AD=AL101 572 NATIONAL PHYSICAL LAB TEDDINGTON (ENGLAND)
MODIFICATIONS TO THE PL~156 COMPILER DURING
JAN 72 D A BELL

NPL=COM SCI=-54

UNCLASSIFIED

DIV OF C==ETC F/6 9/2
1971, (V)

Physical ¢
Laboratory |

ADA101572

A Diiri.s,i@n of -
‘Computer Science ’

Chain

.

MODIFICATIONS TO THE PL-518
COMPILER DURING 1971

by Donald A.Beli

Al am

- a%as

No extracts from this report may be ‘réyroduced without the prior
written consent of the Director, National Physical Laboratory.
The source must be acknowledged.

- 8P8/61

Approved on umr of Director, mu
fnbw. Davies, Mu-mma.u Mﬁm of Conparter M

[y Tan '7J// @ NPL=CoA) e X- 5‘*

(?Z;) Modifications to the PL-516 Compiler during 1971 i

(;:;.‘j v :
DA
@ Donald AyBen - ‘ 5 %
S _ D
Summa;x ‘
ve
- S -

This report gives details of the changes in syntax of PL-516 and the
additional constructions added since the publication of Com. Sci. Report

No L4 and CCU Report No 9.

deo

The principal changes are the use of := for "becomes"? an explicit

ol !
block'structure around several declarations, case statements and

expressions$ more elaborate‘for'clauses; simple conditional labels, a

\ Al ’ ‘

/
range test in conditions’ the binary operators min and

max;and a few other

minor changes.
\)
With the exception of the := change, programs which compiled

successfully with the older system will still work.

e
i

el HTRTUIIT T'A
) O ey

\ M;:,:wl for public rolease;
Rpr T oiaived !

P TR AU .
v ST AL RN s Rt
. -"‘.—,’"—.

dqrobs

10.

1.

12.

13.

Contents

Assignment Statements

Case Statements and Expressions
For Statements

Simple Conditional Labels
Efficient Conditional Expressions
Revised Procedure Format
Explicit Block Structure

A Range Test for Numbers

The max and min binary operators
Explicit Strings

Exchange Statements

11.1 The Code Produced
Miscellaneous

References

Page

10
12
13
13
1l
16

7

1. Assignment Statements

The := symbol is now used for assignments, the = must follow the
: without any intervening space or other character. Constants, switches
etc still use the = symbol when setting up values and conditions retain

it as before. An example will make this clear

integer I,J, K;
compconst C=3,Fczb; e

[Accosnion For
constant Z = '260; b nris crnul
switch sS = L1, L2, L3; 5 . A
string S = 'MESSAGE'; %_

. .

I:=¢, ! Ava‘ﬁ;‘iliuv C .3

L3: J, K:=F+ T, :‘AL h

when I = F then goto SS[k], ‘”!
L1: L2: I
end;

This follows more closely the ALGOL 60 usage, except for switches.

2. Case Statements and Expressions

Where one of a series of statements is to be executed according to
the setting of a parameter, then the use of a case statement eliminates the

need for switches and labels. The syntax is as follows

<case statement> ::= case <cell> of (<case body>)
<case body> ::= < <statement> list <,> >

That is the statements are separated by commas (not semicolons) and
all enclosed in round brackets
For example if the statements to be executed are:
I:=3

J

)]

-3
E
>
+
o

-2 -

according as “he integer C is =3, -2 or -1

The code generated for
case C of (s1, 82, 83)

is as follows:

LDX c
JMP#* L,1
L1 <S1>
JMP L
L2 <S2>
j IMP L
a L3 <83>
' JMP L
DAC 11
DAC L2
DAC L3

L

then the construction is

case C of (I :=3,dJ :=T7 #®#X+J,
K := if B then Y else Z + 22)

A statement may of course be an assignment, procedure call, compound
statement, for statement or even another case statement. This last

possibility is the chief reason for the round brackets.

The implicit switch is put at the end of the series of statements and

called into action by the indirect indexed jump JMP* L,1

A similar construction is applied for case expressions

<case expression> ::= case <cell> of

{ «case expression body>)

<case expression body» ::= < <expression> list <,> >

An example is as follows

I := case C of (1, J + K, A [XX]

The integer C may take on the values

-Q, P(z), -b4);

-5 to -1 to select any one

of the 5 listed expressions.

