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This thesis presents a method for finding the trajectory to

complete an air-to-air missile intercept which maximizes information.
This is accomplished by formulating a parameter optimization problem
and using a penalty function-Lagrange multiplier method to solve for
the optimal path. The performance index is the trace of the informa-
tion matrix. This information matrix is derived using an extended
Kalman filter formulation, in cartesian -~oordinates, which makes state
estimates based only on angle measurements., The trace operation on
the information matrix is used because the trace and the integration
operations commute allowing a scalar performance index. Further, re-
duction in the functional form of the performance index is achieved by
weighing the information matrix by the inverse of the measurement power

spectral density. This also avoids numerical difficulties near inter-

cept.
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SECTION 1

INTRODUCTION

Many of the modern, tactical, air-to-air missiles employ passive
seekers such as infrared heat seekers in their guidance systems. For
particular geometries where the line-of-sight inertial angle is small,
the proportional navigation system, which drives the inertial line-of-
sight angle rate to null, works reasonably well. If the intercept
geometry is more severe, or if the target is accelerating, then obtain-
ing range and range-rate information becomes important, especially to
derive the time-to-go to intercept. Since passive or jammed sensors
may only have angle information, range and range rate can only be ob-
tained by extraction from sophiséicated filter design.

In Reference 1, Sammons et al compare various implementations
of the extended Kalman filter for missile onboard operations. This
filter uses angle measurements to estimate relative position, relative
velocity, and target acceleration. Estimates of range and range rate
are physically obtained by having the inertial line-of-sight angle
constantly changing. However, the proportional navigation guidance
law is always attempting to drive the angle rate to zero. Since these
angles are the only source of information, it seems obvious that, when
the angle rate approaches zero, there will be little or no information

to the filter about range and range rate. The guidance law is working




against the estimator by commanding a flight path which denys informa-
tion to the estimator.

The purpose of this thesis is to find and investigate the opti-
mal trajectorv which completes a missile intercept such that some mea-
sure of information is maximized. 1In this way the filter can make the
most accurate state estimate possible. It is not suggested here that
this be the only measure of performance, but that it be an element in
developing a composite performance criteria.

The particular missile under consideration is a highly-maneuver-
able, short-range, bank-to-turn, air-to-air missile capable of 100 nor-
mal g's. The missile model, that is, the aerodynamics, the autopilot,
the guidance law, etc., is completely developed in Reference 2. The
geometry of the intercept and the missile model are discussed in Sec-
tions II and III.

The measure of information chosen is the information matrix.
Measures on the information matrix imply the relative observability in
estimating the state due to measurement functions alone. This means
that the relative observability of the system is obtained only from
the deterministic system model of the dynamics and measurement. The
information matrix and its use as a performance index is developed in
Section IV.

In Section V, the optimal control problem is formulated. The
parameter optimization method Ls then discussed, and all the con-
straints are derived.

The optimization method used to solve this problem is the pen-

alty function - Lagrange multiplier method discussed by Fletcher in




Reference 3. This is a state-of-the-art method for solving parameter
optimization problems. It is particularly convenient since it requires
very little set up time and can be used with equality constraints and
inequality constraints at the same time. Section VI contains a brief
discussion of this method along with discussions of the function eval-
uations and numerical derivatives,

Finally, the results are presented in Section VII. The various
launch scenarios are described, and some concluding remarks are pre-

sented.




SECTION II

GEOMETRY

This section covers the problem set-up. The various reference
systems and their relationships are discussed, and the launch and in-
tercept geometries are described.

2.1 Inertial Axis System.

The inertial axis system is a standard right-handed system with

the positive Z_ axis pointing toward the center of the earth. The

I
origin is at mean sealevel with the missile launch point lying on the

negative Z_ axis. Because of this, the magnitude of the Z. component

I

of the respective position vector corresponds to the altitude of the

I

missile or target.

2.2 Missile Axis Systems.

There are two axis systems associated with the missile - a wind
axis and a body axis system. These two systems share a common origin,
assumed to be at the missile center of gravity.

The wind axis system is a standard right-handed system with the
Xw axis tangent to the flight path and positive forward. The Zw axis
is perpendicular to the Xw axis, in the plane of symmetry, and positive
down if the missile is in normal, level flight. The Yw axis is situ-

ated perpendicular to the X'w--Zw plane to complete the right-hand sys-

tem. The angular relationship with the inertial system is through




the velocity yaw angle, X, the velocity pitch angle, Y, and the veloc-

ity roll angle, u. This angular relationship is derived in Reference

4 and given by

B id_ _EosYcosx cosYsiny -giny _w _iI 7]
jw sinusinycosX sinpsinysiny sinucosy iy (1)
-cosusiny +cosucosy
kw cosusinycosy cosusinysiny cosucosy kI
+sinpsiny -sinpcosy

