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-Chapter II of this dissertation provides an

introduction to the concepts of modern control theory.

We develop a classical model of the firm and demonstrate

how modern control theory techniques are applicable to the

dynamic optimization problem of the firm. The transition

from static optimization to dynamic optimization theory is

accomplished by reviewing the discrete time minimum prin-

ciple and applying this principle to the classical problem

of profit maximization.

Chapter III introduces the concept of linear quad-

ratic control and develops a decentralized model of the

firm. We develop the concepts of decentralized decision

making and decentralized information availability to

formulate a well posed problem of decentralized control. .
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The solution of the decentralized control problem

is presented in Chapter IV where we derive an optimal

decentralized control policy for a general organizational

team using the mathematical approach of dynamic program-

ming and the results of team theory. This policy is then

applied to our research problem to determine the effect

of transfer pricing policy on the decentralized decision

maker's actions. The main finding of this study under the

stated conditions of the analysis is that the transfer

price involved in the interdivisional exchange of goods

or services does not affect the decentralized team deci-

sion maker's actions.
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CHAPTER I

INTRODUCTION AND BACKGROUND

Introduction

The rapid rate of technological advancements and

a steadily increasing growth in the size of business

organizations have resulted in a trend toward division-

alization of these organizations in recent years. Divi-

sionalization leads to the encouragement of creative

talents of responsive individuals, a readily available

measure of segment success in the form of profit contribu-

tion and the improvement of management training (Solomons:

1965). Decentralized decision making results in separate

divisions which are essentially autonomous profit centers.

In a world of certainty the objectives of decentraliza-

tion in business organizations through the creation of

profit centers are likely to be achieved when the managers

of various profit centers, acting in their own self-

interest, also maximize central management's preferences.

This idea holds trivially when there are no interactions

between the various decision centers; i.e., no flow of

goods or services between decision centers and no cost or

demand interdependence (Kanodia:1979). However, these

.. .... ... . H II ... .... ... ... " .. .... " .. .... ... .' '1
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divisions are frequently faced with the problem of

pricing goods and services that they exchange with each

other. Internal transfer prices for these goods and ser-

vices are historically derived from a corporate head-

quarters or central coordination agency or through divi-

sional negotiation. The problem of establishing these

prices is important since they affect divisional goal con-

gruence, individual incentive and autonomy of decision

making (Horngren:1977).

Statement of the Problem

Classical microeconomic theory assumes that the

centralized decision maker has perfect knowledge of all

the information required for decision making. However,

we observe that actual decisions are based on information

that is both incomplete and imperfect due to the uncer-

tain environment that the firm must operate within. Yet

the formal admission of uncertainty has not been acknowl-

edged in most of the transfer pricing literature to date

(Demski:1975). This admission is important because the

results obtained under subjective certainty do not neces-

sarily extend to an uncertain setting. In addition,

questions relating to information discrepancies, communi-

cation strategies and risk sharing only arise in an uncer-

tain setting.
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Another premise of classical economic theory is

that the firm operates in a static environment where cur-

rent decisions do not impact future periods of operation.

In reality, the decision maker must base these decisions

on a changing environment where the information concern-

ing the environment is also changing over time. A dynamic

analysis of this information structure has not been

addressed in the transfer pricing literature to date.

Furthermore, the complex problem of decentralized deci-

sion making under conditions of limited informational

structures in an uncertain environment has not been ack-

nowledged in the literature to date.

The problem of establishing an optimal (in some

sense) transfer pricing policy for a decentralized firm

in an uncertain, dynamic environment provides the impetus

for this dissertation. In the above sentence, the word

"optimal" refers to the development of a control policy

which will encourage the maximization of a predetermined

measure of profit. The purpose of the control system is

not to explicitly develop organizational planning objec-

tives, although the feedback received from a viable con-

trol system frequently results in planning adjustments.

This type of closed loop system meshes the functions of

1 Important exceptions are Arrow (1964), Groves
(1973), Marschak (1959) and Wilson (1968).
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management planning and control in actual operating cir-

cumstances; however, for the purpose of this dissertation,

it is assumed that optimal control refers to the actions

required to optimize predetermined planning objectives.

Background

In an organization, individuals normally differ

in at least three important aspects: (1) they control

different action variables; (2) they base their decisions

on different information; and (3) they have different

preferences; i.e., tastes and beliefs. A normative

analysis of organizations could thus be suitably modelled

as a methematical game theory problem (Radner:1972a).

However, many interesting aspects of organizations are

related to differences of types (1) and (2) only. Further-

more, in some cases the members of an organization may

have nearly identical preferences. Finally, in the pres-

ent state of development, the theory of games of more than

two persons does not appear to provide many clues as to

how to proceed in a general analysis of organizations

(Radner:1972b). This suggests the study of theoretical

organizations in which differences of type (3) are absent;

that is, in which preference differences are neglected

and a single payoff function reflects the common goals of

the members. Jacob Marschak (1955) has termed such an

organization a team. In the theory of teams two basic
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questions are investigated: (1) for a given information

structure, what is the optimal decision function; and (2)

what are the relative values of alternative information

structures.

The impact of a transfer pricing change on the

actions of decentralized decision makers has not been

investigated in a team setting. This impact may not be

trivial in that it is not clear exactly how decentralized

decision makers evaluate available information. This dis-

sertation research will attempt to develop a decentral-

ized control model of the firm that will enable us to

evaluate the impact of various information patterns, to

include the transfer price, with respect to the actions

taken by the decentralized decision makers. The disserta-

tion will employ a team theoretic approach to the decen-

tralized control problem which will allow investigation

of the impact of a change in transfer pricing policy on

the decision maker's actions. Most of the team theory

literature has not addressed the team problem in a dynamic

environment; however, current research in the fields of

economics and engineering has begun to deal effectively

with dynamic models through the use of modern control

theory analysis.

The mathematical foundations of certain parts of

modern control theory can be traced back to works that
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were completed some seventy years ago. For instance, the

state variable approach to linear systems is well known

to mathematicians as the theory of first-order linear

differential equation solutions. State space concepts,

fundamental to modern control theory, evolved from the

classical theory of dynamics of particles and rigid

bodies, referred to as phase-space (Fuller:1960). One of

the significant aspects of modern control theory is that

it is useful in the analysis of multivariate, stochastic,

dynamic systems. Until recently, a modern control theo-

retic approach was limited to engineering problems deal-

ing with the physical sciences. This approach has now

received attention in various fields of the social

sciences, particularly in economic research. The appar-

ent widespread use of modern control theory techniques to

economic research can be summarized as follows:

Control theory methods are used to find the opti-
mal set of policies over time to direct a determinis-
tic system or stochastic system from given initial
conditions to desired terminal conditions. Since a
large number of economic problems are naturally
described as dynamic systems which can be influenced
by policies in an attempt to improve their performance,
control theory has gained widespread application by
economists. (Kendrick:1980)

Objective of Research

The objective of this dissertation is to develop

a conceptual framework for the analysis and control of

decentralized decision making for a firm operating in a
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dynamic environment under conditions of uncertainty. The

framework will incorporate a modern control theoretic

mathematical structure and employ a team theoretic

approach to the analysis of organizational behavior.

Thus the conceptual framework will attempt to embody the

economic concepts of team theory with the mathematical

concepts of modern control theory to analyze the dynamic

problem of optimal information structure and transfer

4 pricing policy which is of interest to the accountant.

Past Approaches and the Approach
of This Study

Early accounting research concentrated on a prag-
2

matic approach to the transfer pricing problem. Classi-

cal economic analysis of the transfer pricing problem was

conducted by Hirshleifer (1956) and his paper is the

definitive reference in the literature. However, Hirsh-

leifer's procedure requires complete knowledge of market

situations and complete communication between decision

makers; conditions that rarely, if ever, exist in the cur-

rent business environment.

Mathematical programming approaches to the estab-

lishment of transfer prices were presented by Baumol and

Fabian (1964), Jennergren (1972) and Bailey and Boe (1976).

2 See, for example, Cook (1955), Dean (1955),
Dearden (1964) and Stone (1956).
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These approaches require time-consuming iterations of

information exchanges that are based on sensitive opti-

mality assumptions. The transfer pricing literature

was surveyed by Abdel-Khalik and Lusk (1974) and they con-

clude that the above approaches have produced more ques-

tions than answers.

The approach of this dissertation acknowledges

the uncertain and dynamic environment that exists in a

modern decentralized organization and employs a modern

control theoretic team approach to decentralized decision

making. Our conceptual framework operates in a dynamic

environment, incorporates conditions of uncertainty,

allows for multiple information structures and addresses

the issue of pricing interdivisional transfers of goods

and services. Decision making for the divisions resides

with the respective division managers (decentralized

decision making). Decentralized decision making refers

to the following: given m decisions or actions to be made

by n decision makers (l<n<m), each decision maker is

assigned a subset of the m decisions. For the overall

system there is a given criterion function and a space

of possible choices involving the m decisions. Each deci-

sion maker is assigned a space of possible choices and

a criterion function involving at least the decision
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variables which he can partially or totally control

(Whinston:1964).

The information set available to each decision

maker may also vary. Suppose that the ith person

observes a random variable yi(x) and takes action a..

If there is no communication among the persons, then

person i's information function is defined as I i(x) =

Yi (x). However, if there is complete communication among

all n persons, then Ii(x) = Y(x) = (yl(x), Y2 (),...,

Yn (x)). Rarely does one encounter these two extremes of

no communication or complete information in a real organi-

zation. Rather, we find that numerous devices are used

to bring about a partial exchange of information (Radner:

1961).

Overview of Contents of
the Dissertation

Chapter II of this dissertation provides an intro-

duction to the concepts of modern control theory. We

develop a classical model of the firm and demonstrate how

modern control theory techniques are applicable to the

dynamic optimization problem of the firm. The transition

from static optimization to dynamic optimization theory

is accomplished by reviewing the discrete time minimum

principle and applying this principle to the classical

problem of profit maximization.
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Chapter III introduces the concept of linear

quadratic control and develops a decentralized model of

the firm. We develop the concepts of decentralized deci-

sion making and decentralized information availability to

formulate a well posed problem of decentralized control.

The solution of the decentralized control problem

is presented in Chapter IV where we derive an optimal

decentralized control policy for a general organizational

team using the mathematical approach of dynamic program-

ming and the results of team theory developed by Radner

(1962). This policy is then applied to our research

problem to determine the effect of transfer pricing policy

on the decentralized decision maker's actions.



CHAPTER II

CENTRALIZED MODEL OF THE FIRM

Introduction

As we have emphasized in the previous chapter,

the purpose of this dissertation is to develop an ana-

lytic framework which will enable us to evaluate the per-

formance of a decentralized firm operating in a dynamic

environment under conditions of uncertainty. This chapter

will provide the analytic background necessary to under-

stand the inherent difficulties encountered when we extend

the classical economic model of a firm to achieve the dis-

sertation objective. A second purpose of the chapter is

to develop an orderly transition from classical static

optimization techniques to the modern control theory

approach used to solve optimal control problems.

We will develop a static model of the firm and

solve the attendant optimization problem. Next we will

extend the model to a dynamic environment and develop a

maximization principle that will enable us to solve the

dynamic optimal control problem. Following chapters

extend the model to incorporate decentralized information

and decision making and address future uncertainties which

11
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the firm faces and we develop a procedure to solve the

resultant stochastic control problem.

Static Model of the Firm

Traditional management models of the firm nor-

mally include an organizational structure which incorpo-

rates the functions of production and marketing with

related costs of distribution and production and related

sales revenue. The firm's objective is normally that of

profit maximization. The model we develop will include

these concepts where profit becomes a function of both

sales and costs. It should be noted that certain empiri-

cal evidence exists to suggest that firms may not regard

profit maximization as their sole overriding objective.
3

The model we will develop does not explicitly require the

assumption of profit maximization and could readily be

extended to incorporate behavioral preferences through

the recognition of a utility function which incorporates

individual beliefs and preferences. For clarity of

exposition our model will retain the profit maximization

objective which implicitly assumes that the firm's utility

function is linear in dollars. This assumption does not

cause any conceptual difficulty for a centralized firm;

3See, for example Coase (1972), Cyert and March
(1968), Jensen and Meckling (1976) and Salamon and Smith
(1979).
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however, it does become restrictive when we address decen-

tralized decision making and will be discussed further at

that point.

Figure 2.1 shows the eseential framework of the

model we will develop. The functions of production (Divi-

sion P) and marketing (Division M) are aligned under the

control of a centralized decision maker (Headquarters).

Raw material required for production is obtained in a

perfectly competitive market where Division P can pur-

chase any amount of material, qr' at the prevailing market

price, pr" This amount is processed into a finished pro-

duct, q . For ease of exposition we assume a single

input production process with no internal loss. This

notation assumes that the units of raw material and the

final product are the same. This assumption could be

relaxed by defining the amount of raw material purchased

as aq where a represents the units of input required per

production unit. These assumptions are not essential to

the development of the model; however, the relaxation of

them would unduly complicate the mathematics involved

without adding additional clarity of exposition.

The marketing division receives the finished gooa

qp and distributes an amount qf at a price pf. Unlike

the raw material market, the demand for the firm's pro-

duct is a function of the sales price, pf, which the firm
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SHeadquatr

qrr Division q Division q f p f
"r 'r ffp

Fig. 2.1. Centralized Model of the Firm

must establish. To achieve as much realism as possible

we will assume that the firm can mildly affect the demand

for its product through advertising, product differentia-

tion and price. Thus its market is neither purely com-

petitive nor purely monopolistic. Chamberlin (1962) has

termed such a situation as monopolistic competition and

the interested reader is referred to his work for an

extensive treatment of the subject.

