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FOREWORD

This report contains a description of a computer code for solving two

hypersonic vehicle trajectory optimization problems, that is, maximum cross-

range and maximum plane change. The work was performed by David G. Hull

and Jason L. Speyer of the Department of Aerospace Engineering and

Engineering Mechanics, University of Texas at Austin, Austin, Texas, 78712.

The program was sponsored by the Air Force Flight Dynamics Laboratory

under Contract F33615-79-C-3030 and work unit number 2404 07 32

and was managed by Dr. L. Earl Miller.
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SECTION I

INTRODUCTION

The purpose of this study is to certify the ability of a particular

timizatiop code to solve trajectory optimization problems associated with

hypervelocity vehicles, that is, the maximum crossrange problem and the

maximum plane change problem. The optimization problems are converted Into

parameter optimization problems (nonlinear prograsming problems) and are

r solved by the augmented-Lagrangian method. The particular optimization code

which will be used has been created at the Atomic Energy Research

Establishment in Harwell, England.

The physical model used for the trajectory problems is described in

Section II. In Section III, the optimal control problem is converted into

a parameter optimization problem, and the optimization code is discussed

in Section IV. That part of the code to be provided by the user is

presented In Sec-ion V. The solution of the optimization problem is

carried out in Section VI, and the conclusions are presented in

,* Section VII. Finally, the documentation provided with the optimization

*t

code, the listing of the optimization code and user code, and the

definition of the variables in the user code is presented in the

appendices.

ii



SECTION II

PHYSICAL MODEL

In this section, the physical model used for the reentry and plane change

problems is discussed. The model Includes the equations of motion, the earth,

the atmosphere, the aerodynamics, the propulsion, the performance indices, the

boundary conditions, and the inequality constraints.

2.1 Equations of M4otion

The equations of motion used for the reentry and plane change problems are

those for thrusting flight over a rotating earth. If the vehicle is assumed to

be flying west to east and if a positive bank angle is assumed to generate a

heading toward the north, these equations are given by

- V cos y cos 0/r cos *

= V cos y sin 4/r

r- V sin y (1)

= (T coo a - D)/m - g sin y + w2 r cos o (sin y coB * - coo y sin * sin •)

ym(T sin a + L) coso /mV + (V2 /r - g) cos y/V + 2w cos t cos

+ (w2 r/V) coo B (coo y cos # + sin y sin f coB o)

S= (T sin a + L) sin p/mV coo y - (V/r) cos y coo , tan *
+ 2w (tan y coo n sin sin) - (w2 r/V cos y) sin * coo * coo

In these equations, a is the longitude, 4 is the latitude, r is the radial

distance from the center of the earth to the vehicle center of gravity, V is

2



the velocity relative to the earth, y is the flight path inclination,

is the heading angle, m is the mass, T is the thrust, D is the drag, L is

the lift, a is the angle of attack, • is the bank angle, and w is the

angular velocity of the earth.

2.2 Earth

The earth is assumed to be a sphere whose radius represents mean sea level

and is denoted by rS . As a consequence, 'the acceleration of gravity is given

by the inverse-square law

g . g,(rs/r) 2  (2)

where S is the acceleration of gravity at sea level. Also the altitude of

the vehicle above mean sea level satisfies the relation

h - r - rs (3)

The values of the constants associated with the characteristics of the earth

are listed below:

r - 20926428 ft

S- 32.174 ft/sec2  (4)

w 7.2921151E-5 rad/sec

2.3 Atmosphere

In order to obtain atmospheric properties as a function of altitude, the

approximate atmosphere known as the 1962 U.S. Standard Atmosphere has been

employed, with the additional assumption that the composition of the atmosphere

3



is constant. Here, the atmosphere is divided into a nuiber of layers in

which the temperature gradient is assumed constant. Rence. the absolute

temperature in each layer is given by

Tit + 1(h-h) , h h (5)
n n n

where T is the absolute temperature at the beginning of the nth layer, 1n n

is the constant temperature gradient, and h is the altitude at the beginningn

of the layer. Once the temperature is known, the speed of sound is obtained

from the relation

a= (kR T)/2 (6)

where k is the ratio of specific heats of air and R is the gas constant of

air at sea level. For those layers where the temperature gradient is nonzero,

the density ratio, a P/- S , can be expressed as

-(1 + g /R (7)
n

where Ps is the density at sea level and C n is a known constant for each

layer. For those layers where the temperature gradient is zero, the density

ratio becomes

o a Cn exp (-gsh/R Tr ) (8)

The values of the constants associated with the atmosphere are presented

below and in Table 1:

k - 1.4

R - 3086.9629 ft 2/sec 2 OK

PS a 2.3769E-3 slugs/ft 3  (9)

4



Table 1. Atmospheric Constants
Layer hn T. c

(n) (ft) (OK) (°K/ft) n

1 0 288.15 -1.9812E-3 3.401824655257E-11

2 36,089 216.65 0 1.683376997149E+00

3 65,617 216.65 3.0480E-4 9.817858914969E+80

4 104,987 228.65 8.5344E-4 1.506414967722E+29

5 154,199 270.65 0 4.394749884481E-01

6 170,604 270.65 -6.0960E-4 4.717851690435E-43

7 200,131 252.65 -1.2192E-3 1.562793740651E-22
I

8 259,186 180.65 0 5.028946984109E+01

4

During the optimization process, trajectories can be obtained which go to

very high or very low Aititudes. To avoid a fatal error associated with expo-

nential overflow, the following additional features have been incorporated

in the model atmosphere:

h < 0 T - 288.15 - 1.9812E-3 h

a - 1. - 2.9262913E-5 h

(10)

h > 750,000: T - 180.65

a - 8.111816E-18

Hence, below sea level, the density ratio is assumed to vary linearly with

altitude, and at high altitudes, it is assumed constant at the value for

750,000 ft.

5



2.4 Aerodynamics

The drag and the lift are related to the drag coefficient CD and the

lift coefficient CL as follows:

D - (1/2) OSV 2 CD
(11)

L - (1/2) pSV 2CL

where S is the aerodynamic reference area. The drag and lift coefficients

can be expressed in terms of the axial and normal force of coefficients as

!'~CD a CA coo a + CN sin a (2
CD inA NoaC

(12)

CL a CN cos a - CA sin a

The axial force coefficient is composed of a skin-friction term and a pressure

term, that is,

CA C CA + (13)SF CAPR

where

C~s Alh 2 +Blh +CaA h2 1
ASF (14)

CAPR A22 + B 2+ a + C2

In these relations, A1 , B, and C1 are known functions of the Mach

number, H - V/a , while A2 , B2 and C2 are known functions of Mach

number and angle of attack. Finally, the normal force coefficient is given

by

6



CN A Q2 + B3M + C (15)3 3 3

where A3 , B and C3  are known functions of Mach number.
3 3,3

The values of the constants associated with the aerodynamics are given

below and in Tables 2 through, 4.

S = 125.84 ft 2  (16)

Table 2. Axial Skin-Friction Force Constants

H A B Cl

0.2 0 7.80F-S .0114

1.2 0 7.70E-8 .0076

5.0 0 5.60E-8 .0028

10. 2.40E-12 -7.11E-7 .0578

> 20. 1.38E-12 -3.81E-7 .0297

Table 3. Axial Pressure Force Constants

A2  B2 C2
a < 16* a> 160  a < 160 a > 16* a < 16* a > 16

0.2 -1.OOE-4 -I.O0E-4 -2.19E-3 -2.19E-3 .0350 .0350

1.2 -7.81E-5 -7.81E-5 -1.25E-3 -1.25E-3 .0760 .0760

5.0 1.09E-5 4.86E-6 -9.62E-4 -1.13E-4 .0324 .0204

10. 1.41E-5 -6.60E-6 -9.00E-4 3.49E-4 .0261 .0114

> 20. 1.33E-5 -6.25E-6 -8.19E-4 3.58E-4 .0243 .0105

7



Table 4. Normal Force Constants

SA 3  B3  C3

0.2 1.33E-4 2.68E-2 -. 030

1.2 -7.81E-5 2.90E-2 -. 030

5.0 2.94E-4 1.41E-2 -. 035

10. 4.38E-4 6.50E-2 -. 035

> 20. 4.38E-4 6.50E-2 -. 035

In the computer program, the above tables are read by linear interpolation.

Also, for M > 20 , the M - 20 value is used because the extrapolation of the

above numbers could lead to wrong results.

2.5 Propulsion

For the plane change problem, rocket engines are used to aid in the plane

change and to increase the energy of the vehicle. It is assumed that the engines

burn once and that the propellant mass flow rate and the thrust are constant

during the burn. Hence, during the burn, the mass of the vehicle satisfies

the relation

m- mb - 0(t - tb) (17)

where 8 is the mass flow rate and where mb and tb are the mass and the

time at the initiation of the burn.

The values of the constants associated with the propulsion characteristics

are as follows:

8



A

mb a m0 - 335.67477 slugs

8 - 0.34768573 slugs/sec

T - 3300 lb (18)

m p- 179.18195 slugs

A 515.35606 sec•b

where m is the propellant mass and at is the total burn time. In the
V b

reentry program, the propellant mass is assumed to have been expended, so the

initial mass is m0 W 156.49282 slugs.

2.6 Performance Indices

In the reentry problem, it is desired to maximize the croasrange. Hence,

to have a minimization problem, the performance index is written as

J - - *f (19)

For the orbital plane change problem, it is desired to maximize the

plane change. Maximizing the plane change is equivalent to maximizing the

orbit inclination because the initial orbit inclination is zero. The orbit

inclination is the angle between the inertial angular momentum vector

H- r x Vinertial (20)

* and the angular velocity vector of the earth, where the bar denotes a

vector. From the definition of the dot product, it is seen that

cos i - (H •)/Hw (21)

9



Also, the inertial velocity is given by

V inertial - V + w x r (22)

Finally, if the vector operations are carried out, the problem of maximizing i

becomes that of minimizing the cosine of the inclination at the final point:

J = (cos i)f (23)

where

cos i = cos 0 (V cos Y cos * + rw cos0) (24)

[(V coo y cos * + rw Cos C )2 + (V cosysin 1)/2

2.7 Prescribed Boundary Conditions

The initial conditions for both problems are as follows:

to 0 , 0 , 0 0 , h 0 -364,800

V0 - 24,500 ft/sec , yo a -1.2 deg , 0 (25)

For the reentry problem, the final condition is given by

hf - 100,000 ft (26)

The final conditions for the plane change problem are the following:

hf M 608,000 ft , Vf 23,500 ft/see Yf - 0 (27)

10
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2.8 Inequality Constraints

The angle of attack and the load factor, n - L/W , are required to

satisfy the inequality constraints

c < 40 deg , < 4, 5  (28)
d3

2.9 Nondimensional Variables

Nondimensionalization has the effect of scaling the variables and can be

very beneficial to optimization. In this system, all angles are in radians.

Furthermore, to simplify the notation, a nondimensional variable is denoted

by the same symbol as the dimensional variable and a tilde. Hence, the

following nondimensional variables are defined: I
I

t/(rs/g)112 S V/(gsr) 1  2  V , r/r5  S , w(rslgs)/g 2  (29) 1

T/mogs T , D/ml0 gS 1), L/mog0 S L ,m/m0 (r , (/s)/ 2 /mO S j

I



SECTION III

FOR.MULATION1 OF THE OPTIMIZATION PROBLEM

In this section, the optimal control problem is stated in terms of the

nondimensional variables, and the parameter optimization problem is formulated.

3.1 .Optimal Control Problem

The optimal control problem is to find the angle of attack and roll

angle histories which maximize the crosarange for the reentry problem

which maximize the orbit inclination (or minimize its cosine) for the plane

change problem. In terms of the nondimensional variables presented in

Equation (29), the optimization problem can be stated as the following

minimization problem:

Find the control variable histories &(t) and j(t) which minimize

the performance index

Reentry J = -

(30)

Plane Change J " Cos cos os coZ,+ K s ;2)"[('Cos -• COS + •,Cos ý)2 + (VCos j• sin Z)2]1/ f

subject to the differential constraints

de/dt - V cos cos c /(i cos

dý/d! - cos j sin �/i

di/dl - sin

d -/dt - (T coo a - sin ,2 +/V + coo 4(sin • cos

- cos ý sin ) sin ý)

12



d /d C sin ( + E) cos I'/MnV + V cos i/i- co? Y/r2V+ 2w cos cos *

+ (i/V) cos 4(cos ' coO B + sin Y sin 4 sin V)

(31)

d•/d- (T sin a + E) sin j/mV cosy - (V coo y/r) cos i tan 4

+ 2Z(tan Y cos i sin 1 -sin i)

-( 2•/• Cos ý) sin j Cos j cos p,

subject to the prescribed boundary conditions

t0 = 0 , 0 0 . 0 ý ' , ro 1.017432502

(32)

V0 . 0.94420438 yo -2.0943951E-2 , 0 0

Reentry: rf = 1.0047786464

Plane Change: rf = 1.029054170 , Vf =0.90566542 yf = 0

and subject to the inequality constraints

a < 0.69813170 , n < 4.5. (33)

For the reentry problem, the vehicle is gliding with the engine off. Hence,

the thrust, the mass flow rate, and the mass satisfy the relations

T - 0 , --0 i (34)

while the drag and lift are given by

- 15268.635 CDOV 2

(35)

- 15268.635 CLOV 2

13



For the plane change problem, the engines are ignited at ", whose optimal

value is to be determined, and burn for the time period 0 .- 0 63901697
b

Here, the thrust, the mass flow rate, a-d the mass are given by

0 0o engine off

.30555556 I.83533982 engine cni

(36)I- - im" 1. •(tr- b) ' b a -< %+ Abt"•o•

0.46620367 , t

while the drag and the lift become

S- 932.34367 CO2

(37)

S- 932.34367 CLGV2

The reason for the different constants in Equations (36) and (37) is that the

initial mass for the reentry problem is less than the initial mass for the

plane change problem (see Section 2.5).

2.2 Parameter Optimization Problem

In general, the optimal control problem of the previous section can be

stated in standard matrix notation (Reference 1) as follows:

Mimimize the performance index

J - 4 (f# xf) (38)

14



subject to the differential constraints

S- f(t, x, u) , (39)

the prescribed boundary conditions

to - 0 , x0 -= given , (t f, xf) 0 ,(40)

"the control variable inequality constraints

C(t, x, u) >. 0, (41)

and the state variable inequality constraints

S(t, x) > 0 . (42)

In the parameter eptimization method which will be used to solve these

problems, the inequality co , •3ints must be in an algebraic form. This can

be accomplished by forming an integral over the region where the Inequality

constraint is violated. In other words, if e(t) > 0 is a scalar inequality

constraint, an appropriate integral constraint is

E - tf (min (e, 0)]2 dt > 0 (43)
tO

This integral constraint can be converted into a differential equation and an

algebraic inequality constraint. Let

Xn÷l- -[min (e, 0)]2 , Xn+lO -0 (44)

so that Equation (43) becomes

E - n+l,f > 0 (45)

15



If the inequality constraints are converted into differential equations

and algebraic constraints, the optimal control problems can be restated as

follows:

Minimize the performance index

J =t(tf, Yf) (46)

subject to

y f(t, y, u)

(47)

to 0 , yo E given,

to

Y (tf, Yf) a 0 , (48)

and to

Q(tf. Yf) > 0 . (49)

The vector y now contains the original state x and the states introduced

by converting the inequality constraints.

The conversion of this optimal control problem into a parameter optimization

or nonlinear programming problem is performed in two steps. The first step is

to convert the final time into a parameter, and the second step ic to para-

meterize the control histories.