The missile body axis system is described by the positive XB
axis directed through the nose of the missile. The ZB axis is perpen-
dicular to the XB axis, in the plane of symmetry, and positive down if
the missile is in normal, level flight. The YB axis is situated to
complete the right-hand system. It is assumed that there is no side-
slip angle; therefore, the body axes and the wind axes are related

only through the angle of attack,a. This relationship is also derived

in Reference 4 and is given by

— - - _ -
iB cosa 0 -sina iw
jB = 0 1 0 jw (2)

k sina 0 coso kw




The missile body axis system is related to the inertial system

through the body yaw angle ¥, and the body pitch angle 6. These two
angles completely define the orientation of the body longitudinal axis
in inertial space, and are used as the control variables in the opti-
mal control problem. The inertial to body angular relationship is de-
rived by successive rotations about the yaw axis and the pitch axis

and is given by

:I.B_1 [~ cosBcosy cosfOsiny ~sinf] | 1. ]

I
jB = ~siny cosy 0 jI (3)
kB sinBcosy sinfsiny cosb kI

The relationship of the missile axis system to the inertial axis sys-
tem is shown in Figure 1.

The angles O and M can be found from the angles Y, 6, ¥, and
Y. Y and 6 are the control angles, and, therefore, known; ¥ and Yy are
part of the state vector, and, therefore, also known. The solution is

found by transforming from the inertial system through the wind axes

to the body axes. If Equations (1) and (2) are rewritten as

s P b At e At i s 2




Figure 1. Missile Axis Systems.




the relationship between the body axes and the inertial axes is given

by

Performing the multiplication leads to

where

=TT

3 271

cosQcosycosy

=ginasinusiny

sinusinycosy

-cosisiny

sinocosycosy

+cosasinusiny

L

costcosyYsiny

-sinacosusinycosy ~-sinocosusinysiny

+sinasinucosy

sinusinysiny

+cosucosy

sinocosysiny

+cosacosusinycosy +cosdcosusinysiny

-cosasinucosy

-cososiny

-sinccosucosy

sinpcosy

-sinasiny

+cosacosucosy

(5

(6)

(7N

b a3 4
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Equations (3) and (5) must be equal transformations, By setting the

components equal, the equations for L and o are found to be

cosOsin(P-x)
sinBcosy-cosbeos(P-x) siny

(8)

tanuy =

tang = (sinBcosy—cosBecos(Y-x) siny) cosutcosBsin(P-x) sinp (9)

cosbBecos (P-y) cosy+sinbsiny

2.3 Target System.

For this problem, the target is simply assumed to be a point
mass with position and velocity components in inertial space.

2.4 Launch Geometry.

Figure 2 shows a view of the launch geometry. At launch, the

missile is assumed to be on the negative Z_ axis with the body axis

I
system parallel to the inertial axis system. The target initial posi-
tion is determined by the initial range and the off-boresight angle,
BAY, from the missile. Target direction is determined by the initial
aspect angle, AAY. This angle is defined to be the angle between the
target velocity vector and the line of sight between the missile and
target. The missile and target are assumed to be co-altitude and co-
velocity at launch.

After launch the inertial axis system remains stationary. The
target remains at the launch altitude, but the missile is free to ma-

neuver in any direction. Figure 3 shows a representation of the in-

tercept geometry. The relative distances between the missile and tar-

get are also shown. The two inertial angular measurements are the
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azimuth az and the elevation el of the target with respect to the mis-

sile. These angles are defined by the relative distances as follows

-1
az = tan (Y_ /X))
a4 ® 2 ok (10)
el = tan (-zR/(xR + YR) ).




SECTION III

MODELS

This section defines the missile model and all of its compo-
nents, the target model, and the standard atmosphere.

3.1 Missile Model.

The missile model used is the three degree of freedom version
of the model derived in Reference 2. Here, the missile is assumed to
be able to instantly assume whatever body angles | and 8 are commanded
by the parameter optimization routine. Since it is the trajectory
that is being optimized, it is assumed that this trajectory can be
commanded perfectly by an autopilot; therefore there is no autopilot.
Contributions made by the control surface deflections, by sideslip,
and by moments of inertia are assumed to be negligible.

The missile launch takes place at t = 0 in accordance with the
geometry in Section 2.4. The missile is not allowed to guide for the
first .4 second, so for this time period the control angles are zero.
At the end of this delay the missile is allowed to assume any position
commanded by the optimization routine.

