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THE THEORY OF GAIN, INTENSITY AND POWER

OF GAS LASERS

Kao Cho* and Chao Shu Tao

ABSTRACT

The particle thermal velocity distribution is introduced

into the speed equation to obtain the relations between gain,

intensity and power of gas lasers. This paper reached the same

conclusions as reference [1] under uniform broadening conditions.

The results were simplified to become the well known non-flowing

gas laser equations when the flow speed is zero.

In the analysis, the change in the reflectivity of the

mirror and the degree of excitation as a function of time of

gases in the upstream region of the optical chamber were consi-

dered with respect to both continuous and pulsed gas-flowing CO 2

lasers.

I. INTRODUCTION

In the analysis of a gas-flowing CO 2 laser, under the condl-

tions that gain is equal to consumption, the solution to the speed

equations put on line [1,2] applies only to the uniform broaden-

ing situation. Under conditions that both uniform and non-uniform

broadenings exist, reference [3] made an analysis. In addition,

the semi-empirical analyses of gas flow lasers [4,5] suggested

that it was possible to apply some theory in the treatment of non-

flow gas lasers in the explanation of experimental results with

gas flow lasers. However, theoretical results were already avail-

able [1-3] for gas flow lasers. But they cannot be reduced to

This paper was received on April 7, 1978.



non-flow gas laser equations when the flow speed approaches zero.

The introduction of thermal velocity distribution to the

speed equation will enable us to obtain the theoretical relations

between the gain, intensity and power of gas flow lasers. When

the flow speed equals zero, these relations reduce to the familiar

non-flow gas laser equations. Under uniform broadening, the

results are the same as those reported in references [1,2]. It

must be pointed out that, vigorously speaking, particle thermal

velocity distribution cannot be brought into the speed equations.

However, this technique very simply provided desirable results

and will serve as a basis for further analysis.

II. ASSUMPTIONS AND BASIC EQUATIONS

Let us assume the following; The optical axis is perpendi-

cular to the direction of gas-flow, gas passage is rectangular

In cross-section and plane parallel mirrors are placed on either

side of the passage as shown in Figure 1. The variations of gas

parameters u, p and T inside the optical chamber can be neglected.

The effect of the boundary layer is also negligible [7].

The pump region and the optical chamber are separated in

order to analyze the "flow broadening" pulse width of the pulsed

pump upstream of the optical chamber.

The working energy levels of the C0 2-N 2 laser system can be

described as the five-energy level model shown in Figure 2. Energy

level 1 includes the symmetric and bending levels of CO 2 . The

number of particles transported from energy level i to J, due to

inelastic collisions, in a unit time is KijNi; Ni is the density

of particles at energy level i. Speed Kij (unit sec ) satisfies

the following:

Kn, Kn, K,. > K,, > K.4(j -1,2,3) (2.1)

2



With constant u, p and T, the non-constant speed equations and

the radiation exchange equation are:

O'+ . ON- - KuN, + KnN,
at ax

'8, N, i

-~ + U -r - W, + K,.NI, - (K,, + Kaj)N, - (B;.-jN, j , 1

8 1L + u a-L- w, + KIIN, - K1 N + - (B2;Jiu 1 - B;j 1,N1)(.)
8t 8:ch s

NI N + N,-

+ ci gradl I (B' jM, - B;, 3A)J (2.3)

2.7 3

-. K

3

Sii

0-O

St C02 N:

Figure 1. Schematic diagram Figure 2. Energy levels of the
of a transverse gas flow laser Co ,-N2 laser system and relaxa-
and coordinate system. Ltign processes.

(pump- zone zx, optical chamber o~:~x. - L.)

1-gas :-Low; 2-pump zone;
3-laser direction

*where t is time, u is flow-speed, w i(i=1,2,3) is pump speed;

c is speed of light, h is the Boltzmann constant, v is light

*frequency, J is radiation intensity; f (i1l,2) is the fraction

of particles in Ni with laser action, B-1 is the speed of excited

particles with Doppler frequency vt under the influence of radia-

tion with frequency Q.



;- a, 2/BAit, ABa
+ (a]----]2' (2.4)L Aviv

gl (i=l,2) is the statistical weight of energy level; AVN

is the full width at half peak of the uniform broadening curve.

