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THE THEORY OF GAIN, INTENSITY AND POWER
OF GAS LASERS

Kao Cho* and Chao Shu Tao

ABSTRACT

The particle thermal veloclty distribution is introduced
into the speed equation to obtain the relations between gain,
intensity and power of gas lasers. This paper reached the same

BN SN IIRAVI, ¢ 15 G A} S

conclusions as reference [1] under uniform broadening conditions.
The results were simplified to become the well known non-flowing
gas laser equations when the flow speed is zero.

In the analysis, the change in the reflectivity of the

‘, mirror and the degree of excitation as a functlon of time of
| gases in the upstream region of the optical chamber were consi-
: dered with respect to both continuous and pulsed gas~-flowing CO

2
lasers.

I. INTRODUCTION

In the analysis of a gas-f‘lowinglco2 laser, under the condi-
tlons that gain 1s equal to consumption, the solution to the speed
equations put on line [1,2] applies only to the uniform broaden-
ing situation. Under conditions that both uniform and non-uniform
broadenings exist, reference [3] made an analysis. 1In addition,
the semi-empirical analyses of gas flow lasers [4,5] suggested
that it was possible to apply some theory in the treatment of non-
flow gas lasers in the explanation of experimental results with
gas flow lasers. However, theoretlical results were already avail-

able [1-3] for gas flow lasers. But they cannot be reduced to

*
This paper was received on April 7, 1978.




non-flow gas laser equations when the flow speed approaches zero.

The introduction of thermal veloclty distribution to the
speed equation will enable us to obtain the theoretical relations
between the gain, intensity and power of gas flow lasers. When
the flow speed equals zero, these relations reduce to the familiar
non-flow gas laser equations. Under uniform broadening, the
results are the same as those reported in references [1,2]. It
must be pointed out that, vigorously speaking, particle thermal
velocity distribution cannot be brought into the speed equations.
However, this technique very simply provided desirable results
and will serve as a basis for further analysis.

II. ASSUMPTIONS AND BASIC EQUATIONS

Let us assume the following: The optical axis is perpendi-
cular to the direction of gas~flow, gas passage is rectangular
in cross-section and plane parallel mirrors are placed on either

side of the passage as shown in Figure 1. The variations of gas
parameters u, p and T inside the optical chamber can be neglected.
The effect of the boundary layer is also negligible [7].

The pump region and the uptical chamber are separated in
order to analyze the "flow broadening" pulse width of the pulsed

pump upstream of the optical chamber.

The working energy levels of the 002—N2 laser system can be
described as the five-energy level model shown in Figure 2. Energy
level 1 includes the symmetric and bendlng levels of C02. The
number of particles transported from energy level i to j, due to
inelastic collisions, in a unit time 1is KiJNi; Ni is_ihe density
of particles at energy level i. Speed KiJ (unit sec ~) satisfies

the following:

Ky, Kn, K Ky > Ko (j=1,2,3) . (2.1)
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With constant u, p and T, the non-constant speed equations and
the radiation exchange equation are:

-alv-’-+ui’!"-W.—KuNy+KnNn
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Figure 1. Schematic diagram Figure 2. Energy levels of the
of a transverse gas flow laser | CO N2 laser system and relaxa-
and coordinate system. tign processes.

(pump zone's,<s<s: Optical chamber 0gsKs, = L)

' 1——gas rlow; 2——pump zone;
3—laser direction

where t 1s time, u is flow-speed, wi(i=l,2,3) is pump speed;

¢ is speed of light, h 1s the Boltzmann constant, y 1s 1ight
frequency, J 1s radiation intensity; fi (i=1,2) is the fraction
of particles in Ni with laser action, Bfl is the specd of excited
particles with Doppler frequency vy' under the infiluence of radia-

tion with frequency v.




. ZZXAVN B, = _bB'
Bll Blll + [ZS_V:_—' 1’) 2? u & a . (2.u)
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g4 (1=ll2) is the statistical weight of energy level; AvN
is the full width at half peak of the uniform broadening curve.
I is the direction of light propagation. The intensity satisfles

the following boundary conditions

y=0Ji=RJ;, Riym1—a—4 }

y=L, J,=RJ{, Ri=1—a,—& (2.5)

Ri’ ay and ty (1=1,2) are the reflection, absorption and
transmission coefficients of the mirrors on both sides respective-
ly. J+ and J_ are the photon energy flows in the positive and
negative y direction and we have J=J*+ /7,

