AD-A101 476

UNCLASSIFIED

| oF

a0
Aoare

MASSACHUSETTS UNIV AMHERST DEPY OF COMPUTER AND INF==fTC F/g 9/2 -

GOAL SEEKING COMPONENTS FOR ADAPTIVE INTELLIGENCE: AN INITIAL A--£7c (i)

APR 81 A 6 BARTO» R S SUTTON F33615=77=C~1191
AFWAL=TR=-81~1070 NG




ADA101476

AFWAL-TR~-81-1070

GOAL. SEEKING COMPONENTS FOR ADAPTIVE INTELLIGENCE: AN INITIAL ASSESSMENT

Computer and Information Science
University of Massachusetts
Amherst, MA 01003

April, 1981

TECHNICAL REPORT AFWAL-TR-81-1070

Final Report for Period 1 September 1977 to 31 August 1980
Approved for public release; distribution unlimited

AVIONICS LABORATORY

AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND

WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

(N

~
1 (./a O d N q
g Y
RO el W B A e

{




NOTICE

When Government drawings, specifications, or other data are used for any
purpose other than in connection with a definitely related Government pro-
cruement operation, the United States Government thereby incurs no responsi-
bility nor any obligation whatsoever; and the fact that the Government may
have formulated, furnished, or in any way supplied the said drawings, speci-
fications, or other data, is not to be regarded by implication or otherwise
as in any manner licensing the holder or any other person or corporation,
or conveying any rights or permission to manufacture, use, or sell any
patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA)
and is releasable to the National Technical Information Service (NTIS).
At NTIS, it will be available to the general public, including foreign
nations.

This technical report has been reviewed and is approved for publication.

A. HARRY KLQ DONALD L. MOON

Project Engineer Chief, Information Processing
Technology Branch
System Avionics Division

FOR THE COMMANDER

ﬂa#/w-ﬂﬁrz d MA—{/

RAYMOND E. SIFERD, COLONEL, USAF
Chief, System Avionics Division

"If your address has changed, if you wish to be removed from our mailing
list, or if the addressee Is no longer employed by your organization please
notify AFWAL/AAAT, W-PAFB, OH 45433 to help us maintain a current mailing
list”.

Copies of this report should not be returned unless return is required by
security considerations, contractual obligations, or notice on a specific
document.

AIR FORCE/56780/1 July 1981 — 180

o e

o




=

J| arwaL-tr-81-1070 M- A—_j,f 1. 474

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
Final September |, 1977
/ GOAL SEEKING MPONENTS FORﬁAPTIVE to August 31, 1980
. “LLIGE : AN INITIAL ASSESSMENTe 6. PERFORMING ORG. REPORT NUMBER
= R

SECU—RITV CLASSIFICATION OF THIS PAGE (When Data Enterey)

' )JREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

V. REPORT NUMBY?®R 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

7. AUTHOR(s)

Andrew G./Barto { /51 J F33615-77-C-1191
Richard S. fSutton

19 CONTRACT OR GRANT NUMBER(s)

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10 PROGRAM ELKESS:‘TTNZRMOBJEESST TASK
Computer and Information Science Department é
lniversity of Massachusetts C1102F/ 312/R1/01
Amherst, MA 01003

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Avionics Laboratory (AFWAL/AAAT) // . ApriT 1981
Air Force Wright Aeronautical Laboratories 3. NUMBER OF PAGES VN
Wright-Patterson AFB, Ohio 45433 533 /-’

14. MONITORING AGENCY NAME & ADDRESS(If dilferont { om Controlling Office) 15. SECURITY CLASS. (of this report)

? /B//L d)/ Fre 7"‘ Unclassified

1Sa. DECLASSIFICATION DOWNGRADING

j’ S 'Q-P ,717— ﬁj_ AUQ y, !_\'sanouLe

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverso sido if necossary and tdentify by block number)

Alaptation Learning

Adaptive networks Neural networks

Associative memory Self-organization
\Goal—seeking

/

ZwABSTRACT (Continue on reverse side If necossary and identify by block number)

This report assesses the promise of a network approach to adaptive problem

solving in which the network components themselves possess considerable adap-
tive power. We show that components designed with attention to the temporal
aspects of reinfcrcement learning can acquire knowledge about feedback path-
ways in which they are embedded and can use this knowledge to seek their pre-
ferred inputs, thus combining pattern recognition, search, and control func-
tions. A review of adaptive network research shows that networks of components $

DD .:2:“-‘,, 1473 EDITION OF 1 NOV 65 IS OBSOLETE 407”01

SECURITY CLASSIFICATION OF THIS PAGE (Whon Daete Entered)
/

A g, A E R R R APRGMIRII A T 15 el e TV -t ek o

- - e




Y

20. Abstract

A
having these capabilities have not been studied previously. We demonstrate

that simple networks of these elements can solve types of problems that are
beyond the capabilities of networks studied in the past. An associative mem-
ory is presented that retains the generalization capabilities and noise re-
sistance of associative memories previously studied but does not require a
"teacher" to provide the desired associations. It conducts active, closed-
loop searches for the most rewarding associations. We provide an example in
which these searches are conducted through the system's external environment
and an example in which they are conducted through an internal predictive
model of that environment. The latter system is capable of a simple form of
latent learning., We argue that components capable of making progress toward
their goals when &mbedded in environments that are indifferent, or even hos-
tile, with respect to these goals can form the substrate for a decentralized,
parallel, and pervasively adaptive problem solver. We discuss the hypothesis
that neural information processing can be understood in these terms, and we
relate our results to animal learning data.
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FOREWORD

This report describes research supported by the Air
Force Office of Scientific Research and the Avionics
LLaboratory (Air Force Wright Aeronautical Laboratories)
through contract F33615-77-C-1191 Project 2304, "Adaptive
Network Simulations." The work reported here was performed
during the period 1 September 1977 through 31 August 1980
under the direction of Principal Investigators
D. N. Spinelli, W. L. Kilmer, and M. A. Arbib. The report

was prepared by A. G. Barto and R. S. Sutton and released in

Feoruary 1981.

The objective of this contract was to study the
feasibility of using goal-seeking elements as components of
nachines capable of achijeving intelligent, goal-directed
performance such as image understanding, speech recognition
and decision making. As such, much of the work is
sround-breaking and exploratory. The three main aspects of
the accomplishments are: 1) the implementation of graphic
and programming tools for computer simulation; these are as
important to us as a particle accelerator is to a nuclear
physicist, 2) the experimental study of a great variety of
Joal-seeking components analysed as isolated elenents. This
napping of rules for adaptive goal-seeking has made clear

what will and will not work and why, pointing the way to
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further optimization of the elements. 3) The demonstration
in principle that small goal-seeking nets could be built out
of components that are themselves goal-seeking, and fur.her,
that such nets are capable of substantive adaptive

behaviors.

We conclude that goal-seeking elements have unusual
power as components of goal-seeking nets. 1In fact, it seems
highly probable that only by using such components will we
de able to understand those sentient attributes of
intelligence, such as image understanding, that have proved
so resistent to Artificial Intelligence methodology. The
task of assembling adaptive components into sophisticated
Structures capable «f truly complex performance in terms of

vision, speech and decision support remains for the future.

The Department of Computer and Information Science at
the University of Massachusetts in Amherst has provided a
unique environment for this project. State of the art
research in Artificial Intelligence, Cybernetics, Computer
Systems, and Natural Intelligence is ongoing in very strong
groups whose expertise we continually partake of. To them

and all others who have helped; our thanks.

D. N. Spinelli, Principal Investigator

Professor of Computer Science
Univ. of Mass., Amherst, MA
Nov. 7, 1980

iv

e




—_— e ————

Acknowledgements

As the principal authors of this report, we would like
to express our gratitude to the many people who have made
this effort possible, encouraged us, and from whom we have
learned a great deal. First, our deepest thanks to Harry
Klopf for bringing to us a set of 1ideas so rich in
possibilities. We thank the faculty of the Computer and
Information Science Department at the University of
Massachusetts at Amherst for creating an exceedingly
stimulating atmosphere. Through them, we have maintained
contact with state of the art developments in a diversity of
areas and have had access to state of the art computational
tools. We especially thank William Kilmer, Michael Arbib,
and Nico Spinelli, who have most directly guided our efforts
and whose unmatched contributions to theoretical and
experimental neuroscience have strongly influenced this

research.

To Oliver Selfridge, John Moore, William Hodos, Chuck
Woody, Hewitt Crane, and John Holland we are very grateful
for permitting us to benefit from their wealth of

experience, expertise, and scholarship.

We thank Peter Brouwer, Chuck Anderson, Eva Hudlicka,

Jack Porterfield, Stephen Epstein, Daryl Lawton, Gonzalo




o

Viana De Prisco, Michael Poe, Rolando Lara, Jeff
Miscnkinsky, and George Peredy for contributing to this
research in important ways: for pointing us toward useful
areas of literature, for helping to perform the many
computational experiments this research has entailed, and
for providing fresh ideas and stimulating discussion. We
especially thank Peter Brouwer who developed the simulations
described in Section 6, and Chuck Anderson who developed a
large part of our simulation software. We also thank Susan

Parker for applying her managerial skills to many aspects of

this project.

Finally, of course, we must claim for ourselves any

fallacies or naivete~ that are revealed in this report.

Andrew G. Barto

Richard S. Sutton

Amherst

November, 1980

vi

A et e etk AR 1

PO



TABLE OF CONTENTS

S2ction 1. INTRODUCTION

Section 2. ADAPTIVE SYSTEJY THEORY

2.1 Introduction 2-1
2.2 Problens Varsus Mechanisms 2-4
2.3 Basic Adaptation and Lzarning Problems 2-7
2.3.1 Some Basic Distinctions 2-12
2.3.1.1 Naturz of Control Over Input 2-12
2.3.1.2 Number of Control Situations 2-15
2.3.1.3 Control Surface Knowledge ' 2-156
2.3.1.4 Knowledg= of Prefarences 2-17
2.4 Particular Problams and Mathods 2-23 ;
2.4.1 Pattern Recognition Problems 2-23 %
2.4.2 Clustering 2-31 ;
2.4.3 Stochastic Approximation M2thois 2-32 ;
2.4.4 Tha Perceptron Learning Rule 2-34 . %
2.4.5 Function Optimization 2-39% %:
2.4.6 L=2arning Automata 2-42 ;;
2.4.7 Closed-Loop Control 2-47 ‘

p

o et N athcs e it
Nt KW ihadite S




2.4.8

Kineses and Tax=s

2.4.8.1 Klino-Kinesis

2.4.8.2 Tropo-Taxis

2.4.9

2.4.10
2.4.11

2.4.12

Adaptiva Control
Lzarning Control
Instrumantal Conditioning

Klopf's Hatzrostat

2.5 Sunmary and Discussion

Sa22tion 3.

EVOLUTION OF HETEROSTAT MODELS

3.1 Introduction

3.2 Early Models: Opan-Loop Stability

3.2.1

3.2.4

3.2.5

A2ight=31 Corr=lation Element with Z=2rosatting

Opz2n-Loop Stability
VA

()

rosatting
Cnang=2 In Input as Rz2inforc2mant

The § Element

3.3 Jthzr Elem2nts using Changzs In Input
as Rziaforcznent

3.3.1
3.3.2

Ta2 Exponantial Trace Eligibility y Elemant
Th2 § 2la2nent

Fn= "Dual" Haterostat

Tha Classizal Conditioning Pradictor Elenent
Dotting the x Eligibility Term

Dottinz tha y Elizibility Teran

32parat2 x and y Averaies in Eligzibility

viii




3.3.3 Problans wita ¥oi2ls using tn2 Chanzz In
[npiat 3s Rz2iaforczement

$3.3.3.1 T[na2 End Rzianforcenant Problan

3.3.3.2 Coaflizt b2tw22n the S2lz2:zting and
Rziaforz2ing Functions of Input

3.4 Jodels with Sp=2cializzd Rzinfdrzing Input Linzs
3.4.1 ALDPEX 3s an Action 32lector
3.%.2 Assoziative 32arz2n Na2twork Elemant
3.4.3 Ta2 Associative 3z2arca Problanm
3.4.3.1 Nulled Transitions
3.4.3.2 Assonziative 3zarch with Prz2dictor El=ament
3.4.3.3 L23arning Situ3tion Transitions
3.4.4 An Ela2n2nt that Makas Two Us=2s »f Presdiction
3.4.5 A Proposal for an Altarnative Problem
3.4.5.1 Ta2 Problen Schema
3.4.5.2 Payoff Functions
S:2tion 4. OPEN-LJOP LEARNING: EXPECTATION, PREDICTION,
AND CLASSICAL CONDITIONING

4,1 Introduction

4-1

4.2 Adaptiva Ela2ment Analogs of Classical Conditioning 4-3

4.3 Ta2mporal Rzlationships

4,3.1 D=2lays

4.3.2 Stinulus Traces

4.3.3 Non-3tinulating Traces

4.3.4 4oi=al B2rhavior in Classical Conditioning

with 1 singla CS
ix
E R R

=
1]

n

1

4-31

4-35




o

— - ——

4,

(9]
.

w

(92}

1

h.4.

4= (62} = 4=
(V)] (V)] Ui

=

=

N =

-3

. 6.
. 6.
. 6.

Context and Expectation

1 Hizher Order Conditioning
Adaptive System Theory

.1 Hebbian Rule

.2 Adidrow-Hoff Rule

.3 Rascorla-Wagazr/Aidrow-Hoff Prediztor
.4 Uttlzy's Informon

.5 Jur Model

Stability and Saturation

1 Normalization

2 Autonomous Dacay

3 Nezative Fzedback
C21lular Ma2chanisas

Sunmary and Conclusions

5. ASSOCIATIVE SEARCH NETWORK: A REINFORCEYENT
LEARNING ASSOCIATIVE MEMORY

Introduction

The Associativa Search Problem

The Basic Adaptive Element

Tha Problen of Context Transitions
A Na2twork

Examplas

Naural S=zarch

Sansorimotor Control Surfaces

Conclusion

4-35
4-35
4-99
4-93

vl
!
—_

5-6

5-3

5-13
5-15
5-20
5-32
-35

Ul

5-37




S2ction 5. LANDMARK LEARNING: AN ILLUSTRATION OF

(@3]

[€))

&3

S=22tion 7.

7.
7.

AN Oy O

1

ASSOCTIATIVE SEARCH

Introduction 5-1 ?
Assoziativa Search 5-2 ;
Spatial L2arning as Associative Szarch 5-3 i
The L2arning Rulsz 5-3 ;
Laarning in a Noiseless Eavironmnant 5-11 :
Ralearning in 3 Modifiazd Environment 6-18 f
L2arning in a Noisy Environment 5-29 %
A R2mark on Linearity 6-23 E
Conzlusion 524 !
AN ADAPTIVE NETWORK THAT CONSTRUCTS AND USES
AN INTERNAL MODEL OF ITS ENVIRONMENT ‘
Internal Models for Ssarch and Simulation 7-1 ’
[nr2 Sinulatad Task Environment 7-12 ;
Th2 Sinulatad4 Adaptivz Network 7-15
.1 Th2 Action Sz2lecting Componant T-17 i
.2 Th2 Internal Model Component 7-22 ;
The Exploration Phase 7-23 :
Tha Association Phase 7-30 %
The Rapresantation Problem 7-31 \
Tn2 Tasting Phase 7-35 ‘
Superstitious Lzarning 7-36
Discussion 7-42
xi
s I N i
:L—__-———————————-————”“‘d




Section 3.
3.
8.

W W

1

2

[© o BN §)

(o NN 1 ]

.9
.10

= w o w (oo (O] w
. . . . .

Introduction

Goal-S=2eking Components

2.1 Learning witn a Teacher

2.2 Learning without a Teacher

2.3 VLearning wita a Critic

2.4 Learning with an 0Oczcasional Critic
2.5 Nature as an Occasional Critic

Natworks of Goal-S=eking Conponents

Games and Cooparation

.4.1 Group Optimality

4.2 Goal-S=22king Systems as Gamz2 Players

Coalitions and Ceil Assemblies

Haterostats as Cooperating Game Playars
Coopz2ration by the Creation of Environmants
Control Strategies for Problem Solving
N2urons as Goal-Sezeking Systems

A Sans2 of Neural Function

S22tion 9. CONCLUSIONS

O

.2
3

WO W W

A

Nhat is WNew?

Jpan-Loop Lzarning
G2neralizasd Rainforcemnent .
Associative Szarch

Biologizal TImnplizations

In Summary

Xii

GOAL-SEEKING SYSTEMS OF GOAL-SEEKING COVMPONENTS

3-34
3-393




Appa2niix A.

Apoa3niix 3.

Appandix C.

Appa2ndiix D.

Appandix E.

Appandix F.

fpp2ndix G.

83ibliograpay

ANALYSIS JF STEADY STATE B3EYAVIOR OF THE
RESCORLaA-JAGNER/WIDRO4-HOIFF PREDICTOR FOR
4 STAPLE CASE

A FOR4AL DESCRIPTION OF THE YMODEL STIJ4ULATED
IN SECTION U

ADAPTATION OF LEARNING RATE PARAMETERS

DETAILS OF THE SIMULATION EXPERIYMENTS
OF SECTION 7

DETAIL3 OF THE ADAPTIVE NETAORK SIYMULATED
IN SECTION 7

DESIGNNET: NETAORK SIMULATION DISPLAY PACKAGE

EXPERIMENTER: SIMULATION OF A ROBOT'S3
ENVIRONMENT




SECTION 1

INTRODUCTION

It is traditional that man's most complex invention at
any time in history becomes a metaphor for neural function.
When the early computer studies of hypothetical neural
networks were undertaken, this role was filled by the
electronic digital computer itself. The view of a brain as
a computer was naturally accompanied by the association of
the neuron, usually considered to be the basic functional
component of nervous systems, with such computer components
as logic gates, transistors, or other devices that were in
themselves among the genuinely remarkable new inventions of
those times. Now, due to the extraordinary progress in
integrated <circuit technology, the digital computer has
become conceptually manageable, shrinking in size and
becoming a familiar part of our 1lives, so that we have
little ¢trouble thinking of an entire computer as a
"primitive" component of an even more complex system - a
distributed processing system. Among the profound social
consequences of this technology will be its influence on our

metaphors for neural function. Even wusing considerable
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imagination it is difficult to think of a room-sized machine
as a primitive component. That this same amount of
machinery can now be held in one's hand, however, sets the
stage for an entirely new round of neural theory. This time
it is natural to proceed on the assumption that neurons by
themselves are sophisticated processors consisting of large
amounts of 1internal memory and built-in programs for using
that memory to solve problems with which their environments

confront them.