I is the direction of light propagation. The intensity satisfies

the following boundary conditions

y - o J;-Rj], R,--a- I
0 8L 1u~~,R--i~a (2.5)

y - L., 1 - Rj,., R, - I - ,,, J.,( .

Ri, ai and ti (i=l,2) are the reflection, absorption and

transmission coefficients of the mirrors on both sides respective-

ly. J+ and J- are the photon energy flows in the positive and

negative y direction and we have J - J + J-.

III. SOLUTION

8_)j

On the left hand of (2.3), with the exception of &y other

terms are small enough to be negligible. Therefore, from (2.3)

and (2.5), we get

S' L. - B3;,N,)dy -- 1 1R,R,
L,o 2L, (31)

Because [] - 2V R/(0 + R), R - min (Rt, R,),

fore, the variation of J along the y direction can be neglected

when RZO.6 From (2.3) and (2.5), we obtain

gj -(, 11 I" -t BB;,, i,- ; i,,).dy,- I, (j J.[ -l. + J; - 14) (3 .2)
_ I, ' ,,- (3.2 )

Is - J;( + RI) (.,/ I + -,) (33

The g here is the average gain coefficient with respect to y.

Equation (3.1) is the condition required for gas flow laser reson-

ance. Generally, Ri and g vary with x.

" """ .... . ..... ... ..... : .. . . L _4



The solution to the speed equations is obtained as follows:

First take the integral average of (2.1) with respect to y and

then carry out these mathematical transformations:

I.! C.-.--
u u (3.4)

(2.1) is then changed into:

S+ (Ka + S1K + SzK 1 ) + SKvKin#

Ku ± Wi + a(tv, + ""2 +So [(K 0 - Kn) Ag-+ Kum

+ (K, + SK,, + S,K 1 0) 0-5 + SKuKlon. - (3.5)

where

9A - n, + n720 al - Sin, +'Sog, nt - SZ1h - Sol

' _ S _ B i_, S + S' - 1 (3.6)

B;4, + B; 1  B21, + B , (37)

t LI Njdy

Let gg(?)e t , and then obtain the solution to (3.5) as:

"b' + Sag Z - O, + , +K'V

1_0t~i- {(j+i' -).n, +K 2,C

+ (1, - S,K, - SKo)nO(C) + SOZ[(K,. - Kn) - (1, + 8 1.] (3.8)

- n+ Sgn,-+" {(. - 2,n,,) + (x, - K),(

+ S,K2,n() + Sog[K,, - (. +

The superscript 0 on the right represents the distribution

of the corresponding quantity at = 0 (i.e., x=0). 6 is a con-

stant and w i is another constant.

2 I,. - - [(Ka + S,K. + S,K,°o) _V(K' + S,K. + S,Kj) ' 4S,KK, I
2
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IKw -K..)$ + K%2K
T , -1 + (Ka + StKa + SIKI,)5 + SKuK,

Kn(Kp + 8)
'- + (K, + S1K, + S,Kl,)d + SKuKu

nb P -m SK, i.,

0 9 > 93

3

sznww + S1,K,,

0 S,4, 1  > 6

(3.8) is the solution when A1  2. Similarly, a solution when

1I = X2 can be obtained. It will not be discussed here. The

initial distribution-at x = 0 is explained as follows: (1) ini-

tial distribution can be obtained from the solution to (2.2)

under radiationless condition JA 0. The radiationless solution

is not going to be written here. Under continuous pumping at the

upstream of the optical chamber, ,z( )I...,n(:)I...= constant. When

pulsed pumping is used, nl(W) -, varies with t. (2) the radia-

tionless solution usually generally does not satisfy (3.1). How-
2Li i

ever, since c(!- RR) << K;I, K',-, , the inelastic exchange

2L,
of collision within the time period *C(1-RR,) cannot be completed.