The final tfme can be made into a parameter by introducing the transformation

T - t/tf .(50)
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This transformation allows the optimal control problem to be rewritten as

Minimize the performance index

J -* (yr tf) (51)

subject to

Y g((, Y, u f)

(52)
- 0 , Y0 S given, f I

to

T (yf. tf) - 0 , (53)

and to

N Y f) f 0 (54)

Note that the prime denotes a derivative with respect to T and that this

transformation fixes the interval of integration.

The control histories can be parameterized in a number of ways, but the

simplest is to use a set of nodal points and create the function by linear

interpolation (see Figure 1 where a and 14 are control variables). This

approach allows the kth control to be written in the form

uk - Uk(T. ak) (55)

where ak is a vector of parameters, that is, the nodal points defining the

control history Uk

At this poinc, the unknown parameters are lumped into a single vector

X defined as

17



X- (tf, Ai . . . , a8] (56) -

where p is the numbir of control functions. For the plane change problem, j i

X also contains the ignition time, tb , as the last parameter. The total
bI

number of parameters is N . If values are given to the components of X ,
I -I

that is, if the final time, the control histories, and the ignition time are

known, the differential equations (52) cen be integrated from T- 0 to

If - 1 to form the function yf - yf(X) . In turn, yf can be eliminated i

from the performance index and the constraints to form the parameter version

of the optimal control problem:
I

Minimize the performance index

J - F(X) (57)

subject to the equality constraints

c (x) - o , = i - K (58)

and the inequality constraints

Ci(X) >0 , i - K + 1 M (59)
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SECTION IV

PARArTER OPTIMIZATION METHOD

In this section, the theoretical basis of the method which has been

selected for solving the optirization problem is discussed. Also, some

remarks are made about the code.

4.1 Augmented-Lagrangian Method

The augmented-Lagrangian method is a particular formulation of the penalty

function method which allows convergence to be achieved without having to drive

the weights to infinity (see Reference 2). Here, the performance index is

defined as

m
3 - F(X) + (1/2) Y oi j 2 (X, ei) (60)

i-i

where

(Ci(X) - e1  , i-l-.1•K

r_(X, Gi) M (61)

min [C(i(X) - ei, i , i + 1 + M

and where aoi is a positive, constant weight.

A description of the computational algorithm is as follows:

1. Guess initial values for X , % , and ai Since X represents

the final time, the controls, and perhaps the ignition time, it should

be easy to run some constant control trajectories and find a value for

X which gives a low value to the performance index F . For the

first run, the constants 8 are usually net equal to zero. Finally,

the weights oI can be obtained by requiring each constraint term in

(60) to have the same order of magnitude as F
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2. Minimize the performance index with respect to X holding 01 and

oi constant. This step represents an unconstrained minimization

which is performed with the Davidon-Fletcher-Powell method.

3. Assuming that N - X(O) , minimize the performance index with res-

pect to 0 , starting from the X which results from step (2).

The purpose of this step is to find new values of e such that the

constraints are satisfied. Only a single iteration of the optimization

is performed. For equality constraints, this is done with the

Newton-Raphson method, while for inequality constraints, a minimi-

zation problem is formed which guarantees that the corresponding

Lagrange multipliers remain nonnegative.

4. If the rate at which a constraint is being reduced is not sufficiently

large, the value of the corresponding weight e1 is increased.

5. If convergence has not been achieved, go to 2.

4.2 Optimization Coae

The code which ",os been selected for solving the optimization problem has

been obtas.ned from the FR.E in Harwell, England. It is a general purpose code

for solving the nonlinear programming problem using the augmented-Lagrangian

method. The code contains five subroutines which are described briefly below.

VFOlA: This subroutine directs the optimization process.

VA09A: This subroutine performs unconstrained minimization using the

Davidon-Fletcher-Powell method. The metric is represented in a

a factored form to preserve positive definiteness so that a crude

one-dimensional search can be used. Convergence is superlinear.

MCllA- This set of subroutines (MCllA. B, C, D, and E) performs matrix

manipulations such as factorization and the metric update.

20



II04A: This subroutine performs the optimization for satisfying the

constraints.

VFOIZ: This subroutine forms the augmented Lagrangian (60) and its

derivative from the performance index (57), the equality constraints

(58), the inequality constraints (59), and their derivatives.

The documentation which has been supplied with these subroutines is contained

in Appendix A. Also, a listing of the code is presented in Appendix B. That

part of the code which must be supplied by the user is shown in Appendix C.

The user must provide a subroutine entitled VF01B which computes the

performance index F and the constraints C as well as the derivatives FX

and C. In order to minimize the amount of set-up time, it has been

decided to compute the derivatives numerically, using central differences.

This approach also allows the user to change the physical model without having

to change derivative subroutines as veil.

This optimization code has been verified by applying it to the solution

of a number of problems whose solutions are known. These problems include a

simple quadratic function in two variables with a linear equality or inequality

constraint and the Rosenbrock function with a quadratic constraint. Also, the

optimal control problem known as the lunar launch problem has been solved.

The problem is to transfer a rocket from the surface of the moon to orbital

conditions in minimum time, assuming that the ratio of the thrust to the mass

is constant. The control variable is the angle between the thrust vector and

the horizontal. To check out inequality constraints, an active upper limit

has been imposed on the steering angle. In all cases, the Harwell code per-

formed extremely well, and the known extremal solutions were obtained in a

correct or reasonable number of iterations.

21
_______

15' j



After solving the above problems, iL became apparent that some minor modi-

fications had to be made in the Harwell code. First, if an inequality constraint

was Imposed and was exactly equal to zero on the first iteration, the program

aborted. To prevent this, the constraint was set equal to a small positive-

value. Second, for solving more complex problems, it became apparent that it

would be necessary to interrupt the computation, store some results on a tape,

and restart the computation. Such modifications have been made. Finally, for

solving the reentry and plane change problems, some procedure for preventing

the flight path inclination from becoming -90 deg had to be incorporated.

If this happens, the heading angle equation blows up, and the program

terminates. This situation occurs during the one-dimensional search associated

with the unconstrained minimization. If too large a change is made in the

parameters, the vehicle can end up in a vertical dive. The problem has been

eliminated by monitoring the flight path inclination on every integration step.

If it gets lower than -60 deg, the one-dimensional search is terminated, the

search scepsize is reduced, and the search is restarted.

2.1

1
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SECTION V

USER CODE

The user of the optimization code must provide a main program and a

subroutine or sequence of sutroutines in which the performance index, the

constraints, and their derivatives are calculated. These parts of the computer

program are discussed here. Because of the similarity of the two trajectory

optimization problems, it has been possible to combine them into a single

program. The listing of the user code is presented in Appendix C. The

variables in the user code are defined in Appendix D.

5.1 Main Program

The main program MRRV performs two functions. First, all of the

parameters needed by VF01A are defined (see Appendix A). Second, the

process for interrupting the computation and storing intermediate numbers

on tape as well as reading intermediate numbers from tape and restarting the

computation is controlled.

5.2 Performance Index, Constraints, and Derivatives

Subroutine VFO1B calls subroutine SG, which computes the performance

index and the constraints, and subroutine SGX, which computes the derivatives

of the performance index and the constraints.

In subroutine SG, the tables defining the control variable histories

are formed from the current values of the parameters. The initial conditions

for the differential equations are defined, and the differential equations of

motion are integrated to the final time. From the final values of the states,

the performance index and the constraint residuals are computed. While the

trajectory is computed in nondimensional variables, the printout is in terms
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of dimensional variables. For the plane change problem, the engine is ignited

at tb and shut off at t + At Finally, if the flight path inclination
b ~ b b

becomes less than -60 deg at any point of the trajectory, the integration

is stopped, and the computation is redirected to the one-dimensional search

for a decrease in the search stepsize.

The integration is performed using a fixed-step, fourth-order, Runge-Kutta

integration method (subroutine RUNGE). The number of integration steps has

been chosen by making calculations of the penalized performance index and its

derivatives for different step sizes and choosing the largest stepsize which

gives reasonable accuracy. This has been done to minimize the computation time

and to keep the integration as far away from round-off error as possible.

The integration subroutine makes repeated calls to the subroutine DERIV

which contains the differential equations of motion of the vehicle and the

differential equations for the inequality constraints. Here, the tables

containing the controls are read; the aerodynamic, propulsion, and mass char-

acteristics are determined; and the right-hand sides of the differential

equations are computed. The aerodynamic characteristics are obtained from a

call to the subroutine AERO which reads the aerodynamics tables. To obtain

the atmospheric properties, .AERD calls subroutine ATM62.

Subroutine SLUNl performs linear interpolation of a table of data points.

It has been provided to read the control tables and the aerodynamics tables.

The last subroutine supplied by the user is SGX. Here, the derivatives

of the performance index and the constraints are computed by central

differences. Hence, two function evaluations are made for each derivative

computed.
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SECTION VI

SOLUTION OF THE OPTIMIZATION PROBLEMS

The general procedure which has been followed in the solution of the I

optimization problems is to find a nonoptimal, constant control trajectory

which gives a reasonable value to the performance index and is somewhat near

the desired final conditions. This is done by varying the parameters

(final time, angle of attack, bank angle, and ignition time if necessary)1

systematically until a reasonable trajectory is obtained. Then, these

parameters are used as the initial guess of the optimal trajectory.

6.1 EReentry Problem

For the reentry problem, a reasonable set of nominal parameters has

been found to be tf - 3200 sec , a - 20 deg ,and v - 60 deg . The

results from integrating the equaticns of motion for these values of the

parameters are presented in Table 5. Note that the nominal crossrange is

f- 26.4 deg and that the final condition is given by
If

Cl - hf/100,000 - 1 - 0.136 (62)

The main program contains all of the input quantities and 49 presented

in Appendix C for the reentry problem (IPROB - 1). The iteration process

starts from the nominal path (IRS - 0), and no more than TMAX - 1200 sec of

computer time are to be used on the first run. To allow the program to reach

the point where the time check is made, the external time limit has been set

at 1500 sec. A total of eleven parameters (N - 11) is being used, of which

one is the final time, five (NA - 5) are the ordinates of the angle of attack

table, and five (NM a 5) are the ordinates of the bank angle table. There is

one constraint (M- 1) which is an equality constraint (K - 1). Next, the first
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I K

parameter X(l) is set equal to the nominal final time, X(2) through X(6)

are set equal to the nominal angle of attack history, and X(7) through X(ll)

contain the nominal baik angle history. Also, the values of the normalized

time at each of the nodes are the same for each table, TTA(I) and TTM(I)

and are given by 0.0 , 0.25 , 0.5 , 0.75 , and 1.0 . The unconstrained

minimization will terminate when the relative change in each parameter between

two iterations is less than EPS(I) - l.E-4 * X(I) . On the other hand, the

constraint satisfaction iteration will terminate when the constraint residual

satisfies the relation C(l) < AKMIN * C(M + 1) where AKMIN - l.E-4 and

where C(M + 1) is defined below. Since C(M + 1) - 0.136 , an accuracy

of I.E-5 is being requested in the constraints.

The expected change in the performance index on the first iteration is

DFN - 0.5 . MAXFN is set equal to a large number (10,000) because the program

is now interrupted on a time basis rather than a function evaluation basis.

Every iteration in VFOIA is to be printed (IPRl - 1) as is every iteration

in VA09A (IPR2 - 1). The work space W(I) is made to have IW - 2500 words as

suggested by Appendix A. The optimization code will calculate the weight a1

(MODE - 1) using the constraint scale factor C(M + 1) - 0.136 . To modify

to code for interruption, it is now necessary to input the constraint scale

factors in C(M + I) rather than in C(I) as stated in Appendix A. Also,

the parameter AK - IE60 must be set here as well. The remaining quantities

and the rest of the main program direct the writing on tape and reading from

tape if the computation is interrupted (CPU time > TMAX).

A summary of the results is presented in Tables 6 though 9, and the

characteristics of the converged trajectory are shown in Figures I through 3.

Four cycles have been needed to achieve the desired accuracy in the final condi-

tion. It is interesting to note that a good trajectory is obtained after one cycle

and that the remaining cycles are used to satisfy the final condition better. The
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optimal angle of attack seems to be at the value for maximum lift-to-drag

ratio, although this has not been verified. With regard to the roll angle,

the vehicle starts out at a high roll angle, so that Jt dives into the atmos-

phere, and then gradually reduces the roll angle until it is heading northward

with a very small roll angle. The vehicle achieves a crossrange of approxi-

mately of = 47 deg and experiences a maximum load factor of around 1.5 g's.

It should be noted that the weight aI has not been increased during

the optimization process. This means that, after each cycle, sufficient

progress has been made in converging to the constraints. On the other hand,

01 is changed during each cycle, and the Lagrange multiplier v • e

appears to be approaching a limiting value. This multiplier and the optimal

controls can be used to generate initial values of the Lagrange multipliers

needed for starting the shooting method.

The complete computation required 1640 sec of CPU time (Cyber 170/750)

and a total of 3000 function evaluations. This amounts to 0.55 sec per function

evaluation, or 12.6 sec per function/derivative evaluation (23 function evalu-

ations). The integration has been performed with 250 integration steps, and

it may be possible to reduce the time by using forward differences. However,

the convergence characteristics would deteriorate.

6.2 Plane Change Problem

For this problem, a good initial guess of the final time, the angle of

attack, the bank anple, and the ignition time have been found to be tf = 2733 sec

a - 40 deg , v - 60 deg, and tb - 1624 deg. The corresponding trajectory

is shown in Table 10, from which it is seen that the orbital inclination io

if = 22.2 deg and the constraint residuals are
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C, h f/608,000 - 1 - .863003E-2

C2 E Vf/23,500 - 1 - .882155E-2

C3  Yf - .109798E-1 (63)

C 4 Y7 -. 0

C5  Y8 - .0

The last two constraints are the inequality constraint on the angle of attack

(a < 40 deg) and an inequality constraint on the bank angle (V > 0). In the

solution of the minimization problem, the bank angle at the final point tried

to go to a large negative value. The last inequality constraint has been

included to keep this from happening.

The set-up for the plane change problem (IPROB - 2) is similar to that

of the reentry problem. An additional parameter, the ignition time, is

present making a total of twelve (N - 12). Here, there are five constraints

(M - 5), of which three are equality constraints (K - 3). At first, the values of

EPS had been chosen to be l.E-4 * X(I) . Powever, because of the extreme

sensitivity of the problem to the ignition time, it has been necessary to use

EPS(M) - l.E-5 * X(I) . Finally, the constraint scale factors C(M + I) for

the altitude, the velocity, the flight path inclination, and the ineouallty

constraints have been set equal to .009 , .009 , .n11 , .001 , and 001 ,

respectively. The first three values are rounded constraint residuals,and the I
last two have been chosen to produce relatively small weights.

A summary of the iteration process is presented in Tables 11 through 14, and

the converged trajectory 4s illustrated in Figures 4 through 6. After four

cycles, the constraints are satisfied to four significant figures. The

converged angle of attack history stays near 40 deg (maximum CL ) at the

I37 !
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q

high altitudes ind dt'creases to 13 deg (maximum C /CD) at the low altitudes.
L D

On the other hand, the bank angle is near 70 deg during the entry part of

the trajectory and decreases to 0 deg during the exit part. The maximum plane

change is if f 33.7 deg , and the load factor does not exceed 0.5 g'a.

The CPU time for the four cycles Is 4175 sec on the CYBER 170/750
I

computer. This amounts to approximately 0.5 sec per function evaluation and

10 sec per derivative evaluation.

