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is discussed. The relative power absorption of the five lowest order
waveguide modes is evaluated. Coupling of incident plane waves to
waveguide modes, and radiation by these modes are shown to be related
by reciprocity.

The waveguide termination model for a jet engine assumes an
incident waveguide mode strikes an axially symmetric cone on a flat
plate. The various techniques for evaluating scattering by this
structure are discussed, and the problem is solved for a few cases.

Accession For

.U ('A&I

u :r-nnioqnced E]
I : tif icatioDI . ......

P. X ,s ~ilty Codes
,Aveil and/or

cpec lal

iJ
V t I

A-



80-69D

AFIT RESEARCH ASSESSMENT

The purpose of this questionnaire is to ascertain the value and/or contribution of research
accomplished by students or faculty of the Air Force Institute of Technology (ATC). It would be
greatly appreciated if you would complete the following questionnaire and return it to:

AFIT/NR
Wright-Patterson AFB OH 45433

RESEARCH TITLE: Electromagnetic Scattering by Open Circular Waveguides

AUTHOR: Thomas Wesley Johnson

RESEARCH ASSESSMENT QUESTIONS:

1. Did this research contribute to a current Air Force project?

() a. YES ( ) b. NO

2. Do you believe this research topic is significant enough that it would have been researched
(or contracted) by your organization or another agency if AFIT had not?

() a. YES ( ) b. NO

3. The benefits of AFIT research can often be expressed by the equivalent value that your
agency achieved/received by virtue of AFIT performing the research. Can you estimate what this
research would have cost if it had been accomplished under contract or if it had been done in-house
in terms of manpower and/or dollars?

a. MAN-YEARS ( ) b. $

4. Often it is not possible to attach equivalent dollar values to research, although the
results of the research may, in fact, be important. Whether or not you were able to establish an
equivalent value for this research (3. above), what ii your estimate of its significance?

a. HIGHLY ( ) b. SIGNIFICANT ( ) c. SLIGHTLY ( ) d. OF NO
SIGNIFICANT SIGNIFICANT SIGNIFICANCE

5. AFIT welcomes any further comments you may have on the above questions, or any additional
details concerning the current application, future potential, or other value of this research.
Please use the bottom part of this questionnaire for your statement(s).

NAME GRADE POSITION

ORGANIZATION TOCATION

STATEMENT(s):



ELECTROMAGNETIC SCATTERING BY OPEN CIRCULAR WAVEGUIDES

ABSTRACT OF
DISSERTATION

Presented in Partial Fulfillment of the Requirements for
the Degree Doctor of Philosophy in the Graduate

School of The Ohio State University

By

Thomas Wesley Johnson, B.S.E.E., M.Sc.

The Ohio State University
1980

Reading Committee Approved by

Professor David L. Moffatt

Professor Jack H. Richmond ______.__

z Adviser k
Professor Leon Peters, Jr. Department of Electrical

Engineering

L4



ELECTROMAGNETIC SCATTERING BY OPEN CIRCULAR WAVEGUIDES

DISSERTATION

Presented in Partial Fulfillment of the Requirements for
the Degree Doctor of Philosophy in the Graduate

School of The Ohio State University

By

Thomas Wesley Johnson, B.S.E.E., M.Sc.

The Ohio State University
1980

Reading Committee Approved by

Professor David L. Moffatt

Professor Jack H. Richmond
Adviser

Professor Leon Peters, Jr. Department of Electrical
Engineering



ELECTROMAGNETIC SCATrERING BY OPEN CIRCULAR WAVEGUIDES

By

Thomas Wesley Johnson; Ph.D.
The Ohio State University, 1980

Professor David L. Moffatt, Adviser

Open circular waveguides are used to model jet engine inlets.
The exact Wiener-Hopf solution for scattering by a semi-infinite
cylinder is studied in the resonance region, where the cylinder
diameter is of the order of a wavelength. In particular, the Wiener-
Hopf factorization functions are calculated by numerical integration
and compared to various approximations, to define regions of val-
idity. Scattering from the rim is ;tudied as a function of frequency,
incidence angle, and time. A ray-optic model for rim backscatter
is discussed. The relative power absorption of the five lowest order
waveguide modes is evaluated. Coupling of incident plane waves to
waveguide modes, and radiation by these modes are shown to be related
by reciprocity.

The waveguide termination model for a jet engine assumes an
incident waveguide mode strikes an axially symmetric cone on a flat
plate. The various techniques for evaluating scattering by this
structure are discussed, and the problem is solved for a few cases.

*11.
IJ



ACKNOWLEDGMENTS

The author is deeply grateful for the guidance and encouragement
of Professor D. L. Moffatt. The author also benefited from dis-
cussions with Professors Leon Peters, Jr., and Jack H. Richmond,
who served as members of the dissertation reading committee, and
Professors Robert G. Kouyoumjian, and H. D. Colson, and Dr. Prabhaker
H. Pathak, who offered their advice freely. A discussion with Dr.
Arthur D. Yaghjian was also exteeely helpful at a critical stage
of the research. The dissertation was capably typed by Mrs. LaVerne
Wemmer. A special tribute belongs to my wife, Catherine, who bore
with me during the trying years of Graduate School.

The work in this dissertation was performed by the author while
he was attending Ohio State University under the auspices of the
Air Force Institute of Technology Civilian Institution Program.
Funds for computation were provided by the Department of Electrical
Engineering, Ohio State University. Text preparation was supported
under the Joint Services Electronic Program.

iii

i ii



VITA

April 12, 1951 ............... Born - Detroit, Michigan

1973 ......................... B.S. Electrical Engineering
B.S. Mechanical Engineering
Massachusetts Institute of Technology

1974 ......................... M.S. Electrical Engineering M.I.T.

1974-1980.................... Extended active duty with U.S.
Air Force

1978-1980 .................... Graduate Student
Ohio State University,
Department of Electrical Engineering

PUBLICATIONS

Johnson, T.W. and James R. Melcher, "Electromechanics of Electro-
fluidized Beds," I & EC Fundamentals, 14(3), 146-53.

Johnson, T.W., "Design of a Digital Flight Control System Jsing Area
Multiplexing," Proceedings NAECON 76, 403-10.

Johnson, T.W., "A Qualitative Analysis of Redundant Asynchronous
Operation," Proceedings NAECON 78, 83-90.

FIELDS OF STUDY

Major Field: Electrical Engineering

Studies in Electromagnetic Theory: Professor Robert G. Kouyoumjian
Professor David L. Moffatt

Studies in Communication Theory: Professor C.E. Warren

Studies in Mathematics: Professor H.D. Colson

Studies in Structure of Matter: Professor Richard Boyd

iii



TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS ............................................ ii

VITA ...................................................... iii

LIST OF FIGURES............................................ v

LI T O A L S. . . .. . . . . . . . . . .. . . . . . . . . v i

LIST OF TABLS............................................vix

j Chapter

*I INTRODUCTION..................................... 1

II DISCUSSION OF WIENER-HOPF SOLUTION ................. 18

A. On-axis Results 21
B. Off-axis Beh~avior 34

C.Reciprocity Considerations 45

III SCATTERING BY A REPRESENTATIVE ENGINE-LIKE

OBSTACLE IN A WAVEGUIDE.......................... 56

IV CONCLUSIONS AND DISCUSSIONS ....................... 71_

REFERENCES ................................................. 77

Appendix

A EVALUATION OF WIENER-.HOPF FACTORIZATION

FUNCTIONS....................................... 80

B SUMMARY OF WIENER-HOPF COUPLING AND
SCATTERING COEFFICIENTS.......................... 110

C ELEMENTS OF DYADIC GREEN'S FUNCTION FOR
A CIRCULAR WAVEGUIDE............................. 117

iv



LIST OF FIGURES

Figure Page

1-1 GSMT elements for modeling engine inlet ............... 2

1-2 Coordinate system for modeling engine inlet ........... 6

1-3 Electric field lines for TE modes in
circular waveguide .................................... 7

1-4 Planar engine model used by Moll and Seacamp .......... 15

2-1 Coordinate system for Wiener-Hopf solution
to semi-infinite cylinder ............................. 19

2-2 Coordinate system looking at origin from
positive Y-axis ....................................... 20

2-3 Coordinate system looking at origin from
positive X-axis ....................................... 20

2-4 On-axis cross section for semi-infinite
cylinder exact (from numerical integration) ........... 24

2-5 On-axis cross section for semi-infinite
cylinder based on simple asymptotic
approximations ........................................ 26

2-6 Inverse Fourier transform of "exact" on-axis
backscatter with weighting to reduce
Gibbs-type ringing .................................... 27

2-7 Inverse Fourier transform of asymptotic
on-axis backscatter ................................... 29

2-8 Coupling of on-axis incident plane wave to
various waveguide modes - normalized
power flow ............................................ 33

2-9 Radiation pattern for TEll mode with
ka=4 (D/X=1.273) ...................................... 35

2-10 Radiation pattern for TMll mode with
ka=4 (D/X=l.273) ...................................... 36

v



Figure Page

2-11 Radiation pattern for TEll mode with
ka=12.77 (D/X=4.065) .................................. 37

2-12 Radiation pattern for TM01 mode with
ka=12.77 (D/X=4.065) .................................. 38

2-13 "Cavity cross-section" for six lowest
order waveguide modes ................................. 39

2-14 Angle for beam maximum for six
lowest-order waveguide modes .......................... 40

2-15 Rim backscatter cross-section for semi-
infinite cylinder with ka=7.261 (D/X=2.311) ........... 43

2-16 Rim backscatter cross-section for semi-
infinite cylinder with ka=14.4 (D/X=4.584) ............ 44

2-17 Sources for incident "plane-wave" ..................... 46

2-18 Sources for reciprocity theorem ....................... 49

3-1 Basic geometry for engine scattering model ............ 57

3-2 Coordinates system and dimensions for
scattering from an axial conducting cone .............. 57

3-3 Current pulses for moment method solution
of scattering by cone ................................. 63

3-4 Geometry for cone scattering using images ............. 65

3-5 Currents induced on cone in circular waveguide
with incident TE1 l mode, L/a=2.0, b/a=0.5,
ka=2.0 solution !y dyadic magnetic Green-s
function .............................................. 66

3-6 Eigenvalue of TE 1 mode for coaxial
waveguide as a fuiction of inner
conductor radius ...................................... 67

3-7 Solution for axial variation of fields for
TEll mode in circular waveguide with cone.
L/a=2.0, b/a=0.5, ka=2.0 .............................. 69

3-8 Currents induced on cone in circular waveguide
with incident TEll mode, L/a=2.0, b/a=0.5, ka=2.0,
solution by coaxial approximation with slowly
varying center conductor .............................. 70

vi



4-1 Geometry for self-consistent scattering
problem using flat plate .............................. 73

4-2 Normalized cross-section for axial incidence
on semi-infinite circular waveguide with
conducting plate 10 radii down the guide,
varying waveguide diameter ............................ 74

4-3 Cross section of semi-infinite circular
waveguide for axial incidence, D/X=.0
with flat plate at two to ten radii down guide ........ 75

A-1 Factorization functions L+, M+, $M+ for
n=l, a=k. Arrows indicate increasing k ............... 92

A-2 Contour of integration in the complex z-plane ......... 97

A-3 Contour of integration in the complex T-plane ......... 98

A-4 Factorization function M+ for n=l, cz=k
calculated by numerical integration and
asymptotic approximation based on two and
three term expressions for phase of Bessel
function .............................................. 103

A-5 Factorization function L+ for n=l. Solid
curve gives a=k, varying k. Dashed curves
vary ct/k holding D/X fixed to the values
specified by arrows ................................... 104

vii

-



LIST OF TABLES

Table Page

1-1 SUMMARY OF LOW-ORDER CIRCULAR WAVEGUIDE
MODES AND CUTOFF FREQUENCIES ........................ 4

2-1 SUMMARY OF ON-AXIS RCS PEAKS AND
MODE ACTIVITY ....................................... 23

A-1 VALUES OF FACTORIZATION FUNCTIONS L+ AND M+
COMPUTED BY NUMERICAL INTEGRATION ................... 83

A-2 SUMMARY OF ASYMPTOTIC FUNCTIONS AT
SADDLE POINT IN T-PLANE ............................. 106

viii



LIST OF SYMBOLS

Fourier transform variable for spatial transform
with respect to z

anm,nm Waveguide mode wavenumber for axial propagation
of TM and TE modes, respectively

'Ynm 'ynm Waveguide mode decay constant for axial decay of
evanescent TM and TE modes, respectively

En Neumann epsilon
1 n=O
2 n=1,2,3...

o Polar angle in spherical coordinates (see Figure

1-2)

Unit vector for polar angle in spherical coordinates

eies Polar angle for incident and scattered fields,
respectively

Angle of asymptotic approximations of Besselfunctions

xFree space wavelength

p Radial distance in polar coordinates

p Unit vector in radial direction in polar coordinates

a Radar cross section

Azimuthal angle in both spherical and polar
coordinates

Unit vector for azimuthal angle

Azimuthal angle for incident and scattered fields,
respectively

n Phase angle of asymptotic approximation of deriva-
tives of Bessel function

ix



0i Characteristic impedance of free space
0

I- Characteristic admittance of free space

a Radius of waveguide
Anm A Coupling coefficients for incident plane wave to

nm TM waveguide modes

Bnm Bnm Coupling coefficients for incident plane wave to
TE waveguide modes

c Speed of light in vacuum, free-space
SC C Radiation coefficients of waveguide modes;

0,d denote orientation of radiated field; E, H denote

TM or TE mode, respectively

D Diameter of waveguide = 2a

Enm Magnitude of TM waveguide mode n,m

Ei,E s  Incident and scattered electric field, respectively

E ,EEz,Ee  Radial, azimuthal, axial (in polar coordinates),
polar (in spherical coordinates) component of
electric field

(x) Transition function defined by Kouyoumjian and
Pathak (1974)

fn Ratio of two Wiener-Hopf factorization functions

H,H ,Hz  Radial, azimuthal, axial (in polar coordinates)
4' Z components of magnetic field

H1 )(),H 1 )'() Cylindrical Hankel function of the first kind
(cylindrical Bessel function of the third kind)or order n, and its derivative

i Square root of minus one

In() Modified Bessel function of order n

J Current density

S(),J;()  Cylindrical Bessel function of the first kind oforder n, and its derivative

x



Jnm m-th zero of Jn(x), i.e., Jn(Jnm)O

j ' m-th zero of Jn(x), i.e., Jn(jnm)=O

k Free space wavenumber
K n() Modified Bessel function of order n

L+() Wiener-Hopf factorization function

m Index of radial variation for a given azimuthal
variation, e.g. the zeroes of JI(x) are jlm,m=l,2 ,3

Jll,jl2Jl 3
M+() Wiener-Hopf factorization function

n Index of azimuthal variation

P Power flow

r Radial distance from the origin in spherical
coordinates

-OT Generalized position vectors locating a point in
3-dimensional coordinate system

SS Scattering coefficients for rim of semi-infiniteeeSo0S'SOe'S 4 cylinder

x,y,z Rectangular coordinates

, ,2 Unit vectors appropriate to rectangular coordinates

xi



CHAPTER I
INTRODUCTION

The radar cross section (RCS) of jet intakes has been extens-
ively studied. There are several reasons that it is of interest.
One is simply that it is a major element in the radar cross section
of aircraft and must be accurately evaluated to estimate total air-
craft RCS. Another reason for study is that potentially the RCS
of the aircraft could possibly be reduced if the scattering mech-
anisms are well understood. A third (though certainly not final)
reason is that many aircraft identification or classification tech-
niques propose to use modulation of the radar return imposed by the
aircraft engine as a significant identifiable feature. It would
be a questionable approach to establish such a system on an effect
which is not well understood, particularly in terms of establishing
the system's susceptibility to intentional confusion or camouflage.