The differential equations of motion for the missile are as de-

veloped in Reference 4 for flight over a flat earth:

13
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xl = XM = VMcosYcosx
x2 = YM = VMcosYsinx
%X, = Z, = -V siny
3 M M (11)
X, = Uy = (Tcos® - D - WsinY)/m
x = ¥ = -— ’
Xg = Y ((Tsino + L)cosu WcosY)/Vﬁp ?
X = X = (Tsina + L)sinu/(VMpcosY)
j
where
T = f(t)
W= f(t)
m= Wg
D = f(a,V,,2.,)
b (12)

L= f(a,VM,ZM)

Q
[

£0OGY,9,9)
W= £0X,Y,¥,0)

g = acceleration due to gravity, assumed constant.

The functions for a and Y were discussed in Section 2. The models for
thrust, weight, drag and lift remain to be developed.

3.1.1 Thrust and Weight Models. The missile weighs 165 1b at launch.
The propellent (50 1b) burns at an assumed constant mass flow rate for
2.6 seconds. During the burn, the thrust is assumed to be constant,

4711.5 1b. There is no other contribution to weight loss during the

missile's time of flight. The thrust and weight profiles are
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described by the expressions

4711.5 1b 0 £t £2.6 sec
T = (13)
0 2.6< t
: (165 - 19.23t) 1b 0 <t £2.6 sec
}' W= (14)
] 115 1b 2,6< t

; 3.1.2 Aerodynamics Model. The components of the missile aerodynamic

forces along the XB and Z, axes are given by the equations

B
2, 1 .2
FX = -(Cao + Cxaa + Cxaza ) 3 0 Vy S
(15)
F, = ~( +C o) xpvis !
z N N® 7P Vy
: 0, "

where S is the missile reference area. The atmospheric density p is
calculated using a standard atmosphere model.

The aerodynamic coefficients in Equations (15) are found by
table look-up and linear interpolation. The values are listed in
Tables 1 and 2. These tables and the interpolation routines have been
taken directly from Reference 2. Drag and lift are then calculated

from Equations (15) in accordance with Figure 4.

D= Fx cosg - FZ sina

(16)

L - -FZ coso + Fx sina
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Figure 4.

Lift and Drag.
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3.1.3 Seeker Model. The actual seeker and how it works is not model-
ed. However, to simulate the presence of a seeker, a limit is imposed
on the angle between the positive XB axis and the line of sight to the
target. This angle, shown in Figure 5, is called the boresight angle

and is limited to
lQ| < 60°. (17)

This limit represents the maximum angle off boresight that the seeker

can track the target. It is a physical limitation; if the boresight

angle were to become greater than 60°, the seeker would break lock.
The boresight angle is found by using the definition of a dot

product. From Figure 5, it is seen that
|0&| |AT| cosQ=0A * AT (18)

where O represents the missile center of gravity,and A is the seeker
gimbal pivot point. The inertial axis system shown is actually a par-
allel system through the missile c.g. T represents the target posi-
ion.

A unit vector in the direction OA can be defined using the

Euler angles from Equation (3), that is,

0A/|0A| = (iIcosecosw + jIcosesinw - kIsine). (19)




The vector AT is the relative range vector

AT = Xpi; + YR;I +2p Iy (20)

where XR’ YR, and ZR are the relative ranges in the XI, YI’ and ZI

directions respectively (see Figure 3). The boresight angle is then

found to be

XR cosfcosy + YR cosfsiny - ZR sin6
cosf = 3 2 N ' (21)
(X" + Yp + Zp)

3.1.4 Accelerometer Model. The normal acceleration is limited to a

maximum of 100 g's. Missile normal acceleration is modeled by i

a = F, /W (22)

where F, 1s the component of aerodynamic force along the Z_, axis as

Z B
defined in Equations (15), and W is the weight from Equation (14).

The limit, for structural reasons, is

iazg‘ <100 g's (23)
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3.2 Target Model.

The target is considered to be a non-maneuvering, non-acceler-
ating, point mass moving through inertial space. Therefore, the tar-

get model consists of only the three inertial position components

= + V.t

Ky = Xy 4V

Yo=Y, +V, ¢t (24)
0 y

Z.= 2

T Ty

For this problem, the velocity components are as follows:

VT = VT cos(AAY + BAY)
X

Vp = Vp sin(AAY + BAY) (25)
Y

V., =0

T,

where VT is the constant target velocity and AAY and BAY are the ini-

tial aspect angle and off-boresight angle, respectively, as defined in

Section 2.4.

3.3 Atmospheric Model.

The atmospheric model is needed to compute the speed of sound
and the density for a given altitude. This model is a standard, con-
stant gravity atmosphere for the troposphere (0 to 36089 ft) and the

stratosphere (36089 to 82021 ft). 1t is the same model developed in

Reference 2.

k o




SECTION IV

THE INFORMATION MATRIX

In Reference 1, a dynamical system used in an onboard, optimal
filter to estimate relative position, relative velocity, and target
acceleration is presented. 1In order to measure the observability of
the state estimate which can be made from this dynamical system and
measurement function, the information matrix is used. In this section,
the information matrix and measures associated with the information
matrix are developed as the performance criteria for the optimization
problem.