We will assume that the firm has full knowledge

of the demand function for its product which exhibits the

relationship

qf = -bPf + b

where b >0 and b2 >0 are known constants.

The firm's revenue is a function of sales quan-

tity and sales price as

R = R(qf,pf) pfqf.



15

The firm's cost function consists of production

costs and marketing costs. We assume that the marketing

division incurs a fixed cost, CM, based on a fixed sales

force and advertising budget. The production costs are

a function of raw material costs and internal processing

(labor and machine) costs. In economics we often encoun-

ter a production cost-volume relationship such as that

given in Figure 2.2.

I I

Cost I II III

Volume

Fig. 2.2. Production Cost Function

Such a function has the property that marginal

costs decrease initially but increase above a certain

volume. Empirical evidence supports this relationship

due to a learning effect and the improvement in effi-

ciency that accompanies a volume increase (Itami:1973).

However, we note that the majority of accounting cost

analyses assume a linear production cost relationship of

the form c = av + b where c is total cost, v is total

volume and a,b are known constants. Although this func-

tion is convenient for analytic purposes, we feel that
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marginal cost must eventually rise as volume increases

which is a property not incorporated using a linear cost

function. To incorporate the concept of increasing mar-

ginal cost we will assume a quadratic cost function of
2

the form c = a + bv + cv where a,b,c are constants.

This will enable us to preserve analytic tractability in

our model and at the same time achieve an implicit objec-

tive of the analysis which is to capture as much realism

as possible without unnecessarily complicating the model.

By using a second-order approximation for production

costs we assume that the firm is operating somewhere in

region II (Figure 2.2). Classical microeconomic theory

tells us that it is not efficient for a firm to operate

in regions I or III and thus we feel that a second-order

estimate of production cost is justified from both an

empirical and theoretical perspective. The quadratic

cost function captures the concept of increasing marginal

cost inherent in many organizations; however, it should

be noted that many major industrial processes may not

exhibit quadratic cost behavior and the application of

this model may not be appropriate for firms that are not

operating in region II.

4For a further discussion of quadratic cost
curves and their fit to empirical data, see Holt, et al.
(1960) and Spencer and Siegelman (1964).
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The production cost is of the form

2
C =a 1 + prqr + a2qr

where ala 2 are known constants and pr is the unit cost

of the raw materials. Thus a1 represents fixed operating

costs and a2 captures the concept of increasing marginal

costs while pr captures the material component of the pro-

duction costs.

The total profit of the firm becomes

Profit = P = Revenue - Expenses

P =R - C CM
p

P= pfqf - a, - pq r a a2 qr2 C M

The firm's problem becomes:
2

Maximize: P = pfqf - CM  2a qr - a2q r

Subject to: qf = blPf + b2. (A)

It is interesting to observe at this point in the

model's development that perfect information is assumed

and thus the issue of optimal information structure is

imbedded in the model's assumptions. Similarly, there is

no transfer pricing problem at this juncture due to the

centralized aspect of the model. From this perspective

the model is currently uninteresting to the accountant

concerned with the development of information systems and

optimal transfer pricing policy. Following sections will
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j extend the model to allow us access to the issues of

information structures and transfer pricing policy along

with an appreciation of the difficulties encountered as

we extend the model. This extension will involve a

transition from classical static optimization techniques

to optimal control theory techniques. To facilitate this

transition, the next section will review classical opti-

mization. We will then extend the model beyond the

static case and develop the tools of optimal control

theory which will enable us to pursue the analysis in

the remainder of our research.

Static Optimization

Under the specified conditions of certainty prob-

lem A reduces to the following, which we designate prob-

lem B:

Maximize: Pfqr - (CM+al) - prqr - a 2 q r
2 (B-l)

Subject to: qr= -blPf + b 2 " (B-2)

Problem B can be solved as a static optimization

problem where the firm's decision involves determining

the amount of product produced and its price. Let us

redefine this amount as d, where d represents the firm's

production decision (note that d = qr = qp = qf).
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Substituting (B2) into (BI) yields the profit

function

p = ((b2-d)/bl)d - prd - a2d2 - M+al1

then the first-order condition for the profit function is

dP/dd= (b2 -d)/b 1 - d/b I - Pr - 2a2 d

denoting d* as the optimal decision:

d* = (1/(2(l+bla2 ))) (b2 -blPr) (2-1)

and the optimal sales price:

p* = (b2 -d*)/b (2-2)

Thus the firm will purchase d* units of raw

material at price pr and sell d* units of finished pro-

duct at a price p*. It is apparent that these results

readily reduce to the classical economic result that the

firm should price its product such that marginal revenue

equals marginal cost.

This section has developed the results needed

to solve the problem we formulated as problem B. However,

the basic model we developed assumes that the firm's deci-

sion problem is not dynamic in that future changes in

price, cost and the market demand were not allowed. In

the next section we will extend the model to allow for a
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dynamic, changing environment and begin to develop the

analytic tools required to evaluate dynamic optimization

problems using the techniques of optimal control theory.

Dynamic Model of the Firm

In this section we relax the demand and supply

market assumptions inherent in problem A. The model will

be extended to allow for both a changing environment with

respect to demand for the firm's product and also a

changing price in the raw material market. As a result

of price instability in the world over the last ten

years and no indication as to a reversal of those trends

we assume that the price of raw material, pr' will tend

to rise over time. If we consider a discrete time

period, t, we can represent this change as

Pr (t+l) = p r(t) + kPr(t)

where the argument represents the time period of interest.

We no longer consider pr to be constant, but rather a

variable which is a function of time where the constant k

represents the rate at which the price changes.

Similarly, the firm can expect to be exposed to

a changing demand for their finished product. Recall that

the actual demand qf is a function of the sales price and

characteristic parameters b1 and b2. We relax the

constancy assumption of b2 and allow this parameter to
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vary over time. This can be thought of as a change in

demand due to a change in market composition due either

to brand switching or a general increase/decrease in the

number of market participants. Based on a steadily rising

population we will functionally represent this demand as

qf(t) = -blPf(t) + b2 (t)

where

b2 (t+l ) = b2 (t) + lb 2 (t)

and the constant 1 represents the rate at which b2 changes.

In a dynamic environment we are concerned with the

amount of product the firm has at time, t. This amount

represents the difference between the quantity produced

and the quantity sold which we represent as

hT(t+l) = hT(t) + qr(t) - qf(t)

where hT is the quantity of finished goods available in

any period, t. This relationship allows for situations

where either the quantity demanded exceeds the quantity

supplied or the quantity produced exceeds the quantity

demanded. In this manner the model is extended to allow

for the consideration of either excess inventory or back-

log situations. We assume that backlog will be erased

in the following production period and the model
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implicitly penalizes the firm in such a situation by

incurring the attendant rise in production cost required

to fill the backorder units which are sold at the (pre-

sumably) lower price contracted for in the prior period.

In addition, we penalize the firm an amount m per squared

unit of hT which can be interpreted to represent the

inventory carrying cost or the potential loss of cus-

tomer goodwill due to the firm's inability to satisfy cur-

rent demand. The dynamic model of the firm can be sum-

marized as:

Demand Relationship

qf(t) = -blpf(t) + b2 (t) (2-3a)

b (t+l) = b2 (t) + lb2 (t) (2-3b)

222

Revenue

R(t) = pf(t)qf(t) (2-4)

Cost
2

CM + C p(t)=C M +a + Pr(t) (t) + a2qr (t)

(2-5a)

Pr(t+l) = Pr (t) + kPr(t) (2-5b)

Profit

P(t) = R(t) - CM -C p(t) - mh2(W (2-6)

Quantity Differential

hT(t+l) = hT(t) - qf(t) + qr(t) (2-7)

....... ....
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The firm's problem becomes

Maximize:

P(t) = pf(t)qf(t) - CM - a, - Pr(t)q r(t)
2 2

- a2 qr (t) - mhT (t) (C)

Subject to:

qf(t) = -blPf(t) + b 2 (t)

qr(t) = qf(t) - hT(t)

b 2 (t+l) = b2 (t) + lb 2 (t)

Pr(t+l) = Pr(t) + kp r(t)

hT (t+l) = hT(t) - qf(t) + q r(t)

where the equation

qr(t) = qf(t) - hT (t)

represents a constraint on the production decision to

recognize current inventory assets or backlog commit-

ments.

This is a more difficult problem to solve than

the static model posed for problem B. We are now faced

with a situation where the firm recognizes that it must

operate in a constantly changing environment and wishes

to establish an optimal decision policy over some future

planning period. The above formulation allows for future

control over any finite number of periods. For exposi-

tion purposes we will assume the firm's planning horizon

extends five periods into the future. This will provide

I - ~ . .- K
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enough time to observe dynamic characteristics of the

model yet not force the solution to become cumbersome.

The firm's problem can be restated by incorpo-

rating the demand relationship into the model as

Maximize:
-blPf (t) + b 2 (t)Pf(t) - Pr(t)qr(t) 2qr

2
- mhT (t) - (CM+al) (C')

Subject to:

b 2 (t+l) = b2 (t) + lb 2 (t)

Pr(t+l) = pr (t) + kpr(t)

hT(t+l) = hT(t) + blPf(t) - b2 (t) + qr(t)

qr(t) = qf(t) - hT(t).

It should be noted that the model still does not

allow us to address the issue of optimal information

structure nor does it explicitly address the transfer

pricing problem. On the other hand, we can now discuss

the dynamic decision-making policy a firm would undertake

if we could solve problem C'. In the next section we dis-

cuss the theory of optimal control which will provide a

means to solve the dynamic problem we have formulated.

- -- - - - -
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Discrete-Time Minimum Principle

The theory of optimal control was developed pri-

marily over the last two decades. This development was

two-fold in that it began in this country through the

development of dynamic programming and Bellman's prin-

ciple of optimality (Bellman:1957). Concurrently, a

parallel development in the Soviet Union using a differ-

ent theoretical approach was carried on by Pontryagin and

culminated in the minimum principle Ciich is essentially

an extension of the calculus of variations approach

(Pontryagin, et al.:1962).

Essentially, an optimal control problem consists

of:

1. a set of differential or difference equa-

tions that represent a system that is to be controlled;

2. a set of constraints on the variables of the

system;

3. a set of boundary conditions on the vari-

ables; and

4. a cost functional, or performance index,

which is to be maximized/minimized.

The application of this theory to our problem is

straightforward. The system is represented by a model of

the firm, a set of difference equations. Our model

incorporates explicit constraints on the variables of the
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system and requires boundary conditions on the initial

values of the variables. Finally, the cost function is

represented by the dcecision maker's goals, objectives or

utility. The objective of this section is to discuss a

solution for the discrete-time optimal control problem.

The state-space approach will be used extensively in this

and remaining sections of the dissertation. The reader

who is not familiar with this approach should read Appen-

dix A before proceeding and is also referred to Ogata

(1967) for an extensive treatment.

Since most of the early applications of control

theory to engineering problems involved continuous time

systems, the theoretical foundations for optimal control

developed most extensively in the continuous-time form.

The minimum principle of Pontryagin which provides a set

of necessary conditions for the solution of the general

continuous-time optimal control problem has found wide

acceptance and application to engineering problems. One

purpose of this section of the dissertation is to discuss

a minimum principle for discrete-time optimal control

problems that will be general enough to allow application

to the problems that will interest us.

Pearson and Sridhar (1966) and Rosen (1967) have

shown that the minimum principle could be approached from

the point of view of Kuhn-Tucker theory and that a dynamic

..... ...~~_I 6L "- L: 
o

. , -
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optimal control problem could be expressed and treated as

a larger static convex programming problem. We will use

their approach in deriving a minimum principle for

discrete-time problems. The basic problem in corvex pro-

gramming is that of minimizing the scalar function J(y)

subject to the constraints F1 (Y) = 0 and F 2 (y) > 0 where

y is an s-vector, Fl(y) is an nI dimensional vector valued

function and F 2 (y) is a vector valued function of dimen-

sion n2 . In addition, the assumptions are made that J(y),

Fl(y) and F2 (y) are all differentiable in their arguments

and that the constraint functions are convex in y.

The results of Kuhn-Tucker theory that are of

interest are two theorems that state conditions for the

solution of the convex programming problem. Define the

Lagrangian as:

T (Y T
L(y,p,p) = J(y) + pTFI(Y) - TF 2 (y)

where p and W are n1 and n2 vectors of Lagrange multi-

pliers. Assume that y* is an admissible value which

satisfies the constraints and minimizes J(y) and define

the following vectors:

L* =3L/3 Y *.iy*,p*,p*; i = 1,2,...,s

L* = L/Dpily*; i = 1,2,...,n 1

p

= aL/dil y*; i = 1,2,...,n
2i
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L* is the gradient vector of the Lagrangian with
y

respect to y (i.e., each of the s components of y) evalu-

ated at y = y*, p = p*, and p =*; i.e., at the value

that minimizes J(y) while satisfying the constraints

Fl (y) = 0 and F2 (y) > 0 and the corresponding values of

p and P. L* and L* are the gradient vectors with respect
p p

to p and P, evaluated at y = y*.

For convenience, define the two matrices:

F*y =3Fi/3YjlY*; i = 1,2, ;. J = 1,2, ,s

F*Y =F /ay JY*; i = nl+l,...,nl+n
2j = 1,2,..., s.

Thus we have

L* = J/ yly* + (* p (F* )P
yF~ -y 2y

L* = F (y*)p

L*= -F2 (y * ) .

The two Kuhn-Tucker theorems of interest are:

Theorem I:

If y* minimizes J(y) subject to F1 (Y) = 0 and

F2 (y) > 0, then it is necessary that there exist

some p* and p*, so that the following are satis-

f ied:

]!.6;

t"k
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L* = 0
y
=* 0

p

L* < 0
P

L* < 0T--
(L*)T * = 0

1* > 0.