For this problem, the Lagrange multipliers v do not seem to be approach-

ing a limit. A possible reason is that the problem is so sensitive to the

value of tb that additional accuracy is needed in the numerical integration

to achieve better convergence accuracy. Also, in generating numerical deri-

vatives, the same perturbation size is used for each variable. More consistent

results can be achieved by tailoring the perturbation size to each variable.
4

The behavior of the bank angle of the final point can be explained by

assuming that the earth is not rotating. The initial point Gf the trajectory

is located on the equator, and the vehicle is trying to put the velocity vector

on the orbital plane with the highest inclination. As long as the longitude,

o ,is less than 180 deg, the bank angle for maximizing the inclination is

positive. However, once the vehicle crosses the equator into the southern

hemisphere, it must bank in the opposite direction (p<O) to obtain additional

inclination. By restricting the bank angle to positive values, the maximum

inclination should be obtained when Of - 180 deg and 0 - 0 . The optimal

trajectory presented here has these features, as can be seen from Table 14.

On the other hand, it should be possible to increase the inclination by

relaxing the inequality constraint to 0 > -90 deg
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SECTION VII

DISCUSSION AND CONCLUSIONS

The maximum crosarange and the maximum plane change problems have been

formulated as parameter optimization or nonlinear programing problems. An

existing code for solving the nonlinear programing problem with the augmented-

Lagrangian method has been selected and modifled slightly for solving these

Problems. The derivatives needed for the opt4_mization method have been computed

numerically. As a consequence, the entire program can be viewed as a model

for solving virtually any trajectory optimization problem.

A difficulty in solving trajectory optimization problems lies in the

model used for the problem. For example, in performing the one-dimensional

search, it is possible to change the parameters so much that resulting trajec-

tories go to extremely high altitudes or extremely low altitudes. This has

caused an exponential overflow in the atmosphere subroutine. In another case,

the resulting trajectories ende.1 up in a vertical dive, causing the numerical a
integration to blow up because of the singularity in the heading angle equation. I

Initially, this difficulty had been eliminated by removing the singularity,

which means increasing the number of differential equations by one and increasing

the numerical complexity of the program (time becomes a dependent variable).

Later, by additional modification of the optimization code, it has become

possible to monitor the flight path inclination and terminate the one-dimensional

search when y gets too small. Another difficulty arose by trying to modify

the drag polar so that the inequality constraint on the angle of attack could

be eliminated, The optimization process has found a way to use the change

to its advantage and has produced an unrealistic trajectory. Finally, in the
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plane change problem, the bank angle at the final p4. nt wants to go to a

large negative value. At this point, it is not understood what aspect

in the model makes it useful for this to happen. Hence, an inequality

constraint has been imposed on the bank angle to keep it nonnegative.

Once the modeling problems have been eliminated, the reentry problem

is relatively easy to solve. This is not the case for the plane change

problem, as can be seen from the number of iterations and the computer H4
time required. Possible reasons include the number of constraints involved,

sensitivity of the problem to ignition time, and numerical accuracy, either

in the integration or in the computation of derivatives. With regard to

constraints, the plane change problem is easy to solve if the bank angle is the

only control and the altitude is the only constraint at the final point. Adding

the other final conditions reduces greatly the progress achieved on every

iteration. Also, including the angle of attack as a control reouires the use

of the ineauality constraint on a

The particular method for computing the derivatives, central differ-

ences, has been chosen because it is easy to modify the model. (If the

derivaties are computed from differential equations, any change in the

"model produces a change in the derivative equations.) Although it has not

been done, it is possible to cut the computer time roughly in half by only

integrating over that part of the trajectory which is affected by a per-

turbation. Also, the computer time can be reduced further by using forward

differences, or one function evaluation per derivative calculation. This

reduction in accuracy will affect the accuracy with which the constraint

can be satisfied.
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The manner in which the optimization problems have been solved is

sufficient to demonstrate the ability of the optimization code to handle

much problems. Questions concerning the number of nodes needed to obtain

an accurate solution and the placement of these nodes are still open, but

they can be answered with a moderate amount of computer time.
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14arell ubrutin LibaryV F 0 A/A-D

1. Purpose

To find the minimum of a function F(x) of n variables x subject to both
equality constraints ci(x) u 0 i w 1,2,...,k and inequality constraints
cj(x) •0 I a ÷ 1k...,m (k a 0 or k a m As allowed but k must be4 n).
Derivatives of all func t.ons with respect to x must be provided, both the
vector (aFA8x 1 , dF/dx 2 , ..... ,.F/c)xn) and the matrix whose ith column is
(aci/axl, aci/ax2,....,3ci/axn) for i a 1,2...,m. These functions and
derivatives must be specified in a user subroutine VFO1B (see section 4).
An initial estimate of the solution must be provided which need not be
feasible. The subroutine allows advantage to be taken of the possibility that
some of the constraints are linear, and also of certain other types of infor-
mation about the problem, if available. If all the constraints are linear,
the use of VFOIA is not most efficient, and one of the LA or VE routines
should be used. The method is a penalty function - Lagranqian method (see
section 8) and VFVIA calls VAO9A to carry out the associated unconstrained
minimizations.

2. Argument List

CALL VFOIA(N,M,K,X,EPS,AKM!N,DFN,MAXFN,IPR1,IPR2,IW,HODO)

N An INTEGER set to the number of variables n (N : 2).

M An INTEGER set to the total number of constraints m (M >1).

K An INTEGER set to the total number of equality constraints k.

X A ,."L array of N elements in which the initial estimate of the solution
must be set. VFOIA returns the solution x in X.

CPS A REAL array of N elements, in which the tolerances for the unconstrained
mininizations must be set. £PS(I) should be set so that EPS(I)/X(!) *
AKIMN, roughly speaking.

AWI4XN A REAL number in which the relative error tolerance requirqs in She
constraint residuals must be set. VFO1A will exit when maxIc/(x)| /
scaling factor for cil < AMI'N for the active constraints •ij (see
section 7).

DFN A REAL number in which the likely reduction in F(x) must be set. This
is done in the same way as for VA09A, - see the VAO9A specification
sheet.

MAXFN An INTEGER in which the maximum number of calls of V018 on any one

unconstrained minimization must be set. Roughly speaking 2 or 3 times
MAXFN calls of VFO1B aore likely to be made altogether.

1PR1 An INTEGER controlling the frequency of printing from VNIrA. Printing
occurs every IPRI iterations, except for details of increases to the 0,
which are always printed. No printing at all occurs (except for error

diagnostics) if IPRI a 0. All printing controlled by IPRI is suitably

annotated.
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IPR2 An INTEGER controllinrJ the frequency of printing from VAO9!.. leQ2
should be set as described In the VAO9A speCitication sh•.

1W An INTCGER giving the amount of storaqe available in C014?iVr0OWL/W(.).
Set to 2500 unless wishing to chtdnge the restrictioris (ser ictlon !j).

MODE An INTLGER controlling the mode of operation of V01'A. If any positive

detinite est lmte li available of the hessian matr4x of the penalty
function, set IMODEI - 2 or 3, otherwise met IMOVE| -1 (see VAO9A
specification sheet). If estimates of the cr And U1 paramseters are
available (see section 8) net MODE < 0, otherwise set MDE > 0. A
normal setting for a one-offt Jbb with no information available is
W'..VE a 1I

3. The named COMMON areas

Certain named COMMON a•,sa must be declared and set on entry to VFOIA.

CO@4ON/Vk'O1E/C(15O) Set scale factors (>O) for the constraints in
C(l),C(2), ..... C(N). Choose the magnitude of

these scale factors to qtve an irdc1atlon of the
magnitude of the constraints evaluated about the initial
approximation x. If any constraints are
violated by an amount greater in modulus then
that which is set, then the setting is increased
accordinqlv. These scale factors are transferred
to C(M.l), C(Mv2), ..... ,C(2M) by VV0lA.

CO*MON/VtOIF/GC(25,50) Set the derivatives of any linear constraints on
entry rather than in VFOIB. This is the most
efficient and the numbers are not disturbed. The
manner of setting is described in section 4.

COMON/VFOIG/1T(5O) If MODE < 0 is used, then set the parameters
81,e2, ... , dm in T(I), T(2),...,T(M) and the
parameters a a''m in T(M.1),T(M-2),...,T(2M).
The meaning of Ehese parameters may be found in
the report TP552 - see section B.

COMION/VFOII/G2P(325) If IM•OEI - 2 or 3 set the estimated hessian
matrix of the penalty function in G2P(I),...,
G2P(N*(N*1)/2). The manner of setting is that
described in the specification sheet of VAO9A under
the heading MODE.

4. The user subroutine VFOtB

The user mast declare a subroutine headed

SUBROUTINE VFPOIB(N,M,X)
REAL X(I)
CCNNON/VF`OC/?
COMON/VWOID/"( 50)
COMMON/VFOI,/C( 150)
COMmoN/VF01F/GC( 25,50)

This subroutine must take x, the vector supplied in X(1),...,X(N) and set

P(x) in Ys Ci(x),...,cm(xT in C(l),...,C(M); (aP/Flx a,...T/oxn)x in G(%),...

G(N); and set Taci/6xl,.-..Jci/Jxn)x in GC(1, )..... (N,!) for aTi I 1,2,,I.,M.
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•LxceptLnr the linear CorStralnts wILLIL Sk-)'jIG !•Pt- .t on entry, as the
numbers art constant]. SZobt tiie n- -.- .ilso• e .;•..i If required by also inclu-
ding COMMON/Vf'OlG/T(150) and by not .•valua' i, '- 1,I) ... ,GC(N,T) when
C(1) >. T(I) for any I > K. Note thn. the :pt:ir•-,i, values F(x), (dF/dx1 ,...,

rt/dxn, etc. are left in these named CO4,MUN ,r,,!: on exit from VF'O1A. Note

also that in the double precision versoion t.11o use, subroutine name is VFOIBD
and there is a D appended to the named COMMON areas.

5. Redefining named COMMON areas

Local storage for VFOIA is through named COMMON areas. These have been
set on the assumption that K 4 ?b and M 4 50. If it is desirud to remove

either or both of these restrictions, then it is necessary to increase the

storage available in some or all of these areas. This can be done by defining
the named COMMON areas in the users MAIN with the increased storage settings,
in which case the extra storage will be effective throughout the whole program.

The complete list of named COMMON used by VFO1JA and the corresponding values

of N and M are as follows.

COMMON/VFOIC/F,M,K,IS,MK,NU independent of N and M

D/G(50) 2N
E/C(150) 3M
F/GC(2S,50)- N,M
G/T(150) 3M
H/GP(so) i (jL = max(M,N))
I(G2P(325) N"(N.I)/2
J/V(50) p I
K/WW(iSO0) 3
L/W(2500)00
M/ZZ(100) 2p
N/LT(0oo) 2M I

Notes: 4

0 On increasing M, when N < 25, redefine GC with bounds (N.M) not (25,M).
VIVIA has been coded under this assumption, as it requires less storage.
(VFO1A treats GC as a single suffix array).

-*For M very large, p
2 

storage locations may be prohibhtively lArge. However

It is very unlikely that this amount of storage will actually be needed by

VFOI. (no problem has yet been encountered for which more than (2N)0 locations
have been required). Hence in these circumstances, either declare W with
(2N)

2 
locations (or whatever can be spared), and set the inteqer IW to this

number in the calling sequence of VFOIA. If morp lo-.ations are required,
then VFOIA will stop and print out the storage required.

6. General

named COMMON only - see section 5.

Worksyace; 5K words unless N or M is redefined, when it is not
usually more thdn -44N

2 
* NM *O(max (MN)) words.

Other routines: Calls VFO1DB (user subroutine), VFUIZ (private), VAO9A,
MCIIA, MC1.£. VAO9A calls MCIIB in addition.

InDut/Outout: No input, all output on stream 6 (line printer), con-

trolled by user througn IPRI and IPR2.

Restrictions: N ( 25 and M (50 but can be lifted - set section 5.

VFQI.A 3
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Ddte of routine: August 1973

7. Accuracy

It may be that VFO1A is undble to dchieve the accuracy requested in the
parameter AKCI4N. In this case a diacgnostic is printed. To find the cause
of this, first examine tne print out of the VA09A iteration. If this is
anomalous (0 o.& 0 for instance) suspect a mist,.*e in the programming of VPO1
particularly in obtaining derivatives. If VAO9A seems O.K., then other
possible causes are (1) there is no feasible point (in which case 0i ->*and
ci . const A 0), (11) EPS has been set too large relative to AKMIN, (iII)
AKJIN has been set to small relative to the machine precision, (iv) the
problem is too i11-conditioned.

S. Method

That described in R. Fletcher. "An ideal penalty function for constrained

optimization", C.S.S.2, December, 1973. The penalty function for
inequalities is

a F(x) , (c(_x) -

and each iteration involves minimizing 6(x) for fixed e,o-. After each ite*ra-
tion the 0 and _' parameters are varied so that the sequence of mlnimaj xO,
tends to the solution of constrained problem. The value of the product

a tends to the ith Lagrange multiplier of the problem. Any information

about L-grange multipliers, or about the hessian of 6 can usefully be
incorporated.

Convergence is guaranteed (in exact arithmetic) and this implementation
of the method can be expected to converge at a second order rate.

October, 1973

VOL5
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Harwell Subroutine Library

1. Puros

To find the minimum of a function F(x) of several variables, given
that the gradient vector (8F/ZxVOFAix 2 ,.'.,aF/txn) can be calculated.

The subroutine replaces VAOIA to which it is superior in various ways (see
section 5), and should be used whenever derivatives can be evaluated readily.
It should however not be used either if storage space is at a premium (use
VAOSA) or if the furrtion is a sum of squares (use VAO7A). The ajbroutine.
complements VAO6A, the latter requires four times the storage, and some
comparisons (R. Fletcher, A.E.R.E. Roport,R7125 (1972)) indicate that
VAO6A is marginally slomer and more affected by round off error. As VAOGA
is more difficult to use, it is suggested that VAO9A should be
used in the first instance on any problem. If VAOA fails then VAO6A should
be tried as it is guaranteed to converge if the effect of roundiing errors can
be neglected.

2. Armument List

CALL VAOW( FUI"JN, X, F, G, H,W, DFI, EPS, MODE, MOWN, IPRINT, I EXIT)

FUNCT An IDENTIFIER of the users subriutine - see section 3.

N An INTEGER to be set to the number of variables (N >, 2).

X A REAL ARRAY of N elements in which mile current estimate of the
solution is stored. An initial approximation mast be set in X
on entry to VA09A and the best estimate obtained will be
returned on exit.

F A REAL number in which the best value of F(x) corresponding to
X above will be returneL.

G A REAL ARRAY of N elements in which the gradient vector
corresponding to X above will be returned. Not to be set on
entry.

H A REAL ARRAY of N*(N÷I)/2 elements in which an estimate of the

hessian matrix a 2 F/()xx x3) is stored. The matrix is represented

in the product form LDL where L is a lower triangular matrix with
unit diagonals and D is a diagonal matrix. The lower triangle
of L Is stored by columns in H excepting that the unit diagonal
elements are replaced by the corresponding elements of D. The
setting of H on entry is controlled by the parameter JDDE (q.v.).

W A REAL ARRAY of I*N elements used as working space.

VAO9A 1

55



DF? A REAL number which mutt. lit, -et. :o a5 Lo &Lve VAO an
estclate of the likely redu, Lion to he obtltined in F(x).
DFN is used only on the fir-t it,:rotion so an order of
magnitude estLmate will zull'ce. Th~e inlu.-mation can be
provided in different ways dependiing upon Ute sign of DFN which
should be set in one of th,! following vys:

DFN>O the setting of DfN itself vd1l be taken as
the likely reduction to be obtained in F(x).

DFN--O it will be assumed that an estimate of the
minimum value or F(A) has ben set in argument
F, and the likely reduction in F(x) will be
computed according to the initial function value.

DWN<O a multiple JDfIij of the modulus of the initial
function value will be taken as an estimate of
the likely reduction.

