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FOREWORD

This report describes research supported by the Air

Force Office of Scientific Research and the Avionics

Laboratory (Air Force Wright Aeronautical Laboratories)

through contract F33615-77-C-1191 Project 2304, "Adaptive

Network Simulations." The work reported here was performed

during the period 1 September 1977 through 31 August 1980

under the direction of Principal Investigators

D. N. Spinelli, W. L. Kilmer, and M. A. Arbib. The report

was prepared by A. G. Barto and R. S. Sutton and released in

February 1981.

The objective of this contract was to study the

feasibility of using goal-seeking elements as components of

nachines capable of achieving intelligent, goal-directed

performance such as image understanding, speech recognition

and decision making. As such, much of the work is

,round-breaking and exploratory. The three main aspects of

the accomplishments are: 1) the implementation of graphic

and programming tools for computer simulation; these are as

imnportant to us as a particle accelerator is to a nuclear

physicist, 2) the experimental study of a great variety of

goal-seeking components analysed as isolated elements. This

napping of rules for adaptive goal-seeking has made clear

what will and will not work and why, pointing the way to
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further optimization of the elements. 3) The demonstration

in principle that small goal-seeking nets could be built out

of components that are themselves goal-seeking, and fur her,

that such nets are capable of substantive adaptive

behaviors.

We conclude that goal-seeking elements have unusual

power as components of goal-seeking nets. In fact, it seems

highly probable that only by using such components will we

be able to understand those sentient attributes of

intelligence, such as image understanding, that have proved

so resistent to Artificial Intelligence methodology. The

task o2 assembling adaptive components into sophisticated

structures capable vf truly complex performance in terms of

vision, speech and decision support remains for the future.

The Department of Computer and Information Science at

the University of Massachusetts in Amherst has provided a

unique environment for this project. St3te of the art

research in Artificial Intelligence, Cybernetics, Computer

Systems, and Natural Intelligence is ongoing in very strong

groups whose expertise we continually partake of. To them

and all others who have helped, our thanks.

D. N. Spinelli, Principal Investigator
Professor of Compiter Science
Univ. of Mass., Amherst, MA
Nov. 7, 1980
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SECTION 1

INTRODUCTION

It is traditional that man's most complex invention at

any time in history becomes a metaphor for neural function.

When the early computer studies of hypothetical neural

networks were undertaken, this role was filled by the

electronic digital computer itself. The view of a brain as

a computer was naturally accompanied by the associ3tion of

the neuron, usually considered to be the basic functional

component of nervous systems, with such computer components

as logic gates, transistors, or other devices that were in

themselves among the genuinely remarkable new inventions of

those times. Now, due to the extraordinary progress in

integrated circuit technology, the digital computer has

become conceptually manageable, shrinking in size and

becoming a familiar part of our lives, so that we have

little trouble thinking of an entire computer as a

"primitive" component of an even more complex system - a

distributed processing system. Among the profound social

consequences of this technology will be its influence on our

metaphors for neural function. Even using considerable
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imagination it is difficult to think of a room-sized machine

as a primitive component. That this same amount of

machinery can now be held in one's hand, however, sets the

stage for an entirely new round of neural theory. This time

it is natural to proceed on the assumption that neurons by

themselves are sophisticated processors consisting of large

amounts of internal memory and built-in programs for using

that memory to solve problems with which their environments

confront them.

We are not, of course, suggesting that a neuron is

literally built like a computer processor but only that its

level of processing power, implemented by means of ionic

processes, biochemical reaction systems, and other

mechanisms, may be more fruitfully compared with that of a

microprocessor than with that of a logic gate. Since a

microprocessor need not be programmed to perform very

complex computations, nothing precise is implied by this

metaphor. It simply raises questions about the level of

functional complexity at which one might place familiar

biological "primitives" such as neurons.

Some early attempts to produce machine intelligence

were based on the hope that networks of neuron-like

components could "self-organize" from initially unstructured

configurations. Some reasons for the failure of this
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approach to yield really interesting behavior were

chronicled (notably by Minsky and Selfridge, 1960, and

Minsky and Papert, 1969), and the mainstream of interest

largely shifted to the more symbolic approach that

characterizes most current artificial intelligence research.

While early network studies seemed to be concerned with the

components out of which systems were constructed, the

symbolic approach was not. Nilsson (1974), for example,

remarked that:

knowledge about the structure and
function of the neuron - or any other basic
component of the brain - is irrelevant to the
kind of understanding of intelligence that we
are seeking. So long as these components can
perform some very simple logical operations,
then it doesn't really matter whether they are
neurons, relays, vacuum-tubes, transistors, or
whatever.

Klopf (1979, 1981) remarks on how the point of view

expressed by this statement downgrades the neuron

(especially in light of the extraordinary complexity of

neurons that is being revealed by neuroscience research)

and, in particular, tacitly denies the possibility that

neurons might be performing more than simple logical

operations. In what we are calling the distributed

processing metaphor, the structure of the system as a

network of components is important, as are the functional

properties of the component processors. The emphasis is not

on how very simple components can interact to solve sorne

problems but rather on how components that are already
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capable of solving problems can interact to solve more

complex problems. It is the study of networks at a much

higher level of organization. Logic gates and transistors,

or other lower level physical components, may still be

unimportant (as long as the processors operate), but the

system's structure as a network of components is a central

concern. And self-orgainzation is again a central concern.

Control strategies are sought that permit meaningful

cooperation among the processors for problem solving. A

good example of the distributed processing approach to

problem solving is provided by Lesser and Erman (1979).

We therefore arrive at the view of a neural network as

a very large distributed processing system in which each

neuron, or microprocessor, is capable of solving certain

nontrivial problems by itself. The resulting metaphor is

vastly different from that which early network theorists

brought to their research. We have little doubt that this

mnetaphor will be replaced by others before we understand

animal brains, but it can form the basis of a very large

step from our current state of knowledge. But what sort of

problems might this neural microprocessor be capable of

solving?

In a 1972 monograph, A. H. Klopf described a theory

of memory, learning, and intelligence based on a view of
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neural processing that emphasized the fact that neurons are

living organisms that have survived a long evolutionary

process (Klopf, 1972, 1979, 1981). He suggested that

progress in understanding natural intelligence might be

achieved by a study of goal-seeking systems of goal-seeking

components. Instead of viewing any form of goal-seeking

behavior as an emergent property of a system composed of

non-goal-seeking components, Klopf suggested that

sophisticated goal directed behavior arises from interacting

components that are themselves goal-seeking and act

according to their self-interests. Adaptive capabilities

are thus pushed down the structural hierarchy to basic

levels. The biological correlate of this view is Klopf's

hypothesis that neurons are the goal-seeking components of

animal brains and that they possess behavioral strategies

permitting them to make progress toward their goals.

In proposing what a neuron's goal might be, Klopf takes

issue with the widely held view that homeostasis is the goal

of living organisms. Homeostasis is the condition in which

all critical variables are maintained within acceptable

ranges. Ashby (1960) identifies adaptive behavior with

behavior leading toward and maintaining homeostasis and

described a device called a homeostat that could maintain

homeostasis in the face of a wide range of environmental

perturbations. Klopf proposed that the goal of an organism

- .j.-
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is not homeostatic equilibrium but rather a condition in

which specific internal variables are in a maximal

condition. He proposed the term heterostasis to describe

the condition in which a given variable is maintained at its

maximal level.

Klopf makes a subtle but important point. Given

general agreement on the processes underlying the

evolutionary process, living organisms will possess

behaviors or strategies for maintaining environmental

conditions favorable for survival and reproduction. But

this does not imply that the goal-seeking strategies used by

an organism work directly toward maintaining conditions

favorable for survival and reproduction. Animals do possess

equilibrium-seeking homeostatic mechanisms, but the goal of

an animal may be quite different from homeostasis or even

survival. A direct goal of an animal may be to maximize the

occurrence of certain types of sensations. Which sensations

play this role in an animal's life is determined by the

differential survival of past generations. Depending on the

particular environment, the maximization of the occurrence

of certain sensations usually does lead to survival and

reproduction. But the direct goal of the animal need not be

survival and reproduction. Survival and reproduction are

side effects (but certainly not by accidentl) of an

organism's goal-seeking strategies.

-I..
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Klopf hypothesized that neurons are goal-seeking

organisms that use a particular strategy for maximizing The

occurrence of particular types of neural "sensations" and

for minimizing the occurrence of others. The strategy takes

the form of a rule for altering variable synaptic

transmittances:

After a neuron fires, it waits for a few hundred
milliseconds or more to see how it will be
affected by the action it has taken. If it
experiences further depolarization within a
second or so, it increases the effectiveness of
the excitatory synapses that led to its firing
in the first place, thereby increasing the
probability that it will fire the next time some
fraction of these synapses is active. If,
however, the action of firing is followed within
a second or so with the experience of
hyperpolarization, the neuron then increases the
effectiveness of those inhibitory synapses that
were active when it fired. In this way, the
probability of responding again to the input
configuration has been diminished. Thus, the
neuron views excitation as reward and inhibition
as punishment. (Klopf, 1981)

Klopf is suggesting here that a single neuron implements the

Law of Effect, or can be conditioned in an operant or

instrumental manner where depolarizing and hyperpolarizing

events act, respectively, like appetitive and aversive

stimuli. Klopf called a component operating according to

these principles a heterostat.

Our research has been directed toward determining

whether or not Klopf's theory can provide the basis for

progress in understanding adaptation, learning, and

. . . m , , , -I -
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intelligence in general. Has this type of component already

been investigated? Can devices resembling heterostats

interact to form higher kinds of goal-seeking behavior?

This report describes the conclusions we have reached and

contains some of the computational results we have produced.

Briefly, we have found that the class of learning rules

suggested by Klopf has not been extensively investigated.

It is generally believed that the important features of the

Law of Effect were incorporated into various learning rules

that were investigated with little dramatic success, but our

research has led us to question this belief for a number of

reasons that we explain in this report (especially Section

2). We think the potential for real progress using the

approach proposed by Klopf is very great.

Our research strategy has been one in which the logical

and mathematical properties of adaptive systems have been

emphasized. Although we have tried to make as much contact

with neurobiological data as is possible, we have not

attempted to model specific neural processes. The adaptive

components we have investigated have many neuron-like

attributes and were motivated by Klopf's neural hypothesis,

but we purposefully refer to them as "adaptive elements"

rather than neural models. Although an understanding of

electrical and chemical processing of neurons is increasing

rapidly, we think it is premature to propose an extensive

• .p'
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and detailed neural model. We argue that computations of

the complexity required are clearly possible at a neural or

synaptic level and that mechanisms of the required character

exist, but we do not rely on this line of empirical support.

We have instead concentrated on carefully specifying a range

of problems, and on designing mechanisms capable of solving

them. We believe that these problems are likely to be

involved in any attempt to produce systems that can adapt

and learn, including highly symbolic systems. We cannot say

that any such system must solve these problems using our

methods, but we do think that our methods are readily

applicable and can form useful parts of systems that are

more complex than those illustrated in this report. Our

illustrations were chosen for their simplicity and clarity,

and should be interpreted as simple examples of classes of

problems that can occur in a variety of different contexts.

The report is written so that an understanding of most

sections does not require the reading of preceding sections.

However, the sections are very closely related. Issues are

raised in some that are more adequately addressed in others.

A brief summary of each section is provided here.

Section 2 contains an extensive, and sometimes

technical, analysis of adaptive system theory in whic:h we

attempt to place various adaptation or learning methods,
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including Klopf's proposal, into a general framework. Our

analysis is not exhaustive, nor do we claim that it is

definitive. It represents our attempt to understand a

number of issues that arose in the course of our research.

Attention is not restricted to models of learning processes

cast in biological or neural form. A large body of highly

developed theory exists in the field of control engineering,

and we try to include problems and methods from this field

into our general framework. We make what we think is a very

important distinction between two types of search: those in

which you can recognize what you are looking for when you

find it, and those in which this is not possible. We argue

that although the perceptron learning rule (Rosenblatt,

1962) is often thought to capture the important features of

closed-loop reinforcement learning, it does not. Even aside

from the usual objections to the perceptron based on its

linearity, it is capable only of a very restricted type of

learning. We delineate a class of problems requiring very

general learning capabilities that has received very little

attention in the past. Systems like Klopf's proposed

neterostat are capable of solving problems of this kind and

have not been extensively investigated.

Section 3 is a roughly chronologically ordered

description of a number of learning rules we have

investigated. Rather than being a defense of all of these
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efforts, it is intended to help others who may become

interested in this approach; perhaps they can benefit from

our experiences.

Section 4 is a discussion of a learning rule that

incorporates some of the features of Klopf's proposal but

not all of them. At a particular stage in our research, we

felt that we had reached an understanding of certain issues

and could contribute to both adaptive network modeling and

animal learning theory. The learning rule described

includes some of the temporal dependencies suggested by

Klopf but does not implement a closed-loop rule whereby the

consequences of actions cause appropriate changes to take

place. We discuss the advantages of a form of reinforcement

different from that originally suggested by Klopf and relate

its consequences to data about animal learning in classical

conditioning experiments. We also discuss the learning rule

in light of physiological and biochemical data.

In Sections 5 and 6 we present computer simulation

results that illustrate the behavior of simple networks of

adaptive elements having some of the properties of Klopf's

heterostat. Section 5 contains a description of a problem

that we have called the associative search problem and a

network, called the associative search network, that can

solve the problem under certain conditions. Section 6
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illustrates the behavior of an associative search network

that controls locomotory behavior in a simple spatial

environment. We chose this example in order to provide a

graphical way of demonstrating the kind of problem an

associative search network can solve. We did not try to

model the locomotory behavior of any particular animal, nor

did we try to show all of the system's capabilities. It is

the simplest example we could invent.

Section 7 describes a system that illustrates some of

the more interesting consequences of learning rules that

take careful account of the temporal factors involved in

learning. The system is able to construct a predictive

model of its environment and then use it to evaluate the

consequences of proposed, but not overtly taken, actions.

We illustrate its behavior in a simple latent learning task.

Again, our intent was to illustrate in as simple an example

as could be constructed how networks can be synthesized to

perform this type of processing.

Section 8 is a discussion of goal-seeking systems

composed of goal-seeking components. We discuss in rather

speculative form how higher-level goal seeking behavior can

be expected to arise from collections of components that

always act according to their own interests. We discuss

what capabilities the components should have in order for

m | n I
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them to cooperate. The relevance of certain concepts from

the theory of games is discussed. We then discuss the

plausibility of Klopf's hypothesis from a biological rather

than from a theoretical point of view. Goal-seeking

strategies known to exist in unicellular organisms are

discussed.

Section 9 provides a brief account of the major

observations made in the course of this study.

The appendices contain information that either

supplements the main text or is somewhat peripheral.

Appendices A and B respectively contain a mathematical

analysis and a formal description of the model discussed in

Section 4. Appendix C presents the initial stages of our

efforts to develop adaptive strategies to alter some of the

parameters of the learning rules in order to accelerate

convergence. The results have not yet been integrated with

the major line of our research. Appendices D and E contain

detailed descriptions of the environment and adaptive

network, respectively, discussed in Section 7. Finally,

appendices F and G document some of the software research

tools that we have developed. The systems described are

interactive color graphics programs that allow the design,

display, and simulation of networks and spatial

environments.



SECTION 2

ADAPTIVE SYSTEM THEORY

2.1 Introduction

It is notoriously difficult to precisely characterize

those problems whose solutions can be said to require

adaptation or learning. One major criterion for calling a

problem or mechanism adaptive seems to be that it involve

some form of goal-seeking. The goal may be the maintenance

of critical variables within prescribed limits as suggested

by Ashby's characterization of adaptation as homeostasis

(Ashby, 1960), or it may be to show continued improvement in

performance according to some measure on the basis of past

individual experience as suggested by Holland's

characterization of an important aspect of adaptation as

function optimization (Holland, 1975) and Klopf's theory of

heterostasis (Klopf, 1972, 1979, 1981). Any problem solving

method might be said to have as a goal the problem's

solution, but the terms adaptive and learning seem to be

reserved for those methods that do not have built-in
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knowledge about exactly what the goal ij or how to obtain

it.

Rather than risk making precise definitions that are

likely to be revealed as inadequate upon more careful

thought, we focus on a number of specific examples of

problems and methods that are often thought to have

something to do with adaptation or learning. We present a

number of distinctions that we have found useful in guiding

our thinking about these problems and methods as we

attempted to compare and contrast them. Our perspective is

general enough to include most of the problems typically

regarded as requiring some degree of adaptation or learning

for their solution, but we do not wish to claim that all of

the problems we discuss are correctly so characterized. On

the contrary, we wish to provide a perspective general

enough to include significant adaptation and learning

problems as well as the most simple ones in order to

illustrate how restrictive many of the problems really are.

Despite our attempt to be as precise as possible, we do not

wish to give the impression that these distinctions and the

problem classification they imply are complete and

definitive. Our intent is to explicate the current state of

our own understanding.

Of the very many useful distinctions that can be made

V
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between various aiaptation and learning problems and

mechanisns, we have chosen to focus only on a few that we

tiiink have particularly great significance because they help

elucidate some of the folklore about adaptation and learning

that we think is misleading. One of our goals is, in fact,

to argue that both the view of adaptation as homeostasis and

the view of adaptation and learning as primarily function

optimization are inadequate in providing a perspective

complex enough to usefully elucidate even the simplest

adaptive or learning behavior exhibited by animals. Another

of our goals is to explain what we think is the fundamental

novelty of Klopf's theory of neural plasticity. As a result

of this selectivity, many important aspects of adaptation

and learning will not be adequately addressed, and we will

not attempt to discuss the enormous variety of special

methods and subclasses delineated in the adaptive systems

literature. It is also not our intent to provide a thorough

survey or an extensive bibliographical source. We suggest

that our remarks be interpreted as an initial attempt to

focus on a number of issues that seem to be frequently

misunderstood. In Section 8 is a closely related discussion

in which some of the issues we raise here are related to the

potential of different types of goal-seeking systems as

components of larger systems.

V
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2.2 Problems Versus Mechanisms

Our discussion is divided into two major parts. The

first focuses on various basic adaptation and learning

problems rather then on methods, algorithms, mechanisms, or

strategies. By an adaptation or learning problem we mean a

task with respect to an environment whose accomplishment

would be regarded as demonstrating adaptation or learning.

We therefore discuss problems by considering the nature of

the interaction between a system and its environment.

Problems are characterized by the kinds of signals available

to the system for influencing its environment and for

sensing its environment's condition, tne amount and nature

of a priori knowledge available to the system or to its

designer about the environment, and various characteristics

of what constitutes a solution to the problem. The second

part of our discussion deals with particular examples of

these basic problems as well as methods, mechanisms, or

strategies that are commonly used to solve them. Table 2.1

summarizes our view of these problems and methods in light

of the distinctions we make. Periodic reference to this

table may help the reader retain an overview of our

presentation.

We have found the distinction between problems and

methods useful since it is possible for a given problem to



ADAPTIVE SYSTEM THEORY PAGE 2-5

r

0 x

0 u

"a. 0 X

o 0

03

0 3

oo 0

4e 3

C 3.

0=

( C.

o) w 0

>433 4 3555> < 33 <<3 < 3333

~ 0

- 203

<0 030
(4 CL( 0. CU m

M00

4-' 03

do x - '
w3a.0



ADAPTIVE SYSTEM THEORY PAGE 2-6

be solved by several different methods, and it is possible

to apply a given method to several different problems. An

understanding of a method therefore requires knowing what

proulems it is capable of solving. In addition, most

adaptive systems consist of a hierarchy of components each

faced with its own basic problem. By first considering a

number of basic adaptation and learning problems, we can

discuss various familiar methods by describing the basic

problems their parts are designed to solve.

We leave open the question of what determines the

distinction between a system and its environment. Our view

is simply that any part of any system can be viewed as a

system interacting with an environment. Since a problem is

determined by the nature of the system/environment

interaction, redrawing the system/environment interface line

merely implies that what is then called the adaptive system

is faced with a different type of problem or the same type

of problem at a different level.

Perhaps the most important consequence of the

distinction between problems and methods is that it permits

us to consider separately two different types of limitations

on the capabilities of methods, mechanisms, or strategies.

On the one hand, a method may be limited in its ability to

solve problems of a given type that are more complex than a

. S.
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certain level. On the other hand, a method may also be

limited in its ability by being able to solve only a certain

type of problem. For example, the usual objections to an

adaptive system based on perceptrons rest on the fact that

tney can only perform linear discriminations. A very

different type of objection is that perceptrons, even if

they could implement arbitrarily complex discriminant

functions, are limited because they require an environment

capable of providing them with a speciific type of detailed

information. In this report we focus almost exclusively on

limitations of this latter type since they are not commonly

appreciated, and their discussion leads, we think, to

constructive and novel suggestions about how to solve

difficult and general adaptation and learning problems.

2.3 Basic Adaptation and Learning Problems

Figure 2.1 shows an adaptive system AS interacting with

its environment E. At each moment t of time the adaptive

system receives a stimulus signal S(t) from its environment

and sends an action signal A(t) to its environment. By

signal we do not mean a unidimensional form of stimulation.

The signal S may be a very complex multidimensional

sensation corresponding to some entire environmental

situation. Similarly, A may be a very complex action. We

have used broad arrows in Figure 2.1 to suggest a possible
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FIGURE 2.1. An adaptive system interacting with its
environment. The adaptive system receives stimuli signals S
from the environment and sends action signals A to it. The
broad arrows indicate a possible flood of information
flowing between the adaptive system and its environment.
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flood of information flowing between the system and its

environment. Adaptation and learning problems differ

greatly as to how much of this information can be used.

All of the problems we will discuss can be viewed as

special kinds of control problems if we accept the very

general description of a control problem given by Aizerman

et al.(1964) and quoted by Mendel (1970): "...the very

problem of automatic control as a whole can be considered to

be the problem of assigning the input situation to one or

another class, and to generate the optimal response as a

function of that class." In our terms, the input situations

correspond to the possible values of the stimulus signal S

and the possible responses to the values of the action

signal A. We will find it convenient to refer to the

concept of a control situation as defined by Mendel and

McLaren (1970) For our purposes a control situation is a

subset of values of the stimulus signal S for which a single

action, or "control choice", is optimal. In other words, a

control situation is a collection of sensory situations in

each of which the same action is best. The mapping that

associates to each possible situation the optimal action for

that situation is variously known to control theorists as a

switching function, switching surface, or control surface

(Mendel, 1970).
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This view is adequate for some of the observations we

wish to make, but a slightly modified view seems to be more

general. This view requires a shift in perspective from the

output of the system to its input (cf. Powers, 1973). Let

the adaptive system AS possess a preference ordering on its

possible stimulus signals. In the most general case there

may be a preference ordering only on sequences, or time

trajectories, of stimuli, but here we let the preference

ordering apply simply to instantaneous stimulus patterns.

This simplification prevents us from addressing some very

important issues, such as short-term versus long-term goals,

but is sufficient for most of the points we wish to

emphasize here. In terms of a preference ordering on

stimulus patterns, the problems we consider are all special

cases of the general problem of acting in response to each

stimulus pattern so as to cause stimulus patterns to occur

that are as preferable as possible according to this

preference order. We call the most preferable inputs

possible in any situation the optimal inputs, and we say

that a response is optimal if it causes an optimal input to

occur. The control surface assigns each stimulus pattern to

an action that is an optimal response to that stimulus.

Often a system's preference order is determined by the

magnitude of a real valued measure variously known as a

criterion function, payoff function, index of performance,
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or utility function. Larger magnitudes of this measure are

preferable over smaller ones. In some cases, reversed

measures are used, such as a measure of disutility, in which

case smaller values are preferable to larger ones. Tn

either case the resulting order is total: any value is

either greater than, equal to, or less than any other value.

Other problems are characterized by a partial preference

order: there are some inputs that are neither better than,

worse than, nor equal to some others. These problems often

arise if there is not a single measure but a set of Jistinct

scalar measures each characterizing a different aspect of an

input. In these cases it may not be clear w;3,. optimum

means since tradeoffs among the individual -easures may

occur. If a useful scalar measure can be assl;-ed to each

vector (as in linear programming), then - e problem is

reduced to the totally ordered case discuss-I above. If

this is not possible, or has no reasonable -.erpretation,

then the definition of optimality varies depe-..ng on the

application. These are multicriterion deci5. n problems.

Ho (1970) has suggested the term generalized con'-ol theory

for control problems with multiple criterion fun,-tions. It

includes vector valued optimization problems, game theory,

and involves such notions as pareto-optimality, Nash points,

cooperation, side payments, coalitions, and even trust and

threat. These are the kinds of problems that arise when

collections of interacting goal-seeking systems are studied,
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and the theory is extremely relevant to the research we have

begun. In Section 8 we extensively discuss the relevance of

multicriterion decision theory to adaptive systems research

and to theories of mental function. However, for our

present purposes we restrict attention to problems

characterized by total preference orderings.

2.3.1 Some Basic Distinctions

The adaptation and learning problems we discuss differ

in how the adaptive system can influence the control

situations it faces, how many different control situations

there are, how much about the control surface is known from

the start, and knowledge about the preference ordering. We

introduce a number of important distinctions based on these

features f a problem. The most obvious examples of each

type of problem will be cited in order to help make the

distinctions clear.

2.3.1.1 Nature of Control Over Input - Referring to Figure

2.1, a problem is open-loop if its solution does not require

AS to influence its input. In other words, the problem

could still be solved even if it were impossible for AS to

exert any influence over its input. Note that we are not

defining an open-loop probLem to be one in which AS cannot
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influence its input, but rather one in which any such

control is irrelevant. A problem is closed-loop if its

solution does depend on the ability of AS to influence,

however indirectly, the input signals it receives from E. A

problem is closed-loop if its solution becomes impossible in

tie absence of such control. Examples of closed-loop

problems are function optimization and feedback control

problems.

According to the general view we presented of an

adaptation or learning problem as one in which a system, is

controlling its input, it would seem that, bry this

definition, no such problem can be open-loop. This is

indeed true, but there is a general class of problems

usually associated with adaptation and learning that turn

out to be open-loop from a certain point of view. These are

the usual forms of pattern recognition problems, including

those solved by perceptrons and related learning rules.

Although these types of problems are very important, one of

the goals of our discussion is to distinguish them from a

very different class of genuine closed-loop problems.

It is useful to distinguish between two types of

closeJ-loop problems depending on the type of control AS has

over its input signals or its control situations. In

control theoretic terms, this is a distinction between

.. II WWMi
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different kinds of environment controllability. In some

cases the adaptive system can exert direct control over its

input signals. By this we mean that, from the point of view

of AS, E merely realizes a mapping from AS actions to AS

inputs. Without significant loss of generality, we can

assume that there is a fixed delay through the environment.

Then S(t) = f(A(t-1)) where f is a mapping from AS actions

to AS inputs. This implies that the response of the

cnvironment to any given action will always be the sane.

Another way of stating this is that from the point of view

of AS, E is a system without memory. Function optimization

problems are examples of problems in which this kind of

direct environmental control is assumed.

Other closed-loop problems are characterized by the

fact that AS has only modulatory control over its inputs.

These are problems in which E appears to AS to have memory.

Consequently, a given action by AS may produce different

environmental responses depending on the internal state of

the environment. Without undue loss of generality, we can

say that S(t) = f(A(t-1),Q(t-1)) where Q(t-1) is the

internal state of E at time t-1. Most control problems are

characterized by this property. For example, a thermostat

cannot directly force the room temperature to a given value

but can only modulate it.
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Most problems faced by biological systems also have

this property. One interesting class of such problems

consists of those arising from movement in space. If the

input to AS corresponds to an indication of its spatial

position, and an action corresponds to a movement, then the

spatial environment E can only be modulated. A given

movement does not take the animal to the same place each

time it is performed (unless it is a high level

go-to-place-X movement). The destination depends on the

initial location and orientation. A location and

orientation in space is an internal state of a spatial

environment.

2.3.1.2 Number of Control Situations - A problem may have a

single control situation, an infinite number, or any number

in between. The most useful distinction that can be drawn

here is between problems having one control situation and

those having multiple control situations. The function

optimization problem is an example of a one control

situation problem. The task is to find the minimum or

maximum of a (usually real valued) function. A mechanism

designed to solve a function optimization problem may

include parts that solve multiple control situation problems

(e.g. perform one action if the payoff value has decreased,

and another one if it has increased). But with respect to

the environment that evaluates the payoff function for each

V ---- - -. ,
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action of the adaptive system, the problem has one control

situation since there is only one function to optimize. The

performance of a given action always results in the same

function value. Pattern recognition problems are examples

of multiple control situation problems. Each control

situation corresponds to a pattern, and the task is to

assign each input signal to the correct control situation.

2.3.1.3 Control Surface Knowledge - A problem can be

characterized by the amount of knowledge available from the

start about the control surface. It is useful to

distinguish those problems in which there is complete

knowledge from those in which there is only partial

knowledge. The problem solved by a simple servomechanism,

such as a thermostat, is an example of a problem in which

the control surface is completely known and fixed from the

start. This is a multiple control situation problem (one

control situation occurs when the room temperature is too

high, the other when it is too low), and the correct action

for each situation is built into the thermostat: furnace

off in situation 1, furnace on in situation 2. This

specification of the control surface is based on a priori

knowledge about the nature of the environment. Here it is

knowledge about what a furnace does to room temperature.

The partial knowledge counterpart of this control problem is

known as an adaptive control problem. These problems occur

Vm
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when the dynamics of the environment are not known with

enough detail to permit the prespecification of the control

surface. In these cases, the control surface must be

determined from system experience

Any mechanism designed to solve a problem with partial

control surface knowedge must contain, at some level, a

component that solves a problem by using a completely

prespecified control surface. If this were not the case, it

would not be possible to consider designing a mechanism in

the first place. For example, at its lowermost level a

device might be trying to solve a problem with partial

control surface knowledge. A higher level conponent of this

device therefore faces the problem of synthesizing this

control surface and may do so according to its own

prespecified control surface.

2.3.1.4 Knowledge of Preferences - This is a very subtle

issue but one that is fundamental. In fact, we think this

issue deals with a major tenet of Klopf's theory which

includes the claim that homeostasis, or equilibrium, is very

far from being the complete story when considering the

adaptive behavior of animals. For simplicity in the

following discussion we assume there is a single optimal

input, but our remarks should be understood to apply to the

more general case in which there are different optimal

"I" I I I j il "' " *- 4 - '4 -- I g I I I
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inputs depending on the environmental state. Some problems

have the property that the optimal input is already known

from the start. In these problems, the system "knows"

exactly what it wants in Lhe sense that it can recognize it

when it finds it, but must manipulate its environment or its

own response system in order to make the desired input

appear. rhe problem is in this manipulation rather than in

the cha,-acterization of the optimal input. In other

problems, all that is known about the optimal input is that

it maximizes the preference ordering. Nothing is known

about the optimal input that permits the system to perform

it or recognize it "on sight".

These two types of problems are vastly different but

both involve the idea of search. Some examples may clarify

what we mean. Consider the problem of searching for a

specific item in a list, a particular name in a phone

directory, for example. The name is known from the start,

but the control over the phone directory is not direct. We

cannot approach the directory and command it to open

immediately to the appropriate page. A similar problem is

solved by a thermostat. The desired temperature is

determined by the setting, and the problem is to cause the

thermometer to register that temperature. This is analogous

to the task of causing the phone directory to present the

desired name to the searcher.
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These problems should be contrasted with that of

searching for, let us say, the best, most expressive

adjective to use in a specific phrase. If we know the best

adjective from the start, we can simply use it since we have

complete control over what we write. The problem is to find

the adjective that is best. All we know about it from the

start is that it is better than all the other adjectives.

This is a much different problem and would remain so even if

there were a well-defined, easy to determine preference

measure for adjectives, and even if there existed an

exhaustive alphabetically ordered listing of adjectives.

The crucial difference is the following: the search of the

telephone directory can stop when the desired name is found,

but the search for the best adjective ought, ideally, to

continue until every possible adjective has been

evaluated. In the former case, optimality is a local

property of individual trials whereas in the latter case it

is a property of the entire set of possible trials.

If the optimal input is known from the start, it is

often possible to define a measure of error in order to

guide the search. The error measure may have just two

values, signaling error or no error, as in the search of an

unordered list, or it may have many values which indicate

the magnitude and perhaps also 'the direction of error as in

the search of an alphabetized phone directory and the
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temperature control problem. We therefore call problems in

which the optimal input is known from the start

error-correction problems. We emphasize that the desired

input must be known a priori in order to define the error.

We call problems in which the optimal input is not known

from the start extremum search problems.

The profound difference between these types of problems

is obscured by the fact that error-correction problems are

special kinds of extremum search problems. If errors can be

ordered so that it makes sense to say that one error is

larger than another, then an error-correction problem can be

solved by minimizing the error which is an extremum search

problem. But extremum search problems that result from

error-correction problems all have a very restricted form.

The error function is either known to be unimodal (that is,

to have a single local minimum) or, if there are several

local minima, it is known that each locally minimum value is

equal to the global minimum (e.g., searching for any of

several items in a list). If the error function does not

have these properties, the error measure is not a good one.

These restricted types of extremum search problems can

be solved very easily using a method that can be viewed in

two ways depending on whether one emphasizes the

error-correction or extremum search aspect of a problem.
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The method appears as an equilibrium-seeking negative

feedback method if the error-correction view is emphasized.

Since the optimal input is known from the start, it is

possible to define a control surface that effectively sets

up a "restoring force" around the optimal input by means of

negative or "deviation counteracting" feedback. The method

consists of designing a servomechanism whose set-point is

the desired input. Negative feedback causes the resulting

servomechanism/environment composite system to have as its

equilibrium state that which produces the optimal input to

the servomechanism. When the extremum search aspect of an

error-correction problem is emphasized, on the other hand,

this same method appears as a simple type of gradient

descent procedure designed to minimize the squared error.

Like gravity, the restoring force appears as the force

causing the state to descend toward, and then remain at, the

nearest local mininum. However one views this method, it is

clear that it can successfully solve only a very restricted

class of extremum search problems. To understand these

restrictions most convincingly, imagine trying to use a

thernostat in an environment that determines the

temperature, and hence the error signal, by some unusual

function of the thermostat's action. The thermostat can

minimize only a very small class of such error functions!

To summarize, error-correction and extremum search

* ~ t
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problems differ in a number of ways.

1) An error-correction problem is solved when the desired

input is attained even if all of the possibilities have not

been evaluated. An extremum search problem, on the other

hand, is completely solved only when the entire range of

possibilities has been explored. Obviously, a search space

can be so large that the extremum search problem can never

be solved in practice. In such cases it becomes important

for the adaptive system to show continuing improvement or

sufficiently high cumulative performance. These

requirements can be thought of as other adapation or

learning problems requiring preference orderings on

sequences of inputs.

2) Any error-correction problem can be transformed into an

extremum search problem but not vice versa.

3) An error-correction problem can be solved by an

equilibrium-seeking mechanism. If the adaptive

system/environment system attains this equilibrium, or is

set to it, then the response of the adaptive system will not

change. On the other hand, it is often useful for an

extremum search mechanism to be incessantly active to

improve its chances of solving the extremum search problem

or for showing continuing improvement.

4) The hard part about an error-correction problem is not to

K _ _ _ _ _ _ _ _ _ _ _
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determine what the optimal input is but rather to cause it

to occur. The hard part about an extremum search problem,

on the other hand, is to determine what the optimal response

or state is. The general adaptation problem, and one which

seems to be commonly faced, may be to desire some optimal

situation and know neither what it is nor how to attain it!

2.4 Particular Problems and Methods

2.4.1 Pattern Recognition Problems

From our general perspective, a number of different problems

appear as the same basic open-loop problem which we call the

pattern recognition problem after its most familiar example.

Other examples are associative memory storage and retrieval,

certain forms of system identification, and the problem an

animal confronts in a classical conditioning experiment. By

a pattern recognition problem we mean a problem that is

similar in logical structure to the traditional

formalization of pattern recognition (e.g., Duda and Hart,

1973). Pattern recognition in a broader sense is really a

complex collection of problems. In the traditional

formalization, pattern recognition is treated as a

relatively passive process that does not involve the use of

information extracted from patterns for explicit control

purposes. All of the examples of what we are calling the

om-
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pattern recognition problem can be related to the

interaction shown in Figure 2.1 by assuming that every

signal S from the environment consists of two parts:

S = (X,Z) where both X and Z can be multidimensional

signals. It is convenient also to assume that Z can take on

a distinguished value called 'null' in addition to other

possible values.

PATTERN RECOGNITION - The pattern recognition problem

appears as follows: Xa, a=1,...,k, is a "training set" of

patterns having respective classifications Za, a=1,...,k.

For example, if each Xa were some representation of a hand

written alphabetic character, then each Za could be the name

of the correct recognition class label 'A', 'B', etc. After

a number of presentations to the system by the environment

of the pairings (Xa,Za), a=1,...,k, the system should

respond with Za to each input (Xa,'null'), a=1,...,k. That

is, it should "learn" to correctly classify the patterns in

the training set. Additionally, it should be capable of

generalizing from its training experience and correctly

classify patterns not included in the training set. Except

for these very important generalization capabilities, the

form of learning accomplished by pattern recognition systems

is the same as that performed by a standard computer memory:

for input (Xa,Za), Za is a data item to be stored at address

Xa so that during a read cycle, address Xa will produce Za

as output. The real problem in pattern recognition is, in
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fact, not really the problem we have just 5escribed but

rather the feature selection problem. In order for

meaningful generalizations to be made, patterns must be

represented by appropriate signals. For our present

purposes we view the problem of finding appropriate

representations as a type of problem different from the

formal pattern recognition problem. What is generally known

as scene analysis is, for example, largely concerned with

the extraction of useful features from visual patterns.

Hanson and Riseman (1978), provide a good view of current

scene analysis techniques. Duda and Hart (1973) and Mendel

and Fu (1970) provide good overviews of pattern recognition

methods.

Formulated in this manner, the pattern recognition

problem and related problems discussed below are open-loop.

They do not require the adaptive system to exert any control

over its input. However, it is common to view these

problems in an equivalent manner that does involve a closed

loop. In this formulation the environment presents the

system with each pattern Xa, to which the system responds

with some estimate Ya of the correct classification label

for Xa. Then the environment presents the system with the

error between the correct classification Za and the system's

estimate Ya. This error is usually Ya-Za, that is, it is a

signed error. Viewed in this way the pattern recognition



ADAPTIVE SYSTEM THEORY PAGE 2-26

problem fits into the general framework we are using. The

most preferable error is zero. We shall argue below,

however, that this closed-loop view does not really alter

the fundamental open-loop character of pattern recognition

problems. This is an important claim since the perceptron,

on which much early attention was focused, solves this type

of problem. We discuss the perceptron learning rule in some

detail below.

ASSOCIATIVE MEMORY - There are many different types of

associative memory structures. Some, such as those

discussed by Foster (1976), are currently feasible

alternatives to the familiar form of computer memory.

Others, such as those discussed by Amari (1977), Anderson et

al. (1977), and Kohonen (1977), are analog in character and

have been proposed as models of biological memory. These

latter associative memory structures can be viewed as

solving pattern recognition problems. In most pattern

recognition tasks as discussed above, each signal Z is a

unidimensional label for a recognition class. For

associative memories, the signals Z are multidimensional

patterns. In these cases, each Xa is a "key" and the

corresponding Za 's a pattern to be associated with Xa. The

training phase is interpreted as the period in which the

key-pattern associations are stored in the associative

memory for later retrieval. The retrieval process can be

interpreted as the classification of the input key. The
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ability of pattern recognition systems to generalize from

their training set appears as the error tolerance and

associative generalization capabilities of these memory

structures. In Section 4 we provide a further discussion of

these types of associative memory structures.

SYSTEM IDENTIFICATION - As noted by Kohonen (1977), the

associative mnemory task can be viewed as a system

identification task if it is assumed that there is a

functional relationship, unknown to the associative memory

system, between keys and patterns. Figure 2.2 shows an

associative memory system receiving information from an

unknown system. Each key (Xa) sent to the associative

memory is an input signal to the unknown system, and the

corresponding pattern to be associated (Za) is the unknown

system's output. Successfully storing all of these

associations can be viewed as having successfully identified

the unknown system's input/output function. This basic view

can be elaborated in many ways to handle cases in which the

unknown system has internal memory. See, for example,

Tsypkin (1971).

CLASSICAL CONDITIONING - A classical conditioning experiment

can be viewed within the pattern recognition framework by

letting patterns X1 and X2 correspond respectively to CS

presence and CS absence, and by letting ZI and Z2 correspond

~ *~,A
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FIGURE 2.2. The associative memory problem viewed as a
system identification task. There is an unknown functional
relationship, implemented by a system with an unknown
input-output function, between keys and patterns.
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respectively to UCS-UCR occurrence and UCS-UCR omission.

Trials consist of repeated presentations of the pairs

(Xa,Za), a=1,2. After sufficient training, (X1,'null')

elicits ZI (the CR) and (X2,'null') elicits Z2, the absence

of the CR. This view captures some of the logic of

classical conditioning It illustrates its open-loop nature

and its relationship to pattern classification. However, as

we point out in Section 4, it is not an adequate account of

classical conditioning even though it seems to be generally

regarded as such by neural network theorists. It neglects

the fact that the distinction between the CS and the UCS is

essentially temporal and that the CR anticipates the UCR.

PREDICTION - It is more appropriate to model the behavior

elicited in classical conditioning as a variant of pattern

recognition or system identification known as prediction.

Here, the signals S from the environment are not required to

have two distinguishable parts. The simplest case of the

prediction problem is solved by the adaptive system when

A(t) = S(t+1) for all t. In other words, the action of the

adaptive system anticipates its input signal (here by 1

discrete time step). This is the same as the pattern

recognition problem discussed above if the two part signal

(X,Z) is taken to be (S(t-1),S(t)). We discuss classical

conditioning and the prediction problem extensively in

Section 4.

V. --
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According to the distinctions discussed above, all of

the problems we have called pattern recognition problems are

characterized as follows:

1) The adaptive system AS in each case has no control over

its input. Consequently, these are all open-loop problems.

However, they can all be transformed into equivalent

closed-loop problems by letting the environment provide only

patterns and error signals. It must be noted that some

'ypes of system identification procedures generate test

signals as input to the unknown system. This makes the

identification problem closed-loop in an essential way. We

think that it is not misleading, however, to regard the

open-loop identification problem discussed above as the core

system identification problem.

2) These are multiple control situation problems. The

pattern classes of the pattern recognition problem are its

control situations. For the associative memory task, a set

of keys, each of which should elicit the same output

pattern, is a control situation. For the prediction

problem, a control situation consists of input signals that

are all followed by the same input signal. Some of these

problems obviously have an infinite number of control

situations.

3) There is partial knowledge of the control surfane. In

the pattern recognition task, for example, the control
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surface is the mapping that assigns the correct

classification to each input pattern. If it is known

initially, then no problem needs to be solved.

4) These problems are all error-correction problems. The

problem is not to find the best response Za for each pattern

Xa but rather to cause Za to occur as a response to Xa. The

best response is airectly provided to the adaptive system by

the environment (assuming noiseless conditions).

2.4.2 Clustering

The problem of clustering is closely related to the pattern

recognition problem. The basic clustering problem is to

classify input patterns not according to the instructions of

an external teacher, but according to their similarities and

differences according to a fixed metric or similarity

measure. Patterns in the same class should be similar to

one another and different from patterns in the other

classes. To distinguish this problem from the pattern

recognition problem discussed above, it is common to refer

to solution methods as performing "unsupervised learning" or

"learning without a teacher". Unlike pattern recognition

/ problems, clustering does not require training sets of

patterns; that is, it does not require this explicit

"teacher" in the environment. A more accurate way of

viewing the clustering problem, however, is to consider it a
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pattern recognition problem with the teacher included as

part of the adaptive system. Classification errors are

computed by the system itself based on the metric or

similarity measure. In this sense, clustering is learning

with a particular built-in teacher rather than learning with

an arbitrary external one.

According to the distinctions we are using, the

clustering problem is characterized in the same manner as

the pattern recognition problem: 1) open-loop, 2) multiple

control situations, 3) partial control surface knowledge,

and 4) error-correction. Unlike the pattern recognition

problem, however, clustering is more clearly open-loop. Any

closed-loop formulation will involve a loop through a part

of the environment whose properties are completely known

from the start. In fact, the use of the terms control

situations and control surface to describe clustering is not

very appropriate. Duda and Hart (1973) provide a good

discussion of clustering methods.

2.4.3 Stochastic Approximation Methods

An important type of algorithm used to solve pattern

recognition problems is known as a stochastic approximation

algorithm. Stochastic approximation algorithms are designed

to extremize functions that can only be evaluated in the
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presence of noise. Variants exist appropriate for both

extremum search and error-correction problems, and it is the

latter which applies to pattern recognition problems. The

adaptive system's response to input (Xa,Za) is a function of

Xa and a vector of internal parameters W=(wl,...,wn). To

each vector W can be assigned a measure of the

classification error that would occur if W determined the

classification of all of the training patterns Xa,

a=1,...,k. This measure is usually taken to be the

expectation over all input patterns of the sum of the

squares of the differences between actual and correct

classification (mean square error). Each trial (Xa,Za)

provides only the error in classifying the single pattern Xa

and thus does not provide an exact value of the function to

be minimized. Stochastic approximation methods are applied

by viewing each individual error as a noisy measurement of

the actual error function. They use equilibrium-seeking

negative feedback procedures based on these sample errors

for individual trials. The theory of stochastic

approximation examines conditions under which gradient

descent based on sample errors can lead to minimization of

the expected error over all patterns. See Duda and Hart

(1973) and Kasyap, Blaydon, and Fu (1970), for more complete

discussion of this theory. In Section 4 we point out that

the Widrow-Hoff learning rule, which is essentially

identical to the Rescorla-Wagner model of classical

I JL.
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conditioning, and the perceptron learning rule are both

examples of stochastic approximation methods.

2.4.4 The Perceptron Learning Rule

It is instructive to examine some of the details of

stochastic approximation methods as they apply to pattern

recognition problems. As a representative example, we focus

on the fixed increment perceptron learning rule. All of our

observations also apply to the Widrow-Hoff learning rule as

well as other examples of stochastic approximation methods.

Figure 2.3 shows an environment E and an interacting

mechanism consisting of three components that together

implement the perceptron learning rule: a comparator, an

adjustable classifier, and a weight adjustment rule.

Different views of this interaction can be obtained by

successively considering the dashed lines A, B, and C as

boundary lines between an environment and an adaptive

system.

Boundary A. All of the components below line A comprise a

perceptron as it is sometimes viewed. It is clear that this

view shows the perceptron in an open-loop interaction with

E. The problem it attempts to solve is the open-loop view -

of the pattern recognition problem described above.

Boundary B. The most common view of the perceptron- results
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FIGURE 2.3. An analysis of the perceptron learning rule.
The dashed lines represent several different ways of viewing
the perceptron. See text for explanation.
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from considering it to consist of those components below

line B interacting with an environment consisting of E and

the comparator. According to this view, the perceptron

operates as follows: a pattern is presented, and the

perceptron computes its classification decision. The

environment then provides a signal that is 0 if the

classification was correct, +1 if it was 0 but should have- ---

been 1, and -I if it was 1 but should _.h _v been 0.

According to this view, the perc-eptron is attempting to

solve a closed-luop problem, and it is our belief that many

>&-Iteve this problem to be the prototypical closed-loop

- learning problem.

It should be clear from our discussion, however, that

it is only a very restricted type of closed-loop problem.

Indeed, it is characterized by complete a priori knowledge

about the nature of the closed-loop interaction, and can be

solved by conversion into an equivalent open-loop problem

simply by considering the comparator as part of the adaptive

system (boundary A in Figure 2.3). Moreover, no additional

information is required in order to perform this conversion.

If it is'known that the closed-loop form of the perceptron

learning rule can perform meaningfully when interacting with

an-environment, then it is also known that the environment

contains a comparator that determines the appropriate error

signals. This comparator can simply be regarded as a part
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of the adaptive system. It makes little difference whether

the subtraction is done by the environment or by the

f perceptron. Therefore, despite common belief to the

co.itrary, we consider the problem that the perceptron

learning rule is capable of solving to be an open-loop

problem.

Boundary C. Finally, the weight adjustment rule can by

itself be regarded as an adaptive system interacting with an

environment. Its task is to minimize the error signal by

sending appropriate control signals to its environment which

consists of the original environment E, the comparator, and

the adjustable classifier. The resulting problem can be

classified as follows: 1) closed-loop modulatory control,

2) multiple control situations (determined by patterns X and

error signal values e), 3) total knowledge of the control

surface (its action is always ceX), and 4) error-correction.

This problem is closely related to the problem a

servomechanism can solve. If X were fixed, for example, the

weight adjustment rule would act exactly like a thermostat

or a governor. Its task is to control the weights so that a

ccrrect classification is made. The classification signal Z

acts as the set-point of the servomechanism. Like a

servomechanism, its control surface is completely specified

based on a priori knowledge and implements negative

feedback. We regard this component to be the significant

part of the perceptron learning rule.

..... _______ . . . . i fl ° ,"~
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2.4.5 Function Optimization

The most familiar form of the function optimizacion

problem appears in the framework of Figure 2.1 if the input

stimulus S to the adaptive system is a scalar valued signal

that is directly determined by the action of AS. Without

loss of generality, we can say that S(t) = f(A(t-1)) where f

is a scalar valued function of the space of possible

actions. In other words, E appears to AS as a memoryless

system that simply implements a fixed function from AS

actions to AS inputs. The goal of the adaptive system is to

find that action for which f, the payoff function, index of

performance, or reinforcement function, has its maximum

value or, what is the same thing, to find that action for

which a disutility function, cost function, etc. has a

minumum value. This problem is also called a decision

problem under certainty. The closely related problem with

uncertainty will be discussed below.

According to the basic distinctions we have made, the

function optimization problem is characterized as follows:

1) It ts a closed-loop problem, and the closed-loop

interaction is essential. Unlike the case of the

closed-loop view of the perceptron , the loop cannot be

opened unless the adaptive system itself can determine the

value of the payoff function for each action. This requires
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informatio, that is not available to the adaptive system in

a function optimization task. In addition, a function

optimization system has direct control over its input. A

given system action always produces the same payoff value

(assuming the noiseless case).

2) It has a single control situation. A solution method may

involve components that face several control situations, but

since there is only one function to optimize, the overall

problem has only one control situation: there is a single

best action. Note that since there is direct control over

the environment, the availability of other information to

the adaptive system, such as some indication of the

environment's state, does not make the task easier. Since

the environment is memoryless, its state never changes.

3) There is partial knowledge of the control surface. For

this problem, the control surface is just the mapping that

assigns the single control situation to the optimum system

action. The object of the optimization problem is to find

this action.

4) This is an extremum search problem. The problem is not

to make a particular input to occur but to make a maximal

(or minimal as the case may be) value of the payoff function

to occur. In applications the emphasis is on finding the

optimal output rather than on causing the optimal input, but

the problem is essentially the same. Perhaps the most
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important point is that the payoff value is not in general a

measure of the error between actual and optimal outputs as

it is in the case of the pattern recognition problem.

Neither the adaptive system nor its environment need know

from the start what the optimal action is.

Since the function optimization problem involves only a

single control situation, it is clear that it is a very

restricted type of adaptation or learning problem. Notice,

however, that any problem with multiple control situations

and partial knowledge of the control surface can be cast as

the function optimization problem of finding the optimal

control surface. In fact, any adaptation and learning

problem can be formulated as a function optimization

problem. The reason for this generality is that function

optimization provides a way to solve any adaptation problem

that involves a preference ordering that can be represented

by the ordering of a numerical measure. The function

optimization abstraction allows one to consider adaptation

with respect to any total preference order rather than a

particular preference order. How can a oroblem that we have

called very restrictive also be general enough to encompass

all adaptation and learning problems?

The answer is that although any problem can be turned

into a function optimization problem, to do so may require

Vm'' .
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ignoring vast amounts of useful information. Transforming a

multiple control situation problem into a function

optimization problem, for example, requires the information

from the environment telling the adaptive system what

control situation is currently present to be totally

ignored. The only information the adaptive system receives

from the environment in a function optimization task at any

time is a scalar value of the payoff function. Thus the

equivalent optimization problem is a much more difficult

problem than the multiple control situation problem. The

lack of control situation information makes the search space

enormously larger.

Holland (1975) writes:

Much can be learned from adaptive plans in
general by studying plans which act only in
terms of payoff . . . In particular, plans which
receive information in addition to payoff should
do at least as well as plans which receive only
payoff information. Thus, the efficiency of
payoff-only plans . . . sets a nontrivial lower
bound on the efficiency of other plans. (p. 26)

We must agree with Holland, but we think that there is a

very large gap between this lower bound and the efficiency

of adaptive systems that are able to use neutral

environmental information. Most function optimization

methods rely on some form of gradient ascent which is often

described as the method a blind person would use to find the

top of a hill. Our question is: Why limit attention to

__________________________________________________
______

_____ ____ ___ I
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algorithms that are blind? The elimination of control

situation information corresponds to eliminating all sensory

input to an animal except that directly signaling

reinforcement. It is obvious that the absence of neutral

sensory information makes the survival problem much more

difficult. We think that the success shown by animals in

solving adaptation and learning problems is due not to

particularly effective function optimization methods but

rather to the availability of sensory information permitting

global optimization problems to be decomposed into many

simpler optimization problems, each associated with

particular constellations of sensory inputs.

2.4.6 Learning Automata

Learning automaton search methods originated in the

work of Tsetlin (1971). There are several formulations of

learning automaton search methods, but the simplest can be

described as follows. At any time t there is a probability

distribution over the set of possible actions of the

adaptive system, and an action is chosen by sampling

according to this distribution. If a reward occurs as a

result of the action, or more generally, if the value of a

payoff increases, then the probability of that action is

increased while the probabilities of the other actions are

uniformly decreased by an amount chosen so as to result in a
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new probability distribution. The next action is chosen

according to this new distribution. If punishment occurs,

or if payoff decreases, then the probability of the action

just taken is decreased, and the probabilities of the other

actions appropriately adjusted upwards. Many schemes have

been proposed to update the probability distributions, the

simplest being the linear scheme used by Bush and Mosteller

(1955). Holland's genetic algorithm's (Holland, 1975) can

be viewed as learning automata with particularly

sophisticated methods for updating probabilities. A review

of the theory of learning automata is provided by Narendra

and Thathachar (1974). It has been found that learning

automaton methods can be efficient search methods for

solving function optimization problems in which little is

known about the nature of the payoff function.

Learning automata are also capable of solving problems

that resemble function optimization problems but are really

quite different. In our classification scheme, these

problems appear exactly like function optimization problems,

but the adaptive system action does not deterministically

determine the environment's response. The action only

determines a probability distribution over the set of

possible payoffs from which the environment's response is

determined by sampling. These problems are sometimes called

decision problems under uncertainty. It is clear that the
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function optimization task described above is a special case

of this problem.

Tsetlin (1971) studied the ability of learning automata

to solve this type of problem by studying their interaction

with environments he called stationary random media. The

payoff could take only two values: 0, interpreted as

reward, and 1 , interpreted as penalty. A stationary random

medium is characterized by an unvarying probability of

reward for each possible action of the learning automaton.

An automaton acts "expediently" in a random medium if it

chooses actions so that the expectation of reward becomes

greater than it would be if the actions were always chosen

with equal probabilities. An automaton is "optimally

expedient" if this expectation is equal to the largest

probability of reward possible with the random medium, that

is, it eventually consistently chooses the action that has

the highest probability of producing a payoff of 0 (reward).

Many simple learning automata were shown to operate

expediently when interacting with random media, and some

were shown to be optimally expedient, although later work

showed that they were "almost" optimally expedient (see

Narendra and Thathachar, 1974).

The random nature of the environment makes the problem

nontrivial even w 2n there are only two possible payoffs.
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This task is not simply to extremize a payoff function which

the environment evaluates for each automaton action (the

environment does not implement such a function), but rather

to extremize a function defined for sequences of automaton

actions; that is, to maximize a measure of cumulative

reward or minimize a measure of cumulative penalty. This

function, whose domain is technically infinite, cannot be

directly controlled by the adaptive system but can only be

modulated. Recognizing how this form of modulation differs

from that appearing in a typical control problem, decision

problems under uncertainty are classified as: 1)

closed-loop modulatory control, 2) single control situation,

3) partial control surface knowledge, and 4) extremum

search.

This type of problem involves several aspects of

adaptation and learning that are of great importance. One

is the inevitable tradeoff between the exploitation of

current knowledge and the search for new knowledge. The

simplest example is the so-called "two-armed bandit" problem

which concerns the allocation of trials for a learning

automaton having just two actions in a stationary random

medium. Holland (1975) discusses the importance of these

issues for theories of adaptive systems. Related issues

arise when learning automata interact with nonstationary

random media. These environments consist of a collection of
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stationary random media that switch from one to another

according to unknown transition probabilities. Tsetlin

(1971) also studied the behavior of various learning

automaton algorithms in nonstationary random media, but

these problems tend to be mathematically intractable. One

interesting result, however, is that there is a relationship

between the degree of stationarity of a random medium and

the optimal learning rate. The optimal learning rate

becomes larger as the environment becomes less stationary

(Tsetlin, 1971). It is noteworthy that even though one

would think that a nonstationary random medium would in

practice provide clues as to what state it was in, to the

best of our knowledge learning automata in nonstationary

random media have been studied only ns single control

situation problems.

Another very interesting capability of learning

automata is that they are applicable to problems in which

the function to be optimized is vector rather than scalar

valued, problems Ho (1970) calls generalized control

problems. For example, a set of learning automata is

capable of finding certain kinds of optimal solutions of

games about which no a priori knowledge is available. Each

player is a learning automaton interacting with a

nonstationary random medium consisting of the other players

and the structure of the game. Narendra and Thathachar
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(1974) provide a review of these results. We believe these

gane theoretic results have significant implications for

neural modeling that have never been explored, but it would

take us too far afield to discuss them here (see Section 8).

2.4.7 Closed-Loop Control

Thermostats and governors are the simplest systems that

solve closed-loop control problems. These systems receive

from their environment either an error signal indicating the

deviation of the environment's state from a desired state,

or they receive more general environmental information and

compute their own error signal. They function so as to

minimize this error. Figure 2.4 shows the basic

organization of a closed-loop control system. Here we are

only concerned with non-adaptive control problems.

According to the distinctions we have made, closed-loop

control problems are characterized as follows:

1) They are closed-loop problems, and control over AS input

is usually modulatory. As for the case of the perceptron,

the comparator may be viewed as a part of the control system

or as a part of the environment. Here, however, if the

comparator is taken as part of the control system, then the

problem remains closed-loop since the loop passes through E
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and not just the comparator (cf. Figure 2.3).

2) They are multiple control situation problems. The

control situation is usually indicated by the value of an

error signal but can also depend on other environmental

information (as in the case of the weight adjustment rule of

the perceptron). The dashed arrow in Figure 2.4 indicates

the possible availability of information other than the

error signal.

3) There is complete knowledge of the control surface. The

control surface is defined by a control law (often

characterized by its "gain"), which is fixed from the start,

for determining the control system's action based on its

input signal. The control law is specified by the control

system's designer on the basis of assumed a priori knowledge

of environmental dynamics. Consequently, a control system

need not search for the correct action. Maintaining the

temperature near the desired temperature, for example, is a

reflexive function of the thermostat made possible by the

suitability of its control law for its environment.

4) They are error-correction problems. The control law is

chosen so that the control system/environment composition

has the desired equilibrijm state. This is accomplished

through negative feedback. Altho'igh it is possible to view

this problem as an extremum search problem, the control rule

only succeeds in extremizing a very restricted class of
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functions.