Theorem II:

If y* minimizes J(y) subject to Fl(Y) = 0 and

F2 (y) > 0, it is sufficient that Theorem I holds

and
T

L(y,p*,*) > L(y*,p*,p*) + (L*) (y-y*).
y

(Note that Theorem II is merely a convexity co.n-

dition on L.)

Theorem I gives us a set of necessary conditions

for the solution to the optimization problem that may

admit several extremal solutions; however, Theorem II

states that if the optimization problem is such that the

Lagrangian has a unique minimum with respect to y, then

there is only one extremal solution and Theorem I gives

sufficient conditions for an optimum.

Now we outline the optimal control problem as

composed of the system

x(t+l) - x(t) = f(x(t),u(t),t); t = 0,1,...,N
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where x(t) is now an n-vector and u(t) is an r-vector.

The system is subject to the initial conditions

x(t=0) = x(0)

and the final condition

t =N.

We want to minimize the cost functional

N-1
J = K(x(N)) + Z L(x(t),u(t),t)

t= 0

and we require that the sequence {x(t),u(t)} belongs to

the constraint set respresented as

p(x(t),u(t),t) > 0

where p is a vector-valued function of dimension m.

To apply the Kuhn-TuckeL theorems, the optimal

control problem must be restated as a convex programming

problem. To do this, define the (n+r)N = sN vector y as

Ty = [x(l),...,x(N)u(0),...,u(N-l) T

Next define the nN vector F1 (y) as
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f(x(0),u(0),0) - X(1) + x(0)

f(x(1),u(1),l) -x (2) + x(1)

F1 (Y) =

f(x(N-l) , (N-l) ,N-l) - x(N) + x(N-I)

and the mN vector F2 (y) as

P (x (0), u (0) 0

F (Y) =

(x(N-I),u(N-l) ,N-l)

Thus, the optimal control problem is equivalent

to minimizing:

N-I
J(y) = K(x(N)) + E L(x(t),u(t) ,t)

t=o

subject to:

F1 (y) = 0

F2 (y) > 0.

We can now apply the Kuhn-Tucker theorems stated

earlier where we define the Lagrangian as

L(y,p,p) = J(y) + pT F1 (y) - T F2 (Y)

However, p is now an nN-rvector and u is an mN-

vector of Lagrange multipliers. Application of the



32

Kuhn-Tucker conditions results in the following discrete-

time minimum principle.
5

Discrete Minimum Principle

Let {x*(t)} be the trajectory of the dynamic

system of interest corresponding to the control sequence

{u*(t)} with x*(t=0) = x(0) and {x*(t),u*(t)} constrained

to the set of p(x(t),u(t),t) > 0. Then if {u*(t)} mini-
N-I

mizes the cost functional J = K(x(N)) + E L(x(t),
t=o

u(t),t), it is necessary that there exists a sequence

of n vectors {p*(t); t = 0,1,...,N} called the co-states,

and a sequence of m vectors {p*(t); t 0,1,...,N} called

the co-constraint vectors such that:

1. The scalar function

H(x*(t) ,p*(t+l),u(t), lj*(t+l))

= L(x*(t) ,u(t) ,t)

+ (p* (t+l))Tf (x* (t) ,u(t) ,t)
T

(- * (t+l)) p(x*(t),u(t),t) (2-8)

called the Hamiltonian is minimized as a function of u(t)

at u(t) = u*(t) for all t = 0,1,...,N-1.

5The interested reader is referred to Pindyck
(1973) for the algebraic details.



33

2. The dynamics of x*(t), p*(t), and p*(t) are

determined by the equations

x* (t+l) - x* (t) = H/ Dp(t+l) = f (x* (t) ,u* (t) ,t)

(2-9)

p* (t+l) - p* (t) = -3H/3x(t) (2-10)

p(x*(t) ,u*(t) ,t) =-DH/31(t+1) 1, >  0 (2-11)

P*(t) > 0 (2-12)

pT (x*(t),u*(t),t)l*(t+l) = 0 (2-13)

p*(N) = 3K(x*(N))/3x. (2-14)

Model Revisited

For case of reference we restate the firm's prob-

lem as defined by equations C':

Maximize:

2 2
-blPf (t) + b2 (t)pf(t) - Pr(t)qr(t) - a 2 q r (t)

- mhT 2 (t) - (CM+al) (C')

Subject to:

b2 (t+l) = b 2 (t) + lb 2 (t)

Pr(t+l) = pr(t) + kpr(t)

hT(t+l) = hT(t) - b 2 (t) + blpf(t) + qr(t)

(t) = qf(t) - hT(t).

..................................r'- -:
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Recall that this model assumes the availability

of perfect information on which the centralized form will

base its production decision and product line pricing

policy. For mathematical convenience we will restate

problem C' in state-space representation which will enable

us to formulate the firm's problem as an optimal control

pronlem. Let us define the three-dimensional state vec-

tor

1 b2 (t) Lxl(t)j demand parameter 1

x(t) = 9hr(t) = x 2 (t) = raw material price'.

Lh(t) x3(t)J inventory/backlog]

Similarly, we define the two-dimensional decision/

policy/control vector as

q r(t)] Fl(t)1 production decision

u(t) = Lpf(t = 2 (t)j pricing decision ]

We can now generate the state-space representa-

tion of the model of the firm as

x(t+l) - x(t) = f(x(t),u(t),t)

where the (3xl) vector valued function f is defined as
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1x1 (t)

jf(x(t) ,u(t),t) = kx2 (t)

LX (t) + b1 u2 (t) + u (t)

We note that the model of the firm can be

I* expressed in linear form as

x(t+l) - x(t) = Ax(t) + Bu(t) (2-15)

where the (3x3) matrix A and the (3x2) matrix B are

defined as

F1  0 0] f 0
A =L I k0 B =L b

The dynamic model of the firm we have developed

is completely described by the vector-matrix difference

equation (2-15). The cost function was deiined earlier

as

N-i
J = K(x(N)) + E L(x(t),u(t),t).

t=0

We can convert the firm's objective of profit

maximization to the analogous cost minimization problem

by defining
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N-i
J =-(l/2)K(X(N)) -(1/2) E P (t)

t=o

where P(t) is defined by equation (2-6) and K defines the

final state of the model which yields

N-1 2
J = (1/2) E (C M + C Mt + mhT (t) - R(t))

t=O 0

+ (l/2)mh T 2 (N)

which can be written explicitly as

N-1 2
J = (1/2) E (b 1Pf (t) - b 2 (t)Pf(t) + Pr (t)q r(t)

t=0

+ a q~ 2tM + mhT2 (t) + (CM+al))

2 r 2

" (1/2) mh T 2(N).

Converting to state-space representation yields

N-1 2
J = (1/2) E (b 1 u2 (t) - xl(t)u2 (t) + x2 (t)ul(t)t=O

" a 2ul (t) + mx 3 2(t) + (C M+al)

"(l/2)mx 3 2(N)

which can be written in matrix form as
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J = (1/2) E (x (t)Qx(t) + u (tRu(t)
t=o

+ xT (t)Su(t) + C) + (1/2)xT (N) Qx (N)

where x(t) and u(t) are the state and control vectors pre-

variously defined and C = constant scalar (CM+al) with

Q ; 0

0 -0 :1

We now restate the firm's problem as an optimal

control problem (problem D) in which we want to select

a control sequence {u*(t)} such that the function

N-I
J = (1/2) E (x T(t)Qx(t) + u T(t)Ru(t)

t=0

T T+ x (t)Su(t) + C) + (1/2)x (N)Qx(N) (D)

is minimized and the system
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x(t+l) - x(t) = Ax(t) + Bu(t)

is subject to the initial condition

x(t=0) = x(0)

and the final condition

t = N

and the quantity constraint

qr(t) = qf(t) - h T (t).

We can apply the minimum principle we developed

in the previous section to determine an optimal planning

policy for the multi-period model.

Dynamic Optimization

Application of the discrete-time minimum prin-

ciple to our multi-period model yields the following

optimal planning policy:
6

u*(t) = J x*(t) (2-16a)

where

J = (l/2)(DR- D T) 1 R1 D TDR-1 S T-(1/2)R1 ST

-1 T 1- -1 T-(DR DT ) R D C. (2-16b)

6See Appendix B for derivation.



39

This relationship shows that the optimal planning

decisions are a linear function of the current state of

the system. For our model J becomes

J = 1/(2(l+a2b) )

l+2a 2 b I ) / b I 1 -2a 2

thus the optimal planning policy is determined by

u*(t) =1/ (2(+a 2 b1 )) x*(t)
2 1 l+2a2 b ) b b I  1 -2a2

(2-17)

If we assume that the initial inventory/backlog

is zero and ignore the dynamics of our model, we note

that the optimal planning policy becomes

21+2a2b I ) /b 11 -2a

kb 2 -blrq ru*= /(2(l +aa2b1 )) L b1 1 j L ri
u*=l/2(~abb(l:+2a:blf)/bl + Pr]

(2-18)

Expanding equation (2-18) we observe that the

optimal production decision is

q* 1
r 2(l+a2 bl) (b 2 -blPr) (2-18a)
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This result is identical to the classical result obtained

in equation (2-1). We note that the optimal production

decision is linearly related to the demand parameter b2

in a positive manner such that an increase in b2 (which

implies a change in demand schedule) results in an

increase in the production decision. This result is

intuitively appealing since we would expect an increase

in the quantity demanded to result in an increase in the

production decision. The second demand parameter b1

(recall that we have posited a linear demand function of

the form qf = -blPf+b2 ) appears in both the numerator and

denomerator of the optimal production decision. We note

that a perfectly competitive external market requires that

b1 = 0. In this limiting case, the optimal production

decision becomes b2 /2 which represents the upper limit for

optimal production, since an increase in bI reduces the

magnitude of the numerator and increases the magnitude of

the denominator. Thus, as b increases (which implies

that customer demand is becoming more sensitive to pricing

considerations) the production decision becomes more con-

servative. This result captures a conservative aspect of

the model that adjusts the production decision downward

(which results in a hedge against the risk of losses due

to overproduction) as the demand for the product becomes

more volatile.
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Further analysis of the optimal production deci-

sion reveals the expected results with respect to the

production cost components. Increases in the raw

material cost, pr' or the internal variable cost param-

eter, a2 , both result in reductions in production.

Further expansion of equation (2-18) reveals the

optimal pricing decision as

1* L (b -q ) .  (2-18b)

This result is identical to the classical result of equa-

tion (2-2). We observe that demand parameters b2 and b1

appear in the numerator and denominator, respectively.

Thus we observe the same affect on the optimal pricing

decision as was seen for the optimal production decision.

That is, an increase in the demand schedule results in an

increase in the product price whereas a consumer market

that becomes more volatile with respect to pricing con-

siderations, results in a reduction of the price of the

product. These results are intuitively appealing in that

we tend to observe large firms acting in the manner dis-

cussed here. We also note that the dynamic, multi-period

results can be readily reduced to the classical economic

results that the firm should price its product such that

marginal revenue equals marginal cost. The multi-period

analysis under conditions of certainty can be iteratively
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solved as a static problem in each period using the

results of equation (2-18). In fact, if our purpose was

to design a planning model under conditions of certainty,

we could have done so without the use of an optimal con-

trol theory approach. However, we are interested in

developing a control technique which will result in

encouraging decision makers to act in such a manner as

to implement decisions that are in conformance with some

overall corporate plan. For illustrative purposes,

assume that the firm has decided on the following five-

year corporate plan:

Year 1 -Year 2 Year 3 Year 4 Year 5

Production Level 1448 1541 1639 1743 1853

Product Price $35520 $37090 $38733 $40452 $42250

The above plan was actually generated using the

planning model developed in this chapter, conditioned on

a current raw material price of $20750, demand parameters

bI = 0.1 and b2 (current) = 5000, growth rates for 1 and k

of 5 percent and 3 percent respectively and a penalty,

7
m = $10000. The actual planning process that management

uses to arrive at the desired targets is not crucial to

this discussion. The essential problem we are interested

in is, "Given the planning objectives, can we derive a

7See Appendix C for computation of plan.
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control technique which will result in decentralized

decisions that result in conformance to the overall

corporate plan?"

In this chapter we have developed a model for

centralized decision making. In the next chapter we

extend the model to incorporate decentralized decision

making and develop a control technique that will encourage

decentralized decision makers to implement actions that

are not only in their best interests, but also in the best

interest of the firm overall.



CHAPTER III

DECENTRALIZED CONTROL MODEL

Introduction

In Chapter II we developed an optimal planning

model for a firm that operates in a deterministic cen-

tralized decision-making environment. In this chapter we

will develop a control technique that will encourage

decision makers to achieve the planning objectives which

the firm has established. This control technique will

then be applied to a decentralized extension of the model

developed in the last chapter. The control technique will

be evaluated with respect to its ability to encourage

decentralized decision makers to act in a manner that is

in the best interest of the firm as a whole.

Control Technique

In this section we discuss a control technique

that has been used in the design of physical systems as a

result of the application of optimal control theory to a

linear dynamic system with a quadratic performance index

used as the instrument to measure the desired performance

of the system. The control technique is also applicable

to stochastic systems (as we shall discuss later) and is

44
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commonly referred to as the Linear-Quadratic-Gaussian
8

(LQG) problem. A discrete version of the control philos-

ophy inherent in the LQG problem with emphasis on eco-

nomic system analysis was presented in 1972 (Athans:1972).

Since that time economists have applied the control

approach to numerous problems concerned with the stabili-

9
zation and control of economic systems. The basic con-

trol mechanism is a performance index intended to encour-
10

age conformance with some predetermined nominal plan.