This study is somewhat limited to the region for which DXX;
the asymptotic forms developed for higher frequencies may fail in
this region, and the very low frequency techniques (for which little
or no energy penetrates the intake) are invalid.

This study develops two of the practical problems involved
in calculating the RCS. The coupling coefficients at the mouth of
the intake are known in princple, but difficult to compute in prac-
tice. The effect of the engine structure is known only generally,
and has been very loosely approximated in past studies.

The jet intake can generally be modeled as an open ended wave-
guide with an obstacle (the engine) some distance down the waveguide.
Figure 1-1 illustrates the geometry. The problem can then, in
principle, be solved by the generalized scattering matrix technique.
The scattering matrices of the significant scatterers, if known,
can be self-consistently manipulated to produce the backscattered
field. Let

ui  represent the incident field,

u bs = the backscattered field,

[Sil] = a matrix, representing (in some sense) the direct
backscatter of the open waveguide
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[ S12] = radiation characteristics of waveguide modes

$S21] = coupling matrix of incident field to waveguide modes

[ S22] = reflection of waveguide modes from the open end
[Sb ] = reflection of waveguide modes from the obstacle

IT2J = transmission down waveguide

Tb2  = transmission back from waveguide to aperture.

Note that off-diagonal terms in each transmission and reflection
matrix will represent mode conversion from one mode to another.

From Figure 1-1 we can easily show that:

ubs = S i + S12r2  (1-1)

= S2 1u1 + S22r2  (1-2)

r 2 = Tb2 Sb T2b rI  (1-3)

r = Tb2 Sb T2b (S21u
i + S22r2) (1-4)

[I-Tb2SbT2bS22]r2 = Tb2SbT2bS2l
1u  (1-5)

[(Tb2SbT2b )-' - 22 = S21u (1-6)

r 2 = L(Tb2SbT2b) -1 - $2 2] S2 1u1  (1-7)
u S + [TiT-1 i  (1-8)

ubs =Sll+ S12 [(Tb2 SbTb) - - 2 2]-  S2

The matrices S l  S .,., and aS2 have been solved for by the Wiener-
1Hopf technique. Thle r ults ar quite complicated algebraically,

The heart of the problem, however, is calculation of the Wiener-Hopf
factorization functions. Considerable effort has been given to cal-
culating these functions, which is presented in Appendix A. This
study has emphasized circular waveguides, because much prior work
has been done in the area, and the symmetry of the geometry simplifies
the problem somewhat. Also, since engine geometries are circular,
non-circular inlets require an additional model of the mode conver-
sion as the energy travels down a waveguide of varying cross-section.
Thus our matrices T and T2 are diagonal, having only the relevant
phase delay for eac hfmode. his study does not address further
development of this effect for non-uniform waveguides.

3



Summary of Circular Waveguide Modes

Propagation in a circular waveguide is limited to a discrete
set of modes, which can propagate only for waveguide diameters larger
than a certain minimum (cutoff) diameter. The notation used in this
study is consistent with Harrington: TEl7 refers to a mode with
electric field transverse to the axis of propagation. In the Russian
literature (Weinstein) this is referred to as a magnetic mode, since
it has a z-directed magnetic field, and all other field components
can be simply derived from it.

The number of modes that can propagate in a circular waveguide
goes roughly as the square of the diameter. Table 1-1 lists the first

TABLE 1-1

SUMMARY OF LOW-ORDER CIRCULAR WAVEGUIDE
____________MODES AND CUTOFF FREQUENCIES

Mode cutoff cutoff ka

TEll .5861 1.8412
TMOl .7655 2.4048
TE21 .9722 3.0542
TMll 1.2197 3.8317
TEOl 1.2197 3.8317
TE31 1.3373 4.2012
TM21 1.6347 5.1356
TE41 1.6926 5.3176
TE12 1.6970 5.3314
TM02 1.7571 5.5201
TM31 2.0309 6.3802
TE51 2.0421 6.4156
TE22 2.1346 6.7061
TE02 2.2331 7.0156
TM12 2.2331 7.0156
TE61 2.3877 7.5013
TM41 2.4154 7.5883
TE32 2.5513 8.0152
TM22 2.6793 8.4172
TE13 2.7172 8.5363
TE71 2.7304 8.5778
TM03 2.7546 8.6537
TM51 2.7921 8.7715
TE42 2.9547 9.2824
TE81 3.0709 9.6474
TM32 3.1070 9.7610
TM61 3.1628 9.9361
TE23 3.1734 9.9695

4



28 modes in order of increasing cutoff diameter. The cutoff is cal-
culated by noting the Jn(Jnm )=O or J (j'm)=O and then ka=jnm or

j6. Since =i = 1 the cutoff in terms of ka can be simplyx 2
derived. It seems more intuitive to discuss D/X. Figure 1-3 presents
electric field line pictures for the first few modes.

This study employs the et time convention; the choice is
necessary for consistency with the vast majority of Weiner-Hopf
literature (Einarsson et al). The coordinate system chosen will
be standard spherical and/or cylindrical coordinates, with the
origin at the center of the waveguide mouth. See Figure 1-2. The
polar angle is e, the azimuthal angle €. The radius will be desig-
nated by r, in spherical coordinates, and p in cylindrical coordin-
ates. The waveguide radius is a, and the waveguide extends from
z=O to z=-- at p=a.

Since a large part of the literature is concerned with the
Weiner-Hopf solution to scattering by a semi-infinite circular
cylinder, an heuristic description will be presented here. Tutorial
discussions of the Weiner-Hopf technique can be found in [Noble (1958)]
and [Morse and Feshback (1953)].

The Weiner-Hopf technique is based on the fact that the fourier
transform of a causal function is entire in a half plane. For example,
the function

x(t) =fet t > 0

0 t < 0 (1-9)

has the Fourier transform

X(W) = f eiwt eat u(t) dt = e(ia)t dt
-O 0

e-1 - " e1 = 1 (1-10)
(i .- a) Le ej

[Recall that we are using e iWt time dependence]. Hence X(w) has
a single pole at w = - ia and is entire (has no poles) for Im(w)>O>-ia.
In the Weiner-Hopf technique, the fourier transform of the field
component is taken with respect to the coordinate along one axis
of the problem (the axis parallel to the semi-infinite object).
The incident and scattered field are then related by means of the

5
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Figure 1-2. Coordinate system for modeling engine inlet.
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Figure 1-3. Electric field lines for TE modes

in circular waveguide.
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Figure 1-3 (continued). Electric field lines for
TM modes in circular waveguide.



physics of the problem. Noble cites three different techniques
for doing this: field matching, Green's function integral equation,
and dual integral equations. The resultant equation is manipulated
so that the left-hand side must be entire in one half-plane and the
right-hand side in the other half-plane, with a region of overlap.
These are then equated to a third function, which must be entire
over the whole a-plane. Because of Liouville's Theorem, this new
function ends up being a constant, equal to zero. This separately
sets each side of the equation to zero, which leads to the solution
(by taking the inverse fourier transform).

For the cylinder scattering problem, the incident field is
decomposed into cylinder waves by the Bessel function addition
theorem. The transform is taken with respect to the z-axis:

(,r : E(z,r, )eilaz dz (1-11)

For each cylinder wave, the incident and scattered fields are related
by imposing the boundary conditions that the tangential electric
field must vanish at the cylinder walls, and the surface current
must vanish in free space. These are used to manipulate the problem
into a Weiner-Hopf form. This process is described by [Weinstein
(19%9) and Einarsson et al (1966)].

The analysis of interactions at the mouth of an open waveguide
goes back to [Chu (1940)]. By using the Kirchoff approximation the
radiation fields for the lowest order propagating modes for a cir-
cular, and a rectangular waveguide are calculated. In terms of the
GSMT, this would enable us to compute elements of [S1 2].

[Levine and Schwinger (1948)]evaluate the acoustic radiation
and reflection characteristics of a hollow circular pipe. An
integral equation for the velocity potential is solved via the Weiner-
Hopf technique. Their study is confined to symmetrical modes incident
on the open end of the pipe. In a circular acoustic waveguide,
the symmetrical modes are given by

(p, ) = Jo(jo,mp/a) or Jo(jo p/a) (1-12)

where

Jom are the zeroes of Jo(x)

jom are the zeroes of J (x)

U9



[Pearson (1953)] was the first to apply the Weiner-Hopf technique
to the electromagnetic problem. He considers a transverse magnetic
plane wave incident on the open end, and obtains equations for the
Laplace transforms of the axial and azimuthal currents on the waveguide
walls. These equations are then solved by the Weiner-Hopf techniques,
and the currents can be obtained by inverse Laplace transform. The
fields far from the mouth down the pipe are then evaluated asymp-
totically and found to result from propagating modes, thus giving
the coupling coefficients. The backscattered fields are not evalu-
ated, nor is the behavior near the mouth studied.

[Jones (1955)] analyzes the scattering of sound waves by a
solid semi-infinite cylinder. He considers both hard and soft boundary
conditions although numerical results are evaluated for only the
hard (du/dn=O) case. An approximation for high frequency (large
diameter) is developed, and a low frequency expression is presented.
A variational expression is developed to establish limits of error
on the approximations used in evaluating the exact expressions.
Both the pressure field on the cylinder, and the scattered far field
are evaluated. The end cap pressure time response due to an incident
unit step is evaluated by taking the inverse Laplace transform of
the frequency domain response.

[Noble (1958)] treats the scalar problem for both radiation of
the lowest order mode, and coupling of an incident plane wave to
the lowest order mode in a circular waveguide. His discussion is
tutorial in nature, drawing somewhat from Jones' work. There is
a more complete treatment of the general technique used to solve
Weiner-Hopf problems than is found in most other references.

[Jones (1964)] applies the Weiner-Hopf technique to radiation
from a semi-infinite hollow pipe. This study is somewhat tutorial
in nature, being part of a textbook, and considers only a few of
the lowest order modes. Jones notes that TE modes radiate more
efficiently than TM modes. TM modes have higher reflection coef-
ficients at the open end of the pipe.

[Einarsson et al (1966)] give an exhaustive study of diffraction
by both the infinite and semi-infinite circular cylinder. The back-
scatter for a plane electromagnetic wave incident on a solid, semi-
infinite, perfectly conducting rod is given. The scalar (sound)
scattering from a semi-infinite (both solid and thin walled) tube
is evaluated. The radiation and reflection for a propagating scalar
wave incident on an open end are evaluated (reproducing the results
of Levine and Schuinger and also Weinstein). There is a brief dis-
cussion of finite cylindrical resonators with one end open, one end
closed (rigid, Dirchlet boundary condition).

10



The general solution for scattering of a plane electromagnetic
wave from a semi-infinite thin walled, perfectly conducting tube
occupies about half the report. This includes both the backscatter
far-field [Sll] and coupling coefficients, for the general plane
wave (neither TE nor TM). The special case of axial incidence is
considered. Radiation from a source inside the tube [S2 1] and re-
flection from an open end [S2], are evaluated, largely copied from
Weinstein. Asymptotic radiation of the far-fields is compared to
the Kirchoff approximation.

A substantial part of this study concerns evaulation of the
Weiner-Hopf factorization functions. A number of forms of integral
expressions which exactly define them are developed. Power series
approximations to the low frequency are developed. Unfortunately
these expressions are still quite complex.

In addition, only the magnitude of the functions is approxi-
mated; the phase is not. A large effort to develop high frequency
approximation yields some useful simplifications, but the results
are expressed in terms of another unknown function, albeit much
simpler. Numerical data is given for varying values of ka with the a
parameter fixed. This,is inconvenient since, generally, a=kcose,
and we are primarily interested in fixing ka and varying a. Experi-
mental data are presented for finite cylinders. No experimental
data are presented for a semi-infinite cylinder.

[Witt and Price (1968)] analyze the problem of a finite tube
without recourse to Weiner-Hopf techniques. Instead, the direct
backscatter from the rim, and the coupling coefficients to waveguide
modes are calculated by what amounts to the Kirchoff approximation.
The incident field tangential to the aperture is expanded as a sum
of waveguide modes, and a waveguide admittance for each mode is com-
puted. The reradiation is also calculated via the Kirchoff method,
using the Stratton-Chu integral. The termination is modeled as an
impedance, which results in a simple (scalar) reflection coefficient.
The reflection coefficient is then transformed to its equivalent
impedance as seen at the mouth of the waveguide. The total waveguide
admittance for that mode is then calculated, and the scattered field
is expressed as a sum over the waveguide modes, times the incident
field projection on that mode, times the generalized admittance.