An expression may be arbitrarily complicated and may even be another
case expression. The code generated for:
case C of (E1, E2, E3)
where the E's are expressions is exactly like that generated for the
case statement above, with <E1> substituted for <S1> etc.

3. For Statements

The simple for statement
for <variable> := <expression> do <statement>
is inadequate to cope with the cases where
a) the final value is not -1
b) the step is not +1
Three new forms are therefore introduced, they are
1) for <variable> := <expression> to <cell> do <statement>

I1I) for <variable>

<expression> step <expression> until <cell> do
<statement>

I11} for <variable>

<expression> stepdown <expression> until <cell> do
<statement>
In the first case the IRS instruction is used to step on the controlled

variable, but a check is applied to see if it has passed the final value
before the statement is executed. Because of the possibility of the IRS
instruction producing a skip if the value changes from -1 to 0, care
should be taken to see that the initial and final values of the controlled
variable are of the same sign. In particular a final value of O should

never be used. If the skip does occur, the program will escape from the

for loop prematurely.

- -

The code generated for a sample for loop is as follows:

for A := B+ C toD do 5;

LDA B
/ ADD ¢
stA A
L2 LDA A
CAS D
JMP L
HOP
<8>
IRS A
JME L2
L.

The IRS instruction is put at the end of the loop so that a skip will
have a definable effect (ie an escape). It should be noted that unlike the
simple form of the for loop, this one may be executed zero times if the
final value 1is less than the starting value.

The second type of for lcop permits an expression for the increment,
and since the controlled variable is changed by an ADD instruction ra*her
than an IRS, 1its value may pass from negative to positive without trouble.
The only proviso is that the value of the controlled variable must be less
than or equal to the final value for the loop to proceed. Normally this
will imply that the step is positive. This differs from the ALGOL 60 case
where the step may be positive or negative and the test to be applied
depends upon this sign. To cater for the negative case the step must be
specified as stepdown. This merely controls the test to be applied, it is
the programmer's responsibility to make sure that the step is really
negative.

ie for I :z 10 stepdown 1 until 1 do S

,,,,,

5

is a logical error, it should read

for I := 10 stepdown -1 until 1 do S

If the until symbol is missing the error number is 160.
The code generated by examples is as follows.
Example 1.

for A := B+ C step D -~ E until F do S

LDA B
ADD C
-JMP L2
L3 LDA D
SUB E
ADD A
L2 STA A
CAS F
JMP L
NOP
<S>
JMP L3

Exemple 2.
for A := B 4+ C stepdown D - E until F do S; The first 8 instructions

down to the CAS are as before, continuing from L2 we have:

L2 STA A
CAS F
NOP
SKP
JMP L
<S>

JMP L3

k. Simple conditional labels

Consider the statement:
if I z then goto L else gotc M;

The code generated is

LDA I

SZE

JMP L2
JMP L

JMP L3

L2 JMP M
L3
Clearly the jump to L3 will never be executed so the program can be
improved to:
when I z then goto L;
goto M;
which removes the JMP L3 instruction. However the JMP L2 could equally well
have been replaced by the JMP M instruction, saving a further word. This
new construction is written
goto if <condition> then <label> else <label>
The first label may be a simple label or a switch element, without
affecting the form of code.
The second may also be a label or switch element, but if it is a
switch element (even with subscript E“]) the extra jump will be inserted.
A few examples will clarify this

goto if I z then L else M

LDA I
SZE

JMP M
JMP L

7

goto if T z then SS[J] else M

LDA I
SZE
JMP M
LDX Jd
JMp#* SS
goto if I z then L else SS[K]

LDA I
SZE
JMP L2
JMP L

L2 LDX K
JMP* SS

5. Efficient Conditional Expressions

Consider the expression in the statement

J := if T 1z then K else @;

The code generated is:
LDA
SMI
JMP
LDA
JMP

L2

The redundant JMP L2 is a jump around the code for "@" which of course
does not exist. Instead of writing "else @" at the end of such a

conditional expression one may write elseacc which is logically equivalent

L2

L2

but removes the unnecessary jump.

eg J :=if I 1z then K elseacc;

which gives

LDA I
SMI
JMP L2
LDA K
Le .o
6. Revised procedure format

The syntax of procedure has been slightly altered from
<procedure>::= procedure <identifier>;
{<declarations>} <compound statement:

to

procedure <identifier>;
{<declarations>} <statement>
ie if the procedure body is a single statement, the begin and end brackets
may be left out. They must still appear round the main program.
A common application of this is:

procedure newline;

constant CRLF = '106612;

out 2 (CRLF);

7. Explicit Block Structure

Hitherto, if two procedures required access to the same piece of
working store, that store had to be globally declared. Likewise nested
procedures were expressly forbidden. A more elaborate block structure has
been introduced to take the pressure off sector 0. It will be especially
useful for system type programs which have to co-exist with other programs.