Kornai and Simonovits (1977) have addressed this control

philosophy by defining a real sphere and a control sphere

where the real sphere consists of the dynamic model and

its desired objectives and the control sphere involves a

penalty function used to measure the performance of the

system. The essential idea of the control technique is

to define a penalty function, quadratic in form, that will

punish deviations from a desired plan. The quadratic form

results in small penalties for small deviations and

8For a comprehensive survey of engineering appli-
cations, see the Special Issue of IEEE Transactions on
Automatic Control (Athans:1971).

9For a survey of economic applications, see
Kendrick (1976).

10 As a historical point, it is interesting to note
that the basic concept of LQG control was initially intro-
duced in an industrial setting by Holt, et al. in 1960.

~q
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increasingly higher penalties for more significant

deviations. In the next section we will develop a con-

trol model for decision-making using the LQG approach

(with the exception that our model does not yet explicitly

incorporate uncertainty considerations).

Control Model

We expressed the dynamic model of the central-

ized firm as:

b2 (t+l) - b 2 (t) 1 b2 (t)

Pr(t+l) - r (t) = k pr(t)

hT(t+l) - hT(t) = -b2 (t) + blpf(t) + q r(t)

subject to the constraint

qr(t) = qf(t) - hT(t)

and developed an optimal control problem in which we

wanted to select a decision policy, {u*(t)} , such that

the function

N-1
J = (1/2) E (x'(t)Qx(t) + u'(t) Ru(t)

t=o

+ x' (t)Su(t) + C) + (i/2)x' (N)Qx(N)

was minimized subject to the dynamic model of the firm

and the static constraint.
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Application of the discrete minimum principle

resulted in an optimal policy for the firm (Eqn. 2-18).

This policy was used to generate sample corporate targets

for production levels and product pricing. We extend our

model to introduce the concept of separation of ownership

and managerial decision making by defining a predetermined

plan specified by the owner of the firm. We assume that

the (centralized) decision maker attempts to achieve the

owner's objectives due to an agreed upon incentive

arrangement based on penalizing the decision maker for

deviations from the owner's plan. This concept can be

formulated as a control problem by defining a penalty

function of the form:

N-1

~Jc (1/2) Z ( (x t) -x(t)) ' Q (x (tl-xit) )

~t=O

+ (u (t) -u (t) )'R c(u (t) -u Mt) )

+ I/2(x(N)-x(N)) c (x(N)-x(N)) (3-1)

where the planning objectives, x(t) and u(t), are incorpo-

rated into the penalty function and the matrices, Qc and

RC, are used to "weight" the relative importance of both

state deviations and control/decision deviations (note

that these are not the same Q and R matrices defined

earlier). This penalty function must be minimized

subject to the actual dynamic model of the firm developed

"Nho
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earlier; i.e.,

x(t+l) - x(t) = A x(t) + B u(t) (E)

where

X = X2  =Pr

3E] I

U q r

u2 Pf

A 0 k 0 B 0=

1 0 0 1b

The solution to this problem can be obtained

using the discrete minimum principle in the same manner

as was done in Appendix B. The resulting optimal control

policy for the decision maker to follow is

u*(t) = -(R c+B'K(t+I)B)- 1B'K(t+l) ((I+A)x*(t)

+ Bu(t)) + u(t) (3-2)

K(t) = Qc + (I+A) (K(t+l)-K(t+l)

B(R c+B'K(t+1) IB'K(t+l))(I+A) (3-3)

------------------
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K(N) = Q c (3-4)

The selection of the weighting matrices in the

quadratic criterion is not a simple matter. These

matrices provide a mechanism to operationalize the tech-

nique by which the owner provides an incentive arrangement

based on his preferences. It should be noted that in

this control model, the goals x(t) and u(t) need not be

dependent upon each other, nor do they have to be

-generated using the dynamic system (E). Furthermore, the

static constraint was not considered in the development

of the control model. We will have more to say concern-

Iing the incentive arrangement (weighting matrices) when

we extend our model to a decentralized environment. In

most practical applications we will select Qc and Rc to

be diagonal. In this manner specific components of the

state deviations and control deviations can be weighted

individually and their impact can be assessed quantita-

tively.

As a check on our model we use the plan developed

in Chapter II and (somewhat arbitrarily) set

Qc 0 0 Rc01
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This incentive arrangement weights the deviations from

quantity differential, price and production quantity

equally and assigns a zero weight to the demand param-

eter and the input product price. Since the firm has no

control over these last two variables, we would not

expect to see any incentive arrangement with respect to

the raw material price or the demand parameter, b2 (t).

Using Eqns. (3-2) through (3-4) we find that

u*(t) = u(t). (3-5)

Thus the control model we developed results in

actions by the decision maker which follow the owner's

plan exactly. Although this simple example verifies the

correctness of the control model it does not approximate

reality in that the owner seldom specifies exactly the

quantities of production and the sales price (if this

could be done the role of the decision maker would no

longer be required). Instead, we observe targets in the

form of cost performance (budgets) and revenue performance

(sales quotas). Thus the owner can establish targets

for cost and revenue without the detailed knowledge of

internal performance parameters. The decision maker would

then internalize these goals by defining explicit objec-

tives internal to the firm. For example, if the owner

establishes a revenue target of r(t), the decision maker,

- /
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having full knowledge of the firm's operations, will

internalize the goal of pf(t)qf(t) = r(t) and thereby

establish an internal target pf(t). In this way the con-

trol model can be generalized to allow the owner to estab-

lish incentive mechanisms for targets which he desires

the decision maker to achieve and the decision maker

(through the model dynamics and knowledge of the inter-

relationships internal to the firm) will internalize

those targets by defining explicit internal objectives.

Decentralized Model of the Firm

Figure 3.1 extends the earlier framework (Figure

2.1) to address a decentralized organization.

SHeadquarters

1 I

qr Division qrP.qM Division qfpfP M

Fig. 3.1. Decentralized Model of the Firm

This framework incorporates two significant extensions of

the earlier model. First, an amount qM is transferred

from Division P to Division M for which Division M pays

Division P an amount PT' the transfer price. Second,

Division P has the decentralized authority to make the

---------------------------------....
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production decision, q and the transfer pricing deci-

sion, PT" The manager of Division M, in turn, has the

decentralized authority to decide on the amount of the

transferred good, qM' he will purchase and the external

product pricing decision, pf. Recent literature on trans-

fer pricing (see Chapter I) has essentially advocated

some form of negotiation scheme involving an iterative

process which may, or may not, involve corporate head-

quarters. However, these analyses have primarily dealt

with a deterministic, static environment. The dynamic,

multi-period analysis we are investigating will tend to

minimize any "gaming" strategies during a negotiation

process since there is ample time for future "settling

up." Since any iterative process is, by definition, time-

consuming we wish to investigate the possibility of estab-

lishing some incentive scheme that will encourage the

decentralized decision makers to arrive at decisions that

are in the best interest of the firm overall without

requiring a time-consuming process. A significant premise

of this dissertation is that the decentralized decision

makers can be provided incentives such that it is in their

best interest to work as a team to achieve the overall

corporate goals. The team approach was introducted by

Marschak and Radner (1972). The team concept essentially

suggests that functional behavior in a large decentralized

.........
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organization dominates any dysfunctional behavior, such

that inherent game-theoretic organizational traits can be

disregarded for analytic purposes.

Our decentralized model also assumes that the

intermediate market, i.e., the internal transfer of goods,

is restricted to one buyer (Division M) and one seller

(Division P) and can thus be considered as a bilateral

monopoly. The familiar Edgeworth Box analysis of this

situation dictates that a mutually satisfactory solution

will lie along a contract curve reached as a result of

mutual benefit to both the buyer and the seller. Although

this form of equilibrium (referred to as Pareto optimal-

ity) can be achieved in principle, it is not apparent that

a Pareto optimal solution would be in the best interests

of the firm as a whole. It is well known that the classi-

cal economic solution for this situation is indeterminate

without the addition of negotiation or an incentive scheme.

Dopuch and Drake (1964) have shown that other market

situations readily lead to optimal solutions which dic-

tate the use of the prevailing market price if the inter-

mediate market is perfectly competitive or the use of

Hirshleifer's procedure (Hirschleifer:1956) if the compe-

tition is imperfect.

Our decentralized model generates a dynamic system

in which several decision maker's actions will jointly
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affect the dynamic behavior of the system. The decision

makers will base their actions on partial and (in the

sequel) imperfect information on the various states of the

dynamic system on each other's actions. In a decentral-

ized environment we envision the production manager to

have access to current information that is not available

to the marketing manager, internal production cost infor-

mation, for example. Similarly, we would expect that the

marketing manager has access to current market information

not available to the production manager. Thus, the infor-

mation necessary to make "optimal" decisions is decen-

tralized and is not available in any one place. This

situation represents a radical departure from Walrasian

systems in which all the necessary information is assumed

to be available to the auctioneer or to the central agency

(headquarters). Since all of the needed information is

not available in any one place, the control of a decen-

tralized organization is more difficult than for a cen-

tralized organization. A decentralized information pat-

tern implies certain structural restrictions on control

policies. This lack of centralized information requires

a degree of cooperation among decision makers so that

their actions can be coordinated to work together to con-

trol the decentralized dynamic system. Thus the problem

of controlling a decentralized organization involves team
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decision making which is a special case of the theory of

teams (Aoki:1976).

The dynamic model of the decentralized firm can

be expressed as

Pr (t+l) = (l+k)p r(t)

b 2 (t+l) = (l+l)b 2 (t) (F)

hTM(t+l) = hTM(t) + qM(t) - qf(t)

= hTM(t) + qM(t) + blPf(t) - b 2 (t)

hTp(t+l) = hTp(t) + qr(t) - qM(t)

where hTM(t) and hTp(t) represent the difference between

the quantity of goods "produced" and the quantity sold

for the marketing and production divisions, respectively.

1i The dynamics of the decentralized model become more com-

plex than that of a centralized firm due to the addition

of an additional dynamic equation (due to quantity differ-

entials). Furthermore, decisions are now made by differ-

ent decision makers; i.e., Division P has control of qr(t)

and pT(t) whereas Division M has control of decisions

qM(t) and pf(t).

As discussed earlier, this model does not have a

determinate optimal economic solution. To determine the

explicit impact of transfer pricing policy on the decen-

tralized decision maker's actions, we modify the model to

*. f.*i - . -
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enable us to evaluate the implications of transfer pricing

policy by describing the transfer price, pT' as an addi-

tional state variable as opposed to a decentralized deci-

sion variable. This modification results in the follow-

ing decentralized decision-making model:

(t+l) - Pr (t) = kp (t)PI
PT(t+l) - PT(t) = OPT(t)

b2 (t+l) - b 2 (t) ib 2 (t) (G)

hTMft+l) - hTM(t) = qM(t) + blPf(t) - b2 (t)

hTp(t+l) - hTp(t) = ql(t) - qM(t).

The interpretation of this model is that the

transfer price, pT(t), is no longer controllable by a

decentralized decision maker but has been established by

the corporate headquarters. In this manner, the effect

of exogenous transfer price changes can be evaluated with

respect to their impact on decentralized decision making.

In addition, we have not burdened this model, (G), with

any of the many possible constraints that could enter

into an internal action because we wish to minimize any

informational requirements inherent in the model and allow

as much flexibility as possible for decentralized deci-

sion making. The decentralized decision-making model

can be represented as
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2
x(t+l) - x(t) Ax(t) + E B u0 (H)i~l 1 1

where

X2 PTX x2 3 T b2u1 [r] u 2 u 212 q M

x= x hulL- r];u2= j=

4 hTM

5 hTP

'1k 0 0 0 00

0 8 0 
0 0 0

A 0 0 0 0 0 0

0 0 -1 00 0 l b1

0 0 0 00 1 -10

In this model the decentralized decision making

is represented by u1 (t) - the production division deci-

sions, and u2 (t) - the marketing division decisions.

Information Structure

The decentralized aspects of information avail-

ability will be operationalized by defining an informa-

tion structure, I(t), where j = 1,2 for the representa-

tive decision makers and
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Ij(t) = yj (t), Y (t-l) ,u(t-l)

where yj(t) represents the current information available

to decision maker j and Y(t-l), u(t-l) represent the past

history of the organization; that is Y(t-l) = {y(l),y(2),

...,y(t-l)} and u(t-l) = {u(l),u(2),...,u(t-l)}. This

information structure is referred to as one-step delay

sharing information structure in the information and con-

trol theory literature (Witsenhausen:1971). Thus each

division has access to some subset of the current state

information and is aware of prior states and decisions.
This situation closely models the physical environment

where a decentralized divisional decision maker would be

aware of past actions taken by decision makers he inter-

acts with and also has access to some current information

concerning the state of the organization. This current

information yj(t) can be expressed as

yj(t) = Hj (t) x(t).I

The information matrix, Hj(t), is used to explicitly

recognize the extent to which information is decentral-

ized. In the prior centralized model we did not recognize

an observation state, y(t), due to the implicit assumption

that all information needed was available. A similar

situation, i.e., perfect information completely available,

would result if Hi(t) is set equal to the identity matrix.

)|
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This results in a situation where the information struc-

ture is completely centralized.

Decentralized Control

Since classical stochastic control is restricted

to a single decision maker, the need for a borader theory

to address decentralized control problems is apparent.