2.4.8 Kineses and Taxes

In their classic work The Orientation of Animals:

Kineses, Taxes and Compass Reactions, Fraenkel and Gunn

(1961) discuss a number of methods used by animals for

finding and remaining near light or dark areas, warm or cool

areas, or, in general, for approaching attractants and

avoiding repellants. They distinguish between two major

types of reactions that they call kineses and taxes. A

kinesis is a locomotory reaction in which speed of movement

and frequency of turning depend on stimulus intensity. A

taxis is a reaction in which movement is straight towards or

away from the source of stimulation. These terms were

proposed to describe animal behavior and are favored over

the term "tropism" which originally described a specific

class of mechanisms involving condition- )f tension in

symmetrical muscles (see Fraenkel and C ,, pp. 5-10).

Recently, Selfridge (1978) provided a view of some of these

reactions that emphasizes their general utility as adaptive

strategies and has shown how they can be used for improving

the performance of artificial adaptive systems.

Of the many different types of kineses and taxes

described by Fraenkel and Gunn, we will focus only on those
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called klino-kinesis and tropo-taxis. These reactions solve

problems that have a particularly interesting place within

the range of adaptation and learning problems we are

considering in this report.

2.4.3.1 Klino-Kinesis - The most intensely studied example

of klino-kinesis occurs in the behavior of various types of

bacteria such as Escherichia coli , Salmonella typhimurium,

or Bacillus subtilis. These bacteria propel themselves

along relatively straight paths by rotating (!) a flagellum.

With what at first appears to be random frequency, they

reverse flagellar rotation which causes a momemtary

disorganization of flagellar filaments. This causes the

organism to stop almost instantaneously and tumble in place.

As the disorganized flagellum continues to rotate in the new

direction, its filaments reorganize causing the organism to

be again propelled along a straight path. Consequently,

flagellar reversal causes a random change in direction of

travel.

Adaptively useful behavior results because the

frequency of flagellar reversal is modulated by the

direction of movement with respect to level of attractants

and repellants. Reversal frequency decreases if movement is

toward higher attractant concentrations and increases if

movement is toward lower concentrations. Repellants have a

Kn- 4-
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similar effect, mutatis mutandis. This modulation of

flagellar reversal biases locomotion so that the organism

remains near places of maximal attractant concentration or

minimal repellant concentration. It is a very effective

strategy particularly when gradient information is very

noisy. Koshland (1979) describes this type of behavior and

underlying biochemical mechanisms in great detail.

Selfridge (1978) emphasizes the generality of this type of

adaptive strategy, which he calls the Run and Twiddle

strategy, by describing it as follows: if things are

getting better, keep doing what you are doing; if things

are getting worse, do something else. We of course

recognize the rationality of this maxim. Yet bacteria use

it!

The problem a klino-kinetic or run-and-twiddle strategy

solves can be characterized as follows:

1) It is closed-loop. The action of the bacterium clearly

affects its sensory input in a relevant manner.

Importantly, this control over stimuli is modulatory rather

than direct. The same action produces different results

depending on the location and orientation of the bacterium.

2) There are multiple control situations. The control

situations are "heading up attractant gradient or down

repellant gradient" and "heading down attractant gradient or
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up repellant gradient". These are determined by short-term

memory which permits the comparison of stimulus levels at

successive times.

3) There is complete knowledge of the control surface. The

control surface specifies that in the up-attractant-gradie't

control situation the optimal action is to decrease tumble

frequency while in the down-attractant-gradient situation

the optimal action is to increase tumble frequency. This

knowledge is built-in from the start and constitutes the

reflexive klino-kinetic response.

4) This is an extremum search problem. The optimal place in

space is not known from the start, negative feedback is not

involved, and the organism is incessantly active. The

klino-kinetic strategy is not particularly effective for

extremizing complex multimodal functions, but this does not

mnean that it solves an error-correction problem. We suspect

that a careful analysis of klino-kinesis would shGw that it

is quite successful for optimizing performance measures that

consider long-term cumulative performance in environments

with dynamically changing attractant and repellant

concentrations; that is, special kinds of decision problems

under uncertainty.

