-invariant differential equations

x =Ax +bu
p p p p (12)

T
yp C Xp + v1

where x is the state of the plant, vI is a bounded output disturbance and yp the

measured plant output. The transfer function of the plant is

T 1 N (s)T -ib  A Ns
c [sI-A] b W (s) = k 2 (13)

P p p PD sT5

It is assumed that

(i) D (s) is a monic polynomial of degree n.
p

(ii) Np (s) is a monic Hurwitz polynomial of degree m($n-l).

(iii) the output disturbance v I is uniformly bounded and the bound on

v = Vlmax) is known.

(iv) n, n = n - m, the gain k are known.
p

b) The Model:

A reference model is described by the vector equations

x =Ax +br
m mm m(14)

T (14

m mm

where
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k
(i) the transfer function W (s) - m

M D (s)m

and D (s) is a monic Hurwitz polynomial of degree n

(ii) r is a piecewise continuous, uniformly bounded reference input.

The control problem then is to determine a suitable bounded control input u(t) such

that e(t) = y (t) - y (t) remains bounded for all t > t o  In the followingp 0p

analysis we assume that k = k = 1 for ease of exposition.p m

c) Structure of the Adaptive Controller:

The controller structure has the same form as that used in the disturbance free

case [l] and may be described as follows:

Using the plant input u and measured output y, a (2n-l) dimensional auxiliary

vector w is generated as

UW =F + gu
(1) (1) Auxiliary Signal Generator (15)

W(2) = Fw(2) + gyp

where F is a stable matrix, (F,g) is a controllable pair and w = [W ,w ,y ](1)(2) pY]

The input to the plant is given by

u = r + eT W (16)

T T ),T
where e (t) is a (2n-l) dimensional control parameter vector. T0 T 2*[ (l) '(2)'e02n- Il

Since a constant parameter vector 8 exists such that for e(t) H e the transfer

function of the plant together with the controller matches that of the model [8],

the model output and the measured plant output may be expressed as

W m(s)r = ym m m (17)

W (s)[r + A ] + v = ym p

where e(t) - 8 = 0 and v is the effect of the disturbance v at the output.

7 i



(i.e. v is the measured output error if e e ). From (17) the measured error e(t)

can be expressed as

A T
e=y - Ym = Wm(S)O T + v (18)

An auxiliary error signal e(t) is defined by

= e'w (S)W - W (s)e

= OTW (s)w - W (s) 

(

m m

and the augmented error s(t), used in the adaptive law is given by

s(t) = e(t) + (t). (20)

Equations (15),(16),(19), and (20) define the controller structure. The plant

together with the controller is shown in Figure 4.

d) The Adaptive Law:

From equations (18-20) the augmented error c(t) may be expressed as

= TW m (s)w + v = OT + v (21)

m

where C= W m(S)W.

Equation (21) is the principal error equation used for determining the adaptive law.

In the disturbance free case (i.e. v(t) 0), the adaptive law

(t)= - re(t)t) r = rT > 0 (22)

1 + c (t)rc(t)

was shown to result in lim e(t) = 0 while the parameters and the signals of the
t-4o

adaptive loop remain bounded.

Following the procedure outlined in Part I as well as the previous section of

this report we modify this adaptive law to take into account the effect of the

disturbance. From equation (21) we have

T£ = +v



41.
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The additive disturbance v is related to v 1 and the unknown plant parameters.

It can be shown that if v is uniformly bounded and Wm (s) and F are stable, v is

uniformly bounded. For the following analysis we shall assume that a bound v0

of jvj can be determined even though the plant parameters are unknown. This

aspect of the problem is considered further in section IV.

For the error equation (21) the nonlinear adaptive law

F rIC(t)I > v0 +6

(23)

= 0 Ie(t)I <v 0 +

is used, where Iv(t) < v 0 and 6 is an arbitrary positive constant. [For con-

venience, we shall assume that r is the unit matrix in the following sections.]