EPS A REAL ARRAY of N elements to be set On entry to the accuracyrequired in each element of X.

MODE An INTEGER which controls the setting of the initial estimte
of the hessian matrix in the parameter H. The following
settings of MDDE are permitted.

MWDE=1 An estimate corresponding to a unit matrix
is set in H by VAO9k.

MDD4E2 VA09k assumes that the hessian matrix itself
has been set in H by columns of its lotwer

triangle, and the conversion to LDLT fonm
Js carried out by VAOSA. The hessian matrix
must be positive definite.

MIDE=3 VAOA assumes that the hessian matrix has been
set in H in product form. This is convenient when
using the H matrix from one problem as an initial
estimate for another, in Wiich case the contents
of H are passed on unchanged.

M4JGN An ITEGER set to the maximum number of calls of FUNCT permitted.

IPRINT An INTEE controlling printIng. Printing occurs every
ITPRINTI iterations and also on exit, in the form

Iteration No, No of calls of FUNCT,IEXIT (on exit only)
Function value
X(1),X(2),...,X(N) 8 to a line (5 in VAO9AD)
G(1),G(2),...,G(N) 8 to a line (5 in VAOBAD)

The values of X and G can be suppressed on intcrmdiate
iterations by setting IPRINT<O. All intermediate printing can
be suppressed by setting IPRINT=MWXFN+i. All printing can be
suppressed by setting IPRINT=O.

2 VA09A

56



IEXIT An INTER giving the r -on for exit from VAOQ. Thls
will be set by VAO9A as ,ollows

IEXIT-O (hE)DE-2 only). The estimate of the hessLan
matrix is not positive definite.

IEXIT=I The normal exit in % ±ch IDX(1)k<EPS(I) for
all I=1,2,...N, where DX(1) is the ch&a.-e In
X on an -it eration. -

TIEXIT=2 0TMa>0. Not possible without rounding error.
Probable cause is that EPS is set too mall
for computer word length.

IEXIT=3 FUNCT called WJGN times.

3. User Subroutine

The user must provide a subroutine headed

SUBRUJTINE XXC(N,X,F,G)

REAL X(1),G(t) (REAL*8 in VAOGAD)

where XXX is an ioentrifier chosen by the user.

This subroutine should use the variables x supplied in X(I),
X(2),..,,X(N) to evaluate the function and gradient vector and place
them In F and G(1),G(2),...,G(N) respectively.. XXX Must be passed to
VA09A as VAO9A'e first argument, see section 2, and appear in an
EXTERNAL statement in the program that calls VAOM.

Use of COOM : none

Workspace: N*(N+|)/2 words + 4N words provided by the user in
H and W.

Other routines: calls MClIA, B, E.
Input/Output: controlled by tN• user through IPRINT. All

output is on stream 6 (line printer).

Restrictions: none

System dependence: none

Date of routine: April, 1972.

VA09A 3
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I

The method used is a quasi-Newton method described by Fletcher
(Computer Journal, Vol, 13, p.317, 1970), and is a rodi'fication or
earlier methods of this tyr such as that Implemented by VAOSM. The
method is superior to that ., VAOJA on three counts.

(1) It uses a rormia to update the hessian approximation H
which has proved to be more efficient and reliable. I

(2) It uses a 'crude' line search which has been shown to be
more e1?icient than an 'accurate' line search.

(3) It represents H by the prodluct LDLT, which• enables the
positive deflniteness or H to be guaranteed, even in the
presence of round-oft error.

I
I
I

i

I
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V' Jb~11rm~ll Subroutine Library M J A ASsub ne L~eryMCI I A/AD

to Puroose

ICI IA is a subroutine for use in prjblesm which involve the addition
or subtraction of rank one matrices a zz to positive definite or saml-
definite symetric matrices A stored In factored form A LDLT , such that
he resulting N x N matrix

A =A + a 2ZT

is also knwn w be positive definite or semi-definite. Note that L is
lower trianglplar with 4ii11, and D is diagonmal with dI >,O. Apart from

its obvious u"e in updatJ.ng matrices which rinain strictly positive
definite, MII1A can be used (I) to acoamnlate a sum of rank one tamu into
an initial matrix A=O, (II) to carry out projection and allied
opcertias on A which reduce the rank, and (Iii) to update matrices A of
rank k < n where it Is known from other acnslderstlons that the rank
rasins unchanged. All these operations preserve the correct rank and are
not seriously affected by round-off error. The method is that Oescribed
by I.J.D. Powell and R. Fletcher (1973), 'On the updating of LDL
factorizations', T.P. 519.

The matrix A Is represented using the minLml storme of NI(N+I)/2
elementas where N is the dimension of the problem. To facilitate
operating with A, a number or independent subroutines have been provided,
written as entry points MCI1B//.../V. These operations include reducing
a matrix to its factors, m.aLiplylng out the factors operating with the
factors of A on a vector z to obtain either Az or A-'z, and replacing the
factors of A by the matrix A-1 . These facillties at; described in more
detail in section 4.

2. Argument Lis

CALL IW11A(A,NZ,SIO,W,IR,I,EPS)

A A REAL one dimensional array of NO(N+1)/2 elements in which the matrix

A=LDLT must be given in factored form. The order in which elments of
L and D are stored In dl,•21•.t1,...,tNId 2 ,S....,-N 2 ,......

_ II",NIdN- The factors or the matrix

A= A + azj will overwrite those of A on exit.

P An IN Ut (N)I) vdch must be set to the dimension of the problem.

Z A REAL one dimensional array of N elem ts in which the vector z mast
be mt. The array Z Is overwritten by the routine.

810 A RFAL variable in whaich the scelar •- must be set. SIC Is not
restricted to f1., but if SI"O then it must be known from other
considerations that X it positive definite or seami-definite, $part

from the effects of round-off error.
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W A REAL arry of N elements. If SIG>O then W is not usd, and the
name of any one dimensional array can be inserted in the calling
sequence. If SIG<O then W is used as work space. In addition for
SIG<O it may be possible to save time by setting in W the vector
X defined by L~v=j. The vys in wich this can occur are described
u.der MK below.

IA AnIN ER fobeetso that IIA is the rank orA. If the rank of
is expected to be difrerent from that of A, set DAD40. On exit firom
MCI IA, IR(:O) will contain the rank of A.

KE An INTEM to be set only when SIG<O, as follow. If the vector
v defined by Lje1 has not been calculated previously, set MICO.
Ir fCllE lus been used previously to calculate A- 1 z, then v is a by-
product of thic calculation and is stored in the W parameter of MCIIE.
In Utis case transfer v to the W parameter of kCIIA and set Wzzl.
If z had been calculated as z = Au for some arbitrary vector u using
MCIID, then again v is a hy-product of the calculation and Is
available in the W parameter of MCI ID. In this case (or any other
in which v is know) set v in the W parameter or &CItA and set IWw2.

EPS A REAL variable to be set only when SIG<O and A is expected to have
the same rank as A. - In t4in llu-conditLoned cades a non-zero
diagonal element of D (X=-LDL ) might become so small as to be
indeterminate, Two courves or action are possible. One id to
introduce a small perturbation In order that X keeps time same rank
ad A. This is the normul course of action and is uchieved by setting
EPS equal to the relative mathine precision e. C is 1- 0-7 in single
length arithmetic and - IO-16 in double length on the IBM 370. The
other course of action is to let the rank of A be one less than the
rank of A. This is achieved by setting EPS equal zero.

3. General

Use of CSMtYN: none

Workspase: N*(N+I)/2 + N + N words provided by the user in A,Z and W.
If SIG>O W need not be bupplied.

Entry polntb: MCIIB/C/.../F - see section 4.

Other routines: none.

Input/Outimt: none.

Tlm•in: One call of NCIIA requires - n2 multiplicdtions, unless
2

SIG<O and MKwO when the figure is - Ikn One call of

any of MCIlB,C or F requires n 3/6 AupLtiplicatIons. One

call of either MCIID or E requires n2 /2 sultiplications.

Restrictions: none.

System daendence: none.

Date of rout : January, 1973.
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4. Other Entry pointse4

Other entry points are provided to facilitate operating with A
wttch is stored in compact form. In all of these A is a REAL one
dimensional array of NO(N÷I)/2 elements, and NI is an inteSer set to the
dimension or the problan. Each enLry point Is essentially an independent
wl')routine, and could be taken out and written as such if desired.

MI ISB - factorize a positive definite syamtric matrix given in A.

CkLL MCI IB(A,NIR)

A Mist contain the elements of A in the order a Wa2l,..,,a221a32'...

5 N2" #4N-1,N.1DaN-1 am; (that is as

successive columns of Its lower triaglWe). On exit A will be over-
written by the factors L and D in the form described in section 2 under A.

N Order of the matrix A.

IR An INhEGBk set by MC1IfB to the rank of the factorization. it
the factorization has been performed successfully IR=N will be set.
If IRAN then the factorization has failed because A Is not positive
definite (possibly die to round-off error). In this case the
factors of a positive semi-definite matrix of rank IR will be found in
A. However the results of this calculation are unpredictable, and
hCIIB should not be used in an attempt to factorize positive semi-
definite mat rices.

MCIIC - multiply out the factors LDLT to obtain A.

CALL M•! C(A,N)

A tMist be set In the factored form described In section 2 under A.
On exit the factors will be overwritten by the explicit matrix A,
tthe order of the elements being that described for input to hCI18.

N Order of the matrix A.

MI ID - calOclate the vector z'-=Az where A is in factored form.

CALL MCIID(AN,Z,W)

A N4&st be set In factored form.

N Order of the matrix A.

Z A REAL array of N elements to be set to the vector z. On exit
z contains the vector j=Az.

W A REAL array of N elements %tdch is set by MCIID to the vector v
defined by L."=-. If this vector Is not of interest, replace W by
Z in the calling sequence to obviate the need to supply extra storagc.

CLUA 3
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- calculate the vector £" z ere A is in factored form.

CALL Il1£(AN.ZW. R)I

A MUst be set in factored form. I
N Order of the satrix A.

Z A REAL array of N element to be set to the vector £' On exit Z i
contains the vector z*=.-- ,

I A RFAL array of N elements Wilch is set by EPIlS to be vector v
defined by LXva. It this vector is not or interest, replace W by 2
In the calling sequence to obviate the need to supply extra storage.

IR An INU1 wiftc mRst be aet to the rank of A.
kCIIF- calculates the explia mtrix A- from the factors of A. -

CALL b1I |F(AN, IR)

A bust be set. in factored form. ACIIF will overwrit ts by tht
elements of the inverse matrix A-1 , in the order - as
for C11 II.

N Order or the matrix A.

IR An ZIN.: wich must be set to the rank Or A.

Notes. (i) MCIIF should not be used to solve equations, in *tiCh case
-PC•E should Iz used. hCIIF is intended for applications in which the
explicit elements or A"I must be examined, for example in the use of

variance-covuriance matrices. (ii) bCIIE and F will RETUN withoutI

calculation unless 1WL-.

January, 1973
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Harwil Subroutine Library VE04AAD

1. Purpose

To find the value of , X (\ 2 ) which minintizes a 'jadratic funcUon

n
Q•) or n variables z, subject to upper and lower bounds on some or all of

the variables. Q(5) is defined by

n n n
T T

Q(4) a 44* - 7 7 A x - bX

i±. J=l i=l

where A is synmmtric (A =A), aid the. bounrs are of the form t£ 1 FX 6ui. It

is pennissible to let IL 1 ui if recquired, and A is not restricted to being

posiLive definite. Tre subroutine calculates t•e solution Z =, the minimum

value Q(I;, and the gradient g(.) (ninte (x)=Ax-0). This problem is u

special case of quadratic programming for which a subroutine VEO2A exists.

VEO4A is more efficient and reliable 'or swl,.ing problems of this special form.

An application of the subroutint! is to (weighted) linuar least aqumms

data fitting subject to bournds. If it Is required to minimize

S(Zc) = (Bý.)WB- (2)

subject to the above bounds, where b is an mxn matrix mWn and W is an man

diagonml matrix of welghts W 1 >0, trn 'set A=28TWB ard J = 2BTW . Statiatical

calculations for this problem are desicribed in section 5, includling an additional

enry point to erable the variance-covarionce matrix to be calculated.

2. The Argunent list

CALL VEO4A (N,A,IA,B,BL,B1U,X,Q,L4',K,G)

N an INTEGER which must be !;et by the user to the number of variables.

A a REAL, two dineruiorwil rruy, eiidi diiinnslon atlest N; the

elements In the upper tciri•bg A0I ,J) TJ•N nKtn. be set by the
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user to the corresponding Aij in (I), ad vdll remain untouched

tythe subr)outine. Elehents A(I,J) N)I)J are used as %orking space.

IA an INTEGER giving the first dimnsion of A in the statement %hich

assigns space to A.

B a REAL array of at least N elements. The user must set B(I) to the

bI in (I). B Is not overwrltton by VE04A.

OL a REAL array of at least N elements. nlo user must set BL(I) to

the lover bourd L1 on the I h variable. It Me bound is non-existent,

set 11 to a very smail number like -1575. SL is not overwritten by

VEO4A.

OU a REAL array of at least N elements. The user must set BU(1) to the

upper bound uI on the Ith variable. If the bound is non-existent,

set u1 to a very large number. Ri is not overwritten by VEO4A.

X a REAL array of at least N elements. VEO4A returns the solution

&i n X(x).

Q a REAL variable in Wihch VE04A returns the value of Q(•).

LT an INTEGER array of at least N elemnts, set by VE04A to a

pemutation of the integers 1,2,...,N (see K and G below)

K an INTEGER set by VEO4A to Ute nuaer of free variables at the

solutionA (those not on Ueir bounds). These are the variables

LT(I), LT(2),...,LT(K).

C A REAL array of at least 3*N elements. G(), .... ,. (N) are set by

VEO4A to the gradient g().. C is indirectly addressed so that

0(I) contains the gradient with respect to the LT(I) variable,

whenceO(1) ..... ,G(K) will be found to be zero. G(N+I),...,

G(3*N) are used by VEO4A so %orking space.
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3. Gcirral Inrformtioi

Use of CChbIN: none

Workspace: approx 4n2 words (ta If of A) + 2n words in G and n integeru

in LT.

,her routines: none

Entry points: VEO4B-see section

I nput/Outpu t: none

Sypstem dependence: none

Timin. . The time required depends upon how many free variables k there

are at the solution. Typical f- ures for (k/n, number of

multiplications) are (.1, n 3 /12), (.5,n 3 /6), (,75,n 3 /'/).

Restrictions: none

Date of Routine: April 1973.

4. M• thod

That of Fletcher R. and Jackson, M.P'., (1973), "Minimization of a quadratic

function of many variables subject only to lower and upper bounds", T.P.528.

This method oonbines generality (any A), efficiency (times comparable to those

required for a factorization of A) and stability (uses partial LDLT factorizations).

5. Statistical Calculatins

When a sum of squares is being minimized as in (2), then certain statistical

quantities can readily be calculat,.i. Firstly, of course, S(9) is given by

QL•) . yW~y. If it Is assumed that ,,w- bound variables loc. atd by VEO4A are

exact in the urderlying model, theni an.estumate of the residual variance is

given by S(ý)/(m-k). To estimate varid-ucs and covariances, an additional

entry point is provided. This calculates JAJ-1 oiere jAl indicates the subnstrix

A ij I where i and j index only the free variables. The appropriate variance-

covariance matrix for the free variatbles is then a'2 IAI-. Estimates of

standard devia tions of the free variables are given by the square roots of the

V64A 3
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diagonal cl6mnnta of this astrix. Becauve awh bound varia•Les are known

exactly, Lhy have zero variance and covariance.