We find the problem solved by a klino-kinetic strategy

very interesting because it is very similar to a function

~~~~- - - -- .. . . • i . I I-
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optimization problem yet differs from that problem in

several crucial ways. The most basic difference is that the

klino-kinetic strategy solves a problem involving modulatory

rather than direct environmental control. This implies that

the payoff function, here the attractant concentration, is

not a function of the adaptive system actions. There is no

optimum adaptive system action. One cannot say that either

raising or lowering tumble probability is best. Which is

best depends on the orientation of the organism with respect

to attractant and repellant gradients. This is why the

problem has multiple control situations while the function

optimization problem does not.

But is it not true that the simplest hillclimbing

method for function optimization has two control situations,

one for up gradient and one for down gradient? This is

indeed true, but hillclimbing is a method that can be used

to solve a function optimization problem. Klino-kinesis is

also a hill-climbing method and can, in fact, be used to

solve function optimization problems, but the problem faced

by a bacterium is not function optimization as we have

defined it. Figure 2.5 helps make these points clear. If

the adaptive system AS is taken to consist of the components

below boundary A, then it faces a function optimization

problem. Each action of this adaptive system is a position

in space, and the environment E determines the attractant

V
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FIGURE 2.5. An analysis of klino-kinesis (or run and
twiddle) . The adaptive system below line A faces a
classical function optimization task. The system below line
B, on the other hand, faces an extremizing control problem
since it does not have direct control over its input.
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concentration for each point in space. A place in space

always has the same attractant concentration. On the other

hand, if AS is just the klino-kinetic mechanism shown below

boundary B, then it faces a different problem. Its actions

are 'run' and 'twiddle' (actually they are high and low

twiddle probability) which only have a modulatory effect on

its input. The component labelled "space" determines new

positions based on AS action and current position and

orientaton. It is accurate to call the problem the

klino-kinetic system faces an extremizing control problem

since it differs from the standard control problem only by

not being an error-correction problem.

2.4.8.2 Tropo-Taxis - A tropo-tactic reaction solves the

same problem as the klino-kinetic reaction but in a

different manner. Tropo-taxis requires at least two sensory

receptors so that the attractant gradient can be detected by

means of simultaneous comparison of stimulus intensity

received at two different places rather than comparison of

intensities received at two different times. In contrast to

the almost random appearing paths produced by klino-kinesis,

tropo-taxis produces nearly straight, direct paths toward or

away from the source of stimulation. Usually this type of

reaction is associated with light stimulation, in which case

it is often called photo-taxis and, formerly, heliotropism

(Fraenkel and Gunn, 1961, p. 76). Our interest in
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tropo-taxis lies in the fact that unlike klino-kinesis it

incorporates as a component a mechanism that solves an

error-correction problem via negative feedback.

For specificity we will discuss positive

photo-tropo-taxis (light acts as an attractant). Suppose a

continuously moving organism has two light sensitive spots

symmetrically placed about the anterior end of its

locomotory axis. A prespecified control surface causes

turning movements in the direction of the most strongly

illuminated receptor. If the receptors are equally

illuminated, no turning occurs. The control surface

implements a negative feedback error-correction control

system that seeks to equalize the stimulation of the

receptors. Logically (but not literally in an animal) a

signed error is computed by subtracting one receptor

activity from the other. The control mechanism causes the

organism to have two equilibrium orientations with respect

to a light intensity gradient, one facing up-gradient and

the other facing down-gradient. Since we are describing

positive photo-tropo-taxis, the up-gradient equilibrium is

stable but the down-gradient one is not. A very small

amplitude random turning component prevents the

down-gradient orientation from being maintained. Animals

with compound eyes possess more complex control surfaces.

There are more than two control situations since stimulation
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of posterior receptors causes stronger turning than

stimulation of anterior receptors. This yields a more

refined orientation control system. Tropo-taxis thus

consists of a negative feedback orientation control system

coupled with continuous movement. The result is a strategy

capable of very efficiently solving simple extremum search

problems.

2.4.9 Adaptive Control

A control problem is an adaptive control problem if the

control surface is not completely known from the start and

can be modified based on the individual experience of the

control system. This additional flexibility is necessary

for applications in which not enough knowledge of the

environment exists to permit the specification of a fixed

control law. Adaptive control problems therefore have the

same characterisitics as the control problems discussed

above with the exception that there is only partial control

surface knowledge. The problem of determinin the control

surface through experience is another type of adaptation or

learning problem that can take a variety of forms. Adaptive

control problems are therefore compositions of the basic

problems we are considering.

Figures 2.6 and 2.7 show two general forms of adaptive



ADAPTIVE SYSTEM THEORY PAGE 2-59

control systems. In each case, the component(s) below the

dashed line comprise an adaptive system whose actions

determine modifications in the control law of the control

system shown above the dashed line. In each case, there is

a preference ordering determined by a measure, usually

called an index of performance or performance criterion by

adaptive control theorists. Sometimes the determination of

the index of performance involves a system identification

procedure. The problem the adaptive mechanism must attempt

to solve can have any combination of the basic properties we

have been discussing. We call this problem the second-level

problem of the adaptive control system.

Figure 2.6 shows an adaptive control system whose

second-level problem is an error-correction problem since

there is a known desired value of the index of performance.

This second-level problem is in fact identical to the

non-adaptive control problem discussed above. The

second-level control surface is completely known. An

example of this type of adaptive control problem is that of

determining the appropriate sign for the gain of the

adjustable controller. The index of performance may be the

same as the error signal to the first-level controller.

Imagine the problem faced by a thermostat that can be

connected to a furnace in either of two ways: its signal

either turns the furnace on or it turns it off. The

r. *9 ,-- -.-• . --m l
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FIGURE 2.6. The organization of an adaptive control system.
The part of the system below the dashed line faces the
second-level problem of the control problem. Here, this
second-level problem is an errnr-correction problem.
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second-level adaptive mechanism must try gains of both signs

until the appropriate negative feedback is obtained through

the furnace loop. This second-level mechanism must perform

an error-correction search and can stop when the correct

gain is found.

Ashby's Homeostat (Ashby, 1960) is exactly this type of

adaptive control system. The Homeostat's task is to

maintain the values of a set of critical variables within

prescribed limits. This is a closed-loop control problem.

Ashby suggests the use of a second-level "step function"

mechanism to alter the values of control law parameters.

The rule he suggests for selecting parameters is as follows:

if the value of the index of performance is acceptable (that

is, all critical variables are within prescribed limits), do

nothing; if it is not acceptable, choose any new parameter

value. This is the simplest method for solving an

error-correction problem in which the error measure only

takes the values "acceptable" and "unacceptable". At all

levels, the Homeostat is capable of solving only

error-correction problems. When the desired state, which is

known from the start, is achieved, all activity of the

Hoineostat ceases.

Figure 2.7 shows another type of adaptive control

system known as an extremizing adaptive control system.
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FIGURE 2.7. An extremizing adaptive control system. The

second-level problem faced by the component below the dashed
line is an extremum search problem.
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Here the second-level problem is to minimize or maximize the

index of performance (depending on what kind of index it is)

with no explicit knowledge of what constitutes the optimal

action. In other words, the second-level problem is an

extremun search problem. An example of this kind of problem

is to control an internal combustion engine in order to

maximize combustion efficiency.

Our discussion of adaptive control leaves much unsaid.

It is a very large subject, and our few comments merely

provide a rough outline of the basic types of problems

usually considered. We think the most salient features of

adaptive control are:

1) The second-level adaptation problem is characterized

either by multiple control situations but a completely known

control surface (Figure 2.6), or by a single control

situation but an unknown control surface (Figure 2.7).

2) There is considerable a priori knowledge about the

environment in which the second-level adaptive system must

operate since it includes the first-level control system and

a carefully defined procedure for computing the index of

performance.
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2.4.10 Learning Control

The distinction between adaptive and learning control

seems not to be sharply defined. Mendel and McLaren (1970)

describe learning control systems as adaptive control

systems with long-term memory. The second-level control law

is broadened by "localizing the adaptation to regions in a

plant-environment space and by providing the control law

with a long-term memory". In our terms, learning control

results when the second-level adaptation problem has

multiple control situations and partial control surface

knowledge. This is easiest to understand through an

example.

Ashby (1960) describes an elaboration of the Homeostat

enabling it to function efficiently in a variety of

different environmental situations by the "accumulation of

adaptations". Recall that the Homeostat is an adaptive

control system whose first-level control law is modified by

a second-level parameter selection mechanism until the

performance criterion is reached. Consider letting the

Homeostat reach equilibrium in one environmental situation

and then placing it in a new environmental situation so that

new parameters have to be selected by the second-level

mechanism. Ashby suggests that if the Homeostat is given

long-term memory so that it can recognize a situation in
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which it had previously adapted, then the appropriate

parameter values can be ii,.mediately retrieved without the

error-correction search. A search is required only in novel

envirormental situations.

According to our terminology, the second-level

adaptation mechanism in the adaptation accumulating

Homeostat is characterized by multiple control situations

but, unlike the ordinary Homeostat, by partial knowledge of

the control surface. Further, the control situations are

determined not just by an error signal but also by signals

indicating salient features of the environment. The control

surface is the long-term memory that is filled in as

adaptations "accumulate". The entire characterization of

this problem is as follows: 1) closed-loop, 2) multiple

control situations, 3) partial knowledge of control surface,

4) error-correction.

Ashby does not describe in detail how the adaptation

accumulating Homeostat can recognize control situations, but

it is clear that some form of pattern recognition is

required. Pattern recognition is, in fact, an intimate part

of any problem with incomplete control surface knowledge.

The extremizing counterpart of the type of learning

control problems solved by the adaptation accumulation



ADAPTIVE SYSTEM THEORY PAGE 2-66

Homeostat is characterized as follows: 1) closed-loop, 2)

multiple control situations, 3) partial control surface

knowledge, 4) extremum search. It therefore requires a

multiple control situation extremizing search procedure.

Mendel and McLaren (1970) discuss problems of this type

which they call reinforcement learning control problems.

Figure 2.8 shows a representative reinforcement learning

control system. They say that the following procedures are

required to automatically improve the (first-level) control

law: 1) the goal curcuit evaluates the results of previous

control choices of the learning network for given

situations, and 2) the learning control law's memory is

modified so that subsequent control choices reflect this

evaluation (after Mendel and McLaren, 1970, p.295).

An example of a reinforcement learning control system

is the BOXES system of Michie and Chambers (1968). We

describe it in some detail since it illustrates the features

required in a learning control system in a particularly

simple and elegant form. The control task chosen for

demonstration purposes is to balance a pole on a cart that

can move along a track of fixed length. The control system

can send signals causing the cart's motor to exert full

force either 'left' or 'right' for a fixed duration. At

regular time instants the control system receives signals

from the cart-pole apparatus consisting of four element
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FIGURE 2.8. A representative reinforcement learning control
system (after Mendel and McLaren, 1970, Figure 2, p. 295).
See text for explanation.
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state vectors (x, x, 8, 9) whose elements respectively give

the cart's pcsition and velocity and the pole's angle and

the rate of change of the angle. In addition to these

signals, a 'failure' signal is sent to the control system

whenever the pole falls or the cart runs off the track. The

system's task is to construct a mapping from the state

vectors to the system actions in such a way that the

occurrence of the failure signal is minimized. This mapping

is the control surface.

A long-term memory is provided to accumulate the

control surface knowledge. The space of all possible state

vectors is quantized by distinguishing only three grades of

position x, three of velocity x, six of angle 9, and three

of angle-change 4. This results in a long-term memory

having 162 "boxes" each corresponding to a rather coarse

region of the state space. The problem is to appropriately

store 'left' or 'right' in each of these boxes.

The method used by BOXES is very simple. Associated

with each memory box is a mechanism that chooses an action

whenever the box is "addressed" by an environmental state

vector and accumulates a record of time-until-fail-ie f-

each action. In particular, the mechianivi f'"-

addressed by the current state Joes tni , ,

1) Chooses 'left' or 'rignt , .
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to lead to the longest time until failure.

2) Remembers which action is chosen and initiates a count.

3) When failure occurs, the count is used to update either

the left or right expectation depending on which action was

chosen.

Michie and Chambers remark that this control scheme really

works, and that the control task is nontrivial.

The BOXES system illustrates in a very clear manner the

general features of how long-term memory is used in a

learning control problem. Mendel and McLaren (1970)

distinguish short-term memory from long-term memory by

saying that short-term memory records information only for

as long as the system is in the same control situation,

whereas long-term memory records information that can be

retrieved outside the control situation or when the same

control situation is entered at a later time. Long-term

memory is essential for accumulating control surface

knowledge. Mendel and McLaren also point out that long-term

ine:nory is also essential for recording information requirea

to construct the control surface (e.g., the expectation

records of the BOXES system). If learning cannot be

completed the first time a control situation is entered,

long-term memory is required to store certain kinds of

information so that learning can continue when the control

surface is entered again. The associative search network

.. .-. - , " o,. , .u.
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described in Section 5 is an example of a reinforcement

learning control system that is very similar to the BOXES

system but that uses a distributed rather than a localized

memory.

2.4.11 Instrumental Conditioning

The distinction we have made between problems and

mechanisms provides a convenient way of handling some

controversial questions regarding what happens in classical

and instrumental conditioning experiments. By virtue of the

experimental design, an animal's interaction with its

environment is different in classical and instrumental

conditioning experiments. Assuming that a classical

conditioning experiment is characterized by the lack of

response contingency (a feature very difficult, if not

impossible, to enforce in practice), instrumental

conditioning experiments are distinguished from classical

conditioning experiments by the fact that they invol-e

response contingencies permitting the animal to exert a

degree of control over its input. With this fact there is

no disagreement.

Recall, however, that the possibility that a system can

control its input does not imply that the problem it solves,

or attempts to solve, is closed-loop. It has been a matter
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of considerable controversy among animal learning theorists

whether or not, to use our terminology, the problems an

animal seems to solve in an instrumental conditioning

experimnent are different from those solved in classical

conditioning experiments. Is the control over input used in

any way by the animal? It is now generally agreed that such

control can make a behavioral difference (see, for example,

Dickenson and Mackintosh, 1978). Consequently, it is safe

to say that unlike the problem faced by an animal in a

classical conditioning experiment, the problem faced in an

instrumental conditioning is closed-loop, or, at least, is

closed-loop for most instrumental paradigms. Nevertheless,

it is problematic to speak of classical or instrumental

learning rather than the behavior elicited in classical or

instrumental experiments.

We think it is also fairly safe to consider the

problems typically solved by animals in instrumental

conditioning experiments as multiple control situation

problems. For some experimental paradigms the control

situations are explicitly signaled by, for example, a

discriminative stimulus signaling the availability if

reinforcement. In other experiments, they may be less

explicitly signaled and can depend on such things as the

time elapsed since the last reinforcement event.

Additionally, the sensory input from the entire experimental
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situation, including the sights, sounds, and smells of the

experimental apparatus and experimenter, can act as signals

potentially specifying control situations. It is also not

misleading to include information about internal

motivational states as potentially signaling contro'

situations.

The multiple control situation nature of instrumental

conditioning problems was expressed clearly by Thorpe

(1951):

The essence of trial-and-error learning [type II
or instrumental], then, is the development of an
association, as the result of reinforcement
during appetitive behavior, between a stimulus
or situation and an independent motor action as
an item in that behavior when both stimulus and
motor action precede the reinforcement and the
motor action is not the inevitable inherited
response to the reinforcement. (Thorpe, 1951,
p. 78)

Multiple control situations are implied by the mention of

the development of associations between stimulus situations

and motor actions.

Thorpe's description also plainly indicates that there

is partial knowledge of the control surface. Both the

phrases "independent motor action" and "the motor action is

not an inevitable inherited response" mean exactly that

there is partial control surface knowledge. An example of a

dependent, inherited response is the reflexive response of a

______________
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servomechanism such as a thermostat to the error signal.

Finally, we turn to the question of whether or not

instrumental learning problems are extremum search or

error-correction problems. Do animals tend, for example, to

maximize reward, or do they tend to control reinforcement

rates toward certain known desired values? The most common

interpretation of the data is that animals tend to maximize

reward and minimize punishment, but this really involves

complex issues that we cannot adequately address here. We

will tentatively accept this extremizing view as being

consistent with the data if it is noted that animal behavior

seems to be appropriate for solving extremum search problems

under uncertainty.

Keeping our qualifying remarks in mind, we can

characterize the behavior elicited in instrumental

experiments as follows: 1) closed-loop, 2) multiple control

situations, 3) partial control surface knowledge, and 4)

extremum search under uncertainty. This is the same type of

problem faced by the second-level adaptive mechanism in a

reinforcement learning control system. It is significant

that although this problem is related to the problem solved

by the perceptron learning rule, it is also very different.

It is our impression that the perceptron learning rule,

especially in its closed-loop form, has been considered by

------ ,
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some to be capable of solving reinforcement learning

problems. This is simply not the case. It is also clear

that instrumental conditioning problems are not simple

function optimization problems since they involve neutral

sensory input signaling multiple control situations. We

have found that the area of adaptive system theory most

closely related to instrumental conditioning is that of

reinforcement learning control systems as discussed by

Mendel and McLaren (1970).

2.4.12 Klopf's Heterostat

Klopf (1972, 1979, 1981) proposed a learning rule, in

the form of a postulate about synaptic plasticity, which is

actually best seen as a learning rule capable of solving

simple reinforcement learning control problems. He

hypothesized that neurons try to maximize their level of

membrane depolarization by changing 3ynaptic effectiveness

in the following way: Whenever a neuron fires, those

synapses that were active during the summation of the

potentials leading to the discharge become eligible to

undergo changes in their transmission effectiveness. If the

discharge is followed by further depolarization, then the

eligible excitatory synapses become more excitatory. If the

discharge is followed by hyperpolarization, then eligible

inhibitory synapses become more inhibitory. In this way a
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neuron will become more likely to fire in a situation in

which firing is followed by further depolarization and less

likely to fire in a situation in which firing leads to

hyperpolarization.

The term heterostat was chosen to emphasize the

difference between this hypothesis and those suggesting that

the concept of homeostasis plays the central role in

understanding the purposiveness of living organisms. Rather

than acting solely to achieve a condition in which certain

variables remain within particular bounds as suggested by

Ashby (1960), a heterostat acts so as to extremize the value

of a particular variable. Our discussion of kineses and

taxes should make it clear that natural adaptation

mechanisms do indeed involve more than equilibrium-seeking

or error-correction. Kineses and taxes are ubiquitous in

nature and solve extremizing rather than error-correcting

problems. We wholeheartedly agree with Klopf's claim that

the identification of adaptive behavior with

equilibrium-seeking behavior is very misleading. We shall

see, however, that Klopf's heterostat is more complicated

than the extremizing counterpart of Ashby's Homeostat. It

is, in fact, the extremizing counterpart of Ashby's

adaptation accumulating Homeostat together with a pattern

recognition mechanism.
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According to the distinctions we have been focusing

upon in this report, the problem various formulations of the

heterostat can solve can be characterized as follows:

1) It is a closed-loop problem. Since a pathway becomes

eligible for modification only when a presynaptic signal

causes a response from the postsynaptic element, the process

is closed-loop. The consequences of the system's actions

are used to alter long-term memory. The closely related

learning rule we study in Section 4 as a model of classical

conditioning is open-loop since postsynaptic response is not

necessary to trigger eligibility. Of course, either model

can be placed in an environmental interaction in which

control can be exerted over input, but the presence of the

output contingency of Klopf's original proposal permits a

heterostat to use the control over its input.

2) There are multiple control situations. As in the case of

the perceptron, control situation information is provided by

the input signals. For its simplest formulation, the

heterostat has two possible actions. Consequently, there

are two control situations: one in which the optimal

response is 1 and another in which the optimal response is

0. Part of the task accomplished by the heterostat is the

classification of input patterns according to which control

situation they signal. This part of the heterostat's

behavior is similar to perceptron pattern recognition
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behavior with the crucial difference that which control

situation an input pattern signals need not be explicitly

indicated by the environment either directly or by means of

an error signal.

3) There is partial knowledge of the control surface. As in

the case of the perceptron, the control surface is specified

when the weights reach the values that cause the optimpl

action to be performed in response to each input pattern.

4) This is an extremum search problem. A search is required

to find the optimal action for each pattern. By optimal is

meant that action which is followed by the largest increase

in reinforcement (or by the smallest decrease in

reinforcement if only decrease is possible). This is in

sharp contrast to the meaning of optimal in the case of the

perceptron. Additionally, some forms of the heterostat can

perform extremum search under uncertainty. In this respect,

the heterostat is closely related to the learning automaton

search methods described above. Unlike learning automaton

methods, however, the output probability distribution

depends on the current input pattern. Thus, as the weights

change, the mapping from input patterns to output

probability distribution changes. It is not misleading to

describe this version of the heterostat as a collection of

learning automata together with a pattern recognition

scheme. The Associative Search Network described in Section
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5 uses this type of adaptive element.

According to this classification, it is correct to say

that a heterostat is a simple but complete reinforcement

learning control system. In addition, the heterostat as

originally suggesed by Klopf has the capability of

modifying its preference ordering of inputs. Preference is

determined by a measure of reinforcement which is, in the

simplest case, dependent on a weighted sum of the input

signals. But since the weights are modifiable, the

preference ordering is modifiable also. For example, as the

weight of a particular pathway increases, the relative

preference for input patterns with signals over that pathway

increases. Control over preference order or performance

measure is a very important aspect of adaptive behavior. We

think that in the case of the heterostat this capability can

be used to construct more informative reinforcement signals

from initially neutral environmental information. This

capability, which seems closely related to the notion of

secondary reinforcement in animals, is not understood well

enough at this time to permit us to provide a thorough

analysis.

2.5 Summary and Discussion

1) The perceptron learning rule and similar stochastic

approximation methods such as the Widrow-Hoff rule solve
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open-loop problems. Although it is common to view these

methods as solving closed-loop problems, the nature of the

loop is known from the start to merely pass through a

comparator. These problems are equivalent to open-loop

problems. They are also error-correction problems. Even

putting aside the usual objection that perceptrons can only

implement linear discriminant functions, it is clear that

they (an solve only a very restricted kind of problem. They

are not adequate models of animal behavior in instrumental

conditioning experiments. Perceptrons are more closely

related to classical conditioning.

2) The function optimization problem is a genuine

closed-loop problem. However, it is misleading to view all

adaptation and learning tasks as function optimization

tasks. Since a function optimization procedure is assumed

to have direct control over its environment, the function

optimization problem is characterized by a single control

situation. In other words, the environment is assumed to

remain in a single state and implement a single memoryless

function of the action choice of the optimization procedure.

This implies that there is a single optimal action (or a set

of actions with equal optimal payoffs), and that

environmental information other than payoff function values

is irrelevant.

It is indeed true that any of the problems we have

H44
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discussed can be viewed as the function optimization problem

of finding the optimal control surface. But this view

necessitates ignoring the vast amount of useful

environmental information signaling control situations. By

definition, function optimization methods are blind to

information other than payoff information. It is obvious

that the availability of other information can make the

search for the optimal control surface much easier. While

certain important aspects of adaptation and learning are

captured by the function optimization formalization, it is

clear that the identification of adaptation or learning with

function optimization is misleading.

3) It remains a popular view that the goal-seeking behavior

of organisms can be equated to the equilibrium-seeking

behavior of servomechanisms. Ashby's theory of adaptation

has done much to perpetuate this view. For example, in

Design for a Brain (1960) Ashby states:

We can now recognize that 'adaptive' behavior is
equivalent to the behavior of a stable system,
the region of stability being the region of the
phase-space in which all the essential variables
lie within their normal limits. (p. 64)

And further:

The point of view taken here is that the
constancy of the essential variables is
fundamentally important, and that the activity
of the other variables is important only in so
far as it contributes to this end. (p. 67)

This view of adaptation provided by the early cyberneticists
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did much to de-mystify the nature of so-called

"teleological" behavior observed in animals. However, this

view of adaptation is very restricted in scope.

Klopf (1972, 1979, 1981) has suggested that it is more

accurate to view adaptation and learning as, to use our

terminology, extremum search rather than error-correcting.

According to Klopf's theory, the constancy of some variables

is important only in so far as it contributes to the

extremization of others. This is exactly the reverse of the

view put forward by Ashby. Our investigation has led us to

agree that, in a logical sense, extremizing behavior is more

findamental than error-correction behavior. The reason is

simply that error-correction problems are restricted types

of extrernum search problems. If one has a device capable of

solving even relatively simple extremum search problems,

then one also has a device that can solve any

error-correction problem (albeit with some loss of

efficiency). But an error-correction device can solve only

a very restricted class of extremum search problems. Herein

lies the fundamental importance of Klopf's theory: it is

the first theory of neural plasticity to consider less

restrictive types of extremum search problems than those

arising from error-correction problems.

Which kind of problem is more fundamental in nature,
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rather than logically, is a different question that is more

difficult to answe-. It is very clear, however, that many

of the prime examples of adaptation in nature involve

extremum search. The evolutionary process itself is the

expression of a complex adaptation mechanism that is clearly

not error-correcting. Nowhere is there knowledge about what

base pairs of DNA code for the optimal organism!

Klino-kinesis and tropo-taxis, commonly found in nature, are

both extremum search methods. They attempt to maximize

levels of attractants and/or minimize levels of repellants.

A tropo-taxic mechanism contains a mechanism that solves an

error-correction problem, but it is clear that the

equilibrium attained serves only to facilitate the

extremization process. More than this needs to be said

about which is more fundamental in nature, extremum search

or error-correction. One could argue, for example, that a

klino-kinetic or tropo-taxic strategy is used by an organism

in order to maintain nutrient intake within acceptable

limits, an error-correction problem. We think that views

suggesting the primacy of homeostatic mechanisms neglect the

fact that animals evolve in very competitive environments

having limited resources. Extremum-seeking components in an

animal's control system may permit survival in a wider range

of enviro,.7ental conditions than would be possible with

error-correction mechanisms alone. What is certain,

however, is that one cannot restrict attention to

V __ __ _ _ __ __ _
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error-correcting processes as suggested by Ashby and other

early cyberneticists.

A FINAL REMARK

Much of the criticism of the approach to developing

intelligent systems based on numerical, data directed

methods (typified by the perceptron learning rule) rested on

the difficulty in extending these methods to solve more

difficult examples of the types of problems they were

already solving. For example, implications of the

perceptron's limitation to forming linear discriminant

functions were pointed out by Minsky and Papert (1969), and

the shortcomings of hill-climbing methods for the

optimization of functions with large plateaus or many false

optima were pointed out by Minsky and Selfridge (1960). The

criticisms we have implicitly made in this report are of a

completely different kind. We have pointed out the

restricted nature of the problems these methods were

designed to solve rather than their limited abiltiy to solve

them. We, of course, agree that general pattern recognition

and function optimization problems are very difficult to

solve completely, but we think problems of this difficulty

need never occur. Pattern recognition is usually just one

part of a complex adaptation or learning task, and the

function optimization task is so abstract that the

formulation of a problem as such a task usually requires
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potentially valuable structure and information to be

ignored. It seems to us that sophisticated adaptive

behavior can result from a system designed to solve a

variety of interrelated adaptation and learning tasks, each

of which is relatively simple. In other words, when

formulated in an appropriate manner, sophisticated

adaptative behavior need not require any single subsystem to

form highly nonlinear discriminant functions or optimize

functions having broad plateaus or many extrema.

1~



SECTION 3

EVOLUTION OF HETEROSTAT MODELS

3.1 Introduction

In this section we present a roughly chronological

trace of heterostat models that we have considered during

the contract period, noting what we view as key advantages

and failings of each. To give an overview, the models can

be divided into three groups or periods, which correspond

roughly to the chronological progression. The first period

was one of wide ranging exploration and experimentation,

ending with a conversion from using input level to the

adaptive element as reinforcement [footnote], as Klopf

originally suggested, to using change in input level as

reinforcement. In the second period, the model was further

refined, and a number of variations considered. In the

The word "reinforcement" in this chapter is used in a

generic sense that includes both reward and punishment.
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third period, which overlaps with and in no way supersedes

the second, we have begun to consider models that use a

specialized reinforcement pathway whose activation does not

affect the activity of the element. The early stages of the

third period stretched over a long period of time as we

gradually caine to realize that many of the most interesting

aspects of Klopf's heterostat did not require the additional

novelty of generalized reinforcement, that is, the ability

of all or many input pathways to provide reinforcement.

The main purpose of this section is to record each of

the major steps in the evolution of our element designs, as

well as to present what we view as the major reasons for

each step. The purpose is not to justify and defend each

step, for that would be at least as ambitious a project as

this entire report. In other sections we more carefully

justify particular elements with reference to particular

learning tasks (Sections 4, 5, and 6).

3.2 Early Models: Open-Loop Stability

The early period was one of wide ranging exploration

and experimentation. A great many models were generated,

and we gradually came to some understanding of the

fundamental problems involved in creating a workable

heterostat. In describing this period, we have chosen to
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present relatively few models while putting considerable

emphasis on the principles involved. The major advance of

this period was a gradual recognition of the advantages of

switching to a reinforcement measure based on the change in

input to the adaptive element rather than on the absolute

level of the input.

Klopf did not provide a complete formal specification

of his original heterostat (Klopf, 1972, 1979, 1981). The

primary differences among early attempts to interpret his

work involved the eligibility and zerosetting mechanisms.

The "weighted correlation model with zerosetting" of the

fall of 1977 shows how the heterostat was formalized near

the beginning of the contract period.

3.2.1 Weighted Correlation Element with Zerosetting

See Figure 3.1 for a diagram of the model's parts and a
summary of the notation.

a) Discrete time, t=0,1,2,...

b) Output at time t: y(t)

c) Input at time t: x.(t), i=1,...,n1

d) Each synapse i, 1 !i n, has weight wi(t) at time t

excitatory: 0 w (t) Wmax

inhibitory: -Wmax -w (t)< 0
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X1

Y RCTTON

Figure 3.1. Notation diagram for simple heterostat.
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e) Weight changes given by:

For excitatory synapses:

n
wi(t + 1) = F{wi(t) + Ei(t).[ r w.(t)x.(t)]} (3.1)j= 1

For inhibitory synapses:

n
wi(t + 1) = -F{wi(t) - Ei(t).[ E w.(t)x.(t)]1 (3.2)

j=1 

where F might be given by:

0 for x < 0

F(x) - Wmax for x > Wmax (3.3)

x otherwise

These rules imply that excitatory and inhibitory
weights will remain non-negative; and non-positive
respectively.

f) Each synapse i has state E.(t) of eligibility at time t

with 0 _< E. (t) < 1 and1

Ei (t) computed by a system with memory:

m m
El(t) E Z f(k)xi(t - k)y(t - k) + E h(x)xi(t - Y) (3.4)k=0 X= 1

The functions f and h may look respectively something like
those shown in Figure 3.2a and Figure 3.2b.

The zerosetting mechanism is intended to work as
follows: Say that f(k) is maximum at k=T. A maximum
eligibility for synapse i requires that its activity was
high and output level was high around T time steps ago and
between that time and now its own activity was low. Thi
second sum will produce a large negative number if x was
highly active in the interval from now back to T time steps
ago. This decreases eligibility.

S .. ~ o

= -
I

. . . . -
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UI)I

I(B)

1 2 3 M2

Figure 3.2. (At) An inverted-U shaped eligibility
"kernel." (B) A "kernel" function used in computing one
forin of zerosetting.



EVOLUTION OF HETEROSTAT MODELS PAGE 3-7

Note that in this model all synapses are allowed to

decrease as well as to increase in transmission efficacy.

Along similar lines, in most later models, synaptic

efficacies can change sign, from excitatory to inhibitory or

vice versa, a property difficult to defend physiologically.

Representing each synaptic efficacy as a real valued

weight that can change arbitrarily is the simplest

possibility mathematically, but is problematic insofar as

neurophysiological support is desired. We justify our

concentration on mathematically simple models on the basis

of the insights that mathematical tools may provide into the

abstract problems of adaptation and inter-element

cooperation. We feel confident that these mathematical

models can be mapped back into physiologically plausible

neural analogs (although not always mapping each adaptive

element into a single neuron), and we have suggested

possibilities for some m ..ls (e.g., see Section 4 and Barto

and Sutton, 1980). We think that the assumptions we have

made for the sake of mathematical simplicity

(bi-directional, sign changing synapses) have not changed

the character of these adaptive systems in any fundamental

way, but further work will be required to resolve these

issues definitively.

__± __ ... . . -- i =wombed
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3.2.2 Open-Loop Stability

The major concern during the early period of

heterostatic element exploration (1977-78) was the open-loop

stability of the adaptive element. A fundamental part of

the heterostat concept is that such a device should detect

and utilize the effect of its output on its subsequent

input; that is, the emphasis is on the closed-loop nature

of a device's relationship to its environment. In

closed-loop adaptation tasks, great care must be taken to

keep the adaptive system from becoming unstable and

snowballing into an adaptively useless state. Most of the

early heterostats, however, were unstable even in the

open-loop case; that is, the case in which their input was

completely independent of their actions. Although a

closed-loop adaptive element is helpless in a real sense in

an open-loop interaction, instability in this case still

seemed to be an inappropriate response. Open-loop stability

became an important heuristic filter that we applied to

adaptive element proposals.

The open-loop instability of early elements was due to

their use of excitation and inhibition as reward and

punishment respectively. There was no guarantee that an

element would, on the average, receive equal amounts of

excitation and inhibition. For example, if a neuron
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operated according to this principle, then if membrane

potential departed most frequently from the resting

potential in a certain direction, then all synaptic

efficacies of the neuron would move relatively rapidly in

that direction until they reached their maximum values

(Sutton, 1977). Moreover, the speed at which this process

would take place for a single neuron would be independent of

the number of neurons or synapses in the brain. L'arge

numbers of neurons would degrade just as quickly as a few.

One solution to this problem would be to measure

reinforcement from its average value. In this way, the

"effective reinforcement," and thus the weight changes, are

prevented from being overwhelmingly either positive or

negative. However, there is still no meaningful bound on

the weights. Each time a neuronal action potential is

followed by greater than average excitation the relevant

synapses would be pushed higher until they reached their

limits, irrespective of the size of the increase in

excitation. The result would be a great reduction in the

sensitivity of the adaptive element, since an element

employing this scheme could record the sign of reinforcement

following firing but could not distinguish relative

nagnitudes. The solution to this problem was found to be

the introduction of an internal negative feedback loop

controlling the weights - the larger the weight, the greater

-~i
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the reinforcement increase necessary just to maintain its

level after each use (cf. Uttley, 1979; see Section

4.5.4). This addition caused each weight to asymptotically

approach a level proportional to the reinforcement increase

it predicted (Sutton, 1978a). However, a local, open-loop

instability still existed. An increase in excitation as

reward increased synaptic efficacies, and this in turn

resulted in further increases in excitation, and so on:

To show how the instability arises, consider a neuron
with many synapses. Assume the presynaptic neurons of
these synapses fire in a totally random way with a
fixed probability distribution. Also assume the
initial average algebraic sum of input (reinforcement)
to the neuron is zero (although it undergoes random
fluctuations of course, depending on which of the
presynaptic neurons happen to be firing and
transmitting signals through their synapses. Consider
what happens if the neuron fires and then, by chance,
the reinforcement (input) following the firing happens
to be slightly positive. Since this reinforcement is
positive it will tend (in most cases) to make the
synapses which caused the firing more positive if they
were excitatory and less negative if they were
inhibitory. In general, the positive reinforcement
will result in changes to the synapses which will
cause average input subsequently to be slightly higher
than it was before, or in this case, slightly
positive. Thus, when the neuron fires again it will
probably get slightly positive input, which will cause
new synaptic increases and thus further raise the
level of average reinforcement. This process
accelerates until it is completely irreversible and
the neuron-like element is useless. A very similar
positive feedback process occurs if the initial chance
reinforcement is negative. In this case the synapses
become smaller and smaller (more negative or less
positive) to no useful purpose. The neuronl elements
are generally unstable in that small fluctuations in
their reinforcement are soon turned into large ones
without any particular relation to environmental
reinforcement dependencies. (Sutton, 1978b)
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3.2.3 Zerosetting

The early instability problems with the original

reinforcement functions, based on what would correspond to

membrane potential measured from resting, were present even

with the use of a zerosetting mechanism. Later stability

difficulties were partly due to the abandonment of any

zerosetting mechanism because of a number of properties that

have been seen as problematic for some models:

1. Most neurons probably fire more often than every

400 ms. These would be very rarely eligible with a

zerosetting mechanism.

2. Zerosetting prevents learning at short delays. How

can this be consistent with the fact that

instrumental conditioning works dramatically better

for shorter delays between response and

reinforcement, even to delays less than 400 ms

(Grice, 1948)?

3. Additional assumptions about network properties are

necessary to explain even simple things like delay

classical conditioning (Sutton, 1978b).

4. There is no possibility for learning about

'V_ ..
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temporally short feedback loops through the rest of

the neural network.

3.2.4 Change in Input as Reinforcement

The most important change in Klopf's heterostat made in

this early period was the switch from the use of input to

the element as reinforcement to change in input as

reinforcement. The proposal here was to make synaptic

facilitation depend not on the absolute level of

depolarization but rather on the amount of increase of

depolariz,'tion following firing. If an output pulse is

followed by an increase in depolarization, those excitatory

synapses that were active when the output pulse was produced

are facilitated, and those inhibitory synapses which were

active are weakened. There were several reasons why this

was a particularly interesting proposal. First, it became

possible to eliminate zerosetting. The rationale for

introducing zerosetting was to prevent a continuing high

level of depolarization, caused by continued exposure to a

given stimulus, from causing excessive adaptation. A model

sensitive to stimulus change would be reinforced only when

such exposure was initiated or terminated. Constant high

levels of depolarization (or hyperpolarization) will not

cause weight changes. Learning in animals often seems to
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depend on the change in reinforcement rather than its

absolute value. For example, the termination of punishment

following a response will usually cause an increase in the

frequency of that response.

A third line of thought leading to the use of the

change in input as reinforcement was that of producing

stability via an element-local negative feedback loop (as

mentioned above). The idea was that synapses with larger

weights must have their presynaptic signals followed by a

proportionately larger input just to maintain their large

weights. This introduced a natural limit on the growth of

the weights that was dependent on the amount of

reinforcement they indicated. One way of viewing this

learning process is to regard each presynaptic signal as

generating a prediction of how much input will follow, and

then changing its weight according to whether that

prediction was too large or too small. Some early models

did this with each synapse making its own separate

prediction of subsequent input (Sutton, 1978a). Another

natural possibility was to add the predictions of synapses

whose presynaptic signals occurred at about the same time to

yield a composite prediction of subsequent input. It did

not take long to recognize that this allowed a significant

simplification: If predictions were proportional to

synaptic strength, and they were added together to yield a

'V i _ . . % - - ,
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composite prediction, then simply the current total input

was a prediction for later total input. Comparing the

predicted with actual later input thus amounts to comparing

past input with current input, i.e., to using the change in

input as reinforcement. Section 4 contains one hypothesis

as to how this might be done physiologically.

Viewing the use of change in input as reinforcement as

involving a combination of predictions or expectations has

turned out to be very useful in understanding it and

relating it to animal learning theory. Sutton (1978c) used

this approach to compare the behavior of such an adaptive

element with a range of expectation phenomena in both

classical and instrumental conditioning. In classical

conditioning, the element was found to be closely related to

a major descriptive model in animal learning theory due to

Rescorla and Wagner (1972) which accounts for a broad range

of expectation phenomena known as stimulus context effects.

In instrumental conditioning, it was argued that the use of

change in input as reinforcement was essential in explaining

the full range of conditions under which learning takes

place, including those in which no external reinforcer

occurs. Figure 3.3 illustrates the range of possibilities

involved.

The heterostat as originally proposed by Klopf, or any
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REINFORCEMENT

HIGH BRSE LOW

z C:c NONEH
o DURING ONswON CONBINED

H ONISSION EFFECTS

Cc + NONE -

U M OPPET1IVE NORNL PUNISHNENT

Iii CONDITIONING RFFRIRS CONDITIONING

0-
X
x 0 + + + NONE

CONBINED ESCAPEs DURING
EFFEC7S AVOIDANCE RVOIDRNCE

Figure 3.3. Direction of learning changes (effective
reinforcement) and name or description of the experimental
paradigm corresponding to the nine basic cases of
combinations of expectation and reinforcement. An element
using change in input as reinforcement seemed necessary to
begin to explain these phenomena.

-i
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feterostat using simple input levels as reinforcement,

cannot explain these expectation phenomena as properties of

the single element. Aassumptions about network structure

must be invoked in order to explain them. In addition, we

have found that using the change in input as reinforcement

does indeed alleviate the open-loop instability problems and

the need for zerosetting. We have gradually become

convinced that this is a genuine and important improvement.

Most of our later models have taken the expectation based

change in input element as a starting point. In the

following we discuss it further.

3.2.5 The ' Element

This was the first element that we examined carefully

that used the change in the total input as reinforcement

rather than the absolute level of input. The term y refers

to this according to a notational convention discussed

below.

Awi(t) = w (t + 1) - wi(t) = c[y(t) - y(t)]Ei(t) = cyE i  (3.5)

Here the eligibility E. contains only the inverted-U shaped

component and not the zerosotting component of the

eligibility used in the weighted correlation model specified

h - ti •
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above. The bar notation is used to denote the convolution

of the barred time function with an exponential decay

function. The easiest way to think of this is to regard

each event in the barred function f as causing a

corresponding increment or decrement in f, which then

gradually fades or decays away with time. Figure 3.4

contains several examples which should make this clear. We

will make frequent use of this decaying memory for producing

eligibility traces. f is usually assumed to be normalized

such that if f(t) is held constant at a particular value,

then f(t) will asymptotically approach that constant value.

This 3llows us to use f(t) = f(t) - ?(t) as a measure of f's

deviation from its recent past values, a measure closely

related to the first time derivitive of f. Many variations

on this y element have been considered, and the most

interesting of these are discussed below.

3.3 Other Elements using Change in Input as Reinforc.ement

3.3.1 The Exponential Trace Eligibility y Element

Because of the nature of the heterostatic theory of

classical and instrumental conditioning, the eligibility

computation is crucially involved in determining predictions

for the effectiveness of learning as a function of the

- - = -- - _ !. . . . . . i " i
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F [T) [[I)

Figure 3.4. Illustration of the relationship between a
function and the "bar" of that function. The bar indicates
convolution with an exponential.
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conditioned stimulus - unconditioned stimulus interval in

classical conditioning, and of the conditioned response -

reinforcement interval in instrumental conditioning. In the

theory of animal learning, these two intervals are noted to

have apparently similar effects on learning (which provides

support for the heterostatic theory). However, the effect

of this interval is not the same in all respects ini

classical and instrumental conditioning.

All the data on the effect of the conditioned response

- reinforcement interval on learning in instrumental

conditioning indicate better and faster learning the shorter

the interval. The most careful studies have also shown

reinforcement becoming essentially ineffective at intervals

over five seconds (Grice, 1948). Thus, the plot of rate of

learning versus this interval looks, like Figure 3.5. An

inverted-U shaped rate of learning versus interstimulus

interval curve for classical conditioning is obtained by

convolving this kernel with a conditioned stimulus signal of

intermediate duration (Sutton, 1979). Thus, this sort of

eligibility allows learning immediately after firing yet

maintains the inverted-U shaped learning curve for classical

conditioning. In April 1979 we converted our models to the

use of an eligibility kernel function f(k) of the

monotonically decreasing shape of Figure 3.5.
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RESULTRNT
LERRNING

0 5 SECONDS

CR-R INTERVL

Figure 3.5. Resultant learning versus conditioned
response-reinforcement interval in instrumental
conditioning. This is also the form that instrumental
conditioning indicates the eligibility increment function
(kernel) should take.
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The equation for the variation of the weights of the y

element which uses an exponentially decreasing eligibility

kernel is:

L w y X (3.6)

In words, the change in each synaptic efficacy or weight is

proportional to the change in activity of the postsynaptic

neuron times an exponentially decreasing weighted average of

recent values of the product of pre- and post-synaptic

activities.

3.3.2 The s Element

We consider this variation to be our current best

heterostat, and we discuss this model further elsewhere.

AW xy (3.7)

where

n
s(t) = E w.(t)xi(t )  (3.8)

and

1 if s(t) + noise(t) > 0

y(t) =  (3.9)

0 el se
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The replacement of y by the closely related function s has

the advantage of allowing variation in the selection of

action (the noise in the y computation) without introducing

this spurious variation into the reinforcement term s.

Random variations in output do not act as reinforcement, as

they do in the y model, but are instead trials or

experiments by the element with being both on and off. This

learning equation can be given a natural physiological

interpretation if s is thought of as the membrane potential

of a neuron with a noisy threshold.

3.3.3 The "Dual" Heterostat

Aw ~x *yx (3.10)

This rule can be arrived at by replacing each input

variable (each x) in the y element (Equation 3.6) by the

output variable (y) and vice versa. Interestingly, the

element retains the ability to do goal-seeking or

instrumental conditioning-type learning. Conceptually, the

element works like this: Each time the presynaptic neuron

fires, it records which neurons it causes to fire (the xy

eligibility term). If it receives subsequent positive

effective reinforcement - an increase in activity - it
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concludes that it was "good" to make those neurons fire, and

strengthens the synapses to them (if the subsequent

effective reinforcement hid been negative, the synapses

would have been decreased). However, this rule does not

produce classical conditioning-type learning as a side

effect, although the normal heterostat does.

3.3.4 The Classical Conditioning Predictor Element

~ (3.11)

In words: Presynaptic activity is correlated with

subsequent changes in postsynaptic activity to determine the

synaptic efficacy. This interesting element turns out to be

a fairly good model of classical conditioning behavior as

observed experimentally (see Section 4; Barto and Sutton,

1980). Important features are the use of an eligibility

term, which allows genuine predictive learning in which the

conditioned response can begin before the occurrence of the

unconditioned stimulus, and expectation phenomena consistent

with, and even going slightly beyond, current psychological

theories of animal behavior. Since y is not present in the

eligibility term, this element is insensitive to the effect

of its past actions on current input, and thus is an

=,,
.... • " _ -_______III__- --
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open-loop element. For this reason it is not capable of

instrumental learning or other truly goal-seeking behavior.

We did, however, gain a fairly complete understanding of its

behavior and relationship to other theories (as pr-sented in

Section 4).

3.3.5 Dotting the x Eligibility Term

Aw ~ y* Xy (3.12)

In classical conditioning experiments with animals, it

is found that a crucial temporal variable determining ease

of conditioning is the time interval between the onsets of

the conditioned and unconditioned stimuli (the

inter-stimulus interval). The y term captures the

dependency on the onset of the unconditioned stimulus (only

at onset will this derivitive measure be positive). Dotting

the x term is meant to capture the dependency on the onset

of the conditioned stimulus (CS) in the same way. In this

element, a synapse becomes eligible only if it produces an

output soon after presynaptic stimulation increases. If

presynaptic stimulation decreases and an output is

generated, then the synapse becomes negatively eligible - an

increase in y will then decrease (and a decrease in y willV _ _ _ _ _
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increase) the synaptic efficacy.

We will now argue that it is always inappropriate to

use x in triggering eligibility this way when it is x itself

which is used with the weight vector to produce y. The

argument, though simple, does require a detailed

understanding of these adaptive elements. A synapse should

be eligible if its presynaptic activity x was appropriately

timed for influencing the observed postsynaptic firings y

that may have caused the current reinforcement, y. In this

way, the synapses made eligible will be the ores which could

have caused, or prevented, that activity, and which are thus

responsible for the current reinforcement. The term x,

however, does not really meet this requirement. The

simplest case is when x is maintained at a constant positive

value for a long period of time. Throughout this time this

x signal is influencing y and determining reinforcement, yet

if x determines eligibility, then this pathway would be

eligible only at the start of the time period.

Our conclusion is that eligibility should depend

directly on the variable used to calculate y from the

weights. We prefer to always let x denote this variable.

To make an element more sensitive to changes in stimulation

levels, rather than absolut. levels of stimulation, one can

introduce a level of preprocessing on the input signals to

4.-"-



EVOLUTION OF HETEROSTAT MODELS PAGE 3-26

produce x signals whose absolute levels indicate changes in

the original input variables (or whatever is thought to be

most important in the original input signals).

3.3.6 Dotting the y Eligibility Term

AW - y xy (3.13)

or, combining with the previous rule,

AW ~ Y xy (3.14)

In these variations, changes in y, rather than y

itself, are used to trigger eligibility. This possibility

for eligibility is of particular importance for the

specialized reinforcement models discussed below, and we

have not yet analyzed it to our satisfaction. The most

useful general observation seems to be that one's choice of

either y or i to trigger eligibility will depend upon which

of these two most directly influences the change in

reinforcement in the environments under consideration. For

some environments, in which changes in reward are dependent

on changes in output level, a y term may be appropriate. In

other environments, however, changes in reward may be due



EVOLUTION OF HETEROSTAT MODELS PAGE 3-27

directly to output levels rather than their changes (as in

the landmark learning example in Section 6).

3.3.7 Separate x and y Averages in Eligibility

s y T (3.15)

The most interesting aspect of this rule is that it can

be thought of in two conceptually different ways. In the

traditional approach, s is effective reinforcement and yb.xb

determines which synapses are eligible. Alternatively, sy

can be thought of as effective reinforcement with just x as

eligibility. If sy is positive, the neuron has had high

output lately (y) and this has been followed by an increase

in input stimulation s. This suggests that the neuron is

currently in a positive feedback loop from activity to

stimulation, just the sort of situation in which we would

like the neuron to fire strongly. Probably the equations

using x-y eligibility can also be thought of in this way to

son.e degree. Nevertheless, it seems more appropriate for

eligibility to be positive only if positive postsynaptic

activity y occurs during presynaptic activity x, because

only in these cases could the synaptic weight influence the

positive postsynaptic activity. For this reason, iTy is to
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be preferred to x y.

3.3.8 Problems with using Change in Input as Reinforcement

Here we discuss some of the basic problems which have

arisen with models that use the change in inpit as

reinforcement.

3.3.8.1 The End Reinforcement Problem - By "the end

reinforcement problem" we refer to the complex of problems

that arises as one introduces "ultimate" or "primary"

reinforcers into adaptive element models. According to

Klopf's concept of generalized reinforcement, any input can

become a reinforcer after it has occurred in appropriate

relation to other inputs that are already reinforcers. It

seems natural to define a few reinforcers as primary, and

let others be built upon them. The idea is that in order

for a signal to become a non-primary, or secondary

reinforcer, it must occur in an appropriate relationship

either to a primary reinforcer or to a secondary reinforcer,

which in turn must occur in an appropriate relationship to a

primary reinforcer (or to another secondary reinforcer,

which must in turn...). Thus, the primary reinforcers are

in some sense the ultimate Justification of all secondary
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reinforcers. They are often thought of as occurring at the

end of a sequence of secondary reinforcers, and this is the

rationale for the term "end reinforcers." The end

reinforcement problem is either to do away with the apparent

need for these special reinforcing inputs, or else to use

them in some manner which avoids the difficulties discussed

below.

As an example, let us consider the end reinforcement

problem for the classical conditioning predictor element

briefly discussed above (Section 3.3.4). For a number of

reasons it is desirable that a non-primary excitatory input

sigr.al that is not followed by reinforcement should result

in a decrease in the associated synaptic weight. In the

classical conditioning element, this occurs due to the large

decrease in input at the offset of this excitatory signal.

If this excitatory signal is a primary or end reinforcer,

however, then we do not want it to decrease, even if not

followed by another reinforcer. A simple solution, and the

one used in our published results, is to specialize the end

reinforcers to the extent that their synaptic weights are

unaffected by the learning process - they arrive over

pathways having fixed weights.

However, there is reason to suspect that this sort of

crude solution will never be completely adequate, either for

KI
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this particular element or for generalized reinforcement

models using expectation in general (including the

element). Activity in the fixed end reinforcer pathway will

cause an unusual level of activity and thus a subsequent

unusual level of expectation. Yet, the pathway's strength

is immune from the results of this expectation, which would

otherwise drive the connection weight toward zero. Other

pathways that may be active as the end reinforcer occurs are

not so immune however, and this is where thc hidden problem

arises. It seems to be a reasonable assumption that other

purely informative signals should not seriously impair the

element's behavior. Yet, consider what happens if we assume

that a signal is available to the destination element over

one of its variable pathways which is the same signal (in

terms of its time course) as one which arrives via the fixed

pathway. This variable pathway will have an eligibility

identical to that of the fixed pathway, but it is not immune

to the lack of reinforcement. Wien their common signal

occurs, expectation is built up or maintained in the

destination element. When the signal ends, there is

expectation without activity. The fixed association is

immune, but the variable association is driven away from

zero in the direction opposite to that determined by the

sign of the fixed pathway: If the fixed connection is

excitatory, the plastic connection will become inhibitory;

if the fixed is inhibitory, the plastic will become

- .- , . ... .. ...
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excitatory. The next time the signal occurs, there will be

a reduced effect on the destination element because the

influence of the fixed pathway will be slightly counteracted

by the influence of the variable pathway. The variable

weight will continue to change as before. This process

continues until the effects of the fixed and variable

pathways exactly counterbalance. The end reinforcer signal,

in spite of all our ad hoc efforts to make it fixed and

non-zero, will produce no net effect on the element.

End reinforcers and the secondary reinforcers they

support seem to be fundamentally different. Secondary

reinforcers must always generate a prediction or expectation

of another reinforcer soon to come, whereas an end

reinforcer should not. This sug -ests that the input lines

to an adaptive element that are designated the end

reinforcers must play a special role in the learning

equation. This is not, however, a return to specialized

reinforcement models, for although there would be designated

specialized end reinforcer signals, any signal can take on

reinforcing properties by association with these end

reinforcers.
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3.3.8.2 Conflict between the Selecting and Reinforcing

Functions of Input - As Klopf has noted in his reports, when

one uses input to an adaptive element, or change in that

input, as reinforcement, there is occasionally a conflict

between the informative, or selecting, and the reinforcing

functions of input. The type of conflict between selecting

and reinforcing functions that concerns us can be seen in

the following example. If an element should not be active,

and gets rewarded (excitation or increase in activation) for

being inactive, then the natural effect of that reward will

be to make the element become active. Only with difficulty

and long training could the element learn to remain

inactive. Some of our simulation experiments have provided

evidence that this sort of conflict does indeed exist. On

some simple goal-seeking tasks (the associative search

problem, discussed in Section 5) our best heterostat has

been observed to perform less well, or at least less

robustly, than elements whose selective and reinforcing

functions were separated into separate input lines. This

evidence is hardly conclusive, for the task was not one that

would demonstrate the special abilities and advantages of

the heterostat, and indeed these might be expected to get in

the way. However, this sort of result has encouraged us to

look at elements with specialized reinforcing input lines.
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3.4 Models with Specialized Reinforcing Input Lines

In the preceding sections we have discussed adaptive

elements which use their excitation and inhibition as reward

and punishment. These are generalized reinforcement models.

For comparison, as well as due to their own intrinsic

interest, we have also developed and compared a number of

5pecialized reinforcement models, i.e., models whose

evaluation signal is provided via a unique pathway clearly

separated from those which affect the activity of the

element. These specialized reinforcement models have played

an important role in the development of our current

heterostat models. In the last model we will discuss, for

example, excitation and inhibition do act in the usual way

as reinforcers, but a specialized non-exciting input line

also provides reinforcement. Such combinations may

alleviate some of the problems with the heterostats we have

seen so far.

In the following, let z denote the specialized

reinforcement signal, also called the payoff (see Figure

4.1).

H 0-- 11r® ,'
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3.4.1 ALOPEX as an Action Selector

Aw(t) = c[z(t) - z(t-l1)][y(t-l -y (t- ]

or

A z y (3.16)

where

1 if w(t) + noise(t) > 0

y(t) = (3.17)

0 otherwise

z(t) a function of y(t - 1)

This element is simply a different way of viewing the

components of the ALOPEX system of Harth and Tzanakou

(1974). The learning equation does not use any input signal

information other than the payoff signal z. The element

only learns to set its action at that level which maximizes

its payoff input z - it cannot vary this action level as a

function of other input. The following element is the

extension of this one to include a sensitivity to input

information other than the payoff signal.

3.4.2 Associative Search Network Element

AW ~z xy (3.18)

z(t) a function of y(t - 1) and x(t - 1)
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In addition to the payoff signal, this element is

sensitive to other input information. We think of the

signals on these other pathways as indicating some situation

in which the element is to act. The element takes note of

the situation in which an increase in y increases z, and

then, by changing the appropriate weights, only increases

the y level in those situations. This element is relaed to

some learning automata considered by Tsetlin and his

followers (Tsetiin, 1973), although learning automata are

always taken to have only the payoff input, z. This element

is discussed extensively in the next section.

3.4.3 The Associative Search Problem

The associative search problem (Section 5) is a task

rather than a particular learning equation. An associative

search net is defined in contrast to the associative memory

systems that are usually discussed in the literature. In

such a "standard" associative memory, input patterns, or

keys, and desired recollection patterns are presented

simultaneously during training. After this training phase

the associative memory should produce the recollection when

given the key. An associative search net (ASN) also should

produce a particular output pattern for each key, but the

ASN is never provided with that desired recollection during

the training phase. During the training of an ASN, the
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environment provides key input, waits for an output or

action from the ASN, and then provides a scalar evaluation

of that action as a function of the key provided. For each

key input pattern, the ASN must search for the action which

maximizes its reward in that input situation. A bank of

associative search net elements (Figure 3.6) can solve this

sort of problem under certain conditions. This network is

discussed more fully in Section 5.

3.4.3.1 Nulled Transitions - There is a problem with using

the system shown in Figure 3.6. During the transition from

one input situation to another, there may be a large change

in z. The system mistakenly thinks it was its last action

in the first situation that caused the transition to the

second. Since we want the system to produce the best action

in each situation, we would like this change to be ignored.

The simplest way to do this is to prevent any learning from

occurring during the transitions between situations. There

are at least two very different objections to preventing

learning during transitions between input situations. The

first is that we can do better than this by adding a

predictor, and the second suggests that we really want the

system to try to control its transitions from situation to

situation, and that the changes in z at the transitions

should not be ignored at all. These issues are discussed

more fully in Section 5.4.

--.a_
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E NVIRONNENT

X ZIPONOFF

C NTEXT y
RCTIONS

Figure 3.6. A simple associative search net made from
associative search elements.
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3.4.3.2 Associative Search with Predictor Element -

Aw (z - P) " xy (3.19)

n
p(t) Z w (t)xi(t) (3.20)

i=1 Pi

AW (z - (3.21)

See Figure 3.7

This element uses the deviation of reward from

predicted or expected reward to change weight, rather than

the deviation of current reward from the reward at the last

time step. Thus, when a new input situation is encountered,

a predicted level of reward for the new situation becomes

immediately available, and it is not necessary to prevent

learning from occurring during the transition. This rule

would work even if the input situation changed every time

step, whereas a nulled tranJition system would not work at

all if this were the case.

It is important to note that the prediction used here

is a non-anticipatory prediction. In other words, the
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PREDICTOR

ARCTOR

Figure 3.7. Diagram of the associative search net with
predictor element. This element consists of a predictor
part and an actor part, each with its own set of weights.

iI-
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prediction is not used until the event predicted has already

occurred and been observed. This is still useful because it

allows the detection of deviations of reward from the

predicted level. Later we will discuss elements that

combine this c.th a genuinely anticipatory prediction (a

prediction used before the predicted event is available).

3.4.3.3 Learning Situation Transitions - If the reward that

can currently be attained differs from situation to

situation, then it is reasonable to expect an adaptive

system to attempt to control which situation it is in, i.e.,

to control its environment in order to cause it to present a

situation in which a high reward can be attained. Of

course, the adaptive system may not be able to affect which

situation is presented next (this is the case in the

associative search task), but why not expect it to try? If

it were trying, the changes in z at situation transitions

would be very important informative cues, and should not be

ignored at all.

Below we consider several elements designed to solve

Lhe problem of maintaining a high payoff, both by choosing

high payoff actions within a situation, and by choosing

actions that control the environment in order to cause the

--H. ,
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occurrence of situations in which higher payoffs are

available. The elements differ only in their reinforcement

terms. In all cases eligibility will be the standard x-y

discussed above.

The associative search net element uses z as a

reinforcement term. This rule evaluates past actions in the

situation that generated them (represented by the x-y

eligibility) according to the change in payoff that

resulted, ignoring the situation altogether for evaluation

purposes. The first objection that one might have to this

element is that it does not use the situation input vector

to give it some idea of how much payoff is possible in each

situation. For example, assume that in a certain situation

XO the payoff drops significantly whether the element

chooses either a high or a low activity. With continued

experience with XO the element should learn to make the best

of a bad situation and choose the action which results in

the smaller decrease in payoff. However, whatever action is

chosen, it will be punished according to the learning rule

implemented by the associative search net element. The

better action will be made less likely to occur every time

that it does occur. (A similar problem occurs if there is a

situation X1 in which there is always an increase in payoff,

whatever action is taken.) This problem suggests that the

element could be improved by accumulating an expectation for

.'A . - .- I ' '-
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each situation of what the change in payoff will be. Then

the actual change could be compared with this expectation.

This idea is similar to that behind the associative

search net with predictor element. However, in that

element, we constructed a prediction of upcoming z value,

whereas we construct a prediction of upcoming changes in z

value in the payoff change predictor:

Aw ( - q) (3.22)

where q(t) is a prediction of change in payoff at t, based

on recent situations.

n
q(t) = i lWqi (t) xi(t) (3.23)

AWq (z - q) x (3.24)

Here synaptic efficacies are increased only if a greater

increase in payoff is received than was expected. Unlike

the associative search net element, this element can adjust

to situations from which only increases or decreases in

payoff are possible, and still learn effectively.. Another
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nice feature of this element is that weights change only

enough to make sure the right action is made every time. In

the associative search net element, on the other hand,

weights are changed every time payoff changes, even if the

best action has already been found and the payoff change

could have been completely anticipated.

3.4.4 An Element that Makes Two Uses of Prediction

Aw U[(z-P) + ] - (3.25)

where

AWp (z - p) x (3.26)

This element is best seen as an extension of the

predictor based element discussed above (Equations 3.19,

3.20, and 3.21) to solve the associative search problem.

That element used only z-p as effective reinforcement,

whereas this rule adds a p term. That element, like the

payoff change predictor, does not use the new situation

input to evaluate action. This can be important, since

often the situation input can be an indicator of what

opportunities for payoff lie ahead. The second term, p, in

this element's reinforcement term makes use of this

. , 4
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situational information about upcoming payoff. Since p is a

predictor of future payoff, the change in p can be

considered as rewarding as a change in payoff itself. In

this element, change in prediction of reward is merely added

into the reinforcement term of the payoff change predictor.

By a similar reasoning process, we might expect tha an

element that uses z+p as effective reinforcement might work

well. However, at this point our understanding has

progressed sufficiently that we can attempt a more

theoretical presentation.

3.4.5 A Proposal for an Alternative Problem

The primary purpose of considering the associative

search problem in our reseach has been to serve as a focal

point in the evaluation of various learning rules. As our

learning rules and our understanding of them has evolved, so

has our understanding of the problems we would like them to

solve. Most problems ignore certain issues in order to

focu3 on others, and the associative search problem is no

exception. The associative search problem directs our

attention to a simple, stark form of situation sensitive

search for optimal actions. We would like now to propose a

problem which retains the emphasis on situation sensitive

goal-seeking, but which also introduces two additional

considerations. In this new problem, unlike the associative