Equation (23) implies that adaptation ceases when the augmented error e(t)

is not greater than (v 0 + 6). Defining

n(t) = E(t) Is(t) I > v0 + 6

and = 0 IC(t)l < v0 + 6

-v(t)

T(t + j )T~)TT

Dead Zone

Figure 5

The adaptive law (23) may be stated in terms of n as:

T -- (24)
T
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The adaptive control problem may now be stated in terms of the error equation (21)

and the adaptive law (24) as follows:

Given the error equation (21), the adapAve law (24) assures the boundedness

of all the parameters and signals of the overall adaptive system.

e) Proof of Stability:

A 1 T
Ci) Let V()= - . The time derivative of V along a trajectory of the

system is given by

= T = T T- 0 V t E [to,c0). (25)

i+

and hence 0 is bounded. Since V is a non-increasing function of time which is

bounded below, it follows that V(t) tends to some limit V. as t or

lim Ir$(t)N = ii4(c)II

Sincelo(t)llis bounded it follows that all signals within the system can grow

at most exponentially. In particular, we have

ikil < M I flf + M (26)

T +V
where M and M are constants. Further, since = - = - T + v)

1 2 +T i+

when le(t)l > v0 + 6 and zero otherwise, 11;11 is bounded.

(ii) Let QI and Q2 be sets defined by

= {t 1 TC + v, < v + Q} = {tllO T C + v, > v + 61 and Q US2 R+.

1 1 2

From (25) we have

V(-) - V(to) = rV(T)d = - T) dt (27)
J + i+T C

2o V t R+ .

if (t ) and hence V(t ) are bounded.

0. . 0I 1 . .. ' -. . , _ : - " -,. - -, -2 " , " -
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From the definition of the dead zone the following inequalities can be derived:

6 O + , 2v0 +6
0. OT + v, (28)v 0 + v 0 +

for t c Q2"

From (27) and (28) we have

( (±T + v) dT < (29)

T T < ; T d

02 2

Since * for t c i

and T; C= TC(T + v)2 fort
(l + C)

L
2

it follows that 0 c (30)

Let )1(Q) represent the Lebesque measure of Q. We first consider the case

when P(Q2 ) = - or the total time during which adaptation takes place is infinite.

Since II;II is bounded, by (26) I1;1 < M1 Iun + M 2 '  T is uniformly continuous

on the open set Q and from (29) 0 0 dT < 00 it follows that
22 T + 2

T

Ti - 0 t C Q2 (31)

lim + TC) 1/22*

or = o[supT~t 11 (T)II] tt E 2 (32)
= L2

(iii) Since by definition W (s)w(t) = (t), and by (30) 4c L it followsm

from the results derived in [1] that

W (s)O TW = 0T + o[sup <HW(T)II] (33)
m T,<t

From equation (17) the output of the plant y can be expressed as
p

y = W (s) TW + v = 0T + o[sup iwt VA I + v (34)p m 1 1.(34

where V is a bounded function of time dependent on the reference input r and the

disturbance v1 (V1 = y + v).
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The following two cases are of special interest.

Case (a): Let a finite time t exist such that t E £i for all t > t . In this

T
case the auxiliary error 0 C + v lies inside the dead zone and ; E 0 for all

t ' tI . Since TC is bounded it follows from (34) that

lYp(t)I = o[supT <t tW(T)I ] + V2 (t) (35)

where v 2 is a bounded signal. Equation (35) assures the boundedness of yp (t).

Case (b): Let a constant t exist such that t c Q2 for all t , t2 . In this case
2 2 2'

the auxiliary error signal lies outside the dead zone for all t > t2 and hence

adaptation takes place for an infinite interval of time. From (32) and (34) we

now have

Iyp (t) = o[sup <tI (T)I I + o[sup ,< ] + V2 (t) (36)

= o[sup T<ty p(T)] + V 2(t)

which again assures the boundedness of Iy (t).
P

From cases (a) and (b) we conclude that the signals in the feedback loop cannot

grow in an unbounded fashion with the auxiliary signal within the dead zone for all

t r tI or outside the dead zone for all t t2 for constants t and t Hence
2 1 2

instability is possible only if the auxiliary error is alternately in i and Q2

Case (c) considers this general case.