For backscatter with vertical polarization (TE) (which corres-
ponds to our * polarization) they present the formula

jka 2 cosO -jkrE (x'O,z') r e
y r

(1-13)
fvJ1 (v+vo) + I E (v)E (v )(+ (I

Vo(vVo )+v + n=O m=l nm nm o rnm) + Ynm
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where

vo = kasinO0 (incident)

v = kasinO (scattered)

E nm = weighting coefficient for nm-th mode

ynm = propagation coefficient for nm-th mode

rnm = reflection coefficient seen at aperture for nm-th mode.

The work of Weinstein* in many cases predates the works reviewed
here. However, most of Weinsteins's papers were published in Russian
journals. His book [Weinstein (1969)] contains virtually all of
his earlier work, and is readily available. It should simply be
noted that Weinstein's work did frequently predate work in the West.

[Weinstein (1969)] has collected all of his earlier work on the
Wiener-Hopf technique into a single volume. The book is tutorial
in nature, beginning with the simplest problem, diffraction and
radiation by a plane parallel plate waveguide. Having developed
the basic Wiener-Hopf arguments, he proceeds to analyze circular
waveguides, first considering only symmetrical modes (to eliminate
azimuthal dependence from the problem). Acoustical problems are
then solved, followed by the general problem for electromagnetic
waves scattered and radiated by a semi-infinite circular cylinder,
including azimuthal dependence. Comparisons with answers obtained
via the Kirchoff method are frequent, showing those circumstances
under which the Kirchoff method works and those under which it fails.
There is a substantial discussion of the relative accuracy of Huygens
principle, compared with edge diffraction; a substantial point is
made that edge diffraction yields more reliable answers.

[Kao (1970)] presents a completely novel approach to scattering
from cylinders. He determines the currents on finite cylinders by
using point matching and then calculates radiation patterns from
the currents. For the semi-infinite cylinder [1970b] he sets up
two sets of points with slightly different interpoint spacing. By
various manipulations of these, he determines the magnitude of the
traveling wave launched on the cylinder by the incident plane wave,
as well as the current in the vicinity of the aperturg. However,
his analysis is confined to broadside incidence (0=90 ).

[Bowman (1970)] develops ray-optical diffraction expressions
for the scattering from the end (aperture) of the semi-infinite wave-
guide, and compares these with an asymptotic approximation to the

*Also transtated as Vajnshteijn, Wainstein, Vainshteir.
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exact Weiner-Hopf solutions. For the asymptotic form of the Wiener-
Hopf solution, he obtains, for direct backscatter (e=O)

EBS " a eikr /+ ei m mi2mka (-14)
E / i m eik}

whereas by ray optical methods, he obtains

+ eiI/4 m i2mka
EBS xa eikr + .e

E/~ m 2- e7 (1-15). = m J
For bistatic scattering with axial incidence he obtains from approxi-

mating the Wiener-Hopf solution letting his e go to r-e and his €
to 21-4

eikr 2a /2 cos(kasine-r/4)(sin )
ES + --- T F_ /  co @

rine cos(0/2)

A + 21]!4 2 c
+ e cos (012) imm-3/2 ei2mka (1-16)

From the ray optical approximation he obtains

s + eikr ( 2a 1/2 cos(kasine-n/4
r ES ~+r 1--in- cose2 sin

iTT/4 cos2(e/2) im ei2mka+ .o 61) i (1-17)

A 1  cosO m=l 2m- 1-7

In both cases it is seen that the term of O(ka " 1 2 ) is identical

up to the first two terms in the summation

iei2ka i2e4ika + i3e i6ka (1-18a)
23/2 + 33/2

vs

iei2ka + i2ei4ka + i3ei6ka (-18b)

+ 272 4 (-8

4! 13



He attributes this difference to the ray-optical approach, for which
he first considered scattering by plane parallel plates; multiple
scattering was effected by assuming a cylinder wave was generated
from each edge after scattering. This result was then specialized
to having a single point participate in the scattering on each edge
but not modified to take account of the fact that a cylindrical wave
is no longer being emanated from each edge. Beyond this comment,
Bowman does not analyze further, since the exact result from the
Weiner-Hopf solution instructs us how to modify the ray-optic con-
tribution.

A comparison of Bowman's results with those of Witt and Price
is illuminating. If we restrict ourselves to on-axis backscatter
and disregard terms due to reflection from the termination, the
formula presented by Witt and Price reduces to

Es= jka 2 ejkr + EmV 2

Ee ir~+ E (v)2
r n= m=l nm

- e jkr + co m 2  
(1-19)

n=O m= 1

We observe that, besides the opposite time convention, there is an
additional factor of jka present in the form presented by Witt and
Price. They remark that this is recognizable as the physical optics
approximation for scattering from a flat conducting disk. Since
this is not in agreement with the high frequency behavior of the

-J Weiner-Hopf solution, we conclude that the disk is not a good high
frequency model for this problem. In fact, it will be seen later
that the disk does adequately model the on-axis scattering of a
cylinder terminated by a perfectly conducting plate.

[Moll and Seecamp (1970)] present a more realistic model of
the engine geometry. The approach of Witt and Price is used to model
the scattering, coupling, and radiation at the duct inlet. The study
is confined to TE modes. The termination, however is modeled by
two sets of blades, each as shown in Figure 1-4, to simulate the
first stage of a compressor. The blades are modeled as being planar
(normal to the z axis). The two sets of blades had different numbers
of blades and blade widths and assumed varying relative orientations
(stator to rotor). The scattering at the termination is modeled
by a similar procedure to that at the inlet. The backscattered field
is expressed as a sum of modes traveling toward the mouth. The total
tangential electric fields must match at points where there are
blades. For each incident mode, integrals were taken over the area
covered by either set of blades, forcing the fields to vanish.
The equations thus obtained are used to solve for the scattering
coefficients for modes generated at the termination. Then, the

14



Figure 1-4. Planar engine model used by Moll and Seacaip.
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radiation from each mode is computed by matching the radiated field
plus the incident field to the internal field at the duct aperture,
where the internal field is the sum of the modes traveling down the
waveguide plus those scattered back by the termination. The RCS
is computed for various orientation of the blade structure and various
relative orientations of the two bladed structures, giving a range
of modulation of the RCS caused by the rotor motion. They used 31
and 37 blades on the respective blade structures. There is a brief
discussion of a non-planar cap in the duct termination, but the idea
is not developed.

[Lee et al (1973)] are primarily concerned with the measurement
errors made when field strength is measured with a sensor boom.
The effect of the presence of the boom is analyzed via the Wiener-
Hopf technique, and the relative distortion thus introduced is cal-
culated. The relevant part of this paper deals with the calculation
of the Wiener-Hopf factorization functions. Although the general
factorization expression is developed (as an infinite product of
factors), the general expression is clearly too complex to be useful.
A low frequency form is developed for the n=l case for both L+ and
M+ functions. The n=l case is relevant to low frequencies because
the TEll mode has the lowest cutoff frequency, hence is also the
slowest decaying evanescent mode when all modes are cut off. Un-
fortunately the low frequency expression presented do not appear
to fit very well with data computed in this dissertation by numerical
integration of the exact integral defining the functions.
(Lee et al) indicate a constant phase for the low frequency, but
it appears that the phase varies rather rapidly as the frequency
increases from D.C. The formulas do work out to the correct "DC"
form.

[Mittra et al (1974)] present a detailed report which includes
reconciliation of the numerical solution with experimental data.
The complete Wiener-Hopf solution for the semi-infinite cylinder
is presented. There appear to be some errors in the results presented,
since the scattering coefficients for direct backscatter (Equation
(3-86)) could not be reconciled with those presented by [Bowman (1970)];
also the two direct polarization solutions for See and S€ do not
reduce to the same answer on axis, nor do they reduce to the answer
given by [Einarsson et al(1966)] for on axis backscatter (Equation
(5-63)). The solution for large pipes is simplified by an asymp-
totic approximation for the L+ and M+ functions; these are expressed
as functions of the series

I m-3/2 eim(2kan r+Tr/2) (1-20)
m=l

and the same summation, including either even terms or odd terms.
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The Generalized Scattering Matrix Technique (GSMT) is used
to formulate the problem. Considerable effort is expended expressing
the individual elements of the matrix in terms of the Wiener-HoDf
solution.

Solutions for other geometries are developed by the ray-optical
method. The geometries considered are an ellipsoid, elliptical plate,
and semi-infinite elliptical cylinder. The semi-infinite elliptical
cylinder is analyzed in terms of diffraction by the edge of the
cylinder.

These solutions are then combined to estimate the total RCS
for an aircraft. Numerical results were computed for selected fixed
frequencies for two aircraft. For calculations involving a termination
in the jet intake, this was modeled earlier as a perfect conductor,
or as a dielectric plug of infinite depth, or as a dielectric plug
of finite depth.

[Chuang et al (1975)] present an extension of the report by
[Mittra et al (1973)]. Starting with the exact solution for bistatic
scattering from a semi-infinite pipe, they develop approximate high
frequency expressions for the factorization function, based on an
asymptotic evaluation of the integral defining these functions.
Both factorization functions can be rather simply expressed in terms
of a third function, called a modified Lerch function of order 3/2,

L(x,v) = m v ei 2 mx (1-21)

m=

They then derive via the Mellin transformation a twelve-term series
representation with complex coefficients, which enables the compu-
tation of this function for v = 3/2 to be mechanized trivially.
The results thus obtained show excellent agreement with results ob-"
tained by direct numerical integration of the defining integral,
down to the cutoff frequency of the lowest mode of that order. Finally
there is a simplification of the infinite sum which is present in
the scattering calculation mode by use of the asymptotic form with
one of the Bessel function addition theorems.

There appear to be a few errors in this paper. These are summar-
ized in Appendix B.

(James and Greene (1978)] indicate that both theoretical and
experimental results show substantial sensitivity to wall thickness.
They indicate that the exact Wiener-Hopf solution based on infinitely
thin walls breaks down when the wall thickness is larger than .OIX.
The results of their summary seems to be that the radiation patterns
of thick walled pipes are narrower than given by the Wiener-Hopf
solution. Beyond noting this effect, we will not further discuss
this problem, since it would require an entirely separate study.
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CHAPTER II
DISCUSSION OF WIENER-HOPF SOLUTION

The exact Wiener-Hopf solution to the diffraction by a semi-
infinite circular waveguide can be found in [Einarsson et al (1966)].
The significant formulas from this report are summarized in Appendix

4B. The major numerical problem -- that of calculating the factori-
zatior functions -- is discussed at length in Appendix A. This chapter
discusses the physical significance of some of these formulas. We
reiterate that the e-lwL time dependence is assumed and suppressed.

The coordinate system is a substantial stumbling block since
the incident and scattered field are defined with respect to 6 and
unit vectors which are themselves functions of angle. Further com-
plicating matters, [Einarsson et al (1966)] and [Mittra et al (1974)]
use different coordinate systems. This study uses the coordinate
system illustrated in Figure 2-1, which is the same as (Mittra et
al (1974)], since it forms a self-consistant reference for scattering
calculations.

The incident field is assumed to come from the angle i=r.
Looking in along the y-axis toward the origin, we see Figure 2-2.
Looking in along the x-axis toward the origin we see Figure 2-3.
Hence we obtain the following unit vectors.

= - x cose i - z sine i  (2-la)

A - (2-1b)

For th,- scattered field, we are not necessarily constrained to s=l
'for bistatic scattering). Hence, we obtain general formulas for
the unit vectors.

e x cose s cos~s + y cose s sines - z sine s  (2-2a)

f - sines + Y cosos . (2-2b)

In our coordinate system, the incident and scattered fields are in4I
the same coordinate system. In [Einarsson et al (1966)], the direction
of the z-axis is reversed, but ei and the unit vectors for the inci-
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Figure 2-1. Coordinate system for Wiener-Hopf solution
to semi-infinite cylinder.
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Figure 2-2. Coordinate system looking at origin from

positive Y-axis.
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Figure 2-3. Coordinate system looking at origin from
positive X-axis.
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dent field are defined in such a way that they physically point ini i
the same direction as in our system. Thus cosei, sine i, E E are

all the same in Einarsson's and our coordinate systems. (See Figure

2-2 in Einarsson; El occurs for 6=0, E for 6 - ' with a being re-
et

placed by ei). In the scattered coordinate systems, § and $ are
reversed in sign (hence also E and E ), and cose has the opposite
sign, but sine is unchanged. In addition 4 is replaced by - s
since the x-axis is the same in the two systims.

A. On-axis Results

The most elementary case of the Wiener-Hopf solution can be
found by taking the limit as eO0. In taking this limit we will
consider both the backscatter and coupling of energy into the wave-
guide.

Taking the limit of Equation (B-3) (which gives the general
bistatic scattering from the rim for 0 incident and scattered
fields) with s=7T, ei=es=S (in the limit 30) we obtain

Se2- ~n [Jn(ka)] 2  [ 2 f2

see 1 im n0 n(-l) 2[L+(k)]2  6 l-f1 (2-3)

where

n  Neumann epsilon = l;n=O

= 2;n0

Jn() is the cylindrical bessel function of the first kind

k is the wavenumber = 27

a is the pipe radius.

L+, M+ are the factorization functions; these are functions
of (n,a,k); k is always understood and n is usually
obvious from the context. Hence the only argument that
is explicitly given is a. L+(k) means L+(n,a=k,k)

fn= nL+(k)/2kaM+(k)

= lim -2i 2 2( a ) 2n  (2-4a)
S +0 k6 n=l 22n L+(k) " 24

2i 2(-l)(ka)2 n (2-4b)2i _4[L+k)] 2  1_f2-
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i2

- 4k2a2M+(k)2_ L+(k)2 (n=l understood) (2-4c)

since fo is identically 0.