ITII. SOLUTION

9
On the left hand of (2.3), with the exception of gy cther

terms are small enough to be negligible. Therefore, from (2.3)
and (2.5), we get

1 L, 1 ’ ’ =1
E—E-S :—(Bdf‘Nz—'Bu’INOd)'-z_L’LanR’ (3.1)

2”®

Because [1] Jows/Jaia = 2/ R/C1 + R), R = min (R, Ra), » there-

fore, the variation of J along the y direction can be neglected
when R=0.6 . From (2.3) and (2.5), we obtain

Ly , , - _ . ;
‘I_-Zl;So -:—(BuhN:—BIJINI)M-EI;(II—J,_+J. -1 (3.2) :

Jom I+ RY = LKL RIVE o (2 (3.3

VR, + VR = /REY

The g here 1s the average gain coefficient with respect to y.
Equation (3.1) 1is the condition required for gas flow laser reson-

ance. Generally, Ri and g vary with x.




The solutlon to the speed equations 1s obtalned as follows:

First take the integral average of (2.1) with respect to y and
then carry out these mathematical transformations:

F 4 x
f=r b=y (3.4)

(2.1) is then changed into:

3
a?gf <+ (Ky + S|Kr + S;Km) f -+ S;KQK”’I‘
=K“Z“" a_("’_li"ﬁ)+$[(]<w K») :'+Knl<ug] )
imy
>
3.5
g?: + (Kg -+ SlKu -+ S)Kw) + S;K,,K"n. ‘.' ( )
!
- S| Kg Z w, + S;me;, aan + SoKn( (A -+ K ) J
- [ 3] 5
where
ny =y my, myom Smy + S, M= Sy — Seg '
. (3.6)
So= e, 5 = 5 Buh | 548 =1
Bafy + By Bauf: + Buhy (.7)
. . 1 I
n, - — N.d
4 L, y

Let = g({)e*, and then obtain the solution to (3.5) as:

{(w; + wy; — A ﬂ.') + [\:3’1,(;)

2
n, = n,, + Sogne, + Z
I-’l-(:=)l 11

+ (1, = SiKn — S;Ku)nd(0) + S.elck.. — Ka) = (& + 8)m e} | (3.8)

n, = n, + Se gmyy + i {(“‘ ;-r"!') + (1' - K.u)"‘&'(;)

o1 e J' -
1=l 2)

+ $,Kunf(L) + Seg[Kn — (1: + 3)":,]f-“)

The superscript 0 on the right represents the distribution

of the corresponding quantity at £

=0 (i.e., x=0). & is a con-

stant and Wy is another constant.

A= L [(Ka+ SiKs + SiKw) 4/ (Ku + SiKa + SiK0) — 45:KuKo )

— L — J



(K — Kp)8 + KyKy

BT TE L (K + SKn + S:K0)8 + SiKuKuw '

Kﬂg Ky + 8)

e = 61 + (Ku + S‘Kn + SzKu)J + SIKBKM

)
LS 0gE<H=2>0

By, = S;Ku.‘-| “

0 §>E

3
Sz"w"'s + $iKa z w;

fl,, == im)
b SIK&IK‘. 0 < E < El

t 0 £E>6

(3.8) is the solution when A e 4 A,. Similarly, a solution when
>‘l = >‘2 can be obtained. It will not be discussed here. The
initial distribution at x = 0 is explained as follows: (1) ini-
tial distribution can be obtained from the solution to (2.2)
under radiationless condition J &=® 0. The radiationless solution
is not going to be written here. Under continuous pumping at the
upstream of the optical chamber, #%(I)|im=n'(s)|.0=" constant. When
pulsed pumping is used, nj(®l.= varies with t. (2) the radia-

tionless solution usually generally does not satisfy (3.1). How-

ever, since —2L < k3, K, 2, s the 1nelastic exchange
el — Rsz)m w, ’L
of collision within the time period "(1——";:?-)' cannot be completed.
. 2
2L =

i —_— KL t &£ =20 t:
In addition, since = RED 1 at & we ge

n = 230 + (L), o) =al(l) . (3.9
where () = () oo (6 = 1, 2, 3) which can be obtained from the

radiationless solution. (3) generally, since - g, K.>» Ky
’L »

“ 1
“herefore  g.m(r) = Koni2).
From (2.2) and (3.6), gI can be obtained

il o S;W) -_— S|W1 + S;Kn'lg b S‘/n. - Sgg(b' + K:l + SJK” + SlK\.)
1 4

o S o= [T

= xAvy Ay & Avp

- (1 + [2_(1':_")_]') .f;l’.l ' (3.10)