4.1 Definition.

The information matrix is defined by Reference 5 as

t

1(e,e) & [ oT(r,on (VDR 81, 0)ar (26)
t
0

where ¢(1,t) is the state transition matrix used by the filter. H(T)
is the matrix of partial derivatives of the measurement function with
respect to the state variables evaluated on the nominal path, and
V(1) is the measurement noise power spectral density. Each of these
elements will be discussed in this section.

The information matrix is related to the inverse of the error

covariance matrix P_l(t). If it is assumed that there is no process
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noise, for any time period ti to tj’ the information matrix is given

by

| T -1
I(tj,ti) = P (tj) -9 (to,tj) Py ¢(t0,tj) 27)

where P_ is the a priori error covariance (Reference 6). If there is

0
no a priori information, i.e., if P;l = 0,
I ) = ¢ 28
(tj,ti = P _j). (28)

The larger the eigenvalues of the information matrix, the smaller the
eigenvalues of the corresponding error covariance matrix will be, and
the more precise the estimate will be. This is the basis for using
the informatiin matrix as the perform.iace index. The trajectory
which maximizes vhe eigenvaiues of the information matrix is also the
trajectory which gives the most precise estimate.

A scalar is needed for the performance index. The two opera-
tions available are the trace and determinant. The trace is equal to
the sum of the eigenvalues of a matrix; the determinant is equal to
the product of the eigenvalues. Because of its simplifying charac-
teristics, primarily that the trace and integration operations are
interchangeable, the trace of the information matrix has been chosen.
Since this is an optinization problem solved on a finite word length
computer, a constant weighting matrix is included to normalize the
terms in the trace. This weighting matrix does change the eigen-

values, but since it is a constant, the maximizing has the same effect,.




The performance index now becomes
J=trWI (tf,to)

t

=trw [ fo T(r,e DH (R(0))V HDHE(D)) o(t,t ) dr. (29)
t
0

Since the trace and the integral operations are interchangeable and

the weighting matrix is a constant, J can be rewritten as

t

3= [ Fewel(r, eprT@@HIVIOEE(D) 8(T,e )T (30)
t
0

This defines the form of the performance index used for this problem.
The elements of this equation remain to be defined.

4,2 The Dynamical System.

The dynamical system used by the filter (Reference 1) is of the

form

X(t) = F X(t) + G u(t) (31)

z(t) = g(X(t)) + v(t). (32)
The dynamics equation (Equation 31) is linear in rectangular coordi-
nates. X is a nine-state vector of relative position, relative veloc-

ity and target acceleraﬁion given by

P




T X= [ L UR Ve We ap  ag

é where
‘ Xp = Xp(£) = X, .(£) = X, (¢)
YR = YR(t) = YT(t) - YM(t)
zR = ZR(t) = ZT(t) - ZM(t)
| U =0,(t) =V, (t) - V_ (t)
| R R TX MX
; Vv, =V (t) =V (t) -V, (£)
i R R TY MY
| Wp = Wo(t) = Vo (t) -V, (£),
Z Z
|
and a, , 3, , and a are the inertial target acceleration components.
TX TY TZ .

Equation (31) in scalar form is

§ X = U
; g =%
Zy =W
0. =a. -a
RTy My
6 =3 = . (35)
R T, aMY
‘D‘l =a -
R T, aMZ
a. = =\ a
Tx Ty
a. = =k a
T, T,
[ a = <\ a, ,
T, T,

M it




where A is a target acceleration constant. The control, u(t), is
assumed known, and consists of the three missile inertial acceleration

components, aMX, aMY, and ay . From Equation (35) it can be seen that
Z

the matrix F from Equation (31) is

O1I10
] -=-F-F -
F = 01011 (36)
--r-rF-
010 1=X s

and the matrix G is

010 0
—_—p -y -

G = 0 t-I 10 (37)
- —l.- - f -

010 10 R

where each partition is 3x3, I is the identity matrix, and A is a
diagonal matrix of the target acceleration constants.
The measurement equation (Equation (32) ) is nonlinear in rectan-

guidr coordinates. The measurement z is a two-dimensional angle mea-

surement, g(X) is the measurement function, and v(t) is a zero mean,
white noise process associated with the measurement, with power spectral
density V(t). The measurement function consists of the two inertial

angle measurements for azimuth and elevation (see Figure 3)

-1
tan " (Y,/X;)
B(X(£)) = ROR 23 (38)

can‘l(-zR/(xR2 +9H | .