In addition, since 2L2u << L, at = 0 we get:€(! - aR=)

where n2() - n,(:) l, (i -1,2,3) which can be obtained from the

radiationless solution. (3) generally, since K3, Kjo >> Ka,, - ,

therefore Kun,(C) - K (). L

From (2.2) and (3.6), gI can be obtained

9-1 Saw, - Sjw 1 + SaKj~n3 - SIlnh - Sog(a + K3, + S2143 + S1KN)
hy

2 Kel, 2(,- oV _'2

6



where- Ka + SK, - S,KO (3.10)1

2 Kiq W30 + UA SL..i B + (S~jw - A,)
nzavp, hi' 'SK i -I11(

- S1(w,,, + W30 - ).,.) + jSK:(., - K,,) - sJKn*o(C)

+ [SSKaK - - - SK°)]n*o(C)

i 2 B. (K21 + SK,, + SK + 6 - SKun, + Slffng)hy 2 B21/1h

2 -_(& +SX

- S (SK,,[KaK - (1, + 8)n,,] - S,[(K , - K,)

- (1, + -,

In the derivation of (3.10), it has been assumed that a

quasi-equilibrium was reached and partial Maxwell velocity dis-

tribution was established, i.e.,

{ a2r - 'o)VI/n2v2
S- ,°P {_ ,-,, lJAVD

where v is the center frequency of the Doppler line and AvD is

the full width at half peak in the Doppler line.

IV. GAIN, INTENSITY AND POWER

Using (3.10) under conditions that the light frequency equals

the Doppler center frequency (i.e., v = v ), we get0

K, eP( _2 172) z =Koexp ,e (I + T
S}+ 2 + 11, ) (4.1)

+ ~ Vi T+ T1 1,

-2(v" - y, ~
where 1 ,z A,, is the probability integral.

When non-uniform broadening dominates, i.e., r - 0, (4.1) becomes

K.(Q, C) (.2)

+ t/t1 )
7



When uniform broadening dominates, i.e., n-- (4.1) becomes

RXE Ke(4.3)
i-i+1/1,(9) 7 e,

It is defined as the partial saturation intensity K and go

are non-uniform and uniform broadening saturation gain coeffi-

cients, respectively. When the gain is equal to the loss, the

above equation also applies. It becomes the familiar theory [6]

on non-flow gas lasers. When

, ,-A, chS, K2,KuKjo + 8[K,.K, + (K,, + K, + K,1)Ko] (4.4)
2 Bdj3  SdX ,K + (K, + SIK- + SK1)8

K.1 , --- A v, - wa + W " - S"
S3K -j-

Equation (4.4) omits 62 as a higher order term. From (4.1)-

(4.3), it is easy to obtain the radiation intensity in the opti-

cal chamber. The transmitted intensity Jt is

J,- ;11 + 142 g IL ,(:uV + (4VR5)
- (VIR1L + VR,)I - RIR,) (4.5)

Integrating Jt with reppect to x and t, we get the power.

For single end output with the other end as a no-loss total reflec-

tion mirror (i.e., R 2 = 1), we get

V 1 u 'Iexp +III erf L]~~
7 V + + f - ddC (4.6)

t .' -- s V, . a l + t/ 1 + I I I ,

where V =L L L is the volume of the optical chamber. For

77>> 1, (4.6) becomes

P - + , , UV*' 1,-,dC + in, 1,,'Id~dC
- j( -g VI, l+ j .1 a cI&
L, V/ ,+ (g:L, + In Re) (4.7)

where

.C.:L,(- .gId - .
8L le (48)



I* and g* can be considered as the gain coefficients of uniform
s 0

saturation intensity and non-uniform saturation intensity, res-

pectively. They are average values with respect to time and

space. (4.7) is in the same form as the Rigrod equation for non-

flow gas lasers. Substituting (3.10) into (4.8), I* and g* can be
5 0

obtained:

2+ SK + SK 1. + a SK8n,

. -. i' ' " (s,KEKK - (1. + 6)n,,
d -I G-p )',(4.

- S[(K,, - K,) - 0., + 8)nij)} (4.9)

The expression for g* is going to be omitted. The t* corres-

o 1
ponding to the maximum power out is obtained based on aP_0

For 6 = 0, we get Ct,

t,* - 1 -, - g , + In(1 t- a, -')] (4.10)
a, a, +r l

From (4.7) and (4.10), the maximum power' output P* is

t~) ~~) ~ Id4~(4.11)
Ljaj(1 - a, - at(1 - a, - il) LILj( - C)

The above equation has the same form as the Rigrod equation

[6]. For n<<1 (non-uniform broadening), the same discussion

can be made.