We are not, of course, suggesting that a neuron 1is
literally built like a computer processor but only that its
level of processing power, implemented by means of ionic
processes, biochemical reaction systems, and other
mechanisms, may be more fruitfully compared with that of a
microprocessor than with that of a logic gate. Since a
microprocessor need not be programmed to perform very
conplex computations, nothing precise 1is implied by this
metaphor. It simply raises questions about the 1level of
functional complexity at which one might place familiar

biological "primitives"” such as neurons.

Some early attempts to produce machine intelligence
wera based on the hope that networks of neuron-like
components could "self-organize" from initially unstructured

configurations. Some reasons for the failure of this

— e - gt

I




INTRODUCTION PAGE 1-3

approach to yield really interesting behavior were
chronicled (notably by Minsky and Selfridge, 1960, and
Minsky and Papert, 1969), and the mainstream of interest
largely shifted to the more symbolic approach that
characterizes most current artificial intelligence researcn.
While early network studies seemed to be concerned with the
components out of which systems were constructed, the
symbolic approach was not. Nilsson (1974), for example,
remarked that:

. knowledge about the structure and
function of the neuron - or any other basic
ccomponent of the brain - is irrelevant to the
kind of understanding of intelligence that we
are seeking. So long as these components can
perform some very simple 1logical operations,
then it doesn't really matter whether they are
neurons, relays, vacuum-tubes, transistors, or
whatever.

Klopf (1979, 1981) remarks on how the point of view
expressed by this statement downgrades the neuron
(especially in light of the extraordinary complexity of
neurons that 1is Dbeing revealed by neuroscience research)
and, in particular, tacitly denies the possibility that
neurons might be performing more than simple 1logical
operations. In what we are calling the distributed
processing metaphor, the structure of the system as a
network of components is important, as are the functional
properties of the component processors. The emphasis is not

on how very simple components can interact to solve some

problems but rather on how components that are already




0
™
-
'
=
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capable of solving problems can interact to solve more

complex problems. It 1is the study of networks at a much
hizher level of organization. Logic gates and transistors,
or other lower level physical components, may still be
unimportant (as long as the processors operate), but the
system's structure as a network of components is a central
concern, And self-orgainzation is again a central concern,.
Control Strategies are sought that permit meaningful
cooperation among the processors ror problem solving. A
good examnple of the distributed processing approach to

problem solving is provided by Lesser and Erman (1979).

We therefore arrive at the view of a neural network as
a very large distributed processing system in which each
neuron, or microprocessor, is capable of solving certain
nontrivial problems by itself. The resulting metaphor is
vastly different from that which early network theorists
brought to their research. We have little doubt that this
metaphor will be replaced by others before we understand
animal brains, but it can form the basis of a very large
step from our current state of knowledge. But what sort of
problems might this neural microprocessor be capable of

solving?

In a 1972 monograph, A. H. Klopf described a theory

of memory, learning, and intelligence based on a view of
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neural processing that emphasized the fact that neurons are
living organisms that have survived a long evolutionary
process (Klopf, 1972, 1979, 1981). He suggested that
progress in wunderstanding natural intelligence might be
achieved by a study of goal-seeking systems of goal-seeking
components. Instead of viewing any form of goal-seeking
behavior as an emergent property of a system composed of
non-goal-seeking components, Klopf suggested that
sophisticated goal directed behavior arises from interacting
components that are themselves goal-seeking and act
according to their self-interests. Adaptive capabilities
are thus pushed down the structural hierarchy to basic
levels. The biological correlate of this view 1is Klopf's
hypothesis that neurons are the goal-seeking components of
animal brains and that they possess behavioral strategies

permitting them to make progress toward their goeoals.

In proposing what a neuron's goal might be, Klopf takes
issue with the widely held view that homeostasis is the goal
of living organisms, Homeostasis is the condition in which
all critical variables are maintained within acceptable
ranges. Ashby (1960) 1identifies adaptive behavior with
behavior 1leading toward and maintaining homeostasis and
described a device called a homeostat that could maintain
homeostasis in the face of a wide range of environmental

perturbations. Klopf proposed that the goal of an organism

 —— -
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is not homeostatic equilibrium but rather a condition in
which specifiec 1internal variables are in a maximal
condition. He proposed the term heterostasis to describe
the condition in which a given variable is maintained at its

maximal level.

Klopf makes a subtle but important point, Given

general agreement on the processes underlying the

evolutionary process, living organisms will possess
behaviors or strategies for maintaining environmental
conditions favorable for survival and reproduction. But

this do¢s not imply that the goal-seeking strategies used by
an organism work directly toward maintaining conditions
favorable for survival and reproduction. Animals do possess
equilibrium-seeking homeostatic mechanisms, but the goal of
an animal may be quite different from homeostasis or even
survival. A direct goal of an animal may be to maximize the
occurrence of certain types of sensations. Which sensations
piay this role in an animal's 1life 1is determined by the
differential survival of past generations. Depending on the
particular environment, the maximization of the occurrence
of certain sensations wusually does 1lead to survival and
reproduction. But the direct goal of the animal need not be
survival and reproduction. Survival and reproduction are
side effects (but certainly not by accident!) of an

organism's goal-seeking strategies.

e




INTRODUCTION PAGE 1-7

Klopf hypothesized that neurons are goal-seeking
organisms that use a particular strategy for maximizing the
occurrence of particular types of neural '"sensations" and
for minimizing the occurrence of others. The strategy takes

the form of a rule for altering variable synaptic

transmittances:

After a neuron fires, it waits for a few hundred
milliseconds or more to see how it will be
affected by the action it has taken. If it
experiences further depolarization within a
second or so, it increases the effectiveness of
the excitatory synapses that led to its firing
in the first place, thereby increasing the
probability that it will fire the next time some
fraction of these synapses is active. If,
however, the action of firing is followed within
a second or so with the experience of
hyperpolarization, the neuron then increases the
effectiveness of those inhibitory synapses that
were active when it fired. In this way, the
probability of responding again to the input
configuration has been diminished. Thus, the
neuron views excitation as reward and inhibition
as punishment. (Klopf, 1981)

Klopf is suggesting here that a single neuron implements the
Law of Effect, or can be conditioned in an operant or
instrumental manner where depolarizing and hyperpolarizing
events act, respectively, 1like appetitive and aversive
stimuli. Klopf called a component operating according to

these principles a heterostat.

Qur research has been directed toward determining
whether or not Klopf's theory can provide the basis for

progress in understanding adaptation, learning, and
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INTRODUCTION PAGE 1-8
intelligence in general. Has this type of component already
been investigated? Can devices resembling heterostats

interact to form higher kinds of goal-~-seeking behavior?
This report describes the conclusions we have reached and
contains some of the computational results we have produced.
Briefly, we have found that the <c¢lass of 1learning rules
suggested by Klopf has not been extensively investigated.
It is generally believed that the important features of the
Law of Effect were incorporated into various learning rules
that were investigated with little dramatic success, but our
research has led us to question this belief for a number of
reasons that we explain in this report (especially Section
2). We think the potential for real progress using the

approach proposed by Klopf is very great.

Our research strategy has been one in which the logical
and mathematical properties of adaptive systems have been
emphasized. Although we have tried to make as much .contact
with neurobiological data as is possible, we have not
attempted to model specific neural processes. The adaptive
components we have investigated have many neuron-like
attributes and were motivated by Klopf's neural hypothesis,
but we purposefully refer to them as "adaptive elements"
rather than neural models. Although an understanding of
electrical and chemical processing of neurons is increasing

rapidly, we think it is premature to propose an extensive
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and detailed neural model. We argue that computations of
the complexity required are clearly possible at a neural or
synaptic level and that mechanisms of the required character
exist, but we do not rely on this line of empirical support.
We have instead concentrated on carefully specifying a range
of problemns, and on designing mechanisms capable of solving
them. We believe that these problems are likely to be
involved in any attempt to produce systems that can adapt
and learn, including highly symbolic systems. We cannot say
that any such system must solve these problems wusing our
methods, but we do think that our methods are readily
applicable and can form useful parts of systems that are
more complex than those illustrated in this report. Our
illustrations were chosen for their simplicity and <clarity,
and should be interpreted as simple examples of classes of

problems that can occur in a variety of different contexts,.

The report is written so that an understanding of most
sections does not require the reading of preceding sections.
However, the sections are very closely related. Issues are
raised in some that are more adequately addressed in others.

A brief summary of each section is provided here.

Section 2 contains an extensive, and sometimes
technical, analysis of adaptive system theory in which we

attempt to place various adaptation or learning methods,

P
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including Klopf's proposal, into a general framework. Our
analysis is not exhaustive, nor do we <claim that it |is
definitive. It represents our attempt to understand a
nunber of issues that arose in the course of our research.
Attention 1is not restricted to models of learning processes
cast in biological or neural form. A large body of highly
developed theory exists in the field of control engineering,
and we try to include problems and methods from this field
into our general framework. We make what we think is a very
important distinction between two types of search: those in
whizh you <can recognize what you are looking for when you
find it, and those in which this is not possible. We argue
that although the perceptron 1learning rule (Rosenblatt,
1962) is often thought to capture the important features of
closed-loop reinforcement learning, it does not. Even aside
from the usual objections to the perceptron based on its
linearity, it 1is capable only of a very restricted type of
learning. We delineate a class of problems requiring very
general learning capabilities that has received very little
attention in the past. Systems 1like Klopf's proposed
heterostat are capable of solving problems of this kind and

have not been extensively investigated.

Section 3 is a roughly chronologically ordered
description of a nunber of learning rules we have

investigated. Rather than being a defense of all of these
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efforts, it 1is intended to help others who may become
interested in this approach; perhaps they can benefit from

our experiences.

Section 4 is a discussion of a learning rule that
incorporates some of the features of Klopf's proposal but
not all of them. At a particular stage in our research, we
felt that we had reached an understanding of certain issues
and could contribute to both adaptive network modeling and
animal learning theory. The learning rule described
includes some of the temporal dependencies suggested by

lopf but does not implement a closed-loop rule whereby the
consequences of actions cause appropriate changes to take
place. We discuss the advantages of a form of reinforcement
different from that originally suggested by Klopf and relate
its consequences to data about animal learning in classical
conditioning experiments. We also discuss the learning rulz

in light of physiological and biochemical data.

In Sections 5 and 6 we present computer simulation
results that illustrate the behavior of simple networks of
adaptive elements having some of the properties of Klopf's
heterostat. Section 5 contains a description of a problem
that we have called the associative search problem and a
network, calléd the associative search network, that can

solve the problem under <certain conditions. Section 6

K
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illustrates the behavior of an associative search network
that controls locomotory behavior in a simple spatial
environmnent. We chose this example in order to provide a
graphical way of demonstrating the kind of problem an
associative search network can solve. We did not try to
model the locomotory behavior of any particular animal, nor
did we try to show all of the system's capabilities. It is

the simplest example we could invent.

Section 7 describes a system that illustrates some of
the more interesting consequences of learning rules that
take careful account of the temporal factors involved 1in
learning. The system 1is able to construct a predictive
model of its environment and then use it to evaluate the
consequences of proposed, but not overtly taken, actions.
We illustrate its behavior in a simple latent learning task.
Again, our intent was to illustrate in as simple an example
as could be constructed how networks can be synthesized to

perforh this type of processing.

Section 8 is a discussion of goal-seeking svstems
compesed of goal-seeking components. We discuss in rather
speculative form how higher-level goal seeking behavior can
be expected to arise from collections of components that
always act according to their own interests. We discuss

what capabilities the components should have in order for
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them to cooperate. The relevance of certain concepts from
the theory of games 1is discussed. We then discuss the
plausibility of Klopf's hypothesis from a biological rather
than from a theoretical point of view. Goal-seeking
strategies known to exist in wunicellular organisms are

discussed.

Section 9 provides a brief account of the major

observations made in the course of this study.

The appendices contain information that either
supplements the main text or 1is somewhat peripheral.
Appendices A and B respectively contain a mathematical
analysis and a formal description of the model discussed in
Section 4. Appendix C presents the initial stages of our
efforts to develop adaptive strategies to alter some of the
parameters of the learning rules in order to accelerate
convergence. The results have not yet been integrated with
the major line of our research. Appendices D and E contain
detailed descriptions of the environment and adaptive
network, respectively, discussed in Section 7. Finally,
appendices F and G document some of the software research
tools that we have developed. The systems described are
interactive color graphics programs that allow the design,
display, and simulation of networks and spatial

environments.
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SECTION 2

ADAPTIVE SYSTEM THEORY

2.1 Introduction

It is notoriously difficult to precisely characterize
those problems whose solutions can be said to require
adaptation or learning. One major criterion for calling a
problem or mechanism adaptive seems to be that it involve
some form of goal-seeking. The goal may be the maintenance
of c¢ritical variables within prescribed limits as suggested
by Ashby's characterization of adaptation as homeostasis
(Ashby, 1960), or it may be to show continued improvement in
performance according to some measure on the basis of past
individual experience as suggested by Holland's
characterization of an important aspect of adaptation as
function optimization (Holland, 1975) and Klopf's theory of
heterostasis (Klopf, 1972, 1979, 1981). Any problem solving
method might be said to have as a goal the problem's
solution, but the terms adaptive and learning seem to be

reserved for those methods that do not have built-in
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knowledge about exactly what the goal is or how to obtain

it.

Rather than risk making precise definitions that are
likely to be revealed as 1inadequate wupon more careful
thought, we focus on a number of specific examples of
problems and methods that are often thought to have
something to do with adaptation or learning. We present a
number of distinctions that we have found useful in guiding
our thinking about these problems and methods as we
attempted to compare and contrast them. Our perspective is
general enough to include most of the problems typically
regarded as requiring some degree of adaptation or learning
for their solution, but we do not wish to claim that all of
the problems we discuss are correctly so characterized. On
the contrary, we wish to provide a perspective general
enough to include significant adaptation and 1learning
problems as well as the most simple ones in order to
illustrate how restri.ctive many of the problems really are.
Despite our attempt to be as precise as possible, we do not
wish to give the impression that these distinctions and the
problem classification they imply are complete and
definitive. Our intent is to explicate the current state of

our own understanding.

Of the very many useful distinctions that can be made
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between various alaptation and 1learning problems and
mechanisns, we have chosen to focus only on a few that we
tiink have particularly great significance because they help
elucidate some of the folklore about adaptation and learning
that we think is misleading. One of our goals is, in fact,
to arzue that both the view of adaptation as homeostasis and
the view of adaptation and learning as primarily function
optimization are inadequate 1in providing a perspective
complex enough to wusefully elucidate even the simplest
adaptive or learning behavior exhibited by animals. Another
of our goals is to explain what we think is the fundamental
novelty of Klopf's theory of neural plasticity. As a result
of this selectivity, many important aspects of adaptation.
and learning will not be adequately addressed, and we will
not attempt to discuss the enormous variety of special
methods and subclasses delineated in the adaptive systems
literature. It is also not our intent to provide a thorough
survey or an extensive bibliographical source. We suggest
that our remarks be interpreted as an initial attempt to
focus on a number of 1issues that seem to be frequently
misunderstood. In Section 8 is a closely related discussion
in which some of the issues we raise here are related to the
potential of different types of goal-seeking systems as

components of larger systems.
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2.2 Problems Versus Mechanisms

Our discussion is divided into two major parts. The
first focuses on various basic adaptation and learning
problems rather then on methods, algorithms, mechanisms, or
strategies. By an adaptation or learning problem we mean a
task with respect to an environment whose accomplishment
would be regarded as demonstrating adaptation or learning.
We therefore discuss problems by considering the nature of
the interaction between a system and its environment.
Problems are characterized by the kinds of signals available
to the system for influencing its environment and for
sensing its environment's condition, the amount and nature
of a priori knowledge available ¢to the system or to its
designer about the environment, and various characteristics
of what constitutes a solution to the problem. The second
part of our discussion deals with particular examples of
these basic problems as well as methods, mechanisms, or
strategies that are commonly used to solve them. Table 2.1
summarizes our view of these problems and methods in light
of the distinctions we make. Periodic reference to this
table may help the reader retain an overview of our

presentation.

We have found the distinction between problems and

methods useful since it is possible for a given problem to

e
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be solved by several different methods, and it 1is possible
to apply a given method to several different problems. An
understanding of a method therefore requires knowing what
provlems it is capable of solving. In addition, most
adaptive systems consist of a hierarchy of components each
faced with its own basic problem. By first considering a
number of basic adaptation and 1learning problems, we can
discuss various familiar methods by describing the basic

problems their parts are designed to solve.

We leave open the question of what determines the
distinction between a system and its environment. OQur view
is simply that any part of any system can be viewed as a
system interacting with an environment. Since a problem is
determined by the nature of the system/environment
interaction, redrawing the system/environment interface line
merely implies that what is then called the adaptive system
is faced with a different type of problem or the same type

of problem at a different level,

Perhaps the most important consequence of the
distinction between problems and methods is that it permits
us to consider separately two different types of limitations
on the capabilities of methods, mechanisms, or strategies.
On the one hand, a method may be limited in its ability to

solve problems of a given type that are more complex than a

v
A
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certain level. On the other hand, a method may also be
limited in its ability by being able to solve only a certain
type of problem. For example, the usual objections to an
adaptive system based on perceptrons rest on the fact that
tney <can only perform 1linear discriminations. A very
different type of objection 1is that perceptrons, even if
they <could implement arbitrarily complex discriminant
functions, are 1limited because they require an environment
capable of providing them with a speciific type of detailed
information. In this report we focus almost exclusively on
limitations of this latter type since they are not commonly
appreciated, and their discussion 1leads, we think, to
constructive and novel suggestions about how to solve

difficult and general adaptation and learning problems.