The linearized measurement equation is

8z(t) = H(X(t))dX + v(t), (39)

where H(X(t)) is the partial of g with respect to X evaluated on the

nominal path. The elements of H are

H(X(t)) = 1 (40)

where

(41)




_ 2 2
Raz - Raz(t) (XR + YR ) (42)

Ryp = Ry () =

|
~
>
+
<
+
[
S

as shown in Figure 3.

4.3 The State Transition Matrix.

Because of the simplicity of the matrix F (Equation (36) ),
the state transition matrix has been derived in closed form. The

elements of ¢(t,T) are given by (Reference 1)
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where
¢11(t,r) = ¢22(t,r) = ¢33(t,1) =1
¢44(t,1) = QSS(t,T) = ¢66(t,r) =1
0, (6,0 = 0,0 (6,1) = &, (£,0) = t -1 £ A "
¢77(t,1) = @88(t,r) = ¢99(t,T) = exp(-)1 At)
0, (£, 1) = 0 (e, T) = Beo(r,T) = --§(exp(-x At) -1)

- - = -
¢l7(t,T) = 028(t,1) = ¢39(t,T) = Az(exp(—k At) + At - 1)

and where A is the target acceleration constant (Reference 1).
Since the information matrix requires ®(T,t), the identity for

the inverse of a state transition matrix
-1 ‘
o(t,t) = & “(t,1) (45)
can be used. Hence, the elements of $(T,t) are

¢11(T,t) = ¢22(T,t) = ®33(T,t) =1

¢44(T,t) = QSS(T,t) = ®66(T,t) =1

¢14(T9t) ®25(T’t) = ¢36(T’t) T = t = -At

(46)

Oy7(1st) = 0 (1,t) = 9gq(1,t) = exp(AAt)
P47 (Tot) = 95g(1,8) = ggq(1,t) = -'%(exp(k At) = 1)

017(T5t) = 9y5(1,8) = d44(1,t) =;§gexp(x At) =X At - 1)




4.4 Angle Measurement Noise.

The matrix V(t) is a 2x2 matrix representing the power spectral

density of the angle measurements due to certain target-sensor charac-

teristics, that is,

V.. (t) 0
ve) = | 1
0 V22(t)

Vll(t) = —— + b

47

(]
-+
(=

sz(t) 3

Vll(t) denotes the power spectral density associated with measuring
azimuth and V22(t) denotes the power spectral density associated with
measuring elevation. The term a is a constant associated with the
received signal power noise. The term b represents the uncertainty
in target position, possibly due to atmospheric refraction of the

signal to the sensor and fading. For this problem,

a = .25 rad2 ft2 sec

(48)

b = 56.25 x 10-8 rad2 sec

are typical values for current sensors.




31

V(t) may be simplified by factoring out a, that is,

21 + c 0
v(t) = a Raz 1 (49)
3 + c
0 Rel

where ¢ = b/a.

4.5 Weighting Matrix.

The weighting matrix W is a constant, 9 x 9 diagonal matrix
used to give relative, equal values to the terms in the information

matrix. The off-diagonal terms are all zero, while the diagonal terms

are defined as follows:

>

=w. Bw =2 (50)

>
4

)

rt

wl, wz, and w3 weight the position terms, the velocity terms and the
target acceleration terms, respectively. They have been chosen in an
effort to get the maximum numerical value of each of these terms to be
approximately equal to one. Without this relative weighting, the tar-

get acceleration terms completely dominate the other factors. This

becomes obvious in Section 4.6 where the performance index is




simplified, and the effects of the weights can be seen.

4.6 The Performance Index.

After multiplying out the terms in Equation (30) and performing

the trace operation inside the integral, J becomes

t
J= ] f((<I>11 HH) @), + &y, HH) €, + &5y HHy €3.)W;

22 22
t
+ (8, HH) 01, + @5 HH, 0,5 + &3¢ HHy O50)W,
+ (9, HH) &0 + @0 HH) &0 + 50 HH, 0,0)W,)dT (51)
where ¢ = ¢(T,tf), and where
g2(1) g2
1 2
X X
= HH (T) = ——=. + ——r
1 1 vll(r) sz(r)
2
gl('f) g%(f)
X X,
HH, = HH (1) = ——. + (52)
2 2 Vll(r) VZZ(T)
gi(‘r)
HH, = HH_(T) = X3
3 3 v,, (D
11

The performance index further simplifies to







SECTION V

PROBLEM FORMULATION

This section formulates the problem as an optimal control pro-
blem and presents all of the constraints. The problem is then con-
verted to a parameter optimization problem.