V. ANALYSIS OF PARAMETERS

I is proportional to the square of the pressure P It is

not related to the pumping rate and the degree of excitation of

the gas at the inlet of the optical chamber. From (3.10) we know

that Is decreases monotonically with x from its maximum I
u s

9
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max at x = 0 to Y (see equation (4.4)).S

I.,m. - Is.., - (Ka + S,K 1, + S, K,, + 8 3 ,_.2 ().)B,, 2

Increasing the flow speed (leaving other parameters un-

changed), we found that I remained the same but I and IS , max S S

increased significantly (see example). The variation in reflect-

ivity R! = (Rl1 ) significantly affects Is ' The reasonable

limits for 6 was derived to be:

IsI < -n (;,, i)f'or I O(K,) (5.2)

From (4 .4 ) we know that 8'- K,K I0 .This isKu + K,"

because when a<0 R increases monotonically with X and tu 1
monotonically decreases. When tI is reduced to zero, light radia-

tion is forced to stop; when 8> 0 I,>,> or>>)Je

In gas-flow lasers, K. and g0 are parameters of Is which are re-

lated to the mirror surface conditions. Only when u = 0 and

6 = 0, these parameters will have the physical meaning of corres-

ponding parameters for non-flow steady-state gas lasers. It

demonstrates the characteristics of the non-steady state nature

of gas-flow lasers. The parametric dependence of I* is identical
5

to that of I
s

If the pumping rate w. is proportional to p, then the non-
1

saturation gain coefficient K is not related to p and g0 is0
inversely proportional to p. K0, g and wi are proportional to

the degree of excitation of the gas at the inlet of the optical

chamber. From (3.10) and (4.4), we know that for pumping upstream

of the optical chamber, for 6 > 0, g0 decreases monotonically and

for 6 < 0, g0 increases monotonically. For pumping inside the

optical chamber, we get from (4.4)

R41 - w + "'N _ SIK, :L wlSaKjo #-I

B,,f2[SK,,K 1. + (K 3, + SK,, + SKi)8] (.).

cS:{KaKi K,. + IKuKu + (K,, + Ka + ;Cai)Kj])

10
*l



Therefore, for the same pumping conditions ,R oI>o<(r <<)ReI1,.v.

Power P is proportional to p, u, pumping speed and the

degree of excitation at the inlet of the optical chamber. When

reflectivity is constant and & = 0, the maximum power output P*2
is proportional to p and mirror area.

VI. EXAMPLE

For a CO 2IN 2/H e gas mixture, the speed constants are tabu-

lated as follows [8]:

speed constants at T = 300'K

NHe/N K1 0/p K2 1 /p K2 3/p K 32/K23

(TORR- sec-) (TORR -sec-1) (TORR- sec-) _'

0 8.8 x 10 2  1.23 x 102 1.67 x 101

0.3 1.2 x 103 1.03 x 102 1.16 x 104 N CO/NN

0.5 1.9 x l03  9.6 x lo1 8.3 x 10 4  
2  2

From information in reference [8], we get

SA2 _ 46 2 (21 + I)
So 4-rv, T

[-1(1+ 1)] 782

SI/S 2 is also a function of temperature and degree of excitation.

When T = 3001K and degree of excitation is not too high, - 0.04.

The variation of Is with is shown in Figure 3.

Is approximately is in the 103 -101 watt/cm2 region which is con-

sistent with experimental results,. The calculated curve of I.
proved the analytical conclusion given in the previous section.

When a_ , I s is 10 times larger than lIo
s

11



5-0

Figure 3. Variation of Is
with A,z s .-

u-
T- 30UK, p -30" ., PdNd/Hc 1 / 4 / 5  1010 f ! ,1!

o 2.0 4.0 6.0 U IQ
lax

Figures 4 and 5 show the change of go and I with ) and
Ut U

respectively. The pulsing time of the pump vs. time
0 U

can be expressed as the variation of n2 with go and I

are like "waves" propagating in the right direction. Straight

lines LU b- -O and = 1 are the front and back surfaces ofLi u

the wave where b--. From Figures 4 and 5, we know that
- b4L, -Htoth

along a straight line bx - H -constO< H < 1, the varia-

tion of go is slower than that of I.