When combined with Equation (B-2), we obtain

Es  eikr -ia2k=  4k2 2 2 2 (n=l understood) (2-5)
E 1 4k 2a2 M+(k) -_L+(k)2

This can be seen to be the same as Equation (5-163) of [Einarsson
(1966)] with r-*z; the same procedure applied to Sp (which gives
the general bistatic scattering from the rim for S-incident and scat-
tered fields) leads to exactly the same result.

S = lim 2i I 1)n n-2 -
S +0 W n=O nM+fk)] 2

S2i 2(-I) +W (2-6b)
4k (M+(k))2  L1 y7j 2-

-i

4kM+(k)2(l-f ) (2-6c)

-ia2k
4k2a2M+(k) 2_L+(k) 2  (n=l understood) (2-6d)

We see immediately from Equations (B-5) and (B-6) (which give
the cross-polarized backscatter) that sin nw=O so no cross-polarized
field is generated.

The radar cross-section is defined by

a = lim 4nr2 I-r (2-7)IE'l

Applying Equation (2-5), we obtain
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I : im 47r 2  (2-3k
rr (4ka2M+(k )2 -L+(k) 2  2-a

2 ak (2-8b)
r.wr(4k a M+(k) -+k

: 4T1 4k2a2M+(k)2_L+(k)2I(-b
2

_ 2ak (2-9)

7a2 : 4k2a2M+(k)2 _L+(k)2

The results of Equation (2-9) are evaluated and plotted in Figure

2-4. It is of interest to Pote that the normalized cross-section

peaks at D/X=.55, with o/ra =10.4 dB, and then decreases very rapidly.
The lowest order propagating mode (TEll) is enabled at D/X=.586;
hence this peak occurs just below cutoff for this mode, and as the
mode is able to transport energy, the cross section rapidly decreases.
The first three peaks and corresponding modes are summarized in Table
2-1.

TABLE 2-1
SUMMARY OF ON-AXIS RCS PEAKS AND MODE ACTIVITY

Location of Height of Cutoff for Mode
peak (D/x) peak (dB) mode (D/X)

.55 10.4 .586 TEll

1.68 3.5 1.697 TEl2

2.69 2.5 2.717 TEl3

The rapid variation of cross section in these regions is related
to the strong coupling of the normally incident plane wave to the
TElm modes, as discussed below.

rBowman (1970)] and [Chuang et al (1975)] use their asymptotic
forms for L+ and M+ to obtain a simple form for the on-axis cross
section.

see - 1 + e imm-l.5ei2mka (2-10)

This leads to
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l
OiD/4 t2

-a le em-l'5ei2mka (2-11)ira/nF Ml
Equation (2-11) is plotted in Figure 2-5 and yields good results
for D/X>l.

Taking the inverse Fourier transform of Equation (2-5) with

the spatial dependence suppressed, we obtain the time domain response,
shown in Figure 2-6. This represents the backscattered field as a

time function resulting from a normally incident plane wave, impulsive
in time. This result was generated via the discrete Fourier trans-
form of the backscattered formula for 0<D/X<3.2. Naturally the time
domain response is dominated by the peak at D/X=.55, which resultsin damped oscillations. The time domain response can be related

(perhaps dubiously at low frequencies) to a ray optic model of scat-
tering at the mouth. The optic model was developed by [Bowman (1970)].
For example, if we take the simplest asymptotic approximation for
the L+ and M+ functions, given by Equations (A-27), (A-29), (A-31),
(A-58) and (A-59), and substitute them into Equation (2-5), suppres-
sing the spatial decay and propagation,

E__s 1 -4l ia2k
2 4Tar T (2-12)

E1 : 4k a2M+(k)2-L+(k)
2

retaining only terms of 0(1) and O(ka-I 2 ), with a unit incident
field

E a F'e i-a 4+ mei2m(ka-7r/4)
Es  -- l [+e i (-l 2  (2-13)

r m=l m

[1 + e c/2(m+/2)e (2-14)Es ~ T a' ml VMm 3 / 2  (-4

Taking the first few terms of the summation explicitly

* 31r i2aw 5r i4aw i 7T i6aw

ES -a + elc- + e Te C+e e

rW 242- 4 3 /- 1w_

(2-15)
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Figure 2-6. Inverse Fourier transform of "exact" on-axis
backscatter with weighting to reduce

Gibbs-type ringing.
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i 2 amw

Note that e results in a time delay of L- . We employ the Fourier
c

transform pair

S_ 4  u(t) (2-16a)

and its Hilbert transform

i -u(-t) (2-16b)

vG

Taking the transform of the frequency domain expression

S2a i4a .6aw

ES .r-a +v/a ((-l+i) eC + (-1-i) ec (1-i)e
\_ 4ra 2v /w- 3V3 yr J

(2-17)

leads to

T 2a

u(t- c + - ctF

(2-18)

This is plotted in Figure 2-7.

We note in Figure 2-6 that the sharp peaks at t=m 2 become
C

almost negligible after m=3, and the response shown in the discrete
Fourier transform results seems to be dominated by the ringing as-
sociated with the lowest frequency resonance. Since this resonance
is not well predicted by the asymptotic forms (compare Figures 2-4
and 2-5) it is not surprising that the long-time or steady-state
response is not well predicted. This resonance appears to be related
to the currents excited at the mouth, and to some extent, associated
with an exterior natural resonance of the cylinder, since all the
waveguide modes are evanescent in this region.
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The coupling of an axially incident plane wave to waveguide
modes can be determined from a special case of equations (B-ll) thru
(B-14) (which give the general coupling coefficients for incident
plane waves). Taking ei.O we see immediately that only n=l modes
are excited. 12

ar e 4ijnmL+(Otlm) f - 2iJlmL+(lm) f1
Alm a1 maL+(k) 1-f2

(2-19a)

4ijnL+(lm) f 2iJlmL+(aIm) f2
I Am 2 JnL7 m " t maL+ ck ) 2-

- kolma 2M+(k) 1 = 1l )

d (2-19b)

* B 4i(k+aIm) M+(aIm) 1 f,

h im 077T L+jk2) 1-f21
3
Jm

i(k+ajm)M+(ajm) 1
ac lm4l- 1 )M+(k) 1 (2-19c)

lm

4i(k+jm)M+(ajm) [Lf kaIm]

BIm kcz a(l - )2M+(k) 1_ I

k m : 1m 1  m

i(k+ajm)M+(ajm) (2-19d)

k al -- , 1 )M+(k) 1-f 2

Jim

In both TE and TM cases, rotation of the incident field from e to $
corresponds to an equal rotation of the azimuthal dependence of the
waveguide mode; otherwise the coupling coefficients are the same.
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For purposes of comparing the relative importance of these
coupling coefficients, the power flow associated with each of the
modes can be computed. For TE modes, with an incident plane wave
of unit amplitude based on [Collin (1960), p. 179] the power flow
is computed as

P = m k m ) ffH (p, ) 
2  da (2-20a)

k' a2 21ra n ma cos2ncB nm
2pdpd

.2._ nf~~l P o Uo

o n nm)

(2-20b)

c ko,_a 2Bn 12 72

: " 0 nrm n m7 a0 OJ n/ 2a) 2pdp (2-20c)

aT

Jn(Jnm )2  o

P_ 20knm-a Bn0Jnm-1 2 a n(nm (2-20d)
(. 7_aj- nim

2 ~ mI
r FO (ka)(alma)a

2  n2P j_ 7IB ° 2Jm 2J ~ m (2-20e)

P0 jnm)2n m

We assumed a unit incident field, which has an incident poweri i 2 / co
density of 2 E .IZ o  so the normalized power flow becomes
(normalized to the average power flow and the area of the waveguide
mouth)

P 1 (ka)( ,a)( n2 2 (2-21)

( a2) :7 (j m)2 - nm 2 2-
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Similarly, for TM modes, we obtain

1 Fcno m nm da (2-22a)
P 1 = k nm 2 J

-ok.(am)2  2 a Jn(Jnmp/a) 2 2
7 _ nm(~ -j f 2

O0 OIA'pdpd4

(2-22b)

1,-o kFc nm j m) IAnm I a
4 1o_ 2 f Jn(nmP/a)2pdp (2-22c)

0 Jnn(Jnm ) n

_ (.a2o 211[#o knm(Jnm I n m I2
P (J nm 2  [a .j.(J nm) 2  (2-22d)

_______ _______ 2 2 ,2

P 1 (ka)(anma) 2 (2-23)/I I = 7 j2 JnmI 2-3
v OO ( 2 ) nm

The power flow coefficients are plotted in Figure 2-8 for the
first three TEim and TMIm modes, for axially incident plane waves.

The reason for the behavior of the on-axis cross section becomes
somewhat clearer, since we see that the TE modes all couple much
more strongly to the axially incident planimwave than the TM modes.
Hence, the region in which they are enabled exhibits a much Are
dramatic variation due to the size of the change of power absorbed.
[Weinstein (1969), p. 151] discusses this behavior and proves that
asymptotically the optical cross section equals the sum of the ab-
sorption cross sections for the TElm modes. Figure 2-8 can be com-
pared with Weinstein's Figure 53.
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B. Off-axis Behavior

The radiation patterns of the various waveguide modes have
been produced in the literature; all that is produced here are a
few curves for comparison. Figures 2-9 and 2-10 with ka=4 can be
compared with (Weinstein (1969)] Figures 46 and 48. Figure 2-11
and 2-12 with ka=12.77 can be compared with [Narasimhan (1979)].

Of more practical importance is the relationship of these
radiation patterns to radar cross-section. As is discussed in Section
II-C, the radiation pattern of a single waveguide mode in a certain
direction can be seen, by reciprocity, to be directly proportional
to the coupling of an incident plane wave from that direction to
the appropriate waveguide mode. If, for the moment, we assume that
the cylinder is terminated with a perfectly conducting flat wall,
each propagating mode will be reflected back to the waveguide mouth
unattenuated. For a monostatic radar system, this will mean that
at some angle, which happens to couple well to a particular waveguide
mode, that waveguide mode will radiate equally well in that direction.
Therefore, it becomes of considerable importance to know the directions
and relative strengths of the coupling coefficients of the various
waveguide modes. Obviously, for 6=O, we can see from Figure 2-8
that the TE11 mode dominates all others. From Table 1-1 we see that,
for increasing waveguide diameters, the TMoI. TE21 , TM11 , TEo0 are
the next modes to propagate. In a manner analogous to Figure 2-8,
the relative importance to radar cross-section for these modes is
shown in Figure 2-13. However, Figure 2-13 differs in that the
direction is varied for each mode so that the incident field is
assumed to come from the optimum direction. This direction is plotted
in Figure 2-14. For example, for D/X= 1.5, the TE01 has a maximum
for E at 300, the TMoI and TE21 modes also have maxima at 300, but
for Ee. However, the relative magnitudes are 0.7, -6.8, and 1.0
dB, respectively. Figure 2-13 might be termed the cavity cross-
section, since it is the contribution to the RCS which coupling to
and radiation from a single mode would produce, assuming that only
that mode contributed to backscatter. Naturally, this is not true,
as other modes will contribute to some extent, as well as the direct
backscatter from the rim. We see that for on-axis scattering, the
"cavity cross-section" produced by the TEll mode is remarkably similar
to that of the disk.

For an incident plane wave, we have from Equations (B-9) and
(B-10) (which give the coupling of incident plane waves to the axial
waveguide field)fnm (O4I'I)f(P,@'z)

/ =(2-24){ vo Hz/Ei j nm (Oi'4i)g(Pcz)2
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From Equation (B-17), (which give the radiation patterns for the
waveguide modes) we obtain scattered fields of the form[ : COE('sos) CeH(es 4) Enm ikr

Conside _COEes,os) COH (e5,s I) i L i-Hnm e r (-5
!0

Consider first the topline of Equatimn (B-9).

E J n(JU p/a) -icn Zz Anm(eioi)cos no n -y-- e nm (2-26)
E n

This gives us Enm ) in Equation (B-15) except for the

direction of propagation. If we assume perfect reflection, and
ignore the sign change, (since we are interested only in magnitude)
this leads to

s ikr
e = (s,s)Ae ( i)e (2-27)EI =OE( n o r

The RCS becomes

E
22

=  i E41Er(0 )1J E-(- 2 (2-28b)

Since we chose oi=7, we likewise set os=7 and vary e=ei=es to its

optimum value. Note that for computations involving Anm and Bnm

there is a sin no dependence in the modal fields. To adjust this
to conform with Equations (B-15) and (B-16), it is necessary to rotate
the coordinate system. This results in radiation patterns evaluated

at os = Tr. Hence, we obtain, for the remaining three cases:

os = 7/29 oi = i ' es =ei = e (2-29)
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oo = icE(es s)1 nm(Oi i~)2

¢s = n/2, €i = 7 ', = 8i = 6 (2-30)

a= 41T 1CH(es1s)12 Bnm(i, ) 12

¢s = € =  '  es =  ei =  0 (2-31)

The backscatter directly from the rim is discussed by [Chaung
et al (1975)]. They used a pulse radar and extracted the RCS of the
rim based on the first return pulse. The agreement between theory
and experiment is better in some cases than others, but fails to match
the detailed pattern. The normalized RCS can be derived from Equations
(B-1) through (B-4) as follows.

E = See E e ikr (2-32)
2

alim 4i r 2 IE. (2-33a)

- 4 1soo12 (2-33b)

2
ia = l eel 41T i e (2-33)

Similarly

ar _ 2 (2-35)

Comparison of Figures 2-15 and 2-16 with Figures 2 through
5 of [Chuang et al (1975)] reveals that despite use of the complex
scattering form, and more accurate computation of the factorization
functions, some substantial discrepancies still exist between
theory and experiment. Possihly the exolanation is that
any real cylinder must, of necessity, have a finite wall thickness.
[James and Greene (1978)] showed that this leads to substantially dif-
ferent results than obtained with the infinitely thin "knife-edge".
Of course, the accuracy of the measured results is a possible source
of discrepancy.
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C. Reciprocity Considerations
It is evident from physical considerations that there must

be some relationship between the coupling of an incident plane wave

to a waveguide mode, and the waveguide radiation pattern of that
mode. This will be shown by the reciprocity theorem.