5.1 The Optimal Control Problem.

The objective is to find the control which maximizes the infor-
mation, completes the air-to-air intercept (zero miss distance), and
satisfies all of the dynamical, physical, and aerodynamic constraints,

that is,

Maximize Equation (53) (54)

subject to the terminal constraint of zero miss distance and the sys-
tem model developed in Section 3. The dynamical part of this model

takes the form of differential constraints and is nonlinear in the form

x = £(t,x,u) (55)

where the control u consists of the body angles ¥ and 8.

The initial conditions X, for the differential equations of the

missile are




p— ‘_‘,:.

xl(O) =0
xz(O) =0
x3(0) = -h0
(56)
x4(0) = VMO
x5(0) =0
x6(0) =0 ,

where the values ho and VM are input values for initial altitude and
0
velocity.

The terminal constraint of zero miss distance is formulated as

three equality constraints in the form

v [, -x.) /X, ]
1l T fo fo
Yy (tf,xf) = Wz = (YTf - YMf) / YTf (57)
y 2, -2,) /12
3 Tf Mf Tf
L 1 L 5

where the values of ¥ denote the actual constraint residuals for the
current control. The object is to drive these values to zero. XT’ YT’
and ZT are the target inertial position components. The subscript f
denotes the condition at the final time.

The remaining constraints are due to physical or aerodynamic

limitations and are formulated as inequality comstraints, O(t,x,u)> 0.
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The limitations are

t. < 8 sec

f
Iaz |< 100 g's
B

2| < 60° ' (58)
la| < 20°
ly| < 80°

The final time is limited to no more than 8 seconds in order to ensure
that the missile still has enough velocity to maneuver. The missile
normal acceleration is limited to 100 g's for structural reasons. The
missile seeker has a maximum angle limit of 60° off boresight, hence
the constraint on boresight angle, Maximum angle of attack is 206, as
limited by the aerodynamics tables. The limit on the flight path
angle is included to keep the equations of motion defined. The value
of x (Equations (11) ) becomes infinite at y = 90°. Instead of re-
defining the equations, a state inequality constraint is used to keep
Y away from 90° because, it was felt, the final trajectory would not
require Y above 80°. Until the converged solution is found, these in-
equality constraints may or may not be satisfied.

During the optimization process, the inequality constraints are

evalutated according to their constraint residuals. For the final

time constraint




The remaining inequality constraints could be violated at any time

from to to tf.

integral constraints, that is,

Therefore, the constraint residuals are evaluated as

t
0,= - [ f[min((100 - @), 07)°
) ftol:min 100 |a.MZBt| o] dt

(o]
['}
|

t
[t [min((GO - ey, o_)]2 dt
t

(60)

©
[}
!

t
RN [min(20 - | a(e)), O 2 4t
‘o

©
[}
|

t
[ F[mmc@o - | y®]), 0] % ae .
‘o

The performance index (Equation (54) ) and the integral con-
straints are formulated as differential equations with zero initial
values and evaluated along with the state differential equations.
This augments the state vector (Equation (11) ) by five: X5 for the
performance index, and Xg through X4 for the integral constraint
residuals. The values of the performance index and the integral con-
straint residuals (Equation (60) ) are the values of the augmented

state variables at the final time, that is,

J=x
7f
O, = % 0, = x (61)
2 8f 4 10f
6, = x Q

37 %o, 57 *11, .
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5.2 The Parameter Optimization Method.

The preceding forms an optimal control problem to find the con-
trol u(t) which maximizes the performance index. To solve this, the
problem 1is converted to a parameter optimization problem where the
constraints are handled by penalty functions,

The problem of having a free final time is converted to a fixed,

normalized final time by defining a new independent variable.

T=t / tf (62)
or

t=te T

dt = tf dt. (63)

Thus, the equations of motion become

] d d
=t - f(eTx,w (64)
1 f
or
|
& - gty (65)
: where T = 0, 1, = 1. Final time is now a parameter to be found along

with the control. The control is now a function of T, the new




independent variable.

The continuous control function is approximated by two cubic

splines, one for each control, with unknown parameters, that is,
u = u(a,t) |, (66)

where a is a vector of n unknown parameters
T
a-= [%1 By reeenennn aﬁ]. (67)

For each control function these parameters are the values of the con-
trol at T=0, T =%, T=1, and the slope at each end point. For any
value of a, a cubic spline is fit to the parameters, and the control
can be found for any T between 0 and 1.

The parameters to optimize now are the final time and the para-
meters of the cubic splines which define the control function. They

can be lumped together as one vector of lengthn + 1

b = [}f %]T. (68)

From Equations (65), (66), and (68), it can be seen that Xe = xf(b).
Therefore, since the performance index is a function of Xg and tf, J
can now be written
A
J = ¢(b) (69)
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where ¢(b) = -x_ .
¢

The problem can now be restated as

Minimize J = ¢(b) (70)
subject to

¥(b) = 0

e(p) >0, (71)

where

o
\

T
t, é]

= u(a,T). (72)

(=]
1




SECTION VI

SOLUTION METHOD

This section gives a brief description of the problem solution
method.