The current state of decentralized control theory is in

its infancy (Athans:1978). A brief summary of the

evolution of decentralized control theory was discussed

by Basar (1978) as:

The first decentralized result . .. has been
obtained by Radner (1962) who has shown among other
things that a static LQG team problem admits a unique
team-optimal solution linear in the observation of
each decision maker. This result, however, is to be
interpreted with caution when the information struc-
ture is dynamic and nonclassical. The famous counter-
example of Witsenhausen (1968) is indicative of this
fact, that the team-optimal solution of a dynamic
2-member team problem with 2-step delay information
will in general not be linear. Ho and Chu (1972),
Chu (1972), and Chu and Ho (1971) have studied non-
classical but nested information structures and have
applied within that context Radner's above cited
result to dynamic LQG problems. The first systematic
formulation of decentralized stochastic team problems
within a general framework has been given by Wit-
senhausen (1971) where he has made several important
assertions. One of these assertions was team-
optimality of linear solutions in the optimization of
dynamic LQG team problems under the one-step delay
information sharing pattern. This assertion was then
considered almost independently byKurtaran and Sivan(1974), Sandell and Athans (1974), and Yoshikawa

(1975) where the authors adopted a dynamic programming

'1 See this issue for a review of the current
state of decentralized control theory.
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approach to derive a set of relations for the linear

solution of a 2-member LQG team problem to satisfy.

We noted that the decentralized decision-making

model we developed involved a one-step delayed informa-

tion pattern. The information structure is dynamic in

the sense that current decisions are influenced by deci-

sions made by other decision makers. If an information

structure depends only on the state observations then it

is referred to as static in so much as the decisions of

one member are not affected by the decisions of another

decision maker. Yoshikawa (1975) has shown that the

one-step delay information sharing structure constitutes

a dynamic problem that can be decomposed into N static

team problems by applying the technique of dynamic pro-

gramming.

At this point in the development of our model for

decentralized decision making, a cursory review of its

evolution reveals that we now have a decentralized model

for decision making under conditions of certainty. How-

ever, the concept of decentralization implies that uncer-

tainty exists with repsect to the information availabil-

ity since a world of certainty allows centralized decision

making. In fact, further analysis of the model, as it

now exists, would reveal that it trivially reduces to a

situation with a fully centralized information structure.
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Thus, we must extend the model to address the problem of

d :centralized decision making under conditions of uncer-

tainty to facilitate any further meaningful analysis.

11
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CHAPTER IV

DECENTRALIZED DECISION MAKING UNDER

CONDITIONS OF UNCERTAINTY

Introduction

In this chapter we extend our control model to

allow for the uncertainty that exists in a decentralized

decision-making environment. We then derive an optimal

decentralized control policy and apply the results to our

specific model to provide a mechanism to discuss informa-

Ation availability and evaluate transfer pricing policy.

Model Uncertainty

Our decentralized model of the firm is a mathe-

matical model of a physical process. The model is an

approximation which neglects second-order effects. How-

ever, if the model itself was exact structurally, the

values of the parameters used in the model would be esti-

mates and may be slightly different from their true

values. This uncertainty can be considered in our model

by explicitly considering the stochastic nature of the

firm. We incorporate uncertainty into our model as a

zero-mean disturbance with a known variance. We

62
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represent model uncertainty by the stochastic random

variable, w(t), where

Etw(t)} 0

E{w(t)w' (t)} = W(t).

Thus w(t) is an n-dimensional vector used to incorporate

uncertainty into our model. For example, when we assumed

the following structural relationship,

Pr(t+l) = (l+k)P r(t), (4-1)

we did not admit the presence of any system uncertainty.

In actuality, we do not have the ability to discern equa-

tion (4-1) precisely. We would be more accurate in

writing a relationship of the form

P (t+l) = (l+k)p(t) + w (t). (4-2)rr r

where w (t) is defined above. In this manner we allowr

for model uncertainties that may exist in the structural

equations. The stochastic model of the decentralized

firm becomes (from eqn. (H)) and the inclusion of model

uncertainty

2 +x(t+l) = (I+A)x(t) + Biui(t) + w(t) (4-3)
i=l11
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wherew(t) represents the uncertainty associated with th6"

dynamic changes of the state of the firm.

In addition to the model uncertainty, we also

recognize the lack of precision inherent in the avail-

able current information. We realize that data are fre-

quently used which may be imperfect due to cost or timing

considerations. The decision maker must frequently base

his decisions not only on incomplete information (decen-

tralized concept) but also on imperfect information that

is currently available. This uncertainty can be incorpo-

rated into the observation portion of our model in a man-

ner similar to the acknowledgement of system uncertainty.

We define the random variable, v(t), where E{v(t)} = 0,

E{v(t)v'(t)} = V(t). Then equation (I) can be written as

(t) =1 j(t) x(t) + vj~) (4-4)

The complete stochastic model of the decentral-

ized firm can be represented by equations (4-3) and (4-4).

The state-space representation of the model of the firm

allows us to explicitly recognize uncertainty in a dynamic

environment not only with respect to the structural model

but also with respect to the information currently avail-

able to the decentralized decision makers.
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Decentralized Team Performance Criteria

We stated earlier that a major premise of this

study is that an organization can be considered as a team

and that incentive arrangements can be made to induce

team behavior. In an organization consisting of many

members with different information and decision possibili-

ties, it is possible that some organizational objectives

may not be consistent with the individual member's objec-

tives. The theory of teams analyzes organizational deci-

sion making where different members' decisions may depend

on different information, but a common goal exists.

Therefore, in standard team problems, there is no incen-

tive problem since there is no conflict of interest.

However, Groves (1973) has shown that there exists a sys-

tem of compensation rules, or incentives, that will induce

members of an organization to behave as a team. Groves

notes that the head of an organization has some latitude

in selecting the rules for compensating his managers and

it is desirable for him to select rules, if they exist,

that will induce his managers to behave as if they were

members of a team. He terms any set of compensation

rules an incentive structure and views the role of the

organization's head as finding an optimal incentive struc-

ture that will induce the managers to behave as if they

formed a team. Groves' results apply to what he terms a
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conglomerate organization which consists of a large firm

with many plants independently producing and marketing

a wide variety of products. The plants are linked only

through the coordinating decision of the headquarters.

Although Groves' definition of a conglomerate does not

seem to address the internal transfer environment postu-

lated in our model, we note that the derivation in the

next section of this chapter considers the dynamic team

problem (internal transfer) as a series of static team

problems (conglomerates). Therefore, Groves' analysis

is applicable to our model with the restrictions we

impose in the derivation of the optimal decentralized

control model. It should be noted that our model excludes

incentive schemes that are based on accounting measures

which are affected by the choice of the transfer price.

We do not address the issue of conflicting objectives

which is the central problem of transfer pricing in a

nonteam environment. Thus our assumption that ince tive

arrangements can be made to induce team behav - ,'0..ars

to be reasonable in view of Groves' work. The control

technique that we introduced earlier can be extended to

decentralized decision making. For the special case

of two decision makers, eq. (3-1) can be restated as
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J = E(X(N+I)-x(N+l))'Q(N+I)(X(N+I)-X(N+))

N+ Z ( (X(t) -x (t))'Q(t) (x (t)-x(t))
t=l

+ (ul1t)-u(t))'Rl(t) 1u(t)-ul(t))

+ (u2 (t)-u 2 (t)) 'R2(t)(u 2 (t)-u 2 (t))) (4-5)

where J is the expected cost to the organization result-

ing from deviations between actual performance and planned

performance. As before, individual decision makers are

punished/rewarded according to deviations from targets

for which they are held accountable. It should be noted

that the "punishment" concept can be, and in most cases,

would be transformed to a reward system to allow for

behavioral implications. Although the concept of reward

versus punishment is a moot point from an analytic per-

spective, the ultimate success of the actual control tech-

nique could be affected in large measure by the manner in

which it is presented to the team members.

Derivation of Optimal Team

Decision Policy

The formulation presented here is based on a com-

bination of the results for the linear quadratic Gaussian

problem assuming a one-step, delayed, information sharing

pattern and Radner's static team problem with quadratic

cost criterion. The theoretical approach closely follows
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that taken by Speyer and Krainak (1979). A dynamic pro-

gramming algorithm is applied starting at the terminal

stage and proceeding backwards in time. At each stage

the cost-to-go is determined, conditioned on the past

centralized information assumed available to all decision

makers. Minimizing this cost to go is essentially a

static team problem where each decision maker is to make

a decision based upon his present information (which only

he has) and the past information shared by all the team

members. The success of this procedure relies heavily

on the ability to reproduce the quadratic cost functional

form for the cost-to-go at each stage.

In dynamic programming the procedure is to start

at the terminal stage and develop a recursion relation-

ship operating backwards in time. The cost can be written

as a sequence of nested conditional expectations as

J E{E{(x 1 -x 1 )T Ql(x 1 -x l ) + (ul-ul)TRI(ul-Ul)

+E ...+....E{(xN+l -xN+l) QN+l

(xN+l-xN+l)/IN+l} . }/I 1 } (4-6)

The notation E{(.VIi} denotes the expectation operation

conditioned on Ii. The ne..ting of expectation is done

with respect to the shared information pattern and does

not include the decentralized portion. In this



69

derivation we denote the time period as a subscript for

clarity of presentation.

Define the cost-to-go function as the cost to

go to the final stage from stage i given Ii denoted as

- T -- T
J(Ii) =E{E{(xi-xi) Qi(xi-xi) + (u.-u.) Ri(uiui)

...... (XN+l xN+l) QN+l

(x N+-XN+l I/ N+l / . . • i  (4-7)

where it is assumed that an admissible control policy

sequence has occurred up to stage i-l. A recursion

formula for J(Ii) for all ic[l,N] is obtained directly

from (4-6) and (4-7) as

J(Ii) E{(xi-xi) TQi(xi-xi) + (ui-ui) TRi

(ui-u i ) + J(I i+l)/I i }  (4-8)

This recursion formula plays a central role in the develop-

ment of the one-step delayed information sharing pattern.

Determination of Cost-to-Go
at Final Stage

From (4-7) the cost-to-go at state N+1 is

J(IN) = E{(xN+l- xN+ I ) T QN+ I (xN+l-xN+1)/IM+l } .

(4-9)
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The expectation can be explicitly determined because the

conditional probability density function of XN+ 1 given

IN+ 1 is normal with mean xN+i/N and covariance PN+l/N;

i.e.,

P(XN+I/IN+ I) N(XN+I/NPN+l/N) (4-10)

where xi+/i is the conditional mean of the state at stage

i+l given the measurement history and Pi+/i is the error

covariance in estimating the state at i+l based on the

measurement history up to i. From Kalman filtering

theory, the conditional mean x is propagated sequen-

tially by the update formula

4 A A

i+l/i A ixi/i +1 1 (4-11)

where

Si/i= xi/i-l + ki i

and the zero mean white noise process vi is called the

innovations process and is

vi Yi - Yi (4-12)

where

Yi = Hix i/i-1
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is the estimate of the measurement yi. The variance of

Ff\vi\. T H.iPijH HT + V. A.

The Kalman gain k. is defined as

4i=p/ T -1
k.=p Hi A.

The error variance is defined as

0 i/- = H E(i- xi(i :I)) (x -xlilT

A A- 1 P,_1 /_A T - +Wil
Si-i i1

for cc,venience, define

e x xi/i-1 E{el = 0, E{e ie.T = /-

1 1 1/i-i xi

Thus (4-9) becomes

J(I N = E{(e N+l +CN+l) T Ql(e N+ C )/I

Ef Nl Q+leN+ +cN+1 T N+1 N+

+ 2e ~ N1N+lT QN+leNcN+l N+1

TT

trQN+1 N+1/N + xN+1/NN+l QN+1

(x N1/N XN+l)
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-~ T
tr QN+ PN+1/N + N+1/N QN+ IN+1/N

- T - T
- N+1 QN+l xN+l/N + XN+l QN+l xN+I

T I
J(IN+ 1  K KN+1 + N+1/N QN+lxN+1/N 2 N+lxN+I/N

(4-13)

where:

- T -

K trQ P 0 xN+1 = tr QN+1 N+l/N + N+l N+l N+1

- T
z =XN QN+I N+I N+1

Determination of Cost-to-Go From
Stage N to Stage N+I

By using (4-8), the problem of finding the mini-

mum value of J, J*, is obtained recursively by using the

fundamental theorem in Meier, et al. (1971) which states

that

J* = minimum E{J(IN)1 = minimum E{min J(IN))
uiiE 1,N] N u ViEil,N-lJ UN

(4-14)

Note that J(I N  has been used for convenience to denote

J(IN UNIN ) ) j=l,...,k) where uN(I3) for j=l,...,k is now

to be determined by the minimization in (4-14) as

J*(IN) = min E{) (XN-X N T N ) + (UN-UN) TRN(UN-iN
U N(INN) /N (N-N5)

+ J(I'N+l U1'N} (4-15)
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J*(I) = min E{(eN+c) TN (e +c N) + (u -u )T(U-U)
u(I) N N n N NN

N N
A T A

+ K N+i + XN+i QN+IXN+1/N

- 2 ZN+IXN+1/N/IN }

A TA
J*(IN)= min E{tr Q NPN- + xN/N_ 1 QNXN/NI

N(I
N

2xx QNXN/N_ 1 + xN QNXN + uN RNUN
-T T

+ uN UN - NN N KN+i

* T
+ (ANxN/N-I + BNuN + AkkNvN)  QN+I

NN/N-i~ N N kNN Ni
(ANN/NI N N + ANkNvN)

- 2ZN+i(ANxN/N+i + BNUN + ANkNvN)/I N

J*(I min ET T T
N u N )KN N+i +UN RNUN+XN/N-1 (QN+AN QN+iAN)

xN/N 1 + UN 
T (BN T Q N+i B N + RN)uN

- 2 (ZN+ZN+lA N)XN/N 1

2- 2T(RNuN+BNN+ T

T T T T T AN (ROk+ v N+2A
+ N Ak AN QN+IA N kN N +  uN BN QN+IN N/N-i

TTT T T

+ 2 uN TBN TQN NkNVN + 2vN kN AN QN+iNXN/Ni

N2 N TZN+IT/I N (4-16)
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define

KN =K+K +u Ru
N N+i+ N N N

~ T
9N QN+AN QN+IAN

RN : BNTQN+1BN + RN

N :-[NZN+IAN]

d = -[RNU N + TN+

N!N = k NTANT QN+ A N kN

5N = BNTQN+ INNN BT T k

N 0N+iAN

N kN TQN+k

T TAN T
N = -[kNAN ZN+iI

then (4-16) can be written as

T

J*(I N ) = Minimum E{K + xN/N 1 QNXN/NI

uN (IN

+ uNRu + 2ZN/_TT+TZ^

+ uN TN - N + 2uN N -NN/N-

T T T
+ 2uNT)MN + 2vN YN xNN+I + 2vN aN/IN}

(4-17)
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Since XN/N 1 is measureable with respect to the

a-algebra generated by IN' the random vector over which

the expectation conditioned on I is taken, is \N . Note

i i i
that since uN  depends on IN , uN depends explicitly on

the local information vN " The determination of UN ](IN )

is a static decentralized team problem. Before proceeding

to the static team problem, we define 0N as

T T TUN + 2ud+ 2u SSuN N 2 uN =N N -xN/N-l
T T T

. u -N T .. vN + V.N T N + 2 'N T ,,,xN/N -l

" 2v Na (4-18)

Using (4-18), we rewrite (4-17) as

J*(I +T +2Z
N )  -N + xN/N-_ NxN/N-1 + -N N/N+ 1

+ min E{P N/IN .  (4-19)
uN

The static team problem is to minimize J(I
N

with respect to the control function u N(IN ) where IN

is defined as the union of I and v The decision

function can be written as

uNJ(INJ) = UNJ (vNJX N/N .  (4-20)

Radner showed that for a quadratic cost criterion,

this functional form is linear and can be expressed as
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uNJ(INJ) DNJ3 + ) (4-21)
N N N N N/N+1

which satisfies a coupled set of stationary conditions.