AVN




where

f = Ku + S;Ky — S:Ku (3.10),
e
2Kt (0 + g — 2R > wi) + z £ L (SiKuww = Limy)
aldvy Ay S$:Kp =1 :-1(:3; 7': )

- Sl/(“'\o + wy — li"b,) + lSzK.'z(l-i - Ks:) - Slﬂ‘sa]"n(;)
+ (515:KaKy — $if 2, — SiKn — S,K.,)]n&(;)}

_l_, - RAIIN ‘SI

{(Kn + San + S|Kxo +6&—3S Ku’l,. + SJn,,)

hy 2 anz

_ .:—. etk

--‘l_h‘n Ay — &,
=13}

<52K z[Kb (l; + 5)”5.] - S\f[(’\'u - 1\'33‘)

- .(l,- + J)n"])}

In the derivation of (3.10), it has been assumed that a
quasi-equilibrium was reached and partial Maxwell velocity dis-
tribution was established, i.e.,

Wi = exp { —_ [w]z }’

A”p .
- _ [2(1" - v.)\/m 2
| [} ".’oc*P{ Avp ] }
? where vo is the center frequency of the Doppler line and AvD is

the full width at half peak in the Doppler line.
IV. GAIN, INTENSITY AND POWER

Using (3.10) under conditions that the light frequency equals
the Doppler center frequency (i.e., v = vo), we get

Rt e S ) O

-2 17, =2 )

where Avp avy is the probability integral.
When non-uniform broadening dominates, i.e., n + O, (4.1) becomes
= K5, ) (4.2)
Vi +I/I.(§) : '




When uniform broadening dominates, i.e., n+= (4.1) becomes

- BCE L) -_ Ko
T 2T 7 (3

It is defined as the partial saturation intensity KO and g,
are non-uniform and uniform broadening saturation gain coeffi-
cients, respectively. When the gain is equal to the loss, the
above equation also applies. It becomes the familiar theory [6]
on non-flow gas lasers. When LED ]

= ZAvy chvS, Ky KyKe + S[KaKy + (Ky + Kp + K;)Ky) ; (4.4)

L—1,
2 Buh S:KuKu + (Ku + SiKa + SiKu)é

3
K.I,*I?'J,-M<Wn+-vu—%zwu)
2 5K im0
; Equation (4.4) omits §° as a higher order term. From (4,1)-
(4.3), it is easy to obtain the radiation intensity in the opti-
cal chamber. The transmitted intensity Jt is

LLLI(’I‘/_E: + tn/-R:_L ' (4.5)
R+ VRYQ —VRiRY)

Jo=Jsn + jzt,’z =

Integrating Jt with reppect to X and t, we get the power.
For single end output with the other end as a no-loss total reflec-
tion mirror (i.e., R, = 1), we get

) I
K.l exp {qz 1+ j
r:=_____V____§‘ 56, u O ( I;)[l__crf(,l /1+_I_)]dgd;l (4.6)
H L,{{ 4 o g+ 4 I, b=

& Vi+ 11,

;
{ where V L1L2L3 is the volume of the optical chamber. For
21 , (4.5) becomes
P ul1, r !‘a 1.dEd l +M§‘ X‘.I stged l
L — Za +1L){ Lo J0 gol.dfdl c= L, Jt Je rettdgdl t-u}
= VT (geL, + R “n
Ll(‘l + ‘l)
where - '
I‘. - _“—_S S ‘ I'f“ds:dc‘
Ll(c e DU =0 >
T (e
LJS S gol 45dE
gli= 7 :.g‘. L!L (4.8)
S S I,e“d,‘d{l
£ J0 {=

8

i
4
«




Ig and gg can be considered as the gain coefficients of uniform
saturation intensity and non-uniform saturation intensity, res-
pectively. They are average values with respect to time and
space. (4.7) is in the same form as the Rigrod equation for non-
flow gas lasers. Substituting (3.10) into (4.8), Ig and gg can be
obtained:

) SL/a __ 1
I“ - R_A_l_!_ M {(Kll + SJK” -+ SIKII <+ 5_511{”"" + Sl,”b') -“

2 Buhl, s
D L= e LK — (b + 8]
- 1= e _ .
4-%»; }--(lj - 1-.') ! n[ N !
=12
— Sf1(Ku — Ka) = Gy + Oy, D} | (49)

The expression for gg is going to be omitted. The t{ corres-
ponding to the maximum power out is obtained based on §£=m

For 8§ = 0, we get 0,

g 1 —a —1f .
— e oY1 L -+ 1 1+— — l. 4.
a a e [Eo 2 a( & D] (4.10)

From (4.7) and (4.10), the maximum power output P¥* is

pmVIGEY Gy oy b b s
Co

Lya(l — a0, — 8 a(l —a — £,) LILJ(g — Lo) ° [c-» (411

The above equation has the same form as the Rigrod equation
[6]. For 71X (non-uniform broadening), the same discussion

can be made.