6.1 Input.

The input required for this program is initial missile and tar-
get positions and an initial set of parameters, b. The missile and
target are set up as described in Section 2. An initial altitude,
velocity, range, off-boresight angle and aspect angle must be speci-
fied. The control is represented by two cubic splines, one for each
control angle. Each spline function is assumed to have 5 parameters -
the control angles at T = 0, T = %, and at T = 1, and the slope at
each end point. Since te is also a parameter, a total of 11 parame-
ters must be input.

6.2 Optimization Method.

The optimization method used is a penalty function-Lagrange
multiplier method which is completely developed in Reference 3. The

penalty function used is

P(b,8,5) = ¢(b) +3 T(b,8)" S I'(b,8). (73)

Here, b is the n + 1 vector from Equation (69) which contains the

41




parameters to be optimized. TI'(b) is an m vector where m is the total

number of constraints, that is,

c (b) -By , 1 S1fk
T'(b,B) = (74)
min(C,(b) -B,, 0) , k¥l S 1 S m
L i i
where
¢, =%
c =¥
k k
c(b) = (75)
c =90
k+1
Cm = em-K_J

Hence, the first k elements of C(b) are the equality constraint resid-
uals, and elements k+l to m are the inequality constraint residuals.

S is an m x m diagonal weighting matrix with elements 01’ where i goes
from 1 to m. The m vector B is used to allow convergence without the

necessity of forcing S to infinity.

This is an iterative method where each iteration involves mini-
mizing P(b,R,S) for a fixed B and S using a variable-metric method for
unconstrained optimization. After each iteration, B and S are varied
in such a way that the parameters tend to the constrained solution.

The aim is to vary B8 so that, for a constant S, the value of theproduct

P
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B S tends to the vector of Lagrange multipliers for the problem. The

values Gi are only increased in case the rate of convergence of the

corresponding C,(b) to zero is not sufficiently rapid. Convergence is
i

obtained when ICi(b)ife for 154Sm.

i,
The computer subroutine incorporating this method was taken

from the Harwell library and is named VFOlA. To use VFOlA, the user

must supply a routine called VFOlB which evaluates ¢(b), Y¢é(b), C(b),

and VC(b), where

Vo(b) = o2(B) (76)
1
3¢, (b)

CHORE™ "

for 1 i S (n+l) and 1 £ j S m.

6.3 Function Evaluation.

The function evaluation consists of finding the performance
index J = ¢(b), and the constraint violations, C(b). These values
are then used to form Equation (73). Figure 6 is a block diagram
showing the elements of the program which handle the function evalua-
tion. Each block represents a subroutine.

Subroutine SG is called from VFOlB with the current set of
parameters b. SG is the driving routine which sets all the initial

conditions, calls the integrator, and then returns the values of ¢

4
_M“
——
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Input Parameters
b

|

SG SPLINE

RUNGE

DERIV SPLINE

AERO

ATMOS INTRP2

INTRP1

Figure 6. Function Evaluation.

|




and C. SPLINE is called immediately upon entry to SG to evaluate the

coefficients of the cubic spline functions of the control for a fixed
b. The control can then be evalutated explicitly as a function of T.

The integrator RUNGE is a fixed-step, fourth-order Runge-Kutta
method. The system differential equations, the performance index,
and the integral constraints are all integrated simultaneously.

The complete system model is contained in, or called by DERIV.
For every time T, DERIV finds the control by calling SPLINE and evalu-
ates the differential equations. There are 11 differential equations:
6 for the state equations, 1 for the performance index, and 4 for the
integral constraints. The aerodynamics tables required to evaluate
drag and 1ift are contained in AERO. ATMOS, the standard atmosphere
model, must be called to find the Mach number and the atmospheric den-
sity for the instantaneous altitude and velocity. The aerodynamic
tables (Tables 1 and 2) are functions of Mach or of Mach and angle of
attack. The routines used to linearly interpolate the aerodynamic co-
efficient tables are INTRP1 and INTRP2, respectively.

6.4 Numerical Derivatives.

To obtain V¢(b) and VC(b) as required for VFOlA, numerical de-
rivatives are evaluated by the method of central differences. For any
function G(x), the numerical derivative with respect to the kth vari-

able, Xys is found by the formula

6 G(xk + Axk) - G(xk -A x

3xk

K (78)

203,




6.5 Optimization Algorithm.
The algorithm used for constrained, numerical optimization in

VFOlA is stated as follows:

1. Guess b.
2. Set initial values of S,B.
3. Minimize P(b,8,S) with respect to b.
a. Obtain ¢ and C by calling function evaluation routine.
b. Obtain V¢ and VC by calling numerical derivative
routine.
c. Evaluate P(b,B,S) and 3P(b,B,S)/db.
d. Use variable metric method for unconstrained minimiza-
tion.
4, If the final conditions are set to desired accuracy, go
to 6.
5. Vary B, and S if necessary; to to 2.