EVOLUTION OF HETEROSTAT MODELS PAGE 3-45

search problem, the actions of the adaptive system will be

allowed to have an effect on which situation it next finds

itself in. Thus, we will want the adaptive system to learn

to control its environment to cause the occurrence of those

situations in which a high payoff can be attained. Second,

this ability to control the environment raises a major new

complication: There may be times when the highest payoff

can only be reached by passing through a temporary period of

low payoff. Similarly, an action which brings immediate

high payoff may inevitably be followed by a prolonged period

of very low payoff. In these cases, some sort of evaluation

extending over many time steps would seem to be essential

for successful adaptation. Thus, a new formulation of

optimal and adaptive behavior is required.

Several remarks are in order about some aspects of

adaptation that this new formulation is not focusing on.

The following are three assumptions made in the new

formulation which keep the problem reasonably limited. Of

course, as success is achieved on this delimited problem,

these assumptions can be gradually weakened or removed.

1. The identification of the states of the environment

is assumed to be simple given the situation

information. It is sufficient to assume each

environmental state activates a unique situation

~]
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input line.

2. The next environmental state is assumed to be

dependent only on current state and current action.

In other words, all influences through the

environment have a delay of exactly one time step.

3. The element will not be expected to improve its

input representation with experience in any way.
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3.4.5.1 The Problem Schema -

Q(t + 1) : ENV{Q(t), y(t)} (3.27)

n
y(t) = <W(t), X(t)> = E wi(t)x.(t) (3.28)i=l i

X(t) = O{Q(t)} (3.29)

z(t) = Z{Q(t)} (3.30)

W(t) = f{W(t - 1), z(t) , X(t 1 ) , y(t - )) (3.31)

See Figure 3.8.

. * , ,.4.
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ENVIIONMENT

x
SITUATION I - PRIOF Y - RCTOI

ROAPTIVE
ELEMENT

w

Figure 3.8. The element task schema.
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3.4.5.2 Payoff Functions - In the ibove specification, z(t)

is what is ordinarily thought of as the payoff function. In

;act, however, this momentary measure can be a very poor

measure of the correctness of a certain action. z(t) is the

instantaneous payoff, but an action that results in

immediate reward may result in low payoff later. As

discussed earlier, it is necessary to introduce a new notion

of optimality to begin to deal with these delayed effects.

For a particular adaptive system and environment one

can define a function of time called the ideal payoff

function U(t) which gives a measure of how well that

adaptive system has done, taking ,,into account the
consequences of past actions whave not yet

materialized. We take as one sued/measure simply the sum of

the z values, both already.e eived and yet to be received,

the latter in general 1 only be partly determined:

t
U(t) = z(T)/-E{ E z(T)IQA(t), QE(t)} (3.32)

T= / T=t+l

where E{* indicates the expected value operator and

QA(t) and QE(t) denote the states at time t of the

a ptive system and the environment respectively. A nearly

/equivalent definition of the ideal payoff that is sometimes

more useful is to define it to be the expected average level

of z(t) over the lifetime of the organism:

A-

. . . i _______,,
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t
E z(T) + E{ E z(T)IQA(t), QE(t)}

U(t) = lim TO T=t+1 (3.33)

Our approach to situation sensitive goal-seeking is to

think of the element as varying its action in order to

receive some feedback as to the evaluative effect of the

variation. Ideally, the effect on the ideal payoff would be

available, and the weight change equation would be simply

Aw ~ AU • xy (3.34)

Of course, del-U is no more available to most adaptive

systems than U is, and our adaptive elements will have to

settle for some approximation to it:

A

AW - AU •xY (3.35)

where del-U-hat is the adaptive element's estimation of the

change in U.

The following is an example of how this approach might

be used. First, note that U as defined in Equation 3.33

- i
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consists of two parts, one which can be completely known by

the adaptive system and one which generally can not:

t
U(t) =  z(T) + E{ E z(T)IQA(t), QE(t)} (3.36)

T=O T=t+l

This suggests taking as the estimate U-hat of U merely the

known part:

A t
U(t) E z(T) (3.37)

T=O

To yield an adaptive element, we solve for the change in

U-hat(t)

A A A t t-1
aU(t) = u(t) - U(t -1) = E z(T) - E z(T) = z(t) (3.38)

T=O T=O

Substituting this into Equation 3.35 immediately yields the

associative search element. This is in fact a good way of

understanding that element. The associative search element

builds no estimate of what future payoff will be. From this

follows the two flaws of that element. First, every

positive z is seen as a reward and every negative one as a

punishment. The z value is always seen as a deviation from

zero rather than from some prediction, or estimate, of z.

Second, with a zero estimate of z for the future, it cannot

VI
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recognize delayed effects of its actions on z. Thus, the

element cannot use secondary reinforcement; that is, it

cannot learn that a situation will soon be followed by

reward and should be interpreted as reward itself.

This analysis clearly suggests that it may be useful to

use an estimate U-hat of U which includes some estimate of

future values of z. One possibility currently under

investigation is to form a prediction of z with a separate

set of prediction weights, much as we did earlier for the

associative search with predictor element. Here, however,

we want the prediction to extend several time steps into the

future. This suggests the following equation:

p(t + 1) = p(t) - cp(t) + cp(t) (3.39)

0< 1

where
n

p(t) = E w (t)xi(t) (3.40)
i=1. Pi

and
A

aWp AU x (3.41)

where p(t) is the prediction of z(t). As an estimate of z's

values in the future, we can use the values p will take in

the future, assuming no more input events occur, or that
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their net effect will be zero. This lets us use Equation

3. 3,2 for U to form a new estimate U-hat:

A t

U(t) Y - z(T) + Z p(T) (3.42)
T=0 T=t+l

t

= E z(T) + Z p(t + I)(0 - )(T - t + 1)
T=0 T=t+l

t
t z(T) + 2(t + 1) (3.43)

T=0

Taking the difference of both sides yields

A

LU(t) z(t) + p(t + 1) - p(t)

Z (t) + -a (t) + ap(t)

= z(t) - p(t) + p(t) = z(t) + P(t) (3.44)

This suggests, via our general Equation 3.35, the following

adaptive element:
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Aw (z + ) x-y (3.45)

with

Aw ~ (z + p) X (3.46)

This interesting element, and others of a similar nature,

are curently under investigation.



SECTION 4

OPEN-LOOP LEARNING:

EXPECTArION, PREDICTION AND CLASSICAL CONDITIONING *

4.1 Introduction

One way to bridge the gap between behavioral and neural

views of learning is to postulate neural analogs of

behavioral modification paradigms. Hebb's suggestion that

when a cell A repeatedly and persistently takes part in

firing cell B, then A's efficiency in firing B is increased,

is the most familiar of these postulates (Hebb, 1949). This

rule for synaptic plasticity is a neural analog of

associative conditioning and continues to exert a powerful

influence on theoretical and experimental research in

learning and memory. Neural network models designed to

* This section is based on a paper entitled "Toward a Modern
Theory of Adaptive Networks: Expectation and Prediction" by
R. S. Sutton and A. G. Barto to be published in
Psychological Review, 1981.
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explore the behavioral possibilities of modifiable

structures typically employ a pre- and postsynaptic

correlation for altering connectivities as a mathematical

representation of Hebb's postulate (e.g., Anders3n,

Silverstein, Ritz, and Jones, 1977; Brindley, 1969;

Grossberg, 1974; Kohonen, 1977; Marr, 1969; von der

Malsburg, 1973). However, in addition to the fact that

there is no direct experimental support for the Hebbian rule

as a model of neural plasticity, several different bodies of

evidence have accumulated that suggest that such simple

contiguity rules can account neither for the behavioral

facts of learning, nor for the theoretical necessities of

successful adaptation.

The analysis of elemental processes of learning has a

long tradition within animal learning theory. To a large

extent it has been successful: Fundamental laws of wide, if

not complete, applicability have been found. Animal

learning theory constitutes a large body of carefully

explored and tested theories about fundamental processes of

learning. Given this, it is surprising how little contact

and interaction there have been between animal learning

theory and adaptive systems theory, particularly insofar as

the latter attempts to mimic neural networks or biological

adaptive systems in general.

F --- • . .. I.. lI
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Numerous adaptive systems papers have made brief

reference to basic animal learning processes such as

classical and instrumental conditioning. But, almost

exclusively, inadequate models of these conditioning

processes have been used, and in some cases they are so

inadequate that while a theorist derives support for his

model by citing a learning process, in reality the

exerimental evidence and modern learning theory contradict

even tiie simplest predictions of the model. Classical

conditioning involves an interplay between expectations and

stimulus patterns that is too complex to incorporate into a

simple correlation rule such as Hebb's. The common

modifications of a correlation rule, for example the

introduction of delay in input or output pathways, result in

behavior still not in agreement with experimental data.

Moreover, as we argue below, the phenomena actually observed

in classical conditioning is perhaps crucial for

sophisticated adaptive behavior.

The history of attempts to construct adaptive networks

of neuron-like components also suggests that something

essential is not preserved by the Hebbian model and its

variants. Network approaches to adaptive system design have

been notable in their failure to produce learning behavior

beyond a rather low level of sophistication. The

information processing success of adaptive networks is

i -- = j i i, 7_ . .. ii .. -. I -I I L-
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restricted almost entirely to moderate success in the

recognition, processing, and associative storage and

retrieval of spatial patterns. There is a conspicuous

absence of nontrivial processing of temporal patterns. It

may be true that in the brain some kinds of temporal

patterns are processed by being represented spatially as,

for example, suggested by Lashley (1951), and some models

use this principle (e.g., Fukushima, 1973; Grossberg, 1969;

Spinelli, 1970). However, little progress has been achieved

in our understanding of how a system can both learn and

effectively use knowledge while interacting in real time

with a complex environment. Yet these temporal aspects of a

system's interaction with its environment are central to

much intelligent behavior.

In the time since the first computational experiments

with adaptive networks were carried out, remarkable advances

in the understanding of the cellular basis of behavior have

occurred. In recent years, invertebrate animals have been

successfully used to study aspects of the neural basis of

behavioral modifications (e.g., Kandel, 1976, 1978).

Although this approach has not yet elucidated the cellular

basis of associative learning, simpler but possibly related

forms of nonassociative learning have been successfully

analyzed at the cellular level. These studies reveal that

neurons employ a wide variety of biochemical modulatory
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processes that interact in complex ways with electrical

activity and that this interaction mediates forms of

behavioral modification (Kandel, 1978).

Despite this evidence that neurons are capable of very

complex information processing, adaptive network theorists

continue to produce idealized neural element designs which

are constrained by the early view that neurons are

essentially switching elements having little internal

processing power. Although one of the most important

aspects of model building is simplification, the lack of

significant progress in adaptive network theory, together

with the high complexity of cellular and synaptic machinery,

suggests that these idealizations leave out some mechanisms

that are essential for producing sophisticated adaptive

behavior.

In this section we describe an adaptive element model

which is more reasonably in accord with the facts of modern

animal learning theory than models commonly used in adaptive

network research. After discussing several forms that

adaptive element analogs of classical conditioning have

taken in the past, we briefly introduce our model. We then

present the basic elements of a view of classical

conditioning that is more realistic than that commonly used

in adaptive network studies. We show how the behavior of
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our model is in good agreement with a variety of aspects of

animal learning data. We then discuss how our model is

related to a variety of other adaptive elements which form

part of adaptive system theory. No attempt is made to be

exhaustive. Learning theory is a complex subject with many

controversies, and adaptive system theory is extremely

diverse. We have tried to abstract from the very large

animal learning theory literature those points on which

there is a reasonable amount of agreement and which we

consider to be most pertinent for adaptive network modelling

and simulation.

Despite recent advances, it is still premature to

propose a testable molecular model of associative learning.

However, even though we see our model as being of interest

primarily from behavioral and theoretical perspectives, we

speculate as to how the cellular mechanisms which are

beginning to be elucidated could implement the required

computations. Our purpose in doing this is two-fold.

First, we desire to demonstrate that processing of the

proposed complexity is clearly possible at a cellular or

simple network level. Second, some aspects of the proposed

learning rule can be implemented so naturally by known

mechanisms that a discussion of these mechanisms in light of

our behavioral and theoretical observations, while

speculative, may contribute to experimental efforts to
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understand neuronal plasticity.

Although we restrict attention in this section to

classical conditioning, our research was motivated by an

interest in more complex forms of learning and, in

particular, the novel suggestion by Klopf (1972, 1979, 1981)

that neurons may be reinforcement learning devices of a kind

fundamentally different from those previously proposed in

neural theories. The aspects of classical conditioning

which we consider here form a necessary prelude to moving

beyond the restrictions of the classical conditioning

paradigm.

Finally, although our theory is an attempt to explore

the consequences of attributing quite complex computational

power to individual adaptive elements, it is not our

intention to suggest that all of the mechanisms must

necessarily reside in each element. Rather, our program of

endowing a single adaptive element wit. behavior having

detailed properties of classical conditioning represents our

feeling that these properties are fundamental to adaptive

behavior. In particular, what we call an adaptive element

may not correspond to a single neuron.

i

. .. .Sb
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4.2 Adaptive Element Analogs of Classical Conditioning

In a simple classical conditioning experiment the

subject is repeatedly presented with a neutral conditioned

stimulus (CS), i.e., a stimulus that does not cause a

response other than orienting responses [footnote], followed

by an unconditioned stimulus (UCS) that reflexively causes

an unconditioned response (UCR). After a number of such

pairings of the CS and the UCS - UCR, the CS comes to elicit

a response of its own, the conditioned response (CR), that

closely resembles the UCR or some part of it. For example,

a dog is repeatedly presented with first the sound of a bell

(the CS), and then its food (the UCS) which causes the dog

to salivate (the CR). This simplified description of

classical conditioning leaves much unsaid, as we shall see.

In studies of the cellular basis of -ning and in

purely theoretical studies of adap , ' t~ms it is

frequently convenient to postulate netiron-like mechanisms

which embody various types of "learning rules". The rules

Strictly speaking, this stimulus is not a conditioned
stimulus until the animal has begun to be conditioned to it.
However, as is often done, we simplify notation in this
section by referring to any stimulus that is meant to be
considered as eventually or potentially becoming conditioned
as a conditioned stimulus.
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describe how the strengths of interconnectivity change

between units that are intended to be crude models of

neurons. In keeping with this tradition, we shall sometimes

refer to synapses, synaptic weights, etc., but the reader

should remain mindful that the relationship between models

of this form and neural plasticity is often one of coarse

analogy. We prefer to think of the rules as describing the

behavior of "adaptive elements".

Figure 4.1 shows an element with input signals

x1,.. .xn, connection weights w1 ,..., Wn, output y, and a

specialized "teacher" input z. Since we wish to focus only

on rules for changing the weights wi, we will not pay

particular attention to the input-output function of the

element. For our purposes, it suffices to say that y is

some function of the weighted sum of the inputs; that is,

for any time t,

n
y(t) = f[ E wj(t)xj(t)], (4.1)

j=1 l

where f is a function which resembles the one shown in

Figure 4.2 [footnote]. Of course, when an adaptive element

is proposed as an analog of animal learning, the form of

According to Equation 4.1, the adaptive element computes its
output y instantaneously from its inputs xi . In order to
remedy the problematic consequences of this when networks
are considered, one can assume that a small delay exists in
the communication links between the elements. For our
present purposes, we do not need to consider this detail.

.. . . , ,. . .. . . .,i , I i , _ i
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Z

Xy

xI

'I X1

ni

FIGURE 4.1. An adaptive element with n modifiable input

pathways xi, i = 1,..., n, connections weights w_, i =
1,..., n, a specialized input z required by some adaptive
elements to transmit the signals of a "teacher", and an
output labeled y.

Output f

frequency

0
0 Total stimulus strength

FIGURE 4.2.\ A common form of nonlinear input-output
function used in neural and adaptive element models. When
these models are used in analogs of conditioning
experiments, this function becomes a response mapping rule.

(Vt
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this function becomes crucial in making precise predictions

about behavioral data. In these cases, the function is

related to response mapping rules (e.g., Frey and Sears,

1978). If the adaptive element is proposed as a neuron

model, this function relates, for example, the firing

frequency of a neuron to its membrane potential.

For an adaptive element analog of conditioning, the

presence of CSi, i = 1,..., n, is indicated by activity on

the corresponding input pathway x i. For example, if x.(t)

denotes the signal on pathway x i at time t, then the

presence of CS i at time t can be indicated by letting xi(t)

= 1. If CS i is not present, xi(t) = 0. The associative

strength of each CSi at time t is wi(t), the weight

associated with pathway x i . The CR is identified with the

output y so that by Equation 4.1 the associative strengths

of the CSi i = 1,..., n, determine the magnitude of the CR.

Learning rules take the form of equations for changing the

values of the weights wi, i 1,..., n, over time as

functions of various aspects of the element's inputs and

outputs. Usually the element's behavior is intended only to

qualitatively resemble animal learning data.

The most well known example of an adaptive element

analog of classical conditioning is based on Hebb's neural

postulate that persistent pairing of pre- and postsynaptic
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activity increases a pathway's efficacy (Hebb, 1949).

Although Hebb did not provide a mathematical formulation of

this rule, the following expression has Deen widely used to

implement his postulate:

wi(t + 1) = wi(t) + cxi(t)y(t) (4.2)

where c is a positive constant determining the rate of

learning. Here, and throughout this section, we use a time

step of one unidentified unit that can be set equal to

various values to suit particular interpretations of a

model. For the case in which the input signals xi and the

output signal y are binary valued, wi is incremented by c

whenever an input pulse arrives and the cell fires and is

unchanged otherwise. For the case of real valued signals,

wi becomes a rough measure of the correlation between input

signal xi and output signal y. Unlike several other rules,

this rule does not require the specialized "teacher" input

shown in Figure 4.1.

It is easy to see how a Hebbian learning rule can

implement a simultaneous contiguity view of classical

conditioning (Figure 4.3). Suppose a Hebbian adaptive

element has an excitatory UCS input pathway having weight

wUC S sufficiently large so that UCS occurrence causes the

element to respond with the UCR. If the element 3iso has an

input pathway for the CS having an initially low weight wCS ,
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UC$

CS UCA and CR

FIGURE 4.3. A Hebbian element as an analog of classical
conditioning. The weight WUCS associated with the UCS
pathway is sufficiently large so that UCS occurrence causes
the element to respond with the UCR. The weight wcs of the
CS pathway is initially too small for the CS alone to elicit
a response, but increases with repeated simultaneous pairing

of the CS and UCS until the CS alone can elicit a response -

the CR.

UCA

UCCA

; J;RE 4.4. Some adaptive element analogs of classical

i itoning require a specialized UCS pathway that causes
lific3tions in the CS pathway but does not have an
, :t)ry effect on the element. This implies that the UCR

pithways are separate so that stimulus substitution

Stc ur at the element. Additional assumptions must
1 ount for the similarity of the UCR and CR.
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then after sufficient simultaneous pairing of the UCS and

CS, WCS will increase to a value at which the CS will elicit

a response, the CR, in the absence of the UCS.

One reason the Hebbian rule has remained influential

among theorists is that it provides a very simple hypothesis

to account for a stimulus substitution view of classical

conditioning. It is a common, though not universally

accepted, theoretical position that in classical

conditioning, the CS comes to elicit a CR by effectively

substituting for the UCS. This explains the similarity

between the CR and the UCR since it implies that the two

responses occur via the same response pathway's being

activated by two different stimulus pathways. This view,

known as stimulus substitution theory, has proved to be a

reasonable generalization from the data (see discussion and

review in Mackintosh, 1974, pp. 100-109). In the Hebbian

model of classical conditioning (Figure 4.3), the CR and UCR

share the same pathway so that one would expect them to be

similar.

Other adaptive element analogs of classical

conditioning do not provide so natural an account of the

similarity between CR and UCR because they require the UCS

to be a specialized input to the adaptive element that does

not excite it (Figure 4.4). In these cases, separate
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pathways are required for the CR and UCR. To account for

the similarity of the CR and UCR it is necessary to

postulate that the CR and UCR pathways converge in some

manner "downstream" from the adaptive element. The

perceptron of Rosenblatt (1962) and the informon of Uttley

(1979) require this organization to form analogs of

classical conditioning.

Aside from providing a simple explanation for the

similarity of the CR and UCR, that the UCS is an

unspecialized input in the case of the Hebbian element also

means that the activity of any input pathway can cause

changes in other pathways. In particular, pathways whose

efficacies have become strengthened through previous

training can further affect other pathways. A model with

this property can produce behavior suggestive of higher

order learning in animals: A previously conditioned CS can

act as a UCS for a second CS. This property has also

contributed to the interest in the Hebbian rule among

theorists. It is not necessary to fix from the start the

source of reinforcement. Any correlations among the input

signals to an element will tend to be reflected in the

connection weight values. The requirement for reinforcement

to be provided only from a fixed source, on the other hand,

raises the problem of somehow providing appropriate

reinforcing signals at the appropriate times. The
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significance of this problem may be reflected in the lack of

success in constructing powerful adaptive networks of

perceptron elements (see Minsky and Papert, 1969 and Minsky

and Selfridge, 1961).

We present a new adaptive element analog of classical

conditioning that uses the stimulus substitution

organization shown in Figure 4.3. We briefly introduce the

model here and discuss it in detail below. In addition to

the stimulus signals xi, i =,..., n, and the output signal

y, our model requires the use of several other variables.

First, for each stimulus signal xi, i = 1,..., n, we require

a separate stimulus trace which we denote by x i . By this we

mean that the occurrence of CS i at time t, indicated by

xi(t) = 1, initiates a prolonged trace given by nonzero

values of separate variable x. for some period of time after

t. This is accomplished by letting xi(t) be a weighted

average of the values of x i for some time period preceding

t. Similarly, we require a trace of the output y. Let y(t)

denote a weighted average of the values of the variable y

over some time interval preceding t. In the computer

simulations which produced the data shown below, we

generated these traces using the first-order linear

diff'erence equations

Xi(t + 1) axi(t) + xi(t) (4.3)

y(t + 1) a By(t) + (0 - )y(t) (4.4)

V.



OPEN-LOOP LEARNING PAGE 4-17

where a and S are positive constants with 0 < , B > 1.

Appendix B gives the values actually used in the

simulations.

The behavior of the adaptive element is therefore

described by the values over time of the two variables y and

y, and the values of the three variables xi, x ' and w. for

each input pathway i I,..., n. In terms of these

variables, the model takes the form of a set of difference

equations for successively generating the values of the

associative strengths: for each i, i = 1,..., n,

wi(t + 1) = wi(t) + c[y(t) - Y(t)] i(t) (4.5)

where c is a positive constant determining the rate of

learning.

We can describe the process given by Equation 4.5 as

follows: Activity on any input pathway i, i 1,..., n,

possibly causes an immediate change in the element output y

but also causes the connection from that pathway to become

"tagged" by the stimulus trace xi as being eligible for

modification for a certain period of time (the duration of

the trace xi). A connection is modified only if it is

eligible and the current value of y differs from the value

of the trace y of y.
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The effectiveness of the reinforcement for the

conditioning process depends on the difference y(t) - Y(t)

which determines how the eligible connections actually

change. The simplest case, and the one used in our

simulations, results from letting B 0 in Equation 4.4 so

that y(t) y(t - 1). Then y(t) - y(t) = y(t) - y(t - 1)

which is a discrete form of the rate-of-change of the

variable y.

Our use of stimulus traces to create periods of

"eligibility" was borrowed from the neural hypothesis by

Klopf (1972, 1981) that the temporal characteristics of

conditioning, both classical and instrumental, can be

produced if one set of conditions makes synapses eligible

for modification of their transmission efficacies, but

actual modifications occur due to other influences during

periods of eligibility. This differs from related theories

in that eligibility is seen as being indicated in some way

completely separate from electrical activity. That is,

instead of being marked as eligible for modification by a

transient increase in efficacy, or by prolonged presynaptic

activation, a pathway would be marked by some mechanism

which does not participate directly in the electrical

signaling of the cell, such as a transient increase in the

concentration of a particular chemical.

H i ,m
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The weight change rule given by Equation 4.5 can be

roughly understood by analogy with the Hebbian rule. While

the Hebbian rule detects correlations between input and

output signals, this rule detects correlations between

traces of input stimuli and changes in output. These

differences have subtle and sometimes surprising

consequences which will be discussed in the next three

sections.

4.3 Temporal Relationships

The use of the stimulus traces Y and the output trace

in our model permits it to reproduce some of the

intratrial temporal relationships between stimuli and

responses observed in classical conditioning experiments.

Here we discuss interstimulus interval dependency and CR

latency and review how earlier adaptive element models

account for these aspects of classical conditioning. We

then present simulation experiments which show that our

model produces behavior in good agreement with experimental

data.

4e have said a pairing between the CS and the UCS is

necessary for a classical conditioning association to form.

In fact, many aspects of the temporal relationship between

CS and UCS will affect the strength and rapidity of
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conditioning. Both the words "pairing" and "associative

learning" commonly used in reference to classical

conditioning seem to imply a symmetrical relationship

between the CS and the UCS, and many theorists have created

models in which associations are formed when CS and UCS (or

their theoretical analogs) occur simultaneously.

Experimentally, however, simultaneous presentation of CS and

UCS typically results in very poor conditioning, if any

(e.g., Smith, Coleman and Gormezano, 1969).

An effective pairing of CS and UCS in classical

conditioning is not a symmetric--the CS must occur first.

The crucial variable with respect to the CS - UCS temporal

relationship is the time interval between the onset of the

CS and the onset of the UCS (the interstimulus interval, or

ISI). Associative strength between the CS and the CR is

usually found to be an inverted-U shaped function of this

interval, being zero at simultaneous presentation, maximal

at intermediate values (that depend strongly on the

particular response system), and then falling toward zero at

longer ISIs. Conditioning for negative ISIs, or backward

conditioning, is generally considered not to occur (see

Mackintosh, 1974, pp. 58-60). Figure 4.5 shows an example

of this relationship.

A second important aspect of the intratrial temporal

. ,r.
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100
0-o Data from Smith et al. (1969)

0-C Data from Schneiderman and
80 Gormezano (1964)
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Interstimulus Interval (sec)

FIGURE 4.5. Asymptotic associative strength versus
interstimulus interval in rabbit nictitating membrane
response delay conditioning. Optimal ISI times vary widely
from small fractions of a second for some response systemsto up to a minute and perhaps longer for others.
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relationships in classical conditioning is the time of

occurrence of the CR relative to the CS and UCS. The time

difference between CS onset and CR onset is called the CR

latency. For a particular response there is usually a

finite minimum value for the CR latency due to intrinsic

delays of various kinds. For the nictitating membrane

response, for example, the minimum CR latency is on the

order of 70 - 80 msec. When the ISI is shorter than the

minimum CR latency, then the CR necessarily begins after UCS

onset. In the more usual case in which the ISI is longer

than the minimum CR latency, the CR begins before the UCS

(Mackintosh, 1974, p. 61). Two examples are shown in

Figure 4.6.

In Figure 4.6a the CR begins nearly immediately after

the CS, just as the UCR begins nearly immediately after the

UCS. However, in many experiments, post-training behavior

much like that shown in Figure 4.6b is observed, in which

the CR begins much later than a minimum CR latency after CR

onset. This appears to be the result of the animal

discrimination between earlier and later parts of the CS and

treating them as different CSs. (The CR initially begins

soon after the overt CS onset and then gradually shifts

later with continued training. This shifting is made more

rapid by increasing the discriminability of earlier and

later parts of the CS.) In these cases also the CR is
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UCS u k_

UCR

CR
CR R

a) Leg flexion b) Eyelid response

FIGURE 4.6. Tracings of CRs and UCRs in studies of leg
flexion and eyelid conditioning. In each case CR onset
occurs before UCS onset.
a) Leg flexion CR and UCR in dogs (after Kellogg, 1938).
b) Eyelid CR and UCR in a human subject (after Hilgard,
1936).
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experimentally found to precede the UCS. Summarizing, we

can state: Except in the case of an ISI less than the

minimum CR latency, a classically conditioned CR will begin

before its UCS (Mackintosh, 1974, p. 61).

It is on the basis of these temporal relatic ps that

we say that the CS is a predictor of the UCS and the CR is a

prediction of the UCS. Many learning theorists (e.g.,

Dickinson and Mackintosh, 1978, and Kamin, 1969) have

emphasized the importance of the CS being an informative

predictor of the UCS rather than just occurring

appropriately paired with the UCS. To this we add that in

order for the predictive information made available by the

UCS to be useful, it must be available before the event

predicted. This suggests that the fact that the CR occurs

before the UCS in classical conditioning may be an important

aspect of the classical conditioning behavior.

However, not one of the adaptive element models

currently in the literature is capable of producing behavior

whose temporal structure is in agreement with that observed

in animal learning as described above. It is usual practice

to add additional mechanisms, such as a delay in the CS

pathway, in order to account for some of the temporal

relationships between stimuli and responses. In most cases,

however, the resulting adaptive elements display only

bV _ _ _ _ _ _ _ _ _
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superficial aspects of this temporal structure.

44.3.1 Delays

As a first step it is important to understand what can,

and what cannot, be achieved by the addition of delays in

input and/or output pathways of elements requiring

si;nultaneous pairing for changing weights. Consider the two

different ways of using adaptive elements to model classical

conditioning that we have described (Figures 4.3 and 4.4).

Tnese models differ in that the latter have a specialized

UCS patnway and a UCR pathway that is different from the CR

pathway.

First consider the consequences of adding a delay in

the CS pathway in either type of model (Figure 4.7a). When

the delayed CS temporally overlaps the UCS, the associative

strength of the CS increases. This means that maximal

learning occurs when the UCS follows the CS by the time of

the delay, thus exhibiting a rough form of the

experimentally observed ISI dependency. Suppose now that

conditioning continues until the CS elicits the CR. Since

the CS is delayed, the CR is also delayed, so that it cannot

begin earlier than the UCS, i.e., the CR latency is always

greater than or equal to the ISI. The delay in the CS

pathway necessarily also delays the CR thus preventing it
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a) ucs

UCRCS -a 6 & CR Delayed CS

delay

0 UCR

UCSUCR

CS CR CR_ __'
delay

b)

delay

U s UCR Delayed CS

CS CR UCS
delay UCR

CR --

FIGURE 4.7. The use of delays in attempts to approximate
the temporal relationshios observed in classical
conditioning.
a) A delay in the CS pathway of both types of classical
conditioning models necessarily also delays the CR.
b) Delays in the CS and UCR pathways permit the CR t)
precede the UCR but not the UCS.

___________
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from being a useful prediction.

For the case in which there are separate pathways for

tie CR and the UCS (Figure 4.4), one can consider adding

delays to both the CS and the UCR pathways as is done, for

example, by Uttley (1975). In this case, the CR cannot

occur earlier than the UCS for the same reason discussed

above, but it can occur earlier than the UCR due to the

delay in the UCR pathway (Figure 4.7b). However, in

classical conditioning it is the UCS that is anticipated by

the CR. That is, an animal can predict stimuli by becoming

sensitive to external signals which regularly precede those

stimuli. Merely producing a response earlier than it

previously appeared, but not before the previously eliciting

stimulus, simply results in increased speed of response.

This is indeed a useful strategy, but it can be accomplished

more simply by reducing the delay in the UCR pathway. In

classical conditioning, on the other hand, a response can

occur earlier than the occurrence of the stimulus which

previously elicited it. This, of course, requires the

availability of predictive information in the environment (a

CS).

For elements requiring simultaneous pairing of stimuli

for forming associations, no combination of simple delays in

the CS, UCS, and UCR pathways can produce this kind of
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anticipatory response. The delays essentially just slow the

system down. In addition, delays on the order of seconds or

even longer required for this approach are very hard to

justify neurophysiologically.

4.3.2 Stimulus Traces

The notion that a stimulus sets up an internal neural

trace which persists after the stimulus ends has a long

history in theories of learning, notably in Hull's (1943),

and has been used in neural network theories as, for

example, by Grossberg (1974). Although a simple delay is

one form of stimulus trace, the kind of trace to be

considered now is one which, unlike a delayed signal,

persists in some form throughout the temporal interval. In

particular, such a trace is present in the interval's early

as well as late portions. There are two general classes of

possibilities for stimulus trace mechanisms: 1) traces are

maintained by the firing levels of some neurons, possibly by

means of reverberatory circuits, and 2) they are maintained

by something other than neuronal electrical activity,

perhaps by chemical concentrations. From our theoretical

point of view, the most important difference between these

two possibilities is that the former employs the same means

for storing traces as is used for signaling stimuli and

producing responses. In the latter case, these two
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functions are performed by separate mechanisms. The first

type of trace, which we call a stimulating trace, is more

frequently hypothesized, and we discuss this possibility

first.

Suppose the CS gives rise to a stimulating trace which

persists long enough to span the interval between CS and UCS

presentations (Figure 4.8a). If this trace serves as the CS

input to an adaptive element requiring simultaneous pairing,

and the UCS does not produce such a trace, one can obtain an

ISI dependency curve whose shape resembles that of the

stimulus trace function [footnote]. If the UCS leaves a

.imilar stimulus trace that acts as input to the adaptive

element, then the ISI dependency curve shows substantial

learning for negative CS-UCS intervals, i.e., for cases in

which the UCS precedes the CS (Figure 4.8b). Uttley (1975)

Hull (1943) apparently believed that an experimental ISI
curve could be accounted for by assuming a neural trace of
the same shape. As Hilgard and Bower (1975) point out,
however, level of conditioning is such a complex function of
the ISI along with many other factors that this form of
explanation is untenable. It should be noted, though, that
since we are discussing adaptive elements out of which
adaptive networks can presumably be constructed, this
objection holds less force. The externally observed
behavior of a network would be a product of the interaction
of a variable mixture of local traces.

V __ _ _ _ _ _ __- . . . .. ...
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a)
CS F -1

CS trace

UCS I

CR 1

CS trace

UCS trace

associative strength 0 IS1

versus ISl

FIGURE 4.8. Stimulating stimulus traces.
a) If the CS initiates a prolonged stimulating trace and the
UCS does not, then the CR can anticipate the UCS, but the CR
will tend to be prolonged also unless some additional
mechanism is postulated.
b) If both the CS and the UCS initiate traces which
stimulate one of the adaptive elements described in the
text, then there will always be backward conditioning.
Shown here is an ISI dependency curve for the case in which
the CS and UCS produce identically decaying exponential
traces.
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suggests the use of a long CS trace and a short UCS trace in

order to minimize (but not eliminate) backward conditioning.

A stimulus trace consisting of a prolonged CS signal

does permit the CR to anticipate the UCS since the signal

trace, unlike a delayed signal, is present at the beginning

as well as the end of the ISI. For example, if we assume

that an element produces a response whenever the weighted

sum of its input signals exceeds a threshold, then after

sufficient training, the CS will elicit a CR whenever the CS

trace, multiplied by the connection weight of the CS

pathway, exceeds the threshold (Figure 4.8a). As training

continues one would expect the duration of the CR to

lengthen as longer intervals of the stimulus trace exceed

threshold. Althoagh various characteristics of the CR

change as training continues, there are no data indicating a

tendency for the CR to persist throughout the ISI: The CR

generally resembles the UCR. Some additional mechanism

would have to be postulated to prevent the prolonged

stimulating trace from being manifested in overt behavior as

a prolonged response.

4.3.3 Non-Stimulating Traces

We now consider what one would expect if the stimulus

trace were provided by a signal different from the

. , . . . ..
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stimulating signal. Several proposed mechanisms fall into

this category. It has been suggested, for example, that a

stimulus might leave a temporarily persistent trace in the

form of an altered threshold of the postsynaptic element

(Milner, 1957; Rosenblatt, 1962, p. 55), or that a

transient increase in synaptic efficacy follows presynaptic

activity and is made more permanent by subsequent firing of

the postsynaptic cell (Rosenblatt, 1962, p. 57).

The use of a stimulus trace variable entirely separate

from the major signaling variable has been proposed by Klopf

(1972, 1981). He s jggests that when activity at a synapse

satisfies certain criteria, then that synapse becomes

eligible for modification and remains eligible for a period

of several seconds. The extent to which an eligible synapse

is modified depends on the reinforcement level during the

period of eligibility. Each synapse is therefore viewed as

possessing its own local trace mechanism which mediates

synaptic modification but does not directly alter any other

aspect of the unit's behavior. Such a trace can persist, as

Klopf suggests, for the relatively very long times suggested

by classical (and instrumental) zonditioning data without

interfering with ongoing signal transmission. Further, the

large variation in ISI dependency for different response

systems might be accounted for by variations in eligibility

trace durations. This is the kind of stimulus trace
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provided by the term x. in our model.

Our model imdlies that a synapse becomes eligible for

modification whenever a presynaptic signal occurs there, and

that eligibility forms a curve like that of the trace in

Figure 4.8a (see also Figure 4.10). Since learning occurs

due to an interaction between the UCS signal and a

non-stimulating eligibility trace initiated by the CS, the

critical temporal aspects of classical conditioning can be

produced. In particular, the CR will begin immediately

after the CS and, unlike the case of a stimulating trace,

the CR will not extend in duration as conditioning proceeds

(see below). This is possible because the trace is

different from the stimulating signal.

Although both stimulating and non-stimulating traces

might be postulated to account for the important temporal

aspects of classical conditioning, a non-stimulating trace

has the advantage of permitting a clear distinction to be

maintained between actual stimuli and traces of stimuli.

There are two countervailing requirements that need to be

met. First, fast electrical signals are necessary to

indicate as precisely as possible the time of occurrence of

specific events. It is to an organism's advantage to

perceive events as occurring as closely as possible to their

actual time of occurrence, and particularly as early as
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possible. Second, it is necessary to retain the knowledge

of these occurrences so that they can be associated with

later events. In a two variable system, these two

requirements are both satisfied whereas in a single variable

system, such as one using reverberatory activity, one of

these requirements can only be satisfied at the expense of

the other. If the association of events depends on their

precise temporal relationship, as indeed it appears to, then

we can expect there to be a high priority on precise

temporal localization of events. Thus, it seems most

reasonable not to confuse the need for a short distinct

signal with the need for a prolonged trace by using a single

trace for both purposes.

A common argument for a reverberatory activity theory

is based on certain studies of attention and distraction and

their effect on learning. These studies indicate that

reverberatory activity is probably important in the central

nervous system. However, this we do not mean to debate.

Reverberatory activity can be expected to play an important

role--for example, it can determine what information is

picked up or relayed to higher centers. We believe it is

unwarranted, however, to proceed from this to the conclusion

that reverberatory activity is the primary mechanism for

spanning the time between the sequential events upon which

learning is contingent.
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4.3.4 Model Behavior in Classical Conditioning with a Single CS

One uninteresting steady state of our model occurs when

all the connection weights are equal to zero. In this case

y remains at zero so that no modifications to the weights

can occur. A simple way to exclude this steady state is to

set at least one weight to a fixed nonzero value. In an

analog of classical conditioning, this fixed input pathway

carries the UCS, and the resultant effect on the element is

the UCR (see Figure 4.9).

It is useful to consider the simplest special case of a

single rectangular CS signal which ends when the UCS starts.

The discussion is also simplified if we assume that the UCS

is sufficiently long so that all synapses have lost their

eligibiity by the time of its offset. Figure 4.10 shows

this CS, the eligibility it generates, as well as a UCS and

the reinforcement signal generated. We have assumed that w,

the associative strength of the CS, is initially equal to

zero and that the term y takes the simplest form y(t)

y(t-1) resulting from letting 8 0 in Equation 4.4. This

makes y - y a rough form of the derivative of y. The

rectangular CS signal causes an increase in the eligibility

of the CS pathway which persists for some time after the CS

offset. The rectangular UCS signal, active through a fixed

excitatory input of strength X, causes a positive change in
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x0 UCS
x, CS 
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X2W2

Y UCR & CR

Xn=n

FIGURE 4.9. Our adaptive element as an analog of classical
conditioning. There are n modifiable CS input pathways and
a pathway with fixed weight wo which carries the UCS. The
element output y represents both the UCR and the CR.

Now
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ucs L_

Cs

Eligibility i

y(t) - y(t -1)

FIGURE 4.10. Time courses of element variables for a trial
in which a neutral (associative strength w = 0) CS is
followed by a UCS. For ease of explanation CS offset and
UCS onset coincide, and the UCS is of sufficient duration so
that W is zero at UCS offset. The trace Y of the CS signal
x indicates the eligibility for modification of the CS
pathway. This trace increases during CS presentation and
persists after CS offset. Element output y shows no change
during CS presentation since w = 0, but since the UCS
stimulates the element via a fixed positive weight, the
shape of the time course of y follows that of the UCS
signal. This causes y - 7 to indicate UCS onset with a
positive pulse and UCS offset with a negative pulse. The CS
associative strength w changes according to the product of Tand y - Y. Consequently, w increases at UCS onset and
decreases by a lesser amount (here, by zero) at UCS offset,
thus experiencing a net increase.

I I ii , •, , .. . . . _ ---
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UCS

CS x

y

FIGURE 4.11. Time courses of element variables after the
asymptotic CS associative strength has been reached due to a
series of trials. Element output y changes at CS onset
since w is now positive. UCS onset caises no additional
increase in y over that level produced by the CS. The CS
pathway eligibility T is zero for the positive pulse of y-Y
and, assuming a sufficiently long UCS, also zero for the
negative pulse. Under these circumstances, w does not
change.
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y 3t its onset and an equal but negative change at its

offset. The weight, or associative strength, of the CS

experiences a net increase: At the UCS onset it increases

by a certain amoant and decreases by a lesser amount at the

UCS offset (in this case the decrease is zero since the

eligibility has decayed to zero by the time of UCS offset).

After one trial, w is positive so that on the next

trial the occurrence of the CS increases the output level y.

Consequently, CS onset causes a transient increase in y - y

that has no effect on the CS pathway since CS pathway

eligibility is zero at CS onset. However, the level of y is

raised by the CS so that UCS occurrence causes less of an

increase in y than it did on the preceding trial. This

means that the value of y - y at the time of UCS onset

causes a further increase in w, but one of smaller magnitude

than in previous trials. With additional trials, this

process continues until the value of y - y at the UCS onset

is equal to zero, that is, until the CS produces activity

equal to that produced by the UCS (Figure 4.11). Growth in

asso'iative strength therefore is negatively accelerated and

stops when y remains constant during CS pathway eligibility.

Figure 4.14, trials 0-10, shows the form of the acquisition

curve produced by computer simulation.

The equilibrium reached after a number of trials and
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shown in Figure 4.11 has the following important properties.

First, the CS has an excitatory effect on the adaptive

element when the effect of the UCS is also excitatory. This

permits a stimulus substitution model of classical

conditioning in which the CR and UCR share the same pathway

(Figure 4.3). Second, the CR produces an output level y of

magnitude equal to that produced by the UCS. Third, the CR

is produced earlier than the UCS. The element increases its

output level in anticipation of UCS occurrence.

Similar behavior is produced when UCS onset precedes or

follows CS offset by some time interval or when the

eligibility trace outlasts the UCS. In these cases,

however, the CR will differ in magnitude from the UCR in a

manner depending on the precise temporal arrangement of the

CS and UCS. In addition, the equilibria in these cases are

dynamic rather than static. The CS associative strength

continues to change during each trial, but eventually there

is zero net change per trial. The behavior approaches a

stable limit cycle. Appendix A 2ontains a related formal

analysis.

Figure 4.12 shows the resultant asymptotic connection

weight for a series of simulation experiments in which the

time interval between CS onset and UCS onset is varied. The

connection weight becomes the strongest when the CS ends
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FIGURE 4.12. Asymptotic connection weight versus
interstimulus interval in a simulated classical conditioning
paradigm. The interstimulus interval (ISI) was varied
between 0 and 40 time steps, CS length was 3 time steps, and
UCS length was 30 time steps.
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just as the UCS begins (ISI 3 time steps). At ISIs less

than 3 time steps there is less time for the eligibility of

the CS pathway to increase before the arrival of the UCS.

At ISIs greater than 3 intervals the eligibility decays

toward zero since the CS is not present for some interval

between CS offset and UCS onset. These results have the

same overall form as those observed in animals.

However, in animal experiments optimal ISIs are not so

strongly tied to overt CS duration, although longer optimal

ISIs have been observed for long fixed delay CSs than for

short trace CSs (Schneiderman, 1966). The behavior of our

adaptive element can be reconciled with the experimental

observations if it is assumed that "effective", or

"internal" CS duration is not identical to overt, external

CS duration. A long CS is ignored shortly after it begins,

while even an instantaneous overt CS causes an internal

representation of some significant duration. This internal

duration, rather than overt CS duration, then, would

determine optimal ISI.

Behavior similar to that discussed above is produced by

our model if y is a more prolonged trace than that used for

the preceding discussion. Letting B be nonzero (but still

less than one) in Equation 4.4 results in an exponentially

decaying trace y similar to the eligibility trace x. In

V ,
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this case, the term y - Y used in our model is a measure of

the deviation of the current output level from an average of

past values. The low pass filtering characteristic of this

-easure prevents high-frequency fluctuations in y from

significantly influencing the associative strengths.

Equation 4.4 implies that for any B, 0 < B < 1, if y remains

constant over time, then y - y will approach zero, thus

providing for deceleration of the learning process in a

nanner qualitatively similar to that produced when B = 0.

These illustrations of our model's behavior show that

it is sensitive to the temporal relationships between

stimuli within classical conditioning trials and is capable

of producing CRs that occur before the UCS. It is evident

from our discussion of how these properties follow from

Equations 4.3, 4.4, and 4.5 that considerable behavioral

sublety can be generated by the interaction of eligibility

traces and a measure of output change. In general, the

quantitative aspects of our model's behavior depend on the

tining, durations, and shapes of the CS and UICS signals, the

forms of the eligibility traces xi and the output trace Y,

and the character of the output mapping function f. This

complex of dependencies provides considerable latitude for

making quantitative predictions about particular response

systems, and we restrict our attention in this report to the

qualitative aspects of the model's behavior. Appendix A
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contains a mathematical analysis of some of these

dependencies for a simplified version of the model.

4.4 Context and Expectation

Another aspect of classical conditioning which should

be included in even a very simple theory is the effect of

the context of a CS. The associative strengths of the

stimuli that act as context for a CS on a trial can nullify

or even reverse the effect of the occurrence of the UCS on

that trial. This can be seen in numerous experimental

paradigms, of which the simplest is known as blocking.

In blocking, as in all stimulus context experiments, a

compound stimulus consisting of at least two stimulus

components (one of which is frequently thought of as a

conglomerate background stimulus component) is used as a CS.

In part I of a typical blocking experiment one stimulus

component CS1 , which might be a light, is paired with a UCS

at an appropriate ISI until associative strength between

CS, and the CR reaches its asymptotic value. In part II,

the experimenter continues to pair CS, with the UCS, but

also pairs CS2, say a bell, with identical temporal

relationship as diagrammed in Figure 4.13. In effect, the

compound stimulus CS1 + CS2 is being paired with the UCS.
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CS 1

CS 2

FIGURE 4.13. Temporal relationship between stimuli in the
second part of a standard blocking experiment. Learning to
each of the component stimuli C31 and CS2 will depend on the
associative strength of the other component stimulus.
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The result of this procedure is that CS2 , which is

appropriately paired with the UCS in part II, conditions

very poorly, if at all, compared to a control group without

part I conditioning to CSI. This is not an isolated result.

Effects of the associative strengths of context stimuli on

conditioning occur in a great variety of experimental

paradigms, in both classical and instrumental conditioning,

of which blocking, overshadowing, and conditioned inhibition

are only some of the more prominent examples (see Hilgard

and Bower, 1975, pp. 571-573). Context stimuli can have

such large effects on resultant associative strength that

they cannot satisfactorily be ignored by a nontrivial theory

of classical conditioning.

The simplest and most successful theory describing the

effects of stimulus context is generally considered to be

that of Rescorla and Wagner (1972). They state their theory

in cognitive terms as follows:

...organisms only learn when events violate
their expectations. Certain expectations are
built up about the events following a stimulus
complex; expectations initiated by the complex
and its component stimuli are then only modified
when consequent events disagree with the
composite expectation. (p. 75)

Applying this analysis to the blocking experiment: Part I

builds up an expectation that the UCS will follow CSi. The

events of part II do not violate this expectation, so there

is no learning. Other stimulus context effects can be dealt

__ _'_ _I I - ]ma m a



OPEN-LOOP LEARNING PAGE 4-47

with in similar fashion. However, similar ideas have been

advanced by others. What distinguishes Rescorla and

Wagner's theory is that it is given a precise mathematical

form:

AVA = 010 [x - VAX] (4.6)

where AVA is the change in associative strength to a CS A,

X is the asymptotic value of associative strength possible

with the UCS, VAX is the associative strength already

present to the stimulus complex A + X, where X is a

conglomerate background stimulus, and cA and a are positive

constants depending respectively on the CS being changed (A)

and the particular UCS used. Implicit here is that Equation

4.6 is only applied to a CS A if it is present on the trial,

and that the complex A + X is precisely all stimuli present

on the trial. Using the simplest assumption that VAX = VA +

VX, taking c =A 8 , and letting S be the set of (indexes of)

all stimuli present on a trial, Equation 4.6 can be written

as

C[X - VCS for i E S

AV = (4.7)

for i 4 S.

Part I of the blocking experiment results in

VCS 1 reaching the value X because CS1 is the only stimulus

present. In part II, VCS 2 = 0 initially, and since

E V V + VCS X + 0 = A,
jES ,j CS1  CS2

law*&o ..
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no changes in associative strength take place. it should be

clear how this equation implements Rescorla and Wagner's

cognitive theory referred to above: The expectations that

are built up are the associative strengths, and these are

modified when events such as the UCS, represented by X,

differ from the composite expectation (the sum of the

associative strengths of the stimuli present).

This theory can account for blocking and a wide range

of the other stimulus context effects. The theory is not a

completely satisfactory one, the two most prominent and best

established shortcomings being: 1) There has been repeated

failure to demonstrate the extinction of conditioned

inhibitors predicted by the Rescorla-Wagner model (the

return to zero of negative associative strengths when their

stimuli occur without any correlation to the UCS;

Zimmer-Hart and Rescorla, 1974). 2) The strict application

of the Rescorla-Wagner equation requires the prediction of a

strictly negatively accelerated acquisition curve. The

consensus is that this curve is initially positively

accelerating (Mackintosh, 1974, p. 11). The

Rescorla-Wagner theory also does not correctly predict the

microstructure of individual response sequences (Prokasy and

Gormezano, 1979). Recent extensions to the Rescorla-Wagner

model have been proposed to remedy some of these problems

(Frey and Sears, 1978).
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Our adaptive element uses a form of expectation closely

related to that of the Rescorla-Wagner model. Whereas in

that model the associative strengths are changed based on

the difference between received and expected UCS levels, in

our model weights are changed based on the difference

between actual activity level y and expected activity level

y. In fact, our model results in all the stimulus context

behavior of the Rescorla-Wagner model.

This can be seen most clearly by considering another

special case. Assume there are many CS pathways, on which

rectangular pulse CSs may or may not be present, and that

all CSs present on a trial begin simultaneously (and, as

before, end as the UCS begins). If the UCS signaled by

x 0 begins at time T and has a duration longer than the

eligibility traces, then the connection weight wi,

corresponding to CS1 , can only change at T. This is the

only time at which y changez, when an input pathway can be

eligible. Then the total change in wi on a particular trial

is Awi(T). From Equation 4.5 we have:

Awi(T) = c[y(T) - Y(T)]xi(T)

Taking the simplest case y(t) = y(t-1), and W.t) = x(t-1):
n

Awi(T) c[y(T) - E w.x.(T - 1)]xi(T - 1).
j=O
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Letting y(T) = Woxo(T) X, and noting that x0 (T - 1) 0,

we obtain

n
Awi(T) = c[A - Z wjxj(T - 1)]xi(T 1).

And since x*(T - 1) = 1 indicates CS presence, we can write

c[x - z w.] for i E Sj,-S
6wi(T ) =

0 for i S

where S is the set of stimuli present on the trial. Since

Awi(T) is the total change in connection weight on the

trial, this result is identical to the Rescorla-Wagner

equation (Equation 4.7).

Computer simulations illustrate this result in a

variety of standard stimulus context experiments. The

results of a computer simulation of our model in a blocking

experiment is illustrated in trials 0-20 of Figure 4.14.

For the first 10 trials of the simulation experiment CSI is

presented alone and followed by the UCS as discussed

earlier. The connection weight w, of CS, quickly rises to

the UCS level A = .6 (see Figure 4.14, trials 0-10; Figure

4.11 shows the steady state element behavior; additional

details on the simulations are in Appendix B). The

acquisition curve is purely negatively accelerated as in the

Rescorla-Wagner theory.

I " -- " . ..- . ..- _ ''
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Stimulus configuration

Trials 0-10 Trials 11-20: Trials 21-35

cs 2  - - r - .J -

0 W1 2,

-1~

Con nec tion

weight

SW1

W2 = = =

0 10 20 35
Trials

FIGURE 4.14. The connection weights at the end of each

trial in a simulation experiment. The intratrial time
courses of the variables involved are not shown.
Trils 0-10: Presentation of CS I alone followed by the UCS
results in wl increasing.
Trials 11-20: CS1 and CS 2 presented together followed bythe UCS produces no change since CS 2 is redundant. This is

the blocking paradigm.
Trials 21-35: CS 2 begins earlier than CS] The element
becomes sensitive to the earlier preictor and loses
sensitivity to the later.
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UCS

CS 1 - x 1

CS2 X2

W X W1  ' W2 0

FIGURE 4.15. Intratrial time courses of element variables
in part II of a blocking experiment (trials 11-20 shown in
Figure 4.14). Since the weight associated with CS1 has
already reached its asymptotic value of A, y - y is zero
whenever CS 2 pathway eligibility i 2 is nonzero.
Consequently, no changes in weight values occur.

VI
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.4 Wl

W2
Connection AA A A

.2 AL
weight

A

0 8

Blocks of two trials

FIGURE 4.16. Simulation results of an experiment with two
CSs each of which accounts for a particular portion of the
UCS's reinforcement. Trials of CSI paired with a UCS of
strength X = .4 were alternated with trials in which the
compound CS 1 + CS 2 was paired with a UCS of strength X = .6.
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A&,

q

Connection

weight A.

", &" " &- l AW 2

0 -

0 40

Trilals

FIGURE 4.17. Simulation results of an experiment with two
CSs differentially associated with the UCS. CS1 precedes
every UCS whereas CS2 is absent every fourth UCS. Although
initially CS2 is dominant (w = 0, w 2 = X), eventually CS1 ,
the more reliably associated dominates (w1 X,w2 : 0).
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For trials 11-20, CS I is presented identically paired

with CS and both are followed by the UCS. This is the

blocking paradigm. Since it provides no new information

about UCS arrival, CS 2 is redundant. During these trials

w, and w 2 do not change. This result can be understood by

examining the behavior of the relevant element variables

during one of these trials (Figure 4.15). The decrease in y

occurs too long after the occurrence of the CSs for them to

be still eligible, and the increase in y occurs just as the

CSs begin, and thus before they are eligible.

Elements that implement the Rescorla-Wagner equation

find input signals whose presence is associated with the UCS

and that are not redundant. Each such signal generates an

expectation equal to the additional UCS magnitude indicated

by its presence. If there are many signals, the sum of

their expectations is of appropriate magnitude. For

example, if the compound stimulus CS 1 + CS 2 is paired with a

UCS of strength A = .6, while CS1 alone is concurrently

paired with a UCS of strength X = .4, tnen the two

associative strengths (connection weights) wI and w 2 will

stabilize at .4 and .2 respectively (assuming x i = 1

indicates CS i present; in general wIxI and w 2x2 will

stabilize at .4 and .2). A simulation experiment confirmed

this conclusion for the adaptive element we have introduced

(Figure 4.16).



OPEN-LOOP LEARNING PAGE 4-56

Elements that implement the Rescorla-Wagner equation

also have a tendency to find the input pathways whose

activity is most reliably associated with the UCS and to

ignore all others. For example, let CS1 be paired with 100%

of the UCSs while CS2 is paired with only 75% of the UCSs.

Even if CS2 is initially dominant in terms of associative

strength (wI = 0, w2 = X), eventually CS becomes completely

dominant (wl = X, w2 = 0). This result contrasts strongly

with the blocking experiment in which equally reliable CSs

do not change their dominance relation (Figure 4.14, trials

11-20). A simulation of our element in this situation

produced results shown in Figure 4.17.

These simulations confirm that when viewed at the trial

level and given the assumptions made above, our model

behaves as the Rescorla-Wagner model, and, in particular,

produces the stimulus context effects of that model. When

viewed at the level of trials our model also shares the

shortcomings of the Rescorla-Wagner model regarding

extinction of conditioned inhibitors and the shape of the

acquisition curve. Extensions of the Rescorla-Wagner model

proposed to eliminate these shortcomings (Frey and Sears,

1978) are also applicable to our model. However, even with

these extensions, the Rescorla-Wagner model applies only at

the level of trials. It cannot supply predictions about the

effects on conditioning of the intratrial temporal
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relationships between stimuli. As we have seen, our model

does apply to this intratrial structure for the case of a

single CS, having behavior consistent with data on CR

latency and ISI dependence. In addition, our model provides

an extension of the Rescorla-Wagner use of expectation to a

form having meaning within trials. This leads to several

novel and interesting forms of model behavior.

The adaptive element we have presented finds the

earliest predictors and ignores redundant later predictors.

A CS that arrives simultaneously with, or after, a UCS is

useless as a predictor. By the same reasoning, predictors

that occur earlier than others are in some sense more

predictive and potentially more useful. A later predictor

can be redundant to an earlier one in the same sense that an

unreliable predictor can be redundant to an identically

timed but reliable predictor. For example, let CS1 and

CS 2 both always be followed by reinforcement, but let

CS 2 start earlier than CS . Then even if initially CS, is

dominant (w, = A, w 2 = 0), eventually CS 2, the earlier

predictor, will completely dominate CS1 as a predictor of

the UCS (eventually w 1  0, w 2 = ). The result of a

simulation of this experiment is shown as trials 21-35 of

Figure 4.14 (recall that at trial 20, w I = and w 2 = 0).

Although both stimuli are being presented in trials 11-20

and in trials 21-35, in the former trials, CS 2 is blocked by
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CSI, while in the latter, the associative strength of

CS 2 increases quickly and CS 2 comes to completely dominate

CS]. In the earlier trials, CS 2 is redundant to CSI, which

had already been conditioned, but in these later trials

CS 2 provides important new information: It is the earliest

indicator that the UCS will occur. This advantage, combined

with the fact that CS I is totally redundant to CS 2, produces

complete conditioning to CS 2 and the elimination of

conditioning to CS1.

This steady state is approached quickly and in an

orderly manner, but the reasons for this behavior are

somewhat difficult to explain. Very briefly, on each trial

the associative strength w 2 of CS 2 increases and then

decreases by a lesser amount for a net gain, while the

associative strength w I of CS, only decreases: w 2 increases

because CS 2 predicts the onset of CS1's excitation, and both

w I and w 2 decrease at the offset of CS and CS 2 because

these two stimuli together produce too much expectation.

Although this property of the adaptive element to

become sensitive only to earliest predictors of a UCS when

the later ones provide no new information is reminiscient of

some learning theory results (notably the work of Egger and

Miller, 1962, on conditioned reinforcement), our primary

interest in it stems from adaptive systems considerations.



OPEN-LOOP LEARNING PAGE 4-59

de feel that a simple mechanism which finds the earliest,

most reliable, and nonredundant predictors of important

events is potentially very useful for constructing powerful

adaptive systems.

4.4.1 Higher Order Conditioning

Although much of the discussion has been in terms of

fixed pathways (corresponding to UCSs) causing changes in

modifiable pathways, signals on these modifiable pathways,

since they also can affect y, can also cause such changes.

The simplest example of this corresponds to what is known as

higher orJer conditioning in animal learning theory. A

signal on a modifiable pathway (CS 1 ) is paired with a fixed

input (UCS) until the connection weight w, reaches its

asymptotic value. Then a signal on a second modifiable

patnway (CS 2 ) is paired with a signal on the irst

:nodifiable pathway (CS 1 ). In this second pairing CS, acts

as a reinforcing UCS for CS2 . With repeated pairings the

second connection weight w2 grows to the level of w,, but

w], since its use is not followed by a UCS, gradually falls

to zero. The result is that w2 rises to the level of w],

and then follows w1 to zero. The results of a simulation of

this experiment are shown in Figure 4.18.

IrI -- - . IW MAW
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Connection
weight A *-A,

W2 A

•w 2  U 5 U- Ung ..!i , Aie
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Trials

FIGURE 4.18. Connection weight values at the end of each
trial in a simulation of higher order classical
conditioning. CS 1 has been paired with a UCS until the
weight w, reached the asymptotic value . For the trials
shown, CS2 and CS 1 are sequentially presented in the absence

of the UCS causing w 2 to increase as CS1 acts as a
reinforcing stimulus for CS 2. Since CS I is not being
followed by the UCS, w1 decreases to zero causing a similar
decrease in w 2.
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4.5 Adaptive System Theory

In this section we discuss how the model we have

presented is related to a variety of other learning rules

used in adaptive system research. This will serve to place

the model within a theoretical framework and indicate how it

differs from learning rules proposed in the past. The

history of adaptive systems research is too long and too

diverse to exhaustively review here. Useful reviews are

provided by Minsky (1963), Minsky and Selfridge (1961),

Hawkins (1961), Holland (1975), and Klopf (1979, 1981).

Even by restricting attention to adaptive systems based on

"neural" mechanisms, we would be unable to give more than a

cursory treatment. Arbib, Kilmer, and Spinelli (1976)

provide a good, though also non-exhaustive, review of

adaptive neural models. Here we focus only on rules that

have received the most attention and are most closely

related to our model.

Consider a generalized learning rule (as in Amari,

1977a): A synaptic weight increases or decreases in

proportion to a reinforcement signal r:

wi(t + l) = wi(t) + cri(t) (4.8)

where c is a positive learning rate constant, wi(t) is the

weight of synapse i at time t, and r (t) is the
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reinforcement signal to synapse i at time t. We are using

the term "reinforcement signal" simply to denote that signal

which determines the changes in connection weights. For

some of the learning rules this signal only vaguely

resembles what would be called reinforcement in behavioral

studies.

4.5.1 Hebbian Rule

Within this framework the Hebbian postulate, in the

form which we briefly discussed above, is formulated by

letting r.(t) = x.(t)y(t) in Equation 4.8. The most highly

developed application of the Hebbian learning rule is its

use in networks which implement associative information

storage (e.g., Amari, 1977a, b; Anderson et al., 1977;

Kohonen, 1977; Nakano, 1972; Wigstrom, 1973). The network

shown in Figure 4.19 transforms stimulus patterns X =

(x1,..., xn) to response patterns Y = (YI'... Ym) "  The

inputs z. act on the elements in exactly the same manner as

the inputs x. but are used to specify patterns Z :

(zl,1 ... ,z) to be associated with the stimulus patterns X.

Repeated presentations of k different pairings of stimulus

patterns (X 1, Z1),..., (Xk, Zk), causes the network to

learn, using the Hebbian learning rule, to elicit Z when

presented with X alone, a 1,..., k. This occurs

provided the patterns X,..., Xk form an orthogonal set.

- -~-|
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• Yl

y2

Y

SX 2  X Z Z2  Zm

x Z

FIGURE 4.19. An associative memory network consists of a
bank of m adaptive elements sharing the same n input
pathways. Any of the many types of adaptive elements
proposed can be studied in this configuration. Although
each type of element leads to different storage and
retrieval capabilities, all such networks show the
properties of generalization, noise resistance, and content
addressability which have stimulated interest in these

structures.



OPEN-LOOP LEARNING PAGE 4-64

The matrix of synaptic weights (wij) converges to the

correlation matrix of the patterns X0 and Z , a = 1,..., k

[footnote].

What accounts most strongly for the current widespread

interest in associative memory networks is that they exhibit

properties suggestive of the aspects of memory emphasized by

Gestalt or mass action theorists (e.g., Freeman, 1975, and

John and Schwartz, 1978). Since information can be stored

in distributed form, associative performance may not be

seriously impaired by various kinds of "lesions" (e.g.,

Wood, 1978). Distributed storage also provides for

interesting forms of generalization and content

addressability (e.g., Kohonen, 1977; Nakano, 1972, and

Wigstrom, 19(3).

These models provide evidence that learning rules which

are essentially connectionistic in character need not imply

a locationalistic view of memory. The theory of associative

memory networks is well understood, and as research

continues on mechanisms of this type, the result emerging is

It actually converges to the correlation matrix, also called
the covariance matrix, only if the averages of the input
patterns X. and Z. are zero. Amari (1977a) shows how the
Hebbian rule can be modified to remove this restriction.
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that any application of simultaneous, or spatial,

correlation can be cast in a form that a Hebbian rule can

implement.

However, as we indicated when discussing temporal

relationships, the temporal subtleties of classical

conditioning are not produced by the Hebbian rule even with

the use of delays and other modifications. One would

therefore not expect the processing capabilities of networks

of Hebbian adaptive elements to extend far beyond spatial

correlation.

4.5.2 Widrow-Hoff Rule

For the Widrow-Hoff rule the reinforcement signal is

defined as follows:

ri(t) = [z(t) - y(t)]xi(t) (4.9)

where

n
y(t) E w.(t)xj(t), (4.10)

and j=

z(t) and xi(t) are real numbers.

This rule requires the use of a specialized signal z which

acts differently from the other input signals due to its

special role in Equation 4.9 and the fact that it does not

participate at all in the computation of the output y given
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by Fquation 4.10. rhis rule causes the weights to converge

so that the response is a particular desired real number for

each stimulus pattern X,, a = ... , k, the value to be

associated with it is presented as z, call it z, then after

sufficient repetitions of the pairs (XL, z1), the element

will respond with z. when presented with X. alone, A =

1,...,k. The rule implements an iterative algorithm for

computing a solution to a set of linear equations. A

solution exists if the stimulus patterns X 1 ,..., Xk are

linearly independent.

If the stimulus patterns are not linearly independent,

convergence can still occur if the rule is modified by

m3king the learning rate parameter c a variable whose value

approaches zero as the trials continue, e.g., c(t) = c/t.

In this case, and provided the pairs (X,, z ) occur with

sufficient frequency in the input sequence, the weights

converge so as to minimize the sum of the squared error over

the stimulus patterns; that is,

k 2

c=l

is minimized where y is the element's output for pattern

X , and z is the desired output. In this form, the

Widrow-Hoff rule is an iterative algorithm for forming the

Moore-Penrose pseudo-inverse of a linear operator which is

the same as saying that it cornpute3 a linear regression.

Duda and Hart (1973) provide a useful discussion of this and
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closely related stochastic approximation procedures. This

rule was proposed in the form of an adaptive element by

Widrow and Hoff (1960).

Amiri (1977a, b) discusses associative memory networks

of neuron-liKe elements which rely on the Widrow-Hoff rule

to form associations. In discussing the associative network

shown in Figure 4.19, we said that when Hebbian synapses are

einployed, perfect'recall of z upon presentation of X , a

1,..., k, was possible only when the stimulus patterns

formed an orthogonal set. Using the Widrow-Hoff rule,

perfect recall occurs even if the stimulus pattern set is

only linearly independent. Amari (1977a, b) calls this

"orthogonal learning" since non-orthogonal patterns are

"orthogonalized" by the network. For sets of stimulus

p-tterris that are not linearly independent, recall of the

Dest pattern in the least-mean-square sense can be achieved.

A fact that is not generally realized is that the

didrow-Hoff rule is essentially identical to the

Rescorla-dagner equation. To see this, identify t with the

trial number, each input with a CS, and the z signal with

tne UCS so that z = when the UCS is present and z 0

otnerwise. In the Rescorla-Wagner equation (Equation 4.7)

tne presence of a CS1 input signal on a trial is indicated

by the set notation iE S, while the Widrow-Hoff form uses

V - -- - .. ... . .
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x. nonzero to indicate input signal presence on a trial and1

x. = 0 to denote absence. The relevant equations and

correspondences are:

Rescorla-Wagner:

c[X - E VCS] for i E S

AV
0 

for i S

Widrow-Hoff:

n
Aw. : c[z - Z w.x.]x.

I j=1 i 3 1

Correspondences:

w CS.'

z : X if the UCS is present, otherwise z : 0,

x = 1 if CS is present, otherwise x i = 0.X 1 1

That these two models are, in fact, identical is

striking since they were constructed for very different

purposes. The Widrow-Hoff rule was formulated as an

algorithm to solve sets of linear equations, and its theory

addresses convergence properties. Not only are stimulus

context effects not discussed in this theory, their

existence is entirely incidental. The Rescorla-Wagner

theory was proposed to compactly describe a wide variety of

effects observed in animal learning experiments. That it

also provides an important algorithm with a strong
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connection to very useful areas of applied mathematics is

fortuitous. We feel that the confluence of mathematical and

empirical facts represented by what we shall call the

Rescorla-Wagner/Widrow-Hoff rule might have considerable

significance for understanding associative learning.

Due to its similarity to the Rescorla-Wagner model, the

Widrow-Hoff rule provides a more adequate model of classical

conditioning than does the Hebbian model. Unlike the

Hebbian model, however, it does not provide a simple

explanation for a stimulus substitution view of

conditioning. Figure 4.4 shows the Widrow-Hoff rule as a

,nodel of classical conditioning. The specialized input z

corresponds to the UCS. Since z does not directly influence

the element's output, the UCR and CR must use separate

pathways (compare to Figure 4.3). Also unlike the Hebbian

rule, the Rescorla-Wagner/Widrow-Hoff rule has the property

that weight modifications can only be driven by the

specialized "teacher" input z.

A learning rule closely related to the

Rescorla-Wagner/Widrow-Hoff rule is the perceptron rule of

Rosenblatt (1962). If z(t) in Equation 4.9 is restricted to

taking only the values 0 and 1 and the output is similarly