The entry point VEO48 is essentially written as a separate subroutine.

It caiculates IAI-' and is used as follows:

CALL VEO4B (N,A,IA,CK)

N,AIA,G and K must be passed on unchanged after exit from VEO4A.

VE048 sets the following:

A ?he off-diagonal elments of JAI-' are set in A(I,J) ror

3<1K. The eleaenta are indirectly addressed so that A(I,J)

contains JAI-' Wecre r--LT(l) and A-LT(3.r,a
G The diagonal elenta of [AI"1 are set In G(N+I), ..... , C(N+K).

They are again indirectly addressed so that G(N÷I) contains
-1JAI r • hre r--LT(l).
r~r

2nd May 1973
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APPENDIX B

LISTING OF THE OPTIMIZATION CODE

36i

A I
a :
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VFOIA PAGE I

A4

SUBROUTINE VFOIA(N,M,K,X,EPS,AKNINDFN.PIAXFN,IPRI,IPR2,IWKODE)
REAL X(l).EPS(l)
CO1IKON/VFOIC/F,1414KL, IS,MK,NU
COIINON/VFO ID/G (50)A
COI4HON/VFO1 E/C( 150)
COMMON/VFOIF/GC( 1250)
C0MMN14/VF0JG/T( 150)
COt4NON/VFOJ H/GP(50)
COMMON/VP 1 I/G2PC 325)
COMMON/VF01 J/V(50)
COMMON/VPO 1 I/WWC150)
COMMON/VFOI1L/W( 2500)
COMMON/VF 14/ ZZ( 100)
COMMON/VFO1 N/LT( 100)
COMMON/TIME/TMAX,TOT1 ,IRSMINSAJCITNIFN
COM*IONIN0HIIN0H
EXTERNAL VFO1Z
DATA BOUND/1.E+81

1000 FORMAT(301'J)
1001 FORMAT(E15.7)

NU:14AXO(25.N)

IXxN

ICS=MI

IL=IS.M
I P=M4
ILTzM
NN=N*(N+1)/2

ICL=K

INOMa1
CALL VF0lB(N.M.X)
DF=DFN
IF( DPN. LT.OEO)DF=ABS(DFN*F)
IF( DFN. EQ.OEO)DFzF
IFCDF.LE.O.)DFz1.
IF( MODE. LT.0)GOTO5
DO 2 1:1,14
CC=C( I)
IFC I.GT.K)CC=A14IN1(C-C,OEO)
IF(ABS(CC).GT.C(ICS..I))C(ICS.I):ABS(CC)

2 CONTINUE
DO 3 1:1,14
T( IS+I)=2EOODF/C( ICS+I)*02

3 T(I)=0.
5 CONTINUE
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IF(IPRl.EQ.O)GOTO4
IF(NOD(MINS.IPRl) .NE.O)GOTOI4
PRINT 1002

1002 FOR14AT(OENTRY TO VFOlA'///'OCONSTRAINT SCALE PARAMETERS ARE')
PRINT 1001,(C(ICS1I),I:1,N)

14 CONTINUE
MD:IABS( MODE)

8 CONTINUE
DO 9 I:1,NN

9 W(I):G2P(I)
IF( IPRi EQ.O)G0T07
IF(MOD(MINS,IPR1) .NE.0)GOTO7
PRINT 1003,MINS

1003 FORMAT(////'OOUTER ITERATION NUMBER IS'.13)
PRINT 10014

1004 FORMATC'OXCI)')
PRINT 1001,(XCDI).I:.N)
PRINT 1005

1005 FORMAT(OTHETA( I)'
PRINT 1001.(TCI).I:1,M)
PRINT 1006

1006 FORMAT( 'OSIGMA( 1)'1)
PRINT 1001,(T(IS.I).I:1,M)

7 CONTINUE
IF(IRS.EQ.1) GO TO 82
ITN=0
IFN=0

82 IRS:0
CALL VAO9A(VFO1Z,N.X.PHI ,GP.W,WW,DF, EPSMDMAXFN, IPR2, IEXIT)
IF(T1-TO.LT.ThAX) GO TO 80
DFN=DF

DO 81 I1=1NN

RETURN
80 CONTINUE

INOmz1
CALL VFO1B(N.M,X)
MD: 3
AKK=0.
DO 10 I:1,M
IFCI.GT.K.AND.C(I).EQ.0.) C(I)z1.E-8
CC:C( I)
IFCI.GT.K.AND.C(I) .GE.T(I))CC:AMINI(CCOEO)
T(I):T(I)*T(rs.+i)
WD( I)ABS( CC) /^( ICS+I)

10CNINUE (.GT.AKK)AKKzWW(I)

IF( IPRi .EQ.O)GOTO16
IF(MOD(MINS,IPRl) .NE.0)GOTO16
PRINT 1007
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1007 FORMAT(OEXIT FROM VAO9AI/00LAGRANGE MULTIPLIERS USED IN VAO9A')
PRINT 1001.(T(I),4zlM)
PRINT 1008

1008 FORMAT('OLARGEST SCALED CONSTRAINT VIOLATION'/
1' THIS ITERATION, BEST ITERATION')
PRINT 1001 .AKJC,AIC
PRINT 1009

1009 FORMAT( 'CONSTRAINT RESIDUALS')
PRINT 1001.(C(I),121,M)
PRINT 1010

1010 FORMAT(OSCALED CONSTRAINT VIOLATIONS')

PRINT 1001,(WW(I),Izl.M)
16 CONTINUE

IF( IEXIT. EQ.O.OR. IEXIT.EQ.3)GOTO2O
IF( AKK..LE.AKMIN)GOTO2O
IF(AKK.GE.AK)G0T01 1
DO 15 la1.NN

15 G2P(I)=W(I)
DO 17 I:1,M
IF(I.GT.K.AND.T(I) .EQMOMOAND. C(I) .GT.OEO)G0T017
ZZ( IP+I)=-T( IS.I)IC(I)

17 CONTINUE

IF(MINS.EQ. 1)GOTOI4O

GOT018I
11 CONTINUE

DO 14 I:1,H

IF'%WW(I) .LE.AK.OR.C(ICB.I) .GE.4E0#WW(I))G0TO1A4I

T(IS+I)=1E1'T( IS.I)
IF(IPR1.NE.0)PRINT 1011,I,T(IS+I)

1011 FORMAT('OSIGMA( .13,') INCREASED TO ',E15.7)I
12 V(J)zGC((I-1)*NU+J)

CALL MC11A(G2P,N.V,DS,VN,NDS)
14 CONTINUE
18 CONTINUE

DO 13 1=1,N
IF(ABS(X(I)-G(IX..I)) .GT.EPS(I))GOT0Z1

13 CONTINUE
PRINT 1013

1013 FORMAT(OREQUESTED ACCURACY NOT OBTAINED')
20 CONTINUE

DO 2012 Isl,NN

IF(IEXIT.EQ.O)PRINT 2000
2000 FORMAT(OMATRIX SET IN G2P BY USER 1S NOT POSITIVE DEFINITE')

IF(IPR1 .EQ.0)RETURN
PRINT 1012

1012 FORMAT'OBSEST SOLUTION OBTAINED'/'-., (G(I) IsmIN) 1)
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PRINT 1001F,F(G(I),Iz1,N)
RETURN

21 CONTINUE
IFCAKK .LT. A.)GOTO4O
DO 32 1=1,14

*3? V(I)xT(IL.1)
GOT070

40CONTINUE
NKsO
KK=O
DO 41 1=1,M4
T( IL+I)=T( I)
C(ICB+I):WW(I)
IF( I.GT.K.AND.T(IL.I) .EQ.OEO.AND.C( I) .GT.OEO)GOT0i4l
KK=KK+l
LT( ILT+KK)=I
GP(KK) s-BOUND
IF( I.GT.IC)GP(KK)=-T(IL+I)
V(KK)sBOUND
ZZ(KK):-C( I)

'41 CONTINUE
IF(KK. EQ.0)GOTO2O
DO '42 Izl,N

'42 G(IX+I)zX(I)
KKKzKKO(KK.1 )/2
II:-MAXO( KKK.NN,KKOKI)
IF( II .LE. IW)GOTO5O

PRINT 2001,11
2001 FORMAT('OINCREASE STORAGE IN COMMON/VFOIL TO' ,I7.'ELEMENTS')

RETURN
50 CONTINUE

II: IW-KKK
DO 53 I:1,KK
LIzLT( ILT+I)
DO 51 JJ=1,N

51 X(JJ)=GC((LI-1)*NU+JJ)
CALL MCIIE(W.NX.DUHIX.N,IDUH.DIJK2)
DO 53 Js1.I
LJsLT( ILT+J)
Z:o.
DO 52 JJ=1,N

52 ZzZ.X(JJ)*GC((LJ-1)*NU+JJ)
II: 11.1

53 W(II)zZ
JJu IW-IKKK

DO 56 Izl,KK
DO 55 J%1.1

55 w(iI.j)xw(Ja)
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56 II:II+KK
CALL VEO4A(KK,WKKIZZ,GP,V,TZ.LT,JJWW)
IF( IPRi .EQ.C)G0T059
IF(MOD(MINS,lPRl) .NE.0)G0T059
PRINT 1020,KK

1020 FORMAT(I14,' ACTIVE CONSTRAINTS. NUMBEFED')
PRINT 1000.(LT(ILT+DI) .:1,KIC)
PRINT 1021

1021 FORMAT( 10LAGRANGE MULTIPLIER CORRECTIONS FOR ACTIVE CONSTRAINTS#)
PRINT 1001.(T(I),I:1.KK)

59 CONTINUE
DO 60 I:1*1 M

DO 62 Izl,KIC
LIzLT( ILT.I)

V(LI) -V(LI)+T( I)

IF(Z.LE. 1EO)G0T062I
DS=( Z-1EO)*T( IS.LI)
T( tS+LI)=Z*T( IS..LI)
IF(IPR1.NE.O)PRINT 1O11,LIT(IS4.LI)

61 GP(J)=GCC(LI-1)*NUJ)

CALL 14C11A(G2P,N,GP,DSGP,NNDS)
62 CONTINUE

AK: AKK
70 CONTINUE

DO 71 Izl,11
71 TCI)zY(I)/T(IS+I)

DO 72 Iz1,N
72 XCI)=G(IX.I)

DF:1E50
I4INS:141NS*1
GOT08
END
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SUBROUTINE VA09A(FUNCTN.X.F,G.H,W,DFN,EPS.MODEHAXFN.IPRINT,
1 IEXIT)

REAL X(1),G(l),H(1),V(1),EPS(l)
COMMON/TIME/ThAX,TO,T1 ,IRS.MINSAiCITN.IFN
COMM ON/ IGANMA/ IGAMNA
IF(IPRINT.NE.0)PRINT 1000

1000 FORMATW/PENTRY TO VA09A'/)
NN=N*(N+1)/2

IGGxN+N

DF:DFN
IF( NODE. EQ.3)GOTO15
IF( MODE. EQ.2)GOTO1O
IJ=NN~l
DO 5 I=1,N
DO 6 J:1;I
IJ=IJ-1

6 HCIJ)=G.
5 H(IJ)=1.
GOT0 15

10 CONTINUE
CALL MCI1B(H.N,DlD2,D3,IH.IDlD4)
IF( IR.LT.N)RETURN

15 CONTINUE
ZV

CALL FUNCT(W.X.F.G)
IFN=1FN4.
IF(DFN.EQ.O.)DF=F-Z
IF(VFH.LT.O.)DF=ABS(DF*F)
IF( DF.LE.0.)DF:1.

20 CONTINUE
DFN:DF
CALL SECOWNDTI)
IF(11-TO.GE.TMAX)G() TO 90
IFl IPRINT.f.Qý.O)OTO21
IV(MOD(ITN ,IPRINT) .KE.O)G07021
PRINT 1001 ,ITMIFN

1001 FORMAT(214I5)
PRINT 1002,F

1002 FORMATU815.7))
IF( PRINT.LT.0*,GOTO21
PRINT 02(()I1N
PRINT 1002,(G(I).II&.N)

21 CONTINUE
ITNs !TN9.1
DO 22 IlxN

22 W(IG+.IijsG(I)
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29 GS=GS-G(I)*W(IG.+I)
IEX lT=2
IF(GS.GE.0.)G0TO92
GSOcGS
ALPHAx-2 . DF/GS
IFCALPIIA.GT.I.0) ALPHA=1.O
DFzF
TOTz0.

30 CONTINUE
IEXITz3
IF( IFN. EQ.MAXFN)G0T092
ICON:O
IEXITt 1
DO 31 Iz1,N
Z:ALPMAOW( 13.1)
IF(ABS(Z) .GE.EP3(I))ICON:1

31 X(I)=X(I),Z
CALL FUNCT(N,X.FY.o)
IFN=IFN.1
IF(IGAMMA.Eq.o) GO TO 33
DO 314 I:1l,N
Z:ALPHAOW( 13.1)

314 X(I)=X(I)-Z
ALPHA0. 1*ALPHA
PRINT 35.ALPHA

35 FORMAT(1X.'ALPHA=#,F10.5)
GO TO 30

33 CONTINUE
GYSzO.
DO 32

32 GYS:GYS+G(I)6WI%%I.I)
IF( FY.GE.F)GOTO14O
IF( ABSCGYS/GSo) .LE. .9)GOTO50
IFCGYS.GT.o. )G0T040
T0":TOT.&LPHA
ZzIO.
IF(GS. LT.GYS) ZxGY3/( OS-UTS)
IF(Z.GT.10.)Zu1O.
ALPHAxALPHh*Z
FFzY
GSzGYS
GU.T030

140 CONTINUE
DO 141 Iv1.N

41 X(I)zX(I)-ALPHAIIW(I3.t)
IF( ICON.EQ.o)GOTO92
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Z=3.*(F-FY)/ALPHA+GY34.GS
ZZ: SQRT( Z§2-GSOGYS)
i:I .-(GYS.ZZ-Z)/(2.*ZZ+GYS...S)
ALPHA= ALPHA' Z
GOT030

50 CONTINUE
ALPHAuTOTALPHA
F2FY
IF( ICON.EQ.O)GoTOgo
DF= DF-F[ DGS=GYS-GSO
DO0 51 IZ1,N
W( IGG.I)=G(I)

51 G(I):-W(IG+I)
b ~~IF( DGS+ALPHA*GSO .GT .0.) 00T060

C COMPLEMENTARY DFP FORMULA
SIG=1./GSO

CALL MC11A(HN,G,SIG.W.IR,1.O.)
DO 52 I:1,N

52 G(I)zW(IGG+I)-W(IG.I)
SIGz1 ./(ALPHAODGS)
IR:-IR
CALL MC11A(H.N.G.SIG,W,IR,O,O.)
G0T070

60 CONTINUE
C DFP FORMULA

ZZ=ALPHA/( DGS-.ALPHAOGSO)

CALL MC11A(H,N.G*SIG.WIRt,11E..1
3)

61DO 61 I.l,N
61G(I)=W(IGGI),Z*W(IGI)

CALL MC11A(H,N,G,SIG,WIR0,O,.)
70 CONTINUE

D0 71 lsl.N
71 G(I)=W(IGGI)

G0T020
92 CONTINUE

DO 91 I:1.N
91 G(I)xW(IGI)
90 CONTINUE

IF( IPRINT. EQ.O) RETURN
PRINT 1001 ,ITN,IFN,IEXIT
PRINT 1002,F
PRINT 100 2,(X(I),IulN)
PRINT 1002,(X(I),Is.1N)
RETURN
END 7
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SUBROUTINE VFO1ZCN.X.PHI,GPHI)
REAL X(l),GPHI(l)
COMMON/VFOIC/F,M,K, IS.MK,NU
COMMON/VFOID/G(50)
COt*ION/VFOI1E/.( 150)
CO#*ION/VFOIF/GC( 1250)
COMMON/VFOIG/T( 150)
COMMONIIGAHHA/ IGAMMA
IFCMK.EQ.1)CALL VFOlB (N,MX)
MilK1
IF( IGAHMA.EQ. 1) RETURN
PHI=0.
DO 10 1=1.1H