2.3 Basic Adaptation and Learning Problems

Figure 2.1 shows an adaptive system AS interacting with
its environment E. At each moment t of time the adaptive
system receives a stimulus signal S(t) from its environment
and sends an action signal A(t) to its environment. By
signal we do not mean a unidimensional form of stimulation.
The signal S may be a very complex multidimensional
sensation corresponding to some entire environmental
situation. Similarly, A may be a very complex action. We

have used broad arrows in Figure 2.1 to suggest a possible

s .+t it o e o R b
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ENVIRONMENT K}__
E

S A

STIKULI RCTICNS

—_D ROARTIVE SYSTEM
| AS

FIGURE 2.1. An adaptive system interacting with its
environment. The adaptive system receives stimuli signals S
from the environment and sends action signals A to it. The
broad arrows indicate a possible flood of information
flowing between the adaptive system and its environment.
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flood of information flowing between the system and its
environment, Adaptation and learning problems differ

greatly as to how much of this information can be used.

All of the problems we will discuss can be viewed as
special kinds of control problems 1if we accept the very
general description of a control problem given by Aizerman
et al.(1964) and quoted by Mendel (1970): '"...the very
problem of automatic control as a whole can be considered to
be the problem of assigning the input situation to one or
another class, and to generate the optimal response as a
function of that class." In our terms, the input situations
correspond to the possible values of the stimulus signal S
and the possible responses to the values of the action
signal A. We will find it convenient to refer to the

concept of a control situation as defined by Mendel and

McLaren (1970) For our purposes a control situation is a
subset of values of the stimulus signal S for which a single
action, or "control choice", is optimal. In other words, a
control situation 1is a collection of sensory situations in
each of which the same action is best. The mapping that
associates to each possible situation the optimal action for
that situation is variously known to control theorists as a

switching function, switching surface, or control surface

(Mendel, 1970),
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This view is adequate for some of the observations we
wish to make, but a slightly modified view seems to be more
general. This view requires a shift in perspective from the
output of the system to its input (cf. Powers, 1973). Let

the adaptive system AS possess a preference ordering on its

possible stimulus signals. In the most general case there
may be a preference ordering only on sequences, or time
trajectories, of stimuli, but here we let the preference
ordering apply simply to instantaneous stimulus patterns.
This simplification prevents us from addressing some very
important issues, such as short-term versus long-term goals,
but is sufficient for most of the points we wish to
emphasize here. In terms of a preference ordering on
stimulus patterns, the problems we consider are all special
cases of the general problem of acting in response to each
stimulus pattern so as to cause stimulus patterns to occur
that are as preferable as possible according to this
preference order. We <call the most preferable inputs
possible in any situation the optimal inputs, and we say
that a response is optimal if it causes an optimal input to
occur. The control surface assigns each stimulus pattern to

an action that is an optimal response to that stimulus.

Often a system's preference order is determined by the
magnitude of a real valued measure variously known as a

criterion function, payoff function, index of performance,
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or utility function., Larger magnitudes of this measure are
preferable over smaller ones. In some cases, reversed

measures are used, such as a measure of disutility, in which
case smaller values are preferable to larger ones. In
either case the resulting order 1is total: any value is
either greater than, equal to, or less than any otner value.
Other problems are characterized by a partial preference
order: there are some inputs that are neither better than,
worse than, nor equal to some others. These problems often
arise if there is not a single measure but a set of distinct
scalar measures each characterizing a different aspa2ct of an
input. In these cases it may not be clear wnat optimum
means since tradeoffs among the individua. =easures may
occur, If a useful scalar measure can be assi-~2d to each
vector (as in 1linear programming), then - 12 problem is
reduced to the totally ordered case discuss=1 above. If
this 1is not possible, or has no reasonable i-tarpretation,
then the definition of optimality varies depe-:.ng on the
application. These are multicriterion decis.:n problems.

Ho (1970) has suggested the term generalized con-»>l

theory
for control problems with multiple criterion fun=-tions. It
includes vector valued optimization problems, game theory,
and involves such notions as pareto-optimality, Nash points,
cooperation, side payments, coalitions, and even trust and
threat. These are the kinds of problems that arise when

collections of interacting goal-seeking systems are studied,

-~
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and the theory 1s extremely relevant to the research we have
begun. In Section 8 we extensively discuss the relevance of
multicriterion decision theory to adaptive systems research
and to theories of mental function. However, for our
present purposes we restrict attention to problems

characterized by total preference orderings.

2.3.1 Some Basic Distinctions

The adaptation and learning problems we discuss differ
in how the adaptive system can influence the control
situations it faces, how many different control situations
there are, how much about the control surface is known from
the staft, and knowledge about the preference ordering. We
introduce a number of important distinctions based on these
features f a problem. The most obvious examples of each
type of problem will be <cited in order to help make the

distinctions clear.

2.3.1.1 Nature of Control Over Input -~ Referring to Figure
2.1, a problem is open-loop if its solution does not require
AS to influence its input. ~In other words, the problem
could still Dbe solved even if it were impossible for AS to
exert any influence over its input. Note that we are not

defining an open-loop probiem to be one in which AS cannot
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influence its input, but rather one in which any such
control 1is irrelevant. A problem is closed:lggg if its
solution does depend on the ability of AS to influence,
however indirectly, the input signals it receives from E. A
problem is closed-loop if its solution becomes impossible in
the absence of such control. Examples of <closed-loop
problems are function optimization and feedback control
problems.
&

According to the general view we presented of an
adaptation or learning problem as one in which a system;is
controlling 1its input, it would seem that, Dy this
definition, no such problem can be open-loop. This is
indeed true, but there 1is a general class of problems
usually associated with adaptation and learning that turn
out to be open-loop from a certain point of view. These are
the wusual forms of pattern recognition problems, including
those solved by perceptrons and related learning rules.
Altnough these types of problems are very important, one of
the goals of our discussion is to distinguish them from a

very different class of genuine closed-loop problems.

[t is wuseful to distinguish between two types of
closed-loop problems depanding on the type of control AS has
over its input signals or its control situations. In

control theoretic terms, this is a distinction between

U e L L 6 W T iy e . PN
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different kinds of environment controllability. In some

cases the adaptive system can exert direct control over its

input signals. By this we mean that, from the point of view
of AS, E merely realizes a mapping from AS actions to AS
inputs. Without significant 1loss of generality, we can
assume that there is a fixed delay through the environment.
Then S(t) = f(A(t-1)) where f is a mapping from A3 actions
to AS inputs. This 1implies that the response of the
environment to any given action will always be the same.
Another way of stating this is that from the point of view
of AS, E is a system without memory. Function optimization
problems are examples éf problems in which this kind of

direct environmental control is assumed.

Other closed-loop protlems are characterized by the

fact that AS has only modulatory control over its inputs.

These are problems in which E appears to AS to have memory.
Consequently, a given action by AS may produce different
environmental responses depending on the internal state of
the environment. Without undue loss of generality, we can
say that S(t) = f(A(t-1),Q(t-1)) where Q(t-1) is the
internal state of E at time t-1. Most control problems are
characterized by this property. For example, a thermostat
cannot directly force the room temperature to a given value

but can only modulate it.
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Most problems faced by biological systems also have
this property. One 1interesting c¢lass of such problems
consists of those arising from movement in space, If the
input to AS corresponds to an indication of its spatial
position, and an action corresponds to a movement, then the
spatial environment E <can only be modulated. A given
movement does not take the animal to the same place each
time it is performed (unless it is a high level
go-to-place-X movement). The destination depends on the
initial location and orientation,. A location and
orientation in space is an 1internal state of a spatial

environmnent.

2.3.1.2 Number of Control Situations - A problem may have a
single control situation, an infinite number, or any number
in between. The most useful distinction that can be drawn

here 1is between problems having one control situation and

those having multiple control situations. The function

optimization problem is an example of a one control
situation problem. The task is to find the minimum or
maximum of a (usually real valued) function. A mechanism
designed to solve a function optimization problem may
include parts that solve multiple control situation problems
(e.g. perform one action if the payoff value has decreased,
and another one if it has increased). But with respect to

the environment that evaluates the payoff function for each

J R s —— -
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action of the adaptive system, the problem has one control
situation since there is only one function to optimize. The
performance of a given action always results in the same
function value. Pattern recognition problems are examples
of multiple control situation problems. Each control
situation corresponds to a pattern, and the task 1is to

assign each input signal to the correct control situation.

2.3.1.3 Control Surface Knowledge - A problem can be
characterized by the amount of knowledge available from the
start about the control surface. It is useful to
distinguish those problems in which there 1is complete
knowledge from those in which there 1is only partial
kKnowledge. The problem solved by a simple servomechanism,
such as a thermostat, is an example of a problem in which
the control surface is completely known and fixed from the
start. This is a multiple control situation problem (one
control situation occurs when the room temperature is too
high, the other when it is too low), and the correct action
for each situation 1is built into the thermostat: furnace
off in situation 1, furnace on in situation 2. This
specification of the control surface is based on a priori
knowledge about the nature of the environment. Here it 1is
knowledge about what a furnace does to room temperature.
The partial knowledge counterpart of this control problem is

known as an adaptive control problem. These problems occur
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when the dynamics of the environment are not Kknown with
enough detail to permit the prespecification of the control
surface., In these cases, the control surface must be

determined from system experience

Any mechanism designed to solve a problem with partial
control surface knowedge must contain, at some level, a
component that solves a problem by using a completely
prespecified control surface. If this were not the case, it
would not be possible to consider designing a mechanism in
the first place. For example, at its lowermost level a
device might be trying to solve a problem with partial
control surface knowledge. A higher level conponent of this
device therefore faces the problem of synthesizing this
control surface and may do so according to its own

prespecified control surface.

2.3.1.4 Knowledge of Preferences - This is a very subtle
issue but one that is fundamental. In fact, we think this
issue deals with a major tenet of Klopf's theory which
includes the claim that homeostasis, or equilibrium, is very
far from being the complete story when considering the
adaptive behavior of animals. For simplicity 1in the
following discussion we assume there is a single optimal
input, but our remarks should be understood to apply to the

more general case in which there are different optimal

|
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inputs depending on the environmental state. Some problems
have the property that the optimal input 1is already Known
from the start. In these problems, the system "knows"
exactly what it wants in the sense that it can recognize it
when it finds it, but must manipulate its environment or its
own response system in order to make the desired input
appear. The problem is in this manipulation rather than in
the characterization of the optimal input. In other
problems, all that is known about the optimal input is that
it maximizes the preference ordering. Nothing 1is known
about the optimal input that permits the system to perform

it or recognize it "on sight",.

These two types of problems are vastly different but
both involve the idea of search. Some examples may clarify
what we mean. Zonsider the problem of searching for a
specific item in a 1list, a particular name in a phone
directory, for example. The name is known from the start,
but the control over the phone directory is not direct. We
cannot approach the directory and command it to open
immediately to the appropriate page. A similar problem is
solved by a thermostat. The desired temperature is
determined by the setting, and the problem is to cause the
thermometer to register that temperature. This is analogous
to the task of causing the phone directory to present the

desired name to the searcher.
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These problems should be contrasted with that of
searching for, let us say, tne best, most expressive
adjective to use in a specific phrase. If we know the best
ad jective from the start, we can simply use it since we have
complete control over what we write. The problem is to find
the adjective that is best. All we know about it from the
start is that it 1s better than all the other adjectives.
This is a much different problem and would remain so even if
there were a well-defined, easy to determine preference
measure for adjectives, and even 1if there existed an
exhaustive alphabetically ordered 1listing of adjectives.
The <crucial difference is the following: the search of the
telephone directory can stop when the desired name is found,
but the search for the best adjective ought, ideally, to
continue until every possible adjective has been
evaluated. In the former case, optimality 1is a local
property of individual trials whereas in the latter case it

is a property of the entire set of possible trials.

If the optimal input is known from the start, it is
often possible to define a measure of error in order to
guide the search. The error measure may have just two
values, signaling error or no error, as in the search of an
unordered list, or it may have many values which indicate
the magnitude and perhaps also the direction of error as in

the search of an alphabetized phone directory and the
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temperature control problem. We therefore call problems in
which the optimal input is known from the start

error-correction problems, We emphasize that the desired

input must be known a priori in order to define the error.

We <call problems in which the optimal input is not known

from the start extremum search problems.

The profound difference between these types of problems
is obscured by the fact that error-correction problems are
special kinds of extremum search problems. If errors can be
ordered so that it makes sense to say that one error is
larger than another, then an error-correction problem can be
solved by minimizing the error which is an extremum search
problem. But extremum search problems that result from
error-correction problems all have a very restricted form.
The error function is either known to be unimodal (that |is,
to have a single 1local minimum) or, if there are several
local minima, it is known that each locally minimum value is
equal to the global minimum (e.g., searching for any of
several items in a list). If the error function does not

have these properties, the error measure is not a good one.

These restricted types of extremum search problems can
be sSolved very easily using a method that can be viewed in
two ways depending on whether one emphasizes the

error-correction or extremum search aspect of a problem.
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The method appears as an equilibrium-seeking negative
feedback method if the error-correction view is emphasized.
Since the optimal input is known from the start, it is
possible to define a control surface that effectively sets
up a "restoring force" around the optimal input by means of
negative or "deviation counteracting" feedback. The method
consists of designing a servomechanism whose set-point 1is
the desired input. Negative feedback causes the resulting
servomechanism/environment composite system to have as its
equilibrium state that which produces the optimal input to
the servomechanism. When the extremum search aspect of an
error-correction problem is emphasized, on the other hand,
this same method appears as a Simple type of gradient
descent procedure designed to minimize the squared error.
Like gravity, the restoring force appears as the force
causing the state to descend toward, and then remain at, the
nearest local mininum. However one views this method, it is
clear that it can successfully solve only a very restricted
class of extremum search problems. To wunderstand these
restrictions most convincingly, 1imagine trying to use a
thermostat in an environment that determines the
temperature, and hence the error signal, by some unusual
function of the thermostat's action. The thermostat can

minimize only a very small class of such error functions!

To summarize, error-correction and extremum search
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problems differ in a number of ways.

1) An error-correction problem is solved when the desired
input is attained even if all of the possibilities have not
been evaluated. An extremum search problem, on the other
hand, 1is completely solved only when the entire range of
possibilities has been explored. Obviously, a search space
can be so large that the extremum search problem can never
be solved in practice. In such cases it becomes important
for the adaptive system to show continuing improvement or
sufficiently high cumulative performance. These
requirements can be thought of as other adapation or
learning problems requiring preference orderings on

sequences of inputs.

2) Any error-correction problem can be transformed into an

extremum search problem but not vice versa.

3) An error-correction problem can be solved by an
equilibrium-seeking mechanism. If the adaptive
system/environment system attains this equilibrium, or is
set to it, then the response of the adaptive system will not
change. On the other hand, it 1is often wuseful for an
extremum search mechanism to be incessantly active to
improve its chances of solving the extremum search problen

or for showing continuing improvement.

4) The hard part about an error-correction problem is not to

F—
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determine what the optimal input is but rather to cause it
to occur. The hard part about an extremum search problem,
on the other hand, is to determine what the optimal response
or state is. The general adaptation problem, and one which
seems to be commonly faced, may be to desire some optimal

situation and know neither what it is nor how to attain it!

2.4 Particular Problems and Methods

2.4.1 Pattern Recognition Problems

From our general perspective, a number of different problems
appear as the same basic open-loop problem which we call the
pattern recognition problem after its most familiar example.
Other examples are associative memory storage and retrieval,
certain forms of system identification, and the problem an
animal confronts in a classical conditioning experiment. By
a pattern recognition problem we mean a problem that is
similar in logical structure to the traditional
formalization of pattern recognition (e.g., Duda and Hart,
1973) . Pattern recognition in a broader sense is really a
complex collection of problems, In the traditional
formalization, pattern recognition is treated as a
relatively passive process that does not involve the use of
information extracted from patterns for explicit control

purposes. All of the examples of what we are calling the
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pattern recognition problem can be related to the
interaction shown in Figure 2.1 by assuming that every
signal S from the environment consists of two parts:
S = (X,2) where both X and Z can be multidimensional
signals. It is convenient also to assume that Z can take on
a distinguished value called 'null' in addition to other

possible values.

PATTERN RECOGNITION - The pattern recognition problem
appears as follows: Xa, a=z1,...,k, is a "training set" of
patterns having respective classifications Za, a=1,...,kK.
For example, if each Xa were some representation of a hand
written alphabetic character, then each Za could be the name
of the correct recognition class label 'A', 'B', etc. After
a number of presentations to the system by the environment
of the pairings (Xa,Za), a=1,...,k, the system should
respond with Za to each input (Xa,'null'), a=1,...,k. That
is, it should "learn" to correctly classify the patterns in
the training set. Additionally, it should be capable of
generalizing from 1its training experience and correctly
classify patterns not included in the training set. Except
for these very important generalization capabilities, the
form of learning accomplished by pattern recognition systems
is the same as that performed by a standard computer memory:
for input (Xa,Za), Za is a data item to be stored at address
Xa so that during a read cycle, address Xa will produce 2Za

as output. The real problem in pattern recognition 1is, in

R
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fact, not really the problem we have just described but
rather the feature selection problem. In order for
meaningful generalizations to be made, patterns must be
represented by appropriate signals. For - our’ present
purposes we view the problem of fihding‘ appropriate
representations as a type of problem different from the
formal pattern recognition problem. What is‘geperally known
as scene analysis is, for example, largely concerned with
the extraction of wuseful features from visual patterns.
Hanson and Riseman (1978), provide a good view of current
scene analysis techniques. Duda and Hart (1973) and Mendel
and Fu (1970) provide good overviews of pattern recognition

methods.