From [Harrington (1969), p. 116-117], if the current ja produces

fields (Ea,Ha), and current Jb produces fields (Eb,Hb), then

- ;(Ea x H- E x Ha).ds = fff(Ea.j b - EJa)dv (2-36)
s v

where the surface and volume are of finite extent. Generally speaking,
reciprocity is applied to sources and matter of finite extent. In
this case, however, the matter is of semi-infinite extent. Usually,
it is shown that the surface integral vanishes far from all matter
and sources. In this case, we will assume that it vanishes external
to the waveguide, and thus need only evaluate the 'power flow'

(E x H ) inside the waveguide.

First, we apply reciprocity to determine what source will produce
a plane wave incident on the waveguide. We assume that there exists
a current dipole, impulsive in space, of either e or 4 orientation,
located by R - (ee, 4=6 , r=R), where Ro >> a R X X, as shown

in Figure 2-17. This dipole produces a far-field a? the origin of

Ex= I1 i e k '01 (-cose (2-37a)

E ikI, e ikIr-oI 0  (2-37b)
o : 471 F- oI
-o kl ik I Rol I'-sineo

E z  0 =k e 0(2-37c)
o47 I F-T ol

for e or $ source unit vectors, respectively. Hence, to produce
a 'plane wave' of unit amplitude in the vicinity of the origin, it
is necessary to set
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Figure 2-17. Sources for incident "plane-wave"t.
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F = -j kI T e' (2-38a)
0 0

fE7 i4rR -ikR
IF _ T e (2-38b)

110

For source a we choose

a T 6(a-) 0 (2-39)

I. Iwhere

6(0-e0 ) 6(o-) 6(r-R0 )
( = r-r -ITi)n=e- (2-40)

Let us first consider TE modes. These have fields given by

Co J n(3nmP/a) cos no +" i L

H o'Jpa) -sin n-

E ikna 2  Jn(JmP/a) sin no e + iOa m z  (2-41b)p enm2 Pjn(Jm) Cos no

E -ika Jn(Jnm p/a) ,cos nO (2-41c)o 3 nm Jn(Jn )  (sin no)

Ez = 0 (2-41d)

H- =e e - anmz  (2-41e)
= Tnm Jn sin n
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nminnm z

+ o inma 2n Jn(JnmP/a) -sin e  (2-41f)
+ 0 JnJnM) \cos n4

4-ji 0' Z
nmn

where e means the fields propagate toward the waveguide mouth
-icn'mz
e means the fields propagate toward.-

Let the b source be located within the guide at z = -L, as shown
in Figure 2-18.

= 2 nm e nmL Jn(jnmp/a) cos 0

o n--nm Jn(Jnm (sin nD

- na Jn(JnmP/a) {-sin n' 6(z+L) (2-42)

-n'm Pdn Jnm \cos n

This current source will generate the appropriate TE mode of unit
amplitude propagating toward the waveguide mouth. It will generate
the same mode, of equal amplitude, propagating toward the infinite
recesses of the waveguide. Note that since the leading sign on Hp
and He changes with direction of propagation, the discontinuity in
tangential H exactly matches the surface current. However, Ep E
and Hz are all properly continuous.

Next, according to Equation (B-lO), an incident plane wave

with () polarization produces a field inside the guide.

o oo nmooa
Ha = fBn~mCO n m e nm (2-43)

o n Bm cos n ninm)

According to Equation (B-17), the TEnT mode propagating toward the

waveguide mouth produces a far-field 'Iattern

b .1eikr /o
E = e r Hnm . (2-44)
b 04E C
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Plugging the currents and fields into the reciprocity equation,
taking the surface and volume indicated in Figure 2-18, we obtain
the following result. For 6 incidence Ha has sin n@ dependence,
so we take the bottom line of Equations ( -41) and (2-42).

0 2 a -ict' Z
fff EaJ dv = I f f Bn ,--e
v n m -co o 0 nm

J nrImp/a) J'j' p/a)na n n(nmP- dnT n 1. cos n¢ n(n ), sin n

' iL"a ia Jn (n' p/a)
2 0 ianm nm an nm(~nm ~cos

o nm m nm

31an(jnmP/a)
j n(Jnm ) sin n 6(z+L)pdpddz (2-45)

We invoke the orthogonality of modes to assert that the sum-

mation reduces to a single term, as this integral vanishes except
when the mode and current have the same radial wavenumbers and azi-
muthal dependence. When this is satisfied,

2Tr 27t
f cos 2nod: f sin 2ndo = T (2-46)-

0 0

If; y 8 ika nm 2 0 inma "inm
.jbdv B B rrnm -,j-- e

v nm V i nm

a 2 (Jn(J 'p(jnnmP/a) 2
f (nn n (jnm ) pdp (2-47a)0 Tn- p jn(inm )  " n(Jm

2- Bmkainma a (n2a 2 Jn(Jn p/a)2  2

n m Knn 
+m 2)~

0+ jn(JmP/a)  dp

(2-47b)
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2lBnmkaam a a 2
- pan(Jnm /a)2dp (2-47c)

o o

Jn (Jnm)2j nm2

'n8 ka ' a C., nm 2 2 o  (2-47d)

i nm 0

b
Since E is generated by a field with a sin n dependence, this will
rotate the radiated field generated by COH by w/2. Hence, we evalu-
ate COH with a cos n4s dependence.

C0H eikr E0  i4rR0 e-ikR
fff E J dv fff r CkHv "v -TC 0 - - g ) d

(2-48a)

e ikRo i47R0  -ikRo (2-48b)
=F7 COH TRo k

k - C (2-48c)

This surface integral within the waveguide becomes

x H ).ds

271

= f f (Eax Hb - x Ha) • pdpd as z -c (2-49a)
0 0

211 a a "ab_ a b b a b a)= f fLT o -(E pH E - (EpH -E Hp)] pdpd (2-49b)

0 0 1

H b

We observe that H a B nmHz
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Then, since each of E E H and He are based on Hz, the fact
that they are scalar Multiples forces the integral to vanish identi-
cally. Thus we are left with

Ikaaaa 2(j'm2-n2) €e B 4l i rim e (2-50a)

3Iim4  Bnm =T o CeH

:cH - i ka2-' a a2 (jn e
! (Hnm jnm (2-5b)

A (j,, nm

which can be seen to be satisfied by some simple algebraic manipu-
lations.

* For a $ incident plane wave, we note that Ha has a cos n depen-
dence, so we take the top lines of Equations (2-41) and (2-42) for
both the current and waveguide fields. This results in exactly the

same integrals for both Ea. b and Eb.ja, with 0-€ so that

A - i2  (j 'm n2 -n2 )

CH 2nma  B (2-51)

which is satisfied identically.

For TM modes, we begin with

Ez = (jnp/a) rcos 01 e-tanmz  (2-52a)
n(Jnm) Lsin n

E +inma Jn(Jnm p / a )  os n0 +"i m

E +ia nm Jn(nm)  sin (2-52b)

E + inm na2  J n(Jnmp/a) f-sin n ltz (2-52c)_ n- m 2 pjn(Jnm) tcos n e
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Hp - n- m Pnm/a sin n e (2-52d)
cnm on'- cos n

ika 'o J'znm +"

H = i A e (2-52e)
i nm P'o Jnim s in np

H :0z

+i nmz

e n propagates toward mouth (2-52f)

-ia nmZ
e nm propagates toward -

Let

b Eo ikae L na Jn(Jnmp/a) -sin n412/bi= 2_oiae n na

0V o JnmJnJnm Jnm L osn, J

- Jn(jnmp/a) i 6(z+L) (2-53)
n ~sin n4

This will generate the appropriate field traveling toward the wave-'
guide mouth. However, to generate the discontinuity in tangential
H, the leading sign on all terms must be reversed for the mode
traveling toward the infinite recesses of the tube. However, as
before, this is of little importance since it contributes nothing
to the reciprocity integral.

The incident plane wave generates fields

a fAe cos n¢ dn(Jn p/a) -ianmz
E = nm . e (2-54)

Azm sin n4 n(jnm)

The modal fields radiate
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r6b fOE E ek (2-55)
E b C nm

0 = E n r )
For the ^e incident field we obtain

-lcIiz

ff 0 0i a im n m

p/a n) 2 ianmL

+2~l~ Ae nm 0 ika e
inm p p 0 inm ,Jn

nmp a) N
~ J~sim'a2+ n '((i 2 / a pdp (z-56)
inm p nn

0 nm nm pjn.2jnm /a2 d(-6)

am 2 n a2 0 nimpa

f - AnmP /'a) 2 pdp~) (2-56b)

im i



4

2 _ A (2-56e)

Jnm

^a=~ (~e E eikr -i4IR ° e ikR°

ff E J dv =- 0-C- r e 6(-Ro)dv

(2-57a)

._[En 47rI

= T_ CE (2-57b)

Equating these leads to

I T, knma 4 -- A C 4i (2-58a)n Am n 2  417 OE T

0 imnm a4

CE -ik2 tnm a4  A n (2-58b)
OE 4jr nm

nm

Finally, for $ incidence, the field generated has sin n depen-

dence, forcing us to the bottom line of the current and field distri-
butions (Equations (2-52) and (2-53)). The integrals all end up the
same, resulting in

ik 2cnma 4

C 0(2-59)CE- 4J nm2 nm

Therefore, we have demonstrated the relationship between coupling
of incident plane waves to waveguide modes and the radiation patterns
of waveguide modes.
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CHAPTER III
SCATTERING BY A REPRESENTATIVE ENGINE-LIKE

OBSTACLE IN A WAVEGUIDE

This chapter is concerned with scattering by a simplified model
representing an engine geometry in the intake duct. The model consists
of an infinite circular waveguide housing an axially symmetric cone
centered on a flat plate, both perfectly conducting, as shown in
Figure 3-1. This model is based to some extent on observation of
the Pratt-Whitney J-57 turbofan jet engine, on display at the Air
Force Museum, Wright-Patterson AFB, Ohio. In this study, it is
assumed that the TE11 mode is incident; similar procedures could
be followed for any other incident mode. The coordinate system is
centered at the base of the cone, as shown in Figure 3-2.

The calculation of fields scattered by the cone in situ would
be known completely if one knew the exact currents on the obstacle.

-The scattered fields can be obtained straightforwardly from the dyadic
electric Green's function and the dyadic magnetic Green's function,
based on the integrals given by [Tai (1973), p. 9].

T(R) = iw 0 ff1 'el(RR').J(') dv' (3-1)

FR(R) = [ m , ' dv' . (3-2)

Although the source singular term for the dyadic electric Green's
function is still being discussed in the literature by[Yaghjian (1980)]
and others, the Green's functions at points not near the source can
be obtained unambiguously from residue series expansions. These
expansions consist of a double summation over n(azimuthal index)
and m(radial index) of terms representing TE and TM fields, both
propagating and evanescent. Hence the coupling to a given mode can
be determined by a single integral, allowing one to obtain either
Ez or Hz, based on known currents. Mathematically this can be ex-
pressed as follows: Omitting the source singular term, one can write
(using Tai's notation)
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-Figure 3-1. Basic geometry for engine scattering model.

AP

n

A

Figure 3-2. Coordinates system and dimensions for
scattering from an axial conducting cone.

57



(e nt"0-- ff' -;e ( ,1 N +k-)Ne n(+kx)+
n =0 m=1 n "  XX o

+ -Re (+k )Mne' (;k )

for z <>z (3-3)

Gm2(ZiR') = x gel

I - I C n 0, 2^ 0,, ^(k~feX ;

n=0 m=l X kXIx 0 0

+ XNe (+k )Ne'. (;kU)
2ki o - 1 np

for z z' (3-4)

where

j= J'/a X = Jnm/a

nm nj =- 1 a 2X
k - 2 =  r k X = k2 anm

Ip: a2l-2/nm)n(Jn )2 X) :aJn(Jnm)2

k= k

C = n=O
2 n=1,2,3...

IJ(h) represents TM electric fields or TE magnetic fields; 1R contains
an axial component

RW(h) represents TE electric fields or TM magnetic fields so that
R is purely transverse.
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For example, for a single TE mode, we can obtain

Hz,n,m =  -"ff 9m2(RR)J() dv'

- 42i .n(tk ) fff Ren (;k ).(') dv' (3-5)
4wi 2kI1 0 n~ 1 0 nj

and similarly calculate E using Gel* The elements of Gel and Gm2
are written out in Appendix C.

Because of the difficulty of and restrictions on previous
solutions for current, a new technique of solving for currents was
explored. A few cases have been previously solved with great effort.
For example, [Tesche (1972)] solved the problem of a skewed wire between
parallel plates by using images. [Wang (1978)] used the dyadic elec-
tri2 Green's function to solve for the currents in an arbitrarily
shaped dielectric body inside a rectangular waveguide. [Harrington
(1961), pp. 402-406] gives a variational technique to find stationary
formulas for scattering using approximate current distributions.
He applies this to a post in a parallel-plate guide. Unfortunately,
this method requires computing the self-reaction of the assumed
current distribution, which in most cases is equally as difficult
as solving the problem exactly, since it requires computing the
electric field generated by the assumed current in the source region.
Hence, no computational advantage is obtained over solving directly
for the actual current by the method of moments, or some similar
technique.