restricted by the use of a threshold, Equation 4.9 gives the

fixed increment perceptron rule. This rule is an iterative

V _ __ __ __ _____
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procedure for solving a set of linear inequalities. A

solution exists if the desired response is a linearly

spearable function of the stimulus patterns. Nilsson (1965)

provides several proofs of ccnvergence, and 4insky and

Papert (1969) discuss its limitations as a pattern

recognition sytem. Despite these limitations, the

perceptron learning rule has resurfaced, in slightly

disguised form, as a way of storing data in associative

nemory structures (Albus, 1979; Amari, 1977a, b). These

applications illustrate that in certain applications, and

using certain ways of representing data, the limitations of

linear learning rules are not as devastating as oncc

thought.

The perceptron seems to be most often thought of as a

model of instrumental conditioning in which reinforcement is

contingent on the response rather than one of classical

conditioning which involves no response contingencies. This

view, however, is mistaken. If the error signal z(t) - y(t)

in Equation 4.9 is taken as being computed by the

perceptron's environment, then the perceptron can be viewed

as a response contingent system: If the response is

correct, the error is 0; if it is incorrect, the error is 1

or -1. However, this feedback through the environment is of

such stereotyped form that it can be eliminated, for

arbitrary environments, by just letting the error be

V
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computed by the perceptron itself with the environment

always simply providing the desired response rather than an

error signal. Viewed in this manner, the perceptron is

essentially the same as the Rescorla-Wagner model: It

compares its own response (expectation) with the correct one

(UCS) and modifies the weights in order to make them agree.

The instrumental conditioning paradigm, on the other hand,

involves essential feedback through the organism's

environnent; that is, feedback which cannot be eliminated

in a uniform way for all environments. Nontrivial forms of

response-contingent learning have received very little

attertion by adaptive network theorists.

4.5.3 Rescorla-Wagner/Widrow-Hoff Predictor

The Rescorla-Wagner/Widrow-Hoff rule does not produce

the predictive aspect of classical conditioning. Here we

discuss the minimal modifications to that rule which enable

it to produce predictive or anticipatory responses. From

the resulting rule, which we call the

Rescorla-Wagner/Widrow-Hoff predictor, it is possible to see

what additional properties our model provides. While we

know of no instance in which the Rescorla-Wagner/Widrow-Hoff

predictor is used in an adaptive network theory, it is an

example of a linear prediction procedure and is part of a

larger theory of prediction or forecasting (see, for
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example, Box and Jenkins, 1976).

For the Rescorla-Wagner/Widrow-Hoff predictor the

reinforcement signal is defined as follows:

ri(t) = c[z(t) - y(t - )]xi(t - t) (4.11)

where y(t) is as defined by Equation 4.10 and t is some

positive constant. Changes in connection weights are such

as to reduce the difference between z(t) and y(t - T ) so

that an equilibrium is approached at which z(t) = y(t - T),

or z(t + -r) = y(t). This means that the element will learn

to produce activity that anticipates by T the activity (f

the UCS pathway z if the input contains enough predictive

information. More precisely, recalling the discussion of

the Widrow-Hoff rule above, if c is allowed to decrease as

conditioning proceeds, this element will produce a best

least squares prediction by of the lignal z. All of the

stimulus context effects of the Rescorla-Wagner/Widrow-Hoff

rule are also produced by the predictor.

The process defined by the predictor can be described

as follows: Activity on an input pathway possibly causes a

response but also causes the connection from that pathway to

become eligible for modification a certain period of time

(r) later. An eligible connection is modified only if the

UCS signal strength differs from the expected strength.
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Thus, each time z(t) deviates from y(t - t ) the input

pathways that were active earlier (and thus are eligible)

will .nodify their connection weights, or associative

strengths, w. The reinforcement signal is a measure of how

strongly the current UCS confirms or contradicts the

previously formed expectation or prediction.

As a model of classical conditioning the predictor

defined hy Equation 4.11 requires an ISI exactly equal to

T for any conditioning to occur. This limitation can be

eliminated, along with the arbitrariness of the choice of

T , by replacing the delayed signals x (t - -) and y(t - r )

in Equation 4.11 by more general forms of traces such as

those used in our model. Let xj(t) and y(t) be some

weighted averages of their respective function values over

some time interval preceding t produced using Equations 4.3

and 4.4. Then the reinforcement signal for the

Rescorla-Wagner/Widrow-Hoff predictor becomes:

ri(t) = c[z(t) - Y(t)]i(t). (4.12)

The temporal relationships implied by this rule depend on

the characteristics of the CS and UCS, the form of the

traces 7. and Y, and the parameters of the experimental-I

paradigm. Some details of these dependencies are presented

in Appendix A.
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4.5.4 Uttley's Informon

Uttley (1970, 1975, 1976a, b, c, 1979) has suggested a

learning rule which is closely related to the

Rescorla-Wagner/Widrow-Hoff procedure except that it

conforms to some of the constraints of the Hebbian rule.

Starting with the Widrow-Hoff rule (Equation 4.9), let z(t)

= -W 0 x 0 (t) where w 0 is a fixed positive number. That is,

let the specialized "teacher" input be a signal to a fixed

inhibitory pathway. It is further assumed that this fixed

signal participates in the computation of the output y just

like any other input signal, then Equation 4.9 can be

rewritten as follows:

n
ri(t) : [-WoXo(t) - E wM(t)xM(t)]xi(t) (4.13)

0 j=1 j 3

n
= -[ E wj(t)x.(t)]xi(t)_ j_

- -y W x(t).j~it

This is the Hebbian rule except for the minus

Uttley argues that this change of sign is desirable ince it

changes the positive feedback inherent in the ebbian rule

to negative feedback desirable fo0 its stabilizing

influence. Coincidence of pre- and ostsynaptic discharges

decreases rather than intres synaptic strength. The

equilibrium weight value -are those which result in zero

total input to thyoelement. Uttley notes the similarity of

-.1.
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this rule to the Rescorla-Wagner model and illustrates how

it can produce much of the same behavior (UtIey, 1975).

Uttley describes his model in "the above manner but

actually simulates a more complex model based on the concept

of "mutual information "--"He uses exponentially weighted

time averages to otimate the negative of the mutual

information betw4en input and output signals. At each time

step, the eights are set to these estimates. Although the

concepe of mutual information led Uttley to the informon

7
Aodel and provides an interesting view of the stimulus

contingencies which produce learning, it is an unnecessary

complication to what is essentially the Widrow-Hoff rule.

7

If the special input labelled z in Figure 4.4 is

regarded as a fixed inhibitory input, then that figure shows

the use of Uttley's element in an analog of the classical

conditioning paradigm. This is identical to the

corresponding situation or the Rescorla-Wagner/ Widrow-Hoff

and perceptron models. Here, however, there is the

additional consequence that the UCS actually inhibits the CR

both before and after learning. This is due to the

treatment of the UCS as an inhibitory signal that is used in

the computation of the element's output. In the

Rescorla-Wagner/Widrow-Hoff and perceptron models, the UCS

is a special input that never influences the output of the

I
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element except indirectly through the learning process.

In order to obtain the stability and stimulus context

effects of the Rescorla-Wagner/Widrow-Hoff rule, while at

the same time adhering to the basic constraints of the

Hebbian rule, Uttley had to abandon the simple stimulus

substitution view of conditioning provided by the Hebbian

rule and make the behaviorally unsupportable assumption that

the UCS inhibits the CR.

By retaining the form of the Hebbian rule, however, the

informon has the property that even though there are fixed,

prespecified classifying input channels, these channels are

not the only sources of signals which can cause weight

modifications. This is an important property, but it can be

obtained in an entirely different manner (as illustrated by

our model) which also has the advantages of the

Rescorla-Wagner/Widrow-Hoff rule, but retains a stimulus

substitution view, produces appropriate ISI dependency, and

permits the CR to begin before the UCS. While we feel that

Uttley's approach represents an independent discovery of the

advantages of the Rescorla-Wagner/Widrow-Hoff rule, we also

feel that it needlessly adheres too closely to the original

Hebbian postulate.
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4.5.5 Our Model

Aithin the framework provided by Equation 4.8, our

moJel uses a reinforcement signal defined as follows:

ri t M = [y(t) - y-t)]Xi(t) (4.14)

where y is as defined by Equation 4.10 and y and x i are

traces of their respective signals as described above. This

differs from the Rescorla-Wagner/Widrow-Hoff predictor

(Equation 4 .12) by the substitution of y(t) for the

specialized reinforcing signal z(t). This eliminates the

requirement for reinforcement to be provided only by a fixed

reinforcing pathway. Since y(t) can be affected by activity

on any input pathway, any input signal can bring about

changes in the efficacies of other pathways. This permits

the adaptive element to extract predictive relationships

among its inputs in the same way that a Hebbian element or

an informon extracts simultaneous associations. Unlike the

informon, however, our model retains the stimulus

substitution properties of the Hebbian model since the CR

and the UCR share the same pathway.

We have been able to eliminate the need for a distinct

channel for reinforcing signals by, in effect, providing a

distinct time (with respect to a CS) for reinforcement.

This was suggested by work of Klopf (1972, 1981) in which a

-- I.
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similar method was proposed for eliminating the requirement

that response-contingent reinforcement be delivered over a

specialized channel. Here we have restricted this idea to

classical conditioning.

We note that it is possible to use our model in an

associative memory system such as those described above

which rely on the Hebbian rule or the

Rescorla-Wagner/Widrow-Hoff rule. One would obtain a

network capable of exhibiting the properties of our model

together with the properties of distributed, associative

information storage. We have not yet systematically

explored the implications of such a system, but it is

unlikely that it would lack any of the properties which have

stimulated interest in this kind of associative memory

structure. In particular, such a system would show that our

model, although connectionistic in character, need not imply

a locationalistic theory of memory.

4.6 Stability and Saturation

Some issues that were not directly addressed in the

preceding section concern technical problems that occur when

networks of elements based on various learning rules are

simulated. For example, a literal application of the Hebb

postulate implies a positive feedback loop (increases in
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excitatory synaptic weights cause higher correlation between

pre- and postsynaptic activity and hence further weight

increases). Excitatory synaptic weights tend to become

large irrespective of the significance of the input signals,

and some additional mechanism is required to prevent the

strengths of all connections from growing without bound or

from reaching and remaining at their maximum values. Early

conputer simulations illustrated the importance of solving

these problems for preventing network "seizures" (Rochester,

Holland, Haibt, and Duda, 1956).

Here we discuss several approaches to solving the

stability and saturation problems associated with the Hebb

rule and relate them to the solution provided by the

learning rule discussed here. Our point is to show that

learning rules which are based on the

Rescorla-Wagner/4idrow-Hoff rule, such as ours and that

proposed by Uttley, not only provide more valid models of

classical conditioning than the Hebbian rule, but also solve

these technical problems in a simple way. While there is no

logical or empirical necessity that the stimulus context

effects accounted for by the Rescorla-Wagner/Widrow-Hoff

rule arise at a cellular level, it is suggestive that if

they did, then additional mechanisms would not be required

in order to solve stability and saturation problems.



OPEN-LOOP LEARNING PAGE 4-80

Some of the current approaches to solving these

problems (notably Grossberg's, e.g., 1969, 1974, 1976a, b)

stress the importance of careful network design and use of

inhibitory connections for controlling network stability.

Other approaches attempt to achieve similar results by

modifying the original Hebbian postulate so as to

incorporate local stabilizing mechanisms which operate

irrespective of an element's network environment. This

latter approaci has not been shown to be sufficient for

solving network stability problems but does contribute

their solution by making the adaptive changes inherent~y

more manageable. While we feel that network level

considerations (i.e., a priori structure) are very

important, they are strongly influenced by the choice of

local learning rules, and heri we focus only on element

level issues.

There are two fundAmentally different ways of

preventing unbounded weight growth in theoretical models of

plastic synapses. The first technique is to impose an upper

bound at some fixed, pre-determined value. Whether this is

done by setting the weight bacK to the preset maximum

whenever an increment makes it larger, or whether the

learning rule is modified in order to make the value

asymptotically approach a preset finite limit, the same

problem arises: Unless weights decrease in some
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circumstances, all excitatory weights will tend to reach and

remain at their maximum values. Saturation of some weights

may be desirable, but if all the weights always eventually

reach their maximum value, then all learning eventually

ceases, and all stored information is eventually forgotten.

Either learning must occur slowly enough to postpone this

ultimate state of forgetfulness for as long as necessary,

the plasticity of some connections must be temporary, or a

means for decreasing weights must be introduced.

The second technique for preventing unbounded weight

growth relies on the boundedness of the reinforcement signal

which drives the weight modification process. Instead of a

fixed, predetermined limit being enforced by the learning

rule, the limit is a function of the external reinforcing

input to the element. Larger reinforcement can always cause

weights to increase but, and this is the crucial point,

arbitrarily prolonged periods of nonzero reinforcement must

not produce arbitrarily large weights. Several of the

methods discussed below solve stability and weight

saturation problems in this manner.

4.6.1 Normalization

One of the most common techniques used in simulations

invokes a "conservation of total synaptic strength", or
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normalization, principle. This technique is a particular

way of presetting weight bounds. The total saturation

problem is avoided by requiring some weights to decrease in

order to maintain the sum of all the weights at a constant

value. New weight values w i' are computed according to the

Hebbian rule, and then each w i' is divided by the sum of all

of the w i' to obtain the actual next weight values, that is

(cf. von der Malsburg, 1973),

n
wi(t + 1) = wi/ w (4.15)

j=l

where

wi  = wi(t) + cxi(t)y(t). (4.16)

This normalization procedure is successful in permitting

those pathways to dominate whose activity is most strongly

correlated with postsynaptic activity. One can view

synaptic strength modification computed in this way as a

competition among pathways for proportions of the sum. In

many models, this procedure is absolutely essential, not

only for stable operation of the model, but also for the

generation of behavior which resembles experimental data

(e.g., von der Malsburg, 1973).

While adequately solving some of the technical problems

associated with the Hebbian rule, this normalization

procedure has several deficiencies. First, it was pointed

out by Uttley (1976a) that although perfect normalization
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often produces desired results, small departures from this

ideal can cause rather drastic changes in behavior. If, for

exanple, one synapse is consistently favored by even a very

snall amount in the normalization process, then it can gain

:nuh more than its share of the total synaptic strength.

The weight values can reflect normalization asymmetries

rather than the desired correlation measures.

A second criticism of the normalization procedure holds

to the extent that a faithful representation of classical

conditioning phenomena is desired. Although stimulus

context effects are produced by normalization since this

technique does cause weights to change in a manner dependent

on all the other weights, these context effects are

different from tihose observed experimentally. For example,

suppose each input xi, i =,..., n, to an adaptive element

using a normalized Hebbian scheme has a constant value xi (t)

- x i for all t. Using Equations 4.15 and 4.16, it is not

nard to show that the equilibrium weights are

n
Wi = xi/ E x i = 1, . n. (4.17)

j=1

These equilibrium values are independent of the initial

weight values. The stimulus context effects observed

experimentally, however, require that the associative

strengths at the beginning of a series of trials crucially

determine their values at its end.



OPEN-LOOP LEARNING PAGE 4-84

Consider blocking, for example. Suppose an element has

two binary valued inputs x, and x2 corresponding to

conditioned stimuli CS and CS2 and an input of arbitrary

fixed strength representing an unconditioned stimulus.

Assume that the associative strengths w1 and w2 of CS1 and

CS2 initially equal zero and are thereafter required always

to sum to one. Pairing CS with the UCS until equilibrium

is reached results by Equation 4.17 in wI = 1 and w2 = 0.

Now, starting with these values and pairing both CS and

CS2 with the UCS results by Equation 4.17 in equilibrium

values wI = w2 = .5. This is the same result that would

have been produced if the weights were both zero at the

commencement of the paired trials. Blocking, on the other

hand, would occur if the series of paired trials did not

change the weights from the values they had when it began;

that is, w] = 1, w2  = 0.

Another criticism of the normalization technique can be

made if a model using this method is intended to reflect

what might occur in actual neurons. Although it has been

suggested that synaptic modifications and normalization may

be the result of the redistribution of a constant amount of

receptor protein (Stent, 1973), this hypothesis goes far

beyond available data given the lack of corroborative

support from other lines of evidence. One way of meeting

the criticism that normalization is an unlikely cellular
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mechanism is to postulate that normalization occurs at a

network rather than at a cellular level. The work of

Grossberg and his colleagues (Ellias and Grossberg, 1975;

Grossberg, 1974, 1976a, b) exemplifies this approach.

4.6.2 Autonomous Decay

If it is assumed that synaptic strength slowly decays

in the absence of a reinforcement signal, then a bound on

weight size is imposed that is a function of reinforcement

level and the decay rate. A weight can always increase when

its reinforcement signal increases, but if the reinforcement

signal remains bounded, then no matter how long the signal

persists the weight also remains bounded. Thus, learning

can occur whatever the system's "age," but experiences are

always "forgotten" within a certain period of time. In

system theoretic terms, the adaptaive element has "definite

memory": It cannot remember anything that occurred

arbitrarily far in the past. Moreover, the weight bound is

inversely proportional to the length of time that memory

traces can be retained. That is, if weights are to be kept

below rather low levels, then the decay of the weights must

be rather fast. The normalization method described above,

in contrast, has "indefinite memory," meaning that

information is not lost unless it is actively replaced by

new information.
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Despite the lack of indefinite memory, learning rules

incorporating autonomous decay lead to behavior that can be

understood in mathematical terms. For example, if the decay

is sufficiently slow, then the longterm statistical

properties of the reinforcement signal can be reflected in

the weight values (e.g., Amari, 1977a, b; Uttley, 1976a, b,

c).

4.6.3 Negative Feedback

While normalization and autonomous decay schemes employ

negative feedback, rules resembling the

Rescorla-Wagner/Widrow-Hoff procedure use a more explicit

form. Uttley (1976a) directly eliminates the positive

feedback inherent in the Hebbian rule by changing it into

negative feedback by reversing the sign (Equation 4.13).

Coincidence of pre- and postsynaptic discharges decreases

rather than increases the synaptic strength. This produces

the stimulus context effects observed in classical

conditioning experiments while at the same time solving 7

stability and saturation probtems (and producing I
7

undesirable consequences discussed earlier). Howeverf- it is

not the precise form of Uttley's model which prod~j'6es these

solutions, but rather the model's resemblance to the

Rescorla-Wagner/Widrow-Hoff rule.
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7

Recall that for the Rescorla-Wagner/Widrow-H rule

weights change according to
-7

n -A

Awi(t) = c[z(t) - E w(t)x.(t)]xiM .
j=1 i

A weight therefore cannot change-if either the input signal

Dn tiat pathway is zero (ii(t) = 0) or the total stimulus

strength equals the tra-ning signal z(t). Thus, the weights

are always bourded, yet never saturate so as to be

insensitive to.,'further changes in the environment. Negative

feedback provided in the form of the expectation term

n
7E W w (t)xj(t).

j=1

Learning can always occur when the reinforcement differs

from the expected level, and the asymptotic weight values

depend on the magnitude of the reinforcement signal.

Moreover, the rule permits memory of events which occurred

arbitrarily far in the past; that is, it has indefinite

memory [footnote]. A weight will not decrease unless a

It is curious that the model Uttley actually simulates does
not possess indefinite memory. Exponentially weighted time
averages are used to estimate the negative of the mutual
information between input and output signals. This makes
the informon's stability an obvious property, but memory
traces always decay to zero due to the exponential decay
used to estimate mutual information (Uttley, 1970). If no
estimates of mutual information were used, then indefinite
memory would be present without additional mechanisms, and
none of the rule's other advantages would be lost.
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stimulus occurs that is not reinforced to the expected

level.

The model we have presented uses negative feedback in

the form of an expectation term which is a weighted average

of past values of the element's output. The weight

associated with a pathway cannot change unless that pathway

is eligible and the current output value differs from the

weighted average of past output values. As a weight grows,

the signals arriving on that pathway cause larger output

values and hence larger expectations. As the expectations

grow, they exert negative effects on weight growth. The

stability of this method is evident from the simulation

results shown above.

One consequence of this form of negative feedback is

that if a signal arrives via a modifiable pathway, for

example, as a positive rectangular pulse, but is not

followed by other activity within the eligibility period,

then the weight of that pathway will, if positive, decrease

toward zero. This will occur since the signal offset will

coincide with positive eligibility to cause a negative

change in weight. With repeated presentations of stimuli

not directly followed by other activity, weights will

converge to zero. This is why in the simulations of

classical conditioning presented above we required the UCS
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to arrive over a pathway of fixed weight. If this weight

were not fixed, then UCS presentation would eventually have

no effect on the output of the adaptive element. This does

not imply, however, that our model has definite memory. In

the absence of incoming signals, a pathway will exhibit no

change (since it will never be eligible for modification) no

matter how long the period of inactivity lasts.

It is useful to compare the form of negative feedback

employed by models resembling the

Rescorla-Wagner/Widrow-Hoff rule with that of normalization

schemes. In the former case, the feedback signal is the

total stimulus strength, while in the latter it is simply

the sum of the weights. Although one form of feedback is

additive and the other is multiplicative, the major

difference is that the Rescorla-Wagner/Widrow-Hoff rule uses

information from the current stimulus pattern while the

nornalization scheme does not. Without this information,

the stimulus context effects observed experimentally cannot

be produced. Further, if one is arguing for the cellular

plausibility of a learning rule, then negative feedback in

the form of total stimulus strength is easier to account for

than feedback in the form of total synaptic efficacy. Since

total stimulus strength is reflected in neurons by the

membrane potential, it is plausible to hypothesize that this

signal is available, at least approximately, at each
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synaptic site.

We have seen, then, that not only does the

Rescorla-Wagner/Widrow-Hoff rule provide a strong model of

classical conditioning and a powerful iterative method for

solving sets of linear equations, it also solves some of the

technical problems which always accompany the use of the

Hebbian rule. Our model retains these advantages while

accounting for some of the intratrial temporal structure of

classical conditioning.

4.7 Cellular Mechanisms

There is always a risk in speculating about cellular

mechanisms for learning processes. On the one hand, not

enough is known about the cellular changes which occur

during associative learning to permit the construction of

detailed models. On the other hand, experimental progress

in this area is occurring so rapidly that any postulated

mechanism is likely to be soon invalidated by concrete fact.

Despite these hazards, we feel that a discussion of our

model in light of current electrophysiological and

biochemical knowledge of cellular plasticity can be of value

since the model is empirically supported at a behavioral

level and is of interest from a theoretical perspective. In

addition, the concepts of "eligibility" and "expectation" in
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our model are not only of critical importance in accounting

for animal learning behavior and, we believe, essential for

adaptive behavior of artificial systems, but can be

associated quite naturally, albeit speculatively, with

certain processing capabilities of neurons.

There are four aspects of our rule to consider. First,

the notion of eligibility would be realized if a synapse

were "tagged" by a non-stimulating trace for some period of

time after each discharge of the presynaptic cell. This

indication of previous stimulation would be required to

endure for a period on the order of at least a few seconds

rather than a few milliseconds. This trace should remain

local to the synapse. Second, some way of registering

changes in tne postsynaptic cell's firing rate from its

previous level is required. This determines the

reinforcement which facilitates or inhibits eligible

synapses. The length of time over which the reference

firing rate is determined is not critical but should be

relatively long, perhaps with a time scale similar to that

of eligibility. Third, it is necessary for the measure of

eligibility, which is local to the synapse, to interact with

the reinforcement signal, which is a global feature of the

postsynaptic cell. This interaction should occur at each

synapse. Finally, the result of the interaction between the

eligibility of a synapse and the reinforcement level must
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regulate modifications of the transmission efficacy of that

synapse.

The notion of a synaptic marker indicating previous

presynaptic discharges could be realized either

postsynaptically or presynaptically. We discuss a

postsynaptic site for eligibility first. There is good

evidence that in some cells the binding of a

neurotransmitter to its receptor site regulates postsynaptic

concentrations of an adenosine 3', 5'-monophosphate (cyclic

AMP) or guanosine 3', 5'-monophosphate (cycic GMP). It has

been hypothesized that these cyclic nucleotides may mediate,

as second messengers, the action of several

neurotransmitters in generating slow postsynaptic

potentials. This hypothesis is supported in several

preparations by several lines of electrophysiological and

pharmacological evidence. For reviews see Greengard (1976),

Nathanson (1977), or Rasmussen, Jensen, Lake, Friedmann, and

Goodman (1975).

However, studies of other preparations have suggested

that postsynaptic increases in cyclic nucleotide

concentrations may have roles other than the generation of

postsynaptic potentials. For example, it has been shown

that the administration of cyclic AMP and cyclic GMP to

cells in a sympathetic ganglion of the bullfrog does not
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cause appreciable changes in membrane potential even though

synaptic stinulation increases both cyclic AMP and cyclic

GMP in these cells (Busis, Weight, and Smith, 1978). It has

been suggested that in addition to the role cyclic

nucleotides nay play in simple neurotransmission, they may

also carry more indirect messages which might, for example,

mediate a stimulus trace which temporally links events in

associative learning at a cellular molecular level (Woody,

1976).

Although the role of cyclic nucleotides in synaptic

transmission and its regulation is not yet clear, it is

evident that in some cells, and for some neurotransmitters,

pcstsynaptic concentrations of cyclic nucleotides do reflect

the amount of presynaptic stimulation received and can

register previous stimulation for a time which is very long

compared to the millisecond times of electrical activity. A

difficulty, however, with the hypothesis that postsynaptic

chemical concentrations provide stimulus traces as required

by our model is that these traces would probably not remain

local to their initiating synapses.

The locality of the trace suggests that a presynaptic

site might be more plausible. Studies of the pres-naptic

mechanisms which are responsible for the nonassociative

synaptic changes of post-tetanic facilitation and
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habituation suggest that the notion of eligibility could be

represented presynaptically. Since these nonassociative

instances of synaptic modifiability involve time scales much

longer than that of electrical activity, we might postulate

that some of the same mechanisms realize the notion of

eligibility used in our model of classical conditioning.

For example, intracellular concentration of free Ca 2 + or

Ca 2 + conductance characteristics (e.g., voltage dependence)

could provide relatively prolonged records of presynaptic

activity. The mechanisms which result in post-tetanic

facilitation or habituation for some temporal stimulus

patterns might provide important record keeping facilities

which operate whatever the stimulus characteristics are.

If eligibility were recorded presynaptically, then we

would need to postulate some way in which the activity of

the postsynaptic cell could influence the presynaptic

terminal. Although it has been shown that postsynaptic

activity can influence a presynaptic terminal by altering

the ionic content of the surrounding medium (Weight and

Erulkar, 1976), we discuss instead mechanisms whose roles in

synaptic modulation are much better understood. These

involve presynaptic facilitation via synapto-synaptic

connections. Figure 4.20 shows a simple circuit in which

presynaptic modulation is provided by extracellular feedback

from the postsynaptic cell. The figure shows a single
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FIGURE 4.20. The adaptive element implern-ted via a
feedback interneuron. Eligibility Ti ii computed
presynaptically, and the difference between actual and
expected firing rates, computed by the feedback interneuron,
modulates synaptic strengths through synapto-synaptic
connec2tions.
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feedback interneuron, but a multisynaptic pathway is clearly

also possible. In fact, the feedback pathway could pass

through a brain region which integrates the signal with

other information in a manner not accounted for by our

model. For example, the signal may be integrated with other

stimulus context information by the septo-hippocampal

complex in a way similar to that suggested by Moore (1979).

Figure 4.20 also shows episynaptic connections from the

interneuron to all of the incoming fibers. As formulated

here, our model requires this feature, but it should be

regarded as a convenient simplification. Fibers not

contacted by the interneuron would not exhibit plasticity

(or, at least, not plasticity of the same form), and

episynaptic connections carrying signals from other than the

postsynaptic cell would permit processing of a form more

complex than that considered here.

It remains to suggest how the feedback signal from the

interneuron could represent the reinforement signal, that

is, the deviation of the postsynaptic cell's firing rate

from previous levels. Perhaps the simplest possibility is

that the interneuron, or the network of interneurons,

responds only to changes in its input as has been commonly

observed for some cells responding to sensory stimuli. A

more complex hypothesis would be for the presynaptic input

from the feedback interneuron(s) to produce two superimposed

V ___ _____
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effects on each synapse which it modulates. One effect

w*jld be a fast change in the voltage dependence of

Ca2 + conductance so that depolarization would cause

increased Ca2 + influx. The amplitude of this effect would

depend on the eligibility of the modulated terminal

determined by its previous history of depolarization. This

increased influx of Ca 2 + would facilitate the transmission

effectiveness of the synapse by increasing transmitter

release. The second effect would be a slower and less

dramatic decrease in the peak Ca2 + conductance during

depolarization. Again the magnitude of this effect would

depend on the terminal's eligibility. This second effect

would decrease transmitter release. If one assumes that

these two effects linearly superimpose and that the effects

of different discharges of the presynaptic terminal

superimpose, then the resultant change in synaptic efficacy

would depend on eligibility and the amount of change in

activity of the feedback pathway as required by our model.

Summing the fast positive and slow negative effects would

produce a form of differentiation. The "expectation" would

be represented by the negative component of the presynaptic

effect.

We summarize this disucssion of cellular mechanisms by

making several observations. The model of classical

conditioning which we have presented was formulated on the
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basis of empirical evidence from behavioral experiments and

from a sensitivity to the technical difficulties which have

beset theoretical adaptive network studies. While the

evidence that this model, or some variant of it, might be

implemented at the level of single neural units or simple

neural circuits is not strong, there is evidence that a

relatively long lasting and non-stimulating memory of

previous activity as is required by our notion of

eligibility is indeed present at a cellular level. The

monosynaptic phenomena of post-tetanic facilitation and

habituation show that synapses themselves do possess

nontrivial forms of short term memory which do not require

one to hypothesize that reverberatory electrical activity

stores reflections of previous activity. Other evidence

exists suggesting that within a single cell can exist

mechanisms for short term stimulus traces as well as longer

term memory (e.g., Alkon, 1979; Libet, Kobayashi, and

Tanaka, 1975; von Baumgarten, 1970; Weight, Schulman,

Smith, and Busis, 1979; Woody, Carpenter, Gruen, Knispel,

Crow, and Black-Cleworth, 1974).

4.8 Summary and Conclusions

While the spirit of Hebb's theory still seems to be

relevant, there is little support for the use of a literal

interpretation of the Hebbian rule in adaptive network
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studies. As a model of classical conditioning, it is not up

tc the standard of sophistication now available in the

learning theory literature. As a model of neural

plasticity, it lacks experimental support and is based on a

view of the processing capabilities of neuron%-and synapses

which does not take into account the .- w 'alth of data now

available. While networks eripoying Hebbian-style rules

have been successful in producing some interesting effects,

their behavior is far from the level of sophistication

required for complex tasks. Finally, models relying on

Hebbian-style rules require rather ad hoc additional

mechanisms to insure stable and flexible behavior.

The Rescorla-Wagner/Widrow-Hoff rule, to which the

perceptron and Uttley's informon are closely related,

provides a more valid model of classical conditioning by

incorporating stimulus context effects while at the same

time cleanly solving a number of stability and saturation

problems. That the Rescorla-Wagner equation was developed

to account for animal learning behavior, while the nearly

identical Widrow-Hoff rule was formulated to approximate the

solutions of sets of linear equations, suggests that these

rules describe some ingredient essential for adaptive

behavior. One important aspect of the

Rescorla-Wagner/Widrow-Hoff rule's behavior is the

extraction of reliable and nonredundant information which

~-~.--
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correlates with reinforcement. The experimental results

regarding stimulus context effects in classical conditioning

indicate that animals similarly form reliable and

nonredundant associations.

We have presented a rule that preserves the properties

of the Rescorla-Wagner/Widrow-Hoff rule but also

incorporates the predictive nature of classical

conditioning. The problems of making useful and accurate

predictions seem to be solves )y the ability to generate

expectations. The actual events are then compared with

those predicted, and appropriate incremental changes are

made if the two differ. The Rescorla-Wagner equation does

this while lumping together, as far as time of occurrence,

all stimuli present on a trial. One contribution of the

adaptive element developed here is to provide a mechanistic

implementation of the descriptive Rescorla-Wagner theory of

classical conditioning. In taking this lumped trial theory

to a mechanistic form in which system behavior is specified

at all times within the trial, it becomes possible to make

distinctions between inputs based on their relative time of

occurrence. Rather than extracting reliable and

nonredundant information which correlates with

reinforcement, this rule extracts reliable, nonredundant,

and early predictors of reinforcement. Moreover, an

adaptive element employing this rule is able to use its
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sensitivity to predictive information to make predictions

which occur earlier than the events predicted. A prediction

made at the same time as, or later than, the event predicted

is no more useful in guiding behavior than no prediction at

all.

In addition, the adaptive element presented here

preserves the simple account of stimulus substitution

provided by the Hebbian rule. This is true since the UCR

and CR share the same pathway--probably the simplest

hypothesis accounting for the similarity of the UCR and the

CR. Also, as in the case of the Hebbian model (and Uttley's

informon), activity on any input pathway can cause changes

in other pathways. This produces some higher order learning

effects and permits the element to extract regularities

whose constituents have not been predetermined by a priori

network structure. Unlike the Hebbian and informon models,

however, it extracts spatio-temporal rather than just

spatial regularities.

Although we feel that our model includes some of the

aspects of classical conditioning which have adaptive

significance, the model is not a completely valid model of

classical conditioning and obviously does not go beyond this

restricted learning paradigm. It does not, for example,

include the effects of experience on stimulus salience. In

* -~-.
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addition, like the original Rescorla-Wagner model, our model

makes only ordinal predictions about behavioral data.

Recent extensions of the Rescorla-Wagner model to deal with

these shortcomings (Frey and Sears, 1978) can perhaps also

be applied to our adaptive element model. Our theory also

does not address stimulus representation problems. We have

assumed that input signals arrive at an adaptive element on

discrete pathways of fixed "meanings." In a more

sophisticated model, these meanings would be changed by

"upstream" circuits as, for example, might occur in

configural learning where a compound stimulus is treated as

a nonlinear combination of its parts. Our theory does not

indicate how the adaptive mechanisms we have suggested can

be extended to extract arbitrary nonlinear regularities.

The model presented here also does not address the

issues arising from response-contingent reinforcement

paradigms. Although the exact nature of the relationship

between classical and instrumental conditioning remains

elusive (e.g., Rescorla and Solomon, 1967), the attention

given to temporal processing in our model makes extensions

possible which incorporate response contingencies. Klopf's

(1972, 1981) theory, which forms the basis of several

aspects of the model discussed here, incorporates response

contingencies, and Sutton (1978c) has extended this theory

to a single process view of expectation in classical and

• ° . *2 4 .
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instrumental conditioning using an adaptive element closely

related to that presented here. However, a thorough formal

treat nent of tliese issues is beyond the scope of the present

paper.

Also beyond this paper's scope is a discussion of the

kinds of behavior which can be expected f:om networks of

adaptive elements like those proposed here. Can such a

network perform sophisticated learning tasks? This question

is central from a Lneoretical perspective and notoriously

difficult to answer for any type of primitive compoi,ent.

Here we merely suggest that the predictive capabilities of

the adaptive element presented here may permit adaptive

networks to exhibit forms of behavior not yet obtained from

network models. Our reason for believing this is that

predictive capabilities permit response alternatives to be

evaluated before overt action is taken (see Section 7).

The model we have Jeveloped need not be thought of as a

neural model. It is supported at a behavioral level and has

potentially significant theoretical inplications. However,

the search for neural analogs of behavioral conditioning

continues to guide learning and memory research in the

neurosciences. From our discussion of cellular mechanisms

it is clear that while there is no shortage of machinery for

implementing almost any learning model one might construct,

- C- _' Z 
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there is evidence indicating that some of the essential

aspects of our model could be implemented in a natural

manner. The stimulus trace required by the notion of

eligibility could involve either presynaptic or postsynaptic

biochemistry. Our definition of reinforcement as the

difference between actual and expected output levels can be

realized via fast excitatory and slow inhibitory effects.

At the very least our discussion of cellular mechanisms

makes it clear that the concept of a neuron as a biological

logic gate that still pervades much neural network theory is

much too simple. Neurons and their synapses possess

processing capabilities that can utilize relatively long

term histories of pre- and postsynaptic activity. In the

terms of system theory, they possess a rich internal state

space which can support behavior requiring nontrivial forms

of memory. Neural network theorists hr e -used largely on

synaptic weights as a form of mer., y and nave postulated

only relatively simple rules for controlling these memory

variables. Other forms of memory have generally been

assumed to be metabolic and genetic, and, to a first

approximation, not significantly implicated in computational

behavior. Notably absent from the theoretical literature is

a consideration of potentially powerful forms of

synaptically local short term memory and their possible

roles in synaptic modulation. The growing understanding of
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the role of biochemical mechanisms in synaptic action

indicates that there is considerable internal memory linking

events that occur at intervals of seconds, minutes, hours,

and days. Moreover, this processing interacts with

physiological events that occur in milliseconds. It seems

certain that these mechanisms are crucially involved in

neural plasticity. The model we have proposed takes a step

toward recognizing the theoretical importance of the first

few links in this chain.

I'



SECTION 5

ASSOCIATIVE SEARCH NETWORK:

A REINFORCEMENT LEARNING ASSOCIATIVE MEMORY *

5.1 Introduction

Numerous reports have appeared in the literature

describing associative memory systems in which information

is distributed across large areas of the physical memory

structure (e.g., Amari, 1977a, b; Anderson et al., 1977;

Cooper, 1974; Kohonen, 1977; Nakano, 1972; Wigstrom,

1973; Willeshaw, Buneman, and Longuet-Higgins, 1969). The

simplest of these are based on the properties of correlation

matrices, and all of them exhibit interesting and suggestive

forms of content adaressability, generalization, and error

tolerance. There have also been numerous discussions of the

possibility that these forms of memory structures may

* This section will appear in Biological Cybernetics, 1981
(authors A. G. Barto, R. S. Sutton, and P. S. Brouwer).
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provide models of biological memories. In all of these

studies, the storage process is one in which a series of

"keys" and "patterns" are repeatedly presented to the memory

network which stores the key-pattern associations.

As models of memory, these associative memory

structures suggest how a rapprochement might be reached

between connectionistic, locationalistic views of memory and

Gestalt, mass action views (e.g., Freeman, 1975; John and

Schwartz, 1973). Associative memories use learning rules

that are connectionistic in character yet need not store

information in localized form. However, as models of

learning they exhibit only a very simple form of open-loop

learning. Since the desired response (the pattern to be

reproduced) and the stimulus intended to elicit that

response (the key) are both explicitly presented to the

system during the training phase, these studies do not

address the case of learning in which neither the

associative memory nor the environment knows the desired

response.

In this section we describe an associative memory

structure, called an Associative Search Network or ASN,

wnich is not told by some outside process (e.g., a

"teacher") what pattern it is to associate with a given key.

Instead, for each key, the network must search for that
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pattern which maximizes an external payoff or reinforcement

signal. The pattern that will produce the maximal payoff

for each key is never available to the system. It operates

by generating an output pattern, receiving an evaluation

from its environment in the form of a scalar level of payoff

or reinforcement, updating the contents of its memory, and

then repeating this "generate-and-test" procedure. As this

kind of learning proceeds, each key causes the retrieval of

better choices for the pattern to be associated with that

key. What gets stored in the associative memory is a result

of reinforcement feedback through the environment. By

eliminating the need for a "teacher" to explicitly provide

the pattern to be stored, the ASN effectively solves a

central problem faced by an adaptive system. No part of the

system need have a priori knowledge about what associations

are best.

This type of learning should not be confused with what

is commonly called "unsupervised learning" or "learning

without a teacher." These labels refer to the problem of

clustering input patterns according to a given measure of

similarity so that members of each cluster are more similar

to one another than they are to members of other clusters.

Like the learning exhibited by the associative memory

structures cited above, this type of learning is open-loop:

any consequences of the system's actions are irrelevant.
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The type of learning exhibited by the ASN shoull also not be

confused with learning in which an error rather than

reinforcement or payoff is returned by the environment.

There are several important differences between error-signal

and reinforcement learning, but the most important one to be

noted nere is that for an associative memory system, the

error must be a vector giviig the signed component-wise

error of the system's response. The reinforcement signal

returned to the ASN, o.n the other hand, is a scalar which is

just the environment's evaluation of the system'o response.

The fact that the ASN is able to learn to produce optimal

output vectors based on scalar environmental feedback should

be kept firmly in mind. This type of learning has teen

called "]earning with a critic" by Widrow et al. (1973). A

critic need not know what each optimal response is in order

to provide useful advice.

Tn_ ASN combines two types of learning which are

usually only considered separately. First, it solves a

pattern recognition problem by learning to respond to each

Key with the appropriate output pattern. This is the

problem solvd by the associative memory systems described

in One literature. The method used is similar to stochastic

approximation pattern recognition methods (see, for example,

uda i nl Hart, 1973, for a good discussion of these

techniques). At the same time, the ASN uses a different
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type of learning to actually find what output pattern is

optimal fir each key. It effectively performs a search

using a stochastic automaton method to maximize a payoff or

reinforcement function. Stochastic automaton search methods

originated in the work of Tsetlin (1971) and are reviewed by

Narendra and Thathachar (1974). Other systems capable of

performing this kind of search do not perform the pattern

recognition task. For example, the ALOPEX system of Harth

and Tzanakou (1974), to which the ASN is closely related,

performs a search but is not sensitive to different input

patterns or keys and thus is not an associative memory. The

learning the ASN accomplishes solves both the search and the

pattern recognition problem in a simple and effective way.

Although learning systems capable of solving both types

of problems have been discussed in the adaptive system

theory literature (Mendel and McLaren, 1970), these systems

do not have the error tolerance and generalization

capabilities of distributed associative memories. The only

neural theory which contains this synthesis is that of Klopf

(1972, 1979, 1981). Klopf emphasizes closed-loop

reinforcement learning and correctly points out that,

despite common opinion to the contrary, it has been largely

neglected by neural theorists. The results presented here

demonstrate the significance and novelty of Klopf's theory.

We will discuss the ASN in light of Klopf's theory in some
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detail below. Also closely related is the notion of

"bootstrap adaptation" of Widrow et al. (1973).

5.2 The Associative Search Problem

Figure 5.1 shows an ASN interacting with an environment

E. At each time t, E provides the ASN with a vector X(t) =

(x (t),..., x (t)), where each x.(t) is a positive real
1 n1

number, together with a real valued payoff or reinforcement

signal z(t). The ASN produces an output pattern Y(t)

(y (t), ... , ym(t)), where each y.(t) E {0,11, which is
m

receiveJ by E. The problem the ASN is designed to solve can

be stated informally as follows. Each vector X(t) provides

information to the ASN about the condition or state of its

environment at time t, or, viewed in another way, provides

informnation about the sensory context or situation in which

the ASN should act. We call each X(t) a context or

situation vector. Different actions, or output patterns,

are appropriate in different contexts. As a consequence of

performing an action in a particular context, the ASN

receives from its environment, in the form of a payoff or

reinforcement signal, an evaluation of the appropriateness

of that action in that context. The ASN's task is to act in

each context so as to maximize this payoff. We are using

the tern context merely to refer to the environmental

background in which an action is taken. We do not wish to
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z

apayoff

.,II
X2 --I - Y 2

ASN E

YM
X n

act ion

FIGURE 5.1. An ASN interacting with an environment E. The
ASN receives context signals x]... ,  xn  and a payoff or
reinforcement signal z from E and rnsis actyions to E
via output signals yl '''.' ym"
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i.nply that all of this term's more specialized meanings are

applicable here.

More formally, we assume that X(t) belongs to a finite

set X [X1,..., Xk} of context vectors and that to each

Xa E X there corresponds a payoff or reinforcement function

Za. Assuming that E always evaluates an output vector in

one time step, if X(t) = Xa, then z(t+1) = Za(Y(t)). We say

that E provides a training sequence over X if it implements

an infinite sequence of payoff functions and emits the

corresponding sequence of context vectors

Ii Xi I ,  Xi2 . , XiX9,...

such that each Xi EX and each element of X occurs infinitely

often (Nilsson, 1965). The associative search problem is

solved if, after some finite portion of a training sequence,

the ASN responds to each Xa c X with the output pattern Ya =
a a

y, which maximizes Za. Generalizations of this

problem are discussed below.

5.3 The Basic Adaptive Element

An ASN consists of a number of identical adaptive

elements each determining a component of the system's

actions. It is useful to describe first a single element

which can be regarded as the simplest ASN (m=1). Figure 5.2

*- "
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shows an adaptive element interacting with an environment E.

The element has n context input pathways x. , i = n... ,

one payoff or reinforcement pathway z, and one output y.

Associated with each context pathway x. is a real valued1

weight wi with value wi(t) at time t. Let W(t) denote the

weight vector at time t. Let s(t) denote the weighted sum

at time t of the context inputs. That is,

n
S(t) E W w (t)xi(t) - W(t).X(t) .

The output y(t) is determined from s(t) as follows:

yt I if s(t) + NOISE(t) > 0 (5.1)

O otherwise,

where NOISE is a random variable with mean zero normal

distribution. The sum s therefore biases the element's

output (ef. Harth and Tzanakou, 1974): Positive s making

it more likely to be 1, and negative s making it more likely

to be 0.

The weights wi, i = 1,..., n, change according to a

discrete time iterative process. At each time step, each

weight is updated according to the following equation: for

i = ,..., n,

wi(t+) = wi(t)+c[z(t)-z(t -l)][y(t-1)-y(t-2)]xi(t-1) (5.2)

where c is a constant determining the rate of learning.
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Payof f

Context

FI3JRE 5.2. The simplest ASN: A single adaptive element
intera3cting with an environment E.
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Other rules also work, but this is one of the simplest.

Also for simplicity the response latency for the element is

zero; that is, there is no delay between input and output.

This causes no difficulties here because we do not consider

recurrent connections within a network. In other variants,

the inputs need not be positive, the output signal y need

not be binary, and the noise need not be normally

distributed. If the rightmost term xi(t-1) were removed

from Equation 5.2, the resulting learning rule would be

essentially that used by Harth and Tzanakou (1974) in the

ALOPEX system.

To understand how Equation 5.2 works, consider a simple

example. Suppose a positive context signal was present on

pathway xi at some time t-1, signaling some condition of the

environment. Suppose also that y(t-1) = 1 while y(t-2) = 0

(that is, the element "turned on" at time t-1), perhaps due

to an excitatory effect of signal xi or perhaps by chance.

Then, if the payoff signal z increases from time t-1 to t

(possibly as a result of the element's action), wi will

increase. Since wi(t)xi(t) is used to compute y(t), the

increased weight wi will make it more likely (other things

being equal) that y will be 1 when signal x occurs in the

future. Similarly, if z decreases following the element's

action, wi will decrease thereby decreasing the probability

that y will be 1 when signal x. occurs again. Consequently,

WANS
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if turning on in a specific context is followed by an

increase in payoff, the element will be more likely to turn

on (or stay on) in that context in the future. Other cases

can be analyseJ similarly: If going off in a context leads

to a payoff increase, then the probability of being off in

that context increases. Of course, a pathway can

participate in signaling a large number of different

contexts. This is where the associative memory properties

become relevant.

For an ASN consisting of a single adaptive element, the

search for the optimal action for each context vector is not

very difficult since the ASN has only two actions. However,

a property of the adaptive element that is essential for its

use as a component in a larger ASN is that it is capable of

operating effectively in environments with random payoff

response characteristics. If for each context the output of

the adaptive element only determines a probability for the

payoff value, the adaptive element is capable of acting so

as to increase its expected payoff value. It is beyond the

scope of the present discussion to thoroughly discuss these

aspects of the adaptive element's behavior. The relevant

theory is that of stochastic automaton learning algorithms,

and the reader is referred to the review by Narendra and

Thathachar (1974).
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5.4 The Problem of Context Transitions

According to Equation 5.2, the adaptive element uses

the change in the payoff signal z as a factor determining

weight changes. However, when the context changes, that is,

when the payoff function implemented by E changes, the

change in the value of z is due to the change in payoff

function as well as the adaptive element's action. The

difficulty this creates can be clearly appreciated by

considering the worst case in which the payoff function

changes at every time step. Consecutive values of z in this

case result from evaluating different functions rather than

the same function twice, and hence they do not provide

useful gradient information about any single payoff

function. Unless the payoff functions implemented by E vary

smoothly over time, one would not expect an adaptive element

operating according to Equations 5.1 and 5.2 to be capable

of solving an associative search problem.

Two methods of solving the problem of context

transitions are used in the examples which follow. One is

to require E to implement each payoff function, and emit the

corresponding context vector, for at least two consecutive

time steps and, when transitions do occur, to set the

learning constant c to zero so that the change in payoff due

to the transition has no effect. This procedure requires
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either a priori knowledge about when transitions occur or a

mechanism for detecting transitions. Such mechanisms can be

devised (Didday, 1976, and Grossberg, 1976, discuss this

problem and propose neurally plausible methods). For

simplicity in some of the examples to follow, we set c to

zero "manually" when a transition occurs.

In other examples, however, we use a method that does

not require .transitions to be known or detected. Suppose

the adaptive element produced action y(t-1) in response to

context vector X(t-1). Instead of comparing the resulting

payoff z(t) with z(t-1), which may have been determined by a

different payoff function, we compare it with the payoff

"expected" for acting in context X(t-1). If a higher than

expected value is obtained, then the action which produced

it is made more likely to occur in that context again. In

this way, the gradient of each payoff function can be

estimated from samples which do not occur consecutively in

time. Instead of computing weight values according to

Equation 5.2, we use the following rule:

wi(t+l) :=wi(t)+c[z(t) -p(t-l)][y(t-l) -y(t-2)]xi(t-1) (5.3)

which differs from Equation 5.2 by the substitution for

z(t-1) the value p(t-1) predicted for z(t) given X(t-1).

We use another type of adaptive element to compute
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p(t-1) from X(t-1). This element is a variant of one

described in Section 4 and proposed as a model of classical

conditioning. It learns to anticipate the payoff rather

than to maximize it, and we call it a predictor. The

predictor has n context pathways xi, i =,..., n, one

payoff pathway z, and one output pathway p. Associated with

each context pathway xi is a variable weight wpi. The

output at time t is

np(t) : S wPi(t)wi(t).
i=l

The weights change over time according to the following

equation: For i 1,..., n,

wpi(t + 1) = wpi(t) + cp[z(t) - p(t - 1)]xi(t - 1)

where cp is a learning constant determining the rate of

learning. This rule is identical to Equation 5.3 but with

y(t-1)-y(t-2) fixed at the value 1. This element implements

a stochastic approximation method for finding weights (if

such weights exist) such that p(t-1) = z(t) for all t. In

other words, the predictor output anticipates by one time

step the payoff supplied by the environment. If a linear

prediction is not possible, Equation 5.4 will find the best-

least-square linear prediction if cp is allowed to decrease

over time. See Duda and Hart (1973) and Kasyap, Blaydon,

and Fu (1970) for good discussions of these methods.

- - - - - - - -
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5.5 A Network

Figure 5.3 shows an ASN consisting of m adaptive

elements and one predictor. Each context pathway from the

environment connects to each adaptive element and to the

predictor, as does the payoff pathway z. The adaptive

element weights form an mxn matrix W = (wij) where wij is

the weight of the i-th adaptive element for the j-th context

pathway. The random variables NOISE for each element are

independent and identically distributed, and the learning

constants are the same for each element.

While the training sequence is being presented, each

adaptive element comprising the ASN faces the problem

discussed above of maximizing each payoff function. Due to

the dependence of each element's payoff on the joint

activity of all the elements' activity, each element's

payoff appears to have a random component since it depends

on the unknown outputs of the other adaptive elements

comprising the ASN. As a result of the capability of each

adaptive element to increase its expected payoff when

interacting with an environment having random response

characteristics, an ASN consisting of any number of adaptive

elements can solve the corresponding associative search

problem under certain conditions.
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FIGURE 5.3. An ASN consisting of m adaptive elements '
one pred ictor . The adaptive element weights for ~n j ,- ,associative matrix.



AD-AliG 476 MASSACHUSETTS UNIV AMHERST DEPT OF COMPUTER AND INF-ETC F/, 9/GOAL SEEKING COMPONENTS FOR ADAPTIVE INTELLIGENCE1 AN INITIAL -EC
APR 81 A 6 BARTO. R S SUTTON 3617-C 19NAS-SIF IED AFWAL-TR-81-1070 AN

4-

7 INEIhMENNENh
Emllhhhh

I'll hMENOhMNlMhhMMhhhhhhhuM



ASSOCIATIVE SEARCH NETWORK PAGE 5-18

For each context vector, the associative search problem

is an example of what is known in the theory of learning

automata as a cooperative game of learning automata

(Narendra and Thathachar, 1974). Unlike other learning

automata studied, however, the ASN solves such a problem for

each context vector. By combining notions from the theory

of cooperative games of learning automata and the theory of

pattern recognition, we can formulate a conjecture about the

conditions under which the ASN as described here can solve

the associative search problem. For each i, i = I,..., m,

let
0 a

0 {Xa E XlY a 1xixy.=O

1 a

{Xa E = I}.

01That is, xi (xi) is the set of all context vectors in

which it is optimal for element i to produce output 0 (1).

0 1
The sets Xi  and Xi  are linearly separable if

there exists a real vector Wi = (wi1 ,..., win) such that

0W i.X < 0 if X X Xi
1 x1

Wi-X > 0 if X X

We conjecture that for any n, m > 0, there exist ASN

parameters (c, cp, and the variance of the random variables)

such that it can solve the asssociative search problem with

as high a probability as desired if 1) each Za is unimodal

(i.e., does not possess suboptimal "peaks") and 2)
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0 1
Xi  and xi are linearly separable for each i 1,..., m.

The performance of learning automata in optimizing

multimodal functions is a topic of current research.

Once this task is solved, the ASN functions as an

associative memory similar to those discussed in the

literature. For example, if a degraded context vector is

presented, then the ASN can still perform an appropriate

action if the degraded context vector is still sufficiently

distinctive. Similarly, the ASN will produce actions in

situations never before encountered by acting in a way

appropriate in similar situations which it has experienced

in the past. The ASN also exhibits the same resistance to

damage shown by distributed associative menories (see Wood,

1978). In addition it is possible to prime the associative

matrix with information likely to be useful for specific

problem domains.

We note that if our conjecture is correct, perfect ASN

performance does not require orthogonal context vectors.

Associative memories have been discussed by Amari (1977a, b)

and Kohonen and Oja (1976) which are able to exhibit perfect

recall if the keys are linearly independent but not

orthogonal. Amari (1977a, b) calls this orthogonal learning

since it requires the orthogonalization of the set of keys.

It can be shown that if the context vectors X1,..., Xk are
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0 1

linearly independent, then Xi and X are linearly

separable for each i = 1,..., m. This implies that if our

conjecture is true, the ASN can solve the associative search

problem if each Za is unimodal and the context vectors are

linearly independent. This is an instance of orthogonal

learning, but, as discussed above, it differs in that the

ASN does not require the desired response for each key to be

explicitly provided.

5.6 Examples

For illustrative purposes we let each payoff function

Za in the following examples be a simple linear function of

the ASN actions. To each context vector Xa is associated a

vect Yaa ya a
vector Ya m) where Y { E{-1,11. We define Za as

Za(Y) = Y.Ya

so that Za is maximized when each adaptive element i, i -

,.. ms o'ifa a~=-.Ta

.M, is "o," if Yi = +1 or "off" if Yi = -1. That is,

Za is maximized by Y = (Ya+1)/2. We use the symbol Ya to

denote both the 1,-I valued vector Ya and the binary vector

(Ya+1)/2 since no confusion is likely to arise. Computing

Za in this manner implies that if an adaptive element "turns

on" in a context in which it should be on, or if it "turns

off" in a context in which it should be off, then the value

of Za increases by 1 (assuming the other elements don't
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change their actions). Similarly, "turning on" when off is

best, or "turning off" when on is best, decreases Za by I.

*de do not claim that the optimization of such a simple

linear function is a difficult task. Our intent here is to

illustrate that a search is in fact performed by the ASN.

More research is required to delineate the search

capabilities of the ASN and related structures. In each of

the following examples, the adaptive element learning

constant c .03 and the standard deviation of each random

variable is .1. In the cases using the predictor, cp = .1.

Example 1

Figure 5.4 shows ASN behavior for the simplest case of

two orthogonal context vectors X1 and X2 with n = 8 and m

9. The optimal output patterns are determined by Y1 and Y2

(Figure 5.4a). Notice that ZI(YI) = 6 and Z2(Y2) = 5 so

that a higher payoff is obtainable in context 1. The

contexts were alternately presented, each held constant for

10 time steps. A predictor was not used. In order to

prevent the transition from one context to another from

providing misleading information, the learning constant c

was momentarily set to zero while the contexts changed.

The dashed lines in Figure 5.4b show the payoffs which

could be expected in each context for output patterns

generated purely by chance. The payoff actually received by
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1 1 0e 10 -1

XI= YI= Xs a 2=1 1 0 -1

0 -1 1 1
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5.
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3.

Payoff 2.
- -- - - - - - - Chance for xi

Chance for X2
.

-1.66'. 21g.

Time Steps

(b)

FIGURE 5.4. Example 1. a) Two orthogonal context vectors
X1 ani X2 and tha corresponding optimal output patterns Y1
and Y2. b) Graph of payoff received by the ASN during a
training saquence in which contexts were presented
alternately, each held constant for 10 time steps.
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the ASN increases over time and attains the optimal valies

for each contexL; i.e., 6 for context X1, 5 for context X2.

After learning, the presentation of a context vector

imnediately "keys out" the pattern optimal for that context.

Unlike other associative memory systems, however, the

optimal patterns were never directly available to the

systel. Since the context patterns in this case have

totally disjoint regions of nonzero values, the more

interesting associative aspects of the system are not

demonstrated. The resultant associative matrix simply

stores the separate associations.

Figure 3.5 shows the behavior of the ASN for exactly

the sitne problem as illustrated in Figure 5.4 with the

exception that the learning constant c was not set to zero

for context transitions. Learning occurs, but the almost

perfect behavior shown in Figure 5.4b is not attained even

after 500 time steps. The reason for this is that the

transition fron X1 to X2 tends to penalize elements which

may have been correctly responding to X1 since the payoff

tends to decrease at the transition.

Figure 5.6 illustrates the behavior of the ASN with a

predictor for the same problem shown in Figures 5.4 and 5.5.

The learning curve (Figure 5.6a) is comparable to that

obtained with c set to zero during transitions.

_ __ ... 4.,..
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4.
'err

2."
Chancefor X1

Plty tt _Chance for X2

-2

-4

a. 188 288. 388. 40. 568.

Tkfm Steps

FIGURE 5.5. The 4SN payoff for the training sequence
illustrated in Figure 5.4 but with the learning constant
he]. nonzero throughout. The pe!rfect behavior shown in
Figure 5.4a is not attained.
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FIGURE 5.6. 3) Ta ASN payoff for the tr3ining sequence
illustr3ted in Figure 5.4 but with the use of a predictor.
b) Prediction error p(t) - z(t+l).
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Figure 3.6b shows the predictor error p(t)-z(t+1) during the

training sequence. The predictor comes to successfilly

preJict that the highest payoffs in contexts X1 ani X2 are

respectively 6 and 5. Transitions fron X1 to X2 do not

penalize elements correctly responJing to X1 since t!he

payoff Jrop is "expectel". Notice in Figure 5.6 the errors

2onnitteJ approxinately at time steps 400 and 459. Since we

use nornaily distributed randon variables to drive the

search, there always remains a nonzero probability that an

element will perform either action.

Example 2

Here n = 3, m = 25, and four non-orthogonal but

linearly inJependent context vectors are considered (Figure

3.Ta). The optinal output patterns Yl,..., Y4 are shown as

5x5 arrays, but should be thought of as "actions" and not as

visual images. kjain, each context was presented for 10

consecutive time steps, with the sequence repeating. No

predictor was used. The learning constant was set to zero

during context transition. After sufficient learning each

context vector causes the retrieval of the optimal output

pattern. This occurs even though the context vectors do not

forn an orthogonal set. Figure 5.7b shows the learning

curve for context X1. The abscissa gives cunulative times

steps in which context XI was present. An ASN using a

predictor has essentially the same benavior.

* - - -
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Exi.nple 3

WitA the associative matrix W containing the values

obtained after training in Example ?, context vector X1 was

corrapted by additive noise and presented to the ASN (Figure

5.3a). As for other associative memories, keys corrupted by

noise cause retrieval of patterns similar to the desired

ones provided the corrupted key remains sufficiently

distinguishable from the others. The pattern retrieved

using the corrupted version of XI resembles the stored

pattern Y1. For the ASN, however, the retrieved pattern is

just the initial guess (Figure 5.3a) for the optimal pattern

and the search resumes. Like most search procedures, the

time to convergence for the ASN is reduced if the initial

quess is close to the optimal pattern. Hence, with the

corrupted X1 being presented to the ASN and Y1 still the

best output pattern, the ASN quickly corrects its response

(Figure 5.3b). At the conclusion of the search, the

corrupted version of X1 is able to cause the inmediate

retrieval of Y1.

Example 4

Again with the associative matrix containing the values

obtained by training in the four contexts of Example 1, a

fragment of X1 is presented as 3 context vector (Figure

5.9a). The pattern retrieved again acts as an initial guess

.. t

- --
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Xl X2 X3 X4
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FIG'JRE 5.7. Exainple 2. s) Four non-orthogonal but linearly
iflip3nJnt ont'xt veators an their corresponJing optimal
output patterns. b) A3N payoff for tirne steps in which
context vector X1 is present. There is a sinitar curve for
e2 1:ontext vector.



ASSJC1A FIVE 3EAR2'I NJE E4RK PAGE 3f

CONTEXT

OPTIMAL PATTERN INITIAL 6UESS
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FIGJRE 3.3. Exanple 3. a) The corrupted context vector,
the optinal output pattern, 3ni tha ASN's initial guess.
b) 4SN p3yoff as it sa3rches for the optimal output pattarn.

f l- - -
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CONTEXT
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(b)

FIGURE 5.9. Ex-imple 4. 3) rha fragmnent of X1, the optimal
pittern, 3ni the initial guess. b) NSN piy~ff as th.a search
c~oftifluas.
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CONTEXT

OPTIMAL PATTRfN INITIAL 5UESS
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Payoff
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108 26o

Time Steps for New Context

(b)
FIGURE 5.1). ExinpLe 3. i) Th3 context veatir Xl + X2, t'le
Jprin~l outpit pittern Y2, inl the ASN's initijl guess.
b) 3S 4 p~yoff is the 323rch 2ontinues.
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and the ASN corrects it under control of environmental

feeJback (Figure 5.9b).

Example 5

Here the sum of the two context signals X1 and X2 of

Figure 5.Ta is presented as a context vector to the ASN, but

the payoff function is the one previously signalled by X2

(that is, Y2 is best). In this case, the initial qiess is a

combination of the patterns Y1 and Y2 (Figure 5.10a). Again

the search process brings the initial guess to the optimal

pattern (Figure 5. lob).

5.7 Neural Search

The ASN aros3 fron our investigation of the neural

hypothesis of KlSpf (197?, 1979, 1931). He hypothesized

that neurons try to maximize their level of membrane

depolarization by changing synaptic effectiveness in the

following way: Whenever a neuron fires, those synapses that

were active during the summation of potentials leading to

the discharge become eligible to undergo changes in their

transmission effectiveness. If the discharge is followed by

further depolarization, then the eligible excitatory

synapses become nore excitatory. If the discharge is

followed by hyperpolarization, then eligible inhibitory
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synapses become more inhibitory. In this way a neuron will

becone more likely to fire in a situation in which firing is

followed by further depolarization and less likely to fire

in a situation in which firing leads to hyperpolarization.

Th- basic adaptive elemen operating according to

E<, -tion 5.2 is very similar to Klopf's model of a neuron.

Tle tern x (t-1) in Equation 5.2 corresponds to Klopf's

eligibility. A weight can change at tine t only if there

was activity on its pathway at t-1; that is, x (t-1) = .

More general form s of eligibility can be i-nplermented by

replacing this tern with a more prolonged trace of activity

as is discussed in Section 4. The restricted form of

eligibility usen here is suitable because E always evaluates

an output pattern in a single time step. The idea of

eligibility is essential for the search behavior of an

adaptive element since it permits the consequences of

actions to influence the probability of these actions in the

future. This cannot be accomplished by a Hebbian-type rule

which associates simultaneous, or nearly simultaneous,

signals with no sensitivity to which occurred earliest.

Unlike Klopf's hypothesized neuron, the adaptive

element presented here tends to :naximize a specialized

payoff or reinforcement signal (z) rather than what would

correspond to membrane potential (s). There are several
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interesting consequences of a rule that tends to maximize s.

It permits secondary reinforcement to occur whereby the

occurrence of a previously rewarded context itself is

rewarding, and it may permit a single adaptive element to

perfor:n both the search and prediction tasks, eliminating

the need for a separate predictor element. In this section

we have focused only on the simpler case in which there is a

specialized payoff or reinforcement signal.

The adaptive element presented here is an illustrative

example of a class of adaptive mechanisms, some of which are

more closely related to Klopf's hypothesis, and should not

be literally interpreted as a model of a single neuron. In

fact, we have purposefully referred to it as an adaptive

element rather than a neural model. We do wish to suggest,

however, that the general form of stochastic, closed-loop,

optimization learning realized by the adaptive element

nerits close experi.nental investigation. Theory has shown

that stochastic search procedures can be very effective

means for the optimization of functions about which little

is known. This capability, combined with pattern

recognition capabilities, leads to considerable adaptive

power. As a neural hypothesis, the adaptive element

suggests that the stochastic component of neural discharge

might perform the function of stochastic search. 4 closely

related adaptive element is discussed with respect to
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beh3vior3l and neurophysiological data in Section 4.

5.3 Sensorinotor Control Surfaces

It has been suggested that associative memories might

provide effective means for the storage of sensorimotor

associations required for sensory guiJed motor behavior

(Albus, 1979). However, in every case there is the

requirement for a signal to be present giving the "desired

response" in order to form the correct sensorimotor

association. Yet this kind of information is usually not

available to an organism nor easy to obtain. After

considerable experience in a given set of sensory contexts,

the "desired response" for each context might become known

through a learning process. But the associative memory

structures proposed in the literature are not able to

perform this type of learning. Their structure suggests how

associations night be stored but does not address the very

important questions concerning what information is chosen

for storage. The ASN suggests how such questions might be

explored.

Sensori-notor tasks provide natural examples of the type

of problem the ASN is capable of solving. Sensory context

is provided by exteroceptive and interoceptive stimulus

patterns, and output patterns provide control signals to
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motor systems. Global reinforcement systems might provide

information analogous to the ASN payoff signal. The

associative matrix formed would implement a sensorimotor

control surface. This interpretation of the ASN task

suggests that research should continue in order to extend

the ASN's capabilities in several different ways. 1) Most

complex control tasks require nonlinear control surfaces.

Elaboration of the ASN to permit the formation of nonlinear

associaticns can be accomplished in the same manner as

suggested for other associative memories in the literature

(Poggio, 1975). 2) Most sensorimotor tasks have the

property that the context which occurs next is partially a

function of the control system's action. In the problem

discussed in this section, the SN has no control over which

context occurs. An interesting generalization of the ASN

task is to require the ASN to control not only the payoff

signal but also the context vectors in order to reach a

context in which the highest payoff is av~ilable. This is a

more general learning control problem. 3) The ASN task

presented here is simplified by the occurrence of a payoff

signal at every time step. In actual sensorimotor learning

tasks the reinforcing events occur only occasionally.

Secondary reinforcement capabilities would provide a first

step toward the solution of this substantially more

difficult problem.
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5.9 Conclusion

The distributed memory properties of associative memory

systems make them particularly interesting learning systems

from both biological and theoretical perspectives. Although