For continuous pumping, when R 1 = const, g* monotonically

gradually decreases with &L . When - - 10,g is approximate-
U U

ly 0.8. When g * more significantly monotonically declines.
5 0 -

Whenr-'z -10 is about 0.1. When a * increases with

and I * decreases with ,_ . Note that go* and I * do

not have any obvious physical meanings. From Figures 4 and 6, it

can be seen that when R is constant, the variations of g0 and g *

with E are slow regardless of whether continuous or pulsed pumping

is used. This serves as a theoretical basis for the calculation

of gas flow laser power using an average value of the gain coeffi-

cient and the non-flow gas laser equation as suggested in refer-

ences [5,7J.

Gas laser power calculated here agrees with that reported

in reference [] (see Figure 7). 2 represents the fraction of

effective vibrational energy taken. For the calculation para-

meters in Figure 7, when - , the effective energy is com-

pletely used.

12
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Figure 6. Unified average Figure 7. Gas laser output
non-staturation gain g0 * vs. power p vs.
__x uA u

i. 6= , 2. =0, 3. ,--i
T=300KHP=30 torr pCO2IN2I e=1/4/5_- -. T=3001K, //P=30 torr

2/ 2  C02/N2/He=I/4/5

= 2xlO-3cm-1 no = 1016

particle/cm3
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CONTACT PROBLEMS OF LONG RIGID

FRAME FOOTING ON ELASTIC FOUNDATION

Zeng Xin-Chuan*

(The Seismological Brigade of Wuhan, National
Seismological Bureau)

In reference [1], Galin solved the contact problems between

two flat bottom pressure heads under center load and elastic

semi-flat foundation with friction present. The distribution of

stress along the contact surface was obtained. In this paper,

the author used the Muskhelishvili method [2] to attack the con-

tact problems of long rigid frame footing under off-center load

on an elastic foundation. For simplicity in the calculation, it

was assumed that the contact between the footing and the founda-

tion is frictionless.

The action of an off-center load (Figure 1) is equivalent

to the combination of the actions of a center load and a force

pair (Figure 2). The boundary conditions of center loading are:

S yo IsI<a 1:1 (
IV o yo 0 a< Ib b

_____ H2a-4

x C _Po
d

Y

Figure I Figure 2

This paper was received on November 7, 1978.
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For the force pair, the boundary conditions are:

r,, " 0 y " 0 in < 00
o',-0 y 0 iI <a 9I1 >b (2)

V mZ .9z y 0 a< z1<b

where e = d/b is the rotation angle of the footing.

The displacement and stress of the foundation can be expressed

by the complex function ¢(Z):

2(u + i) .- + 2() +- )-- j_,) + 1-(-) +

a, - or, + 2r,--2{(z - i)q7"(g - -p'(i) - (3)

o, - it., - T'(1) - q'(i) + (a - ;)- (X)

The solution of O(z) which satisfies the boundary condition
(i) is: 9'() ---- '-2£- (4)

2z< (g)

where a + X() (-b')'( -a'), . The solution of ¢(z)

which satisfies the boundary conditions (2) is

,.,i 1 -*9 - (42 +  62)
q'(Z) a i(5)

Under center loading conditions, the displacement of the

footing can be obtained from (4) and (3):

UI,. - i,.. - 4wu logA , < I1 < b (6)

where A (by - a')L, arc bo 6sin w - - arc sin ZI)

For footing under the action of a force pair M, the angle of

rotation is: (I +a)M-)

2 -,a(b' -( )

16
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The stress distribution on the bottom of the footing under

center load conditions can be obtained from (4) and (3) as:

, ,- a,(b, - x,)' lx, <b
WY - 1(8)

rWW -- 0

Under the action of the force pair, from (5) and (3), we get:z21

- 2 - I (a + b')
'',= w(b' - a') (W - a')'"(b' - ('Y" a < b (9)

r,,.- 0

As for the stress distribution of the foundation under center

loading, we obtain the following by substituting (4) into (3):