To develop the stationary conditions, suppose that

the decision functions of all but one of the team members

are fixed. Then, a one-person minimization is performed

by assuming that the fixed decision functions of the

other team members are at their one-person minimum denoted

as uN (N J). The one-person cost criterion is

E N J(uN )/INjJ E{N(uN N 1 ) , ... ,uN j - 1 ( I N j - 1

u j A + i..l) A

UN, u N (IN *.... uNk(IN)) (4-22)

under proper conditions (Radner:1962), the operations of

expectation and differentiation can be exchanged to give

D(4) J/I j )

E1/ = E f N N 0;
ENI N N N auuN uN

j=l,...,k (4-23)

Equation (4-23) results in the following K stationary

conditions

a T T TA

E{ [uRuN + 2u d + 2u SNX
a N -NL~N N -N N --N N/N-1+ N

+2uNTMNVN/INJ]} = 0; j1I,...,K (4-24)
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Thus, the first-order conditions become

K
E{ (R3 1UN  + SJXN/N +d

(N \N/IN IN-

+M = 0; j=,...,K (4-25)

where

UN j denotes the jth row of U-N

note that

M N = E Mji 1. (4-26)
N N 1= ~N "Nr i=1

Rewriting (4-25) and (4-26) and considering (4-21)

results in

K DN1 ji I/I } + E K Jc1
E{ E '~ N + IN )VN 1 N 1= % CN

1=111

SN N/N-i + d J = 0; j=,...,K (4-27)

to evaluate expectations, recall

p(viJ) ~ N(O,A)~ N(O,H IP i/i_-HijT + i

note that
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1f 1 T Evivj f(i- 1 1^ i/i-i)

IEfv. V.1 = E[[H. 1(x.x

1 i i-i

( .x - ) JT +
1di ii-1 1 1Hjx)

1 IV =v jT H. jT (4-28)

therefore

Fp(vV j) N(0,L) (4-29)

where

L iLj H i PH iT +Vi H iPHjT -L r -- -- ---- ------
Lj1 : Lj HJPH iT I HjPH jT+Vj

and the conditional density is (Jaswinski, p.45:1970);

(4-30)

Using (4-30) we define the following conditional means

E{vN i/v N1 j) vN

(4-31)
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E{vNI/vNJ = LN l j (LJJ) - vNJ

= H P HiT (H iP lHjT + v )-v j

N N/N-IN N N/N-iN N N

(4-32)

Combining (4-27), (4-31), and (4-32) and taking the

expectation explicitly yields

( JJ N + L )v + E (JlD N1 +

1#j

H j-lN j
N IPN/N-l HN A N

K
+ RN 1 CN + sN N + d3 = 0; j,=l...,K

%=1 NN/N-+

(4-33)

since VN is arbitrary

K
D N  + !4 + E D N +DL4 N

1=1

l#j

10

H N H TN/N-N jN = 0; j=I,...,K (4-34)

and

K • •
% CN 1 + Nx N/N-l + -d = 0; j=l,...,K (4-35)

1=1

rewriting (4-35), since %> 0
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C N [ NN/N1 + d] (4-36)

thus,

u N = DNUN + CN (4-37)

where uN is the decision vector for the team as a whole

at time N and DN is the block diagonal matrix formed from

the individual decision maker's innovations process gains

where DN is determined as the unique solution to (4-34)

and CN is given by (4-36). Inserting (4-37) into (4-19)

yields

J*(I T
N) = -N + N/N-l -NXN/N-l +-ZNXN/N- 1

-_ - -

+ 2(DN VN - NxN/Nl - N -dN

2 (D N VN - - I- - _.d)TS

$ (DNvN - NxN/N-I - RN-N) vN
+2(DvN - NSN1 /- -1 l-NTd-

+2(NVN -N - XN/NI - 4-d_) TSNN/_

TT
N-N N + 2v N !NXN/N-l

+ 2vNT aN/IN} (4-38)
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J*I) ^ T +2Z

N3 -N +N/N-i QNN/N-I -2N/N- 1

lvT DT -1 D v TST E-IS %N/N4{N NN -N NNXN/N-1
+ dT R- 1T -i

-NN !_ N + 2d % S N/N-N

T -1 ̂ d 2-T -1d-4NBNR~ S-x/I _ IN
^ T T - I T -1
N/N- 1 -N% N XN/N- -N-1 .- '%N/N-1

+ 2vNTDNT %\N + vN TNN/IN (4-39)

^' T ^ ^

J*(I N ) = KN + X -+ 2Z N/_

+ tr (DNT I-DN + 2-MNTDN + NN)AN

T TTi I' - d TR-1d

N/N-i -4J R -NN1 -N- -N

-2d T -1 -i-2dNTRN SNXN/N_1 (4-40)

define:

K = K + tr (D T RN-ID 2MNTD N
-N NR- DN+ N+N)

AN - dN -d N

T -i
Q- 2N SN

N NT -S Z
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thus we rewrite (4-40) as

J*(I) N - + N/_T6NI - 2Z-NNI- (4-41)

Note that J*(IN) given by (4-41) is functionally similar

to J(IN+ I) given by (4-13).

Determination of Cost-to-Go From
Stage N-I to Final Stage

J*(I = min E{ (XN -_l )TQl(XN l)
UN-1 (IN_1 )Nl N1(N1-N1

+ (U__NI) T RNl(uN_Il _)+J(IN)/INI

(4-42)

J*(I ) N-1 KNI+XNI/N_2 QN-lxN-l/N-2 N-lNN-I/N-2

+ min E{UN_I T ,_IUN_I + 2UN_ITdN_I
1N- 1mT-E{TT

N-I N_-IvN- + 2 UNl SNIXN-l/N-2

T T

+ 2 UNl T - ~ - NiX~~C~/

+ 2 v aN/INI} (4-43)

where

N-l = 1 + KN +  N -l -luN-l

QN-1 = 0N-I + AN- ITONAN-

RNl = RNl + BN-1 QNBNN-1

ZN-1 [ZN-1 + zNAN-1J
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T~ T

N T T- k

N N-iMN~ BN-i QN- QNNk N- i

N-i BN- NA-

a-[ T T- TI aN-i [N-1 ANi ZN

Note that (4-43) is of the same functional form as (4-17)

which indicates that Radner's static team problem must

be solved again for J*(I )which results in
N-1

4 i ~u N-1 DN N N1 + C N-1(-4

where DN-1 is determined by

R~~D~~ + F4i K ( l 1 D 1+- ji i

H 1PII jT A j-1 0;ji.
N-i N-i/N-2 N-1 N-i

(4*--45)

and

CN-1 TN~-i N-i^N-1/N-2 + d N-1 (4-46)
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thus J*(I ) becomes
N--1 =

J*(I N- = KN1 + XN-l/N-2 QN-XN-/N-2

-2 ZN-1 XN-/N-2 (4-47)

where

K =K + tr TDN_
N-1 N-1 - DN-l N-15l- -

-T+
+ 2 M4ND N-1+ N-1)AN-1

N-

* N-i = N-T - N-ISN-i -N-i

- - T-N -i1§-1 %1ZN-1 N-i _~I 5 1-Z

Since J*(IN_1) given by (4-47) is functionally

similar to J*(IN) and J(IN+I), the general recursion

relationships in going from stage i+l to stage i can be

stated by appealing to an induction argument. That is,

the results in going from N+I to N hold in going from

state i+l to i if i replaces N. By induction, the optimal

decentralized control policy using the one-step delayed

information sharing pattern at stage i is
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UK (VKXK(KI) DKK [RK + BKT6K+lBK] - 4

K K,+K1K KK KK K K+1[B K TQK+ A K XK/K I- R K u K  K KTj K+ T  (4-48)

where DK is determined by:

(RK + BKTQK+IBK )JJDK + (BKT6K+AK kK) JJ

K KT B 1  1 A k 1
+ [M K +BKTQK+IBK )lDK + (BK TK+1A K kK)
i=l

H1P HT j-1HK 1K/K-IH K AK } = 0,j=l,...,K (4-49)

and

=QT +A T BQ AK = QK + AKTQK+AK - (BKTQK+AK)

(RK + BKTQK+lBK)- (B K TQK+AK) (4-50)

QN+l = QN+I (4-51)

zK Z K + ZK+AK K(RK K + BKZK+ T T

(R + BKT Q K+B K)- (B KT K+A K ) (4-52)

-z- TZN+1 = ZN+l = XN+l %+l (4-53)

Equations (4-48) - (4-53) represent the generalized opti-

mal control policy for a mean deviation quadratic penalty

function. These control theory results extend prior
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results in the literature for a two-person team to encom-

pass a general n-person team setting. In addition, the

performance measure allows the optimal control law to be

a function of predetermined state and control objectives,

or targets. It should be noted that the unpublished paper

by Speyer and Krainak (1979) has solved a K-person linear

exponential-Gaussian control problem where the controls

are penalized over time and the final state is penalized.

Our general results can now be applied to the two-

member team model of this dissertation. However, we note

that the control theory results represented by eqns.

(4-43) - (4-48) can be applied to problems involving both

time-varying parameters in the system and observation model

in addition to considering time varrying error variance in

both the state and the observations.

Application of General Results to
Two-Person Team

For a two-person team equations (4-48) - (4-53)

can be expressed as

= KUK KK+ EKK/K- 1 + FK (4-54)

where

D = [D1K D2K T
K
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and can be determined as the solution to the following

set of coupled equations:

KT K+IBK 1 +K1 1 1_ I 1T +K1
(BK + RHK D K K/K-i K VK

IT ~ 2 2 2 I
+ B QK+lBK DK HK P K/KHKT

= - lT K+ A K P K H IT (4-55)BK 0 K+1 KK-i K

2T ~ 1 1 1 2T2T2 2

BK QK+IBK D HK PK/K-IHK K+ [BK2TK+IBK2+R2 ]

2 2T 2 - 2T6 ~ 2T
K K K/K-I K K K  K+IAKPK/KK

(4-56)

in addition

E= - K 2 K6B 1  R 2

K K QK+KK+K

B T: K+ lA ]

BK2 K+ A K (4-57)

and
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K K K+lK K K+lK _
= K +B K K QK+BKL -2+ 2T-"

R2U K +BK K + 1Tj (4-58)

The application of equations (4-54) through

(4-58) to the decentralized model of the firm developed

in this dissertation results in further simplifications

due to our assumption of time-invariant parameters and

statistics.

Optimal Control Policy for Decentralized
Model of the Firm

The optimal decision for the Production Division

can be expressed as

Ul(t) = Dl (t)V(t) + El(t)x(t/t-l) + Fl(t) (4-59)

Ul1(t) = Dl1(t)Yl(t) + [El(t) - Dl(t)Hl(t)]

x(t/t-l) + Fl(t) (4-60)

Similarly, the optimal decision policy for the Marketing

Division can be expressed as

u2 (t) = D2 (t)v(t) + E2 (t)x(t/t-l) + Fl(t) (4-61)



89

u2 (t) = D2 (t)y2 (t) + [E2 (t) - D2 (t)H2 (t)]

x(t/t-l) + F2 (t) (4-62)

where D (t) and D2 (t) can be found as the unique solu-

tion to the following set of coupled equations:

[B 1Q(t+1)B1 +R ID (t ) [HI P(t/t-l)H T+V11

+ B1TQ(t+l)B2D2 (t)H2 P(t/t-l)H1 T

4 -BT1 Q(t+l)AP(t/t-l)HiT (4-63)

[B2 T(t+l)BD 1 (t)H1 P(t/t-l) H2 T

+ B2 TQ(t+l)B 2 +R2 ]D 2 (t)

[H 2 P(t/t+l)H 2 T+V 2]

T- T (-4-B 2 Q(t+l)AP(t/t-1)H2  (4-64)

further

E l~ R 1 B 1 T6(t+1)B I B 1 Q(t+1)B 2

2t) B2T6 (t+l) 1 R2+B2 T(t+l)B2

BlT6 t+l )A]

B2T6 (t+l)A (4-65)
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and

T- -1

LF t) ;lI+B ITQ(t+l)B 1 B 1TQ(t+1)B2  -

F B2 Q(t+l)B1  R2 +B2 T6 (t+l)B2

FRu t)+B1TZt+1 T

2u2 It+B 2 T It+l) (4-66)

The theoretical results (eqns. (4-60) and (4-62))

provide us with an intuitively appealing decision process.