In principle, the problem can be solved by the method of moments
by assuming the current distribution to be a collection of a series-
of pulses with unknown weighting coefficients, calculating the elec-
tric fields generated by these pulses, and adusting the coefficients
such that the tangential electric field vanishes as the surface of
the obstacle. The problem with this approach, as pointed out by
[Wang (1978)], is that for coplanar field and source, the dyadic
electric Green's function converges extremely slowly, if at all,
in addition to the problems involved with the source singular term.
Convergence of the residue series is enforced by the axial propagation

m1mz~z'I wihbcmlz-z'
factor e , which becomes e , for large enough m.
For coplanar source and field, this factor becomes unity. In Wang's
case the problem was solved by summing the resultant series (without
the convergence factor) in closed form. In the case of the circular
waveguide, we have a Fourier-Bessel series whose summation in closed
form is not readily apparent. For example, the z component of Ge1
is given by
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ia mlz-z'I. 2- e 3 nm
elz co 0n: elnnm Jnm2aJn(np/a)Jn(nP'/a)cos n¢ cos n '.

elz,za en*~ f 2 , 2 43 (n p/) ni nn=Q m=l ax k 3nO ( ) a n ln ~o ~csn'

(3-6)

Taking asymptotic forms for J and Jn(), assuming n=l, for coplanar
source and field point, we obain

Ji I ' (M+;4)W (3-7

Jl(x) m V± cos(x-3f/4) (3-7

-. cosk c s ' 
I(l+ os((m+, )wp/a-3I/4) cos((m+ )i p'/a-3/4).

elz,z k~2 m ~~

(3-8)

It seems that even if p and p' are different, this series does not
converge. The series does converge for real objects after inte-
grating over volume currents of finite extent, since integration
over p' results in dividing the asymptotic terms by (m+ )), and
integration over z multiplies the element by the differential dz,
forcing the coplanar elements to make an infinitesimal contribution.
The reminder of the integral is well behaved, due to the convergence
factor for noncoplanar points.

This extremely cumbersome process seemingly cannot be avoided.
However, poor convergence in the source region suggests a similar
problem in free-space scattering, and the superior convergence of
the magnetic field integral equation (MFIE) over the electric field
integral equation (EFIE) for most obstacle scattering problems.to.-to fore- Sr -ffuto,
We therefore proceed, analogous to the MFIE o orce s = n x H

just outside the surface of the conducting body and n x Htotal= 0
just inside the surface. As with the MFIE, taking the mean at the
surface results in dividing the current by two. Assume the current
consists of a collection of pulses of arbitrary weighting

is akP(r rk)Uk (3-9)

where ^ is a unit vector tangent at the surface at rk, and p(T-rk)
is loca~ized near rk. Then
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'RS(R) = fff Gm2(RR).Js(,) dv'

= Z ak ff gm2(RRk')'uRP(k-) ds' (3-10)
k

Enforcing the boundary condition

-ftotal = x -i + ^ x 

n xi = -Js - x s

n x fi(R) = u n x i m u (fR'.k -r' ds'

(3-11)

We can then enforce this condition as many times as necessary to
obtain the required number of equations to solve for the a k's. The
advantage of this approach is found only by careful examination of
the convergence properties of Ge1 and Gm2. The least convergent

term in Gel goes asymptotically as m sin mx, but the least convergent

term in Gm2 goes as I sin mx. After integrating over the surface,

we obtain sin mx or cos mx, which are convergent. Hence, we canm m
work with surface, rather than volume currents, and construct a
relatively simple code. Adjitionally, there appears to be no dispute
concerning the behavior of G in the source region.

m2
With the geometry shown in Figure 3-2, we define

LP +bz

FL 2-2

1 L 0 b -bP+L2 (3-12)
2 2 7 2L+ b 0100 1 0

Assume the current consists of the sum of pulses
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N
-s L akt P(P-Pk) +k2. bk P(PPk) (3-13)

k=l k=1

where p(p) is a triangular pulse function. This current distribution
is shown in Figure 3-3. Then using Equation (3-11), we obtain

n x Hi ak[t P(P-Pk) - n x f m2( ,').t p('-fk )ds']

+ + k k) x JJ 'm2 (R,R')'^ P(R'-rk) ds.

(3-14)

Next, to employ Galerkin's method, we generate 2N equations by multi-
plying through by each basis function and integrating over the surface
S, to obtain

JA
ui.n x If Wi( )p(-F ) ds =

N

akIbk[ fP (7-7 k)P(R-rq dS (ui'l)-ui'-nxfffn(T-_rq)gm2 ( ' ' '

N k1

• p('- rk)dSds] (3-15)"

q =1,2,...N

i = 1,2

where Ul u2 = t "

Thus 2N linear equations for the 2N unknown coefficients a and bk
can be obtained, which can be straightforwardly solved by Tinear
algebra.

In order to further speed computation, elimination of unknown
currents in the backplane can be obtained by using the method of
images. Instead of the original problem, we introduce an image such

62



04

a 3 P4

a.-P

Figure 3-3. Current pulses for moment method solution
of scattering by cone.
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that the image of the cone has image currents on it, and the image
incident field is assumed to be present, as shown in Figure 3-4.

This automatically forces nxEtotal=O and n.Htotal=O in the backplane,
hence reducing the amount of coplanar integration necessary. With
this technique, we obtain g solution for the currents on the cone,
then integrate these with Gm2 to obtain the H-field in the backplane,
hence the currents in the backplane. The current distribution thus
obtained is shown in Figure 3-5. It would be extremely difficult
to measure this experimentally, and constraints of time and money
prohibit this verification.

The fields in the region of the cone-base termination can be
approximated in the spirit of the WKB approximation, if the cone
is slender enough, and the cone diameter varies slowly enough with
axial position. At each axial position on the cone, it is assumed
that appropriate TE fields exist for an infinite coaxial line of
the same inner diameter. Since Ez=O, this guarantees x E = 0 on
the cone and outer waveguide walls. The radial wavenumber is then
computed by solving the characteristic equation

J (pb) Yn(pa) - Y(jib) Jn(ua) = 0 (3-16)

for the smallest positive p, with b the inner diameter and a the
outer diameter. The values of 11 are plotted in Figure 3-6. Next,
the scalar wave equation for H is approximated by assuming that
v(z) varies slowly enough so t~at we can neglect the coupling of
V(z) through the radial function. Suppressing the azimuthal depen-
dence, let Hz = R(p,z) Z(z). The scalar wave equation

1 a (aHz _ n2  32H z  
2  (3-17)

Pap a 2 Hz +--z 2 + k 2Hz  0

is approximated by setting

aR(p,z) = 0 (3-18)

az

so that the wave equation reduces to

'2R + I R (,2_ n Z(z)*(k2-02)R(p)Z(z)0R(p) 2 0.

(3-19)
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Figure 3-5. Currents induced on cone in circular waveguide with
incident TEll mode, L/a=2.0, b/a=O.5, ka=2.0 solution by

dyadic magnetic Green's function.
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Since it was assumed that R(p) was an appropriate combination of
Bessel functions, this reduces to

a2 Z 2_ 2+ (k )Z = 0 (3-20)

Since p(z) is a known function, based on the local radius, this
equation can be integrated numerically to obtain Z(z). The results
of this numerical integration are given in Figure 3-7. Finally,

to normalize the radial function properly, fIR(p,z)1 2 da must be
constant locally at all cross-sectional planes. Subsequently, H
He, and H can be determined at the inner conductor, and hence tge
surface c6rrents J tan and J, which are shown in Figure 3-8.

There are several limitations to this approach. Since H, = 0
on the inner conductor but H 0, n • 0. Maxwell's equations
are only satisfied approximately, not exactly, since the coupling
of v(z) through the radial functions was neglected. The behavior
of the fields near the tip of the cone was approximated very loosely
since it was assumed that the field consisted only of incident and
scattered TEll modes immediately beyond the tip.
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CHAPTER IV
CONCLUSIONS AND DISCUSSION

The problem of predicting the radar cross section of jet intake
cavities in a spectral region where the cavity aperture is of resonant
dimension has been approached via the exact Wiener-Hopf solution
for a semi-infinite waveguide. Exact (numerical integration) RCS
computations have been presented for the semi-infinite circular wave-
guide for electrical diameters from zero to three wavelengths. These
computations smoothly join high frequency asymptotic results and
also serve to define the region of validity for the simpler asymp-
totic models. Therefore one of the matrices in a generalized scat-
tering matrix development of the scattering by a finite loaded circular
waveguide has been completed. In the process, the nontrivial relation-
ships between two earlier studies of the semi-infinite cylinder have
been developed and certain errors in a publication from one of these
studies have been corrected.

The coupling coefficients relating an incident plane wave to
internal waveguide modes have been extracted from earlier studies,
recast in a more convenient form, and evaluated in the resonance
region. The predominance of the TE modes over the TM modes in power
absorption for axial incidence has been demonstrated. The relative
importance of the five lowest order modes for non-axial incidence
has been demonstrated graphically. The relationship between the
coupling coefficients and the radiation patterns of the waveguide
modes has been established via the Lorentz reciprocity theorem.
The relationship thus demonstrated is that the radiation pattern
and the coupling coefficient for a given mode at a given frequency
and polarization are proportional. This is of particular importance
to RCS calculation since a given waveguide mode will couple to and
radiate efficiently in the same direction and with the same polari-
zation.

Modelling of the leading surface of a jet engine as a cone
on a flat plate inside a circular waveguide, we have computed the
currents on this obstacle, by using the method of moments and the
dyadic magnetic Green's function appropriate to the interior of a
circular waveguide. The reflection coefficient for an incident TEll
mode has been calculated based on these currents at selected fixed
frequencies.

It therefore remains to apply these results to Equation
(1-8) to solve the radar scattering problem in a self-consistent
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fashion. This is done for some illustrative cases. First, fixing
a perfectly conducting flat plate at ten radii down the waveguide
from the mouth as shown in Figure 4-1, the RCS has been computed
while varying the diameter from zero to 1.5 wavelengths. The normal-
ized RCS is shown in Figure 4-2. In Figure 4-3, the normalized RCS
is shown for the case when the waveguide diameter is one wavelength
and the flat plate varies from two to ten radii down the waveguide.

Discussion

The calculation of scattering from the inlet mouth and coupling
to internal modes has been performed modelling the inlet as a circular
duct with infinitely thin walls and a knife-edge rim. In practice
inlet rims have a finite wedge angle, and are very rarely circular.
The major inadequacy encountered in calculating rim scattering for
the knife edge by ray optics proved to be the underestimate of the
peak just above cutoff of the lowest order propagating mode (comparing
Figures 2-4 and 2-5). Unfortunately, for arbitrary geometries, there
seems to be no simple way to patch up ray-optics to solve this problem.
Since the frequency range this occurs in is low, it may be possible
to evaluate this region by moment method techniques. Although this
was not done in this study, we can see that the ray optics approxi-
mation does work well provided we are sufficiently above cutoff of
the lowest order mode. For circular geometries, this condition is
that the diameter is greater than one wavelength.

Because of the reciprocity relations demonstrated in Section
II-C, it is clear that discussion of radiation patterns and coupling
coefficients are redundant. The calculation of radiation patterns
has been discussed by [Weinstein (1969), pp. 139-150]. Weinstein's
comments on the use of Huygen's principle for calculation of radiation
patterns indicates that in the transition region (near cutoff)
Huygen's principle performs poorly, and worse for TM modes than TE
modes. As Figures 2-13 and 2-14 indicate, the relative importance
of TM modes to backscattering from cavities is very far below that
of TE modes, and limited to angle far from the forward direction.
For all practical purposes, forward scattering in the transition
region can be calculated using the TE1 1 mode, adding the TE2 1 and
TE01 modes as requirements may dictate. The reason for this can
be grasped physically by considering Figure 1-3. For modes higher
than m=l and for all TM modes, the oscillation in sign across the
waveguide cross-section forces the average interaction to a very
small value, regardless of incidence angle. For m=l modes, the vari-
ation due to cos n dependence can be seen to lead to an optimum
angle, from which the aperture fields appear to be nearly of the
same sign.

For non-circular geometries, the primary conclusion we might
draw is that the appropriate low-order TE modes will dominate scat-
tering in the forward direction. Since Wiener-Hopf solutions are

72

................................-



E'Q

Figure 4-1. Geometry for self-consistent scattering problem
using flat plate.
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not available for these arbitrary geometries, it will probably be nec-
essary to construct moment method solutions for near cutoff frequen-
cies. Higher frequencies can probably be adequately approximated by
ray-optic solutions as done by [Pathak and Huang (1980)], for example.

The impulse response waveform given by Figure 2-6 indicates
that rim backscatter is really only significant for times of t<5a/c.
Furthermore, this short time response can be reasonably approximated
ray-optically, confirming our earlier statement that high-frequency
scattering can be adequately modelled ray-optically. The low-
frequency scattering, which is not ray-optic, corresponds to the
long-time response, which is typically of little interest.

Having enumerated the difficulties in calculating scattering
coefficients for object inside waveguides, it becomes clear that
much work remains to be done. The use of the magnetic field dyadic
Green's function and appropriate boundary conditions provide some
improvement over use of the dyadic electric Green's function, but
it is still very expensive computationally. The possibility of
azimuthal asymmetry (for example, a blade structure) has not yet
been addressed. One might model the blade structure axisymmetrically
by using boundary conditions in the backplane E^ = 0 and J = H9 = 0
and at the outer wall J (P=a) = - H (p=a) = 0. This allows radial
currents and azimuthal E-fields to exist, but not radial E-fields
or azimuthal currents. It further forces the axial current to vanish
at the tip of the blades. For a structure with 28 blades, for example,
it would require an extremely large diameter waveguide before signifi-
cant azimuthal currents could flow on the blades. One problem in
implementing this study would be that the image procedure used in
Chapter III to eliminate coplanar integrations could not be used,
and it would be necessary to integrate coplanar source and field
points. Another approach would be the use of the free-space Green's
function, to analyze the structure. In this case it would be
necessary to also set up currents and enforce boundary conditions
at the waveguide walls, thus vastly increasing the number of current
elements required. Another possible approach is to segment the
obstacle structure and use waveguide modes appropriate to coaxial
waveguides near the obstacle. However, the convergence properties
of this approach are unknown.
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APPENDIX A
EVALUATION OF WIENER-HOPF FACTORIZATION FUNCTIONS

The factori2-,ion functions L+(a), and M+(a), are defined as
being functions which are analytic in the upper half of the complex
a-plane, which also satisfy the equations

L+(c)L+(-a) = iJn (ya)H~l)(ya) (A-1)

M+(a)M (-a) = 1iJ(ya)Hl)'(ya) (A-2)

where y = k2 - a2 (Einarsson et al, Equations (5-33), (5-34)).
The exact function can be evaluated by numerical integration [Mittra
and Lee, (1971), p. 107, Eqs. (9.8)]o The approximate evaluation
of these functions proceeds in two different regions, for which the
Bessel functions are approximated differently. Section A-1 deals
with exact numerical integration. Section A-2 deals with low-frequency

:1 approximations. Section A-3 deals with high-frequency approximations.