10 GPHI(I)=G(I)
DO 12 Icl,11
CC:CCI)-T(I)]
IF( I.GT.K)CC=AMIN1 CCCOEO)
Y=T( IS+I)OCC
IFCY.EQ.OEO)G0T012
PHI=PHI+YOCC
DO 11 J=1,N

11 GPHI(J):GPHI(J).Y*GC((I..1)BNUJ)

12 CONTINUEI
PHI: .5EO*PHI+F
RETURN

END
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SUBROUTINE MClIA(A,NZ,SIG.WIR,MIC,EPS)
DIMENSION A(l).Z(1),W(l)

C UPDATE FACTORS GIVEN IN A BY SIGAZZTRANSPOSE
IF(N.GT.1I)GOTOI
IR: 1
A(1)=A(1)+SIG OZ(1)002
IF(A(1) .GT.0.)RETURN

IR=0
RETURN

1 CONTINUE
NPZN.1
IV( SIG.GT.O. )GCT0140
IF(SIG.EQ.O. .OR.IR.EQ.0)RETURN
T1:1./SIG
IJ=1
IF(MK. EQ.O)GOTO1O
D0 7 Izl,N
IF(A(IJ) .NE.O.)rI:TIW(I)"02/A(IJ)

7 IJ:IJ,.NP-I
GOT020

10 CONTINUE
DO 11 Izl,N

DO 15 I:1,N
IP=I+1

IF(A(IJ) .GT.O.)GOTO12
W(I)zO.
IJZIJ+NP-I
GOT015

12 CONTINUE
TI:TI+V**2/A(I14)
IF(I.EQ.N)GOTO14
DO 13 JIP,N
IJ=IJ+1

13 W(J)=W(J)-V'A(IJ)
14 IJ=IJ+1
15 CONTINUE
20 CONTINUE

IF(IR.LE.O )GOTO21
IF(TI .07.0.)G0T022
IF(KK-1)40,40,23

21 TIzO.
IRz-IR-1
GOT023

22 TI:EPS/SIG
IFCEPS. EQ.O.) IRsIR-1

23 CONTINUE
MM21
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TIMxTI
DO 30 I:1,N
J=N P-I
IJ=IJ-I

W(J)=TI
30 TI=TIH

GOT04I1
40O CONTINUE

HMMM
TIM=1 ./SIC~

41l CONTINUE
IJ: 1
DO 66 1:1 ,N

IP=I,1I V=Z(I)
IF(A(IJ) .GT.O.)G0T053
IF(IR.GT.O .OR.SIG.LT.O. .OR.V.EQ.0.)GOT052
IR=1-IR
A( IJ)zV*02/TIM
IF(I.EQ.N)RETURN
DO 51 J:IP,N
IJXIJel

51 A(IJ)zZ(J)IV
R ETURN

52 CONTINUE
TI=TIM
1J2 1J.N P-I
G0T066

53 CONTINUE
AL:V/A( IJ)

IF(KM5.EQ..)G107

GF(IT056 GOO7

BzAL,/TIM

IF( R.GT.14 .)G0T062
DO 61 J:IP,N
IJCIJ.1

61 A(IJ)=A(IJ)+B*Z(J)
GOT06'4

62 GMxTII4TI
DO 63 JsIPN
IJ2IJ.1
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Y=A(IJ)
A( IJ)=B'Z(J).,YOGM

63 Z(.1)2Z(J)-V'Y
64 CONTINUE

TIMT4:I
IJ=IJ+l

66 CONTINUE
70 CONTINUE

IF( IR .LT.O) IR:-IR
R ETUJRN

C FACTORIZE A MATRIX GIVEN IN A
ENTRY MC11B
IR=N
IF( N.GT. 1)GOTOl00
IF(A(1) .GT.0.)RETURN
A(1)=O.
I R:0
RETURN

100 CONTINUE
NP N+ 1
II:1
DO 104 1=2,N
AA=A( II)
NI=II.NP-I
IF(AA.GT.o.)GOTolal
A( II)=0.
IR=IR-1
II:NI...
GOT0104

101 CONTINUE
IP=II+1
TIINI.1
JK: II
DO 103 IJ=IP.NI
V=A( IJ)/AA
DO 102 IK=IJ,NI
A(JK)=A(JK)..A( IK)*V

102 JKzJK,.1
103 A(IJ)uV
104 CONTINUE

IF(A(II) .GT.0.)RETURN
A(II)sO.
IRsIR-1
RETURN

C MULTIPLY OUT THE FACTORS GIVEN IN A
ENTRY MC11C
IF(N.EQ.1)RETURN
N PuN, 1
IlzN*NP/2
DO 202 NIPz2,N
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JKzII

IT=II-NIP
AA:A(II
IP:II*1
IF(AA.GT.0.)GOT0203
DO 204 IJaIP,NI

20~4 A(IJ)a0.
GOT0Z20

203 CONTINUE
DO 201 IJ=IP,NI
V=AC IJ)OAA
DO 200 IK=IJ,NI
A(JK)=A(JK)+A( IK)OV

200 JK=JK.1
201 A(IJ)xV
202 CONTINUE

RETURN
C MULTIPLY A VECTOR Z BY THE FACTORS GIVEN IN A

ENTRY MC11D
IF( N.GT. 1)GOT0300

W( 1): Z l)
RETURN

300 CONTINUE
NP: Ne.
IIZ1
Ni N-i
DO 303 Izl.Nl
Y:Z(I)
IF(A(II) .EQ.0.)G0T0302
IJ=II
IPzI+t
DO 301 J=IP,N
IJ5 IJ+1

301 Y=Y.ZCJ)*A(IJ)
302 Z(I)-Y*A(II)

W( I)*Z(I)
303 IIxII+NP-I

Z( N)xZ( ) -A( I I)
W( N)2Z(N)
DO 311 KzleNi
Is N-K
IIZII-NP+I
IF(Z(I) .EQ.0.)GOTO311
IPZI,1
IJNII
YuZ(I)
DO 310 JzIP,N
IJSIJ,1
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310 Z(J)zZ(J),A(IJ)*Z(I)
311 CONTINUE

RETURN
C MULTIPLY A VECTOR Z BY THE INVERSE OF THE FACTORS GIVEN IN A

ENTRY MC11E
IF( IR.LT.H) RETURN
W( 1):Z(1)
IF( N.GT. 1)GOTO'IOO

RETURN
J400 CONTINUE

DO 1402 I:2,N
IJ=I
I1ZI-1
V=Z(I)
DO 401 Jzl,I1
V=V-A(IJ)IZ(J)

401 IJ=IJN-J
W(I):V

1402 Z(I)=V
Z( N)=Z(N)/A( IJ)
NP:N+1
DO 411 NIP=2,N
I=NP-NIP

II=IJ.-NIP

V.:Z(D1/A(II)

IJ=II
DO 41,3 J:IPN
II:1l,1

410 V:V-A(II)OZ(J) 4

411 Z(I)zV
RETURN

C COMPUTE THE INVERSE MATRIX FROM4 FACTORS GIVEN IN A
ENTRY MC11F
IF(IR.LT.N)RETUON

IF(N.EQ. 1)RETURN
NPZ N.1
Ni ZN-I
II=2
DO 511 I*2.N

IJZII,1
IF( I.EQ.N)G0T0502
DO 501 J=I,N1
Ixall
JKsIJ
VzA( IJ)
DO 500 K21,j
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JiC:JK+NP-K
V=V.A( IK)*A(JK)

500 IKzIK+1
A(IJ)z-V

501 IJ:Ij~t
502 CONTINUE

A(Ij):1 ./A(IJ)
IIzIJ,1
AA=A( IJ)

NI=N-.I
DO 511 J=2,1
V=A( IJ)§AA

IK:IJ
K=IJ-IPJ

NIP=NIe.Ij
DO 510 JK=K,Il
A(JK):ACJK)+V§A( 1K)

510 IK=IKNIP-.JK
A( IJ)=V

511 IJ:IJ+NP-J
RETURN
END
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IS=I

l~s-1

ICAC:-N.N

DO 9 I:1,N
9 G(I)z-B(I)

DO 10 Izl,N
X(I):O.
LT(I)=I -

* G(ICAC+I)zA(II)
IF(O..GE.BL(I).AND.0..LE.BU(I))GOTO10
IFCO. .LT.BL(I))X(I)=BL(I)

DO 12 1:1,1
12 G(J)zG(J)+A(J,I)*X(I)

IF( I. EQ.N)GOTOIO

DO1=1 J1

10CONTINUE

IOUTz0
DEL=O.
DO 21 I:K1,N
LI=LT( I)
IF(X(LI) .EQ.BL(LI) .AND.G(I) .GE.0.)G0T021
IF(X(LI) .EQ.BU(LI) .AND.G(I) .LE.O.)007021
IF(G(I).LT.O.)G0T022

t Z=X(LI)-BL(LI)
Jz1
G0T023

22 CONTINUE
Z=B'J(Ll)-X(LI)
JzO

23 CONTINUE
IV(G(ICAC+I) .LE.O.)GOTO2~4
BETAzABS(G(l) )/G(ICAC+I)
IF( BETA.GE.Z)GOT024
ZsBETA
Ds .5*Z'IABS(G( I))
J%-1
G0T026

2'4 CONTINUE
DsZO(ABSCG(%I))-.51Z0G(ICAC.I))

26 CONTINUE
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IF(D. LT.DEL)GOTO21
DEL=D
ALPHA: Z
IOUTzI
I IN: I
IF(J.LT.O) IINZo
LD=J

21 CONTINUE
IF( IOUT.NE.o)GoTo2,

27 CONTINUE
0=0.
DO 28 I=1,N
LI=LT( I)

28 Q=Q+X(LI)S(G(I).B(LI))

Q=.59Q
RETURN

29 CONTINUE
SIG:1.
IF(G(IOUT) .GT.O.)SIG=3 ..1
LIOUT=LT( lOUT)
LIINzLIOUT

25 CONTINUE
SAS=G( ICAC.IOUT)
IF(ic.EQ.0)GOTO3l
DO 30 Izl,K

30 G(IS.I)=G(ID+eI)*A(IOUTI,)
31 CONTINUE

DO 37 I:K1.N
LI:LT(I)
IF(LI-L.IOUT)32.

3? ,33
32 Z:A(LI.LIOUT)

GOT034
33 Z:A(LIOUT.LI)
34 CONTINUE

IF(K.EQ.O)GOTO36
DO 35 Jzl,K

36 G(IS+I)=Z
37 CONTINUE

G( IS+IOUT)bSAS
IP( K.EQ.0)GOTOM2
G( IS.K)=-A( IOUTK)
IF(K.EQ. 1)GOTOJI2

IzKDO ~41 II=2.K

Z:-A( IOUT.I)

DO J40 j=I1.K

84



VE04IA PACE 3

41 G(ISI)=Z
42 CONTINUE

IF(SIG.EQ. 1.)GOTO51
DO 50 Izl.N

50 G(I$+I):..G(IS*I)
51 CONTINUE

IF(K.EQ.0)GOT062
DO 61 Izl.K
IF(G(IS.I) .EQ.O).)G0T061
LI=LT( I)

ZaBL(Lr)-.X(LI)
IF(G(IS.I) .LT.O.)GOTO60
J:-O
Z=BU(LI)-.X(LI)

60 CONTINUE
Z=Z/G( Is.i)
IF( Z.GE.ALPHA)GOT061
ALPHAmZ
LBs J
IIN=I
LIIN=LI

61 CONTINUE
62 CONTINUE

X(L IOUT)=X (LIOUT),SIGEALPHA
IF(K .EQ.0)GT0T71
DO 70 Izl,K
LI: LT(CI)

70 X (L I) =X LI).ALPHAwO(IS.I)
71 CONTINUE

DO 72 I=K1.N
72 G(I)zG(I)+ALPHAOGCIAS+I)

IF( tIN. EQ.O)GOTO90
X(LIIN)=BL(LIIN)
IF( LB. EQ.0)X(LIIN) =BU(LIIN)I IF( lIIN. EQ. IOUT) GOT020K2=K-1
SG=G( ID.IIN)
II: IIN+1
Do 80 IzIl*N

80 G(IV.I)=A(IIIN)
IF( I IN. EQ. K) G0T086

50:1./SO
DO 85 IzIIN,K2
V=G( IV.I1)
VD=V/G(ID+I7)
Si =S0.VSVD
Rz:51 /SO
G (I D+I)z CCI D+I 1)* R
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BETAzVD/S1
IF( R.GT.4.)GOTO8'I1
DO 81 J=12,N i

81 G(IVJ)=G(IVJ)-VIA(J.Ii)
IF( Ii.GT.K2)G0108S3
DO 82 JzI1,K22

82 A(J,I)2A(J1,Il)+BETAOG(IV*Ji)
83 CONTINUE

A(IC,I)zBETA
DO 84 J=Kl.N

84 A(JI)zA(JI1)+BETA*G(IV.J)
GOT0849

841 CONTINUE
IF( Ii.GT.K2)G0T0843
DO 842~ JzIlC2

8*42 A(J,I)zBETA*G(IV+Jl)+A(Jl,11)/R
843 CONTINUE

A(K. I)zBETA
DO 844 JzK1,K

84*4 ACJ,I)=BETAOG(IV.J)+A(J.I1)/R
DO 845 Jz12,N

845 G(IVe.J):G(IV+J)-V*A(J .11)
8419 CONTINUE

LT(1)2LT(Il)
s0=31
I1=12

85 12zI2+1
SGz1./51
LT( K):LI IN
G(ID.K)=SG
IF( IIN. EQ. 1)G0T0851
11=1 IN-i
DO 852 I:1,11
Z=A( IIN.I)
DO 853 J:IIN,K2

853 A(JI):A(J.1,I)
852 A(K,I)aZ
851 CONTINUE
86 CONTINUE

DO 87 IzK1.N
87 G(ICAC.I):-G(ICACI),SGOG(IV.I)*02

K:K2

ALPHA: 1E75
SASsG( ICAC.IOUT)
IF( SAS.GT.O. )ALPHAzABS(G( IOU?) )/SAS
IF(G(IOUT) .LT.O.)G0T0898
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,1:1
Z:X(LIOUT)-BL(LIOUT)
G0T0899

898 CONTINUE
J=O
Z=BU( LIOUT)-X(LIOUT)

899 CONTINUE
IF( Z.GE.ALPHA)G0T025
ALPHA=Z
LB: J
IIN: OUT
LIIN:LIOUT
GOT025

90 CONTINUE
K2=K1+l
IF(SIG.EQ. 1.)GOTO91
DO 901 I=Kl,N

901 G(IAS+T):-G(IASI)
91 CONTINUE

IF( IOUT. EQ. K1)GOTO97
LT( IOUT)=LT(Kl)
LT(K1 )=LIOUT
OC IAS+IOUT)=G( IAS+Kl)
G( ICAC+IOUT) :G( ICAC.K 1)
G( ICAC+K1 ):SAS
G( IOUT):G(Kl)
IF(K.EQ.0)G0T097
DO 92 1=1,K
Z=A(K1 .1)
ACKi ,I)=A(IOUTI)

92 A(IOUT,I)=Z
93 CONTINUE

IF( K2. EQ. IOUT)G0T095
I1:IOUT-1
DO 94 IzK2,I1

94 A(IOUTI)=A(I,Kl)
95 CONTINUE

IF( IOUT.EQ.N)GOT097
I1:IOUT,1
DO 96 I=I1,N

96 A(I,IOUT)=A(I,Kl)
97 CONTINUE

G(Kl)=O.