Case (c): P( I (£2 = V" Let the output of the plant y p(t) and hence all

the signals in the system including w(t) and C(t) grow without bound. From (21),(31)

and (32) we have

,OTC, < 2v0 + 6 < t E: i

and

,OTC, = o[sup T I(t )1 ] t E 02 .
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Hence, from (34)

Yp (t)( = o[sup TtI (T)II + orsupT<t fW(T)H I + v (t) (37)

Since Ik'?T)jI andlw(T)I1 are O[supTt IYp (T)II (34) may be expressed as

Jy (t)j = osup<tly p(T)I] + V (t)

which contradicts the assumption that y (t) grows without bound.

f) Behavior of the Adaptive System:

In view of the results of section ile we conclude that all the signals and

the parameters in the adaptive loop are uniformly bounded. Let 1ICI s A for some

constant A and t c 2"

T( + v) < S(v0 + 6)

T 2

or

= T 0  < 0 (38)

I+A

Equation (38) implies that V is strictly less than zero when t E Q2 and adaptation

takes place. Since V is a non-negative function, adaptation can take place only

for a finite interval of time T < I(0)I1 (1 + A or 1J(Q2) < - and u(Q ) =
6(v 0 + 6)2

In other words, except for a set 0 2 of finite measure the system is linear time-

invariant.

IV. Choice of the Dead Zone:

From the preceding analysis it is clear that the proper choice of the size

of the dead zone i.e. v 0 + 6 is crucial for establishing global stability in the

presence of an external disturbance. As mentioned in section llId, this is dependent

not only on the bound on the disturbance but also on the unknown plant parameters.

In view of its importance, we discuss briefly in this section some of the many

considerations that enter into the choice of v0 + 6. As pointed out in section II,

a larger dead zone implies a shorter period of time during which adaptation takes
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place and in general larger output and parameter errors. Since 6 is an arbitrary

positive constant, the following discussion will deal entirely with the choice of v 0 .

The signal v(t) which appears in the error equation (18) corresponds to the

measured output error when e(t) E 0 . Hence

v(t) [ l + w (s){e (sl-F)- g + lV (t)
p 1(s) m (2) 2n-1 1 (39)
ls---- vl(t)

q 1Ts) 1

where p1 (s) and q1 (s) are monic polynomials of degree (n + n-l), q (s) is Hurwitz

and the coefficients of the first n terms of p1 are the same as those of q1 " P1 and

q can be expressed more explicitly in terms of the model and plant characteristic

polynomials D (s) and D (s) as follows:
p m

Pl (s) D p(S)A (s)1 (40)
q1 (s) Dm(S)A(s)

where A(s) l(sl-F)j and A (s) is a monic polynomial of degree (n -1) such that

the first n terms of D (s)A 1 (s) match those of D (s)A(s).

The prior knowledge needed to calculate the size of the dead zone is the bound

v0 of v(t). From (39) and (40) it follows that bounds on v1(t) as well as the

coefficients of D (s) are adequate to calculate v0. If a bound on the norm of the

parameter vector (2) is known v0 can also be computed from equation (39). In

[ 2n-1]

all cases it is worth noting that no prior knowledge of the zeros of the plant trans-

fer function are needed to determine v0 '

Simulation results indicate that the sizes of the dead zone computed using the

above methods generally tend to be too conservative. Hence equations (39) and (40)

are primarily of theoretical interest to assure that a finite v0 exists. In practice,

since the plant together with the controller is stable, the plant coefficients can

be estimated on-line and in turn used to determine less conservative values of v 0 .

-:77 '_'X
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Systematic procedures for accomplishing this in a stable fashion are under investi-

gation.

V. Simulation:

Example 2: The adaptive control of a second order plant in the presence of an

external disturbance was simulated under a variety of conditions. The plant, model

and filter transfer functions are given by:

W (s) =21 ; w (s) = 1 i and 1/A(s) = 1/(s + 2).
P s -1 m s + 4s + 3

In this case A1 (s) = s + 6 and if the disturbance is v1 (t) = 4 sin t, v0 can be

computed as 4.87.

(i) Figure 6a shows the output error as well as controller parameters with

no dead zone in the adaptive law and no reference input. While the

output error tends to zero the parameter error is seen to increase

without bound.

(ii) Figure 6b shows the same system (i.e. without dead zone) when a sufficiently

rich reference input is used. In this case all signals and parameters are

seen to be bounded.

(iii) In Figures 6c and d, the reference input is identically zero but a dead zone

is used. In both cases the parameters are bounded and reach constant values

in a finite period of time. Figure 6c reveals that a smaller dead zone of

v0 + 6 = 2 as compared to 5 for Figure 6d results as expected in a smaller

output error.

(iv) Figure 6e with a sufficiently rich input and a dead zone in the adaptive law

(same as in c) results in a smaller output error.
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