all associative nemory systems described in the literature

require the desired response for each key to be provided by

some other source, the interesting properties of associative

memory systems are not restricted to this form of learning.

A more difficult type of learning, which can occur even if

no part of the system or of the environment knows the

desired behavior, is reinforcement learning. In this form

of learning, the environment provides only a performance

measure of responses rather than desired responses, making

the problem both more difficult for the learning system and

less demanding for the environment. The ASN is an

associative memory system capable of solving reinforcement

learning tasks. Our results illustrate that the important

properties of associative memories can be retained by a

system capable of this more general and more difficult form

of learning.



CHAPTER 6

LANDAARK LEARNING: AN iLLU3TRATION OF ASSOCIATIVE 3EARCH *

5.1 Intr)Juction

In Section 5 we iefinei the associative saarch problem

anJ presentei a systen, calleJ an Associative Search Network

(ASN), -apable of solving it unier certain conditiois. An

ASN incrpr3tes learning rules t iat qtve been carefully

iesigned f:llowing, Klopf's hypothesis that neurons are

goal-seeking systems (Klopf, 1972, 1979, 1931). Here we

present 3 sinpla spatial learnin, problem as an example of

the 3ssociative se3rch task. This interpretation

illustrates tlie task in an intuitively clear form, shows how

natur3lly it can arise, and 31lows the capabilities of a

sinple ASN to be clearly describeJ. It was not our

intention either to nodel aninal spatial learning behavior

or to fully exploit the capabilities of an ASN; rather, we

wanteJ to illustrate its capabilities in as simple a problem

as we could construct.

* This section will appear in Biological CybernetLcs, 1931.
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6.2 Associative Search

Figure 5.1 shows an ASN interacting with an environment

E. At each time t, E provides the ASN with a vector X(t)

(x](t),..., xn(t)), where each xi(t) is a positive real

number, together with a real valued payoff or reinforcement

signal z(t). The ASN produces an output pattern Y(t) =

(y 1 (t),..., Ym(t)), where each yi(t)E {0,11. The ASN's

action Y is received by E. Each vector X(t) provides

information to the ASN about the sensory situation at time t

in which it acts. After performing an action; that is,

after producing an output pattern, the ASN receives (1 time

step later) an evaluation from E of the appropriateness of

that action for the situation in which it was made. This

evaluation is received by the ASN as the value of a payoff

or reinforcement signal z. The evaluation alone is not

sufficient to determine whether the preceding action was the

best possible in the given context. The associative search

task is to learn, for each input vector, to perform the

action which maximizes the payoff value. In other words, it

must learn to perform the best action in each sensory

situation. Different actions can be optimal in different

sensory contexts. This class of problems is more completely

described in Section 5 where it is distinguished from the

simpler pattern recognition tasks that can be solved by

perceptron-like learning rules.
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6.3 Spatial Learning as Associative Search

If an ASN is viewed as controlling the locomotory

behavior of an organism in a spatial environment, then input

vectors are associated with places in space, and ASN output

patterns control movement. We have created a simple spatial

environment in which to illustrate this interpretation of

the associative search problem and a simple ASN's behavior.

Figure 6.1 shows a spatial environment consisting of a

central landmark (shown as a tree) surrounded by four other

landmarks (shown as disks). Thinking of this as an

olfactory environment for a simple organism, we let each

landmark possess a distinctive "odor" which can be sensed at

a Jistance. Accordingly, to each landmark is associated a

spatial distribution, linearly decreasing with distance from

the landmark, which extends as far as the large ellipses

shown in Figure 6.1. The asterisk shows the location of the

ASN.

When the ASN is in a particular location, its input

pattern is determined by its distance from each of the

landnarks. We let the central landmark act as an attractant

for the ASN by letting its "odor" be the value of the payoff

or reinforcement signal z. The other landmarks are

"neutral" in that proximity to them is not rewarding to the

ASN. An input vector therefore consists of five values
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N

FIGURE 6.1. A spatial environment consisting of a central
landmark (shown as a tree) surrounded by four other
landmarks (shown as disks). Each landmark possesses a
distinctive "odor" which can be sensed at a distance. Odor
distributions decrease linearly from their associated
landmarks and become undetectable at the large ellipses.
The asterisk shows the location of the ASH.
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giving the odor concentrations due to the central "tree" and

the north, south, east, and west neutral landmarks.

Figure 6.? shows an ASN with 5 input pathways, labeled

vertically on the left according to the landmarks to which

they respond. The shaded input pathway N indicates that the

ASN is near the north neutral landmark. There are 4 output

patnways labeled horizontally at the bottom as controlling

"actions." The manner in which these actions determine

locomotion was chosen solely for the sake of simplicity.

Tnere is an output element for each compass direction. Each

output element produces an output of 0 or 1 at each time

step. For example, if N=O, S=, E=1, and W=O (as shown by

the shaded output elements in Figure 6.2), the ASN will move

a fixed Jistance south and east. We use a kind of

"reciprocal inhibition" between the north and south elements

and between the east and west elements so that at each time

step usually only one of each pair of elements outputs a 1.

Clearly, we are not attempting to model in any detailed

manner the motor control system of an organism (for example,

there is no explicit spatial orientation of the ASN).

The arrangemnent of input and output pathways used in

Figure 6.2 pernlts the connection weights to be displayed in

c)nvenient form as circles centered on the intersections of

input pathways and the vertical output element "dendrites."
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FIGURE 6.2. The ASN controlling locomotion in the spatial
environment. The five input pathways are labeled vertically
on the left according to the landmarks to which they
respond. The shaded input pathway N indicates that the ASN
is near the north neutral landmark. The four output
pathways controlling actions are labeled horizontally at the
bottom according to the direction of movement they cause.
The shaded output elements indicate that a southeast
movement is being made. The associative matrix weights are
displayed as circles centered on the intersections of the
horizontal input pathways and vertical output pathways.
Positive weights are shown as hollow circles, and negative
weights are shown as solid circles.
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Positive weights are shown as hollow circles, and negative

weights are shown as sobid circles. The sizes of the

circles inJicate the relative magnitudes of the

corresponding weights. The uppermost "tree" input is the

specialized payoff pathway z which has no associated

weights. These connection weights form an associative

matrix which is similar to those widely discussed in the

literature (e.g., Anderson et al., 1977; Amari, 1977a, b;

Kohonen, 1977) but one that gathers information by means of

the more complex closed-loop learning rules to be described.

The ASN's task in this environment is to 1) find the

central landmark by climbing the attractant distribution and

2) associate with each place that action which causes

movement toward the central landmark. The first part of

this task is a simple hill-climbing problem that does not

require long-term memory. The second part is an example of

the associative search task. Although the payoff signal is

derived from a single spatial distribution (the "odor" of

the tree), the optimal action is clearly a function of the

ASN's location. For example, if the ASN is south of the

central landmark, it is best for it to move north; if it is

north of the central landmark, it is best for it to move

south. Consequently, the sea,'ch for the optimal action in

each place requires maximization of functions of ASN actions

which differ from place to place. (A predictor as discussed
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in Section 5.4 is not required for this spatial learning

task since the functions to be maximized vary smoothly over

time.) As a result of solving the second part of this

problem, the ASN can proceed directly to the central

landmark simply by performing the actions associated with

its successive locations. Importantly, this direct approach

is possible when the attractant distribution is very noisy,

intermittant, or even totally absent (as we demonstrate

below).

6.4 The Learning Rule

The ASN presented here uses the same type of learning

rule as discussed in Section 5. Let x 1 (t), x 2 (t), x 3 (t),

and x (t) denote the signals at time t from the north,

south, east, and west landmarks respectively, and let z(t)

denote the signal from the central landmark. Each output

element j, j = ,..., 4, has a weight w.. asociated with

neutral landmark input xi, i 4,..., 4, and an additional

weight w . Let w* .(t), i = 0,..., 4, denote the values ofOj

these weights at time t. Let
n

sj(t) = woj(t) + i w. j (t)x i (t) "

The output of element j at time t is

1 if sj(t) + NOISE3(t) 0

yj(t) = othe i (6.1)

0 oterwi se
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wnere each NOISEj, j 1,...,4, is a mean zero nornially

distributed random variable (with the same variance for each

j).

At each time step, each weight wij, ij 4,..., 4, is

updated according to the following equation:

wij(t + ) wij(t)+c[z(t) -z(t - )]y(t - )xi(t 1 (6.2)

The weilhts woj are updated as follows:

W j(t+ 1) f[woj(t) + Co(Z(t) - z(t - 1))y(t -1)] (6.3)

where

BOUND if x > BOUND

f(x) =0 if x < 0

x otherwise

bounds each woj to the interval [0, BOUND]. The parameters

c and c are positive real numbers determining rates of

learning. In all of the si:nulatons described below, c =

0.25, c O = 0.5, BOUND = 0.005, and the standard deviation of

the random variable NOISE. was 0.01 for j=I,...,4.
3

Equation 6.2 implies that if the firing of an output

element in a given place is followed by a movement toward

higher attractant concentration z, then the element will

becone nore Likely to fire in that place in the future. If

firing is followed by a mnovement toward lower values of z,

V __ ___
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firing will become less likely in that place. See Section 5

for a more detailed discussion of this class of learning

rules [footnote].

The weights w0 j changing according to Equation 6.3

permit the ASN to climb the attractant distribution in the

absence of landmark information. Equation 6.3 is similar to

Equation 6.2 applied to a constant signal from a universally

present landmark (x0 t) = for all t). If c0 is

sufficiently large compared to BOUND (as it was in our

simulations), then complete learning will occur in a single

trial so that a movement in an up-gradient direction will

tend to be followed by a movement in the same direction.

This straight line trajectory will tend to continue until it

takes tae ASN down-gradient. Down-gradient moves will drive

woj to zero so that the random component will dominate. The

bound function f is necessary to insure that down-gradient

moves can return the weight to zero. The resulting

hill-climbing strategy is similar to that used by certain

types of bacteria to climb nutrient gradients (Koshland,

1973). Fraenkel and Gunn (1962) call this strategy

- - - -------- -- _

Equation 6.2 is identical to Equation 5.2 except that the
term y(t-1) is used here instead of y(t-1) - y(t-2). In the
experiments of Section 5, changes in z were attributable to
changes in y. Here, y itself determines the change in z
because it causes a change in spatial location rather than
nove nent to a particular place.

2 ______
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klino-kinesis and Selfridge (1973) calls it "Run and

Twijdle" (if things are inproving, keep doing what you are

ioing; if things get worse, do something else).

6.5 Learning in a Noiseless Environment

If the attractant concentration can be reliably sensed,

then tiie hill-climbing part of the ASN's task can be

accomplished easily. Figure 6.3 3hows the ASN's trajectory

for the case in which there are no neutral landmarks. The

central landmark is approached due to the action of Equation

6.3. Since no associations are formed in this case, that

is, since no long-term memory traces are formed, later

attempts to climb the same hill will proceed at 3sentially

the same rate as the first attempt.

Figure 6.4 illustrates the ASN behavior in the presence

of the neutral landmarks. Figure 6.4A1 shows the ASN

behavior for 35 time steps. Figure 6.4A2 shows the state of

the ASN as a result of this behavior. Nonzero weights have

appeared associated with the north and east landmark input

pathways since the ASN has remained in the vicinity of these

landmarks (and hence only these pathways were eligible for

modification). Since movements north and south were

correlated respectively with decreases and increases in the
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FIGURE 6.7. The ASN's path is shown as it climbs the
attractant gradient in the absence of landmark guidance. No
long-term memory traces are formed, and later attempts to
climb the same gradient will proceed at essentially the same
rate.

V _ _ __ _ _ __ _ _ __ _ _ _
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attractant level, weights have formed so that the north and

east landmark "odors" inhibit movement north and excite

movement south. Weights associated with the east landmark

pathway are smaller in magnitude than those for the north

landmark since the ASN remained closer to the north

landmark. Similarly, the north and east landmark inputs

inhibit movement west. Weights for the east output element

are too small to be visible since the ASN only infrequently

moved east.

Figure 6.4A3 shows the results of learning in a vivid

forn. A vector is shown at each point in a grid covering

the entire space. Each vector is the result of computing

the values s., j 1,..., 4, from the ASN input vector

associated with the place at which the vector appears. The

resulting 4-tuple is displayed as a vector in the obvious

way. The direction of the vector at each location gives the

direction of the ASN's most probable first step if it were

to start at that location. The vector's magnitude is

related to the probability that the ASN will take this step.

It is important to note that the attractant distribution of

the central landmark is not used to determine the vector

fields. The vectors represent information stored in the

ASN's memory; not information directly present in the

environment. The vectors show how the ASN would tend to

move even if the central landmark and its attractant
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FIGURE 6.4. ASN behavior in the presence of neutral
landmars. Al) ASN behavior for 35 time steps. A2) The

state of the ASN as a result of the experience shown in Al.
A3) A vector field representation of the ASN state shown in
A2. B1) ASN behavior for about 300 time steps. 2) The

state of the ASN after about 800 time steps shows that
proximity to the north landmark will make the ASN move

south, proximity to the south landmark will make it move
north, and similarly for the east and west landmarks. B3) A
vetar field representation of the ASN state shown in B2.
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distribution were not present. The generalization

capability of the ASN is clearly shown by the vectors

associated with places never visited by the ASN.

Figure 6.4B shows how the ASN behaves for about 30

time steps. It climbs the attr3ctant distribution and

remains in the vicinity of the central landmark (Figure

6.4B1). The resultant associative matrix values (Figure

6.4B2) show that the north landmark signal inhibits the

north output elenent and excites the south output element.

Consequently, when the AS.N is in the vicinity of the north

landmark, it will tend to nove south. Similarly, a strong

signal fron the south landmark will cause the ASN to move

north. The weights associated with the east and west

landmarks similarly affect the east and west output

elements. The resultant novement tendencies are shown as a

vector field in Figure 5.4B3. This form of learning is not

lepenJent on the, central location of the attracting

landmark. Figure 6.5 shows a vector field determined from

the contents of the ASN's memory after about 300 tine steps

of learning with the attracting landnark located off center.

The importance of this illustration is that it shows that

the learning rule is capable of not only determining the

correct signs for the weights but also their correct

magnituJ 3s.
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FIGURE 6.5. A vactor field representation of the ASNs

state after about 800 time steps in an environment with the
attractant landmark located off center. The learning rule
is capable of determining the correct magnitudes for the
weights in addition to the correct signs.
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FIGURE 6.6. Use of long-term memory. With the ASN state as
shown in Figure 6.4B2 anJ the central landmark and its
attractgnt gradient removed, the ASN takes 3 direct route to
the central landmark's former position from a place it has
never before visited. Stimulus patterns associated with
successive positions "key-out" the appropriate actions.
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The infornation stored in the association matrix formed

during exploration of this spatial environment can be used

by tna 4SN to guide movement even in the absence of the

ittractant gradient. In Figure 5.6 is shown the behavior of

tne ASN -fter learning by exploration of the environment

with the attractant landmark in the center. The central

landmark and its attractant distribution have been removed

from the environment, and the ASN starts at a place it has

never before visited. The ASN takes a direct route to the

former location of the central landmark. This occurs

because the input vector associated with each place "keys

out" the appropriate action. The ASN remains near the

central landmark's former location.

6.6 Relearning in a Modified Environment

Here we illustrate how the 4SN can reorganize its

associative matrix due to changes in its environment. da

allowed the ASN to learn in the original environment (Figure

6.1) until it was able to associate the best movement with

each place. 4e then interchanged the east and west

landmarks. Figure 6.7A shows the vector field resulting

from evaluating the ASN's associative matrix in the altered

environnent. The central landmark location is now a saddle

point rather than a stable focus. Starting from a central
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position, the ASN is "misled" by its sensory infornation and

follows tle vector field away fro.n the centr'4 lani-nark

(Figure 5.7B1). Since this novenent is down the attractant

gr3Ji3nt, t'e ASN alters the weights to the east anJ west

o-tpjt elenents fro:n the east neutral lanimark input (which

now responds to the landmnark to the west). This relearning

resjlts in the network of Figure 5.7B2 3nd the vector field

of Figure 6.7B3. A sinilar excursion to the east nodifies

the weights associated with the west neutral input which now

responis to the landnark to the east (Figure 5.7C). If the

attractant distribution had been absent, no relearning would

haVe occurreJ.

6. 7 Learning in a Noisy Environment

Cli-nbing a hill as large and reliably sensed as the

3ttract.ant distribution of the preceding illustrations is

not a Jifficult task. When the attractant concentration can

be sensed only in the presence of noise, the task becomes

more difficult anJ more interesting. The sensitivity of the

ASN to neutral context infornation perinits it Lo improve its

p~rfornance in climbing a noisy hill with repeated attenpts

[footnote]. Figure 5.3A shows the ASN performance, starting

AlthouRn we Jo not illustrate it here, we would expect that

context infornation would also facilitate the more difficult
problem of higher Jinensional search.
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with all weights zero, as it climbs the attractant

concentration corrupted by additive noise. The noise is

nornally distributed with a standard deviation of 0.02.

Co:nparing Figure 6.3A with Figure 6.3 or Figure 6.481 shows

that hil-climbing performance is significantly degraJeJ.

After sufficient experience with the noisy attractant

concentration (1107 time steps) , the ASN uses neutral

landmark guidance to directly approach the goal even with

th- same noise level in the attractant concentration (Figure

5.3B).

There are other means for improving hill-climbing

performance in the presence of noise such as direct low-pass

tenpor -l filtering of the attractant signal as it is

receiveJ by the ASN over time. 'e have not optimized

hill-clinbin, behavior of the ASN in the absence of landmark

guidance. Consequently, Figure 6.3 does not compare

landmark guided hill-climbing with the best hill-climbing

behavior that can be accomplished without landmark quidance.

4hat is important in this comparison, however, is that the

association of neutral context information during a search

pernits the systen to improve its performance with repeated

attenpts to approach a goal in the same or similar

environments. Even the most highly tuned pure hill-climbing

strategy does not learn from its experience in this manner.

.i &
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A B

FIGURE 6.3. Learning in a noisy environment. A) ASN
benavior, starting with all weights zero, as it climbs the
attr3ctant gradient corrupted by additive noise.
Hill-climbing performance is significantly degraded (cf.
Figure 5.3 or Figure 5.4B1). B) After sufficient experience
with the noisy attractant gradient (1107 time steps), the
ASN uses neutral landmark guiJnce to directly approach the
goil even with the same noise level in the attractant
graJient. Previous experience in the same or similar
environments can be used to improve performance.
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Tnis exa,nple illustrates that tac exploitation of sensory

context can provide significant adaptive advantages if the

sane or si:nilar sea3rch problems occur repeatedly.

6.3 A Remark on Linearity

The associative search problem posed by the spatial

environment of Figure 5.1 is simple enough to be solvable by

an ASN capable of making only linear associations. The

influences of the neutral landmarks merely superimpose to

form the Jesired control surface. If this were not the

case, the ASN which we have describeJ would not be able to

forn a stable mapping. Due to its linearity, it is not able

to represent arbitrary patterns of location-action

associations; that is, only certain types of vector fields

can be learneJ.

In our current research, we are investigating two

mfetnods for extending the ASN's capabilities to include

nonlinear associations. The first relys on the observation

that more varied associations can be formed as the number of

landmarks increases. If, for example, there were a

distinguishable landmark at each spatial location, then a

linear ASN could learn arbitrary location-action

associations (this would be similar to the approach taken in
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the BOXES system of Michie and Chambers, 1968). This

suggests that it would be useful for a system to effectively

"create" lanimarks where needed in order to refine its

representation of space. Suchi-a landmark, which wa call a

"virtual landnark ," would be created by the formation of an

appropriate nonlinear combination of the sensory signals

provided by the real laninarks. Another approach to

nonlinearity is rel ted to the "Patchwork Map" theory

des2ribed by Kuipers (1917). Here, the system's knowledge

of space would consist of sever3l different associative

mappings appropriate for guiding behavior in different

regions of space. The system would need to develop

nonlinear switching capabilities for accessing the correct

associative structure when entering each region. Both of

these approaches to nonlinear learning are applicable to a

wide variety of spatial and non-spatial problems. We are

finding that the simple spatial interpretation described in

this section provides 3 concrete and generalizable framework

for approaching these very difficult and general problems.

6.9 Conclusion

We have illustrated the behavior of an ASN in a simple

spatial learning task. The spatial problem provides a vivid

way to denonstrate the search, association, and

generalization capabilities of an ASN. Although we have
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illustrated these capabilities in an extremely simple form,

it should be realized that the methods employed have much

wider applicability. The spatial learning problem is an

example of a wide class of problems, some of which require

paths to be learned through spaces which do not necessarily

represent physical space. For example, the space may be the

state space of a dynamical system, in which case the vector

fields developed represent hypothesized system dynamics.

Associative learning capabilities provide a simple means

whereby experience in attempting to solve a problem can be

accumulated and used to drastically improve performance in

similar problems. The necessity for explicit search is

minimized by storing in long-term memory the infornation

gained in previous searches.

Finally, we wish to comment on the simplicity of the

ASN illustrated. It consists of just four alaptive elements

acting in parallel. Since the adaptive elements themselves

embody fairly sophisticited learning rules, utilizing both

short-term and long-term memory, we did not need to

construct a special purpose network to perform the landmark

learning tasks which we have presented. The behavior

illustrated is a very natural consequence of a set of

elements operating according to a carefully designed

closed-loop learning rule.

V _



SECTION 7

AN ADAPTIVE NETWORK THAT CONSTRUCTS AND USES

AN INTERNAL MODEL OF ITS WORLD

7.1 Internal Models for Search and Simulation

The words "internal model of the world" have been used

by many theorists of the mind to refer to some kind of store

of knowledge within an adaptive system that it uses to

,!tter interact with its world (e.g., Arbib, 1972; Craik,

1943; Gregory, 1969, MacKay, 1955; Piaget, 1954). The

ideas behind these Models vary from the idea of a very

general knowledge store capable of answering any sort of

question about the world, to extremely limited knowledge

stores that can answer only a single question: What should

be done next? The kind of internal model we are concerned

with in this section is of a generality intermediate between

these two extremes. By an internal model we will mean any

part of an adaptive system which can provide expectations or
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predictions about what would happen in particular

situations. Further, we are concerned specifically with

those cases in which the model is used to mentally simulate

the consequences of various actions in order to choose among

them without having to try them overtly. The following few

pales focus and expand upon this idea.

Kenneth Craik (1943) was one of the first to clearly

state the view of t.hought as an internal simulation of the

world, allowing inany courses of action to be hypothetically

attempted and evaluated:

If the organism carries a "small-scale model" of
external reality and of its own possible actions
within its head, it is able to try out various

alternatives, conclude which is the best of them,
react to future situations before they arise, utilize

the knowledge of past events in dealing with the

present and future, and in every way to r-,act in a

much fuller, safer, and more competent manner to the
emergencies that face it. (p.61)

Aspects of this theory of thought, however, are much older

than Craik's work. Donald Campbell (1962) traces a very

similar theory of "creative thought" back to the writings of

Alexander Bain (1855, 1874), Ernst Mach (1896), 3nd

Poincare- (1908, 1913).

Campbell (1962) emphasizes that the interaction with

both the world and the internal model can involve trial and

error:
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At this level [the level of creative thought] there is
a substitute exploration of a substitute
representation of the environment, the 1Iolution"
being selected from the multifarious exploratory
thought-trials according to a criterion substituting
for an external state of affairs. In so far as the
three substitutions are accurate, the solutions when
put into overt locomotion are adaptive, leading to
behavior which lacks blind floundering... (p.212-3)

Unfortunately, the idea of "trial and error" in search has

frquently been mistaken for that of random or blind search.

A search by trial and error can be a highly structured and

heuristically guided one. By trial and error search we mean

any searchundertaken under the guidance of a certain kind of

feedback process in which options are tried and then

evaluated and retracted or changed if in error. Any

"hypothesis and test" search, or any search using

backtracking, would qualify as a search using trial and

error in this sense.

Internal trial and error as a model of thought and

reasoning turns out to be a view that is held extremely

widely among theorists of the mind. Such a

modeling/simulation view plays an important role in the

theories of Dennett (1978) in philosophy; Simon (1969) in

artificial intelligence; Sommerhoff (1975) and Arbib (1972)

in brain theory; Dawkins (1976) in biology; Galanter and

Gerstenhaber (1956) and Miller, Galanter and Pribram (1960)

in psychology; to name just a few. Figure 7.1 summarizes

the essential features of this view of thought as used in
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Figure 7.1. An adaptive system based on the idea of
internal simulation. The system interacts with its model in
tne same way that it interacts with the real world.

-4
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this section: An organism constructs an internal model of

the world that allows prediction of the observable behavior

of the world as a function of possible actions by the

organism. The internal model is used to select behavior in

an interactive manner identical to the interaction with the

external environment in the absence of a model. Trial and

error search for the action which achieves the best result

from the external environment is replaced by covert,

i'iternal trial and error search for the hypothetical action

which secures the best anticipated result from the internal

model. The internal model must be either faster, easier, or

safer to interact with than the external environment in

order for it to be useful.

This section takes a few first steps towards

formalizing this rnodel-based theory of thought. The animal

learning theory literature has been found to be extremely

useful in obtaining a more concrete idea of what it means to

create and use an internal model of the world. Since the

concept of an internal model is, by definition, a mediating

theoretical construct not directly associated with overt

behavior, psychologists have concentrated on devising

experiments which we can view as revealing indirect effects

of the model on behavior. These animal learning theorists

called the phenomena their experiments revealed such things

as reasoning, latent learning, and insight. The centerpiece

- n , i
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of this section is the presentation of a completely defined

adaptive network which constructs and uses an internal mnodel

to solve a task similar to one in the animal learning theory

literature. Both the adaptive network and the task

environment were simulated by computer. The intent was to

find as simple a network and task as possible while still

being able to demonstrate behavior that psychologists wo :I,

considler "reasoning," or model-requiring.

Figure 7.2 is a floor plan of an early form of a

classic maze problem for rats (Tolman and Honzik, 1930).

Its solution is considered to involve spatial reasoning

capabilities. To oversimplify, the rats were familiar with

all three paths to the goal, and preferred them in order of

increasing path length: A over B, and P over C. When a

block was introduced as shown, the rats tried A, discovered

the block and then predominantly chose path C, the longest

of the paths, next. Since their normal preference when A is

blocked was B, the path of intermediate length, this result

indicated that the rats used some sort of spatial map, or

model of the maze, which informed them that path B was also

blocked. This experiment was seen as a positive test of

insight or reasoning in the rat.

A much simpler experiment of the same intent uses a

one-choice T-maze with detachable distinguishable goal boxes
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Figure 7.2. A maze used to test insight in rats. The rats
are familiar with all three paths to the goal box and prefer
them in order of decreasing length: A over B, B over C. If
they have "insight," then after taking A to discover the
block, they next try path C rather than B.

S - --.--- --.
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GREEN RED
GOAL GOAL
Box Box

I i

START
Box

Figure 7.3. A si'nple T-maze task with distinguishable
detachable goal boxes used to test latent learning and
reasoning in rats. The rat cannot see or backtrack through
the onea-way doors indicated by dashed lines. This task is
conceptually very similar to the one posed to the simulated

adaptive network presented in this paper.

I 4
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(Figure 7.3). Since this problem is very similar to the one

we have posed to the simulated adaptive network, we will

describe it in greater detail. There are three phases to

the experiment: In the exploration phase the subject is

repeatedly placed at the entrance to the maze. When the

subject reaches one of the goal boxes, it is removed from

the apparatus. There is no food or other reinforcer

anywhere in the maze. Backtracking is not allowed. In the

association phase the goal boxes are separated from the

T-maze and carried to another room. There the subject is

fed in the red goal box that was on its right, and given a

painful electric shock in the green goal box that was on its

left. In the testing phase the subject is returned to the

start of the T-maze.

The key question is: Which way will the subject turn

on the first post-training trial? Most rats will turn

right. Note that neither the action of turning right nor

the action of turning left is ever temporally associated

with reward or punishment in this experiment. In order to

solve this task, the subject has to combine two separately

learned facts about the world: 1) that turning right in the

T-maze will bring it to the red goal box and turning left

will bring it to the green goal box, and 2) that the red

goal box is a place where it may be fed, and the green goal

box a place where it may be shocked. It is this combination
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dni.n is tnought of as the reasoning process, a sort of

transit.ivity of prediction or primitive modus ponens.

Viewing the solution of this T-maze problem as an

ilstance of tiie use of an internal model, in this case a

spatial cognitive map, suggests two aspects of the idea of

si:nulaticn by internal model that may account for the

popularity and apparent promise of the idea. First, the

sort of re,3sonin- by predictive transitivity mentioned above

is precisely the sort of reasoning that is achieved by a

sinulation. To simulate a complex system by computer, we

provide the step-by-step transition dynamics of the system,

and the simulation scheme repeatedly applies these dynamics

to update the state of the simulated model. In just this

way a simulation can combine "right turn predicts (arrival

at) red goal box" and "red goal box predicts food" to infer

that food can be attained by turning right. Such a

capability for propagating predictions is an important

component of the ability to generate the consequences of

proposed actions.

The second important aspect of the idea of simulation

by internal model that appears in this simple T-maze example

is that it provides a framework for learning about the

environment even in the absence of rewarding or punishing

events. For example, forming an internal model becomes the
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purpose and explanation for the T-maze subjects' learning

that turning right leads to a red area, even though no

reinforcing events occur. The problem of learning about the

determinants of all stimuli is much more difficult than that

of nerely learning about the determinants of a few

designated reinforcing stimuli. This turns out to be an

important problem for adaptive network research as well as

animal learning theory. Early attempts in both these fields

(e.g., Thorndike, 1911; Clark and Farley, 1955) used

reinforcement to form associaLions b between stimuli and

responses. However, as was learned from the latent learning

experiments (Blodgett, 1929), animals do learn in the

absence of reinforceing events of any kind.

Reinforcement, being a one-dimensional measure,

provides very little information compared to the torrent of

sensory information available. It has become generally

recognized that intelligent artificial adaptive systems also

must use this additional information (see the discussion of

the "apportionment of credit problem" in Minsky (1961)).

Much of the promise of the idea of an internal model may be

that this concept explicitly encourages and provides a way

of understanding learning in the absence of reward or

punishment. This type of learning involves the construction

of an accurate predictive model, a process that is normally

independent of reinforcement. Once the model is formed,

V _ _ __ _ _ __ __
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internal trial and error through simulation provides a

frXneworK for using the information picked up from the

environment.

7.2 Fie Simulated Task Environment

In the example that we implemented, the experimental

design, the environment, the experimental subjects, and the

adaptive networks to control them, could all be selected for

our convenience. This allowed further simplification in the

Jesign of the reasoning task. The ground plan of the

environment is sihown in Figure 7.4. The lower area is used

in a manner analogous to the T-maze, the two regions on the

right and left being analogous to the red and green goal

boxes at the ends of the T-maze. The two enclosed regions

sh-own in the upper part of Figure 7.4 are analogous to these

sane goal boxes when they have been moved to another room

for association with food and shock in the absence of the

T-maze. That these are actually separate regions is of no

i-nportance here: The adaptive networks controlling the

3inulated beasts have only three sensory input lines, one

for sensing being within a green region, one for sensing

being within a red region, and one for sensing rewarding

stimulation. In terms of this limited sensory vocabulary,

--V a
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GREEN RED

Figure 7.4. Ground plan of the simulated environment. The
lower area is used in a manner analogous to the T-maze in
Figure 7.3, the two regions on the right and left being
analogous to red and green goal boxes at the ends of the
T-maze. The upper two enclosed regions are analogous to
those same goal boxes when they have been moved to another
room for association with food and shock in the absence of
the T-maze.



NET4ORK .41T AN INTERNAL MODEL )F ITS WORLD PAGE 7-14

3i regions of the same color are indistinguishable. This

is clearly an enormous simplification of the perceptual

process.

The simulated beasts have only two graded actions:

move to the right, move to the left. These are meant to be

extreme sinplifications of, and yet analogous to, the

right-turn and left-turn actions of the T-maze task. In the

exploration phase of the simulation experiment, the beasts

are placed at A, between the two large colored regions

(Figure 7.4), and allowed to wander back and forth randomly.

The barriers at B and C obstruct their movement thereby

preventing them from moving too far away. This insures that

they eventually gain experience moving to and from both

regions. Thus, all trajectories are along a straight

horizontal line between the two barriers. The two upper

goal box areas shown in the upper part of Figure 7.4 are

used in the association phase. For the testing phase, the

beasts are returned to location A between the lower two

regions to see which region is entered first.

We next describe the adaptive network and then proceed

through each phase of the simulation experiment, discussing

the experimental manipulations and network changes in

detail. For reference, Appendix D contains a summary of the

details of the three phases of the simulation experiment,
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and Appendix E contains a detailed specification of the

simulated adaptive network model.

7.3 The Simulated Adaptive Network

Figure 7.5 is a block diagram of the adaptive network

design. The network is divided into two major components:

An action selecting mechanism and an internal model of the

environment. The action selection mechanism uses the actual

environment and the model of the environment in exactly the

same way - both provide feedback to evaluate actions

attempted by the action selecting mechanism. The

evaluations by the model and by the environment of the most

recently selected action are added to yield the evaluation

input to the action selecting component. Importantly, the

feedback loop through the internal model is much faster than

the feedback loop through the environment, and thus proposed

actions can be evaluated by the model so quickly that the

rejected alternative3 have very little influence on the

environment and the organism's overt behavior. This is

accomplished in the simulated example system by letting the

motion of the simulated beasts depend not only on the

instantaneous action selected, but also on past values, in

an exponentially weighed manner. The result is that even
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Figure 7.5. Block diagram of the adaptive network and its
connection to the environment. The action selecting
mechanisn has its choices evaluated via two feedback loops;
one through the environment, and one through an internal
model of the environment. If the model is faster than the
environment, then the feedback loop through the model will
control overt behavior.

Vi _i.
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though both the action selection and the overt action are

changed and updated every time step of the simulation, the

environment is slightly "viscous" relative to the network

dynamics, acting as a "leaky integrater," or a system with

inertia that must be overcome before overt action aligns

with the current action selection. A decisive overt

movement only occurs once the system has converged onto a

particular choice of action. Maintaining a particular

action as the one selected for a significant period of time

(about four time steps in the simulated system) causes that

action to become expressed in overt movement.

7.3.1 The Actlc'n Selecting Component

The division of the adaptive network into the action

selecting and internal model components makes its

construction from adaptive elements relatively simple. All

that is needed for the action selector is a bank of action

elements which correlate their output, or action, with

increases or decreases in the evaluation or reinforcement

input to this subsystem (Figure 7.6). We vill need one

element whose action represents the tendency to turn right

and one whose action represents the tendency to turn left.

The environment will then resolve any conflict between these
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Figure 7.6. Detail of the action-selector component of the
simnulated network blocked out in Figure 7.5. The elements
correlate their output, or action, with increases or
decreases in the evaluation input.
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two by responding to the difference in the tendencies, much

as our skeletons resolve the conflict between agonist and

antagonist muscles (this is explained in detail in Appendix

D). The action levels are originally chosen randomly, but

if a correlation is found between action level and

subsequent evaluation, the choice of action is biased to

make positively correlated actions positively correlated

more likely to be selected and negatively correlated actions

less likely. Mathematically, the momentary action choice of

each element is the sum of a random component and a bias or

accumulated correlation component:

A[a](t) = F{ v(t) + B[a](t) } for all actions a (7.1)

Where: A[a](t) is the strength with which action a is
selected at time t (contained in the real
closed interval [0,1]);

F{-1 is a bounding function, simply
restricting its argument to the interval [0,1];

v(t) is a random variable, usually normally
distributed with mean 0;

B[a](t) is the bias weight for action a at time t,
an accumulated measure of the
correlation observed between action a and
reward changes (see below).

To correlate actions with subsequent evaluation changes,

each element maintains a short-term memory, known as its

eligibility, of the extent to which it has been active.

When an evaluation change occurs, element biases are

modified according to the extent of their eligibility.

Mathematically the correlation bias weights are accumulated

S* *~~&.aIU~t ~ Ne V- k . .i . .
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as follows:

B[a](t) = B[a](t-1) + C[a] {E(t)-E(t-1)} TA[a](t)
for all actions a (7.2)

4inere: B[a](t) is the bias toward action a at time t;
C~a] is a learning rate parameter for the bias

weight of action a;
E(t) is the feedback evaluation or reinforcement;
TA[a](t) is the eligibility of action a, an

exponentially decreasing weighted trace of values
of A[a] before time t; in the simplest case
TA[a](t) is merely A[a](t-1).

At the start of the simulation experiment, the bias for

each action is zero, favoring neither right nor left

actions. During the exploration phase, the simulated

experimental subjects move back and forth randomly between

Ghe lower large red and green regions of the environment

(Figure 7.4) without reinforcement of any sort. Since

reinforcenent does not occur, nothing is predictive of

reinforcement, and reinforcement is never predicted by the

internal nodel component. Without reinforcement or its

preJiction, the action evaluation is always zero, and there

can be no correlations between action and changes in

evaluation during the exploration phase. Consequently, the

bias weights remain zero. Once the testing phase has been

reached, an internal model will have been constructed such

that a correlation will exist through the internal model

even in the absence of any external stimulation. This will

result in the action selector converging on a preference for



A NETWORK WITH AN INTERNAL MODEL OF ITS WORLD PAGE 7-21

one of the actions (this will be discussed in more detail

later).

This sort of trial and error learning system is well

known from the work on Harth's neural receptive field

mapping technique ALOPEX (Harth, 1976; Harth and Tzanakou,

1974; Tzanakou, Michalak, and Harth, in preparation) and

from the learning automata literature inspired by Tsetlin's

work (Tsetlin, 1973). In a less simplified system than the

network described here, it would be highly desirable to

modify this action selecting mechanism so that it is able to

use context information in selecting actions. This would

allow it to learn to perform different actions in different

situations or contexts without starting its search all over

again each time the situation changed. Instead, it could

remember for each context what actions were most successful

in previous experiences. Trial and error learning

mechanisms can be made sensitive to context in a fairly

straightforward manner (see Michie and Chambers, 1963;

Mendel and McLaren, 1970; and Section 5). However, it is

not clear whether the actual current input, or the predicted

input, or some combination of the two should be used as the

context for the action selector. This problem with the

current design is closely related to several others that

emerge when sequences of actions need to be internally

simulated in order to evaluate possible next actions. An

e..f.-Aw
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additional :nechanism, such as a method for clearly

separating actual from anticipated situations, is probably

necessary to handle these cases. This example system is

only a first step towards an adaptive network capable of

creating and searching general internal models, and we do

not consider these possibilities further. The artificial

intelligence literature on planning would be highly relevent

to future extensions of this adaptive network mechanism.

7.3.2 The Internal Model Component

The construction of the model of the world is a system

identification task, and the solution adopted here follows

Kohonen's suggestion (Kohonen, 1977) for doing system

ijentification using an associative memory. Kohonen's

general idea was to train the associative memory with sample

input to the system to be identified as the recall key, and

to use the resultant output of the unknown system

as the training pattern to be recalled (Figure 7.7).

If the unknown system has no memory (that is, it simply

implements a function from input to output), then the

associative memory will form a best least squares linear
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Figure 7.7. Kohonen's (1977) suggestion for doing
input-output system's identification with a standard
learning associative memory. The associative memory is
trained by presenting paired samples of the input and output
of the unknown system.
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ipproxination of the unknown function. See Sections 2.4.1

,nJ 4.3•

If the unknown system is the environment for an

JJiptive system, then this process will yield nearly the

-ppropriate sort of model. Figure 7.8 is a slightly more

Jet3ileJ block diagram of the associative memory based

nicninery used in the simulated adaptive network for model

construction and use. The associative memory in use here

differs fron the standard associative memories in being

prelictive: It produces as its recollection a prediction of

4n.3t tie next key will be. (In this sense it is similar to

so:ne of the early models of temporal associative memories;

fir exanple, Longuet-Iijins, 1968 a, b; Longuet-Higgins

et. al., 1970.) Sections 4.3 and 4.5 more fully describe

prediction.

Fiare 7.9 shows a detailed wiring diagram of the model

construction and readout machinery. This component consists

-f j ba,iK of elenents, each responsible for the prediction

f j certain feature of the environmental stimulation,

avjiLaole in this case as the. separate input lines for red,

reen, and reward stimtliation. As a basis for making these

preJiction5, ,each elenent is proviJed with the current

action selection from the action selector component and the

nos, recent predictions of stimulation
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Figure 7.8. A more detailed block diagram of the adaptive
network (cf. Figure 7.5) showing the central role of a
predictive associative memory.
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Figure 7.9. A more detailed wiring diagram of the model
construction and readout mechanism. This component consists
of a bank of elements, each responsible for the prediction
of a certain feature of the environmental stimulation,
available in this case as the separate input lines for red,
green, and reward stimulation. As a basis for making these
predictions, each element is provided with the current
action selection from the action selector component and the
most recent predictions of stimulation from the other
predictor elements in this component. The fact that
predictions of stimulation are used to make further
predictions results in the recurrent architecture that we

see in this network component.
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from the other predictor elements in this component. The

fact that predictions of stimulation are used to make

further predictions results in the recurrent architecture

that we see in this network.

These adaptive elements signal their predictions by

responding as they would if the predicted stimulction were

already present. For example, if the input information

indicates that an element is going to receive strong

excitatory stimulation, then the element becomes highly

active immediately. This property, combined with the

recurrent network architecture, results in the ability to

chain predictive associations of as great a depth as there

are features to predict (e.g., A predicts B, B predicts C,

etc.).

The predictor elements used in this system are those

extensively discussed in Section 4. However, although

sufficient for the simple example system presented here,

these elements may not be ideal for the purposes of

constructing and using an internal model. Without going any

further into the details of this element or the

alternatives, we can note that these elements require the

recurrent connections from each to itself to be made

ineffective (zero and non-plastic) for effective operation

in the architecture chosen for this network. This is easily

Ii-~



A NETWORK 4IUH AN INTERNAL MODEL OF ITS WORLD PAGE 7-28

arranged, as it is in the simulated example system, but it

is not an elegant solution, suggesting that there may be

other hidden difficulties. This problem may suggest

directions to proceed in deriving elements better suited to

this purpose.

7.4 The Exploration Phase

During the random wanderings of each simulated adaptive

creature in the exploration phase, the internal model

component is forming a model to predict the red and green

stimulation changes it experiences when it occasionally

wanders into or out of one of the two colored regions.

Figure 7.10 shows the state of the net near the end of the

exploration phase for one of the simulated experimental

subjects. The four relatively large connections from the

actions to the green and red predictors of the predictor

module indicate that the net has learned that right-moving

actions predict increases in red stimulation and decreases

in green stimulation, while left-moving actions predict

increases in green stimulation and decreases in red

stimulation.

The particular snapshot of the network activity in
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Figure 7.10. The state of the network near the end of the
exploration phase for one of the simulated exp-rimental
subjects. The four relatively large connections from the
actions to the green and red predictors of the predictor
module indicate that the net has learned that right-moving
actions predict increases in red stimulation and decreases
in green stimulation, while left-moving actions predict
increases in green stimulation and decreases in red
stimulation.
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Figure 7.10 shows how this knowledge is accumulated. The

right-moving action has been selected more than the

left-moving action in the last few time steps, as indicated

by the greater eligibility of the connections from this

action to the predictor elements, and in fact the subject

has moved right during the most recent time step. This

rightward movement has just brought the subject into the red

region (this is indicated by the high activity in the red

input while its trace of activity - indicated by the size of

the box - is still zero). The resultant sensory input

stimulates the red predictor element, causing an increase in

its activity (indicated by the circle of this element being

larger than the square), and this causes an increase in the

eligible connections. The most eligible connections, as we

have already seen, are those from the right-moving action.

The net result is to further strengthen the pattern of

learned associations that we allready see present in these

connections.

7.5 The Association Phase

After 1000 time steps of the exploration phase, each

subject is moved to the red goal box, left there for two

time steps, and then provided with full reward stimulation.
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Figure 7.11 shows the network state just after the reward is

provided. Note the large positive connection from the red

preJictor to the reward predictor. The net has concluded

that a prediction, or actual occurrence, of red predicts

reward, since the red predictor element was highly active

just prior to the increase in reward stimulation. The

eligibilities of the connections from the red predictor are

indicated by the large circles at these connections. Next,

each subject is moved to the green goal box, left there for

two time steps, and then the reward stimulation is removed.

By a completely analogous process, the green prediction

becomes a predictor of loss of reward, and the corresponding

connection becomes negative (Figure 7.12).

7.6 The Representation Problem

This examnple system was constructed to be the simplest

possible complete system capable of constructing and using

an internal model. As such a minimal example, it only

begins to address some of the critical issues involved. The

simulated network was provided with a representation of the

environment specially tailored to the task it was to solve.

It had unique input lines for red and green stimulation, and

the environment consisted only of areas that were entirely
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Figure 7.11. The network state just after the reward is
provided. Note the large positive connection from the red
predictor to the reward predictor. The net has concluded
that a prediction, or actual occurrence, of red predicts
reward, since the red predictor element was highly active
just prior to the increase in reward stimulation. The
eligibilities of the connections fromn the red predictor are
indicated by the large circles at these connections.
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Figure 7.12. The network state after the reward has been
removed while the subject was in the green box. Prediction
of green has become a predictor of loss of reward, as
indicated by the negative connection between the predictor
elements for green and reward.
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green, or entirely red, or neither. The relationships to be

learned between actions and resultant stimulation, and

between stimulations, were very simple ones in terms of the

available action and stimulation representations.

Mathematically, a network such as the one used here can only

learn linear relationships between its representation of

action, stimulation, and subsequent stimulation. To the

extent that the actual relationships depart from linearity,

such a network would e unable to form an accurate model.

One strategy for solving this difficulty is to retain

the linear learning rules but to attempt to continuously

evolve a representation compatible with that linearity. In

general this is a difficult unsolved problem. Input

features, output commands, and internal representations of

environmental state (in the example system, environmental

state was not necessary in forming a predictive model) all

need to be developed. Probably the representation

development is best done continuously and simultaneously

with environmental interaction and the use of the model.

This problem is closely related to the representation

problem of artificial intelligence. Unfortunately, however,

most of the AI work on the problem is unhelpful in that it

merely attempts to find a good representation for a

particular task rather than to find techniques for evolving

representations in a more general setting. Genuinely

V ___
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relevant work includes the feature extraction work in

pattern recognition (Uhr and Vossler, 1961; Bledsoe and

Browning, 1959; Klopf and Gose, 1969), Samuel's checker

player (Samuel, 1959), Selfridge's pandemonium (Selfridge,

1939), and the work on non-linear associative memories

(Poggio, 1975). A fundamental heuristic central to much of

this representation development work is to direct the search

for better representations according to which representation

elements have already proved most useful.

Although the example network was given a sufficient

representation ab initio, and has no capabilities for

representation development, it does serve as a basis for

considering what simultaneous environmental interaction and

representation development may involve. In particular, we

assume that there must be some property of the environmental

interaction that indicates when and in what way the current

representation needs to be changed. If this sort of example

allows us to observe these properties in a simple case, then

we will have made good progress toward making an adaptive

network appropriately sensitive to them.

7.7 The Testing Phase

-. - *-.c'r.-
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In the testing phase, each subject is returned to the

initial location between the lower large red and green

regions. As soon as the subject enters one of these regions

the trial is over and the simulation is stopped. Of 200

subjects, 141 - over 70% - entered the red region first, a

highly statistically significant result (P<<.005). A second

experiment was also performed in which the lower red and

green regions and their barriers were removed during the

training phase, but which was otherwise identical to the

first experiment. The testing phase was halted after 300

tine steps and the position of the subject was recorded.

Each of the 100 subjects had moved far to the right, many

tines beyond the original location of the red region, at the

end of that time. This indicates that the statistical

nature of the primary result is due to random movements

bringing some of the subjects within the green region, and

tnus ending the trial, before they have had enough

experience with their internal models to be directed to the

right.

7.8 Superstitious Learning

During the association phase reward is provided and

then taken away from each subject while it is in the red and
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green goal boxes respectively. During this time, whatever

action the subject happened to select just before the reward

stimulation is changed will be strongly reinforced or

punished by that change. For example, the subject whose

network state is shown in Figure 7.12 happened to associate

the left action with reinforcement, as shown by the larger

bias weight for the left action than for the right action.

One might expect that the effect of these reward changes

would be dependent on whatever action was randomly chosen

just before the reward changes and that the effect on later

behavior would thus be, on the average, symmetrical with

respect to right and left moving actions. To ensure that

this was the case, a third experiment was performed that was

identical to the first one in all respects except that the

action, bias weights were set to zero just prior to the

testing phase. This insured that there would be no initial

bias either to the right or the left. Of the 100 subjects

in this third experiment, just over 70% entered the red area

first, confirming that the decision to move right can be

made during the testing phase based completely on

information stored in the internal model of the predictor

module.

Figure 7.13 shows the state of the network of one of

the subjects of the primary experiment several time steps

into the testing phase but before either region has been

-. o - ,. " -" .. ... ..
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Figure 7.13. The state of the network of one of the
suujects of the primary experiment several time steps inlto
the testing phase but before either region has been entered.
Notice that the bias weight for moving right (toward the red
region) has become positive, whereas the bias weight for
moving left (toward the green region) has become negative.
The aution selecting module happens to choose the

instantaneous action causing movement right this time step.
This selection results in an increse in the activity of the
red predictor element, because moving right was found to be
a predictor of red stimulation in the exploration phase.
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entered. Notice that the bias weight for moving right

(toward the red region) has become positive,whereas the bias

weight for moving left (toward the green region) has become

negative. The succesive snapshots of network state in

Figures 7.13 and 7.14 provide an example of how this comes

about during the testing phase. In Figure 7.13 we see the

action selecting module happening to choose the

instantaneous action causing movement right. This selection

results in an increse in the activity of the red predictor

element, because moving right was found to be a predictor of

red stimulation in the exploration phase. At the next time

step (Figure 7.14), we see the prediction of red stimulation

cycling around to activate the reward predicting element via

the excitatory connection established during the association

phase. Thus, as a consequence of the action selector's

momentary choice of the right action, the predictor module,

acting as an internal model, has generated the prediction of

increased reward. Since the right action was selected at

the previous time step, its bias weight is eligible

(indicated by the large circle at its bias connection in

Figure 7.14) when the prediction of increased reward

arrives. Thus, this bias weight is increased, and the beast

is further biased towards moving right. If on the other

hand, the action selector had momentarily chosen the left

action, green stimulation would have been predicted. This

in turn would have predicted a decrese in reward

'" .
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Figure 7.14. The state of the network one time step after
Figure 7.13. The prediction of red stimulation cycles
around to activate the reward predictor element via the
excitatory connection established during the association
pnase. Since the right action was selected at the previous
.i.ne sbep, its bias weight is eligible (indicated by the
l 3rge circle at its bias connection in Figure 7.14) when the
prediction of increased reward arrives. Thus, this bias
weilht is increased, and the beast is further biased towards
noving right.
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stimulation, and the selection of the left action would have

been punished.

Recall that these momentary selections of right or left

actions will not in general be accompanied by actual right

or left movement. The environment responds to the actions

selectel in a relatively slow inertial manner: Several

action selections in the same direction are usually

necessary to cause actual motion in that direction. Both

overt and covert actions are updated every time step of the

simulation. The only difference is that the overt action,

the "physical" movement, depends not only on the current

covert action selection but also on past selections,

weighted according to recency. Thus a consistently selected

covert action becomes the overt action, while rapid

fluxuations in covert action selection are averaged out. In

this way the process of covert, internal trial and error via

the predictive internal model can occur with relatively

little overt action by the subject. No other delaying or

decision making machinery is necessary to make the

transition from covert thought trials to overt movement. In

fact, the action selecting component (referring to Figure

7.5) is completely oblivious to whether it is receiving

feedback from the external environment or from its internal

model. From the action selecting component's point of view,

the acquisition of an internal model merely means that the

- - -- - -. ..1 .~. .4~. - -
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feedback for its action selections returns more rapidly,

sig.Ynificantly easing its prob em of controlling that

feedback.

7.9 Discussion

This section began with a presentation of philosophical

and psychological views of thought as an internal modeling

and simulation process. The construction of the example

adaptive network presented here was guided by and

exe.nplifies a theoretical perspective. In the authors'

view, there are two novel aspects of this theoretical

perspective: The nature and method of use of the internal

model, and the way in which the construction and use of the

internal nodel is coordinated with continuous environmental

interaction. These two aspects are discussed further in the

rest of this section.

This section has presented a method for adaptive

control based on systems identification (model construction)

that is extremely general (and apparently little

investigated): 1) use repeated experiments with the

input-output behavior of the system to be controlled to

construct a model which yields similar behavior, and 2) to
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select each control action, first interact with the model,

in an input-output or black-box manner, to determine which

action is optimal in terms of the model. The essential

aspect of the model is that it is a behavioral model: Its

successful use depends only on its input-output validity.

The model can be interacted with to achieve an optimal

response just as the external world is interacted with in

the absence of a model. These perspectives on the nature

and use of a model were summarized pictorally in Figure 7.1.

It should be noted that appropriate general techniques for

this sort of interaction with an environment or model are

not currently well understood. This is an area of current

active investigation by our research group.

Although we emphasize an input-output view of the

internal model, this is not a return to the pre-state-space

ways of thinking characteristic of the work of the 1950s.

Such an internal model will in general include states (even

though the model in the simulated example system did not).

However, we do wish to emphasize that for this use of the

model only the input-output aspects are important.

The second novel feature of this example network is the

method used for coordinating interaction with "the real

environment and interaction with the model of that

environment. Consider the approach taken in most artificial
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intelligenc (AI) systems for problem solving or reasoning

about actions, such as SRI's famous robot SHAKY. SHAKY

operates in three identifiable modes. In one, he visually

scans the environment and constructs an internal model of

it, aided by a priori knowledge and assumptions. In another

mode, he uses his model of the environment and his current

goals to perform a sophisticated search through the space of

possible paths and actions. This search takes the form of

an internal simulation with backtracking of many of the

possible action paths. Finally, in the third mode, SHAKY

snuts off his internal model and visual apparatus and

executes "ballistically" his precomputea next action or

series of actions. When the action is complete, or some

unusual event ocurs, SHAKY returns to the first mode. A lot

of work in AI has concentrated on the model search step of

the above scenario, without going any further towards

coordinating the model interaction and the interaction with

the real environment. By contrast, the example adaptive

network presented here performs all three of functions -

model acquisition, model interaction (search), and real time

environmental interaction - simultaneously. If this example

adaptive network is of interest, it is not because of its

search capabilities, which are limited and primitive, but

because it is a first step towards integrating the learning,

search and use of internal models of the world. The fact

that this integration was possible with little specialized
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machinery - both adaptive elements used have been stulied

for more primitive purposes, and their interconnection

pattern is not a highly restricted one - is a promising

sign.

As mentioned earlier, the example network has been so

constructed that the action selecting component (referring

to Figure 7.5) is completely oblivious to whether it is

interacting with the real world or the internal model. The

effect of acquiring an internal model is merely that the

thing with which the action selector is interacting begins

to respond more rapidly to contemplated actions, and thus

becomes easier to control. When an internal model is viewed

from this perspective, it becomes clear that there is an

even simpler case of the use of an internal model. A

secondary reinforcer is an originally neutral event which

has taken on reinforcing properties by virtue of being

predictive of a primary reinforcer. To a network receiving

this secondary as well as primary reinforcement, the

development of the secondary reinforcer means that

reinforcement for its actions arrives sooner following the

actions than it did previously. The model consists of the

rapid simulation of the tendency of the primary reinforcer

to follow the secondary reinforcer. This results in an

effective environment for internal action selecting elements

that is more amenable to learning techniques. In this way
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secondary reinforcement can be seen as a very simple case of

the construction and use of an internal model.

. o , ,



SECTION 8

GOAL-SEEKING SYSTEMS OF GOAL-SEEKING COMPONENTS

8.1 Introduction

Klopf (1972, 1979, 1981) has put forward the hypothesis

that neurons are goal-seeking components and that an

understanding of neural function requires us to view animal

brains as goal-seeking systems each of whose primitive

components possesses its own local goal and adaptive

machinery that makes progress toward that goal possible. In

this section we discuss, in rather broad form, some of the

conclusions reached in our study of how goal-seeking systems

might be constructed from goal-seeking components. We

address such questions as: How can components possessing

their own local goals and means for approaching them

interact so as to produce goal-directed behavior at a higher

level? Can we expect to produce intelligent computer

systems from goal-seeking components? Are there existing

theories that are relevant to these issues? Has this

approach already been tried and largely abandoned due to

An .
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lack of progress? Is there support for the hypothesis that

animal intelligence arises from the interaction of

goal-seeking components? More specifically, is there

support for the idea that neurons are goal-seeking

organisms? We cannot as yet answer all of these questions

in unqualified terms, but as a result of our research we are

able to frame some of them in forms that can provide a rich

basis for future research. Our discussion of these issues

will touch on many different areas, ranging from the

mathematical theory of games to the biochemical regulatory

mechanisms of single cells. It is hoped that this far

ranging, and still largely speculative, essay will provide

the reader, as our research has provided us, with a vivid

sense of how intelligence could have evolved, how it might

be understood, and, perhaps, how some of its more subtle

characteristics might be produced artificially.

8.2 Goal-Seeking Components

In Section 2 we discussed in rather technical form

various types of goal-seeking behavior. Only some of these

forms, we will argue here, can be expected to yield

interesting forms of higher level behavior in collections of

goal-seeking components. The key issues involve the forms

of environments in which a component can succeed in

achieving, or in making progress toward, a goal (or goals),
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and the kind of information a component can take advantage

of in the goal-seeking process. Some types of goal-seeking

systems can succeed only if their environments always act in

very restricted ways. For example, a thermostat can achieve

its "goal" of maintaining a room's temperature near a

certain set-point only if its environment cooperates by

always reacting to the thermostat's control signals in the

manner anticipated by the thermostat's designer. Its

success depends entirely on the adherence of the environment

to restricted forms of behavior. Here we discuss a number

of different types of environments, in increasing order of

generality, that a goal-seeking component might face. We

end the discussion with the observation that the environment

confronted by a living organism is not likely to be of the

restricted form required for the success of most previously

studied goal-seeking strategies.

8.2.1 Learning with a Teacher

Many of the systems commonly studied as goal-seeking

systems can only succeed if their environments always

provide them with very "high quality" information about what

actions they should take in various situations. Typically,

adaptive systems of this kind produce a response to a

stimulus pattern, and then are told by their environment how

far and in what direction they must change their response in
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order to be correct (a signed error signal). Some systems

have two possible responses ani are told whether their

responses were right or wrong (e.g., the perceptron of

Rosenblatt, 1962) [footnote]. The system's goal is achieved

when the error is zero for its response to each suimulus

pattern.

In order for an environment to provide reliable error

signals, it must, in effect, "know" what each response ought

to be. The stimulus patterns for which the environment

knows the correct response, and can therefore provide an

error signal, constitute a "training sequence" (cf. Nilsson,

1965). Success is measured solely by how closely the

system's responses match the correct ones during the

training sequence. The interest in a goal-seeking system of

this type is its ability to generalize. After achieving its

goal of zero error for the training sequence, its responses

to stimulus patterns for which the correct responses are

unknown by the environment provide possibly correct (and

It is important to note that being told if one is right or
wrong in the case of only two alternative responses is
equivalent to being given a signed error. In fact, it is
equivalent to being told exactly how you should have
responded. We discussed this fact and the misunderstanding
of the perceptron learning rule arising from it in
considerable detail in Section 2.
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possibly incorrect!) generalizations of the environment's

knowledge. But here is the rub. Many environments will not

be able to provide a training sequence because they may not

know any more than the system about what responses ought to

be made.

This type of goal-seeking behavior is often called

"learning with a teacher". Teachers interact with their

students in many different ways, but what is meant here is

that the teacher knows the answers to a set of questions and

provides the student with very informative error signals

that the student tries to reduce to zero. In Section 2 we

pointed out that most such formal teacher-student

interactions are equivalent to those in which the teacher

simply provides a set of questions together with their

correct answers (and the student computes its own error

signal). We therefore arrive at this curious dilemma:

These types of goal-seeking systems can only solve problems

about which so much is known beforehand that explicit and

detailed instructions can be given.

8.2.2 Learning without a Teacher

A digression is in order here to consider what is

sometimes called "learning without a teacher". Ti t'-n

has been applied to the problem of clis., fy ;,i.
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patterns in the absence of error signals or indications of

correct responses. The object of this type of system is to

form its own classification scheme based on some measure of

similarity between input patterns. Patterns that are

sinilar to one another are to be placed in the same class.

This problem is also known as the problem of clustering.

The terin "learning without a teacher" applied to this

problem is misleading in the context of our discussion. We

are discussing goal-seeking systems that receive varying

degrees of help fron their environments, and a clustering

algorithm would appear to require no help at all from its

environment. This is true, but it is also true that its

environment has nothing to do with the success or failure of

the clustering system since no interaction with the

environment is involved. It is an open-loop problem. While

clustering may be an important part of a learning system, we

are interested in problems in which a system's environment

does determine success or failure but provides little

explicit help to the system about how it should act.

8.2.3 Learning with a Critic

A type of goal-seeking system that uan achieve its goal

in less cooperative, or less knowledgeable, environments is

one capable of "learning with a critic" (to use the

terminology of Widrow, 1977). The environment of this type

V '"
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of system need only evaluate the system's response to each

sensory situation. The crucial point here is that an

evaluation can be made by an environment that does not know

what each correct, or best, action is. The critic may not

know enough about the problem in order to say, in effect,

"do this in response to this input." Without this knowledge,

however, it may still be able to say, "whatever change in

behavior you just made was an improvement." A system whose

goal is to maximally satisfy an environmental critic must

effectively search through its repertoire of actions for

that which optimizes whatever evaluation function the critic

happens to be using at any time. This type of goal-seeking

behavior is sometimes called "reinforcement learning" (e.g.,

Mendel and McLaren, 1970). The critic can be viewed as

providing "rewards" and "penalties" to the goal-seeking

system when its behavior becomes, respectively, better or

worse with respect to whatever criterion is being used for

evaluating actions. Alternatively, one could effectively

place the critic inside the goal-seeking system and speak of

the system as possessing a preference ordering of its

inputs. Using this formulation, we say that the goal of the

system is to cause its environment to provide inputs that

are maximal according to this order. This latter view is

more general and was adopted in our more technical

discussion of Section 2.
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Reinforcement learning systems are cabable of using the

critic's information to provide knowledge beyond that

possessed by the critic. They can determine the actual

structure of good responses. A critic need not have this

knowledge from the start, but a teacher, in the sense

described above, must start with this knowledge for a rich

set of cases.

In many cases the environment of a goal-seeking system

may not even be able to provide evaluations of the system's

actions that are constant and reliable. A goal-seeking

strategy that can make progress under the guidance of a

reliable critic may not be sufficient to operate with an

unreliable, or noisy, critic. Problems characterized by

constant but noisy critics are sometimes called "decision

problems under uncertainty," and strategies that are useful

under these circumstances are a step more general than those

requiring consistent evaluations. Methods for succeeding in

these types of environments are fairly well studied as in

the theory of learning automata which commenced with the

work of Tsetlin (1974). Another way in which an environment

can be less helpful is by being able to provide evaluatory

information only occasionally. Achieving the goal of