V. ANALYSIS OF PARAMETERS

IS is proportiocnal to the square of the pressure P2. It is

not related to the pumping rate and the degree of excitation of
the gas at the inlet of the optical chamber. From (3.10) we know
that Is decreases monotonically with é from its maximum Is




max at x = 0 to fs (see equation (4.4)).

L = Ll = (K S + S + 8 0L 700 (s1)
ni -

Increasing the flow speed (leaving other parameters un-

changed), we found that I remalned the same but Is and fs

s,max
increased significantly (sée example). The variation in reflect-
ivity Rl = (Rlo)6€ significantly affects Is’ The reasonable

limits for § was derived to be:

|81 < min (4., 4,) fOr 8] = O(Ky) ' (5.2)
KaK =
From (4.4) we know that &~ —g L= 1=~0 . Tnis 1s
because when s<o R1 incrcases monotonically with % and tl
monotonically decreases. When tl is reduced to zero, light radia-

tion is forced to stop; when 5§>0 I]ise> OFD O im.

In gas-flow lasers, Ko and g are parameters of Is which are re-
lated to the mirror surface conditions. Only when u = 0 and

§ = 0, these parameters will have the physlcal meaning of corres-
ponding parameters for non-flow steady-state gas lasers. It
demonstrates the characteristics of the non-steady state nature
of gas~flow lasers. The parametric dependence of I; 1s identical
to that of IS.

If the pumping rate Wy is proportional to p, then the non-
saturation gain coefficient KO is not related to p and go is

inversely proportional to p. Ko’ go and w, are proportional to

the degree of excitation of the gas at theiinlet of the optical
chamber. From (3.10) and (4.4), we know that for pumping upstream
of the optical chamber, for § 2> 0, g, decreases monotonically and
for § < Q, g5 increases monotonically. For pumping inside the

optical chamber, we get from (4.84)

]
- S, K
K ('”" BT K =

Bah[$iKuKi + (Ku + SKn + SK8l (533,
eS{ KuKuKy + [KaKy + (Kn + Ky + Ku)Ki]8}

10




Therefore, for the same pumping conditions , Kilee<{or « )Kilim.

Power P is prorportional to p, u, pumping speed and the
degree of excitation at the inlet of the optical chamber. When
reflectivity 1is constant and 6§ = 0, the maximum power output P*¥
1s proportional to p2 and mirror area.

VI. EXAMPLE

For a COZ/N2/He gas mixture, the speed constants are tabu-

lated as follows [8]:

speed constants at T = 300°K

N__/N K /P K, /D R,3/P K32/ %sg
(T0RR *sec™!)! (ToRR™'sec™!)|(TORR!sec™!)
‘ i
0 8.8 x 102 1.23 x 102 |1.67 x 10" {
0.3 1.2 x 103, 1.03 x 10‘2 1.16 x 10" Neg /Ny
0.5 1.9 x 103 1 9.6 x 10+ 8.3 x 10" 2 e

From information in reference [8], we get

S M8 2+
So 4”3.1’, T

-exp[—l(1+1) g] 7‘“( cm’)

Sl/S2 is also a function of temperature and degree of excitation.
When T = 300°K and degree of excitation is not too high, S g4
S, :

735 P
The wvarilation of I with ’:’.’<l'<"') is shown in Figure 3.
IS approximately is in the 103 - éqol wat‘.:/cm2 region which is con-
sistent with experimental results,‘. The calculated curve of I

proved the analytical conclusion given in the previous section.

When ;3% , I_ is 10 times larger than Ll
5

11
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Figure 3. Variation of IS @ -
with 2= = . s==ls
P 5
T = 300K, p=30, TO,/N,/He = 1/4/5 100 TR R S B
o . 0 20 40 60 80 100
_1._::

Figures 4 and 5 show the change of 8, and I with %% and

2.  J
%: , respectively. The pulsing time of the pump vs. time
can be expressed as the variation of n2° with ff - & and I

]
are like "waves" propagating in the right direction. Straight

Moyl

lines L o and = 1 are the front and back surfaces of

the wave where b-zij,. From Figures 4 and 5, we know that

along a straight line ' % - béf— = H=constd< py<i, the varia-
[} .- —

tion of g is slower than that of I.