We note that the optimal decisions are a weighted average

of the current private information available to the

decision maker plus information based on past actions

and the current targets (or objectives) that have been

established. Therefore, the decision maker considers all

three of these sources to arrive at an optimal decision.

The relative importance of private information versus

historical information versus current objectives is deter-

mined by the system parameters, the observation parameters

and the performance function weighting parameters.

Further analysis of the optimal decision policy

characteristics is limited due to the theoretical nature

of this dissertation. However, certain structural con-

straints currently imposed on the model do not appear to

be atypical of a large number of actual decentralized
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organizations. Additional restrictions are necessary to

evaluate the effect of a change in transfer pricing

policy. Thus, further conclusions reached in this dis-

sertation must be limited to the current model as have

developed and extensions to other models should be per-

formed with caution.

Incentive Arrangement

Incentive arrangements are incorporated into our

model through the performance measure function weighting

matrices, Q, R1 and R2. The specific relationship is

recalled as

J = E (x(N+l)-x(N+l))'Q(N+) (x(N+l)-x(N+l))

N+ E ((x(t)-x(t))'Q(t) (x(t) x(t))
t=l

+ (Ul(t)-ul1(t))'R 1 (Ul(t)-U1 (t))

+ (u2 (t)- 2 (t)) ' R2 (u2 (t)-U 2 (t))) (4-67)

where the objective of the team is to minimize the

expected "cost" function, J. We observe that each vari-

able can be isolated by appropriate definitions of the

weighting matrices. For example, we observe that the

weighting matrix Q can be used to affect the degree to

which the decision makers attempt to achieve predetermined
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values of the state variables where we defined the state

as

xI  r Raw material price

I PT  Transfer price

x(t) =x3 b2  = Demand parameter (4-68)

hTM Marketing inventory

hTP Production inventory

It was noted earlier that the decision makers have

no direct control over the raw material price, the trans-

fer price or the demand parameter and we would not expect

to observe incentive arrangements regarding these vari-

ables. For the current model we would expect an incentive

arrangement to result in a weighting matrix represented

as

0 0 0 0 0

0 0 0 0 0

Q= 0 0 0 0 0 (4-69)

0 0 0 Q1 0

0 0 0 0 Q2

where Q1 and Q2 represent the incentives with regard to

desired levels of inventory/backlog for the marketing

and production divisions respectively. A similar
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observation with respect to the control variables u1

and u2 which we defined as

U = r = production decision

u ql = internal transfer decision (4-70)
u2 = pricing decision

leads us to anticipate the following structural forms:

R = R (4-71)

R2 1  0
R= L (4-72)

where Q1 1 Q2, RII, and R2 2 represent the various incen-.
tive arrangements. It is reasonable to expect that the

state and control variables may not be considered equally

important to the firm as a whole. In addition, differ-

ences in unit measurements would indicate that a per-

centage deviation scheme might be more desirable than an

absolute deviation philosophy. Unfortunately, the theo-

retical nature of this dissertation does not lend itself

to detailed analysis with regard to alternative incentive

arrangements although this particular aspect of the con-

trol model would consistute a significant portion of an
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empirical application of the model. To facilitate fur-

ther analysis in this study, we "weight" the target

variables equally based on absolute deviation; that is,

Q= = = = R . We note that this assump-

tion is not essential to the following analysis but is

made merely as a mathematical convenience.

Information Structure

For illustrative purposes we assume the decen-

tralized information structure is such that the production

division receives current information concerning the raw

material price, the transfer price and its own inventory/

backlog status. Similarly, the marketing division

receives current information concerning the transfer

price and its own inventory/backlog status. This assump-

tion posits a situation that would represent an expected

lower bound on current information availability; i.e.,

we would expect the production decision maker to have

access to current raw material prices, his current inven-

tory position and the current transfer price. We would

also envision the marketing decision maker to have access

to his current inventory position and the current transfer

price as a minimum. This information structure is cap-

tured in the model by defining the following information

matrices:

NA4 -%J.
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11= 0 1 0 0

0 0 0 0 1

(4-73)
0 1 0 0 0

H2 0 0 0 1 0

We note that the production decision maker has current

information concerning raw material prices and production

inventory that is not available to the marketing division,

while the marketing division has current information con-

cerning their inventory position that is not available to

the production decision maker. Further, both decision

makers are aware of the current existing transfer price.

Transfer Pricing Policy Analysis

To facilitate analysis with respect to the impact

of changes in the transfer pricing policy on our decen-

tralized control model of the firm, we have posited an

incentive arrangement and a specific information struc-

ture. We make one additional assumption with regard to

the stochastic nature of the problem and assume that the

stochastic parameters are zero-mean and unity variance

random variables. This assumption does not affect the

generality of the analysis and is made for mathematical
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convenience. We restate eqns. (4-60) and (4-62) for

reference as

ul(t) D D (t)Yl(t) + (El(t)-Dl(t)Hl(t))x(t/t-l)

+ F1 (t) (4-74)

u2 (t) = D2 (t)y2 (t) + (E2 (t)-D 2 (t)H2 (t))x(t/t-l)

+ F2 (t) (4-75)

and note that F (t) and F2 (t) are not dependent on the

transfer price. We can determine the effect of transfer

pricing changes on the optimal decentralized decisions

by an analysis of

D1 (t)yl(t) + (El(t) - Dl(t)Hl(t))x(t/t-l) (4-76)

to determine the impact of a change in the transfer price

on the production decision. Similarly, we will be able

to evaluate the impact of a transfer pricing change on

the pricing decision and the internal exchange decision

by examining

D2 (t)y2 (t) + (E2 (t)-D 2 (t)H2 (t))x(t/t-l). (4-77)

We observe that the only time-varying matrix

involved is 6(t), whose solution is given by the discrete

Riccati eqns. (4-50) and (4-51). To determine the impact

of a change in transfer price on the optimal
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decentralized decision policy we compute u(N) where

Q(N+I) = Q(N+I).

To determine DI (N) and D2 (N) we compute the fol-

lowing matrices:

BiQ(N+I)B + R = 2 10i1
H1 P(N/N-1)HI + V1 =0 2 0

BiQ(N+1)B 2  [-1 0]

H 2P(N/N-1)H~ 0.4

BjQ(N+1)AP(N/N-1)Hi = [0 0 11

F-li
B Q(N+1)B

1 0

L0  0
Hi 1 (N/N-l)H 10 0

B Q(N+I)B2 + R2  L 1b1 (1+b 1
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H2 P(N/N-I)H2 + = L 21

B Q (N+I) AP (N/N-I) H b

Substituting these values into eqs. (4-63) and

(4-64) and solving the resulting set of coupled linear

equations simultaneously results in the explicit solu-

tion of D(N) as follows:

DI(N) = (0 0 -1/41 (4-78)

0 1/6 3 (4-79)D 2 (N) =2
0 -bl/(2 +3

Further algebra and redefinition of constant

terms results in the following:

DI (N) = [0 0 KIJ (4-80)

D2 (N) = (4-81)
0K

El (N)-D I (N)H1 = [0 0 K4 K5  K6 ] (4-82)

E 2 ( N ) - D 2 ( N ) H 2  = (4-83910 K0 KII K 12 2 2 Lo 0 K 1 0  K 1 1 K 1 j (4-83)

&AI
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where Ki; i=1,2,...,12 are known constants.

Combining eqns. (4-76) and (4-80) - (4-83) pro-

vides the information needed to explicitly determine the

impact of the transfer price on the production decision as

T
UI(N)j[O 0 K1 ] [Pr PT hTpI

+ [0 0 K4 K5 K6 ] [Pr PT b2 hTM hTp] (4-84)

We note that the optimal production decision is

not dependent upon the actual transfer price in our

model. Similarly, the marketing division's decision

process is partially represented by rewriting eqn.

(4-77) as

K(N) 0  2  PT + 0  0 K7 K8 K9

02 K 3JhTM 0JL K1 0 K1 1 K12

]T
[Pr PT b2 hTM hTp (4-85)

Again we observe that both the optimal pricing

decision and the optimal internal product transfer deci-

sion are independent of the transfer price. Since the

functional form of the optimal decision rule is repeated

for all periods the analysis regarding the transfer

pricing for period N can be extended for all decision

periods. The implication of the above analysis is that,

under the assumptions inherent in the research model,
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the establishment of transfer pricing policy does not

affect the optimal decentralized team decision making

policy. The transfer pricing decision was removed from

the control of the decentralized decision maker and the

transfer price was assumed to be an exogenous variable

which is generated by a first-order Markov process. Thus,

under the restrictive conditions of the model (i.e., a

team setting coupled with an exogenous transfer price),
we observe that neither decision maker uses information
concerning the transfer price and thus the determination

of the transfer pricing policy is not important with

respect to his optimal actions. Recall that the indi-

vidual decision maker has knowledge of the impact of his

decisions on the firm as a whole. In this setting, the

decision maker would realize that the transfer price is

an internal mechanism for the firm and as such it has no

impact on the overall objectives of the firm in a team

setting. This result holds for both one-period and multi-

period analyses since the dynamic results we have

generated can be easily reduced to a single-period analy-

sis by discarding the time argument. This result can

be anticipated by the realization that the decision

makers are attempting to achieve corporate objectives

which are derived from an overall perspective based on

external market conditions. The internal transfer price
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is merely a means for liquidity transference and should

not affect the performance of the organization as a

whole; that is, the optimal decentralized team decision

making policy is independent of transfer pricing policy

and the determination of an "optimal" transfer pricing

policy should not be based on its effect on the optimal

decentralized decision maker's actions.



CHAPTER V

SUMMARY AND DIRECTIONS FOR FUTURE RESEARCH

Summary

This dissertation has addressed the unique

aspects involved in controlling a decentralized organiza-

tion. We have integrdted the concepts of modern control

theory with the concepts of team theory to develop an

optimal control policy. This policy was then applied to

the conceptual framework developed for the analysis of

decentralized decision making.

The main finding of this study is that the trans-

fer price involved in the interdivisional exchange of

goods or services does not affect the decentralized deci-

sion maker's actions. In a team setting we showed that

the optimal decentralized decision-making policy is not

dependent on the transfer price. If the operation of a

transfer pricing system is costly to the organization as

a whole, our research has shown that, for optimal decision

making in a team setting, transfer pricing may be an

ineffective decision-making tool. In this setting we

would not expect to see a transfer pricing system used

* for decentralized decision making. If a team setting
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exists in a decentralized organization, through some

incentive system, the expenses involved with a transfer

pricing system may be avoided and a resultant increase

in efficiency could be realized. Although this result

does not provide a procedure for determining the "optimal"

transfer pricing policy, it does indicate that transfer

pricing policy decisions should not be based on their

impact on optimal decentralized decision maker's actions.

However, this result was conditioned on two restrictive

assumptions in the dissertation development. The first

of these involved treating the organization as if it is

a team. If this assumption is discarded and the transfer

price becomes a mechanism to improve the position of one

division at the expense of another, then the results of

this dissertation would not be applicable.

The second assumption considered the transfer

price itself as an exogenous variable generated as a

first-order Markov process. The effect of removing the

transfer pricing decision from the control of the decen-

tralized producer of the transferred product was not

investigated in this research study. It is not readily

apparent what impact this assumption would make on

the dissertation findings.
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Directions for Future Research

The focus throughout this dissertation has been a

theoretical one. However, the framework developed pro-

vides a means to evaluate the model empirically. Future

research could branch in at least two complimentary direc-

tions. First, the framework itself can be refined by

extending it to address parameter uncertainty. Second,

empirical research could be performed in an econometric

sense to determine how the model's decisions compare with

actual decisions made by decentralized managers. Further

analysis that considers the transfer price as a decision

variable under the control of a decentralized decision

maker needs to be performed. The results of this analysis

would provide insight to the robustness of the findings

of this dissertation.

An interesting empirical question lies unanswered

concerning the main premise of this dissertation; i.e.,

an organiztion can be considered as a team which implies

that manager/organizational goal conflicts are considered

as higher order effects. In general, there appears to be

a wide field open for research into the application of

modern control theory to practical affairs in real organi-

zations.
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APPENDIX A

STATE-SPACE REPRESENTATION OF

A DYNAMIC SYSTEM 
1 2

The state-space description of a system has been

used exclusively in modern control and systems theory.

Its use derived from the motivation to represent any

physical system by a number of first-order differential/

difference equations that relate an equal number of vari-

ables. If at any given time, the numerical values of

these variables are known, the state of the system is com-

pletely specified, and if future inputs to the system are

also known, the state of the system at any future time is

also specified. Using the state-space approach an n order

difference equation can be described as n first order dif-

ference equations which can be written compactly as

x(t+l) = f(x(t),u(t),t) (A-l)

where x(t) is an n dimensional state vector, f is an n

dimensional vector-valued function and u(t) is an r dimen-

sional control vector (or decision vector).

1 2The material in this appendix is based on
Pindyck (1973).
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The advantage of describing a system by (A-i)

is that it gives us a set of variables that completely

determine the state and future behavior of the system.