satisfying an occasional critic presents very considerable

difficulties which have not been surmounted by any general

methods. It is this type of environment to which we now
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turn.

8.2.4 Learning with an Occasional Critic

Although a system capable of learning with a critic

need not have an environment as cooperative or as

knowledgeable as that required for learning with a teacher,

its environment must still provide helpful evaluatory

information. What if the environment provides a critic, but

one that only occasionally offers advice? Or, viewed in a

slightly different manner, what if reward and penalty events

occur only seldomly? A goal-seeking system that performs

well under the guidance of a constant critic may not have

much of a chance of finding action sequences leading to such

isolated rewarding events. This involves the well-known

"apportionment of credit" problem. If a rewarding event

does occur (e.g., winning a game of chess), how do you

apportion credit among all of the various actions taken

before the reward? This is closely related to the problem

of optimizing an evaluation function that has large

"plateaus" or "mesas"; that is, one that shows no variation

over large areas (Minsky and Selfridge, 1960). The search

for peaks in an evaluation function is greatly facilitated

by the presence of broad "foothills," and in their absence a

search method can become inefficient to the point of being

useless.

- mi ii ,,__
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One form that a partial solution to the apportionment

of credit problem can take is the effective "creation" of

foothills surrounding the isolated peaks provided by an

occasional or late critic. In order to do this a system

must be sensitive to a multitude of environmental signals in

addition to the critic's occasional evaluation. This

information can form the substrate out of which "foothills"

can be constructed. If a system can learn from its

experiences that a particular type of action in a particular

type of sensory situation can make the occurrence of a

rewarding event more likely, then it can interpret the

occurrence of that sensory situation itself as a step in the

right direction. Of course, the environment must contain

regularities that can be discovered and exploited, but these

regularities need not be "prepackaged" and transmitted over

predetermined teacher or critic channels. In other words,

the environment of the component may contain many sources of

information some of which can act as useful critics, but the

component does not know from the beginning what sources of

information are important in this way. In addition to

learning what it must do to satisfy the occasional critic,

it must learn to recognize other sources of useful guidance

information.
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8.2.5 Nature as an Occasional Critic

Most organisms find themselves in environments that act

as occasional critics. The environment implicitly acts as a

critic by occasionally providing sensory stimulation that

acts, through genetically determined mechanisms, as

reinforcement. (We can avoid the considerable controversy

surrounding the meaning of reinforcement by accepting, for

our present purposes, the operational view that a

reinforcing event is any event that alters the likelihood of

the organism's preceding actions. Dennett's, 1978, essay

"Why the Law of Effect Won't Go Away" provides an excellent

view of why some events might be reinforcing for animals.)

But only rarely .s an animal provided with a neat

reinforcement gradient that can simply be climbed. This

does happen in the animal kingdom, as when a bacterium

encounters a nutrient gradient leading up to the most

profitable place to eat, but the world is usually not so

helpful. The world does provide, however, a wealth of

information that can be used to "figure out" how to cause

reinforcing events. Experience can show, for example, that

if food is seen in the distance, then eating it can be made

more likely by moving in its direction! An organism (of

sufficient complexity) is able to construct for itself the

advice a useful critic would provide by using the wealth of

information its senses, tuned by its evolutionary history,

. .. .i "' 'Fi i o I i - m 1 '
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provide. We think that one of the primary uses of

associative learning capabilities is to permit a

goal-seeking system to, in effect, create its own foothills

out of originally neutral sensory stimulation.

This is the sort of goal-seeking behavior that our

interpretation of Klopf's hypotheses attributes to

individual neurons. They are organisms that seek

reinforcement and are able to obtain it in environments that

do not provide explicit help. Early adaptive network

theorists did not study networks of components having this

kind of robustness.

8.3 Networks of Goal-Seeking Components

We cannot characterize any precise level of

goal-seeking capabilities that components must possess in

order for an interacting collection of them to exhibit

"higher-level" goal-seeking behavior, by which we mean

goal-seeking behavior that is more sophisticated than that

of which the components themselves are capable. Instead, we

see a spectrum of possibilities in which the potential for

interacting collections to exhibit emergent behavior

increases as the sophistication of the components increases.

We have a sense of some extreme cases. A computer, for

example, is constructed from non- goal-seeking components
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and, altnough it can exhibit a very high level of behavioral

complexity, cannot be said to be a goal-seeking system

(although it c rn certainly be programmed to become one). A

network of components each of which requires an explicit and

knowledgeable teacher in its environment (e.g., a network of

perceptrons) tends not to produce behavior of a

significantly higher level than that exhibited by the

components themselves. At the other end of the spectrum, we

see that human societies are capable of solving problems

that individual humans cannot, and, if Klopf's neural

hypothesis is correct, then the brains of the more

phylogenetically advanced animals provide other examples of

collections of goal-seeking systems that can solve more

complex problems than their components can solve.

We think that the characteristics of component systems

most relevant to their potential for interacting to exhibit

higher-level behavior are as follows:

1) How much knowledge a component's environment must have,

or how much cooperation it must give, in order for the

component to be able to make progress toward its goal.

2) What amount of information the component can take

advantage of in pursuing its goal.

We think that as components become more capable of adapting

in less structured environments and come to use more

environmental information in pursuing their goal, the



GOAL-SEEKING SYSTEMS OF GOAL-SEEKING COMPONENTS PAGE 8-14 

likelihood that they can form the basis of networks with

higher-level benavior increases. We think it is the

conjunction of these two properties that is important. A

high level of performance in one of these areas without a

high level in the other (if this situation is even possible)

would, we think, be insufficient.

We are not able to prove this conjecture, but we can

indicate why we think it is true. A component of a complex

system has as its environment aspects of the whole system's

external environment and an environment provided by its

interactions with other components. If each component

always acts in its own self-interest, then the environment

of any given component cannot always be explicitly helpful.

In fact, due to the self-interest of all of the components,

any component's immediate world may be a rather hostile

place. A component must not be completely stymied by this

adversity but must do the best it can under the

circumstances. But how can a group of selfish individuals

possibly form a coherent structure? The answer lies in the

possibility for cooperation. In some circumstances the

components of a cooperative group can achieve more progress

toward their own goals than they would be able to achieve by

always unilaterally acting for their own best interests. It

is a nigh degree of inter-component communication that forms

the substrate in which cooperation can take place. Much of
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the rest of this section deals with what is meant by

cooperation, how it can come about, and how it can lead to

systems capable of solving problems that the individual

components, working alone, cannot solve.

8.4 Games and Cooperation

If we are to study how goal-seeking behavior can arise

from a collection of goal-seeking components, each operating

solely according to its self-interest, we must develop a

view of what might constitute the goal of the collection.

In our discussion of goal-seeking components, we assumed

that the progress of a component toward its goal could be

determined by the values of an error-signal (in the case

requiring an explicit teacher) or a payoff, reinforcement,

desirability criterion, or performance index (in the case of

learning with a critic, or reinforcement learning). The

goal of a component is to minimize or maximize (as the case

may be) this criterion. In most formal studies the

desirability criterion is modeled as a number, or at least

is measured on an ordinal scale, so that it is clear what

constitutes an improvement in performance. But when can we

say that the performance of a collection of components, each

having its own desirability criterion, improves?

The generalization of the problem of optimizing a
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single desirability criterion to the case of many

desirability criteria constitutes the Theory of Games of von

Neunann and Morgenstern (1943), also known as Multicriterion

Decision Theory, and, extended to dynamical cases, as

Generalized Control Theory (Ho, 1970). It is game theory

that is most relevant to the study of goal-seeking systems

of goal-seeking components. In fact, it requires a

formulation as general as a game to even begin to express

with any precision notions such as coalition, team,

cooperation, trust, and threat. These concepts become

meaningful the moment one considers optimization under more

than one criterion of performance. This situation arises in

organizations of all types, including societies, and indeed

any collection of goal-seeking components. If neurons are

in fact goal-seeking organisms, then the concepts of game

theory also provide a starting point for the study of neural

organization (and it would not be surprising that social

analogies to neural function seem appropriate as in Crane,

1978).

Game theory has never had a significant role in studies

of machine intelligence. We think this is largely due to

the fact that game theory provides help in formulating

problems but provides very little help ir' actually solving

them. For example, game theory says almost nothing that is

useful for the design of a chess playing program. But when
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we consider the construction of problem solving systems from

components that are robust adaptive systems, then, by the

technical definition of a game, such a system plays a game,

and the adaptive strategies of the components collectively

provide an algorithm for playing the game. Games that arise

in this way can be far simpler than games like chess or

checkers, but successful strategies for playing them can

provide solutions to what are far from trivial problems.

Game theory "applied" at this level is beginnirg to find

important applications in the field of problem solving by

distributed processing systems (e.g., the approach to access

control of Yemini and Kleinrock, 1978, and Brooks, 1980) and

in the study of evolution (e.g., Dawkins, 1976;

Maynard-Smith, 1978). We believe that concepts from game

theory are relevant for the study of brain function, but

they require some notion of local goals in order to be

applicable in their technical sense.

8.4.1 Group Optimality

Consider a collection of goal-seeking components in

which each component receives its own payoff or

reinforcement signal from its environment, or, more

generally, in which each component has its own preference

ordering on its inputs. Further, suppose that the input a

component receives depends not only on its own actions but
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comnon pr,!fC2ren2e orJer1nr. In this case of components with

no conflicts of interest tne problem reduces to the single

criterion case we have alreidy considered. Such a group is

often called a team (Marshak and Radner, 1972). The

associative search network that we described in Section 5 is

a team of adaptive elements in this sense.

If the preference orderings of the components differ,

tne situation becomes much more complicated. The input

situation that is best for one component may not be best for

another. In other words, it may be impossible for the

collection to act so as to maximize all of the preference

criteria at the same time. An example is provided by the

special case of a zero-sum, two-person game in wnich what is

best for one player is, by definition, worst for the other.

Other examples occur whenever the preference orderings

depend on the allocati)n of limited resources (e.g.,

resources in an economi2 system, computer processing

resoures, transmission time in i picket radio network). In
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fact, multicriterion decision problems that involve

conflicts of interest, or require tradeoffs, are probably

the rule rather than the exception in most domains.

We want to describe two game theoretic concepts that

provide a starting point for considering how a system of

goal-seeking components might itself be goal-seeking. The

first is the notion of an equilibrium point (sometimes

called a Nash point) of a game. An action of the system

(consisting of the individual actions of each of its

components) is an equilibrium action if no single component

can improve its own local payoff by unilaterally changing

its own action. Examples of this kind of equilibrium may be

provided by the driving styles that predominate in various

cities. The aggressive driving style of many large cities

might by considered an equilibrium point of some

appropriately defined game of transportation. Any

individual driver takes serious risks by driving less

aggressively than most other drivers. More efficient

transportation may be possible if all, or most, drivers use

different styles, but in the absence of this kind of

collective decision, it is optimal for a driver to drive

aggressively (because everyone else does).

For many games there exist collective actions that are

more preferable to each of the players than any of the

V _- - - - - - -
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equilibrium collective actions. In other words, a

collective action that is stable with respect to unilateral

individual actions (an equilibrium) does not necessarily

provide the highest payoff to each of the players that is

possible. For example, traffic flow might be improved so

that nearly every driver can expect to get to his

destination more quickly if nearly every driver adopted a

driving style more courteous than the aggressive equilibrium

one. But a player caon take advantage of this kind of

situation by acting so as to improve his own performance at

the expense of other players (a few aggressive drivers among

many cautious ones can often make very good time).

A collective action that a single individual can

improve upon according to its own preference ordering only

at the expense of others is called pareto-optimal. Some

pareto-optimal actions in a game may be better for all

players than any of the possible equilibrium actions (those

that are better constitute the game's negotiation set), but

these actions are unstable. It requires cooperation among

the players in order for these collective actions to be

maintained. In a game the term cooperation is applied to

any means of introducing dependencies among the actions of

the players (and is therefore used in a sense more technical

than the common usage). These interdependencies may be

enforced by pre-play communication leading to a binding
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agreement on a collective action. All forms of cooperation

require inter-player communication.

Precisely which collective action constitutes the best

and most equitable solution of a general n-person game is

not automatically clear. Various proposals have been made,

but each has certain shortcomings (see Luce and Raiffa,

1957). It is clear, however, that the solution should

belong to the game's negotiation set and that cooperation

among the players is required to achieve it in the general

case. Unless the goal-seeking components of a system

cooperate, they must generally settle for lower individual

payoffs than are possible.

8.4.2 Goal-Seeking Systems as Game Players

One of the fundamental assumptions of all the classical

game theoretic studies has been that the players know the

entire structure of the game from the start. That is, they

know what payoff each player will receive for each possible

combination of individual strategies. The emphasis of these

studies is largely on the explication of what constitutes

the game's solution and all of this concept's associated

complexities. There has been relatively little discussion

of algorithms for attaining a solution (whatever it may be)

for the case in which the structure of the game is not known

Vn4W_ 
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a priori. In this case, the players must accumulate

knowledge about the game by performing a collective action,

receiving their respective payoffs, incorporating the

knowledge so gained into their decision algorithm, and then

playing again. The problem of finding a game's solution via

"iterative-play" under these restrictions is the

multicriterion generalization of the usual function

optimization problem, and it is this problem in which we are

:nost interested. The general paradigm suggested here is

recognizable as the "generate-and-test" procedure that forms

the basis of many Artificial Intelligence programs.

The research begun by Tsetlin (1974), concerning what

have since become known as "learning automata," illustrates

how goal-seeking components that are sensitive only to their

own payoff signal (and no other input information) can

function as players in a game. Narendra and Thathachar

(19[4) provide a good review of this research. A collection

of goal-seeking components, each capable of improving its

performance in a suffiently general type of environment (in

the case of learning automata, environments that provide a

constant but unreliable critic), will naturally converge to

an equilibrium play of the game. A collection of such

independently operating goal-seeking components is not able,

however, to converge to any solution that is not an

equilibrium point since they do not communicate with one

V _ -...,
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another. We do not know of attempts to extend this research

to produce systems that are capable of finding a game's

better-than-equilibrium solutions. Some means of

inter-component communication must be introduced.

We think that the adaptive elements that we have

developed based on Klopf's notion of a heterostat have

precisely the characteristics that will permit collections

of them to achieve solutions in a game's negotiation set.

These adaptive elements are sensitive to more information

than just their own payoff signals. This context

information can include information about what actions other

elements are performing.

8.5 Coalitions and Cell Assemblies

For the "iterative-play" or "generate-and-test"

paradigm which we have been discussing it is possible to

give a more concrete view of forms that cooperation can

take. One way to improve a generate-and-test strategy is to

find some way of being very selective in generating

structures. One should try to test only structures that

have a high likelihood of being improvements over structures

already tested. One of the most frequently suggested

methods of doing this is to generate new structures that are

novel recombinations of parts of structures that have
4'
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already proven successful. Additional power can be achieved

by somehow identifying what parts are likely to be

important. Selfridge (1978) describes this approach, and it

has been studied extensively by Holland in the study of

analogs of the process of evolution through reproduction and

natural selection (Holland, 1975).

A striking and easily observed example of the

recombination approach is seen in the evolution of

television programs. Television programming has become an

almost explicit example of a single criterion optimization

problem: Maximize the Nielson rating. Since a television

series is characterized by many attributes, this

optimization problem can be viewed as a special case of a

game in which each player (whose actions are the possible

values of one of the attributes) shares the same payoff

measure or preference ordering. (Actually a television

network is attempting to optimize its entire schedule, and

an explicit game is played with the other networks. In

addition, other criteria, such as production cost are also

involved.)

It is increasingly clear how network programmers

generate new series. One strategy is to produce a program

that exaggerates certain features of an PIready existing and

successful program. One sees sequences of programs
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containing more and more of certain characteristics. This

is straightforward hill-climbing and does not necessarily

involve cooperation among program attributes. Another

method is to produce programs that are novel combinations of

attributes of programs that have already proven .successful

(e.g., "Police Woman"). A very successful program will

generate numerous "spinoffs" which have its major attributes

mixed with a variety of others.

A recurring group of attribute values characterizing a

successful program and frequently occurring in numerous

spinoffs might be viewed, from a game theoretic point of

view, as the action of a cooperating collection of players -

a coalition or, in genetics, a co-adapted set of alleles.

From an individual player's point of view, it is better to

perform a particular action when the other players in the

group are performing certain specific actions. If players'

actions are attributes for television programs, then this

cooperative process will cause constellations of features to

occur together frequently. These constellations can then be

used as parts of the recombination process which can, in

turn, recombine to form higher level parts. This leads to a

generate phase of the generate-and-test paradigm that tends

to produce structures having high likelihoods of success.

This provides a rough view of one way in which
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cooperation in the game theoretic sense can occur and what

problem solving advantages it may provide. There is a close

relationship between this view and cooperativity in neural

systems. If the goal-seeking players are neurons, one

arrives at a view of cell assemblies as coalitions in the

literal game theoretic sense. The view has been put

forward, notably by Arbib (1978, 1981a, 1981b) and Amari and

Arbib (1977), that important phases of neural processing

night usefully be thought of as types of relaxation

processes in which consistent interpretations of input

mutually excite one another and compete with rival

interpretations through inhibitory interactions. The

reticular formation model of Kilmer, McCulloch, and Blum

(1969) is the first neural model to exhibit this form of

cooperation. Studies based on this view provide interesting

examples of how cooperation can arise in plausible neural

architectures. They do not, however, make contact with the

literal gane theory notion of cooperation since the

goal-seeking nature of the components is not made explicit.

'We think that these studies provide an important part of a

more general view of neural cooperation in which there is a

sense of "why" components might come to interact in this

manner.
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8.6 Heterostats as Cooperating Game Players

We mentioned above that studies of goal-seeking

components as game players show that, when acting in

parallel with no inter-component communication, they are

able to converge to one of a game's equilibrium points.

Tsetlin's learning automata studies, for example, show this

(Tsetlin, 1974). Not one of these studies, however,

considers the case in which the goal-seeking components are

able to communicate among themselves. Tsetlin mentioned the

potential importance of inter-component communication but

did not pursue it.

The adaptive elements that we have developed based on

Klopf's heterostat concept are sensitive not only to

reward/penalty signals but also to other signals that

provide information about the sensory situations in which

actions are performed. These adaptive elements are capable

of learning to perform the optimal action in each sensory

situation (under certain conditions) as illustrated by the

associative search network described in Section 5. In the

study reported there, the adaptive elements comprising the

network were not interconnected, and we assumed that the

sensory situation in which an element acted was provided

solely by an input vector generated external to the network.

However, if recurrent connections were to exist among the
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adaptive elements, then the input to each adaptive element

could depend on the internal situation consisting of the

actions of the other players as well as the external

environment situation. These recurrent connections can form

the basis of cooperative behavior.

Suppose, for example, that a group of adaptive elements

fire together at a particular time, and that this activity

pattern (i.e., the network's collective action) produces a

response from the environment that ranks high according to

the preference orderings of the elements in the group.

Since each element fires in the context of the others'

firing, the high preference measure will cause excitatory

connections to form among the elements in this group

(according to the learning rules we have been using). The

result is a cell assembly that will tend to become active if

any of its constituents become active. Similarly, if the

firing of a group of elements results in a response of low

preference, then the eleme ' will tend to become mutually

inhibitory.

The development of cell assemblies in this manner is

similar to the theories often proposed, beginning most

explicitly with Hebb (1949). However, what we are

suggesting takes an importart step toward making the

intuition behind these theories more precise. If the

-- i i ..
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elements are goal-seeking systems, we can say that a cell

assembly forms because coordinated activity furthers

progress toward the goals of the elements forming the

assembly. The use of closed-loop learning rules (Hebb's

suggested learning rule is open-loop) allows us to make this

view explicit. In order to make the notion of

cell-assembly-as-coalition more than a superficial metaphor,

it seems necessary to endow the components with their own

local goals. Further, if the elements are capable of

achieving progress toward these goals in a general class of

environments, and can communicate with one another, then one

would expect such elements to assemble because it is better

for them if they do.

8.7 Cooperation by the Creation of Environments

The formation of cell assemblies, or coalitions, as a

form of cooperation is perhaps the simplest form that

cooperative behavior might take. It requires each component

to sense the actions of other components in order to detect

situations in which its activity will yield a high payoff.

Goal-seeking components can interact in another way if they

are able to provide each other not only with neutral context

information but also with rewards and penalties. Klopf has

suggested that components ought to be able to communicate

with one another by means of signals that can take on
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reinforceing qualities, a capability he described as the

abiltity to use generalized reinforcement (Klopf, 1972,

1931). We indicated above that this capability can provide

3 means for a component to construct for itself the advice a

useful critic would provide if a constant or reliable critic

were not available in its environment. But the ability of

components to communicate via non-neutral signals can

provide the basis for other forms of organizational

capabilities.

Suppose we want a goal-seeking system to do something

for us. If we know what the system's goal is, can sense the

systern's actions, and have enough control over the system's

inputs, we can arrange contingencies in its environment to

cause it to do something that we want done as it pursues its

own goal. By doing this we, in effect, use its goal-seeking

capabilities for our own ends. We create an environment for

the system in which its goal and our own are the same.

Since a goal-seeking system may have capabilities that we do

not have ourselves (it may have access to information we do

not have and have specialized control capabilities), we are

able to cause problems to be solved that we are not able to

solve ourselves. We can "tap" another goal-seeking system's

goal-seeking capabilities.

i - - -_ -. - n. i ._
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3.8 Control Strategies for Problem Solving

The preceding discussion related cooperativity in games

to the generate-and-test paradigm which has been exploited

in many artificial systems. We viewed the generate-and-test

procedure as a means for finding structures that optimize

some measure of desirability or performance. By restricting

ourselves to this paradigm, we did not wish to imply that it

is the only paradigm in which the problem solving power of a

system of goal-seeking components can be manifested. While

we do think that the generate-and-test paradigm is basic to

problem solving procedures (Dennett, 1978, argues that it is

the only way to create novel solutions), it provides only

one part of efficient problem solving control strategies.

The "monolithic" application of generate-and-test to a

problem (formulated as an optimization problem as discussed

above) is likely to disregard important information that can

be used to guide the solution procedure.

All that we have said about generate-and-test, however,

can be extended to the problem of adaptively forming more

complex strategies for problem solving if we recall that the

adaptive power of the components we have considered permits

thein to use information other than just a measure of

performance. They are able to learn to perform the optimal

action in a variety of input situations as illustrated by
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the associative search network (Section 5). This additional

information can indicate, along with other things, the state

of the problem solving procedure. In other words, the

search performed need not be a "blind" search as suggested

by the stark form of the generate-and-test paradigm.

An example is useful here. Imagine the problem of

tuning a television, all of whose controls are very far from

their optimal settings. This task requires a search through

the multidimensional space of control settings for the

setting that maximizes some measure of picture clarity. It

is usual to formulate this task as a function optimization

problem. But this formulation applies equally well to the

problem faced if we had access to the controls and were

provided with a meter that registered "picture clarity" but

were not allowed to see the picture itself. In actuality,

the problem we solve is really quite different. We do see

the picture, and we make extensive use of information it

provides other than just its clarity. We quickly gain a

sense of what effect each knob has on the picture. If the

picture is rolling, we can (after sufficient experience)

directly alter the appropriate control. Similarly, if it is

too dark, we can directly change that too. The picture

provides information that tells us what to do. Different

actions are appropriate for different pictures; that is, in

different sensory situations. Consequently, tuning a
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television is not a standard function optimizaton task but

is instead an example of what we have called an associative

search task (Section 5). In solving it, we use a strategy

more complex than a unitary hill-climbing procedure. (In

fact, labels such as VER and BRT on the control are useful

only because this is the case: These words do not describe

a scalar clarity measure but rather describe the picture

itself.) The strategy is to search for the best rules of the

form "in situation X, do Y" for a given set of situations.

It is our impression that there have been two

approaches to solving these kinds of problems and that they

have not been integrated as thoroughly as they could be.

One approach, as we have just discussed, is to view these

problems as function optimization tasks in which much of the

available information is neglected. The other approach

focuses on control strategies for applying a given set of

rules, or "productions," of the form "in situation X, do Y."

In this approach the function optimization aspects of the

problem tend to be ignored since either a fixed set of

productions is used or only simple methods are used for

generating new productions. We think that a combination of

these two approaches can yield generally useful methods for

solving problems of this kind. Our associative search

network (Sections 5 and 6) ill'istrates some of the

possibilities in a simple form.

- .,I~-.
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8.9 Neurons a3 Goal-Seeking Systems

Klopf hypothesized that neurons are goal-seeking

systems that are able to make progress toward their goals in

a rather general class of environments and that possess

sensitivity to wide ranges of contextual information. Klopf

has argued for the biological reality of this hypothesis by

indicating the kinds of data it might make understandable

(Klopf, 1972, 1981). In Section 4.7 we put forward

hypotheses about how neural mechanisms could implement

adaptive strategies of the required complexity.

However, all of this empirical support is, at best,

circumstantial: Certainly many other hypotheses are

consistent with this range of observations. Here we discuss

another line of support which, while certainly indirect and

speculative, seems to us to be particularly compelling.

This is an evolutionary argument based on the adaptive

capabilities observed in freely living unicellular (or

acellular) organisms. Neurons are not, of course, freely

living organisms, but it seems plausible to us that they

possess mechanisms that are not too distantly related to

those of unicellular organisms.

In their classic work The Orientation of Animals:

Kineses, Taxes and Compass Reactions (1961), Fraenkel and

V
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Gunn discussed a number of methods used by animals for

finding and remaining near light or dark areas, warm or cool

areas, or, in general, for approaching attractants and

avoiding repellants. One of the most primitive mechanisms

is a strategy that they called klino-kinesis. The most

intensely studied example of iklino-kinesis occurs in the

behavior of various types of bacteria such as Escherichia

coli , Salmonella typhimurium, or Bacillus subtilis. This

manifestation of klino-kinesis, known as bacterial

chemotaxis, was discovered in the 1880's and was recently

reviewed by Koshland (1979). These bacteria propel

themselves along relatively straight paths by rotating (!) a

flagellum. With what at first appears to be random

frequency, they reverse flagellar rotation, thus causing a

momentary disorganization of flagellar filaments. This

causes the organism to stop almost instantaneously and

tumble in place. As the disorganized flagellum continues to

rotate in the new direction, its filaments reorganize

causing the organism to be again propelled along a straight

path. Consequently, flagellar reversal causes a random

change in direction of travel.

Adaptively useful behavior results because the

frequency of flagellar reversal is modulated by the

direction of movement with respect to levels of attractants

and repellants. Reversal frequency decreases if movement is
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toward higher attractant concentrations and increases if

novement is toward iower concentrations. Repellants have a

similar effect, mutatis mutandis. This modulation of

flagellar reversal biases locomotion so that the organisn

approaches and remains near places of maximal attractant

concentration or minimal repellant concentration. It is a

very effective strategy, particularly when gradient

information is very noisy. Koshland (1979) describes this

type of behavior and the underlying biochemical mechanisms

in great detail. Selfridge (1978) emphasizes the generality

of this type of adaptive strategy, which he calls the run

and twiddle strategy, by describing it as follows: If

things are getting better, keep doing what you are doing;

if things are getting worse, do something else.

One sees in these single cells the existence of

goal-seeking behavior. The receptor repertoire and

chemotaxic responses of various species of bacteria indicate

that they either move toward chemicals that are needed for

survival or, more generally, move toward conditions that

favor their survival (Koshland, 1979). It is completely

clear, moreover, that the strategies used to make progress

toward these goals are closed-loop strategies that require

short-term memory in order to detect gradients. Changes in

a cell's receptor activity are caused by the cell's actions

by means of a chain of influences that passes from the motor

V .. n -...
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apparatus, through the external environment, and then back

to the input apparatus of the cell. Memory is required

because this feedback path requires time to be completed.

The locomotory manifestation of this adaptive strategy in a

freely swimming organism makes the closed-loop nature of the

interaction obvious. Moreover, it is just this sense of

what a bacterium is doing that renders the regulatory

mechanism intelligible. It would be much more difficult to

understand this mechanism if one had to consider it

completely outside of its role in guiding locomotion. There

would be no sense of its function and adaptive significance.

Neurons, on the other hand, continue to be studied without

consideration of the possibility that important information

is passing from the neuron, through its environment, and

then back as modifications in afferent signals.

Chemotactic responses have been suggested as possible

mechanisms for guiding fiber outgrowth during neural

development. Although numerous trophic factors may be

involved, no conclusive experimental support for this

hypothesis seems to exist (see Lund, 1978). We are not

suggesting, however, that neurons necessarily use literal

forms of chemotactic responses to quide growth and migration

during development. Rather, we are suggesting that in fully

developed nervous systems neurons may use closed-loop

adaptive strategies similar in logical structure to
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cheinotactic strategies. Instead of actual spatial movement

there need only be a kind of logical or virtual movement as

a neuron's output influences its input. Like bacteria,

neurons possess receptors located in their membrane, or just

inside, that detect chemical signals from their

environments. The sensory processing system produces

signals that control the motor response of the bacterium by

altering the probability of flagellar reversal. Neurons

similarly respond to afferent signals, transmitted by

chenical means, by means of chemically mediated processes

whose details are not yet understood, and produce "motor"

responses consisting of action potentials. Of particular

interest is the fact that some bacteria respond to changes

in membrane potential in the same way they do to changes in

attractant or repellant levels. In B. subtilis, for

exanple, increases in membrane potential cause tumble

suppression ("running") and decreases cause tumble

generation ("twiddling") (Miller and Koshland, 1977) (cf.

Klopf'. hypothesis about neural goal-seeking behavior.) What

tends to be disregarded in the study of single unit

information processing is the possibility that important

aspects of a neuron's behavior involve its abiltiy to

influence its own input when operating in its usual

environment.

We think that the similarity between the mechanisms
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producing goal-seeking behavior in freely living cells and

machinery within the neuron provides the most promising line

of support for the hypothesis that neurons do implement

closed-loop, goal-seeking strategies. We think, along with

Koshland, that the continued study of the numerous

commonalities between bacterial chemotaxis, and other simple

forms of adaptive behavior in single cells, and the

signaling systems of neurons is a promising avenue for

future investigation. We hope that our theoretical research

will help lay the groundwork for thorough empirical

investigation.

8.10 A Sense of Neural Function

Maintaining the evolutionary point of view hinted at in

the preceding section, we can see the outlines of a vivid

sense of neural function. Let is suppose that as neurons

became specialized in fast electrical signaling, they did

not lose all of the properties of their less specialized

ancestors. Let us suppose that these ancestors -were able to

follow chemical gradients in their fluid environments,

approaching some chemicals and avoiding others, using

hill-climbina strategies implemented by mechanisms not

unlike those we see in present day bacteria and other

unicellular organisms. Since these strategies obviously

confer great adaptive advantages, we would expect them to be

-
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refined and extended by the evolutionary process. We

therefore arrive at the view that neurons are using

strategies closely related to those that are successful in

promoting the survival of freely living cells. The

environments in which neurons "swim," however, consist of

the very complex and abstract contingencies of the brain of

which they are a part and, more indirectly, of the organism

and its environment to whose survival they contribute. Of

course, we do not mean "swim" in a literal sense, but the

term provides a vivid image of the essential closed-loop

nature of a neuron's interaction with its environment. The

consequences of motor output are felt, at varying later

times, as changes in the patterns and intensity of afferent

activity. When a cellular action is followed by cellular

sensory reception indicating an increase in the

concentration of a particular chemical, then we can think of

that action as causing a kind of virtual movement up a

virtual concentration gradient. Mechanisms that cause real

movement toward attractants and away from repellants in real

spatial concentration distributions can do the same in these

virtual distributions if the closed-loop dynamics are

similar to those produced by movement in space. Some

neurotransmitters may act as "attractants" and others as

"repellants" for the neuron in its virtual spatial

environment. This would mean, simply, that the neuron would

act so as to increase its stimulation by some transmitters
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and decrease its stimulation by others.

We could imagine a further step in abstraction in which

the attracting and repelling qualities of certain chemicals

were transferred to the electrical events that tended to

co-occur with chemical reception. This might have provided

important increases in processing speed. Among the

functions neurons perform is that of relaying chemical

signals at high speeds (diffusion need only occur across

synaptic clefts). In this role, a neuron acts as a kind of

high speed "repeater" of chemical signals. Electrical

signals could therefore be viewed as representations of

chemical signals that can be transmitted more quickly and

manipulated more easily than the chemical signals

themselves. Analogs of chemotactic mechanisms could then

provide control mechanisms for "swimming" in virtual

concentration distributions represented by electrical

potentials. The control of the feedback dynamics of a

neuron's environment by other, perhaps phylogenetically

later, neural levels could provide a means for tapping

primitive adaptive capabilities to provide parts of the

solutions to complex problems. We are imagining a situation

in which a higher-level center might pose a problem to a

lower center in the form of an environment having particular

dynamical characteristics. By "swimming" in this

environment guided by its own goal-seeking strategies, each

* ~ ~n.. a a -. i
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cell in the lower-level center contributes to a cooperative

solution of the given problem.

Based on existing experimental data, this is an

admittedly speculative view of neural function. But we also

do not know of any strong experimental counter evidence.

While the importance of closed-loop control processes is

very well recognized, both at a basic biochemical level and

at the behavioral level as in the study of insect optomotor

responses, it is our impression that the possible

closed-loop nature of a neuron's interaction with its

environment is not a familiar concept. Experimental

paradigms designed to study single units tend to break the

feedback pathway through a neuron's natural environment.

Our observations from computer experimentation with

artificial closed-loop adaptive strategies indicate that

systems which appear quite simple when embedded in

appropriate feedback can appear much more complex when

observed in open-loop mode. This suggests that in order to

understand the information processing capabilities and

adaptive mechanisms of ncurons, it may be necessary to gain

a sense of what kinds of environments form their natural

habitats. This is not so problematic in the case of freely

living unicellular organisms since the dynamics of their

spatial environments are similar to those of our own. It is

much more difficult to understand the intricate

contingencies of a na-ron's worlJ.



CHAPTER 9

CONCLUSIONS

The major objective of this project was to assess the

promise of constructing adaptive systems from adaptive

components based on Klopf's (1972, 1979, 1951) theory of

heterostatic components. It quickly became apparent that a

great variety of issues were involved. A methodology

evolved in which we attempted to isolate the various

features of Klopf's hypothesis and study each of them in as

stark and as simple a form as possible. We attempted to

determine exactly which behavioral capabilities of a variety

of learning rules were due to which specific features. As a

result, we have experimented with adaptive elements that

differ from Klopf's hypothesis in numerous ways. As is

perhaps common for this kind of analytical methodology, we

have not given equal time to the process of reassembling our

findings into a simple and unified picture. Nevertheless,

we can state some overall conclusions.
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9.1 dinat is New?

3o:ne of the intuition underlying the notion of

constructing goal-seeking systems from goal-seeking

conponents has always played a role in stujies of

"self-organizing" systems. However, early studies are

characterized by the use of components whose capabilities

are too limited to support network behavior beyond a rather

low level of sophistication. In the most general terms,

these comnponents required from their environments a great

deal of explicit help in order to make progress toward their

goals. In order to provide this help, a component's

environment must know more about the problem's solution than

is generally possible (Section 8..2). The central idea of

the research reported here, on the other hand, is that the

components of an adaptive system must be robust enough to be

able to make progress toward their goals in environments

that are unhelpful, indifferent, or even hostile.

Our research has given us a strong impression that

adaptive network research was left in a very primitive state

when emphasis shifted to the more symbolic approach that

characterizes most current Artificial Intelligence research.

This is not so much a criticism of these earlier studies;

they were necessary beginnings. Hather, it leads us to

question the tendency to dismiss the entire network approach
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based on the lack of dramatic success in the first attempts.

In the years since these attempts, considerable

sophistication has been achieved in tie field of computer

science. It now seems clear that the problems to which

early adaptive network efforts were directed are too

difficult to be so quickly solved by any approach. We

cannot claim to have solved these general problems by the

research reported here, but we can claim to have shown that

some important features were absent from earlier network

studues.

We have uncovered several widespread misconceptions

about the nature of adaptation and learning. These

misconceptions are largely due to an overestimation of the

generality of particular learning rules or of pa-ticular

theories. re think that the pervasiveness of the following

fallacies has greatly hindered progress:

a) The perceptron learning rule and similar stochastic

approximation methods solve problems that are open-loop

problems, or can be recast as open-loop problems without

additional assumptions. These rules are not adequate models

of animal learning behavior in instrumental conditioning

experiments, but are more closely related to classical

conditioning (Section 2.4.4).

b) The formulation of adaptation as function optimization

V•mood
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is too abstract to shed much light on most forms of

learnin4. It does not permit the importance of information

other than payoff of reinforcement infcrmation to be

considered. This type of "blind search" is not always

necessary in applications (Sections 2.4.5 and 8.8).

c) Two very different types of search problems are

usually confounded. One type, which we called

errar-correction, is characterized by the fact that the

desired situation can be recognized as such when it is first

encountered. These problems can therefore be solved without

evaluatin, all possible situations. Negative feedback

tecnniques, whether explicit or in the g-lise of gradient

descent procedures, are associated with these types of

searches. An extrenum search problem, on the other hand, is

not fully solved until the entire range of possibilities has

been explored (although in practice such full solutions are

not generally possible). In the former type of search,

optinality is a local property of individual trials, whereas

in the latter type, it is a property of the entire set of

possible trials. This rather subtle distinction is perhaps

:nost inportant in distinguishing the research reported here

fron otner adaptive network research (Section 2.3.1.4).

J) The view that adaptation can be equated with

equilibriuin-seeking (as in "hoineostasis") is nisleading.

EALilibriun-seeking involvc s error-correction search rather

than extrenun search. It is an important but restricted
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process (Sections 2.3.1.4 and 2.5).

Much of the criticism of the approach to developing

intelligent systems based on numerical, data-directed

methods typified by the perceptron rests on the difficulty

in extending these methods to solve more difficult examples

of the same types of problems they were already solving.

For example, implications of the perceptron's limitation to

forming linear discriminant functions were pointed out by

Minsky and Papert (1969), and the shortcomings of

hill-climbing methods for the optimization of functions with

large plateaus or many false optima were pointed out by

MinsKy and Selfridge (1960). The criticisms we have

implicitly made in this report are of a completely different

kind. We have pointed out the restricted nature of the

problems these methods were designed to solve rather than

their limited abiltiy to solve them. We, of course, agree

that general pattern recognition and function optimization

problems are very difficult to solve completely, but we

think problems of this difficulty need never occur. Pattern

recognition is usually just one part of a complex adaptation

or learning task, and the function optimization task is so

abstract that the formulation of a problem as such a task

usually requires potentially valuable structure and

information to be ignored. It seems to us that

sophisticated adaptive behavior can result from a system

.A t-
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designed to solve a variety of interrelated adaptation and

learning tasks, each of which is relatively simple. In

other words, when fortulated in an appropriate manner,

sophisticated adaptative behavior need not require any

single subsystem to form highly nonlinear discriminant

functions or optimize functions having broad plateaus or

.nany extrema.

It remains for future research to provide substantive

support for this claim. The ability of an adaptive system

to learn to exhibit overall nonlinear behavior clearly

remains necessary, and the research reported here does not

demonstrate how this is possible. We do, however, believe

that the groundwork has been done by our exploration of

novel types of adaptive elements. Linearity and

nonlinearity are not properties of problems or control tasks

per se but are properties of particular representations of

them. The search capabilities of the adaptive elements

studied here suggest that representations can be adaptively

formed in which the necessary discriminations can be simply

made.

The approach to adaptive network design suggested by

Klopf appears to be novel for the following reasons:
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a) The components suggested by Klopf are most closely

related to the control theoretic notion of reinforcement

learning control systems (Section 2.4.10). These systems

combine pattern recognition, function optimization, and

control functions so as to solve control problems about

which there is little a priori knowledge. It is novel to

consider adaptive networks composed of components as

sophisticated in their capabilities as even simple learning

control systems (such as the various heterostat formulations

with which we have experimented)

b) The type of component suggested by Klopf combines the

capabilities of components previously studied. Components

such as the perceptron classify input vectors but do not

conduct extremum searches; that is, they are not

reinforcement learning systems. Components such as the

learning automata of Tsetlin and his school (Tsetlin, 1973)

perform extremum search but are not sensitive to information

other than the reward/penalty signal and therefore do not

perform pattern discrimination. The components on which our

research has focussed combine these capabilities.

9.2 Open-Loop Learning

At an early stage of our research, we devised a

learning rule having several interesting properties even

though it went only part way toward including the features
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required for genuine closed-loop reinforcement learning.

Fnis is the learning rule described in Chapter 4 where we

related its behavior to animal behavior in classical

conditioning experiments.- From the perspective of the

entire research effort, this learning rule is of interest

largely for the following reasons:

a) It permitted us to make strong contact with animal

Iearnirj data and the Rescorla-Wagner model of classical

conditioning.

b) It pernitted us to gain an understanding of some of

the consequences of Klopf's notion of eligibility in a

context relatively free from the complication of other

i3sues.

c) de concluded that by basing adaptive changes on the

deviation of reinforcement level from an average of past

levels (or the "expected" level) together with eligibility,

one obtained a stable, well-behaved rule that also produced

a variety of interesting effects (notably predictive

behavior and stimulus context effects).

d) rhe predictive behavior of these adaptive elements

suggests that they can be used to represent knowledge of

environmental contingencies in a form permitting its access

for real-time decision making. If the predicted

consequences of a particular action taken in a particular

situation were available before the actual consequences,
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then decisions could be made by evaluating proposed actions

before they were executed. This type of internal model use

has often been discussed, but we were able to show how a

simple network could implement it (Chapter 7). Although our

demonstration of this capability remains in extremely simple

form, we think that the principles illustrated can be

extended.

9.3 Generalized Reinforcement

Klopf distinguished his heterostat component from

others previously studied by emphasizing its property of

generalized reinforcement as contrasted with restricted

reinforcement. A restricted reinforcement component has

specialized positive and/or negative reinforcement inputs in

addition to excitatory and inhibitory inputs. There is a

consequent sharp distinction between the "teacher" as the

source of reinforcement signals and other types of

information. A generalized reinforcement component, on the

other hand, has the property that all (or many) input

signals are potential reinforcers. In the course of our

research it became apparent that Klopf's proposal contained

novel features even without considering the property of

generalized reinforcement. We recognized that an extremum

seeking component that is also sensitive to information

other than a reinforcement signal had unexplored

* ~%~hh.M
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i nplications even with reinforcement arriving over a

specialized channel. Adaptive elements previously studied

(e.g., the pe-ceptron) have specialized "teacher" channels,

but the signals arriving over them are error signals rather

than reinforcement signals. Consequently, the networks

described in Chapters 5 and 6 (assocative search networks)

consist of components with specialized reinforcement

channels. These simulations illustrate novel capabilities

4ithout tne additional complication of generalized

reinforcenent. We regarded an understanding of these

capabilities to be a logical prerequisite to tackling the

more general case. We have not yet determined what

additional adaptive power generalized reinforcement may

provide.

de have, however, gained a fairly clear view of what

issues generalized reinforcement involves. These are most

clearly discussed in Sections 3.4.5 and 8.2.4 (learning with

an occasional critic). In environments in which pure or

"wired-in" reinforcing events occur only occasionally,

simple hill-climbing strategies are not effective in causing

the reinforcing events to occur. We see the role of

generalized reinforcement as the construction of the advice

that a constant and reliable critic would provide if such a

critic were available as an initially identifiable source of

information. The system need not know "who the critic is"
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from the beginning. Indeed, a critic may not exist as a

prepackaged source of information. It is well known that

the ability to form its own performance evaluation function

is a very important feature of a sophisticated adaptive

system. Samuel's famous checker playing program, for

example, most strongly relies on this type of learning

(Samuel, 1959).

We think that the following ideas are likely to play

roles in the elucidation of these issues: a) Prediction and

the use of predictions of reward as rewarding events

themselves; b) The notion of secondary reinforcement from

animal learning theory; and c) The problem of "mesas" in

function optimization. Our discussion of prediction and

higher order learning in Chapter 4 is most relevant to these

issues. It is a point of interest that our development of

components which combine pattern discrimination and extremum

search sets the stage for a concrete investigation of these

additional features, but only a few steps have been taken in

the research reported here.

9.4 Associative Search

The network which we called the associative search

network (Chapter 5) is the result of placing components

capable of both pattern discrimination and extremum search
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in a paradigm that has become well known among present day

adaptive network theorists. We were thus able to clearly

Jenonstrate what additional capabilities these components

provide. Research on associative memory networks has

genarated a relatively recent and sizable literature. These

networks nave aroused interest because they can successfully

retrieve information under noisy conditions and are

insensitive to various degrees of localized damage. We have

not discussed these capabilities at length since good

treatnents are available elsewhere (e.g. , Anderson, et al.,

I)77; Kohonen, 1977; Palm, 1980). The associative search

network retains all of these features but has the additional

aoility to determine for itself what information should be

storeJ by conducting searches through the set of possible

associations and retaining the most highly rewarding ones.

Thus, in addition to questions about how information is

stored, questions about what information should be chosen

for storage are addressed. This permits applications of

associative memory systems to a wider class of problems than

previously possible. The landmark learning problem (Chapter

6) provides a simple illustration.

9.5 Biological Implications

Although progress toward an understanding of the

cellular basis of animal learning is proceeding at a rapid
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rate, it is still premature to propose detailed hypotheses

about the biological mechanisms that might implement the

learning procedures we have studied. We have speculated

about what mechanisms could be involved (Section 4.7), but

the possibilities still remain too numerous to warrant the

singling out of any specific, detailed neural model.

Nevertheless, our theoretical study leads us to make several

observations. First, the general failure to find clear

examples of associative learning at the synaptic level may

be due to the possibility that learning is taking place

there that is more complex than simple association rather

than less complex. If associative learning requires

short-term otomory at a cellular level (as it would if the

adaptive elements we have studied were implemented at a

cellular level), then one would not expect to observe it

experimentally unless the cell's internal state and the

context of the stimulation could be controlled. Second, it

may be profitable to conduct experiments designed to test

cellular responses in closed-loop situations. Closed-loop

studies of unicellular organisms have led to an

understanding of adaptive mechanisms that would have

remained obscure if the organisms were always observed

outside of their natural closed-loop relationships with

their environments (Sections 2.4.8.1 and 8.9). Neurons may

use similar adaptive strategies to control their

environments.
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The inportance of closed-loop control processes in

biology is well recognized. At the most basic level, the

notion of feedback regulation in chemical reaction systems

is a central concept in biochemistry. At the behavioral

level, it is very clear that certain forms of behavior are

explicitly directed toward controlling input. For example,

insect optomotor responses reveal their function clearly

when their influence on the environment is permitted to be

reflected as changes in sensory input. Despite the ubiquity

of control concepts in biology, it is our impression that

the possible closed-loop nature of a neuron's interaction

with its environment is not a familiar concept.

Experimental paradigms designed for the study of single

neurons tend to break any feedback pathway through a

neuron's environment. It is often useful to break the

feedback loop of a control system in order to experimentally

determine the details of its control law. Breaking the loop

permits the experimenter to exert complete control over the

system's input (this, for example, is what voltage clamping

accomplishes). But these open-loop studies of feedback

control systems are generally useful only after it is

realized that the functionality, and perhaps the adaptive

significance, of the system manifests itself only when the

control loop is in place. Otherwise, the open-loop

observations are likely to appear complex and confusing.
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This is especially true for closed-loop systems that are

adaptive or are capable of learning. This suggests that in

order to understand the adaptive properties of neurons, it

may be profitable to zsign experiments which permit a

neuron's output to influence its input.

9.6 In Summary

As a consequence of our research, we believe that

considerable adaptive power can be achieved by systems

composed of goal-seeking components, provided the components

possess sufficiently robust adaptive capabilities. Previous

adaptive network studies have considered components having

only limited adaptive power. We have shown that components

designed with attention to the temporal dimensions of

information processing can behave as simple reinforcement

learning control systems. These components acquire

knowledge about feedback pathways in which they are embedded

and use this knowledge to seek preferred inputs. Simple

networks composed of these components can solve types of

problems that are completely beyond the capabilities of

networks studied in the past. Although we believe these

results to be novel, they represent only a small step. Much

remains to be done in furthering what we believe to be a

promising approach to distributed, adaptive systems.
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ANALYSIS OF STEADY STATE BEHAVIOR OF THE

RESCORLA-WAGNER/WIDROW-HOFF PREDICTOR FOR A SIMPLE CASE

For siinplicity we treat the continuous time case in

which a trial consists of a single impulsive CS of

amplitude a at time t 0 and a single impulsive UCS of

amplitude A at time t T. Letting the time functions x and

z respectively denote the CS and UCS signals, then for t>0:

a for t = 0

x(t) a c5 0 (t)

0 otherwise,

x for t = T

and z(t) X &T(t) =

0 otherwise.

Let the element's output be the linear result of one CS

input pathway:

c w(0) for t = 0

y(t) =

0 otherwise.
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For continuous time, the Rescorla-Wagner/Widrow-Hoff

Predictor rule (Equation 4.12) becomes:

dw -
- C[Z - y] x (Al)

where x and y are respectively the eligibility generated by

x and the expectation generated by y. We assume that x and

y are exponential traces of their respective variables.

That is, let

x(t) eyt

y(t) = w(O)e
- Ct

where y and C are positive decay rates. Then Equation Al

becomes

dw(t c[X6T(t) - w(O)e- t] ce-Yt (A2)

Here we investigate the conditions under which a trial

leaves the associative strength of the CS unchanged; that

is, we ask what initial weight w(O) is such that w(t) = w(O)

for some time t occurring after the trial. But when is a

trial over? Weight changes can occur as long as x and y are

not both equal to zero and thus can occur during the ISI and

after the UCS offset (t T). Since exponential traces

never return to zero, we consider the case of an infinite

intertrial interval and ask what w(O) should be so that

H - m --
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lim w(t) = w(O)
t-*-

Integrating Equation A2 we obtain:

(lim w(t)) - w(O) = dw(t) dtt -*u d t

= C [x6T(t) - "w(O)e -  t] ae - yt dt

= cxAceYT _ ct 2w(O)( e-(y + O)t dt)

=ce-y T  Ca w(O)

= cxcie + Ca

Then w(O) must be such that

cXae-yT = ca
2 w(O)y +

or,

w(O) = - eYT(y + (A3)

A trial of the form we have assumed is such that if the

weight is the value given by Equation A3 at its

commencement, then the weight will return (asymptotically)

to thii value after the trial. The weight can change during

the trial, however. When viewed at the trial level,

Equation A3 gives the tsymptotic associative strength of the

CS. It depends on the CS strength a, the UCS strength X,
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the ISI length T, and the characteristics y and E of the

traces. For more general types of trials, the asymptotic

associative strength will also depend on the durations and

shapes of the CS and UCS.

V
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A FORA'AL DESCRIPTION OF THE MODEL SIMULATED IN SECTION 4

In tne following, R denotes the real numbers, R+

Jenotes tne non-negative reals, and [0,1] denotes the closed

real interval.

Conponents:

one adaptive element

n plastic pathways laoeled 1,...,n

I fixed input pathway labeled 0

Descriptive Variables:

Input variables:

For eacn i, 0 < i < n, xi(t) E R denotes input

level on input pathway i.

Output variables:

y(t) E [0,1] denotes the output level of the

adaptive elenent.

State variables:

y(t) [0,1] is called the element's expectation,
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or expected output level.

For each i, 0 < i < n, wi(t) E R denotes the

transmission efficacy or connection weight of

input pathway i.

For each i, 1 < i < n, _i(t) E R+ denotes the

eligibility of input pathway i.

Interaction equations:

1) wi(t + 1) wi(t) + cLy(t) - y(t)]xj(t)

2) xi(t + 1) : xi(t) + xi(t)

n
3) y(t) E , w(t)x.(t) (bounded to remain in [0,11)

4) y(t + 1) : y(t) + (1 - 6)y(t)

5) W (t) : w0 '

Parameters:

In all simulation experiments, n = 4, a = 0. The other

parameters change from experiment to experiment (see

below).

In all sinulation experiments, rectangular pulse

CS.s and UCSs were represented as amplitude 1

rectangular pulses in x. and x0 respectively. A low

level of normally distributed pseudo-randomly generated
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noise (mean .005, standard deviation = .03) was then

aided into the rectangular pulses. Pulse lengths

varied from experinent to experiment (see below). The

intertrial interval was usually 50 time steps, except

wnere otherwise noted.

Si:nulation experinent particulars, by figure number in

which results appeared:

Figure 4.12:

c = .2; .9; w = .6

CS duration was 3 time steps; UCS duration was 30

time steps.

Figure 4.114:

c = .5; a = .6; w = .6

CS 2 duration was 10 time steps in trials 21-35.

Figure 4.16:

c = .1; a = .6; w .6 alternating with .4

Figure 4.17:

c = .2; a : .6; w .6; w (0) .6

Figure 4.18:

c : ; c : .6; w : .6; w (0) .6
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ADAPTATION OF LEARNING RATE PARAMETERS

C.1 Preface

The work presented in this appendix is directed toward

developing an algorithm for adjusting the learning rate

parameter c of each synapse individually. Consider a single

synapse in one of the learning elements, such as a

Widrow-Hoff element or the "classical conditioning" element

discussed in Section 4. This synapse is trying to use the

information in its presynaptic signal to contribute to the

prediction of subsequent input. One problem is that all the

other synapses will also be trying to do this. If each

changed itself independently of the others so that its

contribution would make up the difference or error in

prediction, then the next time the situation occurred, there

would probably be a huge overshoot as the hundreds of active

synapses each provided enough to correct the original error.

In this sort of situation each synapse must proceed

cautiously, changing its weight but little to prevent
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overshoot, yet not so little as to make learning

unnecessarily slow (undershoot).

A second and sirilar problem is that the signal may

only provide information in a statistical sense; i.e., its

presence may indicate that the input will probably be higher

(or lower), but not that it definitely will be. In this

case the synapse must average out the cases in which the

synapse is right and wrong to arrive at a compromise measure

combining both the size of the change in input predicted and

the probability with which it is predicted. Again, this

averaging means a slowing in the learning rate for the

synapse, which must be counterbalanced against the need for

speedy learning (which requires a high learning constant).

How then is this learning constant to be set?

The above discussion suggests the general form of the

answer: Each synapse can determine from its local measure

of success in prediction - its overshoots or undershoots -

whether its learning rate is too large or too small. Thus,

each synapse should set its learning rate parameter as the

adaptation proceeds, according to some iterative algorithm.

The work presented in this appendix is the beginning of the

search for, and formalization of, that algorithm.

It should be clear from the discussion of the problem
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facing the individual synapse that it is basically a

tracking task. The synapse is trying to track the actual

input with its prediction of that input by changing its

prediction proportionally to the difference between

predicted and actual input in those cases in which the

synapse is involved, i.e., in those cases in which the

synapse is presynapticaly active. In the terminology of

servo-mechanism tracking, that constant of proportionality,

the learning rate constant, is known as the gain. Thus,

this appendix considers the problem of setting the gain of a

simple tracking servo-mechanism. It is felt that the

results are highly relevant to the learning rate parameter

setting problem for synapses, but the work has not yet

progressed to the point where it can be directly translated

into this form. Further work is necessary both on the

abstracted tracking problem and on mapping the results back

into a learning rate parameter adaptation algorithm for a

neuron-like adaptive element.

The rest of this appendix was origi-ally a self

contained paper entitled "A Method for le Automatic

Selection of Gain for Discrete-Time Algorithms."
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C.2 Introduction

Consider a one-dimensional, discrete-time tracking

problem and its solution by a simple servomechanism (see

Figure C.1). The pursuing function y(t) and the target

function Y(t) are related according to the classic

servomechanism equation:

y(t+l) = y(t).+ G [ Y(t)-y(t) ] , (C.1)

where G is called the gain. In general, the target function

Y(t) and the gain G will determine the quality of

performance. If 1(t+1) is determined from Y(t) by the

addition of a random variable chosen according to a

symmetric probability distribution with an expected value of

zero, then the optimal gain will be G=1.0, since then y(t)

will equal Y(t-1), the best guess for Y(t). If the target

function Y has inertia, the optimal gain will lie between

1.0 and 2.0, and if Y(t) is a noise corrupted version of an

inertialess function z(t), then the optimal gain will lie

between 0 and 1.0. In this context the problem considered

in this appendix is the automatic selection of a gain

parameter through experience with attempts to track a target

function Y.

An adaptive tracking system should have buth the



ADAPTATION OF LEARNING RATE PARAMETERS PAGE C-5

EIT)
SIGNED ERROR

SERVO ENERRIOR

FIGURE C.1. A block diagram of a simple tracking
servomechanism. y(t) is the pursuing function, Y(t) the
target function, and E(t) the signed error.

---u ~~ ~ -l-. b .. . - - -.. .
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property of refinement, meaning the ability to carefully

zero in on the target function by averaging out noise, and

the property of responsiveness, meaning the ability to stop

converging and follow the target closely if it begins to

mcve rapidly. To have both of these properties in a

tracking servomechanism requires a method of adaptively

modifying the gain. Previous work on this problem

apparently has not found a satisfactory solution (e.g.,

Eisenstein, 1972).

C.3 The Gradient Descent Approach

To optimize some parameter or vector C(t) according to

sorre evaluation function J(t) to be minimized, a

straightforward approach is that of gradient descent with

fixed increment:

C(t41) = C(t) - a v J(t)
C(t)

where a is the fixed positive increment size. Ideally, one

can analytically compute an expression for the gradient to

get the desired algorithm. For example, this technique can

be used to derive the servo equation (Equation C.1). here

S - -
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the parameter to be optimized is y(t), the evaluation

2function J(t) to be minimized is [Y(t)-y(t)]J, and the

positive increment is G/2:

y(t+l) = y(t) - G/2 V J(t)
y(t)

d [Y(t)-y(t)]
" y(t) - G/2

d y(t)

" y(t) + G [ Y(t)-y(t) I

Yielding the servo-mechanism equation (Equation C.1).

Now let us apply the same methodology to derive an

algorithm for optimizing the gain term G which we now vary

as a function of time:

y(t+1) = y(t) + G(t+1) [ Y(t)-y(t) I

G(t+1) = G(t) - a v J(t)
G(t)

d
" G(t) - a - [Y(t)-y(t)]2

dG(t)

d2

" G(t) - a - I Y(t) - y(t-1)+G(t)[Y(t-1)-y(t-1)J 12
dG(t)

= G(t) + 2a [Y(t)-y(t)] [Y(t-1)-y(t-1)j

" G(t) + b E(t) E(t-1) (C.2)



ALAPIA1ON OF LEARNING RATE PARAMETERS PAGE C-8

for b = 2a and E(t) = Y(t) - y(t).

The intuition behind the workings of this algorithm is

fairly straightforward: If the gain is too large, there

will be a tendency for the pursuing function y(t) to

overshoot the target, which causes oscillation in the error,

anc thus via this algorithm will cause a decrease in the

gain. If the gain is too small, on the other hand, then the

pursuer will tend to undershoot, and successive errors will

usually be of the same sign, and this algorithm will cause

the gain to decrease. Previous approaches to this problem

and its relatives have been based only on the signs of the

succesive errors, completely ignoring the sizes of the

errors (Kesten, 1958; Sardis, 1970; Perel'man, 1967).

That the algorithm presented here utilizes more of the

information available in the successive errors suggests that

it may be an improvement over these earlier methods.

C.4 Analysis of a Special Case

For the purposes of analysis, we now consider a special

case of the general problem. Assume Y(t) is a noise

corrupted version of a random variable z(t), and that z(t)
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is varying as in a "random walk":

Y(t) = z(t) + B(t) (C.3)

z(t+1) = z(t) + A(t), (C.4)

for movement and noise random variables At) and 5(t). Let

us assume that the random variables A(t) and E(t) are chosen

according to normal probability distributions with zero

means and variances sA and sE respectively. (Since the

movement of z is an inertialess random walk, for this

special case the optimal gain will never be greater than

1.0.) For this case, we can prove that algorithm (C.2)

converges to the gain that minimizes the expected mean
2

square error EXP{[Y(t)-y(t)] 1. The proof has two main

steps: 1) find an expression for the optimal gain in terms

of sA and sB, and 2) proves that Equation C.2 converges to

that optimal gain. lo find an expression for the optimal

gain, first we find an expression for the expected

asymptotic mean square error (MSE) in terms of sA, sB, and

the gain G.

Let e(t) t z(t) - y(t)

Then note that the total error can be written

E(t) = et) + b(t) (C.5)
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Now we solve for asymptotic e(t):

c(t+I) = z(t+1) - y(t+l)

z(t) + A(t) - y(t) - G E(t)

e(t) + A(t) - G [E(t)+B(t)]

= 1-G)e(t) + A(t) - G B(t)

cr

t t-1 n
E(t) (1-G) e(O) + E (1-G) [ A(t-l-n) -G B(t-l-n) ]

n=O

Let E(-) denote the limit of this expression as t goes to

infinity. Since e( ) is a sum of independent identically

normally distributed random variables, it will also be

normally distributed, will have mean zero, and will have

variance the sum of the variances of the summands:

2 t 2
S lim E S
e(-) t- n=O {(-G)n  A(t-n)-GB(t-n)]}

t 2n 2 2
= lim E [(1-G) ] [sA + G sB ]

t-- n=O

£

where s denotes the variance of the random variable X.
X

his g MorEtric series is convergent for 0 < G < 2.0:

2 sA2 + G2 sL2

e(s ) 1 - (1-G) 2

LI
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Ey (C.5), and since e(-) is normally distributed with mean

zero, E(.) is also normally distributed with mean zero and

of variance

2 sA 2 + G 2 sB 2

s + sB 2  (C.6)
E(.) 1 - (1-G)

Which is just the desired equation for the mean square error

in terms of sA, sE, and G. The value of G which minimizes

this MSE can be found by the straightforward but tedious

process of differentiating Equation C.6 with respect to G

and setting it to zero. After simplification and solving a

quadratic, a single positive root is found:

-sA 2 + VsA 4 + 4 sA 2 sB 2

G : (C.7)
opt 2 sE2

For the second part of the proof we must show that

Equation C.2 converges to the optimal gain (C.7). From

(C.2) and (C.6):

G(t+1) = G(t) + b E(t) E(t-1) (C.8)

We will assume that if the constant b is chosen properly,

G(t) will (nearly) converge to the fixedpoint of (C.8), and

only prove that that fixedpoint is (C.7). (Note: to really

complete the convergence proof it is necessary to let the



ALAPIA11ON OF LEARNING RATE PARAVETERS PAGE C-12

increment b become an decreasing sequence and prove a

contraction property on the expected change in G(t) as t

goes to infinity.) At the fixedpoint G of (C.8)

0 EXP{ E(t+1) E(t) }

= EXP{ [ E(t+1) + B(t+1) I E(t) I

= EXP{ [ (1-G)E(t)- B(t) + A(t) + B(t+1) ] E(t) I

= EXPI (1-G)E(t) 2 - E(t)5(t) + E(t)A(t) + E(t)B(t+1) }

= (1-G)EXP{E(t) 2} - EXP{ [e(t)+B(t)] B(t) I

: (1-G)EXP{ E(t) 2  I - EXP{ B(t) 2  }

2
(1-G) s - sB 2

E(-)

Substituting in with (C.8), and simplifying yields

2 2 2 2
0 sE G + sA G - sA

whose only positive root is the same as (C.5), the

expression for the optimal gain.

H - ..-
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C.5 Computer Simulation

The algorithm (Equations C.1, C.2, C.3, C.4) was

programmed on a digital computer, with the distributions of

the random variables approximated by pseudo-random number

generating programs. Figure C.2 reports the results of an

experiment in which the observation noise standard deviation

sB was step changed from sB=0.3 to sb:2.C and back again.

Figure C.2a shows the optimal gain compared to the actual

gain, both versus time. This figure demonstrates that the

gain adaptation algorithm can both incr-ase and decrease the

gain, whichever is appropriate. Figure C.2b shows the

analytic asymptotic error for the actual and optimal gains

plotted versus time. This figure illustrates that the

algorithm can keep the error of the tracking system at very

nearly the optimal theoretical limit despite occasional or

slow changes in the unknown system and thus in the optimal

gain.

C.6 Further Levels of Adaptation

One nice aspect of the algorithm presented here is that

only one parameter, the gain increment parameter b, need be

V -0v
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ASYNPTOTIC- FOUND GRIN
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ERROR ERROR

0 TINE STEPS 4000

FIGURE C.2
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FIGURE C.2. Computer simulation of the single level
adaptive gain selection algorithm. In this experiment the
observation noise standard deviation parameter was step
changed from sb=O.3 to sB=2.0 and then back again while the
random movement standard deviation parameter remained
constant at 1.0. These changes were made at the 1000th and
2000th time steps respectively.

FIGURE C.2a.compares the analytic optimal gain (dashed line)
with that found by the single-level gain adaptation
algorithm (solid line). Note that the algorithm can both
increase and decrease the gain.

FIGURE C.2b compares the analytic asymptotic error (SE)