. (PIPIP"'(- A(zY) + I)y Cos +2" 1

,, (p ,pl)-a [- .'4  y) + 1)y co p + ' + q' + f
,N 2

y) + + , + (p, +

y(,, Y- + -I- Cos 'PO'+",(+, ) + ,

(10)

Pa(X Y + p)i !((x 4 '. + )' 9"

2 1

-s. - (P;P;PP) - '  ( , Y) sin TO+ TO' ( + T)'+ 972zrL 2

arctg- ar y } (12)
p. - [(x - az)' + Y,1,,' 0 [(x + a)' + Y''
9),' - arc tg L - q);, - arcEg Y 0 (1)

A(x, y) - [(x' - Y,2 - b')(Xj' - yA - a) - 4x','1[(' Y)' - 4r'y' - a'b'
+ gx'y'(x' - y')[ 2-(' - y') - (a' + ')/[(x' + y9)'
- 2(x' - y')b' e+ bHl[(r' + ,)' - 2(x' - )a' + a4 ] (13)

B(z,,') -2y[(a' + b ')(x' + y')' - 4a'b2(z' - Y') + a'b'(a' + b')]/
[(z' + y,)' - 2(' - y')b' + b4(Z' + y)' - 2(r' - y)a' + a4 ]

17



Under the action of the force pair, we get the following by sub-

stituting (5) into (3):

a (1  - al)'C (xy) - 4 y cos O

+ -2(('- y'- -() ' +- a)'yD(xy) Xing",

- a 2

[2('- - -~a'+ 6) + (Pb - a)~. sin 9 + q~,+ 'P + tqi (14)

A.(b1 - a3) (Pjo.;)-LnY [C(, y).'in ' + 91 + 9 +

+D(x,y)cos Tc+ + Pi
2J

where

C(., Y) - x[(2' - Y')' - 4y4 (x' + y')(a' + b') + alb')

[(x" - y2 - b')' + 4xy']l(' - Y - a')' + 4z'y 2(

D(x, ) - y[4x' - ( -' - y ' - (X' + y')(al + 6') - ab] (

(((: - Y' - b')' + 4'y'](' - y2 - a')' + 4 'I

Figures 3 and 4 show the stress distribution a on a few

horizontal surfaces under center loading and force 
pair condi-

tions respectively. Each figure only shows half of the entire

picture. The other half of Figure 3 is symmetric to what is

shown. For Figure 4, the half nut shown is asymmetric to what

is presented.

4 3. 2& a U,

-0.2 
0.4

-Y.4

,0 --0.3

-1.2 -.

Figure 3 Figure 4
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From (6), (7) and (8), we can see that when a = 0, the

following holds for long solid rigid frame footings:

uI,-. (g- 1)p, - _(I + X) logb, lxi <b,
4xi 4 )"b

23rb ' jrh -,, = XTAI

Our results are consistent with those found by Galin [1], Musk-

helishvili [2] and Sneddon [3].

From (9) and Figure 4, we see that o,,f changes signs

between -b and -a and a and b. This implies that tensile stress

will appear at some location on the bottom of the footing. When

the footing does not adhere to the foundation or when the adhe-

sion is less than the tensile force, the footing will be detached

from the foundation. Therefore, in order to avoid such a detach-

ment effect, the load and its corresponding force pair must satisfy

certain relations.

From (8) and (9), we get the stress distribution on the bot-

tom of the footing under off-center load:

-- (a' + 62)

Pt + 2M 2________

W(r' - S)W(b' _ x'" + - a') (X2 -( aZ i - x-Y"' £ < I I < b

It is well known that in order not to allow detachment of the

footing from the foundation, it is necessary to make the normal

stress on the bottom of the footing be pressure stress. Therefore,

1
2 - (a' + b') Pt2M "X" POT , xL a< 1Il < b

(b' - a') ' - aZ)U(bZ - x') (x' - az)a/(h -3

and M p(a+b)/2 (16)
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If the action point of load is a distance r off-center (see

Figure 1), then M = rp. From this the equation that r must satis-

fy so that the footing and the foundation will not separate is:

r <(a + b)/2 (17)

For long solid frame footing, a = 0, and the above becomes:

M < pb/2, , < b/2

This is consistent with result obtained by Muskhelishvili
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