A-1. Exact Numerical Integration

The exact expression for L+(c), is given by

= e l00+ic tn[-,iJn(a i Hl) (a k-)]dZ}L+(a) = exp T,- _f z-a
- ic

Z-ci (A-3)

where -Im(k) < c < Im(a) < Im(k).

Before proceeding further, however, we note that it would be very
beneficial to not have to integrate out to -. We note that, for
Re(z)>Re(k), the arguments of the Bessel functions become essentially
imaginary. From Abramowitz, Equations (9.6.3) and (9.6.4)

- i ni

Hl)(ia )k = - e Kn(af ) (A-4)

80



AD-AIl 496 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFS O$4 F/9' 21/5BX
ELECTROMAGNETIC SCATTERING BY OPEN CIRCULAR WAVEGUIDES.(U)
1900 T W JOHNSON

UNCLASSIFIED AFIT-CI-80-69D NL

m iillEEEE/IEE2N2

illlinllllll



I r
J iav' 7 ) e= lna7iT(A5

n

where Kn( ) and In( are modified Bessel Functions.

Taking asymptotic forms (Abramowitz Equations (9.7.1) and (9.7.2))

inn inn
e- eT - ii2 T na zV_2 ) e7 In(a) z2_ 2 )

II

j e - K a z 2  k  e -k2

eaVk

s'2 e

1 (A-6)
a z2k 2

We are integrating n(az -2-k2 ) from k to -, but would prefer to inte-
grate ln(1) from k to =, since it is trivial. Hence, we form the
eq uat io n

-ia V L+()L+(-a) = iryaJn(ya)Hl)(ya) (A-7a)

V-ia k+a)L+,(a) /-ia(k-a)L+(-a) = nYaJn(ya)H 1 (ya) (A-7b)

We can evaluate this by the same integral, except that the argument
of the logarithm becomes very close to 1 for Re(z)>Re(k). Taking
c+0

Ina7kaF4L+(cl)kz2exl{(Uk2-f2)
' = Z-a dz

(A-8)
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Similarly

-i a ) ( z-

(A-9)

These integrals have the advantage that we can essentially integrate
on the range where -(ka+C) < z < (ka+C) and the total error thus
introduced can be made negligible by proper choice of C.

The complex value of k requires some thought. The argument
introducing this imaginary part is given by [Einarsson (1966),
p. 1473. The correct answer is defined as the one obtained in the
limit where Im(k) - 0. For the purpose of numerical integration,
two routes present themselves. We can either allow k and a to have
small but finite imaginary parts, or we can attempt to integrate
in a symmetric fashion about the singularities at z=a and z=k, when
they lie on the path of integration, and add in the appropriate
residues. In fact, the first alternative was chosen. It was evident
that the factorization functions must be smooth, hence slowly varying
as functions of complex k and a. Also, experimentation with values
of loss tangent indicated the results were relatively insensitive
to the loss tangent. Hence, for purposes of numerical integration
complex values of k and a (being k0 and ao) are defined by

ko = (1 + i.005)k (A-i0)

00 = a + i.0025 k (A-11)

The results of numerical integration for values of n (the order of
the Bessel functions listed as n in Table A-l) ranging from 0 to
3 are presented in Table A-l. It was found, by way of confirmation,
that there was excellent agreement with both DC and asymptotic forms.
The $M+ function is defined by

$M+( a) = a(k + a)M+( a) . (A-12)

It remains finite as k * O.
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Table A-i
VALUES OF FACTORIZATION FUNCTIONS L+ AND M+ COMPUTED BY

NUMERICAL INTEGRATION

n D/1X / Re L+ Im Re M+ Im
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n D/X /k Re L+ Im Re M+ Im

1 3.1 0.3 1.355 0.036o f.1419 3.0735
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n D/X a/k Re L+ Im Re M+ Im

.. 0.014i 0.3b4b 1.0738 0.4423
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.b721 .55C 0.1793 0.0219

2 5 3., 5a 0.5''o 0. 5C4 0.2514 n.n569
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n D/, c/k Re L+ Im Re M+ Im

. 0. -. 0.5791 0.000 0.,,14 5.4965
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A-2. Low-Frequency Approximations

Derivation of IDC' forms for the factorization functions is
not difficult. They can be obtained directly from the small argument
approximations for Bessel and Hankel functions. For n 0 0, we get
(Abramowitz, Equations (9.1.7) and (9.1.9))

L+(a)L+(-a) = RiJn (ya)H l)(ya) (A-13a)

n n

n

Zii -i "l) (A-13b)~n (T) n

1 (A-13c)

1
L+. ), . .- (A-14)

M+(a)M+(-a) niJn(ya)H(1)'(ya) (A-15a)

1ya n-l
7T_-_ i n! n

t it (n-l)! "7 n+ I b2 (A-15b)

-n

-n (A-15c)
a2(k 2_ 2 )

M+ a) Za-Tr (A-16)

For n = 0, we note that

Jo(Z) = - Jl(z) (A-17a)

H(l)'(z) - H)(z) (A-17b)
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Hence,

M+(n=O,k,a) =L+(n=l,k,a) (A-18)

From Abramowitz Equations (9.1.7) and (9.1.8), for n = 0

L+(i)L+(-i) = ( iJo(ya)Hl)(ya) (A-19a)

ffi.l. 2i n(ya) - 22n ya (A-19b)

-ln(a 2(k 2_a2)) (A-19c)

The factorization of this DC form is non-trivial. Based onrWeinstein

(1969), P. 335-36] we may approximate L+() z i, In a/2k k+) for
<< k << 1.in(2ka)

Having thus obtained the first low-frequency approximation
with ease, it is extraordinarily difficult to obtain a better approxi-
mation analytically. Lee, Jamnejad, and Mittra present a simple
derivation. Unfortunately it does not agree with the results of
numerical integration. This can be seen by comparison of their
formulas with the plot in Figure A-1, which shows the trajectories
of L+(k) and M (k) for n=l computed by numerical integration. The
inclusion of additional terms from the small argument approximation
does not improve matters. The approach taken, therefore, is that
for small values of ka, the values of L+ and M are computed by
numerical integration, and interpolation is used.

It turns out that, for L (n=l,x==k), the values over a surprisingly
large range (0 < ka < 2) can be approximated by

(1-i'0584 ka)
I+i.68 ka)

However, this does not admit any generalization, nor does it possess

any theoretical justification.

A-3. High Frequency Asymptotic Approximations

Using the large argument approximations for Bessel and Hankel
functions, we obtain (from Abramowitz Equations (9.2.17) through
(9.2.20))
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Figure A-1. Factorization functions L+, M+, $M+ for n=1, a=k.
Arrows indicate increasing k.
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* L+(c)L+(-t) = wrij (ya)H~')(ya) (A-21a)

=Trim (-ya)cosO (Ya)Mn (ya)e e n(ya) (A-21b)n n n

= ii 2 i2en(ya)
=-(M (ya)) (1+e )(A-21c)

M+(cz)M+(-x) = lriJl(Ya )H~1).(Ya) (A-22a)

= iriN (ya)cos (Ya)N (ya)e i~~a (A-22b)
n n n

(N (Ya) (1ae (A-22c)

Where, from Abramowitz, Equations (9.2.28) through (9.2.31)

M (z)2  L 1[ + ___ I] (A-23)

O(z) z _ (n + 1 + n 1 (A-24)

Nn(z) 2r 2__ (A-25)
~ ~ L 8z2

For L+(cz) we observe that we can separately factor the two expres-
sions, making L+(cx) the product of two factors, both of which are
analytic in the upper half-plane.

L()=LI(a)LII (a) (A-27)
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2|

L+(o)L+(-(): _ Mn,(Ya)

i2 In2-_ 4 '
+ 8 a2(k2

2t2_1

k2 4n 

2

8a

'P8

Hencey by anpcto

2/ 22 4n2- 2_1
____ ( 2k a +

k + 1 a

Hence, by inspection &i (kaK n1 ca 2 A-)

'a(kt a(k+) (A-29)

+ vr/4(k-k2+! a JkQa)

Similarly

I Mri N(_a))
M+(a) = N( 2

a, 2 k2 _a2 4 2_3l~~i 2 ~ ( 2 a2

(k a 2  i2 T- aa)(A-30)
ak2 a (ka2 ) A-0
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2a2  4 n2"3 +

M (c) ei r/4  8ka +aa

,a(k+a) a(k+a)

In evaluating LI (a) and M+I(a), we follow the derivation of Mittra

et al, (1975) .

Lii~,.II i2B (ya)

L 1()L (-a) = 1 + e n (A-32a)

+ (a)M+ (-a) = 1 + e 2 n (ya) (A-32b)

The exact expression for L+I(a) is given by

J L+(a) exp - z- a dz (A-33)

Let

.n(l + ei2n(Ya dz (A-34)

Then the identity

co m+l m
ln(l + x) 1 (A-35)

m=l

can be used to obtain

I OD1m~ i2m n (ya)

m=l Za f e dz (A-36)

provided Im(en) a 0.
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Let

e 2mG (ya) d
IM f eo dz (A-37)

where

6n(-ya) -.rya - (n IT + 842_ (A-38)

ya a Fk~' (A-39)

Let

z =k sin-u (A-40a)

dz =k COST dr (A-40b)

ya = Z2 k2sin2r ka COST (A-40c)

The contours of integration in the z and Tr plane are shown in Figures
A-2 and A-3, respectively. The contour in the T plane is selected
so that ya has the right sign, and the integrand vanishes at both
ends of the contour. The contour in the T plane is then deformed
to the steepest descent contour. Since no poles are passed over
in this deformation (for Re(ci)>O) the integral is unchanged. Hence

i2mO (kacosT)
=m f jkin kcosi dT

f COST i2mBn (kacosT)
f cst e ndT (A-41)
CSPsinT -f

with B (kacostr) =kacosT - n + 14 7 +4n2-lsi(A42

Let XL 4n2_1 (A-43)
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IImz

C aX

Rez

Figure A-2. Contour of integration in the comfplex z-plane.
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c SDP

ak

I-s iTi Ret

Figure A-3. Contour of integration in the complex T-plane.
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Im is an integral in the form

2 F(r) e dt
CSDP

where F(T) =COST (A-44a)
sinT - k

K = ka (A-44b)

i2mn (kacost)jn f(T) = ka

i n XL

= i2m(cosT - (n +) 7a + LL (A-44c)

This can be readily evaluated by asymptotic techniques. We make
a first approximation by ignoring the pole near the saddle point.

XLsn

f'(Ts)=0 i2m (-sinT + X ) (A-45)
COS T

Ts = 0 (A-46)

2
Then f"(T s) = i2m(-cosT + 2-cos )

cos3

= -i2m(l-XL) (A-47)

The asymptotic value of the integral is then

I',re ) e(S F(TS) (A-48)

where 7 is the angle of the CSDP through the saddle point.
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i2me (ka)
f(s) = kTa- (A-49a)

F(r k (A-49b)

f"t(T' s -i2m(l-X L)  (A-49c)

Thence

i 2m n (ka ) e-in/4 V 2mka1_(A)50)
I m -P e e ((-X L ) aA50

m i2men (ka) -i/4

I=m -(-)m e e (k) f
M= 1 m a (m1F- XTL

k e ir/4  O - l1m ei men(ka)k- e~ e a _L

aaXL m=1 m3/2 (A-51)

The indicated sum is shown by [Chuang, Liang, and Lee (1975), p. 773]
to be a modified Lerch function. They present a development of its
przperties and a transformation to simplify its evaluation.

i2me (ka) i2 mp
m -l em3/2  :m:nl e 2 : L(p,3/2) (A-52)

M--l m M=l I mT

where +imy + i2men(ka) = i2lmmp

e n(ka) 1
or p = - + T (A-53)

This function has two useful and simple properties. Since the
parameter p appears only in the exponent, and
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e i2I1I1p+i2n = ei P

*L(p+l,3/2) =L(p,3/2) .(A-54)

Furthermore e i2-m(l-p) = e- 
2 -ump

L(l-p,3/2) = L*(p,3/2), where *denotes the complex conjugate.

*1 (A-55)

By using these relations, it is possible to transform any value of
p to the range 0 <p <S 0.5. In this range, the series solution is
extremely accurate

i (1-v7r/2 m
L ~rpl-v) i m (\-,)(2,rp)m' 6

L~p~v)(2,ffp \T- +m=0 A-6

For \r=3/2, this gives

L(p,3/2) = -21 vrp.(l-i) + I (R n + ilnp)pn (A-57)
n=0

where values of.Rn and I n are given by Table I of Chuang, Liang,
and Lee (Note sign error in Equation (35) of Chuang et al (1975)
corrected here).