6. Return to executive program.




SECTION VII

RESULTS

In this section the launch scenarios are described, and the
results are discussed.

7.1 Launch Scenarios.

Three different launch scenarios have been chosen for the com-
putation of optimal information trajectories. Each intercept is ini-
tiated at 10,000 ft altitude with the missile and target co-altitude
and co~speed at .9 Mach. The scenarios differ in the launch range
and aspect angle only, as the boresight angle is zero for all engage-
ments. The engagements are initiated at 3000 ft, 0° aspect; 3000 ft,
30° aspect; and at 7000 ft, 60° aspect. The target for each intercept
is flying straight and level and nonaccelerating.

In order to test the system model and for comparison purposes,
one additional intercept has been run, that of minimum final time.

This is done simply by replacing the performance index with

(80)

Everything else remains the same. The launch for this intercept

occurs at 3000 ft and 30° aspect angle.




7.2 Results and Conclusions.

Since the measurements for the dynamical system are angle mea-
surements only, it is expected that to increase the information the
missile needs to fly a path which keeps these angles changing. The
optimal trajectories found with this method are consistent with this
expectation. During the intercept, the missile "fishtails" and "por-
poises" to the maximum extent possible without violating any con-
straints. The angle rates for the boresight angle and for the mea-
surement angles are kept high during the entire intercept. The bore-
sight angle tries to go from limit to limit.

Figures 8 through 24 present the results in graphical form for
each of the intercept scenarios. The missile launch point is where
XI = 0, YI = 0, and ZI = -10,000 ft. Since nothing can happen for the
first .4 seconds, the plots show only the time period for .4 Xt < te.
The figures are grouped by intercept, each group containing all the
results for each scenario. The first two figures in each group show
the actual intercept and target trajectories projected onto the XI-YI
and the XI-ZI planes respectively. For the horizontal trajectories,
the viewer is above the XI-YI plane looking down; for the vertical

trajectories, the viewer is on the positive Y_ axis side of the XI-Z

I I
plane. The next four figures are for the boresight angle, the bore-
sight angle rate, the azimuth and elevation (measurement) angles, and
the azimuth and elevation angle rates, all plotted versus time.

The next 6 figures (Figures 25 through 30) present the same in-

formation for the minimum time trajectory. These are shown primarily

for comparison with the best information trajectories, but they also

SRS e ST D el e TSI
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demonstrate the validity of the system model and the optimization pro-
cess. The minimum time results are just what you would expect. The
trajectory is an easy, but direct turn onto an intercept path which
approaches a straight line. There is no variation in elevation. An
abrupt, hard turn would induce more drag and, thus, make a longer in-
tercept. For cdntrast, the best information trajectory is also shown
on the minimum time trajectory plots.

Table 3 lists the solved intercept problems by engagements.
Each problem has converged satisfactorily, and the miss distances are
all within 1 foot of the point mass target. The only inequality con-
straint which acts on the converged solution is the maximum boresight
angle. The values of the performance index are also listed, but the
only ones that can be compared are.the ones with the same initial geo-
metry. For the 3000 ft, 30° launch, the performance index for the
maximum information trajectory is much higher than for the minimum
time trajectory, as it should be.

Note the high number of function evaluations and the amount of
computer time required for the best information solutioms. Because of
this, it would be impossible to use this optimization process in an
onboard computer for a guidance scheme. If something like this were
desirable, however, it may be possible to streamline the process in
some way. This is a possible area for further research. For example,
the aerodynamics tables could be replaced by some approximating func-
tion, eliminating the table look-up and interpolation process.

Another possibility is to formulate an empirical formula for

the guidance law which would approximate the best information
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trajectory. The plots for the three intercepts show a definite simi-
larity between the scenarios. On each intercept the missile appears
to be attempting to do the same thing, limited only by its requirement

to complete the intercept. If, after running more trajectories, this

is found to be the case, then an empirical formula might be found.
Another possible area for future research on this project is to
| find out how the trajectories would differ if some information about
; the state is removed. For example, if W3 in Equation (53) is set to
zero, the best information trajectory without target acceleration in-
formation would be found. This is because the target acceleration
terms in the state transition matrix would be blanked out. If, it is
found that the optimal trajectory is satisfactory without the target
acceleration information, then this information would not have to be

; estimated by the onboard filter for the guidance law.
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