IF(K.EQ.N)GOTo27
DO 98 I=K2,N
ZzG( IAS+l)/SAS
M(I Kl)zZ

98 G (I CAC+ I)=G (I CAC+ 1)...Z*GIAS+I)
KlzK2
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GOT020
C

ENTRY VE;' 3
IF(K.EQ.ORETURK
ID=N+N

IF(K.EQ.1)RETURN
N12K-1
DO 111 Im1,Nl
IlezI+1

IF( I. EQ.N1 )GOTO1O2
II=I.2
DO 101 J=II.K
Z:A(J.I)
J1:J-1
DO 100 LzIl.J1

100 Z=Z+A(JL)OA(LI)
101 A(J,I)Z-Z
102 CONTINUE

AWz ./G(ID..11)
G(N+Il)=AA
DO 111 J=1.I
Z2A(I1 .J)IAA
G(N+J)=G(N+J),Z*A(I1 .J)
IF(I.EQ.1)GOTO111
J1:-J,1
DO 110 L=J1,I

110 A(L,J):A(L,J),A(I1,L)#Z
111 A(I1,J)=Z

RETURN
END
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PROGRAM MRRV( INPUT ,OUTPUT.TAPE1O)
DIMENSION X( 16) ,EPS( 16)
COMMON/NFEST/NFEST
CO#4MON/VF01F/GC(2550)
COMMON/VF0lE/GC(25150)
COMMON/VFO1G/T( 150)
COMMON/VFO1 I/G2P( 325)
COMMON/ P/TF. NA, TTA(7 , TAM7 , NN.TTH(7) ,TM(7) -

COHKON/CNSTR/ME,MI ,HC
C0MKON/TIME/TMAX,T0,T1,IRS,KINS,AKITNIFN
COMMON! INOM/ IHOM
COMMON! IPROB/ IPROB
DATA DPR/57 .29577951/
IPROB=2

IPROB: 1
IRS21

TJ4AX= 1200.

NZ11
NAz5
NM=5

MCzM

KME=K 
I

MIzM-K
X(1 )=3200./806.48263

DO 5 I=1,5

TTMCI)=FLOAT( I-i)90.25
X(INA,1)=60./DPR

5 CONTINUE
DO 1 I=1.N
EPS(I):1 .E-4*X(I)

1 CONTINUE
ALKNIN=1 .E-4
DFN=.5
MAXFN: 10000
IPR 121
IPR2=1
IWZ2500
MODE=1
C( 14. ):0. 136
AK--lE60
M2=M+M
NN=N*(N+1)/2
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PRINT 20
20 FORMAT( IH1)

IF(IRS.EQ.0) GO TO 8
READ(10.16) IRS,MINSMODE,NPEST.ITN,IFN.(X(I),Iz1,N).(C(I),Iz1,M2
1 ),(T(I),I;1,M2),CG2P(I),IalNN),AK,DFN

16 FORMAT(9X,6(T1O),135(/,9X,5020))
PRINT 17, IRSMINSJ.,ODE,NFESTITNIFN.(X(I),Iz1.N),(C(I),I.l1,MZ
1 ).(T(I).I~l.M2).(G2- T),Iz1,NN),AK,DFN

17 FORMAT(9X.6(I1O).135(/,9X,5E2I.1'4))
PRINT 15

15 FORMATC//lX#INPUT VALUES OF THETA AND SIGMA USED*)
PRINT 22INFEST

22 FORMAT(lX0INPUT VALUE OF HESSIAN USED*//1Xf TOTAL FUNCTION 0
S'EVALUATIONS SO FAR* 18)
8 CONTINUE

CALL SECOND(TO)

CALL VFO1A(NM,K,X,EPS,AKMIN,DFNMAXFN,IPR1 ,IPR2,IW,MODE)

IF(Tl-TO.LT.TMAX) GO TO9

PRINT 3O.TMAX
30 FORMAT(//1X* . . . .. . TIME LIMIT 0F5G15.80EXCEEDED ....... #//)

PRINT 31,T1-TO
31 FORMAT( 1XOCOMPUTATION TIME*G16.8/)

MODEz-3
9 REWIND 10

WRITEC1O,16) IRS,MINS,MODE.NFEST.ITNIFN,CX(I),I:1,19',CC(I),I:1.M2
1 ),(T(I),I:1.M2).(G2P(I),Ihl,NN).AK,DFN
PRINT 17. IRS,MINS,M0DE,NFEST,:ITNIFN.(X(I).I=1.N),CC(I),Is1,M2

I ),(T(I),Izl,M2),(G2P(I),Izl,NN),AKDFN
PRINT 10,NFEST

10 FORMAT(//5X§TOTAL FUNCTION EVALUATIONSOIX16)
END
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SUBROUTINE VFO1B(N.M.X)
DIMENSION X(l)
COMMON/ NFEST/ NFEST
CO#4MON/VF01 C/FHMMK, IS, MW. NU
COMMON/VF 1 D/G( 50)
COMMO4N/VFO1 E/C( 150)
COMMON? VF01F/GC( 25.50)
COMMON? IGAMNA/ IGAMMA
DATA NFEST/O/
CALL SG(X,F)
IF( IGAMMA. EQ. 1) RETURN
NFEST=NFEST.1
CALL SGXCNX,XM.NFEST)
RETURN $ END
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SUBROUTINE SG(X.F)
REAL IM.NMASS
DIMENSION X(16).Y(9),Z(g),Dy(g)
COt*¶ON/VFOlES( 150)
COMMON! SS/SS(50)
COMMONI11NON!I NON
COMMONI/?/TF. NA. TTAMT , TAM7 1NM TTM(7 ,74(7
COMMON! CNSTR/ME, MI,MC
COMMON! IGX/ lOX
COMP 4ON/TRAJ/AM,MNKOUNTTIMETBMACSSNDE
COMMON!COSIICF, VCGOR ,CSI ,SSI
COMMON/I PROB/IPROB
COMMON! IGAMMA! IGAMMA
DATA Wr,ICX,DPR/5.8809641E..2,0.

57.29 5779 5 1,IGAMMA:O
TF=X( 1)
DO 5 I1,-lNA

5 TAMI)=X(I+l)
DO 6 I-1,NMI

6 TM(I)=XCI+NA,1)
TIMETB=XC 1+NA+4NM,1)
IP(IPROB.EQ.2) GO TO 59
TIMET9=10.

59 CONTINUE
NDE=6
DELT=.004 $ N13=250
T=O.
Y(1)=0.O $ Y(2)=0.o $ Y(3)=1.0174j32502
Y(4J)=.94420438 $ Y(5)=-.02094s3951 $ Y(6)%O.
Y(7)20. $ Y(8)=O.
KOUNT=O
T lMETL1-TIMETB
DO 15 I-1,NIS
IF(INOM.NE.1) GO TO 25
IF(MOD(I,25).NE.1) GO TO 25
IFCI.EQ.1) PRINT 60

60 FORMAT(//,2XIITAUO,4XSTIMEO,4XTHETA*.4XOPHIO,
2X.OALTITUDEO.Il*VELOCITY*,2X,*GAMMAII4XOpSI,4XOALPHAI.5X.MU#.

26XRApO,6X.*MP*.6X.*N*o,,
39X. I(SEC)' ,.3X.' (DEG)' ,3X,' (DEG)'.3X.t (FT)e ,3X.O (FT/SEC) #,2X.d O(DEG)W.3X,a(DEG)0.3X,(DEG).3X.O(DEG).)
CALL DERIV(T.Y,oY)
Z(1)zDPROY(l) $ Z(2)-DPRIIY(2) $ Z(3)z2.0926428E7*(Y(

3)l.l)ZCL4)=25947.772o1Y(i) $ ZC5)=DPROY(5) $ Z(6)=DPR*Y(6)
ZC7)z806.ii8263 *Y(7) S Z(8)=806.1J8263*Y(8)
PA=DPROA $ PM=DPROH
TIMEz8O6 .48263*T*TF
TEMPzVCGOR* CSI+WOCF
C r CFO TEMP/ SQRT (TEMP*"2.(VCGOROSSI) O1*2)
PRINT 20.T, TIME, (ZJ).J21,6),PA, PM Z(7) Z(8) N
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20 FORMATC1XF5.3,2X,F6.1.2X.F6.2,ZXF6.3,2XF7.O,2X,F6.O,2X,F6.2,2X.
1 F6.2,2X,F6.3,2X,F6.2,2X,F6.3,2XF6.3,2X,F6.3)

25 CONTINUE
IF(KOUNT.EQ.2) GO TO 10
DELTI :TIMETL/TF-T
rF(DELT1.LE.DELT) GO TO 11

10 CALL RUNGE(T,Y,DELT.NDE)
IF(Y(5).GT.-1.) GO TO 50
IGAI4MA:1
RETURN

50 CONTINUE
GO TO 15

11 CONTINUE
CALL RUNGE(T,Y.DELT1 ,NDE)
KOUNT=KOUNT. 1
IF(INOM.NE.1) GO TO 63
TIMEL:806 .48263*TIMETL
IF(KOUNT.EQ.1) PRINT 61,TIt4EL

61 FORMAT(1H .*IGNITION OCCURRED AT 4,FlO.5,0 SECONDS*)
63 CONTINUE

IF(DELT1.EQ.DELT) GO TO 12
DELT2:DELT-DELT 1
CALL RUNGE(T,Y,DELT2.HDE)

12 TIMETL=TII4ETLO .63901697
15 CONTINUE

CALL DERIV(T,Y,DY)
TE14P:VCGOR1 CSI+iW' CF
CI:CFOTEM'P/SQRT(TEMP*2+(VCGOR'SSI) "12)
IF(INOM.NE.1) GO TO 26
Z(1)=DPROY(1) $ Z(2)=DPROY(2) $ Z(3):2.0926428E7*(Y(3)-1.)
ZCJ4)=25947.772'YCJ4) $ Z(5)=DPR*YC5) $ Z(6)=DPROY(6)
ZC7)=806,148263*Y(7) $ Z(8)x806.J48263*Y(8)

*1 PA=DPR*A $ PM=DPROM
TIME=806 .48263*TTF
PRINT 20,T,TIME,(Z(J)1J:1.6).PA.PM.Z(7),ZC8).N

26 CONTINUE
INOMzO
IF(IPROB.EQ.2) GO TO 72
F=-Y(2)
SS(1)z(Y(3)-1 .OO47786464)/O.OO47786'I6'
SS(2)=Y(7)
SS(3)zY(8)

GO TO 74 '
72 CONTINUE

F: CI
SS(1):(Y(3)-1 .029054170)/.029054170

SSC2):Y('4)/.90566542-1.
SS(JI)zY(5)

SSC5):Y(8)
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74 CONTINUE
IF(IGX.EQ.1) GO TO 4O
DO 35 I=lMC
S(I)CSS(I)

35 CONTINUE
PRINT 2 8,F,(S(J),JciMC)

28 FORMAT(1X,/,1X,6F
2 0. 15 o/)

4Q CONTINUE
RETURN
END
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SUBROUTINE RUNGE (T,X,DELT.N)
DIMENSION X(iO),DX(1O),DELX(1O.3).XV(1O)
CALL DERIV (TX,DX)
T2 zT + DELT/2.O
DO 100 I 1.N
DELX(I,1) DX(I)ODELT

100 XV(I) a X(I) + DELX(I,1)/2.O
CALL DERIV (T2,XVDX)
DO 200 Izl,N
DELX(I,2) mDX(I) *DELT

200 XV(I) =X(I) + DELX(I.2)/2.O
CALL DERIV CT2,XV,DX)
DO 300 Iml,N
DELX(I,3) z DX(I)*DELT

300 XVCI)= X(I) +DELX(I.3)
T zT +DELT
CALL DERIV CT,XV,DX)
DO 400 I:1.N

400 X(I) zX(I) + (DELX(I.1) *DX(I)ODELT *2.00(DELX(I,2) +DELX(I,3)

M)/6.0
RETURN
END
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SUBROUTINE DERIV(TT.Y,DY)
REAL L.M.N.NLIMIMASS
DIMENSION Y(9) ,DY(9)
COI*ION/P/TTF.NA,TTA(7) ,TA(7) ,NN.TTM(T) TM1(7)
COMMION/ TRAJ/ A, M,N, KOUNT. TIPIETB, KASS. WDE
COMMONICOSI/CF, VCGOR.*CS.SS
DATA TWW2. ALIN. NLIM/. 11761928.3.4e585739E-9,.69813170,4..5/
T=Y(1) $ F=Y(2) $ R2Y(3) $ VaY(4) *GxY(5) $ 32Y(6)
SF=SIN(F) $ CF=COS(F)
SGzSIN(Gl S CG=COS(G)
SSzSIN(S) $ C~sCOS(S)
TF=SF/CF S TGcSG/CG
CALL SLINI(TT,A,TTA.TA,NA) .
CALL SLINI(TT.M.TTM.TM,MM)
SA2SIN(A) $ CA:COS(A) $ SMzSIN(N) $CM=COS(M)
VCG: VOCO
VCGOR=VCG/ R
CALL AERO0R,V,A,SA.CA.D,L)
GRs1 ./RO*2
IF(KOUNT.GT.O) GO TO 5
MASS:1.
THR=O.
GO TO 15

5 IF(KOUNT.GT.l) GO TO 10
MASS:1 .-.83533982*(TTOTTV-TIMETB)
THR: .30555556
GO TO 15

10HASSO.4607
15 CONTNU

N:L/14ASS
TMDOM=(CTHR*CA-D) /MASS
TPLOM: (THROSA+L)/MASS
TDOT V CGORORCS/ CF
FDOT=VCGOROSS
RDOTh V 'SG
VDOT TMDOH-G R' SG.W2' R'CFD' ( G' CF-CG'SF'SS)
GDOT:-TPLOM*CK/V-GR'CG/V.VCGOR.TWOCF'CS.W2*(R'CF/V)'(CGOCF+SG*SFOSS

SDO'r:TPLOM*SM/VCG-VCGOR'rF*CS.TW ( TG*SS*CF-SF)-(W2/VCGOR)'SFOCF*CS
DYC1)=TDOT*TTF $ DY(2)=FDOTOTTF $ DY(3)=RDOTOTTF

IF(ODE.EQ.6) GO TO 20

rzi.-A/ALIM
IF(P.GT.O.) P=O.
DY(7 )=-P*P

IF(P.GT.0.) P=O.