For continuous pumping, when Rl = const, ég* monotonically
gradually decreases with Apx . Whenubfs-lo,:: is approximate-
ly 0.8. When 5=t éﬁ* more significan:ly monotonically declines.
When%-.lo o issabou’c 0.1. When 3-:55“ , go* increases with
==. and I_* decreases with %} . Note that ég* and I_* do
not nave any obvious physical meanings. From Figures 4 and 6, it
can be seen that when R is constant, the variations of g, and go*
with % are slow regardless of whether continuous or pulsed pumping
is used. This serves as a theoretical basls for the calculation
of gas flow laser power using an average value of the gain coeffi-
cient and the non-flow gas laser equation as suggested in refer-
ences [5,7].

Gas laser power calculated here agrees with that reported
in reference [1] (see Figure 7). A represents the fraction of
effective vibrational energy taken.“ For the calculation para-
meters in Flgure 7, when M2 oS , the effective energy 1s com=-
pletely used. * i
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CONTACT PROBLEMS OF LONG RIGID
FRAME FOOTING ON ELASTIC FOUNDATION

Zeng Xin-Chuan¥

(The Seismological Brigade of Wuhan, National
Seismological Bureau)

In reference [1], Galin solved the contact problems between
. two flat bottom pressure heads under center load and elastic

) semi-flat foundation with friction present. The distribution of
stress along the contact surface was obtained. 1In this paper,
the author used the Muskhelishvili method [2] to attack the con-
tact problems of long rigid frame footing under off-center load
on an elastic foundation. For simplicity in the calculation, it
was assumed that the contact between the footing and the founda-
tion is frictionless.

The action of an off-center load (Figure 1) is equivalent
to the combination of the actions of a center load and a force
pair (Figure 2). The boundary conditions of center loading are:

Tey =0 y=90 z] < o
o, =0 y =0 lx! < a l2] > & ¢))
‘v = c (F¥) y =-(Q ¢<!xl<b

Figure 1 Filgure 2

*
This paper was received on November 7, 1978.
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For the force pair, the boundary conditions are:

T,y =0 y=0 “'<m
g, =0 y=20 x| < a || > & 2)
d
] v"jr-ﬂz y=0 a<|z|]<s

where 6 = d/b is the rotation angle of the footing.

The displacement and stress of the foundation can be expressed
by the complex function ¢(z):

; 2u(u + iv) = x@(=) + (D) + (Z ~ 1)P'()
0, — 0, + 2it,, = —2{(s — DY@ — (@) — ¢} €))

oy —it,, =@ () —@'(A) + (s — D" (2)

The solution of ¢(z) which satisfies the boundary condition

(1) is: , ips
?'() 224 (=) )
where ‘-i’{t_ﬁfin X(2) = (£ = 6)N(s" — ) . The solution of ¢(z)
which satisfles the boundary conditions (2) is
1
3 —_— 2 3
, 3 4B -3 (a® + 5
- 1 — ¢))
v =77 :{ X (=) }

Under center loading conditions, the displacement of the
footing can be obtained from (4) and (3):

w: 9],-;“-“4—-4-—‘210:.4 a<lz| <b 6)
=n

4x

“':4-

where bsin w . (= H'?
A = (p — O - aret -
( aH)vi, g relg B cod pyory w = arcsin . .

For footing under the action of a force pair M, the angle of

rotation 1s: _ (U +oOM

.Z:p(b‘ - a%) ™
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The stress distribution on the bottom of the footing under
center load conditions can be obtained from (4) and (3) as:

Tylyma = — =(' — a3 — YA

Px i< x| <b
} (8

f:ylr"-o

Under the action of the force pair, from (5) and (3), we get:
P = (a + )
IM T .
avly-ﬂ-‘(b, -—n') (,l_ a’)‘n(b' _‘:)m e << lxl <) } (9)

r,,l,..—o )
As for the stress distrlbution of the foundation under center

loading, we obtain the following by substituting (4) into (3):

1 2 1 2
g, - ‘:— Colpiotp) ™ [(—' A(z, y) 4+ 1)y cos g + %-*2- P + @ 1

+ (yB(x, y) — z)sin @+ ¢l + @i + @] ]
2

t 2 1 3
3, = 2 ColeloloD ™ [ (4Ce, ) + Dy cos BiEBitol T oL

s (10

—~ (yB(x, y) + x)sin P + @i + i + @} J
2

2 nl 2
tr, = — & (olodploD ™ [A(z, ysin Bt @itoit ol
w .