A block of declarations may be enclosed in the brackets block and endblock

cg

block
integer I,J, K;

procedure P;

begin

eg

end;

endblock;

Unless any special action is taken, all of the identifiers will be

local to the block, ie inaccessible from outside it. Clearly at least one
procedure must be accessible or the whole block will be redundant. The
procedure names may be declared at global level by a forward declaration

even if the procedures themselves are apparently local to a block.

forward procedure P, Q;

block
integer I,J, K;
procedure P,
I := not J3
procedure Q;
J := not Kj;
procedure R;
K := not I;

endblock;

The procedures P and Q will each have an access word in sector O,

whereas procedure R will have its access word in the current sector. The

identifiers I, J, K and R will be inaccessible from outside the block.

This use of the forward declaration facility to get at a procedure

within & block means that it is forbidden to have a global procedure and &

- 10 -

local procedure with the same name. (ALGOL 60 permits this).
A procedure may now have procedures of its own which are local to it,
they are declared with the other declarations eg
procedure GLOBAL;
integer I
procedure LOCAL 2;
I:=J;

procedure LOCAL 3;

I := neg J;
besin LOCAL 2;
LOCAL 3;

end;

Although it was formerly forbidden to use origin declarations at local
level, this is now permitted. It is worth pointing out that the facility
should be used with care and only to a location in the same sector,
preferably it should not be used among the declarations of a procedure
since it will cause automatic dumping of the constants pool.

A local array may be declared to be later if it is necessary to
separate the array word from the body of the array. An error will occur
if the end of the block is reached without the set declaration, but other
somewhat risky constructions are pexmitted by the compiler since it is
assumed the facilities will only be used in carefully thought out
situations.

8. A range test for numbers

A common test for numbers is to see if they lie within a certain

range. The test is usually written something like this:

if N ge A and @ le B then

—"1_

where the code begins like this

LDA N

CAS A

NOP

SKP

JMP n

CAS B
L1 JMP L

NOP

and L is the beginning of the else clause. Machine code programmers can do

much better than this by writing:

LDA N
CAS A
NOP
CAS B
JMP L
NOP

Since the construction is fairly common it is now in PL-516 as
follows
<range condition> ::= <expression> range <cell> to <cell>
where the first <cell> has the smaller value.
There is one petty restriction however. The first <cell> can be
anything permitted by the normal <cell> syntax, integer, constant, array

element etc but the second <cell> must generate only one word of code (to

fit the double CAS construction), This effectively excludes an array or
table element unless it has a subscript of the form [£ or [#, #].

The compiler checks this length of code and will give a failure 463 if it

w1 s

- 12 -

is exceeded. It was thought that it was better to have the facility with
the restriction than not at all.

9. The max and min binary operators

To load A with the maximum value of B and C the usual construction is
A := if B » C then B else C;
This generates a total of 8 words of code, or 7 if the second B is replaced

by @. In machine code it would be written as:

LDA B
CAS C
NOP
SKP
LDA cC

or only 5 words of code. The code for calculating the minimum value is one
word shorter in each case.

By introducing two new binary operators min and max, the efficient code
is made available in PL-516. Although it may seem a little strange at
first the two operators (which are both symmetric) may be used just like
+ or *,
eg A := Bmax C

will generate machine code like the above and

A := B min C will give

LDA B
CAS C
LDA C
NOP

STA A

The addition of these two brings the count of binary operators to 9.
<binary operator> ::= +|*|and|nev|max|min|-|/|mod

of which the first six are symmetric.