Formulated in this manner, the pattern recognition
problem and related problems discussed below are open-loop.
They do not require the adaptive system to exert any control
over its input. However, it is common to view these
problems in an equivalent manner that does involve a <closed
loop. In this formulation the environment presents the
system with each pattern Xa, to which the system responds
with somne estimate Ya of the correct classification label
for Xa. Then the environment presents tne system with the
error between the correct classification Za and the system's
estimate Ya. This error is usually Ya-Za, that is, it is a

signed error. Viewed in this way the pattern recognition
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problem fits into the general framework we are using. The
most preferable error is zero. We shall argue below,
however, that this closed-loop view does not really alter
the fundamental open-loop character of pattern recognition
problems. This is an important claim since the perceptron,
on which much early attention was focused, solves this type
of problem. We discuss the perceptron learning rule in some

detail below.

ASSOCIATIVE MEMORY - There are many different types of
associative memory structures. Some, such . as those
discussed by Foster (1976, are currently feasible
alternatives to the familiar form of computer memory.
Others, such as those discussed by Amari (1977), Anderson et
al. (1977), and Kohonen (1977), are analog in character and
have been proposed as models of biological memory. These
latter associative memory structures can be viewed as
solving pattern recognition problems. In most pattern
recognition tasks as discussed above, each signal Z is a
unidimensional 1label for a recognition class. For
associative memories, the signals Z are multidimensional
patterns. In these cases, each Xa 1is a "key" and the
corresponding Za .s a pattern to be associated with Xa. The
training phase is interpreted as the period in which the
kKey-pattern associations are stored 1in the associative
memory for later retrieval. The retrieval process can be

interpreted as the classification of the input key. The
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ability of pattern recognition systems to generalize from
their training set appears as the error tolerance and
associative generalization capabilities of these menory
structures, In Section 4 we provide a further discussion of

these types of assoclative memory structures.

SYSTEM IDENTIFICATION - As noted by Kohonen (1977), the
associative memory task can be viewed as a system
identification task if it 1is assumed that there 1is a
functional relationship, wunknown to the associative memory
system, between keys and patterns. Figure 2.2 shows an
associative memory system receiving information from an
unknown system. Each key (Xa) sent to the associative
memory 1is an input signal to the unknown system, and the
corresponding pattern to be associated (Za) is the unknown
system's output. Successfully storing all of these
associations can be viewed as having successfully identified
the unknown system's input/output function. This basic view
can be elaborated in many ways to handle cases in which the
unknown system has 1internal memory. See, for example,

Tsypkin (1971).

CLASSICAL CONDITIONING - A classical conditioning experiment
can be viewed within the pattern recognition framework by
letting patterns X1 and X2 correspond respectively to Ccs

presence and CS absence, and by letting Z1 and Z2 correspond
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FIGURE 2.2. The associative memory problem viewed as a
system identification task. There is an unknown functional
relationship, implemented by a system with an unknown
input-output function, between keys and patterns.
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respectively to UCS-UCR occurrence and UCS-UCR omission.
Trials consist of repeated presentations of the pairs
(Xa,za), a=1,2. After sufficient training, (X1,'null")
elicits Z1 (the CR) and (X2,'null') elicits Z2, the absence
of the CR. This view captures some of the 1logic of
classical <conditioning It illustrates its open-loop nature
and its relationship to pattern classification. However, as
we point out in Section 4, it is not an adequate account of
classical conditioning even though it seems to be generally
regarded as such by neural network theorists. It neglects
the fact that the distinction between the CS and the UCS is

essentially temporal and that the CR anticipates the UCR.

PREDICTION - It is more appropriate to model the behavior
elicited in classical conditioning as a variant of pattern
recognition or system identification known as prediction.
Here, the signals S from the environment are not required to
have two distinguishable parts. The simplest case of the
prediction problém is solved by the adaptive system when
A(t) = S(t+1) for all t. 1In other words, the action of the
adaptive system anticipates its input signal (here by 1
discrete time step). This is the same as the pattern
recognition problem discussed above if the two part signal
(X,2) is taken to be (3(t-1),S(t)). We discuss classical
conditioning and the prediction problem extensively 1in

Section 4,
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According to the distinctions discussed above, all of
the problems we have called pattern recognition problems are

characterized as follows:

1) The adaptive system AS in each case has no control over
its 1input. Consequently, these are all open-loop problems.
However, they can all be transformed into equivalent
closed-loop problems by letting the environment provide only
patterns and error signals. It must be noted that scome
ctypes of system identification procedures generate test
signals as input to the unknown system, This makes the
identification problem closed-loop in an essential way. We
think that it is not misleading, however, to regard ¢the
open-loop identification problem discussed above as the core

system identification problem.

2) These are multiple control situation problems, The

pattern classes of the pattern recognition problem are its
control situations. For the associative memory task, a set
of keys, each of which should elicit the same output
pattern, 1is a control situation. For the prediction
problem, a control situation consists of input signals that
are all followed by the same input signal, Some of these
problems obviously have an infinite number of control

situations.

3) There is partial knowledge of the control surfare. In

the pattern recognition task, for example, the control

I
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surface 1is the mapping that assigns the correct
classification to each 1input pattern. If it 1is known

initially, then no problem needs to be solved.

4) These problems are all error-correction problems. The

problem is not to find the best response Za for each pattern
Xa but rather to cause Za to occur as a response to Xa. The
best response is directly provided to the adaptive system by

the environment (assuming noiseless conditions).

2.4.2 Clustering

The problem of clustering is closely related to the pattern
recognition problem. The basic clustering problem is to
classify input patterns not according to the instructions of
an external teacher, but according to their similarities and
differences according to a fixed metric or similarity
measure, Patterns in the same class should be similar to
one another and different from patterns in the other
classes. To distinguish this problem from the pattern
recognition problem discussed above, it is common to refer
to solution methods as performing "unsupervised learning" or
"learning without a teacher". Unlike pattern recognition
problems, clustering does not require training sets of
patterns; that 1is, it does not require this explicit
"teacher" in the environment. A more accurate way of

viewing the clustering problem, however, is to consider it a
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pattern recognition problem with the teacher included as
part of the adaptive system. Classification errors are
computed by the system 1itself based on the metric or
similarity measure. In this sense, clustering is learning
with a particular built-in teacher rather than learning with

an arbitrary external one.

According to the distinctions we are wusing, the
clustering problem is characterized in the same manner as
the pattern recognition problem: 1) open-loop, 2) multiple
control situations, 3) partial control surface Kknowledge,
and 4) error-correction. Unlike the pattern recognition
problem, nowever, clustering is more clearly open-loop. Any
closed-loop formulation will involve a loop through a part
of the environment whose properties are completely known
from the start. 1In fact, the wuse of the terms control
situations and control surface to describe clustering is not
very appropriate. Duda and Hart (1973) provide a good

discussion of clustering methods.

2.4.3 Stochastic Approximation Methods

An important type of algorithm used to solve pattern
recognition problems is known as a stochastic approximation
algorithm. Stochastic approximation algorithms are designed

to extremize functions that can only be evaluated in the
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presence of noise. Variants exist appropriate for both
extremum search and error-correction problems, and it is the
latter which applies to pattern recognition problems. The
adaptive system's response to input (Xa,Za) is a function of
Xa and a vector of internal parameters W=(wl,...,wn). To
each vector W can be assigned a measure of the
classification error that would occur if W determined the
classification of all of the training patterns Xa,
a=1,...,k. This measure is wusually taken to be the
expectation over all input patterns of the sum of the
squares of the differences between actual and correct
classification (mean square error). Each trial (Xa,Za)
provides only the error in classifying the single pattern Xa
and thus does not provide an exact value of the function to
be minimized. Stochastic approximation methods are applied
by viewing each individual error as a noisy measurement of
the actual error function. They use equilibrium-seeking
negative feedback procedures based on these sample errors
for individual trials. The theory of stochastic
approximation examines conditions under which gradient
descent based on sample errors can lead to minimization of
the expected error over all patterns. See Duda and Hart
(1973) and Kasyap, Blaydon, and Fu (1970), for more complete
discussion of this theory. 1In Section 4 we point out that
the Widrow-Hoff 1learning rule, which is essentially

identical to the Rescorla~Wagner model of classical
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conditioning, and the perceptron 1learning rule are both

examples of stochastic approximation methods.

2.4.4 The Perceptron Learning Rule

It is instructive to examine some of the details of
stochastic approximation methods as they apply to pattern
recognition problems. As a representative example, we focus
on the fixed increment perceptron learning rule. All of our
observations also apply to the Widrow-Hoff learning rule as
well as other examples of stochastic approximation methods.
Figure 2.3 shows an environment E and an interacting
mechanism consisting of three components that together
implement the perceptron learning rule: a comparator, an
ad justable classifier, and a weight adjustment rule.
Different views of this interaction can be obtained by
successively considering the dashed 1lines A, B, and C as
boundary 1lines between an environment and an adaptive

system.

Boundary A. All of the components below line A comprise a
perceptron as it is sometimes viewed. It is clear that this
view shows the perceptron in an open-loop interaction with
E. The problem it attempts to solve is the open-loop view

of the pattern recognition problem described above.
~

-

Boundary B. The most common view of the perceptﬁgn-résults

~
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FIGURE 2.3. An analysis of the perceptron 1learning rule.
The dashed lines represent several different ways of viewing
the perceptron. See text for explanation.
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from considering it to consist of those components below
line B interacting with an environment consisting of E and
the comparator. According to this view, the perceptron
operates as follows: a pattern 1is presented, and the
perceptron computes its classification decision. The

environment then provides a signal that 1is 0 1if the

classification was correct, +1 if it was 0 but should ha{g,«”f

been 1, and -1 if it was 1 but should _ have been 0.

According to this view, the perceptron 1is attempting to

solve a closed-lvuop problem, and it is our belief that many

"

—

,beiIéJé/this problem to be the prototypical closed-loop

learning problem.

It should be clear from our discussion, however, that
it 1is only a very restricted type of closed-loop problen.
Indeed, it is characterized by complete a priori knowledge
about the nature of the closed-loop interaction, and can be
solved by conversion into an equivalent open-loop problem
simply by considering the comparator as part of the adaptive
system (boundary A in Figure 2.3). Moreover, no additional
information is required in order to perform this conversion.
If it is*known that the closed-loop form of the perceptron
learning rule can perform meaningfully when interacting with
an-epvironment, then it is also known that the enviroament
contains a comparator that determines the appropriate error

signals, This comparator can simply be regarded as a part
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of the adaptive system. It makes little difference whether
the subtraction 1is done by the environment or by the
perceptron, Therefore, despite common belief to the
coatrary, we consider the problem that the perceptron
learning rule 1is capable of solving to be an open-loop

problem.

Boundary C. Finally, tne weight adjustment rule can by
itself be regarded as an adaptive system interacting with an
environment. Its task is to minimize the error signal by
sending appropriate control signals to its environment which
consists of the original enyironment E, the comparator, and
the adjustable classifier. The resulting problem can be
classified as follows: 1) closed-loop modulatory control,
2) multiple control situations (determined by patterns X and
error signal values e), 3) total knowledge of the control
surface (its action is always ceX), and 4) error-correction.
This problem 1is <closely related to the problem a
servomechanism can solve. If X were fixed, for example, the
weigzht adjustment rule would act exactly like a thermostat
or a governor. Its task is to control the weights so that a
ccrrect classification is made. The classification signal Z
acts as the set-point of the servomechanism. Like a
servomechanism, its control surface is completely specified
based on a priori knowledge and implements negative
feedback. We regard this component to be the significant

part of the perceptron learning rule.
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2.4,.5 Function Optimization

The most familiar form of the function optimizacion
problem appears in the framework of Figure 2.1 if the input
stimulus S to the adaptive system is a scalar valued signal
that is directly determined by the action of AS. Without
loss of generality, we can say that S(t) = f(A(t-1)) where f
is a scalar valued function of the space of possible
actions. In other words, E appears to AS as a memoryless
system that simply implements a fixed function from AS
actions to AS inputs. The goal of the adaptive system is to
find that action for which f, the payoff function, index of
performance, or reinforcement function, has its maximum
value or, what 1is the same thing, to find that action for
which a disutility function, cost function, etc. has a
minumum value. This problem is also called a decision
problem under certainty. The closely related problem with

uncertainty will be discussed below.

According to the basic distinctions we have made, the

function optimization problem is characterized as follows:

1) It 1is a closed-loop problem, and the closed-loop
interaction is essential. Unlike the case of the
closed-loop view of the perceptron , the loop cannot be
opened unless the adaptive system itself can determine the

value of the payoff function for each action. This requires

.
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informatior. that is not available to the adaptive system in
a function optimization task. In addition, a function
optimization system has direct control over its input. A

given system action always produces the same payoff value

(assuming the noiseless case).

2) It has a single control situation. A solution method may

involve components that face several control situations, but
since there is only one function to optimize, the overall
problem has only one control situation: there is a single
best action. Note that since there is direct control over
the environment, the availability of other information to
the adaptive system, such as some indication of the
environment's state, does not make the task easier. Since

the environment is memoryless, its state never cnanges.

3) There is partial knowledge of the control surtace. For

this problem, the control surface is just the mapping that
assigns the single control situation to the optimum system
action. The object of the optimization problem is to find

this action.

4) This is an extremum search problem. The problem is not

to make a particular input to occur but to make a maximal
(or minimal as the case may be) value of the payoff function
to occur, In applications the emphasis is on finding the
optimal output rather than on causing the optimal input, but

the problem is essentially the same. Perhaps the most
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important point is that the payoff value is not in general a
measure of the error between actual and optimal outputs as
it is in the <case of the pattern recognition problem,
Neither the adaptive system nor its environment need know

from the start what the optimal action is.

Since the function optimization problem involves only a
single control situation, it 1is <clear that it is a very
restricted type of adaptation or learning problem. Notice,
however, that any problem with multiple control situations
and partial knowledge of the control surface can be cast as
the function optimization problem of finding the optimal
control surface. In fact, any adaptation and 1learning
problem can be formulated as a function optimization
problem. The reason for this generality is that function
optimization provides a way to solve any adaptation problem
that involves a preference ordering that can be represented
by the ordering of a numerical measure. The function
optimization abstraction allows one to consider adaptation
with respect to any total preference order rather than a
particular preference order. How can a oroblem that we have
called very restrictive also be general enough to encompass

all adaptation and learning problems?

The answer 1is that although any problem can be turned

into a function optimization problem, to do so may require

PN
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ignoring vast amounts of useful information. Transforming a

multiple control situation problem into a function
optimization problem, for example, requires the information
from the environment telling the adaptive system what
control situation 1is currently present to be totally
ignored. The only information the adaptive system receives
from the environment in a function optimization task at any
time 1is a scalar value of the payoff function. Thus the
equivalent optimization problem is a much more difficult
problem than the multiple control situation problem. The
lack of control situation information makes the search space

enormously larger.

Holland (1975) writes:

Much can be learned from adaptive plans in

general by studying plans which act only in

terms of payoff . . . In particular, plans which

receive information in addition to payoff should

do at least as well as plans which receive only

payoff information, Thus, the efficiency of

payoff-only plans . . . sets a nontrivial 1lower

bound on the efficiency of other plans. (p. 26)
We must agree with Holland, but we think that there is a
very large gap between this lower bound and the efficiency
of adaptive systems that are able to use neutral
environmental information. Most function optimization
methods rely on some form of gradient ascent which is often
described as the method a blind person would use to find the

top of a hill. Our question is: Why 1limit attention to

o
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algorithms that are blind? The elimination of control
situation information corresponds to eliminating all sensory
input to an animal except that directly signaling
reinforcement. It is obvious that the absence of neutral
sensory information makes the survival problem much more
difficult. We think that the success shown by animals in
solving adaptation and 1learning problems is due not to
particularly effective function optimization methods but
rather to the availability of sensory information permitting
global optimization problems to be decomposed into many
simpler optimization problems, each associated with

particular constellations of sensory inputs.

2.4.6 Learning Automata

Learning automaton search methods originated in the
work of Tsetlin (1971). There are several formulations of
learning automaton search methods, but the simplest can be
described as follows. At any time t there is a probability
distribution over the set of possible actions of the
adaptive system, and an action is chosen by sampling
according to this distribution. 1If a reward occurs as a
result of the action, or more generally, if the value of a
payoff increases, then the probability of that action is
increased while the probabilities of the other actions are

uniformly decreased by an amount chosen so as to result in a
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new probability distribution. The next action is chosen
according to this new distribution. If punishment occurs,
or 1if payoff decreases, then the probability of the action
just taken is decreased, and the probabilities of the other
actions appropriately adjusted upwards. Many schemes have
been proposed to update the probability distributions, the
simplest being the linear scheme used by Bush and Mosteller
(1955). Holland's genetic algorithm's (Holland, 1975) can
be viewed as learning automata with particularly
sophisticated methods for updating probabilities. A review
of the theory of learning automata is provided by Narendra
and Thathachar (1974). It has been found that learning
automaton methods can be efficient search methods for
solving function optimization problems in which 1little 1is

known about the nature of the payoff function.

Learning automata are also capable of solving problems
that resemble function optimization problems but are really
quite different. In our classification scheme, these
problems appear exactly like function optimization problems,
but the adaptive system action does not deterministically
determine the environment's response. The action only
determines a probability distribution over the set of
possible payoffs from which the environment's response is
determined by sampling. These problems are sometimes called

decision problems under uncertainty. It is clear that the
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function optimization task described above is a special case

of this problem.