If at any time, t=O, the state x(t=O)and all present and

future values of the control u(t) are known, then we

can completely determine the state of the system x(t) for

any future time, t. The time path of the state vector is

called the state trajectory. For a given system this

will be determined by the initial state and the time path

of the control vector (the control trajectory).
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APPENDIX B

DERIVATION OF OPTIMAL CENTRAL PLANNING POLICY

Problem

Minimize:

N-i T T
J = (1/2) E [X (t)QX(t) + U (t)RU(t)

t=o

+ xT(t)SU(T) + C'] + (I/2)XT (N)QX(N) (B-i)

Subject to:

Dynamics

X(t+l) - X(t) = AX(t) + BU(t)

Constraint

CX(t) + DU(t) = 0

Boundary Conditions

X(t=0) = X(0)

tf = N.
f

let:

L(x(t),u(t),t) = (i/2)XT(t)QX(t) + (I/2)UT (t)RU(t)

+ (I/2)X T(t)SU(t) + (I/2)C

K(X(N)) = (I/2)X T(N)QX(N)
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APPENDIX B

DERIVATION OF OPTIMAL CENTRAL PLANNING POLICY

Problem

Minimize:

N-1 TT
J = (1/2) E X (t)QX(t) + u (t)RU(t)

t=o

+ XT(t)SU(T) + C'] + (I/2)XT(N)QX(N) (B-i)

Subject to:

Dynamics

X(t+l) - X(t) = AX(t) + BU(t)

Constraint

CX(t) + DU(t) = 0

Boundary Conditions

X(t=O) = X(O)

tf =N.

let:

L(x(t) ,u(t),t) = (I/2)X T(t)QX(t) + (I/2)UT(t)RU(t)

+ (I/2)X T(t)SU(t) + (1/2)C

K(X(N)) = (I/2)X T(N)QX(N)
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f(x(t) ,u(t),t) = AX + BU

p(x(t),u(t) ,t) = CX + DU

from eq. (2-8)

DH/3Uj 0 = RU*(t) + (I/2 )STX*(t) + BTP*(t+I)

- DTu*(t+l)

thus

u*(t) -R [ (1/2)S T X*(t) + B p*(t+l ) - DTu*(t + l ) ]

'(B-2)

from eq. (2-9)

x*(t+l - x*(t) AX*(t) + BU*(t) (B-3)

from eq. (2-10)

p*(t+l) - p*(t) - QX*(t) - (1/2)SU*(t) - ATp*(t+l)

+ CTu*(t+l) (B-4)

from eq. (2-11)

CX*(t) + DU*(t) = 0 (B-5)

from eq. (2-14)

p*(N) = QX*(N) (B-6)

NOTE (omit * in remainder of derivation)

from (B-5)

DU(t) = -CX(t)
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premultiply both sides of (B-2)

*DU(t) =-DR- [(1/2)5 SX(t) + B Tp(t+1) -D Tu(t+1)]

thus

-CX(t) -DR [(1/2)S X(t) + B p(t+1) -D u(t+1)J

1iT T 1 TTCX(t) =(1/2)DR S X(t) + DR B p(t+i) -DR ~D u(t+1)

rewriting

D-i1DT u~~) [12D- 1T -iT
DR u~+1)= I(1/)DRS -C]X(t) + DR B p(t+1)

alr hs(RNOTE (DR -1D T= scalr thu (D 1 exists)

therefore

u(t+i) = (DR- D T)_ 1 [1/2)DR- S T C]X(t)

.4 + DR_- B Tp(t+i)]

for convenience, define

F = (DR- D T)_ : a scaiar.

thus

u(t+1) = [(1/2)FDR- S T- FCJX(t) + [FDR- B TJp(t+i)

(B-7)

substituting (B-7) into (B-2)

-1 STXt T T 1-u(t) = -R [(1/2)5X) + B p(t+1) - (1/2)FD DR- iSX(t)

+ FD TCX(t) - FD TDR- 1B TP(t+i)J

u(t) =-R- [[(1/2)S T- (i/2)FD TDR- S TJXMt

+(B T- FD TDR- B T p(t+i)] (B-8)
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substituting (B-7) into (B-4)

p(t+l) - p(t) -QX(t) - (1/2)SU(t) - A p(t+l)

+ [ (/2)FC TDR- s - FC TCX(t)

+ FC TDR- B p(t+l)

rewriting

T -1 T - FC TC - QIX(t)
p(t+l) - p(t) = [(1/2)FC DR S

+ [FC TDR-B T _ A T]p(t+I)

+ FC TDR- IB p(t+l) (B-9)

substituting (B-8) into (B-3)

x(t+l) - X(t) = AX(t) - BR - [[(1/2)
S T - (l/2)FD TDR- S

T

+ FDTCJX(t) + [BT - FDTDR-IBT]p(t+l)]

x(t+l) - X(t) = [A - (1/2)BR-1ST + (1/2)FBR-1DTDR-1ST

- FBR- D TCX(t) + [FBR- D TDR- B
T

- BR- BT] ]p(t+l) (B-10)

substituting (B-8) into (B-9)

p(t+l) - p(t) = [(1/2)FCT DR- s - FC Tc - Q]X(t)

+ [FC TDR-1B T _ A Tp(t+i)

+ (1/2)SR [(1 /2)S - (1/2)FD DR S

+ FDT CIX(t) + [BT - FDTDR-1BT]p(t+l)]
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p(t+l) - p(t) = [(1/2)FCT DR- s - FC Tc - Q

+ (1/4)SR- S 
T - (l/4)FSR- D TDR- S

T

+ (1/2)FSR-1 D TC]X(t)

[FC DR B - A + (1/2)SR B

- (I/2)FSR- D TDR- IB T] p(t+l) (B-il)

Thus we have two vector-matrix difference equa-

tions (B-10) and (B-Il) subject to the split boundary con-

ditions: X(t=0) = X(O) and p(N) = QX(N). Such problems

are called two point boundary value problems and, in

general, they are difficult to solve. Notice that equa-

tions (B-10) and (B-I) are coupled since X(t+l) depends

on p(t+l) and p(t+l) depends on X(t). We assume that

these variables are linearly related (this is known as

the sweep method for solving a linear two point boundary

problem).

Thus

o(t) = K(t) X(t) (B-12)

and we will see later that this will result in a unique

solution.

Substituting (B-12) into (B-8)

U(t) = -R - l [ [ ( 1 /2) S T - (l/2)FDTDR-1sT + FDT C]X(t)

+ [BT _ FDTDR-1 B l[K(t+l)X(t+l)]]
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U(t) =[(1/2)FR -1DTDR -1S T (1/2)R- S T FR- D Tcjx(t)

+ [FR- ID TDR- B T- R- B TJK(t+1)X(t+1) (B-13)

substituting (B-12) into (B-10)

X(t+1) - X(t) = [A - (1/2)BRiST + (1/2)FBR- D DR- S

- FBR -1D TCIX(t) + [FBR -1D TDR -1BT

- BR-- B TIK (T+i) X(t+1) (B-14)

rewriting

[I + BR- B TK(t+1) - FBRC1 DT D- 1 BT tl)Xt)

=[I + A - (1/2)BR- S T+ (1/2)FBR- D TDR- ST

-FBR- D TCIX(t) (B-i5)

substituting (B-12) into (B-li)

(RH side)

p(t+1) - p(t) = [(i/2)FC TDR- S T _FC TC-Q+(1/4)SR- ST

-(1/4)FSR -1D TDR- ST

+ (l/2)FSR- D TC]X(t)

+ [PC TDR 1B T _ A T + (1/2)SR 1B T

- (1/2)FSR- D TDR- B T]K(t+i)X(t+1)

(LH side)

[I - FC T DR- 1-iT +AT _(1/2)FSR-1B T

+(i/2)FSR- D TDR- B TIK(t+i)X(t+1) -K(t)X(t)
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= [(1/2)FC TDR- s - FC - Q + (1/4)SR-I ST

- (1/4)FSR- D TDR-IsT + (1/2)FSR-I D TCIX(t) (B-16)

let

E = [I + BR- B TK(t+I) - FBR- D TDR-I B TK(t+l)]

thus

X(t+l) = E- [I + A - (1/2)BR-1ST + (1/2)FBR- D TDR- ST

- FBR-1DT CIX(t) (B-17)

substituting (B-17) into (B-16)

[I - FCT DR-B T + AT - (1/2)SR-IBT

+ (I/2)FSR- D TDR- B TIK(t+I)E- [I + A - (I/2)BR-I ST

+ (1/2)FBR- D TDR- D Tc X(t)

[K(t) + (1/2) FcTDR- s - FC - Q + (1/4)SR- S
T

- (1/4)FSR- D TDR-sT + (1/2)FSR- D TCIX(t)

equating coefficients

(I - FCTDR-IB
T + AT - (1/2)SR-IBT

+ (1/2)FSR-DTDR- B TIK(t+1)E- [I + A - (1/2)BR- ST

-1iT -1iT -iTI
+ (1/2)FBR D DRs - FBR Dc

- K(t) + (I/2)FCT DR- s - FC TC - Q + (1/4)SR- 1sT

- (I/4)FSR- D TDR-IST + (I/2)FSR- D TC
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let

H [ I + A -(1/2) BR- S T+ (1/2) FBR- D TDR-1S T

-FBR- D TCI

le~t

L = -(l/2)FSR- D TC + (1/4)FSR- D TDR 1ST

-(1/4) SR1ST

+ Q + FO C (1/2)FCT DR- S T

thus

K(t) = H TK(t+i)E- H + L (B-18)

from (B-6) and (B-12) we have

p(N) QX(N) = K(N)X(N)

thus

IC(N) =Q (B-19)

We can solve eq. (B-18) backward to find K(t),

t I 1,... ,N.

Substituting (B-i?) into (B-13) yields

U(t)= [(1/2)FR- D TDR- S T (1/2)R- S T- FR- D TCIX(t)

+ [R- DT R- BT -B TIK(t+l)E1lHX(t)

for convenience, define

j=[(i/2)FR- D TDR- S T (1/2)R1S T R1D TC1

M [F-i1T 1iT 1iT
M(D DDR B -R B]I
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thus

U*(t) = JX(t) + MK(t+l)E- Hx(t) (B-20)

recall

E = [I + BR B K(t+1) - FBR D DR- B K(t+1)]

using the matrix identity:

(In + STT) r - S(Ir + TTS) ITT

where S is (nxr), T is (nxr) and r<n

E = [I + B(R-B T 
- FR D TDR- B T)K(t+l)]

let

S = B and TT = (R-B T 
- FR D TDR-I B )K(t+l)

then

E -I = I - B[I + (R-IBT - FRIDT DR-iBT)K(t+)B1
- I

(R-1 B - FR D TDR-1 B )K(t+i)

define

V = B - FD TDR- B 
T

thus

E - = I - B(I + R- VK(t+I)B)- R- VK(t+1)

E - = I - B[R(I + R-1VK(t+1)B)]- VK(t+l)

E = I - B[R + VK(t+I)B]- VK(t+1) (B-21)

MENEM _ ~.. ... F . .. ....I ..: 11 . .. . . . "' " "
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note that we now only need to invert an (rxr) matrix

instead of an (nxn) matrix

substituting (B-21) into (B-18)

K(t) = H K(t+l)[I - B[R + VK(t+1)B] VK(t+1)]H + L

(B-22)

substituting (B-21) into (B-20)

U*(t) = JX(t) + MK(t+I)

(I - B[R + VK(t+I)B]- VK(t+I)HX(t) (B-23)

Equation (B-23) determines the optimal control

in terms of the present state and solutions of the

"Ricatti" equation (B-22). Once the system has been

defined (matrices A and B), the additional constraints

identified (matrices C and D) and the performance measure

determined (matrices Q, R, and S) the optimal decision

can be found as follows:

1. Solve the Riccati equation (B-22) with boun-

dary condition (B-19) backward in time to get K(t) for

t = 1,...,N-1. Store the resulting (nxn) matrices (N of

them).

2. Compute the optimal control U*(O) from equa-

tion (B-23) using the initial conditions X(t=O) = X(O)

and the matrix K(l).

3. Compute the next state using equation (B-3).
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4. Compute the next optimal control using equa-

tion (B-23).

5. Iterate steps (3) and (4) until all U*(t),

t = 0,...,N-1 and all X*(t) t = 1,...,N have been com-

puted.

Application of the above algorithm to the model

developed in Chapter II results in the following

simplifications (since V and M are null matrices in the

model):

K(t) = TK(t+l)H + L (B-22a)

U*(t) JX*(t) (B-23a)

where H, L, and J are defined above.

4

I
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APPENDIX C

OPTIMAL PLANNING POLICY FOR CENTRALIZED FIRM

Period One

RAW MATERIAL PRICE = 20750.000
DEMAND PARAMETER (B2) = 5000.0000

INVENTORY = 0.0000000
PRODUCTION QUANTITY DECISION = 1448.0198
PRODUCT PRICING DECISION = 35519.802

Period Two

RAW MATERIAL PRICE = 21372.500

DEMAND PARAMETER (B2) = 5250.0000
INVENTORY = -2.91038305E-11
PRODUCTION QUANTITY DECISION = 1540.9653

PRODUCT PRICING DECISION = 37090.347

Period Three

RAW MATERIAL PRICE = 22013.675
DEMAND PARAMETER (B2) = 5512.5000
INVENTORY = -5.82076609E-11
PRODUCTION QUANTITY DECISION = 1639.1745
PRODUCT PRICING DECISION = 38733.255

Period Four

RAW MATERIAL PRICE = 22674.085
DEMAND PARAMETER (B2) = 5788.1250
INVENTORY =-2.91038305E-11
PRODUCTION QUANTITY DECISION = 1742.9289
PRODUCT PRICING DECISION = 40451.961

Period Five

RAW MATERIAL PRICE = 23354.308
DEMAND PARAMETER (B2) = 6077.5313
INVENTORY = -2.91038305E-11
PRODUCTION QUANTITY DECISION = 1852.5250
PRODUCT PRICING DECISION = 42250.063
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