+ B(x, y)cos ettt o+ ¢ ]
2

where ph = [(x — a)t + y]¥? ol = [(x + a)' + 1]
} (1)

? - t
P— P arch+¢

@ = arclg

(12)

pi=[(z — b)' + y 1 pl=[(x+ 8V + 7’]”}

Pl == arctg

l‘a(
P fch_b PRy

Alz, ) = [(&* — 5 = B)(s* ~ y* — a®) — 427y*]((& - PV — 4xly? — o)

+ 85 — (2 = y) = (& + BDV/L(2 + Y

= 20" =y A B[ (2 + y)? — 2(2? — yDa’ + ') (13
B(x,y) = 2zy[(&® + ) (2 + y*)! — 426 (2? — y») + 2P (a® + 1))/

[(£ + y?) = 2(2 = yD)8* + &'} (s + y)! — 2(2* — Do + a*]
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Under the action of the force pair, we get the following by sub-
stituting (5) into (3):

3

' 1 2 !
o, = z;,——"i—a;)—(pipép}pf "”{[(b‘ — @)C(2,y) ~ 4xlycos BTt f et o

+ [z(x‘— y— %(a’ + b‘)) — (4" — ¢yD(x,y) | in BLE 2 '2*' ol + wi}

ot + pl + ol + ¢}
2

______A_l___ 1112-;111 —a*) z, rlye
= = s el ([P =y C e+ el o

1 2 ] 3
- [2(:‘-y’——;-(a’ + b’)) + (4 — a’)'yD(x,y)J sin 20 + @i + @ + fPJ}

2
P B | 1 3 3 2
£y = ME =D (pptay 7y [, y)sin BTG L 9]
x

(14)

+ D(x, y) cos e + p: + ¢t + ¢l ]
2

. where :

2[(2? — yD! — 4y' = (o + yD(a' + B + o)
[( =y = ) + 457y ]H(" — y' = o) + 42'y']
Do, yy m 2L =2 =)' = (2 + y)(a + 5 — o8]

4 (7= y = Y + a2y 1[( — y — o) + 4z'y]

C(s, y) -
(15)

Figures 3 and 4 show the stress distribution oy on a few
horizontal surfaces under center loading and force pair condi-
tions respectively. Each figure only shows half of the entire
picture. The other half of Figure 3 1is symmetric to what is
shown. For Figure 4, the half nut shown is asymmetric to what
is presented.

‘Se 4e 34 2a ll
g2
im2y 1=
ym0.5s
=0
Figure 3 Figurz 4
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From (6), (7) and (8), we can see that when a = 0, the
following holds for long solid rigid frame footings:

“Iy-‘

._S‘_"'l_)l‘i. vl'“_—-whgb’ lx] < b,
u

4xp
1+ )M | 4
9-§T“5,L‘.. Oy | yme = -m, =] <&,

Our results are consistent with those found by Galin [1], Musk-
helishvili [2] and Sneddon [3].

From (9) and Figure 4, we see that 0,/,m changes signs
between -b and -a and a and b. This implies that tensile stress
will appear at some location on the bottom of the footing. When
the footing does not adhere to the foundation or when the adhe-
sion 1s less than the tensile force, the footing will be detached
from the foundation. Therefore, in order to aveold such a detach-
ment effect, the load and its corresponding force pair must satisfy
certain relations.

From (8) and (9), we get the stress distribution on the bot-
tom of the footing under off-center load:

1
—_— (a3 2
" IM 2 z(a + 5

TS T TG = WF — 7 (B —a) (P — ) — )

— a< |zl <b

It is well known that in order not to allow detachment of the
footing from the foundation, it 1s necessary to make the normal
stress on the bottom of the footing be pressure stress. Therefore,

1
—_ (2 + &
2M R px

, a< x| <b
2 — &) (& — ) — ) & — )5 — )V

and M < pla + 5)/2 ’ (16)
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If the action point of load i1s a distance r off-center (see
Figure 1), then M = rp. From this the equation that r must satis-
fy so that the footing and the foundation will not separate 1is:

r&a+5)/2 azn)

For long solid frame footing, a = 0, and the above becomes:

M < pb/2, r < b/2

This is consistent with result obtained by Muskhelisnvili
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