Tsetlin (1971) studied the ability of learning automata
to solve this type of problem by studying their interaction
Wwith environments he called stationary random media. The
payoff could take only two values: 0, 1interpreted as
reward, and 1 , interpreted as penalty. A stationary random
medium 1is characterized by an wunvarying probability of
reward for each possible action of the 1learning automaton.
An automaton acts "expediently" in a random medium if it
chooses actions so that the expectation of reward becomes
greater than it would be if the actions were always chosen
with equal probabilities. An automaton is "optimally
expedient” if this expectation 1is equal to the largest
probability of reward possible with the random medium, that
is, it eventually consistently chooses the action that has
the highest probability of producing a payoff of 0 (reward).
Many simple learning automata were shown to operate
expediently when interacting with random media, and some
were shown to be optimally expedient, although later work
showed that they were "almost" optimally expedient (see

Narendra and Thathachar, 1974).

The random nature of the environment makes the problem

nontrivial even w!2:n there are only two possible payoffs.
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This task is not simply to extremize a payoff function which
the environment evaluates for each automaton action (the
environment does not implement such a function), but ratner
to extremize a function defined for sequences of automaton
actions; that is, to maximize a measure of cumulative
reward or minimize a measure of cumulative penalty. This
function, whose domain is technically infinite, cannot be
directly controlled by the adaptive system but can only be
modulated. Recognizing how this form of modulation differs
from that appearing in a typical control problem, decision
problems under uncertainty are classified as: 1)
closed-loop modulatory control, 2) single control situation,

3) partial control surface knowledge, and 4) extremum

search.

This type of problem involves several aspects of
adaptation and learning that are of great importance. One
is the 1inevitable tradeoff between the exploitation of
current knowledge and the search for new knowledge. The
simplest example is the so-called "two-armed bandit" problem
which concerns the allocation of trials for a learning
automaton having just two actions in a stationary random
medium. Holland (1975) discusses the importance of these
issues for theories of adaptive systems. Related issues
arise when learning automata interact with nonstationary

random media. These environments consist of a collection of
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stationary random media that switch from one to another
according to unknown transition probabilities. Tsetlin
(1971) also studied the behavior of various 1learning
automaton algorithms in nonstationary random media, but
these problems tend to be mathematically intractable. One
interesting result, however, is that there is a relationship
between the degree of stationarity of a random medium and
the optimal learning rate. The optimal 1learning rate
becomes 1larger as the environment becomes less stationary
(Tsetlin, 1971). It is noteworthy that even though one
would think that a nonstationary random medium would in
practice provide clues as to what state it was 1in, to the
best of our knowledge 1learning automata in nonstationary
random media have been studied only as single control

situation problems.

Another very interesting capability of learning
automata 1is that they are applicable to problems in which
the function to be optimized is vector rather than scalar
valued, problems Ho (1970) calls generalized control
problems. For example, a set of 1learning automata |is
capable of finding certain kinds of opilimal solutions of
games about which no a priori knowledge is available. Each
player is a learning automaton interacting with a
nonstationary random medium consisting of the other players

and the structure of the game. Narendra and Thathachar

——
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(1974) provide a review Of these results. We believe these
gane theoretic results have significant implications for
neural modeling that have never been explored, but it would

take us too far afield to discuss them here (see Section 8).

2.4.7 Closed-Loop Control ////

Thermostats and governors are the simplest systems that
solve closed-loop control problems. These systems receive
from their environment either an error signal indicating the
deviation of the environment's state from a desired state,
¢r they receive more general environmental information and
compute their own error signal. They function so as to
minimize this error. Figure 2.4 shows the basic
organization of a closed-loop control system. Here we are

only concerned with non-adaptive control problems,.

According to the distinctions we have made, closed-loop

control problems are characterized as follows:

1) They are closed-loop problems, and control over AS input
is usually modulatory. As for the case of the perceptron,
the comparator may be viewed as a part of the control system
or as a part of the environment. Here, however, if the
comparator is taken as part of the control system, then the

problem remains closed-loop since the loop passes through E

— v
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and not just the comparator (cf. Figure 2.3).

2) They are multiple control situation problems. The

control situation is wusually indicated by the value of an
error signal but can also depend on other environmental

information (as in the case of the weight adjustment rule of

the perceptron). The dashed arrow in Figure 2.4 indicates

the possible availability of information other than the

error signal.

3) There is complete knowledge of the control surface. The

control surface is defined by a control 1law (often
characterized by its "gain"), which is fixed from the start,
for determining the control system's action based on its
input signal. The control law is specified by the control
system's designer on the basis of assumed a priori knowledge
of environmental dynamics. Consequently, a control system
need not search for the correct action. Maintaining the
temperature near the desired temperature, for example, is a
reflexive function of the thermostat made possible by the

suitability of its control law for its environment.

4) They are error-correction problems. The control 1law 1is

ciiosen so that the control system/environment composition
has the desired equilibriim state. This 1is accomplished
through negative feedback. Although it is possible to view
this problem as an extremum search problem, the control rule

only succeeds 1in extremizing a very restricted class of
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functions.

2.4.8 Kineses and Taxes

In their <classic work The Orientation of Animals:

Kineses, Taxes and Compass Reactions, Fraenkel and Gunn

(1961) discuss a number of methods used by animals for
finding and remaining near light or dark areas, warm or cool
areas, or, in general, for approaching attractants and
avoiding repellants. They distinguish between two major

types of reactions that they c¢all kineses and taxes. A

Kinesis 1is a locomotory reaction in which speed of movement

and frequency of turning depend on stimulus intensity. A
taxis is a reaction in which movement is straight towards or
away from the source of stimulation. These terms were
proposed to describe animal behavior and are favored over
the term "tropism™ which originally described a specific
class of mechanisms involving condition- »f tension in
symmetrical muscles (see Fraenkel and ¢ r. ™1, pp. 5-10).
Recently, Selfridge (1978) provided a view of some of these
reactions that emphasizes their general utility as adaptive
strategies and has shown how they can be used for improving

the performance of artificial adaptive systems.

Of the many different types of kineses and taxes

described by Fraenkel and Gunn, we will focus only on those

.
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calied klino-kinesis and tropo-taxis. These reactions solve
problems that have a particularly interesting place within
the range of adaptation and learning problems we are

considering in this report.

2.4.8.1 Klino-Kinesis - The most intensely studied example
of klino-kinesis occurs in the behavior of various types of

bacteria such as Escherichia coli , Salmonella typhimurium,

or Bacillus subtilis. These bacteria propel themselves

along relatively straight paths by rotating (!) a flagellum.
With what at first appears to be random frequency, they
reverse flagellar rotation which causes a momemtary
disorganization of flagellar filaments. This causes the
organism to stop almost instantaneously and tumble in place.
As the disorganized flagellum continues to rotate in the new
direction, its filaments reorganize causing the organism to
be again propelled along a straight path. Consequently,
flagellar reversal causes a random change in direction of

travel.

Adaptively wuseful behavior results because the
frequency of flagellar reversal 1is modulated by the
direction of movement with respect to level of attractants
and repellants. Reversal frequency decreases if movement is
toward higher attractant concentrations and increases if

movement 1is toward lower concentrations. Repellants have a
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similar effect, mutatis mutandis. This modulation of
flagellar reversal biases 1locomotion so that the organism
remains near places of maximal attractant concentration or
minimal repellant concentration. It 1is a very effective
strategy particularly when gradient information 1is very
noisy. Koshland (1979) describes this type of behavior and
underlying biochemical mechanisms in great detail.
Selfridge (1978) emphasizes the generality of this type of
adaptive strategy, which he calls the Run and Twiddle
strategy, by describing it as follows: if things are
getting better, keep doing what you are doing; if things
are getting worse, do something else. We of course

recognize the rationality of this maxim. Yet bacteria use

ie!

The problem a klino-kinetic or run-and-twiddle strategy
solves can be characterized as follows:
1) It is closed-loop. The action of the bacterium clearly
L ]
affects its sensory input in a relevant manner,
Importantly, this control over stimuli is modulatory rather

than direct. The same action produces different results

depending on the location and orientation of the bacterium.

2) There are multiple control situations. The control

situations are "heading wup attractant gradient or down

repellant gradient" and "heading down attractant gradient or

© mbn s v i vt e daha o =
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up repellant gradient". These are determined by short-term
menory which permits the comparison of stimulus levels at

successive times.

3) There is complete knowledge of the control surface. The

control surface specifies that in the up-~attractant-gradien:
control situation the optimal action is to decrease tumble
frequency while 1in the down-attractant-gradient situation
the optimal action is to increase tumble frequency. This
knowledge 1is built-in from the start and constitutes the

reflexive klino-kinetic response.

4) This is an extremum search problem. The optimal place in

space 1s not known from the start, negative feedback is not
involved, and the organism 1is incessantly active. The
klino-kinetic strategy 1is not particularly effective for
extremizing complex multimodal functions, but this does not
mean that it solves an error-correction problem. We suspect
that a careful analysis of klino-kinesis would shcw that it
is quite successful for optimizing performance measures that
consider long-term cumulative performance in environments
with dynamically changing attractant and repellant
concentrations; that is, special kinds of decision problems

under uncertainty.

Ae find the problem solved by a klino-kinetic strategy

very interesting because it is very similar to a function
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optimization problem yet differs from that problem in
several crucial ways. The most basic difference is that the
klino-kinetic strategy solves a problem involving modulatory
rather than direct environmental control. This implies that
the payoff function, here the attractant concentration, 1is
not a function of the adaptive system actions. There is no

optimum adaptive system action. One cannot say that either

raising or lowering tumble probability is best. Which is
best depends on the orientation of the organism with respect
to attractant and repellant gradients. This is why the
problem has multiple control situations while the function

optimization problem does not.

But is it not true that the simplest hillclimbing
method for function optimization has two control situations,
one for up gradient and one for down gradient? This 1is
indeed true, but hillclimbing is a method that can be used
to solve a function optimization problem. Klino-kinesis 1is
also a hill-climbing method and can, in fact, be used to
solve function optimization problems, but the problem faced
by a bacterium is not function optimization as we have
defined it. Figure 2.5 helps make these points clear. If
the adaptive system AS is taken to consist of the components
below boundary A, then it faces a function optimization
problem. Each action of this adaptive system is a position

in space, and the environment E determines the attractant
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3ince it does not have direct control over its input.

The system below line
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concentration for each point in space, A place 1in space
always has the same attractant concentration. On the other
hand, if AS is just the klino-kinetic mechanism shown below
boundary B, then it faces a different problem. Its actions
are 'run' and 'twiddle' (actually they are high and 1low
twiddle probability) which only have a modulatory effect on
its input. The component labelled ™"space" determines new
positions based on AS action and current position and
orientaton. It is accurate to call the problem the

klino-kinetic system faces an extremizing control problem

since it differs from the standard control problem only by

not being an error-correction problem,.

2.4.8.2 Tropo-Taxis - A tropo-tactic reaction solves ‘the
same problem as the Klino-kinetic reaction but in a
different manner. Tropo-taxis requires at least two sensory
receptors so that the attractant gradient can be detected by
means of simultaneous comparison of stimulus intensity
received at two different places rather than comparison of
intensities received at two different times. 1In contrast to
the almost random appearing paths produced by klino-kinesis,
tropo-taxis produces nearly straight, direct paths toward or
away from the source of stimulation, Usually this type of
reaction is associated with light stimulation, in which case
it is often called photo-taxis and, formerly, heliotropism

(Fraenkel and Gunn, 1961, p. 76). Our interest in

if
|
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tropo-taxis 1lies in the fact that unlike klino-kinesis it
incorporates as a component a mechanism that solves an

error-correction problem via negative feedback.

For specificity we will discuss positive
photo-tropo-taxis (light acts as an attractant). Suppose a
continuously moving organism has two light sensitive spots
symmetrically placed about the anterior end of its
locomotory axis. A prespecified <control surface causes
turning movements in the direction of the most strongly
illuminated receptor. If the receptors are equally
illuminated, no turning occurs. The control surface
implements a negative feedback error-correction control
system that seeks to equalize the stimulation of the
receptors. Logically (but not literally in an animal) a
signed error 1s computed by sSubtracting one receptor
activity from the other. The control mechanism causes the
organism to have two equilibrium orientations with respect
to a light intensity gradient, one facing up-gradient and
the other facing down-gradient. 3ince we are describing
positive photo-tropo-taxis, the up-gradient -equilibrium is
stable but the down-gradient one is not. A very small
amplitude random turning component prevents the
down-gradient orientation from being maintained. Animals
with compound eyes possess more complex control surfaces.

There are more than two control situations since stimulation
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of posterior receptors causes stronger turning than
stimulation of anterior receptors. This yields a more
refined orientation <control system. Tropo-taxis thus
consists of a negative feedback orientation control system
coupled with continuous movement. The result is a strategy
capable of very efficiently solving simple extremum search

problems.

2.4.9 Adaptive Control

A control problem is an adaptive control problem if the
control surface 1s not completely known from the start and
can be modified based on the individual experience of the
control system. This additional flexibility is necessary
for applications in which not enough knowledge of the
environment exists to permit the specification of a fixed
control law. Adaptive control problems therefore have the
Same characterisitics as the control problems discussed
above with the exception that there is only partial control
surface knowledge. The problem of determinin- the control
surface through experience is another type of adaptation or
learning problem that can take a variety of forms. Adaptive
control problems are therefore compositions of the basic

problems we are considering.

Figures 2.6 and 2.7 show two general forms of adaptive
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control systems. In each case, the component(s) below the
dashed 1line comprise an adaptive system whose actions
determine modifications in the control law of the control
system shown above the dashed line. 1In each case, there is
a preference ordering determined by a measure, usually
called an index of performance or performance criterion by
adaptive control theorists. Sometimes the determination of
the index of performance involves a system identification
procedure. The problem the adaptive mechanism must attempt
to solve can nave any combination of the basic properties we

have been discussing. We call this problem the second-level

problem of the adaptive control system.

Figure 2.6 shows an adaptive control system whose
second-level problem 1is an error-correction problem since
there is a known desired value of the index of performance.
This second-level problem is 1in fact identical to the
non-adaptive control problem discussed above. The
second-level control surface 1s completely known. An
example of this type of adaptive control problem is that of
determining the appropriate sign for the gain of the
ad justable controller. The index of performance may be <the
same as the error signal to the first-level controller,
Imagine the problem faced by a thermostat that can be
connected to a furnace in either of two ways: 1its signal

either turns the furnace on or it turns it off. The
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FIGURE 2.6. The organization of an adaptive control system.
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second-level problem of the c¢ontrol problem. Here, this
second-level problem is an error-correction problem.
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second-level adaptive mechanism must try gains of both signs
until the appropriate negative feedback is obtained through
the furnace loop. This second-level mechanism must perform
an error-correction search and can stop when the correct

gain is found.

Ashby's Homeostat (Ashby, 1960) is exactly this type of
adaptive control system. The Homeostat's task 1is to
maintain the values of a set of c¢ritical variables within
prescribed 1limits. This is a closed-loop control problem.
Ashby suggests the use of a second-level "step function"
mechanism to alter the values of control law parameters.
The rule he suggests for selecting parameters is as follows:
if the value of the index of performance is acceptable (that
is, all critical variables are within prescribed limits), do
nothing; if it is not acceptable, choose any new parameter
value. This 1is the simplest method for solving an
error-correction problem 1in which the error measure only
takes the values "acceptable" and "unacceptable”. At all
levels, the Homeostat is capable of solving only
error-correction problems. When the desired state, which is
known from the start, 1is achieved, all activity of the

Homeostat ceases.

Figure 2.7 shows another type of adaptive control

system known as an extremizing adaptive control system.

—eitmat
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Here the second-level problem is to minimize or maximize the
index of performance (depending on what kind of index it is)
with no explicit knowledge of what constitutes the optimal
action. In other words, the second-level problem is an
extremum search problem. An example of this kind of problem
is to control an internal combustion engine in order to

maximize combustion efficiency.

Qur discussion of adaptive control leaves much unsaid.
It is a very large subject, and our few comments merely
provide a rough outline of the basic types of problems
usually considered. We think the most salient features of

adaptive control are:

1) The second-level adaptation problem 1is characterized
either by multiple control situations but a completely known
control surface (Figure 2.6), or by a single control

situation but an unknown control surface (Figure 2.7).

2) There 1is considerable a priori knowledge about the
environment 1in which the second-level adaptive system must
operate since it includes the first-level control system and
a carefully defined procedure for computing the index of

performance.

—
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2.4.10 Learning Control

The distinction between adaptive and 1learning control
seems not to be sharply defined. Mendel and McLaren (1970)
describe 1learning control systems as adaptive control
systems with long-term memory. The second-level control law
is broadened by "localizing the adaptation to regions in a
plant-environment space and by providing the control law
with a long-term memory". In our terms, learning control
results when the second-level adaptation problem has
multiple control situations and partial control surface
knowledge. This 1is easiest to wunderstand through an

example.

Ashby (1960) describes an elaboration of the Homeostat
enabling it to function efficiently in a variety of
different environmental situations by the "accumulation of
adaptations®. Recall that the Homeostat 1is an adaptive
control system whose first-level control law is modified by
a second-level parameter selection mechanism until the
performance criterion 1is reached, Consider 1letting the
Homeostat reach -equilibrium in one environmental situation
and then placing it in a new environmental situation so that
new parameters have to be sSelected by the second-level
mechanism. Ashby suggests that if the Homeostat 1is given

long-term memory so that it can recognize a situation in

- s —— =
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which it had previously adapted, then the appropriate
parameter values <can be inmediately retrieved without the
error-correction search, A search is required only in novel

envirormental situations,

According to our terminology, the second-level
adaptation mechanism in the adaptation accumulating
Homeostat is characterized by multiple control situations
but, unlike the ordinary Homeostat, by partial knowledge of
the control surface. Further, the control situations are
determined not just by an error signal but also by signals
indicating salient features of the environment. The control
surface 1is the 1long-term memory that 1is filled 1in as
adaptations "accumulate". The entire characterization of
this problem is as follows: 1) closed-loop, 2) multiple
control situations, 3) partial knowledge of control surface,

4) error-correction.