We can similarly find an asymptotic form for M+(cz). The analysis

is identical with 'n (ka) replaced by on(ka) and XL + XM = 4n 2+3 2
4,(ka) 8(ka)2

This results in p =+ 1/2. Otherwise the expression is
unchanged. I

+.1@ I exp ( IiLM- (A-58)

Where

I e-ail/4 L) L(p,3/2) p =+1/2 (A-59a)
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k / iT 4n(ka)
IM= e- i /4  L(p,3/2) p - +f 1/2 (A-59b)

M -M

A comparison of these results with those obtained by numerical inte-
gration is instructive. For a=k, the agreement is very good down
to the first zero of Jn(ka) or J;(ka) (for L+ and M+ respectively)

if the proper form of B n(ka) or n(ka) is chosen. This is illustrated

in Figure A-4 for M+(n=l, a=k); the exact value of M is compared
to that obtained by using the two term and three term approximations
to * (ka). It can be seen that a rather sharp minimum occurs for
the Ixact form of M+ for that value of ka for which J'(ka)=0. For
the two-term and three-term forms of 4l(ka), the minium occurs at
the value for which cos~l(ka)=O. Thus, the more accurate On or @n
should, in general, lead to a more accurate approximation for L+
or M+.

L and M are also functions of c/k; we must explore the ac-
curacy of this approximation when this ratio varies. This is impor-
tant since a/K = cosB for scattering, radiation, and coupling problems,

3nmand o/k =1 - ( ) for coupling and radiation of waveguide modes.

In Figure A-5, the value of L.(n=l) is plotted in the complex plane,
where the main curve traces out the real and imaginary parts of L+
with opk and D/k as a parameter. The dashed curves then indicate
the trajectories which occur when varying a/k while holding ka (or
D/X) fixed. It is immediately evident that the preceding approxi-
mation does not, in general, capture the nature of this behavior.
The reason for this can be sqen from Figure A-3. As c/k varies,
the pole located at T = sin (a/k) moves closer to the saddle point
at Ts=0. We totally ?gnored this pole originally. Without belaboring
the point, it will only be stated that rederiving the approximation
incorporating the effect of the pole produced only a marginal im-
provement. It was therefore necessary to include two terms in the
asymptotic expansion. This derivation follows.

With the same definitions of C,f(T) and F(T), we have the
asymptotic approximation
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Figure A-4. Factorization function M+ for n=l, a=k,
calculated by numerical integration and asymptotic

approximation based on two and three term
expressions for phase of

Bessel function.
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Kf(Ts) iSIm - e SV eF n(,s)

[13f (T)(T)5"T
+ iA (1 - (KA)) 14 F(Ts) 3f"() 3

f f,,,C S F,,(T S)'(T (A-60)

Sf'(T S) 1!
where f(X) is the transition function defined and discussed by
[Kouyoumjian and Pathak (1974), p. 1453]. A is a distance parameter,
relating to the separation of Ts and Tp, defined by

A = i(f(Ts) - f(Tp)) (A-61)S p' I

J The saddle point is unchanged, so Ts=0. The pole is located at

T= sin-a (A-62)

We thus derive Table A-2.
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TABLE A-2

SUMMARY OF ASYMPTOTIC FUNCTIONS AT SADDLE POINT IN T-PLANE

Function form Value at T 5=0

X
qf(T) i2m(cos -(7 + l4)-r + Li2m(1_(n + 1)r + XL

COS ST4'Fa L

f (T) i2m(-csT+X L 0-o~

COS T

f () i2m(sin +X L r- ~6-cos T)) 0
COS T

f (iV)(T) i~m(cos +XL CO)-0sT2 i~m(1+5XL

F(T) COST - k/a
siflT-c/k

P() a/k siriT-1 _k 2

(sin-r-a/k)2  C)

Fie (T) -a/k silTCOST-(a/k) 2 cosT+2cOST k~ 2()

(s inT-a%/k) 3  a1 a
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ifTS fTp

=i.i2m(COST n( + 1)71 + L~r -(COST (n + +)7 L~i)

(A-63)

COSTS1

2m1X 1 -(a/k)2 + X )

2m(2 V, I-(a/k)2

2 1- ,a/+1 (A-64)

Jei2meO (ka) 2

+ iA1-ikaA)[~- k 3i2m [1+5L .i2m[ +L

3(i2m[-1+XLI)

+ 2 k2  .!(1-2(.- 2

co i2m(-I+X L)j A6a
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k ~ m 1/2e mO(ka)

1+5X+XL

1 T-0 kaA)141(-I+X L) 2+ _IX(16b

Def ine

A = m6

6 = 2 I1-(a/7k- 1 + X L( 1(tk 2
-(A-66)

k 2
A0=-

3+9XL + 8(-) (1-X (-7
Ao 8(1-X (A67

A ek i 1/4 (A-68)I

Im .pfemn){ + A06(1-q1(mka6)) (A-69)

m+

I m= 1

m~ (-A,) ei 2ma(ka) (+ (-~k6)

Ae n 112mO(+(ka)

m= m Ai

.Al (L (p,3/2)+A 06G(p,q)} (A-70)
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where

G(p~q) m- n 31 'e ~~P1-..(mq)) (A-7l)
m= 1

1 p= O k)+ 1/2 (A-72a)

q = kais (A-72b)

We could follow exactly the same analysis to obtain M+, except that

en (ka) n(ka)

4n +3 (-3
XL -I Xm = (-3

L ~ 8(ka) 2

These formulas produce a very good agreement with the results of
numerical integration, down to cL/k=0.2.
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APPENDIX B
SUMMARY OF WIENER-HOPF COUPLING AND SCATTERING COEFFICIENTS

The coordinate system chosen in these equations is that des-
cribed in Chapters I and II. Hence, although the results are derived
from Einarsson et al (1966), they have been transformed into our
coordinate system.

B-1. Direct Scattering From the Rim

These coordinates are cast in the form

Is

E~ S S E
i~~i 00 0(B-1)

Where both Es and E1 are expressed by

etk . + ^E) (B-2)
r (E

+ikr s
where e is for E

-ikr i
e is for E

The expressions presented in Appendix B are all asymptotic in the
sense that they are far-field and valid only far from the waveguide
mouth (kr >> 1)

S2i cos Jn (kasine i) an (kasines)
S60 - n s  sineiL+(kcos-i) sinOsL+(kcosOs)

(l'cosei) (l'c°Ses) f2

2(cosOi+cOSs) ln 2 (B-3)
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2i J' (kasineO. I~ains

~ COSOS n=O M4+(kcoseiT) M+(kcoso5)T

(l+cose1)(l+cose5 ) f[2(cose.+cose6sT + n(B4

4i O J~ (kasinO) J'(kasinei) ~
-o k1+cose) s~~5f sine L+(kciis-Os) M+(kcosei) 2

(B-5)

0_____ JI(kasine5  J~ (kasine.) f

(bS4 e =-k(l+cos6 S) n=1 lf 5 s +T- Ts-s sine iL + kco-sO 7 1_f 2

n

(B-6)

Where

oi 7 r is assumed

f nL+(k)(B7

en = 2 n 1,2,3... (B-8)

It was found that Chuang et al (1975) contained several misprints.
A correction letter is reproduced on the following page.



AP If-44 Gal. I

Correction to "'High Frequency Scattering from an Open-
Ended Semi-Infinite Cylinder"

C. A.CHUANG, MEMBER, IEEE,CH ARLES S. LIANG,
MEMBER, IEEE, AND SIIUNG-\U LEE,

SENIOR MEMBER, IEEE

In the above paper I 
, there were six sign misprints.

1) Time factor should have read exp( -iwt).

2) In (I), x should have read (-x).
3) In (4), (1 + cos 0) in numerator should have read (I -

cos 8).
4) In (7), (cos 8 + cos 80) should have read (-I)(cos 0 +
cos 00).,
5) In (11), (a - &') should have read (a' - a).
6) In (35), (1 + i) should have read (I - i).

the above sign misprints do not affect any other
equations or numerical results.

The authors wish to thank T. W. Johnson and D. L. Moffatt
for bringing some of these errors to their attention.

C. A. Chuang is with Aeronutronic-FordWDL, Palo Alto, CA. He
is now at 552 Solitaire Dr., Indialantic, FL 32903.

C. S. Liang is %%ith the Fort Worth Division, General Dynamics, Fort
Worth, TX 76101.

S. W. Lee is with the Department of Electrical Engineering, Univer-
sity of Illinois, Urbana, IL 61801.

I C. A. Chuang, C. S. Liang, and S. W. Lee, IEEE Trans. Antenna
Propagat., vol. AP-23, pp. 770-776, Nov. 1975.
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B-2. Coupling of Incident Field to Waveguide Modes

With the same definition of the incident field (as in Equation
(B-2)) the axial fields within the waveguide can be represented as
follows:

AnmC°S n Jn(JnmP /a) -icanmZ

E Z n=O m=l Anmsin n - r(J e (B-9)

nnm

B e sin no jn(jip/a) _icmZz o Om n m )  e nmlz

o n=O n nmn (B-10)

Jn(Jnm )=0

J (j m)=O

k 2

2, 2 Jnm2

nm : ma2

The top line of Equation (B-9) indicates that E. produces
Ez with cos no dependence

The bottom line of Equation (B-9) indicates that Ei produces
E with sin no dependence

-e i ma n L+( rn i(kasiInGj) f 2 (anm+k) (l-cosO:)
A = Enm a  +(kcose i) kasin i  + 2(ani )

nmi. 1-f nm-kcosOi
n

(B-1l)
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A4in in L+ (a fm

nm kcnm a (l+cosoB) M4 kos 1  1'ki 1'

4 n m M+(,'im) Jn(kasinei)~

B +4i kctnm (1 2 L+(kcose1)T kasinei 1-f2813

a nm nmn

jnm

f2 (k-a' )(l+cose.)
_______________________ m 1(B-14)

2- + ?(CEos6i-ctnM)

A B-3. Radiation Patterns From an Open Waveguide

ji The incident field is assumed to be a single waveguide mode,
either TE or TM, with axial fields given by

E n -P/a) cos 0~ e m (8-15)

H 1 = ~ ( H n / cosn0 e nm(B-16)

The radiated field is given by
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CE c e- ii En 1 kr(-)

OCE OHL Inm ij

CE (i)nl nk 2 ka 3cos 0 s L+(ctnm) Jn(kasinO S)
c E 2inm L+(kcosU ) kasinO

f2 (am+k)(1-coses)1I [ -***n + 2(mko~) j(B-18)
Y 2( %M (kcos )k-f z

nn

(B-19)

c (i)nl a 2 ksin nof 5  L+(%xm) J'kasine fm n1cs5  +kcs~ (B-20)

C, -(-) 
1 kao fl5 M(c) J'(kasineH2(1+cose )(aci-k) WM-(kcos'e5) n s

E 7*~ + 2(kcosO -Ar) (B-21)
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B-4. Internal Reflection and Mode Conversion

With incident field as described in Section B-3, the scattered
field is given by

Jin(intp/a) -ian csz FE nH nm

e~ m mt L

Es = sn¢ T n j
FL,- H r

(8-22)

0n(jn'P/a -ianZ nE HE ]
oHn e sin n H Rcos no

SHnm

(B-23)

Rn= J~k 2' ' Ff (k+ia )(k+i.a
R _E n L+,(anm) L+(ani )  fn +( nm) (an9)

janmn lf 2  2k(nm+n)

(B-24)

nH OJntk+(c m)L+(ang) fnTm9 (B-25)
'n9ak-oLm) 1-f2

n

ka(k+n) fn
Tm'tn£ n2 L+(atnm)M +((anP) l'f2 (-6

2 1~~n

~~2)
nH k(k+atn.)M+(inm)M+ (n) nf (k-amt(k' ( -27)

Rmi = fl J-121 " kc~t (B-27)
m7 (k-i2)k -kanan)
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APPENDIX C
ELEMENTS OF DYADIC GREEN'S FUNCTION

FOR A CIRCULAR WAVEGUIDE

The dyadic electric Green's function, omitting the source-
singular term, is given by Tai (1971). It is assumed, in this appen-
dix, that the azimuthal dependence for Ep, E, , 3J, andH is
cos nh, and for E , Hp, and H is sin n. This zimuthal depen-
dence is understo d ad suppresse. The summation over n is also
suppressed.

0 imi (RRn n %mn JnJnm) 2 [ ETE]

i nml ZZslC+ e.2,. ,2- 2 [a ETM] (C-1)

inm )n 2 nm k

2 Jn(Jnm/a)Jn(jnmPs/aL) -P$ njn Jn(Jn'p/a)J
ETE=00" PPS a P

nj ~ ~ ~ sa ' J'j'/))j' a 2nm n(3nm /~n(3nms/a nm2
n J '' + ̂ ^ J(jp/a)J'(j'p/a)
a a nJnm nJ nms

(C-2)
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2.2n~ ~ ~ in/a)
- nm~n nm n_______
~EM ~ ~ J;(jnmP/a)Jn-(jnm s /a)-$ nm -a J Vnmp/a) P

+pz ia sgn(z-z )2! Jinm m/)J~ mnm Sa J.im/~nimsa

2~n jn J(ji~a) p/a) 2A J
2 J(ip/ a)Jn(jnmPs/a)

am p n nm s+ap 5

ja 2'mps/a)+#n

a p n P

ian 2~ Cin p/a) j p a

nm -7 gn(z-z) .2 U p i~np/a)

ia sgnnmJ(J) p/)n3
_^A nm snm l~n~s

a

+jj -.!2 zj ( ) p/ )j 2 (j p /a) ( 3
a^ n nm n nms

mzz - nm i~mpaJnmsa (C-nm3n

(C-4)

118



n jnm Jn(irim/a)Ia
UHTMP i~nm z z5  a p nnns

lctwisgnz-z) 2 Jn(inmp/a)Jn(jnmps/a)

PZ-nm n nm Jipa

a -P Jn nmps/

a

sgnz-n) 2J'jpaa(j p Ia)nm m n nis

ia~nms gn(z-z5) a J.(j nmp/a) p m

inm I
z '(nm/ani nm~s/a) (C-5)

GHTE pp icin,'sgn(z-z) a Jn ,np/a) PS(~ ~5 a

-P^ nm snm

a2  Jn(npaj'j~sa

',P1nm s PPS

_A^ 'n Ji (j r~ /a) ' r p Ia)
44 -a s ~nm pg~- )jIJ

.nj *2 j (jlp /a)
+ -fra Jn(ir~/a) n rnp s

a '
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