DY(8 )=-PlP`
DY(7)=DY(7)*TTF $ DY,(8)=DY(8)*TTT

20 COHTINUE
RETURN $ END 9
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SUBROUTINE AERO(RVALSAL,CAL.D.L)
REAL L.M
DIMENSION TN(5),TAA(5) .TBB(5).TCC(5),TA1(5),TA2(5).TBI(5),TB2(5),T
ACI(5) ,TC2(5) ,TD1(5) ,TD2(5) ,TD3(5)
CO'IMON/IPROB/ IPROB
DATA TM/.2,1.2.5..10..20./
DATA TAhI./.0O.,O.,2.4E-12.1.38E-12/
DATA TBB/7.8E48,7.7E-8.5.6E-8,-7.iE-7.-3.BIE.7/
DATA TCC/.0114, .0076 .0028, .0578, .0297/
DATA TAl/-i.0" A-7.SIE-5,1.09E-5,.4.1E-5,1.33E-5/
DATA TBI/-2.19E-3,-l .25E-3,-9.62E-4'I-9.O0B-4,-8.19E-'4/
DATA TA2/-1 .OE-4,-7.81E-5,4.86E-6,-6.6E-6,-6.25E-6/
DATA TB2/-2.19E-3,-1 .25E-3.-1.13E-'4,3.'49E-4,3.58E-'4/
DATA TC1/.035,.076,.0324..0261 ,.02'43/
DATA TC2/.035..076,.0204..011'I..0105/
DATA Tmi/i .33E-4.-7.81E-5,2.9IE-4,'4.38E-'4,4.38E-'I/
DATA TP2/2.68E-2,2.90E-2,1.41E-2.6.50E-3,6.50E-3/
DATA TD3/-.030,-.030,-.035,-.035.-.035/
DATA DPR,S/57.29577951 .125.8'I/
Hz209261428.*(R-1.)
VEL=25947 .772*V
ALFAzDPR* AL
CALL ATM62CH ,TAU.SIGNA)
M=VEL/(65 .7708SQRT(TAU))
CALL SLIN1(M,AATh.TAA,5)
CALL SLINI(M,BB,1TM,TBB.5)
CALL SLIN1(MCC,ThTCC.5)
IF(ALFA.GT.16.)GO TO 10
CALL SLINI(M,A,Th.TA1,5)
CALL SLIN1(M,B,Th,TBI,5)
CALL SLIN1(M,C,TM,TC1,5)
GO TO 20

10 CALL SLIN1(M,A,TMTA2.5)
CALL SLINI(M.BTh,TB2,5)
CALL SLINI(M,CTM,TC2,5)

20 CONTINUE
CALL SLINI(M,D1,Th,TD1,5)
CALL SLIN1(H,D2,ThTD2.5)
CALL SLIKI(N,D3,ThTD3.5)
CASFzAAOHOH+B9II.CC
CAPR A* ALFA' ALFA+B* ALFA+C
CAzCASF.CAPR
CN: D1 ALFA' ALYA+D2*ALFA+D3
CLzCNICAL-CAOSAL
CD: CA*CAL+CN*SAL
IF(IPROB.EQ.2) GO~ TO 30
BBz 15268 .635*S1GMA#V*02
GO TO '40

30 BB=-932 .34367TSIGMA'V#02
40 CONTINUE

DzBB*CD
L:-BBCL
RETURN
END
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A

SUBROUTINE ATM62(H ,T,S)
REAL LM(8)
DIMENSION HM(8) ,Th(8) ,CS(8)
DATA !4M/O.,36089.,65617..1011987.,1511199.,1706011.,200131.,259186./4
DATA 714/288.15,216.65,216.65 ,228.65,270.65,270.65,252.65,180.65/
DATA L.1/-i .9812E-030...3.0118E-4.8.53114E-O#,O.,.6.096E-4,
1 -1.2192E-03,0./
DATA CS/3.4018211655257E-1 1.1 .683376997149E*OO,
19.817858914969E+80,1I.506414'967722E.29.4i.3947119884481E-O1,
24.717851690435E-43,1 .562793740651E-22,5.0289'4698'1109E+O1/
DATA GOR/ .010413309/
IF(1i.GE.O.) GO TO 5 i
Tz288.15-1 .9812E-3*H0
S:1 .-2 .92629 13E-5*H
RETURN

5 IF(H.LE.750000.) GO TO 10
7:180.65
Sz8. 11 1816E-18
RETURN

10 CONTINUE
DO 20 lz1,8

20 IF(H.GE.H14(I))MzI i
T:TM( H) .LM( )*(CH-HM(M1))
IF(LM(M) .EQ.O.)30.4O

30 S=CS(M)IEXP(-GOR'1I/T)
RETURN

40 S=CS(M)9T**(-1 .-GOR/LM(M))
RETURN
END
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SLIMN PAGE 1

I

SUBROUTINE SLINI(X# Y. AX, Ay, ) NI
C SINGLE LINEAR INTERPOLATION SUBROUTINE

DIMENSION AX(J), AY(M)
IF(N.EQ.1) GO TO 30
IF(X.LE.AX(1)) 00 TO 20
IF(X.GT.AX(N))GO TO 30
DO 10 Isl,NK.I[#
Z a X- AXMI) V
IF(Z.LE.O.)GO TO 11

10 CONTINUE
11 J"K-1

3 a (AY(K) -. AY(J))/(AX(K) - AX(J))
Y a AY(J) + 34( X - AX(J))
G TO 100

20 Y=AY(1)GOo TO 100
30 Y*AY(N)

100 RETURN
END

i1

SI

i'

'I
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SGX PAGE 1

SUBROUTINE SGX(N ,X,H,NFEST)
DIMENSION X( 16) ,XF( 16) ,XB( 16) ,CF( 16) ,CB( 16)
COt4MON/VFOl DIG(50)
COtMHON/VFO1F/GC(25 .50)
COMMON/SS/SS(50)
COKMON/ IGX/ IGX
DATA EPSP/1.E-~4/

IGXz1
DO 15 121.N

DO 20 Iz1.N i
IF(ABS(X(I)) .LE.EPSP) DX2EPSP*62
XF( I)=XCI)+DX
CALL SG(XF,FF)
DO 16 J:1,M

16 CF(J)=SSCJ)
XF(I)=X(I)
XB( I)=X( I)-DX
CALL SG(XB,FD)I NFEST=NFEST.2
DO 17 J:1,M

17 CB(J)sSS(J)
XBCI)=X(I)
G( I)=O.56CFF-Fg)/DX
DO 20 J:1.M

20 CONTINUE
IGX:O
RETURN

END
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APPENDIX D

GLOSSARY OF VARIABLES IN USER CODE
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• 12

PRJGRAM MRRV

Varlalhda IJiYV" Definition

AK Real Measure of constraint convergence rate

AXHIN Real Defines convergence for constraints

C(I) Real Constraint residuals and constraint scale factors

DFN Real Expected decrease in performance index

DPR Real Degrees per radian

EPS(I) Real Defines convergence in VAO9A

GC(I) Real Derivatives of the constraints

G2P(I) Real Second derivative matrix in factored form

IInteger Counter

IFN Integer Number of function evaluations in VA09A

INOM Integer Trajectory print flag. Print occurs if INOM - 1

IPROB Integer Problem flag. - 1, reentry; - 2, plane change

IPRi Integer Print flag in VF01A

IPR2 Integer Print flag in VA09A

.I IRS Integer Restart flag. - 0, first run; - 1, restart

ITN Integer Number of iterations in VA09A

IW Integer Number of elements in work space W(I)

K Integer Number of equality constraints

M Integer Number of constraints

MAXFN Integer Maximum number of function evaluations in VA09A

MC Integer - M

HE Integer Number of equality constraints

MI Integer Number of inequality constraints

MINS Integer Number of iterations in VF01A

103

Li__



PROGRAM MRRV, Corit'd.

Variable Tye Definition

MODE Integer Flag which indicates how 0. o, and G2P are input

142 Integer 2M -l

N Integer Number of parameters j

NA Integer Number of parameters in angle of attack table

NFEST Integer Number of function evaluations j
NM Integer Number of parameters in bank angle table

I
NN Integer Number of elements in G21'

T(1) Real Array where 8 and a are stored

I
TA(I) Real Node ordinates for angle of attack tableI

TF Real Final time I
TM(I) Real Node ordinates for roll angle table

TMAX Real Internal time limit i

TTA(I) Real Node abscissas for angle of attack table

TTM(1) Real Node abscissas for roll angle table j

TO Real Initial value of internal time

TI Real Current value of internal time

X(I) Real Initial values of unknown parameters

SUBROUTINE VP01B

Variable Type Definition
Fu

C(I) Real Constraints and constraint scale factors

F Real Performance index

G(I) Real Derivatives of F with respect to X(I)

GC(I,J) Real Derivatives of C(J) with respect to X(I)

IGAMMA Integer Flag; - 0, y > -60 deg ; 1y .1 -60 deg
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SUBROUTINE VFOIB, Cont'd,

Variable Type Definition

IS Integer Used in optimization code
K Integer Number of equality constraints

M Integer Number of constraints

MM Integer Used in optimization code

MMK Integer Used in optimization code

N Integer Number of parameters

NFEST Integer Number of function evaluations

NU Integer Used in optimization code

X(I) Real Unknown parameters

SUBROUTINE SG

Variable Type Definition

A Real Angle of attack (rad)

CF Real Cos

CI Real Cos i

CSI Real Cos

DELT Real Integration step size

DELTI Real Partial integration step before engine is started
or shut off

DELT2 Real Partial integration step after engine is started
or shut off

DPR Real Degrees per radian

DY(I) Real Right-hand sides of the differential equations
of motion

F Real Performance index
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SUBROUTINE SC, Cont'd.

Variable Type Definition

I Integer Counter

IGAMMA Integer Flag; - 0, y > -60 deg ; - 1, y a -60 deg

IGX Integer Flag; - 1, prevents update of constraint residuals
when derivatives are being computed

INOM Integer Trajectory print flag; - 1, causes trajectory to be
printed

IPROB Integer Problem flag; - 1, reentry; - 2, plane change

J Integer Counter

KOUNT Integer Engine flag; - 0, engine off; - 1, engine on; - 2,
engine off again

M Real Bank angle (rad)

MASS Real Vehicle mass (nondimensional)

MC Integer Number of constraints

ME Integer Number of equality constraints

MI Integer Number of inequality constraints

N Real Load factor

NA Integer Number of parameters in angle of attack table

NDE Integer Number of differential equations

NIS Integer Number of integration steps

NM Integer Number of parameters in bank angle table

PA Real Angle of attack (deg)

PM Real Bank angle (deg)

S(I) Real Constraints (0 C(I))

SS(I) Real Temporary values of constraints

SSl Real Sin iP

T Real Time (normalized)
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SUBROUTINE SG, Cont'd.
9

Variable Type Definition

TA(1) Real Node ordinates in angle of attack table (rad)

TEMP Real Temporary computation

TF Real Final time (nondimensional)

TIME Real Time (see)

TIMEL Real Ignition time or burnout time (see)

TIMETB Real Ignition time (nondimensional)

TIMETL Real Ignition time or burnout time (nondimensional)

TM(I) Real Node ordinates of bank angle table (rad)

TTA(I) Real Node abscissas of angle of attack table (nondimensional)

TTM(I) Real Node abscissas of bank angle table (nondimensional)

VCCOR Real V cosj/r (nondimensional)

W Real Angular velocity of earth (nondimensional)

X(I) Real Unknown parameters

Y1 Real State variables (nondimensional)

Z(1) Real State variables (dimensional)

SUBROUTINE RUNGE

Variable Type Definition

DELT Real Stepsize

DELX(I,J) Real Increment in X(I)

DX(I) Real Derivative of X(I)

I Integer Counter

N Integer Number of differential equations
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SUBROUTINE RUNGE, Cont'd.

Variable Type Definition
2

T Real Independent variable

T2 Real Intermediate value of independent variable

X(I) Real Dependent variables

XV(I) Real Intermediate value of X(I)

SUBROUTINE DERIV

Variable Type Definition

A Real Angle of attack (red)

ALIM Real Angle of attack limit ((ad)

CA Real COs a I
CF Real Cos

Cc Real Cos y

CM Real Cos p

CS Real Cos

D Real Drag (nondimensional)

DY(I) Real Right-hand sides of the ecuations of motion

F Real Latitude, I (rad)

FDOT Real 0 (nondimensional) 4
GR Real Acceleration of gravity (nondimensional)

KOUNT Real Engine flag; - 0, off; - 1, on; - 2, off again

L Real Lift (nondimensional)

M Real Bank angle (rad)j
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SUBROUTINE DERIV, Cont'd.

V1I.r I1 ,IbI., ' . De f I n I t I rn

MASS Real Mass (nondimensional)

N Real Load factor

NA Integer Number of nodes in angle of attack table

NDE Integer Number of differential equations

NLIM Real Load factor limit

NM Integer Number of nodes in bank angle table

P Real Temporary computation

R Real Distance from center of earth (nondimensional)

RDOT Real r (nondimansional)

S Real Heading angle, * (rad)

SA Real Sin a

SDOT Real k (nondimensional)

SF Real Sin

SG Real Sin y

SM Real Sin i

SS Real Sin

T Real Longitude, e (rad)

TA(I) Real Node ordinates in angle of attack table (rad)

TDOT Real 0 (nondimensional)

TF Real Tan

TG Real Tan y

THR Real Thrust (nondimensional)

TIMETB Real Ignition time (nondimensional)

TM(I) Real Node ordinates in bank angle table (rad)
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SUBROUTINE DERIV, Cont'd.

Variable Type Definition

'lPLOM R(.;I (T sin ( + L)/m

TMDOM Real (T cos a - D)/m

TT Real Normalized time, T

TTA(I) Real Node abscissas in angle of attack table

TTF Real Final time (nondimensional)

TTM(I) Real Node abscissas in bank angle table

TW Real 2w (nondimensional)

V Real Velocity (nondimensional)

VCG Real V cos Y

VCGOR Real V cos y/r

VDOT Real i (nondimensional)

W2 Real W2 (nondimensional)

Y(I) Real Nondimensional states

SUBROUTINE AERO

Variable Type Definition

AL Real Angle of attack (rad)

ALFA Real Angle of attack (deg)

Al Real Coefficient in CASF

A2 Real Coefficient in CAR

A3 Real Coefficient in CN

B1 Real Coefficient in CASF

P2 Real Coefficient in CAPR

B3 Real Coefficient in CN

CA Real Axial force coefficient
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SUBROUTINE AERO, Cont'd.

V.i .1. ,, 1"ofinf ion

CAL Real Cos o

CAPR Real Axial force coefficient, pressure

CASF Real Axial force coefficient, skin friction

CD Real Drag coefficient

CL Real Lift coefficient

CN Real Normal force coefficient

Cl Real Coefficient in CCAs

C2 Real jefficiejit in CAPR V

C3 Real Coefficient in
C3 CN

D Real Drag (nondimensional) K

DPR Real Degrees per radian

H Real Altitude (ft)

IPROB Integer Problem flag; - 1, reentry; - 2, plane change

L Real Lift (nondimensional)

K Real Mach number

R Real Distance from center of earth (nondimensional)

SAL Real Sin ct

SIGMA Real Density ratio

TAU Real Absolute temperature (deg K)

TAMI) Real Table for Al

TA3(l) Real Table for A3

TBI(I) Real Table for BI

TB3(I) Real Table for B3

TCl(I) Real Table for C1
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SUJBROUTINE AERO, (:ont'd.

Variable Type Definition

TC3 Real Table for C3

TM(I) Real Table for Mach number

TIA2(1) Real Table for A2, a < 16 dog

T-B2(I) Real Table for B2, a < 16 deg

TlC2(I) Real Table for C2, a < 16 deg

T2A2(I) Real Table for A2, a ' 16 deg

T2B2(I) Real Table for B2, a > 16 deg

T2C2(I) Real Table for C2, a > 16 deg

V1L Real Velocity (ft/sec)

v Real Velocity (nondimensional)

SUBROUTINE ATM62

Variable Type Definition

CS(I) Real Coefficients in density formula (nondlimensional)

GOR Real gS/R

H Real Altitude (ft)

HM(1) Real Altitude at beginning of layer m (ft)

I Integer Counter

LM Real Temperature gradient in layer m (deg K/ft)

M Real Denotes layer

S Real Density ratio

T Real Absolute temperature (deg K)

TM Real Temperature at beginning of each layer (deg K)
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SUBROUTINE SLIMI

Variable Type Definition

AX(I) Real. Node abscissas

AY(I) Real Node ordinates

I Integer Counter

SInteger Counter

K Integer Counter

N Integer Number of points in table

S Real Slope

x Real Abscissa

Y Real Ordinate

z Real Temporary computation
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