Ashby does not describe in detail how the adaptation
accumulating Homeostat can recognize control situations, but
it is clear that some form of pattern recognition is
required. Pattern recognition is, in fact, an intimate part

of any problem with incomplete control surface knowledge.

The extremizing counterpart of the type of learning

control problems solved by the adaptation accumulation
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Homeostat is characterized as follows: 1) closed-loop, 2)
multiple <control situations, 3) partial control surface
knowledge, 4) extremum search. It therefore requires a
multiple control situation extremizing search procedure.
Mendel and McLaren (1970) discuss problems of this type

which they call reinforcement learning control problems.

Figure 2.8 shows a representative reinforcement learning
control system. They say that the following procedures are
required to automatically improve the (first-level) control
law: 1) the goal curcuit evaluates the results of previous
control choices of the learning network for given
situations, and 2) the 1learning control law's memory is
modified so that subsequent control choices reflect this

evaluation (after Mendel and McLaren, 1970, p.295).

An example of a reinforcement learning control system
is the BOXES system of Michie and Chambers (1968). We
describe it in some detail since it illustrates the features
required in a 1learning control system in a particularly
simple and elegant form. The control task chosen for
demonstration purposes 1is to balance a pole on a cart that
can move along a track of fixed length. The control system
can send signals causing the cart's motor to exert full
force either 'left' or 'right' for a fixed duration. At
regular time instants the control system receives signals

from the cart-pole apparatus consisting of four element
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A representative reinforcement learning control
system (after Mendel and McLaren, 1970, Figure 2, p. 295).
See text for explanation.
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state vectors (x, x, O, é) whose elements respectively give
the cart's pcsition and velocity and the pole's angle and
the rate of change of the angle. In addition to these
signals, a ‘'failure' signal is sent to the control system
whenever the pole falls or the cart runs off the track. The
system's task 1is to —construct a mapping from the state
vectors to the system actions in such a way that the
occurrence of the failure signal is minimized. This mapping

is the control surface.

A long-term memory is provided to accumulate the
control surface knowledge. The space of all possible state
vectors is quantized by distinguishing only three grades of
position x, three of velocity i, six of angle 8, and three
of angle-change é. This results in a 1long-term memory
having 162 "boxes" each corresponding to a rather coarse
region of the state space. The problem is to appropriately

store 'left' or 'right' in each of these boxes.

The method used by BOXES is very simple. Associated
with each memory box is a mechanism that chooses an action
whenever the box is "addressed™ by an environmental state
vector and accumulates a record of time-until-failire ¢ .-
each action. 1In particular, %the mechanism - r e =
addressed by the current state does tne £ w - ©

1) Chooses 'left' or 'right' dspanait -0 - .
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to lead to the longest time until failure.

2) Remembers which action is chosen and initiates a count.
3) When failure occurs, the count is used to update either
the 1left or right expectation depending on which action was
chosen.

Michie and Chambers remark that this control s~2heme really

works, and that the control task is nontrivial.

The BOXES system illustrates in a very clear manner the
general features of how 1long-term memory 1is used in a
learning control problem. Mendel and Mc Laren (1970)
distinguish short-term memory from long-term memory by
saying that short-term memory records information only for
as long as the system 1is in the same control situation,
whereas long-term memory records information that can be
retrieved outside the control situation or when the same
control situation is entered at a later time. Long-term
memory is essential for accumulating control surface
knowledge. Mendel and McLaren also point out that long-term
memory is also essential for recording information requirea
to construct the control surface (e.g., the expectation
records of the BOXES system). If learning cannct be
completed the first time a control situation 1is entered,
long-term memory 1is required to store certain kinds of
information so that learning can continue when the control

surface 1is entered again. The associative search network
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described in Section 5 is an example of a reinforcement
learning control system that is very similar to the BOXES
system but that uses a distributed rather than a 1localized

memory.

2.4.11 1Instrumental Conditioning

The distinction we have made between problems and
mechanisms provides a convenient way of handling some
controversial questions regarding what happens in classical
and instrumental conditioning experiments. By virtue of the
experimental design, an animal's 1interaction with its
environment 1is different in classical and instrumental
conditioning experiments. Assuming that a classical
conditioning experiment is characterized by the lack of
response contingency (a feature very difficult, if not
impossible, to enforce in practice), instrumental
conditioning experiments are distinguished from classical
conditioning experiments by the fact that they involve
response contingencies permitting the animal to exert a
degree of control over its input. With this fact there is

no disagreement.

Recall, however, that the possibility that a system can
control its input does not imply that the problem it solves,

or attempts to solve, is closed-loop. It has been a matter
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of considerable controversy among animal learning theorists
whether or not, to use our terminology, the problems an
animal seems to solve in an instrumental conditioning
2xperiment are different from those solved in classical
conditioning experiments. Is the control over input used in
any way by the animal? It is now generally agreed that such
control can make a behavioral difference (see, for example,
Dickenson and Mackintosh, 1978). Consequently, it 1is safe
to say that wunlike the problem faced by an animal in a
classical conditioning experiment, the problem faced in an
instrumental conditioning is closed-loop, or, at least, is
closed-loop for most instrumental paradigms. Nevertheless,
it is problematic to speak of classical or instrumental
learning rather than the behavior elicited in classical or

instrumental experiments.

We think it 1is also fairly safe to <consider the
problems typically solved by animals in instrumental

conditioning experiments as multiple control situation

problems. For some experimental paradigms ¢the control
situations are explicitly signaled by, for example, a
discriminative stimulus signaling the availability if
reinforcement. 1In other experiments, they may be 1less
explicitly signaled and can depend on such things as the
time elapsed since the last reinforcement event.

Additionally, the sensory input from the entire experimental
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situation, including the sights, sounds, and smells of the
experimental apparatus and experimenter, can act as signals
potentially specifying control situations. It is also not
misleading to include information about internal
motivational states as potentially signaling contro!

Situations.

The multiple control situation nature of instrumental
conditioning problems was expressed clearly by Thorpe

(1951):

The essence of trial-and-error learning ([type II
or instrumentall], then, is the development of an
association, as the result of reinforcement
during appetitive behavior, between a stimulus
or situation and an independent motor action as
an 1item in that behavior when both stimulus and
motor action precede the reinforcement and the
motor action 1is not the inevitable inherited
response to the reinforcement, (Thorpe, 1951,
p. 78)

Multiple control situations are implied by the mention of

the development of associations between stimulus situations

and motor actions.

Thorpe's description also plainly indicates that there

is partial knowledge of the control surface. Both the

phrases "independent motor action" and "the motor action is

not an inevitable inherited response" mean exactly that
there is partial control surface knowledge. An example of a

dependent, inherited response is the reflexive response of a

3
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servomechanism such as a thermostat to the error signal.

Finally, we turn to the question of whether or not
instrumental learning problems are extremum search or
error-correction problems. Do animals tend, for example, to
maximize reward, or do they tend to control reinforcement
rates toward certain known desired values? The most common
interpretation of the data is that animals tend to maximize
reward and minimize punishment, but this really involves
complex 1issues that we cannot adequately address here. We
Wwill tentatively accept this extremizing view as being
consistent with the data if it is noted that animal behavior
seems to be appropriate for solving extremum search problems

under uncertainty.

Keeping our qualifying remarks in mind, we can
characterize the behavior elicited in instrumental
experiments as follows: 1) closed-loop, 2) multiple control
situations, 3) partial control surface knowledge, and 4)
extremum search under uncertainty. This is the same type of
problem faced by the second-level adaptive mechanism in a
reinforcement learning control system. It is significant
that although this problem is related to the problem solved
by the perceptron learning rule, it is also very different.
It is our impression that the perceptron learning rule,

especially in its closed-loop form, has been considered by
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some to be capable of solving reinforcement 1learning
problems. This is simply not the case. It is &also clear
that instrumental conditioning problems are not simple
function optimization problems since they involve neutral
sensory 1input signaling multiple control situations. We
have found that the area of adaptive system theory most
closely related to instrumental conditioning 1is that of
reinforcement learning control systems as discussed by

Mendel and McLaren (1970).

2.4.12 Klopf's Heterostat

Klopf (1972, 1979, 1981) proposed a learning rule, in
the form of a postulate about synaptic plasticity, which is
actually best seen as a learning rule capable of solving
simple reinforcement learning control problems. He
hypothesized that neurons try to maximize their 1level of
membrane depolarization by changing synaptic effectiveness
in the following way: Whenever a neuron fires, those
synapses that were active during the summation of the
potentials leading to the discharge become eligible to
undergo changes in their transmission effectiveness. If the
discharge is followed by further depolarization, then the
eligible excitatory synapses become mcre excitatory. If the
discharge is followed by hyperpolarization, then eligible

inhibitory synapses become more inhibitory. 1In this way a
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neuron will become more likely to fire in a situation in
which firing is followed by further depolarization and less
likely to fire in a situation in which firing 1leads to

hyperpolarization.

The term heterostat was chosen to emphasize the
difference between this hypothesis and those suggesting that
the concept of homeostasi§ plays +the central role in
understanding the purposiveﬁess of living organisms. Rather
than acting solely to achieve a condition in which certain
variables remain within particular bounds as suggested by
Asnby (1960), a heterostat acts so as to extremize the value
of a particular variable. Our discussion of kineses and
taxes should make it clear that natural adaptation
mechanisms do indeed involve more than equilibrium-seeking
or error-correction. Kineses and taxes are ubiquitous in
nature and solve extremizing rather than error-correcting
problems. We wholeheartedly agree with Klopf's c¢laim that
the identification of adaptive behavior with
equilibrium-seeking behavior is very misleading. We shall
see, however, that Klopf's heterostat is more complicated
than the extremizing counterpart of Ashby's Homeostat. It
is, in fact, the extremizing counterpart of Ashby's
adaptation accumulating Homeostat together with a pattern

recognition mechanism.
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According to the distinctions we have been focusing
upon in this report, the problem various formulations of the

heterostat can solve can be characterized as follows:

1) It is a closed-1loop problem. Since a pathway becomes
eligible for modification only when a presynaptic signal
causes a response from the postsynaptic element, the process
is closed-loop. The consequences of the system's actions
are used to alter long-term memory. The <closely related
learning rule we study in Section 4 as a model of classical
conditioning is open-loop since postsynaptic response is not
necessary to trigger eligibility. Of course, either model
can be placed in an environmental interaction in which
control can be exerted over input, but the presence of the
output contingency of Klopf's original proposal permits a

heterostat to use the control over its input.

2) There are multiple control situations. As in the case of

the perceptron, control situation information is provided by
the input signals. For its simplest formulation, the
heterostat has two possible actions. Consequently, there
are two control situations: one in which the optimal
response 1is 1 and another in which the optimal response is
0. Part of the task accomplished by the heterostat 1is the
classification of input patterns according to which control
situation they signal. This part of the heterostat's

behavior is similar to perceptron pattern recognition
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behavior with the crucial difference that which control

situation an 1input pattern signals need not be explicitly

indicated by the environment either directly or by means of

an error signal.

3) There is partial knowledge of the control surface. As in

the case of the perceptron, the control surface is specified
when the weights reach the values that cause the optimal

action to be performed in response to each input pattern.

4) This is an extremum search problem. A search is required

to find the optimal action for each pattern. By optimal is
meant that action which is followed by the largest increase
in reinforcement (or by the smallest decrease in
reinforcement if only decrease is possible). This 1is 1in
sharp contrast to the meaning of optimal in the case of the
perceptron. Additionally, some forms of the heterostat can

perform extremum search under uncertainty. In this respect,

the heterostat is closely related to the learning automaton
search methods described above. Unlike learning automaton
methods, however, the output probability distribution
depends on the current input pattern. Thus, as the weights
change, the mapping from input patterns to output
probability distribution changes. It is not misleading to
describe this version of the heterostat as a collection of
learning automata together with a pattern recognition

scheme. The Associative Search Network described in Section




ADAPTIVE SYSTEM THEORY PAGE 2-78

5 uses this type of adaptive element.

According to this classification, it i3 correct to say

that a heterostat is a simple but complete reinforcement

learning control system. In addition, the heterostat as

originally suggested by Klopf has the capability of

modifying its preference ordering of inputs. Preference is

determined by a measure of reinforcement which is, in the
simplest case, dependent on a weighted sum of the input
signals. But since the weights are modifiable, the
preference ordering is modifiable also. For example, as the
weight of a particular pathway increases, the relative
preference for input patterns with signals over that pathway
increases. Control over preference order or performance
measure is a very important aspect of adaptive behavior. We
think that in the case of the heterostat this capability can
be used to construct more informative reinforcement signals
from 1initially neutral environmental information. This
capability, which seems closely related to the notion of
secondary reinforcement in animals, is not understood well
enough at this time to permit us to provide a thorough

analysis.

2.5 Summary and Discussion
1) The perceptron 1learning rule and similar stochastic

approximation methods such as the Widrow-Hoff rule solve
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open-loop problems. Although it is common to view these
methods as solving closed-loop problems, the nature of the
loop is known from the start to merely pass through a
comparator, These problems are equivalent to open-loop
problems. They are also error-correction problems. Even
putting aside the usual objection that perceptrons can only
implement linear discriminant functions, it is clear that
they can solve only a very restricted kind of problem. They
are not adequate models of animal behavior in instrumental
conditioning experiments. Perceptrons are more closely

related to classical conditioning.

2) The function optimization problem is a genuine
closed-loop problem. However, it is misleading to view all
adaptation and 1learning tasks as function optimization
tasks. Since a function optimization procedure is assumed
to have direct control over its environment, the function
optimization problem 1is characterized by a single control
situation. In other words, the environment is assumed to
remain in a single state and implement a single memoryless
function of the action choice of the optimization procedure.
This implies that there is a single optimal action (or a set
of actions with equal optimal payoffs), and that
environmental information other than payoff function values

is irrelevant.

It is indeed true that any of the problems we have
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discussed can be viewed as the function optimization problem

of finding the optimal control surface. But this view
necessitates ignoring the vast amount of useful
environmental information signaling control situations. By

definition, function optimization methods are blind to
information other than payoff information. It is obvious
Lhat the availability of other information can make the
search for the optimal control surface much easier. While
certain important aspects of adaptation and learning are
captured by the function optimization formalization, it 1is
clear that the identification of adaptation or learning with

function optimization is misleading.

3) It remains a popular view that the goal-seeking behavior
of organisms can be equated to the equilibrium-seeking
behavior of servomechanisms. Ashby's theory of adaptation
has done much to perpetuate this view. For example, in

Design for a Brain (1960) Ashby states:

We can now recognize that 'adaptive' behavior is
equivalent to the behavior of a stable system,
the region of stability being the region of the
phase-space in which all the essential variables
lie within their normal limits. (p. 6U4)

And further:

The point of view taken here 1is that the
constancy of the essential variables is
fundamentally important, and that the activity
of the other variables is important only in so
far as it contributes to this end. (p. 67)

This view of adaptation provided by the early cyberneticists
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did much to de-mystify the nature of so-called
"teleological" behavior observed in animals. However, this

view of adaptation is very restricted in scope.

Klopf (1972, 1979, 1981) has suggested that it is more
accurate to view adaptation and learning as, to use our
terminology, extremum search rather than error-correcting.
According to Klopf's theory, the constancy of some variables
is important only in so far as it contributes to the
extremization of others. This is exactly the reverse of the
view put forward by Ashby. Our investigation has led us to
agree that, in a logical sense, extremizing behavior is more
fundamental than error-correction behavior, The reason is
simply that error-correction problems are restricted types
of extremum search problems, If one has a device capable of
solving even relatively simple extremum search problems,
then one also has a device that can solve any
error-correction problem (albeit with some loss of
efficiency). But an error-correction device can solve only
a very restricted class of extremum search problems. Herein
lies the fundamental importance of Klopf's theory: it 1is
the first theory of neural plasticity to consider less
restrictive types of extremum search problems than those

arising from error-correction problems.

Wwhich kind of problem is more fundamental in nature,
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rather than logically, is a different question that is more
difficult to answe». It is very clear, however, that many
of the prime examples of adaptation in nature involve
extremum search. The evolutionary process itself 1is the
expression of a complex adaptation mechanism that is clearly
not error-correcting. Nowhere is there knowledge about what
base pairs of DNA code for the optimal organism!
Klino-kinesis and tropo-taxis, commonly found in nature, are
both extremum search methods. They attempt to maximize
levels of attractants and/or minimize levels of repellants.
A tropo-taxic mechanism contains a mechanism that solves an
error-correction problem,  but it is clear that the
equilibrium attained serves only to facilitate the
extremization process., More than this needs to be said
about which 1is more fundamental in nature, extremum search
or error-correction. One could argue, for example, that a
klino~kinetic or tropo-taxic strategy is used by an organism
in order to maintain nutrient intake within acceptable
limits, an error-correction problem. We think that views
suggesting the primacy of homeostatic mechanisms neglect the
fact that animals evolve in very competitive environments
having limited resources. Extremum-seeking components in an
animal's control system may permit survival in a wider range
of envirourental conditions than would be .possible with
error-correction mechanisms alone. What 1is certain,

however, 13 that one cannot restrict attention to
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error-correcting processes as suggested by Ashby and other

early cyberneticists.