levels under the optimal (dashed line) and actual gains
(solid line). The changes in actual gain keep the error
nearly at the theoretical minimum despite the changes in the
observation noise. The gain change rate parameter was
b=0.001 in this experiment.
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chosen arbitrarily by the designer or user of the technique

to fit thE characteristics of the particular application.

This is in sharp contrast to the methods of Perel'man (1967)

an Kesten (1958), whose performance is dependent on a

series of possible gain parameters that need to be specified

by the user. In the algorithm here, even the dependence on

the b parameter can be reduced, i.e., can be made

automatically adaptive to the environment, by extending the

scheme to additional levels of adaptation. Applying the

same methodology we used twice above, we let b become a

function of time and change it in proportion to the gradient

of the evaluation function J(t) with respect to b(t):

b(t+1) b(t) - a V J(t)
b(t)

Solving this analyticaly results in an algorithm for the

optimal rate of change of gain parameter. This algorithm

will in turn have a rate paramter, and an optimizing

algorithm car be derived for that. The result is an

arbitrarily deep hierarchy of rate of change or gain

algorithms. A pattern in these algorithms quickly becomes

apparent. We change notation slightly at this point to

allow a statement of the multiple-level adaptive gain

selection scheme which makes this pattern more apparent.

For a gain selection algorithm with n levels of adaptation:
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y(t+1) = y(t) + G (t+1) E (t)
1 0

where E (t) = Y(t) - y(t)
0

G (t+1) = G (t) + G (t+1) E (t)
i i i+I i

where E (t) E (t) E (t-1) i=1,...,n-1
i i-I i-I

and G (t+1) = G , a small positive constant for the last
n n

level of adaptation.

This multiple-level algorithm was also programmed on a

digital computer for the special case of normally

distributed movement and noise random variables. An

experiment was run comparing the previous two level system

(the first level of adaptation was just the simple servo

itself) to a three level system for a case in which the

optimal gain remained constant. We see from Figure C.3a

that while the two level system found the optimal gain very

quickly, there was no tendency for the gain to converge to

that value. The three level system, on the other hand, was

able to detect that the optimal /gain itself was not

changing, and reduced the rate at which it changed the gain,

resulting in the convergence of the gain to its optimal

value (Figure C.3b). However, simulation results also

revealed that the multiple-level algorithm can become

-_ i- ~ d .l i l~ . ... T _L
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[R) SINGLE LEVEL ALGORITHM
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O TME 57EPS 3000
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0 TIME STEPS 3000

FIGURE C.3
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FIGURE C.3. Comparison of a single level gain adaptation
algorithm with a two level algorithm for the case of a
constant optimal gain. While the single level system
(Figure C.3a) finds the optimal gain (dashed line), there is
no tendency for the gain to converge to it. The two level
gain adaptation algorithm (Figure C.3b), on the other hand,
can adjust the rate with which it varies its gain, and does
converge to the optimal gain. In this experiment sA=1.0,
sB=3.0, and the rate or gain constants for the last levels
of adaptation were gain(2)=O.O01 for Figure C.3a and
gain(C.3)=5.0e-8 for Figure C.3b.
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unstable for some unknown systems and for some settings of

the rate or gain constants for the last level of adaptation.

This is probably due to the fact that the gradient descent

analysis technique is due to a linear approximation of the

gradient of the evaluation function J(t). If the increment

is small, this approximation is a good one, but if the

increment is large, it can be a very poor approximation to

the actual gradient. In the multiple-level algorithm this

increment is under adaptive control, and thus there is no

guarantee that the increment will remain sufficiently small,

and instability can result. Further work is needed to solve

this problem with the otherwise promising multiple-level

algorithm.

C.7 Conclusions

The multiple-level gain selection algorithm presented

here seems to be applicable to any case of discrete-time

adaptation involving a signed error and an associated gain

or rate parameter. This algorithm is able to both increase

and decrease gain in response to changes in the target

function's behavior, utilizes all the information in the

error signal, and is extremely simple. Comparisons are

dificult to make between disimilar algorithms, but the above

V . . . . _ _ _ _ __.. . i I-
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properties suggest that this algorithm may be a significant

improvement over other gain or rate parameter selection

algorithms in the literature.

Finally, a multiple-level version of this algorithm was

presented. Its particular advantages will be most important

in systems which must handle with high performance a wide

range of uncertain environments. Although the approach

seems promising, further work is necessary on the

multiple-level algorithm.



APPENDIX D

DEFAILS OF THE SIMULATION EXPERIMENTS OF SECTION 7

o.1 Conputation of movement

At each tine step the simuiated adaptive network provides an
instantaneous action vector {A[right](t), AEleft](t)}. The
caonputation of this vector is detailed in Appendix E. A
recorJ SA[a](t) is kept of the extent to which each action a
has been instantaneously selected recently:

3A[rijht](t) alpha*SA[right](t-1) + (1-alpha)*A[right](t)
3A[left](t) alpna*SA[left](t-1) + (1-alpha)*A[left](t)

Aovenent is determined by which of these traces is largest:

Aotion(t) = Beta * {SA[right](t) - SA[left](t)},

wnere positive notion means notion to the right, and
neyative notion neans mnotion to the left. In all of the
si:nulation experinents the constants alpha and beta were set
at 0.3 and 50.0 respectively. If the motion computed above
causes the subject to run into a barrier, the actual motion
is halted at the point of contact. In addition, barrier
colision neutralizes the inertial tendency to continue
notion in tnat direction. Specifically, the inertial traces
3A[rignt] and SA[left] are set to their average upon
collision with a barrier. The inertia was also neutralized
by settinS both of these traces to zero each time a subject
was "picked up" anJ moved as part of an experiment.
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D.2 Experiment I

Experiment I used 200 subjects, each run individually
through the following three phases.

D.2.1 Exploration Phase

Each subject was released between the lower large colored
regions (point A in Figure 7.4). If the center of its body
passed into a colored region, the corresponding sensory
input line was set to a value of approximately 0.5. All
notion was computed as described above. After 1000 time
steps the association phase began.

D.2.2 Association Phase

Each subject was moved to the enclosed red region D of
Figure 7.4. The red input line was activated in the same
way it was activated during the exploration phase when the
subject was within the lower red region. After two time
steps the reward input line was also set to 0.5. After one
time step of this stimulation pattern, each subject was
transferred to the enclosed green box marked B in Figure
7.4. The input pattern there was I[red]=O.O, I[greer]i=0.5,
and I[reward]=0.5. After two time steps of this, the reward
input line was set to zero again for one time step, and then
the testing phase Degan. The following chart summarizes the
stimulation regime during the association phase.

absolute time duration I[red] I[green] I[reward]
1000-1001 2 0.5 0.0 0.0
1002 1 0.5 0.0 0.5
1003-1004 2 0.0 0.5 0.5
1005 1 0.0 0.5 0.0
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D. 2 3 rne Festin. Pnase

In tlie testin, phase of tne primary e.<perinant each subject
Was returned to location A of Figure 7.4 3nd released, just
as in the exploration phase. The testing phase ended when
eitler of the two colored regions was entered. Of the 200
sjojects, 141 entered the red region first and 59 entered
tie green region first. This result is statistically
significant to at least the P=.005 level.

D.3 Experiment II

rne second experiment was identical to the first during the
exploration and association pnases. Its testing phase
differed in that the lower red and green regions and the
oarriers inside then were removed. After' 300 time steps the
testing phase ended and the position of the subject was
recorded. All of the 100 subjects had moved very far to the
right after the 300 time steps, the nearest being about
twice as far off the page as the distance from A to the
rignt edge of the page in Figure 7.4.

D.L1 Experiment III

ime tnir eriment was identical to the first experiment
• : pt t tie bias weights WAC[right] ans WAC[left] (also

,..i ri=nt] and B[left] in the text) were set to zero at
-*. i n, y f t 1i testing phase. This ensured the

n ) initi .1 tendency to move either right or
:'.,;)nning of the testing phase. Of the 100

t tne red area first, a result
~*~ 3t least the P=.005 level.



APPENDIX E

DETAILS OF THE ADAPTIVE NETdORK SIMULATED IN SECTIOI 7

Notation: R is the Reals, R+ the positive Reals
means "element-of"

STIMULI is the set {RED, GREEN, REWARD}
ACTIONS is the set [RIGHT, LEFT}

This is a discrete time model, i.e. t=0,1,2,...

E.1 Components

A PREDICTOR-MODULE, consisting of 3 PREDICTOR-ELEMENTS
(corresponding to the 3 stimuli) , a 3x3 matrix of
PREDICTOR-TO-PREDICTOR-CONNECTIONS, and a 3x2 matrix of
ACTOR-TO-PREDICTOR-CONNECTIONS.

An ACTION-SELECTING-MODULE, consisting of 2
ACTOR-ELEMENTS and a 2 element vector of
CONSTANT-TO-ACTOR-CONNECTIONS.

A vector of 3 INPUT-LINES, corresponding to the three
STIMULI.

A vector of two OUTPUT-LINES, corresponding to the 2
ACTIONS.

~.-. --.
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E..? Descriptive Variables

E.2.1 Input Variables

I[s](t) E [),1], for all s E STIMULI, is the input
to tne network at time t. These indicate the
color of th region the subject is in (if any) anJ
tn3 presence or absence of reward.

Output Variales

Aa](t) E [0,1], for all a E ACTIONS, is the
activity level at tine t of the ACTOR-ELEMENT for
action a, indicating the instantaneous selection
of .novement to the right or left.

.-?.i State Variables

P[s](t) E [),1], for all s E STIIULI, is the
,ctivity level at ti:ne t of the PREDICTOR-ELEMENT
for stimulus s. -his indicates a conbination of
preJiction of stimulation and actual stimulation.

4PP[sl,s2](t) E R, for all sl, s2 E STIMULI, is
the efficacy of the
PREDIC rOR-TO-PREDICTOR-CONNECTIOi4 to the
PREDICrIOR-ELEENT for stimulus sl from the
PREDI_ '3;-ELEAENT for stimulus s2.

4PA[s,a](t) E R, for all s E SrI[ULI, a E ACTIJNS,
is tne efficacy at ti:ne t - of t he
ACT ii-TO-PREDIC TOR-CO 4EC TI1ON to the
PREDICTOR-ELEAENrfor stimulus s fron the
AC r3R-ELEMENT for action a.

v4AC[a](t) E R, for all a E ACTIONS, is the
effic3cy at time t of tne
C3JrSTANT-TO-ACTJR-COJNNECFIO4 to the ACTOR-ELEEMENT
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for action a. These weights were called the bias
weights and denoted B[a] rather than WAC[a] in the
text.

TA[a](t) E [ ,1], for all a E ACTIONS, is the
trace at time t of A[a](t), -the activity of the
ACTuR-ELEMENT for action a.

TA2[a](t) E [0,1], for all a E ACTIONS, is another
trace at time t of A[a](t).

TP[s](t) E [0,1], for all s E STIMULI, is the
trace at time t of P~s](t),-the activity of the
PREDICTOR-ELEMENT for stimulus s.

E.2.4 Parameters:

CPP[sl,s2l E R+, for all sl, s2 E STIMULI, is the
learning rate parameter for the PREDICTOR-TO
PREDICTOR-CONNECTION from the PREDICTOR-ELEMENT
for stimulus s2 to the PREDICTOR-ELEMENT for
stimulus s1.

CPA[s,a](t) E R+, for all s E SrIMULI, a E
ACTIONS, is the learning rate parameter for the
ACTOR-TO-PREDICTOR-CONNECTION from the
ACTOR-ELEMENT for action a to the
PREDICTOR-ELEMENT for stimulus s.

CAC[a] E R+, for all a E ACTIONS, is the learning
rate parameter for the
CONSTANT-TO-ACTOR-CONNECTION to the ACTOR-ELEMENT
for action a.

Mean E R, Stdev E R+ are the mean and standard
deviation parameters for the normally distributed
noise component of the activity of t!ie
ACTOR-ELEMENTS.

Ap E R is the trace decay parameter for the trace
of activity in the PREDICTOR-ELEMENTS.

Aa E R is the trace decay parameter for the trace
of activity in the ACTOR-ELEMENTS that is used to
changes the ACTOR-TO-PREDICTOR-CONNECTION
efficacies.

Aa2 E R is the trace decay parameter for the trace
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of activity in the ACTOR-ELEM'ENTS that is used to
changes the CONSTANT-TO-ACTOR-CONNECTION
efficac ies.

E. 3 Equations of Interact ion

E.3.1 Equations of primary network operation:

A[right](t) = Ft A'[right](t) - A'Eleft](t)
Atleft](t) =Ft A'Eleft](t) - A'Eleft](t)I

where Al[al(t) = MAX{ 0, WAC[a](t) + NOISEtmean,stdevl I
for all a E ACTIONS and f{xl = MAX{O,M'IN~x,1.01I,
and NOISETmean,stdevl is a normally distributed
random variable.

PNt = fN I(t) + WPA(t) A(t) + W4PP(t) P(t-1)I
(using vector and matrix notation)

E.',.2 Equations for change of connection efficacies:

W4PP~sl,s21(t+l) WPP~s1,s2](t) + CPP~sl,s2] *
tP~sl](t) - TP[sl](t) I*TP~s2](t-1)

WPA~s,a](t+1) = WPA~s,a](t) + CPA[s,a]
[P[sJ(t) - TP~s](t) I*TA[a](t)

WAC~a](t+l) 'dAC[a](t) + CACra) *
IP~reward](t) -TP[reward)(t) I*TA2[a](t)
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where:
TP[s](t+1) = Ap*TP[s](t) + (1.0-Ap)*P[s](t)
TA[a](t+1) = Aa*TA[a](t) + (1.0-Aa)*A[a](t)
TA2[a](t+1) = Aa2*TA2[a](t) + (1.0-Aa2)*A[a](t)

For all a E ACTIONS and s, s1, s2 E STIMULI.

E.4 Parameter Settings:

CPPrsl,s2] \ sl
P s2 \ RED GREEN REWARD

REWARD 0.5 0.5 0.0

GREEN 0.5 0.0 1.5

RED 0.0 0.5 1.5

CPA[s,a]: s

a \ RED GREEN REWARD

RIGHT 0.2 0.2 0.0

LEFT 0.2 0.2 Q.0

CAC~right) 0.5 Ap =0.0

CAC[left] 0.5
Aa = 0.8

Aa2 = 0.0

Mean = 0.2

Stdev 0.4



APPENDIX F

DESIGNNET: NETWORK SIMULATION DISPLAY PACKAGE

F.1 Description

DESIGNNET is a collection of routines for interactively
creating a network display on the Grinnell and then using
the display to show the values of variables associated with
the network. The network resembles a neural structure
consisting of sets of neurons with input and output fibers
anJ weighted connections (synapses). At most three
variables can be displayed at each cell and at each synapse.
Their values are shown as color intensity, the radius of a
circle, or the width of a square. The values of the
variables are assigned by the user's program; the values
are not changed by DESIGNNET.

F.2 User Instructions

The user instructions are presented in two sections:
the creation of a network display, and the subsequent use of
the display.

F.2.1 Creating a Network Display

A network display can be created or modified by running
the DESIGNNET programn as follows:

RUN DR1:[ANWCA.DNET]DESIGNNET

You will then be asked to type a name for the file in which
you will save your network, or for a file of an existing
network that you wish to modify.

- A •. ..-
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User Instructions

FILENAME FOR SAVING AND RETRIEVING?
example.net

From this point on you will be interacting with the
program through the Grinnell. Various options will appear
in a list on the right side of the screen. Any one of these
options can be selected by moving cursor one into the box
surrounding it and pressing the enter button. Some of the
options will present a new list of options to select from.
The previous option list can be returned to by pressing
home, then enter (cursor one must be on).

Initial Options and Descriptions

REFRESH
Redraws the entire network display.

EDIT
Allows the creation and modification of a network
display. This option requires the selection of
further options that are described below.

SAVE NET
Saves the current network display in the file
specified by the file name entered when DESIGNNET was
started, or the file name entered in response to the
option SET FILE.

RETRIEVE NET
Replaces the current network display with the network
that was previously saved in the file specified by the
file name entered when DESIGNNET was started, or the
file name entered in response to the option SET FILE.
This option will erase the current network so a safety
feature requires this option to be selected a second
time to continue.

SET FILE
Allows you to enter the name of a file to be
referenced when saving and retrieving networks with
the SAVE NET and RETRIEVE NET options.

UPDATE NET
This option will, operate only if an UPDATE NET DISP
and a BRAI'N RETRIEVE routine have been compiled and
linked to DESIGNNET. BRAIN RETRIEVE must read the
data stored in the BRAIN data file. The I/O unit
number for the BRAIN data file is passed to
BRAIN RETRIEVE. UPDATE NET DISP must call
UPDATE MOD DISP or UPDATE-SHORTMOD to display the
variabTes - retrieved by BRAINRETRIEVE.

_ _ _ _ I
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User Instructions

UPDATE NET DISP has no arguments. The documentation
for £?he - EXPER program explains the use of
BRAINRETRIEVE and the BRAIN data file.

MOD NUMBERS
This option displays a number on each module of the
network, representing their respective module numbers.
These numbers must be known when you call the various
entry points for updating the network display. (see
section 2.2)

EDIT Option List and Descriptions

ADD SHAPE
This will add a new shape to the display. Shapes can
be used to enhance the display by emphasizing certain
areas, highlighting lettering, etc. (The maximum
number of shapes is 20.)

First ADD SHAPE Options:

RECTANGLE
The added shape will be a rectangle.

SYMBOL

Not functional at this time.

Second ADD SHAPE Options:

POSITION
Use one or two cursors (depending on the shape)
to position the shape and to specify its size.

COLOR
Allows you to select the shape's color by
adjusting the intensities of red, green, and
blue with cursor one.

ADD STRING
This will add a new string of characters to the
display. The characters must be typed on the terminal
when requested to do so. Strings of characters can be
used to label parts of a network or as titles. (The
maximum number of strings is 20, and the maximum
number of characters per string is 70.)

ADD STRING Options:

POSITION
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User Instructions

Use cursor one to position the character string.
Cursor one is at the lower left corner of the
character string.

HEIGHT
Changes the height of the characters from single
to double height, or vice versa. Single height
is 9 pixels, and double height is 1B pixels.

WIDTH
Changes the width of the characters from single
to double width, or vice versa. Single width is
7 pixels, and double width is 14 pixels.

ANGLE
Changes the angle of the character string in 45
degree increments. The character string is
rotated around the first character of the
string.

TEXT
Requests you to type a new string of characters
at the terminal to replace the old character
string.

COLOR
Allows you to select the color of the characters
by adjusting the intensities of red, green, and
blue with cursor one.

ADD MODULE
A module is a set of cells and fibers or just fibers.
There are three types of modules, one of which must be
selected in the next option list. (The maximum number
of modules is 15.)

First ADD MODULE Options:

STANDARD
This type of module consists of cells arranged
in a line with parallel dendrites and axons.
Input fibers, which are optional, are parallel
to each other, but perpendicular to the cell's
dendrites. The intersection of the input fibers
and dendrites represent synapses at which
several variables can be displayed. Recurrent
fibers, -lso optional, connect the cell's axon
with all dendrites in the module. These also
form intersections, representing synapses, with
the dendrites. After selecting this option two
numbers must be chosen as follows:
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NUMBER OF CELLS
Choose the number of cells in this module
by moving cirsor one vertically. There
can be from 1 to 10 cells in one module of
this type. Push home and enter when you
have chosen the desired number of cells.

NUMBER OF INPUTS
Choose the number of input fibers in this
module by moving cursor one vertically.
There can be from 0 to 10 input fibers in
one module of this type. Push home and
enttr when you have ciiosen the desired
number of input fibers.

PARALLEL
This type of module consists only of straight,
parallel fibers. This module can be used to
connect two other modules. After selecting this
option one number must be chosen as follows:

NUMBER OF CELLS
In this case, the number of cells is
actually the number of fibers. Choose the
number of fibers by moving cursor one
vertically. There can be from 1 to 10
fibers in one module of this type. Push
home and enter when you have chosen the
desired number of fibers.

CORNER
This type of module consists of parallel fibers,
each with one 90 degree bend. This module can
be used to connect two other modules. After
selecting this option one number must be chosen
as follows:

NUMBER OF CELLS
In this case, the number of cells is
actually the number of fibers. Choose the
number of fibers by moving cursor one
vertically. There can be from I to 10
fibers in one module of this type. Push
home and enter when you have chosen the
desired number of fibers.

Second ADD MODULE Options:

POSITION
A module may be moved to any location on the
screen with cursors one and two; cursor one
will be one corner of the module and cursor two
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will be the opposite corner. The cursors also
control the size and orientation of the module.
Push enter when you have positioned both
cursors.

AXON LENGTH
This allows you to extend the axons of all cells
in a STANDARD module, and the fibers of the
PARALLEL and the CORNER modules, by moving
cursor one. Push enter when you are done.

RECURRENCY
This option affects only a STANDARD module. If
the STANDARD module does not have recurrent
fibers, then selecting this option will put
recurrent fibers in the module, and vice versa.

FLIP
This will flip a module of STANDARD or PARALLEL
type by 90 degrees, i.e., the module is
reflected on the diagonal between the module's
corners in which the two cursors appear during
positioning. This option will not flip a CORNER
module in this manner. Instead, it reverses the
order of the fibers along one side of the
module.

NUM VARS
This option is used to designate the number of
variables to be displayed at cell bodies and at
fiber intersections. These numbers are entered
as follows:

NUMBER OF CELL VARIABLES
Choose the number of cell variables to be
displayed with this module by selecting
one of the numbers 1, 2, or 3. The number
of cell variables is initially 1.
Variable 1 is displayed as the intensity
of the color (yellow) of the cell.
Variable 2 is displayed as the radius of a
white circle centered at the cell body.
Variable 3 is displayed as half the width
of a white square centered at the cell
body.

NUMBER OF SYNAPTIC VARIABLES
-Choose the number of synaptic variables to
be displayed with this module by selecting
one of the numbers I, 2, or 3. The number
of synaptic variables is initially 2.
Variable 1 is displayed as the radius of a
green or red disk, corresponding to a
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positive or negative value, centered at
the synapse. Variable 2 is displayed as
the radius of a white circle centered at
the synapse. Variable 3 is displayed as
half the width of a white square centered
at the synapse.

BOUNDS
This option allows you to set the minimum and
maximum values of the cell and synapse variables
for one module. These are used to scale the
intensity or size of the variable's display.
The bounds are entered as follows:

CELL VARIABLE BOUNDS
Move cursor one vertically to set the
minimum and maximum values for each cell
variable in turn. Push enter after each
number is selected. Push home and enter
when both the minimum and maximum have
been chosen. The cell variable bounds are
initially 0.0 to 1.0

INPUT VARIABLE
In a similar manner, set the minimum and
maximum values for the one input variable.
These bounds will scale the intensity of
the color of the input fibers. The input
variable bounds are initially 0.0 to 1.0.
(The input variable bounds are needed only
if this module has input fibers.)

INPUT SYNAPSE VARIABLES
In a similar manner, set the minimum and
maximum values for each input synapse
variable. The input synapse variable
bounds are initially -0.1 to 0.1. (The
input synapse variable bounds are needed
only if this module has input fibers.)

RECURRENT SYNAPSE VARIABLES
In a similar manner, set the minimum and
maximum values for each recurrent synapse
variable. The recurrent synapse variable
bounds are initially -0.1 to 0.1. (The
recurrent synapse variable bounds are
needed only if this module has recurrent
fibers.)

MODIFY ELEMENT
Ihis option will allow you to change any object
currently in your network. You must designate which

.,~ .- '- ---- - -
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object you want to modify by placing cursor one on it

and pressing enter. Choosing a character string,
however, requires cursor one to be close to the
initial character of the string. If the cursor was
not close to any object when enter was pressed, you
must try again. After successfully choosing an
object, the appropriate set of options become
available. They are listed here:

Options if a SHAPE is chosen: described under main
option ADD SHAPE)

POSITION
COLOR

Options if a character string is chosen: (described
under main option ADD STRING)

POSITION
HEIGHT
WIDTH
ANGLE
TEXT
COLOR

Options if a module is chosen: (described under main
option ADD MODULE)

POSITION
AXON LENGTH
RECURRENCY
FLIP
NUM VARS
BOUNDS

DELETE ELEMENT
This option allows you to remove an object from your
network. You designate the object to be deleted by
placing cursor one on it and pressing enter. A

character string, however, is chosen by placing cursor

one close to the initial character in the string. If
an object is in a complex area of the network it might

be necessary to choose it after you have moved some of

the nearby elements away from the object. After

deleting the object, these elements may be moved back

into position. If the cursor is not close to an

object when enter is pressed, you must try again.

BACK COLOR

This option allows you to change the backgrounJ >o r.

Set the intensities of red, green, and blue by '

cursor one vertically. When done with one 2 '

enter to set the next color. When ill '

push home and enter.

SKEL COLOR
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The skeleton of a network is that part of the fibers
and cells that does not change color during variable
display, such as the fiber borders. This option
allows the skeleton color to be changed by setting the
intensities of red, green, and blue by moving cursor
one vertically. When done with one color push enter
to set the next color. When done with all colors push
home and enter.

F.2.2 Displaying the Network from Your Program

This section describes the entry points that can be
called to display a previously constructed network and
dynamically update the display variables.

Your program must be linked to the library of DESIGNNET
routines, the library of ANW graphics routines, and to the
library of Grinnell routines, for example:

LINK your program,DR1:[ANWCA.DNET]DNETLIB/LIB,
[ANWRS.GRF]GLIB/LIB,[MOVIE]GRLIBI/LIB

Initializing the Display

Before displaying the network your program must
initialize the Grinnell. This can be done by putting the
following two statements in your program before any
DESIGNNET routines are called:

CALL GR INITIALIZE (0,
CALL GRCONFIG444

To prepare a network for display call the subroutine

PREPARENET (filename)

where filename is a character string giving the name of the
file in which a network has been stored. This file can be
interactively generated or modified by using the DESIGNNET
program described in section 2.1. PREPARE NET does not
display anything and need only be called once. To display
the initial state of the network call the subroutine

DISPNETSKEL

which will draw all shapes, texts, and modules on the
Grinnell. DISP NET SKEL can be called at any point to
refresh the network display.

t-. .i
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Displaying Variables

To display the current state of the network variables
in one module call one of the following subroutines:

UPDATE MOD DISP (module number,
cell varl, cellvar2, cell var3,
inpu- var,
rct syn varl, rct syn var2, rct syn var3,
inp syn varl, inp syn var2, inp syn var3,
num-celTs in moduTe, num inputs-in module)

or

UPDATESHORTMOD (module-number, cell varl)

where the arguments are:

module number: INTEGER variable

This is the number corresponding to the module that is
to be updated.

cell varl, cell var2, cell var3: REAL arrays dimensioned
(num-cells in module)

These are the values of the 3 cell variables for each
cell. Varl is displayed as the cell's color
intensity. Var2 is displayed as the radius of a
circle centered at the cell body. Var3 is displayed
as half the width of a square centered at the cell
body.

input var: REAL arrays dimensioned
(num-inputs in module)

These are the values of the variable for each input
fiber, displayed as the fiber's color intensity.

rct syn varl, rct syn var2, rctsynvar3: REAL arrays
dimensioned (numellsin module, numcells in module)

These are the values of the 3 recurrent fiber synapse
variables. Varl is displayed as the radius of a green
or red disk, corresponding to a positive or negative
value, centered at the synapse. Var2 is displayed as
the radius of a circle centered at the synapse. Var3
is displayed as half the width of a square centered at
the synapse.

inpsyn varl, inp syn var2, inpsynvar3: REAL arrays
dimensioned (numinputs-in module, numcells in module)
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These are the values of the 3 input fiber synapse
variables, and are displayed in a manner similar to
the rct syn var's.

Not all modules will require the display of all 3
variables of each type. A single variable can be used as a
dummy for values that are not needed. For example, if only
the first variable of each type is needed, call the
subroutine with:

UPDATEMODDISP (module-number, cell varl, dummy, dummy,
input var,
rct syn varl, dummy, dummy,
inp syn varl, dummy, dummy,
num-cells in module,
num-inputs in module)

If only the first cell variable is needed, then
UPDATE SHORTMOD can be called. Every module of type
PARALLEL and CORNER should call UPDATESHORTMOD.

To display the current state of the entire network
UPDATE MOD DISP or UPDATESHORTMOD must be called for each
module in the network.

Changing Display Parameters

There are routines available for changing the color of
the network skeleton and the bounds of the variables. These
routines can be called at any time.

To change the color of the network skeleton call:

DEFSKELCOLOR (red, green, blue)

"Skeleton" refers to the cells and fibers without the
associated variables. This color is seen on the cell and
fiber borders at all times and on the cells and fibers in
which variable 1 is at a minimum. The arguments red, green,
and blue are of type INTEGER.

The bounds of the network variables are set when the
network is created, but can be changed for the duration of a
program's execution. To change the bounds of the cell
variables call:

DEF ACT RANGE (module number, var number, var minimum,
var-maxfTmum)

To change the bounds of the input fiber variable call:
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DEF INP RANGE (module number, var minimum, var maximum)

To change the bounds of the input fiber synapse variables
call:

DEF IWGHT RANGE (module-number, varnumber, varminimum,
var-maximum)

To change the bounds of the recurrent fiber synapse
variables call:

DEFRWGHT RANGE (module-number, var number, var minimum,
var-maximum)

The arguments to these four routines are:

module number: INTEGER variable
This is the number corresponding to the module whosebounds will be changed.

var number: INTEGER variable
This is the number of the variable whose bounds will
be changed. When changing cell and synapse variable
bounds this can be 1, 2, or 3; when changing the
input fiber variable bounds it can only be 1.

var minimum: REAL variable
This is the minimum value of the variable that will be
displayed. If the variable's value is less than this
it will be displayed as if it equals this minimum
value.

var maximum: REAL variable
This is the maximum value of the variable that will be
displayed. If the variable's value is greater than
this it will be displayed as if it equals this maximum
value.

F.3 Example

Assume that a network display has been created which
consists of the following modules, and saved in the file
named Mod3.Net.

Module 1 is of STANDARD type and has 4 cells, 4
input fibers, and has recurrent fibers. It will display
the following variables:
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Number Minimum Maximum
input fibers 1 0.0 1.0
cells 1 0.0 1.0

2 -5.0 10.0
input synapses 1 -1.0 1.0
recurrent synapses 1 -3.0 3.0

Module 2 is of CORNER type connecting Module 1 and
Module 2. It has 4 fibers and will display 1 variable
(cell var 1).

Number Minimum Maximum
fibers 1 0.0 1.0

Module 3 is of STANDARD type and has 4 inputs, 2
cells,( and no recurrent fibers. It will display the
following Variables:

Number Minimum Maximum
input fibers 1 0.0 1.0
cells 1 0.0 1.0

2 -5.0 10.0
input synapses 1 -1.0 1.0

The following user's program calculates the values of
all variables and calls the appropriate routines in
DESIGNNET to display their values at each interation.

program example
real cellvl(4), cellv2(4), inp var(4),modl iwts(4,4),

& modl rwts(4,4), mod3 iwtsr4,2)
data modl iwts, modl rwts, mod3 iwts /16*0.5,

& 16*3_0, 8*1.0/
C
C INITIALIZE THE GRINNELL

C
call gr initialize (0,' ')
call grconfig444

C

C PREPARE THE NETWORK
C

call prepare net ('MOD3.NET')
C
C DISPLAY THE NETWORK SKELETON
C

call dispnetskel
C
C

C DO THE FOLLOWING LOOP FOR 20 ITERATIONS (TIME STEPS)
C

do 70 istep = 1,20
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C
C COMPUTATIONS FOR MODULE I
C

do 10 numinp =1,4
inp var(numinp) =env(istep,numinp)

!rUSER'S FUNCTION)
10 continue

do 40 numcell =1,4
cellvl(numcell) = 0.0
do 20 numinp =1,4

cellvl(numcell) =cellvl~numcell)
& modi iwts~numinp,namcell)
& inpVar(numinp)

20 continue
do 30 numrct =1,4

cellvl~numcell) =cellvi(numcell) +
& modi rwts(numrct,numcell)
& cellvl(numrct)

30 continue
cellv2Cnumcell) =cellvi(numcell) * istep / 4.0

40 continue
C
C DISPLAY STATE OF MODULE 1
C

call update mod disp (1,cellvl,cellv2,dummy,
& inp var,rnodl Frwts,dummy,dummy,modl _iwts,
& dummy,dummy,4, 4)

C
C DI3PLAY STATE OF MODULE 2
C

call update shortmod (2, ceilvi)
C
C COMPUTATIONS FOR MODULE 3

do 50 numncell =1,2
inp-var(numinp) = cellvl(numinp)

50 continue
do 60 numcell =1,2

cellvl(numcell) =0.0
do 60 numinp =1,4

cellvl(numcell) cellvl~numcell)
& inp3 var(numinpnmel

60 & continue nvanuip
C
C DISPLAY STATE OF MODULE 3
C

call update-mod diso (3,cellvl,dummy,dummy,
& inp var,dumny,dummy,dummy, mod3iwts,

& dummy,duminy,dummy, 2,4)
C
70 continue

stop
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end

F.4 Restrictions

The following limits are imposed by the DESIGNNET
routines:

Quantity Minimum Maximum

Number of modules 1 15
Number of cells per module 1 10
Number of inputs per module 0 10
Number of shapes 0 40
Number of texts 0 60
Number of characters per text 1 70
Number of cell variables 0 3
Number of input fiber variables 1 1
Number of synapse variables 0 3

F.5 Error Messages

Error messages that appear at the terminal:

UNABLE TO OPEN filename
DESIGNNET was trying to open the file named 'filename'
containing a stored network, but the file didn't exist.
DESIGNNET will continue to ask for a valid file name
until one is successfully opened.

PREMATURE END OF FILE filename
DESIGNNET was reading from the file named 'filename'
containing a stored network. The end of the file was
encountered before all data was read in. The file is in
error, and the network should be recreated.

ERROR WHEN READING FILE filename
DESIGNNET was reading from the file named 'filename'
containing a stored network. An invalid data type was
encountered in the file. The network should be
recreated.

* VARIABLE MIN AND MAX THE SAME
A division by zero was encountered, because the minimum
and the maximum values (the bounds) of a variable were
set equal. The bounds can be changed by modifying the
network using DESIGNNET.

" VARIABLE THRESH AND MIN THE SAME

mob
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* VARIABLE THRESH AND MAX THE SAME
A division by zero was encountered, because the minimum
or the maximum value of a variable was equal to the
variable's threshold, which is the value at which the
first synaptic variable's disk changes from red to green.
The threshold is zero, so use DESIGNNET to change the
minimum or maximum value (the bounds) of the variable so
they are not zero.

NO BRAIN RETRIEVE PROGRAM LINKED
The main option UPDATE NET was selected, but you did not
link your BRAINRETRIEVE routine to DESIGNNET.

NO UPDATE NET DISP LINKED
The main option UPDATE NET was selected, but you did not
link your UPDATENET_DISP routine to DESIGNNET.

Error messages that appear on the Grinnell:

YOU ALEADY HAVE THE MAXIMUM NUMBER OF MODULES - COMMAND
ABORTED

YOU ALREADY HAVE THE MAXIMUM NUMBER OF STRINGS - COMMAND
ABORTED

NO DISPLAY ELEMENT NEAR THERE, TRY AGAIN

PLEASE PICK AGAIN - MODULES ONLY

WARNING: CURRENT STATE WILL BE LOST. REPEAT TO CONFIRM.

F.6 Program Origin

Authors: Rich Sutton and Chuck Anderson
Dept. of Computer and Information Sc.
University of Massachusetts
Amherst, MA 01002

Date: 1-Mar-1980

Funded by: Air Force Office of Scientific
Research and the Avionics Laboratory
(Air Force Wright Aeronautical
Laboratories) through contract
F33615-77-C-1191.

Source Language: FORTRAN IV-PLUS on VAX 11/780 VMS

Relevant Files: All in DR1:[ANWCA.DNET]
Designnet.doc
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Designnet.exe
Dnetlib .olb
Netspecs .for
Netpoints.for
Desnet. for
Drawnet .for
Delink.com creates Desnet.Exe,

which is equivalent
to Designnet.Exe

Dir.doc explanation of files
in [ANWCA.DNET]

F.7 Sum:nary of Method

To design or nodify a network display:

RUN DR1:[ANWCA.DNET]DESIGNNET

Wnen the network display is created, select the SAVE NET
option to place the network display in a file. The name of

this file must be used whenever the network display is
wanted.

The following routines must be called by the user's
progra-n to display the network (see section 2.2):

GR INITIALIZE

GR CONFIG444
PREPARE NET
DISP NET SKEL
UPDATEMODDISP or UPDATESHORTMOD

To access these routines and the Grinnell graphics routines,
the user's program must be linked by:

LINK user'sprogram,,DR1:[ANWCA.DNET]DNETLIB/LIB,
[ ANWRS.GRF]GLIB/LIB, [MOVIE]GRLIBI/LIB

F.3 Additonal Documentation

The routines in the Grinnell graphics library are
documented in the file: DR1:[MOVIE]GRDOC1.DOC

The EXPER package, which simulates a robot and its
environment, is documented in the file:
DRI:[ANWCA.DNET]EXPER.DOC . This will explain the use of
the data file named EXPER.BRA referred to in this document.



APPENDIX G

EXPERIMENTER: SIMULATION OF A ROBOT'S ENVIRONMENT

G.1 Description

EXPERIMENTER is a system for creating, modifying,
manipulating, and simulating robots and their
two-dimensional planar environments. The model world
consists of an arbitrarily large number of independently
moving robots, goal or landmark objects, and movement
restricting barriers. A user provides the subroutines for
the control of the robot, and this tool allows him to
experiment with the capabilities of his control algorithm in
a range of different environments much as a psychologist
might investigate the behavior of some beast. The
limitations on robot and environmental structures are
particularly suited to the investigation of the learning,
reasoning, and planning capabilities of a robot control
algorithm.

EXPERIMENTER is a tool. EXPERIMENTER is not a complete
system but only a starting place for an applications
project. Only in the rarest of circumstances will major
modifications and additions be unnecessary.

Nor is EXPERIMENTER everyman's robot simulation system.
As a category of simulation objects, "robots and their
environments" is far too broad to be handled by a unified
system. Many different applications require the simulation
of quite different world models. Thus, EXPERIMENTER is only
appropriate for a restricted class of applications: it
seems inappropriate for applications requiring a three
dimensional model world or objects of complex internal
structure. Where a two dimensional view of space is
sufficient, as for spatial planning and reasoning tasks,
then EXPERIMENTER may be very useful.

One way of thinking of EXPERIMENTER is as a software
substitute for an actual robot. As a shape on a CRT screen
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it is a p:or substitute for a physical crawlinZ beast, but

for convenience and flexibility, it has the hardware version
beat.

G.2 User Instructions

The use of EXPERIMENTER is described in three sections.
First, the construction of a robot's brain routine is
explained. The procedure for linking EXPERIMENTER with your
routine and data files is then given. Finally, the
execution of EXPERIMENTER is described by defining the
functions of the options that are available during
execution.

G.2.1 The Robot's Brain

The robots' control system, referred to as its brain,
must be supplied by the user in the form of a FORTRAN

subroutine named BRAIN. The BRAIN routine is passed an
array of real values representing the state of the
environment as perceived by the robots. BRAIN should
process these values and generate an action to be performed
by the robots. The action is represented by an array of
real values passed back to EXPERIMENTER. A typical
declaration for the subroutine would appear as:

SUBROUTINE BRAIN (ENVIRARRAY, ACTIONARRAY)

If the state of the robots' brain will ever need to be
saved and retrieved, then entry points BRAIN SAVE and
BRAIN RETRIEVE should be included in BRAIN and would be
declaFed as:

ENTRY BRAIN SAVE (i/o unit number)
ENTRY BRAIN-RETRIEVE (i/o unit number)

The following summary of the variable names used by
EXPERIMENTER to represent the environment is included to aid
in the design of a BRAIN routine. These variables can be
accessed within the BRAIN routine by including the common
block declarations contained in file
DRI:[ANWRS.EXP]WORLDCOM.FOR.

1...--
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AN INFORMAL DESCRIPTION OF THE WORLD MODEL OF EXPERIMENTER

As well as providing an "informal" description of
the simulated system, the following constitutes a concise
exposition of the data structures of experimenter. The
common block structure should be apparent from the source
code. In the following, I am using E as the "element of"
symbol, and R (R+) as a range to be the reals (positive
reals).

A Discrete Time Model:

Components:

An infinite PLANE, upon which the following three
kinds of objects are distributed.

NB BARRIERs, each of two ENDPOINTs
NL LANDMARKS, each a POINT OBJECT (PO)
NR ROBOTS, each a POINT OBJECT capable of motion

NR+NL SYMBOLS, the display representations of POINT
OBJECTs
1 BRAIN, with

NA AFFERENTS (input lines)
NE EFFERENTS (output lines)

Descriptive Variables:

POX(PON)[t], POY(PON)[t] E R, PON=1,...,NR+NL
The x and y coordinate at time t of the PONth POINT
OBJECT (PON is short for Point-Object-Number; POX
is short for Point-Object-X-coordinate). The first
NR POINT OBJECTS are ROBOTS, the last NL are
LANDMARKS.

POSIZE(PON)[t] E R+, PON=1,...,NR+NL
The size (radius) of the PONth POINT OBJECT at time
t.

BX(PN,BN)[t], BY(PN,BN)[t] E R, PN=1,2; BN=1,...,NB
The x and y coordinates at time t of the PNth
ENDPOINT of the BNth BARRIER (BX is short for
Barrier-X-coordinate; BN is short for
Barrier-Number; PN is short for endPoint-NUmber.)

BW4(BN)[t] E R+, BN=I,...,NB

The size (width) of the BNth BARRIER at time t.
AFF(AN)[t] E R, AN=1,...,NA

The signal on the ANth AFFERENT or input line to
the BRAIN (AN is short for Afferent-Number).

EFF(EN)[t] E R, EN=1,...,NE
The signal on the ENth EFFERENT or output line from
the BRAIN (EN is short for Efferent-Number). In
the demo application, There are two EFFERENT lines

-. r -
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for each robot in the world - so that EFF looks
like DXl, DYl, DX2, DY2, ... , DXNR, DYNR, where
(DXi, DYi) is the change in x and y coordinates
being attempted this time step (DXi is short for
Delta-X-of-the-ith-robot).

Parameters (for display purposes):

SYMTYPE(SN) E {1,2,...,NST}, SN=1,...,NR+NL
The type of symbol (the shape) of the SNth SYMBOL.
In the demo application, each SYMBOL corresponds to
the POINT OBJECT of the same index. (SYMTYPE is
short for Symbol-Type; NST is short for
Number-of-Symbol-Types)

SCR(SN), SCG(SN), SCB(SN) E {0,1,...,2551,
SN=1,...,NR+NL:

The color of tne SNth SYMBOL, corresponding in the
demo application to the SNth POINT OBJECT. (SCR is
short for Symbol-Color-Red.)

BCR(BN), BCG(BN), BCB(SN) E {0,1,...,255},
BN=1,...,NB:

The color of the BNth BARRIER (BCR is short for
Barrier-Color-Red.)

Equations of Interaction:

POX(RN)[t+1] = POX(RN)[t] + EFF(RN*2-1) RN=I,...,NR
(in the demo application and if no barriers are
hit; RN is short for Robot-Number.)

POY(RN)[t+1] = POY(RN)[t] + EFF(RN*2) RN=1,...,NR
EFF[t] = BRAIN[AFF[t]] AFF[t] = CALCAFFERENTS[t] (in
the demo application)

The standard way of using the network display package
from EXPERIMENTER is to create an entry point called
UPDATE NET DISP which takes no arguments and merely makes
all necessary calls to UPDATE MOD DISP or UPDATE SHORTMOD to
update the dipslay of your network. [All other network

display functions are handled by EXPERIMENTER.] See the
documentation for DESIGNNET for an explanation of the
network display package.

G.2.2 Linking EXPERIMENTER

EXPERMENrER must be linked with your BRAIN routine.

This is done by executing the command file EXPLINK, which

4 - -a--
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will ask you several questions regarding the following

options:

Linking Options

GRADIENT DISPLAY
The gradient display shows the direction and magnitude of
a robot's movements from points in the environment
arranged in a rectangular array. Movement is shown by
vectors originating at each of the points. Selecting
this option also permits the display of the potentials of
objects in the environment (see Edit Display Option
POTENTIAL).

NETWORK DISPLAY
Use this option only if you have previously created a
network display, using DESIGNNET, that corresponds to
your BRAIN routine. This will link all the needed
DESIGNNET routines to your program. Your BRAIN routine
must include an UPDATE NET DISP entry point that performs
the calls to UPDATE-MOD-DISP or UPDATE SHORTMOD (see
DESIGNNET documentation).

ROBOT TRACK DISPLAY
This option causes each robot to leave a trail as it
moves in the environment. Each time a robot moves a line
is drawn from its new location to its previous location.

NUMBERED SAVE/RETRIEVE FILES
This option allows you to have several different BRAIN
states saved during execution. Each file is identified
by an integer number which must be specified when saving
and retrieving files. Without this option, the normal
file name is used for the BRAIN state file.

The sequence of questions are shown below as they would
appear at the terminal. The first line is what you type to
execute EXPLINK.

@[anwrs.exp]explink your brain routine file name
GRADIENT DISPLAY OPTION (Y OR CR) ? y
NETWORK DISPLAY OPTION (Y OR CR) ? y
ROBOT TRACK DISPLAY OPTION (Y OR CR) ? y
NUMBERED SAVE/RETRIEVE FILES OPTION (Y OR CR) ? y
LINK EXIT

Data Files

There are 3 files that EXPERIMENTER can reference.
They are described below with their names that EXPERIMENTER
will initially refer to. When executing EXPERIMENTER you
can select main option SET FILES to tell EXPERIMENTER the

V i_ _ _ _ _ _ _ _ _ _
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names of your files if they differ from tne names below.

EXPER.ENV Contains all information needed to display an

environment. This can be retrieved to modify
an existing environment or written into to
save the current environment.

EXPER.BRA Contains a state of the user's BRAIN routine.
This can be retrieved to reset the BRAIN to a
past state, or written into to save the
current BRAIN state. Several different
states can be saved in numbered files if you
select the numbered files option when linking
with EXPLINK.

EXPER.NET Contains all information needed to display a
network. This can be retrieved to display the

network and subsequently updated by the BRAIN
routine. EXPERIMENTER cannot change the
network structure; use DESIGNNET to modify
the network (see DESIGNNET documentation).

If a file does not exist or there is some other error

in opening it for reading, then no data will be read in,
leaving the original configuration unchanged, and no error

message will be given. If the numbered files option is

used, then the file names will be 1.ENV, 1.BRA, 1.NET,
2.ENV, etc.

G.2.3 Executing EXPERIMENTER

To start executing EXPERIMENTER with your BRAIN routine

type

RUN yourbrainroutine filename

Since EXPERIMENTER is run in the DEBUG mode enter "go" in

response to >DBG. Most of the interaction will be through

the Grinnell. An option can be selected by moving cursor

one into a box in the option list and pressing enter. Some
options require subsequent option selections; to return to
a previous option list press home, then enter.

Main Options

REFRESH

Redraw the current state of the environment or the
network.

EDIT WORLD

-. ,



EXPERIMENTER: SIMULATION OF A ROBOTS' ENVIRONMENT PAGE G-7
User Instructions

Allows you to change some aspect of the environment.
Another list of options will appear and are described
below, following the Main Options.

SIMULATE
Performs a number of time steps in the robot-environment
interaction. One step is defined as one call to BRAIN
and the execution of the resulting action. One of the
following options must be selected to indicate the number
of steps to perform and display. The accumulated number
of steps will appear in the lower left corner of the
screen.

SIMULATE Options

QUICK
Time steps will be continuously performed, but not
displayed. Press enter to stop the simulation and
to display the final state.

CONTINUOUS

Time steps will be continuously performed and the
results of each step will be displayed. Press
enter to stop the simulation.

SINGLE STEP
One time step is performed each time this option is
selected, i.e., each time enter is pressed.

EDIT DISPLAY
Allows you to change the current display without
affecting the structure of the environment. Another list
of options will appear and are described below, following
the EDIT WORLD options.

RETRIEVE ALL
All information in the environment, brain, and network
data files is retrieved. This could change the current
state of each, so a safety feature requires you to select
this option a second time. Use the main option SET FILES
to change the file name.

SAVE ALL
All information concerning the current states of the
environment and the brain are saved in their respective
data files. Use the main option SET FILES to change the
file names.

PHOTO
The option list is erased and the display is refreshed.
A photograph can then be taken of the display without the
option list. Press enter to make the option list visible

p.
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again.

MAKE GRADIENTS
Not functional at this time.

EXIT
Stops the execution of EXPERIMENTER. Since EXPERIMENTER
is run in the DEBUG mode, you must enter "exit" in
response to >DBG at the terminal.

EDIr WORLD Options

ADD ROBOT
This adds another robot to the environment (world).
After selecting this option the following questions will
be asked on the Grinnell to help you specify the new
robot.

ADD ROBOT Questions

SYMBOL TYPE?
Several different symbols, e.g., square, circle, or
box, will appear on the Grinnell. Place cursor one
on the symbol that you want to represent the new
robot and press enter. The symbol that you
selected will be placed in the center of the
screen. ,

SIZE?
Move cursor one towards or away from the screen
center to reduce or enlarge the symbol. The cursor
should be in track mode.

COLOR?

For this question you have two options.

COLOR Options

ARBITRARY
You select the color of the robot by choosing
the red, green, and blue intensities by
moving cursor one vertically and pressing
enter for each color. Press home and enter
when done.

BY MATCHING
The robot is given the color of another
object in the environment by placing cursor
one near the object having the desired color
and pressing enter.
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POSITION?
With the cursor in track mode, move cursor one to
position the robot in the environment. Press enter
when done.

ADD LANDMARK
This adds a landmark to the environment. A landmark is a
stationary element of the environment and has the
capability of being observed by the robots. This is done
by assigning a landmark a "scent", which is a function of
the distance from the landmark. In this way, the robot
can determine its location relative to the landmarks that
it observes. The option MODIFY OBJECT under main option
EDIT WORLD is used to assign a "scent" to an object.
After selecting this option the following questions are
asked on the Grinnell. Refer to the EDIT WORLD option
ADD ROBOT for an explanation of these questions.

ADD LANDMARK Questions

SYMBOL TYPE?
SIZE?
COLOR?
POSITION?

ADD BARRIER
A barrier is a "wall" in the environment through which
the robots cannot move. An object's "scent", howeier,
will pass through a barrier. Barriers can be used to
build mazes in which the robots can be placed. A barrier
is specified by a rectangle that can be placed anywhere
in the environment. Several questions will be asked on
the Grinnell screen to help you specify the rectangle.

ADD BARRIER Questions

COLOR?
You must specify the color of the barrier in one of
two ways, i.e., one of the following options must
be selected. See the ADD ROBOT option for an
explanation of each of these.

COLOR Options

ARBITRARY
BY MATCHING

1ST ENDPOINT?
An endpoint is the center point of one of tho
rectangle's short sides. Move cursor one to the
position at which you want one end of the barrier.
Press enter when done.
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2ND ENDPOINT?
In a sinilar manner, move cursor one to specify the
second endpoint, and press enter.

W IDTir?
The width of the rectangle (barrier) is decreased
or increased by moving cursor one towards or away
from the line through the two endpoints. Cursor

one should be in track mode. Press enter when
done.

MODIFY OBJECT
This allows you to change any of the following aspects of
an object in the environment. Place cursor one near the
object you want to modify and press enter. The following
options will appear.

MODIFY OBJECT Options

SYMBOL
You select a new symbol to represent the object by
putting cursor one on the symbol and pressing

enter.

COLOR
Choose a new color for the object in one of the
following two ways. See ADD ROBOT option for an
explanation of these options.

COLOR Options

ARBITRARY
BY MATCHING

AFF EFFECT
With this option you can change the way that this
object influences the inputs to the robots' BRAIN
routine. The object's influence can be referred to
as its "scent". The object's influence on the
inputs is determined by two items: the EFFECT and
the POWER LAW. The EFFECT is set by selecting a
real number for each input, or afferent. These
numbers are the maximum values that the object can
contribute to each input line. The POWER LAW
determines the spatial extent of the object's
influence. Its influence is maximal at the object
and zero at its extent and beyond. Currently, its
influence changes linearly from the object to the
influence's extent. Each input value to the BRAIN
routine is calculated by summing the contributions
from all objects. Use the following options to
change the object's influence.
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AFF EFFECT Options

SCALE
This allows you to change the scale in which
the EFFECTS and the POWER LAW are displayed.
Their values are not changed.

SCALE Options

DOUBLE EFFECT SCALE
Reduces the EFFECT scale.

HALF EFFECT SCALE
Expands the EFFECT scale.

DOUBLE POWER SCALE
Reduces the POWER LAW scale.

HALF POWER SCALE
Expands the POWER LAW scale.

ZERO ALL
Sets the EFFECTS and POWER LAWS for the
object to zero.

POWER LAW
You select the extent of the object's
influence by moving cursor one vertically
while in track mode. Press enter when done.

EDIT EFFECT
You select the EFFECT of this object on each
input value by moving cursor one vertically
while in track mode. Press enter to change
the next input value and when done.

NEXT ROBOT
Allows you to change the AFF EFFECT for the
next robot.

SIZE-WIDTH
Alter the size of the object by moving cursor one away or
towards the center of the object, or the line through the
endpoints if the object is a barrier. The cursor should
be in track mode. Press enter when done.

POSITION
Move the object to any point in the environment by moving
cursor one to that point. The cursor should be in track
mode. Press enter when done.

EDIT DISPLAY Options
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BACKGROUND
Specify the color of the background by choosing the red,
green, and blue intensities by moving cursor one
vertically and pressing enter for each color. Press home
and enter when done.

GRADIENT
This option is valid only if you have compiled a
gradient-calculating subroutine called BRAIN NOSIDEEFF
and have answered "y" to the linking option "GRADIENT
DISPLAY?". If this has been done, then the gradient will
be displayed. The gradient shows the direction and
magnitude of the robot's movements from many points in
the environment arranged in a rectanglar array. The
BRAIN NOSIDEEFF subroutine should perform all of the
BRAIN routine functions except changing the brain's
state, i.e., just calculate the efferents given the
afferents.

POTENr[AL
This option is valid only if you have answered "y" to the
linking option "GRADIENT DISPLAY?". This will allow you
to see the potential, or "scent", of an object in the
environment. It is displayed as a color intensity
surrounding the object. The object must be chosen by
selecting its number in the option list that appears
after selecting the POTENTIAL option. The objects'
numbers correspond to the order in which they were
created.

SHRINK
If the environment is currently displayed, then the
environments dimensions are reduced. It appears as if
you have stepped back from the environment to get a
broader view. If the network is currently displayed,
then the network's variable bounds are widened so the
size or intensity of the variable displays are reduced.

EXPAND
This has the reverse effect of the SHRINK option.

TRANSLATE
The environment display can be shifted in any direction
by placing cursor one on the point that you want to be
shifted to the center of the screen. Press enter when
you have positioned the cursor.

NET4ORK
This option is valid only if you have previously created
and saved a network with DESIGNNET (see DESIGNNET
documentation) corresponding to the current BRAIN
routine, and have included an UPDATE NET DISP entry point
that will display the values of the- network variables.
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You also must have linked the network display option when
performing EXPLINK. If this has been done, then the
environment display is erased and the network is
displayed. You cun then select SIMULATE and observe the
changes in the network display.

ENVIRONMENT
This option erases the network display and displays the
current state of the environment. This option is the
reverse of the NETWORK option.

SET RANGE
This option is valid only if the network is currently
displayed. It allows you to change the range, or bounds,
or the network display variables (see DESIGNNET
documentation).

G.3 Example

The following FORTRAN IV-PLUS is an example of a BRAIN
subroutine.

c.............................................................
c This BRAIN routine performs a Run and Twiddle algorithm.
c If a robot perceived a stronger "scent" now than it did
c one time step ago, it will continue in the same
direction.
c Otherwise, it selects a new direction at random.
c------------------------------------------------------------

subroutine BRAIN (afferents, efferents)

include 'DR1:[ANWRS.EXP]WORLDCOM.FOR'
parameter maxnumrobots = 10
real afferents(nr), efferents(nr*2),

& oldlevel(maxnumrobots)
integer i, unit, iseed

if (nr .lt 1) return !if no robots, then return

do 20 i = 1, nr
if (afferents(i) - oldlevel(i) .le. 0.0) then

efferents(i*2-1) = 20.0 * (ran(iseed)*2 - 1)
efferents(i*2) = 20.0 * (ran(iseed)*2 - 1)

endif

oldlevel(i) afferents(i)

20 continue
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ret urn

c----------- entry for BRAINSAVE----------------------------

entry BRAINSAVE (unit)

write (unit,*) (oldlevel(i),i=1,nr)
write (unit,*) iseed

return

c------------entry for BRAINRETRIEVE------------------------

entry BRAINRETRIEVE (unit)

read (unit,*) (oldlevel(i),i=1,nr)
read (unit,*) iseed

return

c------------entry for calculating action gradient---------

entry BRAINNOSIDEEFF (afferents, efferents)

c This entry is meant to calculate the efferents as a
c function of the afferents, but have no side effects
c on the brain state. The resultant action choice is
c interpretted as the direction the robot would tend to
c move. This is used to display movement tendencies as
c a function of position (see the Edit Display Option
c GRADIENT).

return

c------------entry for updating the network display--------

entry UPDATENETDISP

c There is no network display for this example. If
c there was, the appropriate calls to UPDATE MODDISP
c or UPDATE SHORTMOD would go here.

return

end
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G.4 Restrictions

The following restrictions are placed on the given
quantities.

Quantity Maxi:num

Number of robots 20
Number of point objects 60
Number of barriers 100
Number of input values passed

to BRAIN 20
Number of output values returned

by BRAIN 20

G.5 Error Messages (not applicable)

G.6 Program Origin

Author: Richard S. Sutton
Dept. of Computer and Information Sc.
University of Massachusetts
Amherst, MA 01002

Date: 1-Mar-1980

Funded by: Air Force Office of Scientific
Research and the Avionics Laboratory

(Air Force Wright Aeronautical
Laboratories) through contract
F33615-77-C-1 191.

Source Language: FORTRAN IV-PLUS on VAX 11/780 VMS

G.7 Summary of Method

Step 1.
Create a file containing a subroutine named BRAIN with
entry points for BRAIN RETRIEVE and BRAIN SAVE, and
optionally BRAINNOSIDEEFF and UPDATE NETDISP.

Step 2.
Compile the BRAIN subroutine.
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Step 3.

Link EXPERIMENTER with you BRAIN routine by:

@[ANWRS.EXP]EXPLINK yourbrain routinefile name

Step 4.
Run EXPERIMENTER. Create the environment and then
simulate the robot-environment interaction.

G.8 Additional Documentation

The network display package, DESIGNNET, is described in
tihe documentation file: DR1:[ANWCA.DNET]DESIGNNET.DOC

The graphics routines for the Grinnell display are
documented in DR1:[MOVIE]GRDOC1.DOC.

K -" --



Page I

BIBLIOGRAPHY

Aizerman, M. A., Braverman, E. M., Rozonoer, L. I.:
Theoretical foundations of the potential function
method in pattern recognition learning. Automation and
Remote Control 25, 821-837 (1964)

Albus, J. S.: Mechanisms of planning and problem solving in
the brain. Math. Biosci. 45, 247-293 (1979)

Alkon, D. L.: Voltage-dependent calcium and potassium ion
conductances: A contingency mechanism for an
associative learning model. Science 205, 810-816
(1979)

A;nari, S.: A mathematical approach to neural systems. In:
Systems neuroscience. Metzler, J., ed. New York:
Academic Press 1977

Amari, S.: Neural theory of association and
concept-formation. Biol. Cybernetics 26, 175-185
(1977)

Amari, S., Arbib, M. A.: Competition and cooperation in
neural nets. In: Systems neuroscience. Metzler, J.,
ed. New York: Academic Press 1977

Anderson, J. A., Silverstein, J. W., Ritz, S. A., Jones,
R. S.: Distinctive features, categorical perception,
and probability learning: Some applications of a
neural model. Psychol. Rev. 35, 413-451, (1977)

Arbib, M. A.: The metaphorical brain. New York:

Wiley-Interscience 1972

Arbib, M. A.: Segmentation, schemas and cooperative
computation. In: Studies in mathematical biology,
part I: Cellular behavior and the development of
pattern. Levin, S., ed. Math. Assoc. of America
1978



BIBLIOGRAPHY PAGE 2

Arbib, M. A.: A view of brain theory. To appear in:
3elf-organizing systems, the emergence of order.
Yates, F. E., ed. New York: Plenum 131a

Arbib, M. A. : Perceptual structures anJ distributed motor
control. To appear in: Handbook of physiology, vol.
III: Motor control. Brooks, V. B., ed. Bethesda, MD:
Amer. Physiol. Soc. 1931b

Arbib, M. A., Kilmer, W. L., Spinelli, D. N.: Neural models
anJ memory. In: Neural mechanisms and memory.
Rosenzweig, M. R., Bennet, E. L., eds. Cambridge MA:
The MIT Press 1976

Ashby, 4. R. : Design for a brain. New York: Wiley 1960

Bain, A.: The Senses and the intellect (third edition).
New York: Appleton 1374

Barto, A. G., Sutton, R. S.: Prediction in classical
conditioning: An adaptive element nodel. COINS
Technical Report No. 80-92. Dept. of Computer and
Information Science, University of Massachusetts,
Amherst, MA, 1980.

Barto, A. G., Sutton, R. S.: Landmark learning: An
illustration of associative search. To appear in:
Biol. Cybernetics (1931)

Barto, A. G., Sutton, R. S., Brouwer, P.: Associative
search network: A reinforcement learning associative
nemory. To appear in: Biol. Cybernetics (1931)

Black, A. H., Dalrymple, A. J. : Reasoning in the rat
reconsidered.

Bledsoe, d. W., Browning, I.: Pattern recognition and
reading by machine. Proc. Eastern Joint Comp. Conf.,
-225-2-32 (1959)

Blodgett, H. C.: The effect of the introduction of reward
upon the maze performance of rats. Univ. of
Calif. Publ. Psychol. 4, 17-24 (1929)

V . ln



BIBLIOGRAPHY PAGE 3

Box, G., Jenkins, G.: Time series analysis: Forecasting
and control. San Francisco: Holden Day 1976

Brindley, G. S.: Nerve net models of plausible size that
perform many simple learning tasks.
Proc. Roy. Soc. (Lond.) B 174, 13-191 (1969)

Brooks, R. S.: A balance principle for optimal access
control. COINS technical report No. 80-20. Dept. of
Computer and Information Science, University of
Massachusetts, Amherst, MA, October, 1930

Bush, R. R., Mosteller, F.: Stochastic models for learning.
New York: diley 1955

Busis, N. A., 4eight, F. F., Smith, P. A.: Synaptic
potentials in synpathetic ganglia: Are they mediated
by cyclic nucleotiJes? Science 200, 1079-1081, (1973)

Campbell, D. T. : Blind variation and selective survival as
a general strategy in knowledge-processes. In:
Self-organizing systems, pp. 205-231. Yovits, M. C.,
Cameron, S., eds. New York: Pergamon 1962

Clark, '4. A., Farley, B. G.: Generalization of pattern
recognition in a self-organizing system. Proc. Western
Joint Comp. Conf., 86-91 (1955)

Cooper, L. N.: A possible organization of animal memory and
learning. In: Proceedings of the Nobel Symposium on
collective properties of physical systems. Lundquist,
B., Lundquist, S., eJs. New York: Academic Press 1974

Craik, K. J. W.: The nature of explanation. Cambridge:
Cambridge University Press 1934

Crane, H. D. : Beyond the seventh synapse: The neural

marketplace of the mind. SRI Research Memorandum,
Stanford Research Institute, Menlo park, CA, December

1973



BIBLIOGRAPHY PAGE 4

Dawkins, R.: The selfish gene. New York: Oxford 1976

Dennett, D. C.: dhy the law of effect will not go away.
In: Brainstorms. Montgomery, Vermont: Bradford 1973

Dickenson, A., Mackintosh, N. J.: Classical conditioning in
animals. Ann. Rev. Psychol. 29, 537-512 (1973)

Didday, R. L.: A model of visuomotor mechanisms in the frog
optic tectum. Math. Biosci. 30, 169-139 (1976)

Duda, R. 0., Hart, P. E.: Pattern calssification and scene
analysis. New york: Wiley 1973

Egger, M. D., Miller, N. E.: Secondary reinforcement in
rats as a function of informative value and reliability
of the stimulus. J. Exper. Psychol. 64, 97-104 (1962)

Eisenstein, B. A.: A self-learning estimator for tracking.
IEEE Trans. Syst., Man, Cybern. SMC-2. 2, 231-234
(1972)

Ellias, A. A., Grossberg, S.: Pattern formation, contrast
control, and oscillations in the short term memory of
shunting on-center-off-surround networks.
Biol. Cybernetics 20, 69-93 (1975)

Foster, C. C.: Content adressable parallel processors. New
York: Van NostranJ Reinhold 1976

Fraenkel, G. S., Gunn, D. L.: The orientation of animals:
Kineses, taxes and compass reactions. New York: Dover
1961

Freeman, W. J. : Mass action in the nervous system. New
York: Academic Press 1975

Frey, P. 'd., Sears, R. J. : Model of conditioning
incorporating the Rescorla-Wagner associative axiom, a
dynamic attention process, and a catastrophe rule.
Psychol. Rev. 85, 321-340 (1978)



BIBLIOGRAPHY PAGE 5

Fukushia, K.: A nodel of associative memory in the brain.
Kybernetic 12, 53-53 (1973)

G3lanter, E., Gerstenhaber, M.: On thought: The extrinsic
h3eory. Psychol. Rev. 63, 213-227 (1956)

GreengarJ, P.: Possible role for cyclic nucleotides and
phosphorylateJ membrane proteins in postsynaptic
actions of neurotransmitters. Nature 260, 101-103
(1976)

Grossberg, S.: Some networks that can learn, remember, and
reproduce any number of complicated space-time
patterns. J. Math. 'Aech. 19, 53-91 (1969)

Grossber, S. : Classical and instrumental learning by
neural networks. In: Progress in theoretical biology.
Rosen, R., Snell, F., ads. New York: Academic Press
1974

Grossberg, S.: - Adaptive pattern classification and
universal recoding: I. Parallel development and
coling of neural feature detectors. Biol. Cybernetics
23, 121-134 (1976a)

Grossberg, S.: Adaptive pattern classification and
universal recoding: II. Feedback, expectation,
olfaction, illusions. Biol. Cybernetics 23, 137-202
(1976b)

Gregory, R. L.: On how so little information controls so
much behavior. In: Towards a theoretical biology, 2
sketches. Waddington, C. H., ed. Edinburgh:
Edinburgh University Press 1969

Grice, G. R.: The relation of secondary reinforcement to
delayed reward in visual discrimination learning.
J. Exper. Psychol. 33, 1-16 (1943)

Hanson, A. R., Riseman, E. M., eds.: Computer vision
systems. New York: Academic Press 197B



BIBLI 3 GRAPHY PAGE 6

43rt'a, E.: Visual perception: k Jynani theory.
Biol. Cybernetics 22, 169-130 (1976)

+3rth, E., rz3n3kou E. : ALOPEX: A stochasti2 nethoJ fo3r
J-ternining visuil receptive, fielJs. Vision Res. 14,
1475-I143? (1974)

dtwkiiS, J. K.: Self-organizing systems - - review anJ
conmentary. Proc. IRE 49, 31-43 (1951)

iabb, D. 0.: The organization of behavior. New York:
4itey 1949

.ii[;ard, E. R.: Tlve niture of the conditioned response. I.
The case for and against stinulus substitution.
Psy.-nol. Rev. 43, 366-385 (1936)

H1-ilarI, E. R., Bower, G. H.: Theories of learning (fourth
aJition). Enriewood Cliffs, New Jersey: Prentice-Hall
1973

Ao, Y. C.: Differential %a-nes, dynanic optimization, 3nJ
jeneralized control theory. J. Optimization Theor. and
Applic. 6, 179-239 (1970)

Holland, J. H.: Adaptation in natural ani artificial
syste'ns. Ann Arbor: University of Michigan Press 1975

Hull, C. L. : Principles of behavior. New York:
Appleton-Century-Crofts 1943

John, E. R., Schwartz, E. L. : The neurophysiology of
information processing and cognition.
Ann. Rev. Psychol. 29, 1-29 (1973)

Kanin, L. J. : Predictability, surprise, attention and
2onJitioning. In: Punishment and aversive behavior.
Capbell, B. A., Church, R. X., els. New York:
Appleton-Century-Crofts 1969



BIBLIOGRAPHY PAGE 7

KanJel, E. R.: Cellular basis of behavior. San Francisco:
'd. H. Freeman 1976

Kaniel, E. R.: A cell-biological approach to learning.
Grass Lecture Monograph 1. Bethesda, MD: Society for
Neuroscience 1978

Kasyap R. L., Blaydon, C. C., Fu, K. S.: Stochastic
approximation. In: Adaptation, learning, and pattern
recognition systems: Theory and applications, pp.
339-354. Mendel, J. M. , Fu, K. S., eds. New York:
Academic Press 1970

Kellogg, W. N.: Evidence for both stimulus-substitution and
original anticipatory responses in the conditioning of
dogs. J. Exper. Psychol. 22, 186-192 (1938)

Kesten, H.: Accelerated stochastic approximation.
Ann. Math. Statist. 29, 41-59 (1958)

Kilmer, 'd. L., McCulloch, W. S., Blum. J. : A model of the
vertebrate central command systei. Int. J. Man-Machine
Stud. 1, 279-309 (1969)

Klopf, A. H., Gose, E. : An evolutionary pattern recognition
network. IEEE Trans. Syst. Sci. Cybern. SSC-5, 3,
247-250 (1969)

Klopf, A. H.: Brain function and adaptive systems - A
heterostatic theory. Air Force Cambridge Research
Laboratories Research Report AFCRL-72-0164, Bedford,
MA, 1972. (A summary appears in:
Proc. Int. Conf. Syst., Man, Cybern., IEEE Syst., Man,
Cybern. Soc., Dallas, Texas, 1974)

Klopf, A. H.: Goal-seeking systems from goal-seeking
components: Implications for AI. The Cognition and
Brain Theory Newsletter 3, 2 (1979)

Klopf A. H.: The hedonistic neuron: A theory of memory,
learning and intelligence. Washington, D. C.:
Hemisphere Publishing Corp. 1981 (to be published)

* l- - -]



BIBLIOGRAPHY PAGE 8

Kohonen, T., Oja, E.: Fast adaptive formation of
orthogonalizing filters and associative memory in
recurrent networks of neuron-like elements.
Biol. Cybernetics 21, 35-95 (1976)

Kohonen, T.: Associative memory: A system theoretic
approach. Berlin: Springer 1977

Koshland, D. E. Jr.: A model regulatory system: Bacterial
chemotaxis. Physiol. Rev. 59, 811-362 (1979)

Kuipers, B. J.: Representing knowledge of large-scale
space. M.I.T. Artificial Intelligence Laboratory
Report AI-TR-418. Cambridge, MA, 1977

Lashley, K. S.: The problem of serial order in behavior.
In: Cerebral mechanisms of behavior: The Hixon
Symposium. Jeffress, L. P., ed. New York: Wiley 1951

Libet, B., Kobayashi, H., Tanaka, T. : Synaptic coupling
into the production and storage of a neuronal memory
trace. Nature 258, 155-157 (1975)

Longuet-Higgins, H. C. : Holographic model of temporal

recall. Nature 217, 104 (1963a)

Longuet-Higgins, H. C.: The non-local storage of temporal
information. Proc. Roy. Soc. (Lond.) B 171, 327
(1968b)

Longuet-Higgins, H. C., 'illishaw, D. J., Buneman, 0. P.:
Theories of associative recall. Rev. Biophys. 3,
223-244 (1970)

Luce, R. D., Raiffa, H.: Games and decisions. New York:
Wiley (1957)

Lund, R. D. : Development and plasticity of the brain. New
York: Oxford 1973



BIBLIOGRAPHY PAGE 9

4!.

Macn, E.: On the part playai by accident in invention and
discovery. Monist 6, 161-175 (1896)

MacKay, D. M.: The epistemological problem for automata.
In: Automata studies, pp. 235-251. Shannon, C. E.,
McCarthy, J., ads. Princton, N.J.: Princton
University Press 1955

Aac'Jintosh, N. J.: The psychology of inimal learning. New
York: Acadenic Press 1974

Marr, D. : A theory of cerebellar cortex. J. Physiol. 292,
437-479 (1969)

Marshak, J., Radner R.: Economic theory of teams. New
Haven: Yale University Press 1972

Mandel, J. M. : Synthesis of quasi-optimal switching
surfaces by means of training techniques. In:
Adaptation, learning, and pattern recogntion systems:
Theory and applications, pp. 163-195. Mendel, J. M.,
Fu, K. S., eds. New York: Academic Press 1970

Mendel, J. 4., Fu, K. S., eds.: Adaptive, learning, and
pattern recognition systems: Theory and applications.
New York: Academic Press 1970

enel, J. :4., McLaren, R. W.: Reinforcement-learning
control and pattern recognition systems. In:
Adaptive, learning, and pattern recognition systems:
Theory and applications, pp. 237-317. Mendel, J. M.,
Fu, K. S., ads. New York: Academic Press 1979

Michie, D., Chambers, R. A.: BOXES: An experiment in
adaptive control. Machine Intelligence 2, pp.
137-152. Dale E., Michie, D., eds. Edinburgh: Oliver
and BoyJ 1968

Miller, G. A., Galanter, E., Pribram, K. H.: Plans and the
structure of behavior. New York: Henry Holt and Co.
1969



3 13LI DR 'PIY PAGE 10

4I Ier, J. 3., K shilanj, D. E., Jr.: Sensory
3 L2tropysi)logy of bacteria: Relationship of the
n 2nbr in potentil to notil ity nJ chenoti× s in
B 12il.J3 sJbtiIis. Pro2. Nitl. 42a. Sci. U3A 74,
473-4735 (I77)

Ailner, P. A.: Tae -etl-as3enbly: Ark Ii.
Psy--iol. Rev. 64, 242-23? (1957)

iasky, A. L. : Steps towarJ artifici31 intelligence.
Proc. IRE 4_9, 3-33 (1951)

Ains3ky, I. L. , Papert, S.: Perceptrons: An introduction to
compitatinal geonetry. C3anbriJge, MA: AIT Press 1969

Ansky, A. L. , Papert, S. : Artificial intelligence progress
report. lIT Artificial Intelligence Laboratory, Memo
23?, January 1, 1972

Ainsky, M. L. , SelfriJge, 0. G. : Learning in random nets.
I : Infor'nation theory: Fourth London Syn posium.
C1erry , C. d. London: Butterworths 1951

'4oore, J. W. : Brain processes and conditioning. In:
I2e:haniss of learning and motivation: A memorial
volunn to Jerzy Konorski. Dickenson, A., Boakes,
R. A., ?is. Hillsdale, New Jersey: Erlbaumn 1979

N3k-no, K.: Associatron - a model of associative nemory.
IEEE Trans. Syst., Man, Cybern. SAC-2, 3, 330-333
(1972)

Narendr3, K. S., Thatachar, M. A. L.: Learning autonata - a
survey. IEEE Trans. Syst., Man, Cybern. SMC-4, 4,
323-334 (1974)

1*athanson, J. A.: Cyclic nuzleotides and nervous system
function. Physiol. Rev. 57, 157-256 (1977)

Niisso , N. J. : L.arning Machines. New York: McGraw-Hill
1955



BIBLIOGRAPHY PAGE 11

Nilsson, N. J.: Artificial intelligence. Artificial
Intelligence Center Technical Note 39, Stanford
Research Institute, Menlo Park, CA, 1974. (Also
presented at IFIP Congress 1974, Stockholm, Sweden)

Palm 3.: On associative memory. Biol. Cybernetics 36,
19-31 (1930)

Perel'man, I. I.: Method of self-adjustment of step search
systems. Translated from Avtomntika i Telemekhanika 4,
30-93 (April, 1967)

Piaget, J.: The construction of reality in the child. New
York: Basic Books 1954

Poggio, T.: On optimal nonlinear associative recall.
Biol. Cybernetics 19, 201-209 (1975)

Poincare ~ , H.: L'invention mathematique.
Bull. Inst. Gen. Psychol. 8, 175-137 (1908)

Poincare-, H.: Mathematical creation. In: The foundations
of science. Poincare ~ , H., ed. New York: Science
Press 1913

Powers, d. T. : Behavior: The control of perception.
Aldine 1973

Prokasy, '. F., Gormezano, I.: The effect of US omission in
classical aversive and appetitive conditioning of
rabbits. Animal Learning and Behavior 7, 80-83 (1979)

Rasmussen, H., Jensen, P., Lake, 4., Friedman, N., Goodman,
D. B. P.: In: Advances in cyclic nucleotide research,
vol. 5. Drummond, G. I., Greengard, P., Robison,
G. A., eds. New York: Raven Press 1975

Rescorla, R. A., Solonon, R. L. : Two-process learning
theory: Relationships between Pavlovian conditioning
and instrumental learning. Psychol. Rev. 74, 151-182
(1967)



BIBLIOGRAPHY PAGE 12

Rescorla, R. A., Wagner, A. R.: A theory of Pavlovian
conditioning: Variations in the effectiveness of
reinforcement and non-reinforcement. In: Classical
conditioning II: Current research and theory. Black,
A. H., Prokasy, W. F., edso New York:
Appleton-Century-Crofts 1972

Rochester, N., Holland, J. H., Haibt, L. H., Duda, W.:
Tests on a cell assembly theory of action of the brain,
using a large digital computer. IRE
Trans. Infor. Theor. 2, 30-93 (1956)

Rosenblatt, F.: Principles of neurodynamics. New York:
Spartan Books 1962

Samuel, A. L. : Some studies in machine learning using the
game of checkers. IBM J. Res. and Dev. 3, 210-229
(1959)

Saridis, G. S.: Learning applied to successive
approximation algorithms. IEEE
Trans. Syst. Sci. Cybern. SMC-6, 2, 97-103 (1970)

Schneiderman, N.: Interstimulus interval function of the
nictitating membrane response of the rebbit under delay
versus trace conditioning.
J. Comp. Physiol. Psychol. 62, 397-402 (1966)

Schneiderman, N., Gormezano, I.: Conditioning of the
nictitating membrane of the rabbit as a function of the
CS-US interval. J. Comp. Physiol. Psychol. 57, 133-195
(1964)

Selfridge, 0. G.: Pandemonium: A paradigm for learning.
In: Proceedings of the Symposium on Mechanization of
Thought Processes. Blake, D. V., Uttley, A. M., eds.
London: H. M. Stationary Office 1959

Selfridge, 0. G.: Tracking and trailing: Adaptation in
movement strategies. Unpublished draft, August 1, 1973

Simon, H. A.: The sciences of the artificial. Cambridge,
Mass.: The MIT Press 1969

H]



BIBLIOGRAPHY PAGE 13

Smith, J. Maynard: The evolution of sex. Cambridge:
Cambridge University Press 1978

Smith, M. C., Coleman, S. R., Gormezano, I.: Classical
conditioning of the rabbit's nictitating membrane
response at backward, simultaneous and forward CS-US
intervals. J. Comp. Physiol. Psychol. 69, 226-231
(1969)

Sommerhoff, G. Logic of the living brain. New York:
Wiley 1975

Spinelli, D. N.: OCCAM: A computer model for a content
adJressable memory in the central nervous system. In:
The biology of memory. Pribram, K., Broadbent, D.,
3ds. New York: Academic Press 1970

Stent, G. S.: A physiological mechanism for Hebb's
postulate of learning. Proc. Nat. Acad. Sci. USA 70,
997-1001 (1973)

Sutton, R. S.: A formalization of Klopf's heterostatic
neuron. Unpublished report 1977

Sutton, R. S.: Single channel theory: A neuronal theory of
learning. Brain Theory Newsletter 3, 72-75 (1978a)

Sutton, R. S.: Learning theory support for a single channel
theory of the brain. Unpublished report 1978b

Sutton, R. S.: A unified theory of expectation in classical
and instrumental conditioning. Stanford undergraduate
thesis 1978c

Sutton, R. S., Barto, A. G.: Toward a modern theory of
adaptive networks: Expectation and preJiction.
Psychol. Rev. 38 (1931)

Thorndike, E. L.: Animal intelligence. New York:
Macmillan 1911

b _



3 [IL[I (JR IP Y PAGE 1 4

rniorp , 4. t.: Le3rni nl insrinv t in Ini n-s. Lonl n:
43 iJ n nti n C:. Lti. 1 55

in 3n , E. C., HD nzik, I. 5. " nsi Iht" In rots.
Un iv . C 3 1if. Pjb I. P3 y,2'1 1 4, 7 5- } 1 1 3

rs~t in, '4. f.: AitoT3ton L I Dry inI n I' in7 of biolo ic-l
sy3t3 s. 2ew Y:rk: V2!J?-ni Press 1973

rsypki, Y. Z.: AJipt~tion ani 13 3rnin, in auto'natic
sy3t?ns. Tr3nsl 3te] by Z. J. I i'<oi . N w Yrk:
A 2Jn 2 Prass 19TI

r z nakDu, E., Aichak,, R., H3rth, E.: The alopex process:
Visail receptive fields by response feeJbock. In
preparation.

Unr, L., Vossler, C.: A pattern recognition program that

Zenarates, evaluates and adjusts its own operators.
Proc. d43stern Joint Coup. Conf., 555-569 (1961)

Jttley, A. 4.: Tae infor-non: A network for adaptive
pattern recognition. J. theor. Biol. 27, 31-67 (1970)

Utt ley, A. 4.: The infornon in classical conditioning.
J. rneo. BioI. 49, 355-376 (1975)

JttLey, A. M.: A two-pathway inforuon theory of
conJitioning and adaptive pattern recognition. Brain
Res. 10?, 23-35 (1975a)

Uttley, A. 4.: Simulation studies of learning in an

infornon network. Brain Res. 193, 37-53 (1975b)

UttLey, A. 4.: Neurophysiological predictions of a
two-p3thway infornon theory of neiral conditioning.
Brain Res. 102, 55-70 (1976c)

Uttley, A. ;.: Infornation transnission in the nervous
systen. LonJon: Academic Press 1979



33L I GAPH Y P4C3E 1'i

vo Bu7,renF. J. : P1 3, t i, it y in th nrv ous S3y3 t en
tilC mnit-iry leval. In : The n 3'jr Dsc ie s se3 i 3 St J IY
pro ran. 3chnitt, F. 0., Ji lew York: R ef lII r
Univrsity Press 1970)

v on Jde r Mal burg, C.: Sal f-orl 3nizatior, of orientation
sensitiva calls in tqa striate cortex. Kybarnatic 14,

33-19'9 (173)

von Neunainn, J. Aorgenstern, 0.: Theory o f -7 1 i s -in

a!oflo:flic behavior. Princeton N. J.: Prin2,etm
University Pre-ss 1953

d' i ht, F. F., Erulkar, S. D. A'oul ation of syn -ptic2
transriittear release by repetitive postsynapti2 32tion
pot2!ntia'ls. Science 1M, 1323-1025 (1976)

dei~ht , F. F., Schulnan , J. A. , Snithn, P. . , Busis, 14. A.
Longj-lasting synaptic potentials anii the nioJulation of
synaptic: transnission. Fed. Proc. 33, ?034-2)-)4 (1979)

diirow, B., Narenira, K. G., 1a itr -i, .. Pn is3h/ Rewar :
Learning with a critic in aiaptive thre sholi systans.
IEEE Trans. Syst. , Man , Cybern . SAC-3, 5, ~455-'; 55
(1 97 3 )

diirow, G., Hoff, M. E.: Aiaptiva switching circuits. In:
1969) IRE d ES3CON Convention Reord, Pa rt ~4, 95-10)4
(195")

Ai3str'3n, H.: A neuron nodel with learning capability and
its relation to njechanis'ns of association. Kybarnetic
1?, 204.-215 (1973)

d4illsha3w, D. J. , Bunesnan , 0. P. , Lon-guat-Higg ins , H. 3.
Non-holographic associative -nanory. Nature ?2?2,

960-962 (1969)

'do oiJ, C . C.: Variations on 3 theime by Lashley: Lesion
experiinents on the neural 'nodel o)f In Jerson ,
Silverstein , Ritz, and Jones . Psychol . Rev. 35,
532-591 (1973)



BIBLIOGRAPHY PAGE 15

doody, C. D. : If cyclic GIP is 3 neuronal second nessenger
what is the message? In: Cholinergic mechanisms and
psychophar.macology. Jenden, D. J., ed. New York:

Plenum 1976

dJc')y, C. D., Crpenter, D. 0., Gruen, E., Knispel, J. D.,
Crow, T. J., Black-Cleworth, P.: Prolonged increises
in resistance of neurons in cat motor cortex foliowin;
extracellular iontophoratic 3pplication of
acetylcholine (ACH) and intracellular current
injection. Fed. Amer. Soc. Exp. Biol. 33, 399 (1974)

Yemini, Y., Kleinrock: Access control or, silence is golien
DSN-Distributei Sensor Networks, IS1 .izrkin;

Paper 12, USC Information Sciences Institute, ' rina
del Rey, CA, 1973

Zimmer-Hart, C. L., Rescorla, R. A.: Extinction of
Pavlovian conditioned innibition.
J. Comp. Physiol. Psychol. 35, 337-3)45 (1374)

*U.S.Government Printing Office: 1981 - 757-002/595



D AT

FILMED

p3