13

10. Explicit strings

Since strings are usually handled by their codewords and are often
called upon at only one point in a program, it is now possible to specify
them directly without using a string identifier. The definition of <term>
has been extended to permit a string enclosed between double quote (")
characters. When the code is executed the accumulator is loaded with the
codeword of the string and a jump is teken round the string eg the
procedure call

OUTSTRING ("MESSAGE")

generates the code (in DAP)

LDA *42

JMP L

DAC *e1,1

BCI L, MESSAGE"

L JST* OUTSTRING
This is one word more than would be generated by a normal string
declaration, because of the jump. However the increased clarity of the
program compensates for this. Where there is an even number of characters
in the string, they will be packed two to a word, without the quote
symbols, but if the number of characters is odd the terminating quote is
included as a filler.

1. Exchange Statements

A fairly common sequence of instructions for exchanging the contents

of two store locations A and B is something like this:

TEMP := A,
A := B;
B := TEMP;

generating 6 words of code and using one temporary store location. Since

A

"""""""""-"-'-llllllllIllIIIIIlllllllll--lllllllllllll*

- 14 -

an exchange instruction (IMA) exists on the DDP-516, it would be better

to use this, giving (in DAP)

LDA A
IMA B
STA A

An exchange statement construction has therefore been introduced sas

follows

<exchange statement> ::= <lhs> :=: <cell>
where <lhs> may be any of the allowed forms of the left hand side of an
assignment statement: integer, array, table, @ or indirect integer or
constant. The :=: symbol which reads "is exchanged with" is written
without any spaces between the colons and equals symbols.

There may however only be one item to the left of the :=: symbol and
the insertion of several items separated by commas will give error number
Lok,
ie A, B :=: C
is allowed (multiple assignments), but

A, B :a: C
is not allowed. The error will however only be detected after the :=:
has been read.

11.1 The Code Produced

Properly used, the exchange operator :=: will give very efficient
code but it is possible to use it in inefficient ways. For a straightforward

swop of two integers A and B, the statement:

A :=: B

gives the code: !
LDA A :
IMA B

-~ 15 -

If the first item is the @ symbol
@ :=: B
then only one word is generated: IMA B. (Note that B :=: @ is an
error).
Where arrays are used the subscript calculation is repeated only

if it is needed i.e.

Y(s] t=: B

generates:
| LDX J
% LDA* Y
é IMA B

3 STA* Y
There is no LDX between the IMA B and the STA* Y since it is not
needed, but if the text had read:
Y[o]) i=: 2[k]

then the code would have been:

LDX J
LDA* Y
LDX K
IMA* Z
LDX J
STA* Y

with LDX J occurring twice.

The rule therefore is to keep the simplest construction on the left

of the :=: symbol e.g.

TCk,J] :=: Y[AT]

- 16 -

generates 12 words of code, whereas:
y[a]) = [k,0]
achieving the same effect, generates only 9 words.
If subscripts appear on cnly one side of an exchange then it does
not matter which way round the statement is written i.e.
T(K,J] =t B and B :=: T[K,J]
both generate T words of code.

12. Miscellaneous

Constants set equal to a single ASC II character in the lower half
of the word which had to be explicitly written out in octal can now be
introduced by the double dollar ®%. eg instead of '303, $ZC.

An assignment statement which is to the B-register cannot also assign
to a variable in core. This removes an undetected source of error in
earlier versions of the compiler.

Where the syntax allowed indirect addressing through an int.ger, it is
now possible to use a constant the same way.

The input routine has been modified to read complete lines at a time
rather than single characters as formerly. The character ! (shift and 1)
may be used as a backspace character eg

PRUCE! !OCEDURE will be read as PROCEDURE
When the - > typewriter facility is in use it 1s necessary to type a
carriage return symbol before the computer responds. If a failure occurs,
the trace routine will print only the 20 characters processed before the
failure. Generally this will not correspond to all the characters
actually read.

The use of sense key 4 has been changed. The global and origin

declarations now give a print out anyway and key 4 if set will cause the

e P o

- 17 -

local address to be printed out on the declaration of each procedure.

will be either the address of the first word of store local to the

procedure or its starting address if there is no local store.

13. References

B.A. Wichmann "PL—516,VAn ALGOL - like Assembly Language for the
DDP~516" NPL Report C.C.U. 9 {1970)
D.A. Bell "Collected Papers on the Development of the PL-516

Programming Language" NPL Report Com. Sci. 4l (1971).

This