A FINAL REMARK

Much of the criticism of the approach to developing
intelligent systems based on numerical, data directed
methods (typified by the perceptron learning rule) rested on
the difficulty 1in extending these methods to solve more
difficult examples of the types of problems they were
already solving. For example, implications of the
perceptron's limitation ¢to forming 1linear discriminant
functions were pointed out by Minsky and Papert (1969), and
the shortcomings of hill-climbing methods for the
optimization of functions with large plateaus or many false
optima were pointed out by Minsky and Selfridge (1960). The
criticisms we have implicitly made in this report are of a
completely different kind. We have pointed out the
restricted nature of the problems these methods were
designed to solve rather than their limited abiltiy to solve
them. We, of course, agree that general pattern recognition
and function optimization problems are very difficult ¢to
solve completely, but we think problems of this difficulty
need never occur. Pattern recognition is usually just one
part of a complex adaptation or 1learning task, and the
function optimization task 1is so abstract that the

formulation of a problem as such a task usually requires
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potentially valuable structure and information to be
ignored. It seems to wus that sophisticated adaptive
behavior can result from a system designed to solve a
variety of interrelated adaptation and learning tasks, each
of which 1is relatively simple. In other words, when
formulated in an appropriate manner, sophisticated
adaptative behavior need not require any single subsystem to
form highly nonlinear discriminant functions or optimize

functions having broad plateaus or many extrema.
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SECTION 3

EVOLUTION OF HETEROSTAT MODELS

3.1 Introduction

In this section we present a rcughly chronological
trace of heterostat models that we have considered during
the contract period, noting what we view as key advantages
and failings of each. To give an overview, the models can
be divided into thrz2e groups or periods, which correspond
roughly to the chronological progression. The first period
was one of wide ranging exploration and experimentation,
ending with a conversion from wusing input level to the
adaptive element as reinforcement [footnotel, as Klopf
originally suggested, ¢to wusing change in input level as
reinforcement. In the second period, the model was further
refined, and a number of variations considered. 1In the

The word "reinforcement" in this chapter is used in a
generic sense that includes both reward and punishment.
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third period, which overlaps with and in no way supersedes
the second, we have begun to consider models that use a
specialized reinforcement pathway whose activation does not
affect the activity of the element. The early stages of the
third period stretched over a long period of time as we
gradually came to realize that many of the most interesting
aspects of Klopf's heterostat did not require the additional
novelty of generalized reinforcement, that is, the ability

of all or many input pathways to provide reinforcement.

The main purpose of this section is to record each of
the major steps in the evolution of our elemeht designs, as
well as to present what we view as the major reasons for
each step. The purpose is not to justify and defend each
step, for that would be at least as ambitious a project as
this entire report. In other sections we more carefully
Justify particular elements with reference to particular

learning tasks (Sections 4, 5, and 6).

3.2 Early Models: Open-Loop Stability

The early period was one of wide ranging exploration
and experimentation, A great many models were generated,
and we gradually came to some understanding of the
fundamental problems involved 1in <c¢reating a workable

heterostat, In describing this period, we have chosen to

|
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present relatively few models while putting considerable

emphasis on the principles involved. The major advance of

this period was a gradual recognition of the advantages of

switching to a reinforcement measure based on the change in

input to the adaptive element rather than on the absolute

level of the input,.

Klopf did not provide a complete formal specification

of hnis original heterostat (Klopf, 1972, 1979, 1981). The

e o s i ot 7o e

primary differences among early attempts to interpret his
work involved the eligibility and zerosetting mechanisms.
The "weighted correlation model with zerosetting"™ of the

fail of 1977 shows how the heterostat was formalized near

the beginning of the contract period. ;

;
3.2.1 Weighted Correlation Element with Zerosetting f

See Figure 3.1 for a diagram of the model's parts and a
summary of the notation.
a) Discrete time, t=0,1,2,... ‘
b) Output at time t: y(t)
c) Input at time t: xi(t), i=1,...,n
d) Each synapse i, 1 <1 <n, has weight wi(t) at time t
excitatory: O swi(t)s Wmax

inhibitory: ~Wmax sw (t)< O
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Xy
X2
. :
. Y - RCTION
[ }
Xx
Figure 3.1. Notation diagram for simple heterostat.
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e) Weight changes given by:
For excitatory synapses:
n
w.(t + 1) = F{w.(t) + E.(t)-[ £ w,(t)x.(t)]} (3.1)
i i i j=1 J J
For inhibitory synapses:
]
wo(t + 1) = ~F{w,(t) - E;(t)-[ £ wo(t)x.(t)]} (3.2)
i i i j=1 J J
where F might be given by:
0 for x < 0
F(x) = Wmax for x > Wmax (3.3)
x otherwise
These rules imply that excitatory and inhibitory
weights will remain non-negative’ and non-positive

respectively.

f) Each synapse i has state Ei(t) of eligibility at time ¢t

with 0O gEi(t) <1 and

Ej(t) computed by a system with memnory:

ne 3
nm3

Ej(t) = & F(x;(t - K)y(t ~ k) +

0 2=0

k

h(k)xi(t - 1)

The functions f and h may look respectively something

those shown in Figure 3.2a and Figure 3.2b.

The zerosetting mechanism 1is intended to

follows: Say that f(k) is maximum at Kk=T.

wor

(3.4)

like

k as

A maximum

eligibility for synapse i requires that its activity was
high and output level was high around T time steps ago and

between that time and now its own activity was

low.

The

second sum will produce a large negative number if x was
highly active in the interval from now back to T time

ago. This decreases eligibility.

- —_—— e
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(R)

1
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(B) |
0l 2 3 M2 &

Figure 3.2. (A An inverted-U shaped eligibility
"kernel." (B) A T'"kernel" function used in computing one
form of zerosetting.
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Note that in this model all synapses are allowed to
decreasez as well as to increase in transmission efficacy.
Along similar 1lines, in most 1later models, synaptic
efficacies can change sign, from excitatory to inhibitory or

vice versa, a property difficult to defend physiologically.

Representing each synaptic efficacy as a real valued
weight that can change arbitrarily 1is the simplest
possibility mathematically, but is problematic insofar as
neurophysiological support 1is desired. We justify our
concentration on mathematically simple models on the basis
of the insights that mathematical tools may provide into the
abstract problems of adaptation and inter-element
cooperation. We feel confident that these mathematical
models can be mapped back into physiologically plausible
neural analogs (although not always mapping each adaptive
element 1into a single neuron), and we have suggested
possibilities for some m....1s (e.g., see Section 4 and Barto
and Sutton, 1980). We think that the assumptions we have
made for the sake of mathematical simplicity
(bi-directional, sign changing synapses) have not changed
the character of these adaptive systems in any fundamental
way, but further work will be required to resolve these

issues definitively.
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3.2.2 Open-Loop Stability

The major concern during the early period of
heterostatic element exploration (1977-78) was the open-1o0p
stability of the adaptive element. A fundamental part of
the heterostat concept is that such a device should detect
and utilize the effect of 1its output on 1its subsequent
input; that 1is, the emphasis is on the closed-loop nature
of a device's relationship to its environment. In
closed-loop édaptation tasks, great care must be taken to
keep the adaptive system from becoming unstable and
snowballing into an adaptively useless state. Most of the
early heterostats, however, were unstable even in the
open-loop case; that is, the case in which their input was
completely independent of their actions. Although a
closed-loop adaptive element is helpless in a real sense in
an open-loop interaction, instability in this case still
seemed to be an inappropriate response. Open-loop stability
became an important heuristic filter that we applied to

adaptive element proposals.

The open-loop instability of early elements was due to
their use of excitation and 1inhibition as reward and
punishment respectively. There was no guarantee that an
element would, on the average, receive equal amounts of

excitation and inhibition. For example, if a neuron
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operated according to this principle, then if membrane
potential departed most frequently from the resting
potential in a certain direction, then all synaptic
efficacies of the neuron would move relatively rapidly in
that direction wuntil they reached their maximum values
(Sutton, 1977). Moreover, the speed at which this process
would take place fcr a single neuron would be independent of
the number of neurons or synapses in the brain. Large

numbers of neurons would degrade just as quickly as a few,

One solution to this problem would be to measure
reinforcement from its average value,. In this way, the
"effective reinforcement," and thus the weight changes, are
prevented from being overwhelmingly either positive or
negative. However, there is still no meaningful ©bound on
the weights. Each time a neuronal action potential is
followed by greater than average excitation the relevant
synapses would be pushed higher until they reached their
limits, 1irrespective of the size of the increase in
excitation. The result would be a great reduction in the
sensitivity of the adaptive element, since an element
employing this scheme could record the sign of reinforcement
following firing but could not distinguish relative
magnitudes. The solution to this problem was found to be
the introduction of an 1internal negative feedback 1loop

controlling the weights - the larger the weight, the greater

-
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the reinforcement increase necessary just to maintain its
level after each wuse (cf. Uttley, 1979; see Section
4.5.4). This addition caused each weight to asymptotically
approach a level proportional to the reinforcement increase
it predicted (Sutton, 1978a). However, a local, open-loop
instability still existed. An increase in excitation as
reward increased 3synaptic efficacies, and this 1in turn

resulted in further increases in excitation, and so on:

To show how the instability arises, consider a neuron
Wwith many synapses. Assume the presynaptic neurons of
these synapses fire in a totally random way with a
fixed probability distribution. Also assume the
initial average algebraic sum of input (reinforcement)
to the neuron 1is zero (although it undergoes random
fluctuations of course, depending on which of the
presynaptic neurons happen to be firing and
transmitting signals through their synapses. Consider
what happens if the neuron fires and then, by chance,
the reinforcement (input) following the firing happens
to be slightly positive. Since this reinforcement is
positive it will tend (in most cases) to make the
synapses which caused the firing more positive if they
were excitatory and 1less negative if they were
inhibitory. In general, the positive reinforcement
Wwill result in changes to the synapses which will
cause average input subsequently to be slightly higher
than it was before, or in this case, slightly
positive. Thus, when the neuron fires again it will
probably get slightly positive input, which will cause
new synaptic 1increases and thus further raise the
level of average reinforcement. This process
accelerates until it 1is completely irreversible and
the neuron-like element is useless. A very similar
positive feedback process occurs if the initial chance
reinforcemeat is negative. 1In this case the synapses
become smaller and smaller (more negative or less
positive) to no useful purpose. The neuronul elements
are generally unstable in that small fluctuations in
their reinforcement are soon turned into large ones
without any particular relation to environmental
reinforcement dependencies. (Sutton, 1978b)

¥
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3.2.3 Zerosetting

The early instability problems with the original
reinforcement functions, based on what would correspond to
membrane potential measured from resting, were present even
with the use of a zerosetting mechanism. Later stability
difficulties were partly due to the abandonment of any
zerosetting mechanism because of a number of properties that

have been seen as problematic for some models:

1. Most neurons probably fire more often than every
400 ms. These would be very rarely eligible with a

zerosetting mechanism,

2. Zerosetting prevents learning at short delays. How
can this be consistent with the fact that
instrumental conditioning works dramatically better
for shorter delays between response and
reinforcement, even to delays 1less than 400 ms

(Grice, 19u48)?

3. Additional assumptions about network properties are
necessary to explain even simple things like delay

classical conditioning (Sutton, 1978b).

4, There 1s no possibility for learning about
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temporally short feedback loops through the rest of

the neural network.

3.2.4 Change in Input as Reinforcement

The most important change in Klopf's heterostat made in
this early period was the switch from the use of input to
the element as reinforcement to change in input as
reinforcement. The proposal here was to make synaptic
facilitation depend not on the absolute level of
depolarization but rather on the amount of increase of
depolarizetion following firing. If an output pulsg is
followed by an increase in depolarization, those excitatory
synapses that were active when the output pulse was produced
are facilitated, and those inhibitory synapses which were
active are weakened. There were several reasons why this
was a particularly interesting proposal. First, it became
possible to eliminate zerosetting. The rationale for
introducing zerosetting was to prevent a continuing high
level of depolarization, caused by continued exposure to a
given stimulus, from causing excessive adaptation. A model
sensitive to stimulus change would be reinforced only when

such exposure was initiated or terminated. Constant high

levels of depolarization (or hyperpolarization) will not

cause weight changes. Learning in animals often seems to
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depend on the change 1in reinforcement rather than its
absolute value. For example, the termination of punishment
following a response will usually cause an increase 1in the

frequency of that response.

A tnird line of thought 1leading to the wuse of the
change in input as reinforcement was that of producing
stability via an element-local negative feedback loop fas
mentioned above). The 1idea was that synapses with larger
weights must have their presynaptic signals followed by a
proportionately 1larger input just to maintain their large
weizhts. This introduced a natural limit on the growth of
the welights that was dependent on the amount of
reinforcement they indicated. One way of viewing this
learning process 1is to regard each presynaptic signal as
generating a prediction of how much input will follow, and
then cnhanging its weight according to whether that
prediction was too large or too small. Some early models
did this witih each synapse making 1its own Separate
prediction of subsequent input (Sutton, 1978a). Another
natural possibility was to add the predictions of synapses
whose presynaptic signals occurred at about the same time to
yield a composite prediction of subsequent input. Ii did
not take long to recognize that this allowed a siegnificant
simplification: If predictions were proportional to

synaptic strength, and they were added together to yield a
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composite prediction, then simply the current total input
was a prediction for later total input. Comparing the
predicted with actual later input thus amounts to comparing

past input with current input, i.e., to using the change in

input as reinforcement. Section 4 contains one hypothesis

as to how this might be done physiologically.

Viewing the use of change in input as reinforcement as
involving a combination of predictions or expectations has
turned out to be very useful in understanding it and
relating it to animal learning theory. Sutton (1978c) used
this approach to compare the behavior of such an adaptive
element with a range of expectation phenomena 1in both
classical and instrumental conditioning. In classical
conditioning, the element was found to be closely related to
a major descriptive model in animal learning theory due to
Rescorla and Wagner (1972) which accounts for a broad range
of expectation phenomena known as stimulus context effects.
In instrumental conditioning, it was argued that the use of
change in input as reinforcement was essential in explaining
the full range of conditions wunder which learning takes
place, including those in which no external reinforcer
ocecurs. Figure 3.3 illustrates the range of possibilities

involved.

The heterostat as originally proposed by Klopf, or any
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REINFORCEMENT

combinations of

expectation and reinforcement.
using change in input as reinforcement seemed
begin to explain these phenomena.

HIGH BRASE LOKW
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Figure 3.3. Direction learning changes (effective
reinforcement) and name or description of the experimental
paradigm corresponding to the nine basic cases of

An element
necessary to




EVOLUTION OF HETEROSTAT MODELS PAGE 3-16

heterostat wusing simple 1input 1levels as reinforcement,
cannot explain these expectation phenomena as properties of
the single element. Aassumptions about network structure
must be 1invoked in order to explain them. In addition, we
have found that using the change in input as reinforcement
does indeed alleviate the open-loop instability problems and
the need for zerosetting. We have gradually become
convinced that this is a genuine and important improvement.
Most of our later models have taken the expectation based
change in input element as a starting point. In the

following we discuss it further.

3.2.5 The y Element

This was the first element that we examined carefully
that wused the <change 1in the total input as reinforcement
rather than the absolute level of input. The term y refers

to this according to a notational <convention discussed

below.

pwi(t) =wi(t + 1) - w,

;) =cly(t) - y(t)IE;(t) = cyE;  (3.5)

Here the eligibility Ei contains only the inverted-U shaped
component and not the zerosetting component of the

eligibility used in the weighted correlation model specified

[

L = it <t e S o
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above. The bar notation is used to denote the convolution
of the barred time function with an exponential decay
function. The easiest way to think of this is to regard
each event in the barred function f as causing a
corresponding increment or decrement in f, which then
gradually fades or decays away with time. Figure 3.4
contains several examples which should make this clear. We
will make frequent use of this decaying memory for producing
eligibility traces. f is usually assumed to be normalized
such that if f(t) is held constant at a particular vaiue,
then f(t) will asymptotically approach that constant value.
This allows us to use f(t) = f(t) - F(t) as a measure of f's
deviation from its recent past values, a measure closely
related to the first time derivitive of f. Many variations
on this 9 element have been considered, and the most

interesting of these are discussed below.

3.3 Other Elements using Change in Input as Reinforcement

-

3.3.1 The Exponential Trace Eligibility y Element

Because of the nature of the heterostatic theory of
classical and instrumental conditioning, the eligibility
computation is crucially involved in determining predictions

for the effectiveness of learning as a function of the
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Figure 3.4, 1Illustration of the relationship between a
function and the "bar" of that function, The bar indicates
convolution with an exponential.
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conditioned stimulus - unconditioned stimulus interval 1in
classical conditioning, and of the conditioned response -
reinforcement interval in instrumental conditioning. In the
theory of animal learning, these two intervals are noted to
have apparently similar effects on learning (which provides
support for the heterostatic theory). However, the effect
of this interval 1is not the same in all respects iun

classical and instrumental conditioning.

All the data on the effect of the conditioned response
- reinforcement interval on 1learning in instrumental
conditioning indicate better and faster learning the shorter
the 1interval. The most careful studies nave also shown
reinforcement becoming essentially ineffective at intervals
over five seconds (Grice, 1948). Thus, the plot of rate of
learning versus this interval 1ooka like Figure 3.5. An
inverted-U shaped rate of 1learning versus interstimulus
interval curve for classical conditioning 1is obtained by
convolving this kernel with a conditioned stimulus signal of
intermediate duration (Sutton, 1979). Thus, this sort of
eligibility allows 1learning immediately after firing yet
maintains the inverted-U shaped learning curve for classical
conditioning. In April 1979 we converted our models to the
use of an eligibility kernel function f(k) of the

monotonically decreasing shape of Figure 3.5.
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response-reinforcement interval in instrumental
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The equation for the variation of the weights of the y
element which wuses an exponentially decreasing eligibility

kernel 1is:
AW ~ Y Xy (3.6)

In words, the change in each synaptic efficacy or weight 1is
proportional to the change in activity of the postsynaptic
neuron times an exponentially decreasing weighted average of
recent values of the product of pre- and post-synaptic

activities.

3.3.2 The S Element

We consider this wvariation to be our current best

heterostat, and we discuss this model further elsewhere.

AW ~ S Xy (3.7)

where

s{t)

"
nhe >
£

-
—
(a2
A
x

and
1 if s(t) + noise(t) > O
(3.9)
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0 else
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The replacement of § by the closely related function S has
the advantage of allowing variation in the selection of
action (the noise in the y computation) without introducing
this spurious variation into the reinforcement term §.
Random variations in output do not act as reinforcement, as
they do in the } model, but are instead trials or
experiments by the element with being both on and off. This
learning equation can be given a natural physiological
interpretation if s is thought of as the membrane potential

of a neuron with a noisy threshold.

3.3.3 The "Dual" Heterostat

AW ~ X * yX (3.10)

This rule can be arrived at by replacing each input
variable (each x) in the § element (Equation 3.6) by the
output variable (y) and vice versa. Interestingly, the
element retains the ability to do goal-seeking or
instrumental conditioning-type learning. Conceptually, the
element works 1like this: Each time the presynaptic neuron
fires, it records which neurons it causes to fire (the ;;
eligibility term). If it receives subsequent positive

effective reinforcement - an increase in activity - it
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concludes that it was "good" to make those neurons fire, and
strengthens tne synapses to them (if the subsequent
effective reinforcement had been negative, the synapses
would have been decreased). However, this rule does not
produce classical conditioning-type 1learning as a side

effect, although the normal heterostat does.

3.3.4 The Classical Conditioning Predictor Element

AW ~ y + X (3.11)

In words: Presynaptic activity 1is <correlatsd with
subsequent changes in postsynaptic activity to determine the
synaptic efficacy. This interesting element turns out to be
a fairly good model of classical conditioning behavior as
observed experimentally (see Section 4; Bartoc and Sutton,
1980). Important features are the use of an eligibility
term, which allows genuine predictive learning in which the
conditioned response can begin before the occurrence of the
unconditioned stimulus, and expectation phenomena consistent
with, and even going slightly beyond, currert psychological
theories of animal behavior. Since y is not present in the
eligibility term, this element is insensitive to the effect

of its past actions on current 1input, and thus is an
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open-loop element. For this reason it is not capable of
instrumental learning or other truly goal-seeking behavior.
We did, however, gain a fairly complete understanding of its
behavior and relationship to other theories (as presented in

Section 4).

3.3.5 Dotting the x Eligibility Term

AW ~ ¥ X (3.12)

In classical conditioning experiments with animals, it
is found that a crucial temporal variable determining ease
of conditioning is the time interval between the onsets of
the conditioned and unconditioned stimuli (the
inter-stimulus interval). The § term captures the
dependency on the onset of the unconditioned stimulus (only
at onset will this derivitive measure be positive). Dotting
the x term is meant to capture the dependency on the onset
of the conditioned stimulus (CS) in the same way. In this
element, a synapse becomes eligible only if it produces a-»
output soon after presynaptic stimulation increases. If
presynaptic stimulation decreases and an output is
generated, then the synapse becomes negatively eligible - an

increase in y will then decrease (and a decrease in y wili

PP
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increase) the synaptic efficacy.

We will now argue that it is always 1inappropriate to
use x in triggering eligibility this way when it is x itself
which is used with the weight vector to produce vy. The
argument, though simple, does require a detailed
understanding of these adaptive elements. A synapse should
be eligible if its presynaptic activity x was appropriately
timed for influencing the observed postsynaptic firings vy
that may have caused the current reinforcement, &. In this
way, the synapses made eligible will be the cres which could
have caused, or prevented, that activity, and which are thus
responsible for the current reinforcement. The term i,
however, does not really meet this requirement. The
sinplest case is when x is maintained at a constant positive
value for a long period of time. Throughout this time this
x signal is influencing y and determining reinforcement, yet
if x determines eligibility, then this pathway would be

eligible only at the start of the time period.

Qur conclusion is that eligibility should depend
directly on the variable wused to calculate vy from the
weights. We prefer to always let x denote this wvariable.
To make an element more sensitive to changes in stimulation
levels, rather than absolut. levels of stimulation, one can

introduce a level of preprocessing on the input signals to
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produce x signals whose absolute levels indicate changes in
the original input variables (or whatever is thought to be

most important in the original input signals).

3.3.6 Dotting the y Eligibility Term

AW ~ ¥ XYy (3.13)

or, combining with the previous rule,

AW ~ ¥ XY (3.14)

In these variations, changes in vy, rather than vy
itself, are wused to trigger eligibility. This possibility
for eligibility is of particular importance for the
specialized reinforcement models discussed below, and we
have not yet analyzed it to our satisfaction. The most
useful general observation seems to be that one's choice of
either y or y to trigger eligibility will depend upon which
of these two most directly influences the change in
reinforcement in the environments under consideration. For
some environments, in which changes in reward are dependent
on changes in output level, a § term may be appropriate. In

other environments, however, changes in reward may be due

I
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directly to output levels rather than their changes (as in

the landmark learning example in Section 6).

3.3.7 Separate x and y Averages in Eligibility

AW ~ Sy X (3.15)

The most interesting aspect of this rule is that it can

be thought of 1in two conceptually different ways. 1In the
traditional approach, S is effective reinforcement and yb.xb
determines which synapses are eligible. Alternatively, 57
can be thought of as effective reinforcement with just x as
eligibility. If sy is positive, the neuron has had high
output lately (y) and this has been followed by an increase
in input stimulation 3. This suggests that the neuron is
currently in a positive feedback 1loop from activity to
stimulation, just the sort of situation in which we would
like the neuron to fire strongly. Probably the equations
using x-y eligibility can also be thought of in this way to
some degree. Nevertheless, it seems more appropriate for
eligibility to be positive only if positive postsynaptic
activity y occurs during presynaptic activity x, because
only 1in these cases could the synaptic weight influence the

positive postsynaptic activity. For this reason, x.y is to




EVOLUTION OF HETEROSTAT MODELS PAGE 3-283

be preferred to ;-;.

3.3.8 Problems with using Change in Input as Reinforcement

Here we discuss some of the basic problems which have
arisen with models that use the change 1in inpit as

reinforcement.

3.3.8.1 The End Reinforcement Problem - By "the end
reinforcement problem"™ we refer to the complex of problems
that arises as one 1introduces "ultimate" or "primary"
reinforcers into adaptive element models. According to
Klopf's concept of generalized reinforcement, any input can
becnme a reinforcer after it has occurred in appropriate
relation to other inputs that are already reinforcers. It
seems natural to define a few reinforcers as primary, and
let others be built upon them. The idea is that in order
for a signal to become a non-primary, or secondary
reinforcer, it must occur in an appropriate relationship
either to a primary reinforcer or to a secondary reinforcer,
which in turn must occur in an appropriate relationship to a
primary reinforcer (or to another secondary reinforcer,
which must in turn...). Thus, the primary reinforcers are

in some sense the ultimate justification of all secondary
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reinforcers. They are often thought of as occurring at the
end of a sequence of secondary reinforcers, and this is the
rationale for the term "end reinforcers.” The end
reinforcement problem is either to do away with the apparent
need for these special reinforcing inputs, or else to use
them in some manner which avoids the difficulties discussed

below.

As an example, let us consider the end reinforcement
problem for the <c¢lassical conditioning predictor element
briefly discussed above (Section 3.3.4). For a number of
reasons it is desirable that a non-primary excitatory input
sigr.al that is not followed by reinforcement should result
in a decrease in the associated synaptic weight. In the
classical conditioning element, this occurs due to the large
decrease in input at the offset of this excitatory signal.
If this excitatory signal is a primary or end reinforcer,
however, then we do not want it to decrease, even if not
followed by another reinforcer. A simple solution, and the
one wused in our published results, is to specialize the end
reinforcers to the extent that their synaptic weights are
unaffected by the learning process - they arrive over

pathways having fixed weights.

However, there is reason to suspect that this sort of

crude solution will never be completely adequate, either for
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this particular element or for generalized reinforcement
models using expectation in general (including the s
element). Activity in the fixed end reinforcer pathway will
cause an wunusual level of activity and thus a subsequent
unusual level of expectation. Yet, the pathway's strength
is immune from the results of this expectation, which would
otherwise drive the connection weight toward zero. Other
pathways that may be active as the end reinforcer occurs are
not so immune however, and this is where the hidden problem
arises, It seems to be a reasonable assumption that other
purely informative signals should not seriously impair the
element's behavior. Yet, consider what happens if we assume
that a signal is available to the destination element over
one of 1its variable pathways which is the same signal (in
terms of its time course) as one which arrives via the fixed
pathway. This wvariable pathway will have an eligibility
identical to that of the fixed pathway, but it is not immune
to the 1lack of reinforcement. Waen their common signal
occurs, expectation is built up or maintained in the
destination element. When the signal ends, there is
expectation without activity. The fixed association is
immune, but the variable association is driven away from
zero in the direction opposite to that determined by the
sign of +the fixed pathway: If the fixed connection is
excitatory, the plastic connection will become inhibitory;

if

the fixed 1is inhibitory, the plastiz will become

N N , PR 5
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excitatory. The next time the signal occurs, there will be
a reduced effect on the destination element because the
influence of the fixed pathway will be slightly counteracted
by the influence of the variable pathway. The variable
weight will continue to change as before. This process
continues until the effects of the fixed and variable
pathways exactly counterbalance. The end reinforcer signal,
in spite of all our ad hoc efforts to make it fixed and

non-zero, will produce no net effect on the element.

End reinforcers and the secondary reinforcers they
support seem to be fundamentally different. Secondary
reinforcers must always generate a prediction or expectation
of another reinforcer soon to come, whereas an end
reinforcer should not. This sug-ests that the input 1lines
to an adaptive element that are designated the end
reinforcers must play a special role in the learning
equation. This is not, however, a return to specialized
reinforcement models, for although there would be designated
specialized end reinforcer signals, any signal can take on
reinforcing properties by association with these end

reinforcers.

T AN = Tery
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3.3.8.2 Conflict between the Selecting and Reinforcing
Functions of Input - As Klopf has noted in his reports, when
one uses input to an adaptive element, or change 1in that
input, as reinforcement, there is occasionally a conflict
between the informative, or selecting, and the reinforcing
functions of input. The type of conflict between selecting
and reinforcing functions that concerns us can be seen in
the following example. If an element should not be active,
and gets rewarded (excitation or increase in activation) for
being 1inactive, then the natural effect of that reward will
be to make the element become active. Only with difficulty
and long training could the element 1learn to remain
inactive. Some of our simulation experiments have provided
evidence that this sort of conflict does indeed exist. On
some simple goal-seeking tasks (the associative search
problem, discussed 1in Section 5) our best heterostat has
been observed to perform less well, or at least less
robustly, than elements whose selective and reinforcing
functions were separated into separate input lines. This
evidence is hardly conclusive, for the task was not one that
would demonstrate the special abilities and advantages of
the heterostat, and indeed these might be expected to get in
the way. However, this sort of result has encouraged us to

look at elements with specialized reinforcing input lines.




EVOLUTION OF HETEROSTAT MODELS PAGE 3-33

3.4 Models with Specialized Reinforcing Input Lines

In the preceding sections we have discussed adaptive
elements which use their excitation and inhibition as reward
and punishment. These are generalized reinforcement models.
For comparison, as well as due to their own intrinsic
interest, we have also developed and compared a number of
specialized reinforcement models, i.e., models whose
evaluation signal is provided via a unique pathway clearly
separated from those which affect the activity of the
element. These specialized reinforcement models have played
an important role in the development of our current
heterostat models. 1In the last model we will discuss, for
example, excitation and inhibition do act in the usual way
as reinforcers, but a specialized non-exciting input 1line
also provides reinforcement. Such combinations may
alleviate some of the problems with the heterostats we have

seen so far.

In the following, 1let z denote the specialized
reinforcement signal, also called the payoff (see Figure

b,1).
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3.4.1 ALOPEX as an Action Selector

aw(t) = clz(t) - z(t-1)1[y(t-1) -y(t-2)]

or
AW ~ Z -y (3.16)

1 if w(t) + noise(t) > 0
y(t) = (3.17)

0 otherwise

z{t) a function of y(t -~ 1)

This element is simply a different way of viewing the
components of the ALOPEX system of Harth and Tzanakou
(1974). The learning equation does not use any input signal
information other than the payoff signal z. The element
only learns to set its action at that level which maximizes
its payoff input z - it cannot vary this action level as a
function of other 1input. The following element 1is the

extension of this one ¢to include a sensitivity to input

information other than the payoff signal.

3.4.2 Associative Search Network Element

—

AW ~ Z Xy (3.18)

z(t) a function of y(t - 1) and x{(t - 1)

-

Ny
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In addition to the payoff signal, this -element is
sensitive to other input information. We think of the
signals on these other pathways as indicating some situation
in which the element is to act. The element takes note of
the situation in which an increase in y increases 1z, and
then, by changing the appropriate weights, only increases
the y level in thosé situations. This element is related to

some learning automata considered by Tsetlin and his

followers (Tsetlin, 1973), although 1learning automata are
always taken to have only the payoff input, z. This element

is discussed extensively in the next section.

3.4.3 The Associative Search Problem

The associative search problem (Section 5) 1is a task
rather than a particular learning equation. An associative
search net is defined in contrast to the associative memory
systems that are wusually discussed in the literature. 1In
such a "standard" associative memory, input patterns, or
keys, and desired recollection patterns are presented
simultaneously during training. After this training phase
the associative memory should produce the ;ecollection when
given the key. An associative search net (ASN) also should
produce a particular output pattern for each key, but the
ASN is never provided with that desired recollection during

the training phase. During the training of an ASN, the
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environment provides key input, waits for an output or
action from the ASN, and then provides a scalar evaluation
of that action as a function of the key provided. For each
Key input pattern, the ASN must search for the action which
maximizes its reward in that input situation. A Dbank of
associative search net elements (Figure 3.6) can solve this
sort of problem under certain conditions. This network is

discussed more fully in Section 5.

3.4.3.1 Nulled Transitions - There is a problem with wusing
the system shown in Figure 3.6. During the transition from
one input situation to another, there may be a large change
in z. The system mistakenly thinks it was its last action
in the first situation that caused the transition to the
second. Since we want the system to produce the best action
in each situation, we would like this change to be 1ignored.
The simplest way to do this is to prevent any learning from
occurring during the transitions between situations. There
are at least two very different objections to preventing
learning during transitions between input situations. The
first is that we <can do better than this by adding a
predictor, and the second suggests that we really want the
system to try to control its transitions from situation to
situation, and that the changes in =z at the transitions
should not be 1ignored at all. These issues are discussed

more fully in Section 5.4,

{
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3.4,3.2 Associative Search with Predictor Element -

aw ~ (z - p) + xy (3.19)
n
p(t) = = w_  (t)x,(t) (3.20)
i=1 Py !
oW, ~ (2 - B)X (3.21)

See Figure 3.7

This element wuses the deviation of reward from
predicted or expected reward to change weight, rather than
the deviation of current reward from the reward at the 1last
time step. Thus, when a new input situation is encountered,
a predicted level of reward for the new situation becomes
immediately available, and it is not necessary to prevent
learning from occurring during the transition. This rule
would work even if the input situation changed every time
Step, whereas a nulled transition system would not work at

all if this were the case.

It is important to note that the prediction wused ‘tere

is a non-anticipatory prediction. 1In other words, the
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PREDICTOR

Figure 3.7. Diagram of the associative search net with
predictor element. This element consists of a predictor
part and an actor part, each with its own set of weights.

———— -
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prediction is not used until the event predicted has already
occurred and been observed. This is still useful because it
allows the detection of deviations of reward from the
predicted 1level. Later we will discuss elements that
combine this .vith a genuinely anticipatory prediction (a

prediction used before the predicted event is available).

3.4.3.3 Learning Situation Transitions ~ If the reward that
can currently be attained differs from situation to
situation, then it is reasonable to expect an adaptive
system to attempt to control which situation it is in, i.e.,
to control its environment in order to cause it to present a
situation in which a high reward can be attained. Of
course, the adaptive system may not be able to affect which
situation is presented next (this 1is the case 1in the
associative search task), but why not expect it to try? If
it were trying, the changes in z at situation transitions
would be very important informative cues, and should not be

ignored at all.

Below we consider several elements designed to solve
the problem of maintaining a high payoff, both by choosing
high payoff actions within a situation, and by choosing

actions that control the environment in order to cause the
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occurrence of situations 1in which higher payoffs are

available. The elements differ only in their reinforcement

terms. 1In all cases eligibility will be the standard «x-y

discussed above.

The associative search net element uses 2z as a
reinforcement term. This rule evaluates past actions in the
situation that generated them (represented by the X.y
eligibility) according to the change in payoff that
resulted, ignoring the situation altogether for evaluation
purposes. The first objection that one might have to this
element is that it does not use the situation input vector
to give it some idea of how much payoff is possible in each
situation. For example, assume that in a certain situation
X0 the payoff drops significantly whether the element
chooses either a high or a 1low activity. With continued
experience with X0 the element should learn to make the best
of a bad situation and choose the action which results in
the smaller decrease in payoff. However, whatever action is
chosen, it will be punished according to the learning rule
implemented by the associative search net element. The
better action will be made less likelv to occur every time
that it does occur. (A similar problem occurs if there is a
situation X1 in which there is always an increase in payoff,
whatever action 1is taken.) This problem suggests that the

element could be improved by accumulating an expectation for

|
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each situation of what the change in payoff will be. Then

the actual change could be compared with this expectation,

This idea is similar to that behind the associative
search net with predictor element. However, in that
element, we constructed a prediction of wupcoming 2z value,
whereas we construct a prediction of upcoming changes in z

value in the payoff change predictor:

aw ~ (2 - q) xy (3.22)

where q(t) is a prediction of change in payoff at t, based

on recent situations.

n
q(t) = ¢ w_ (t) xi(t) (3.23)
=1 9

(3.24)

Here synaptic efficacies are increased only if a greater
increase 1in payoff 1is received than was expected. Unlike
the associative search net element, this element can adjust
to situations from which only increases or decreases in

payoff are possible, and still learn effectively.. Another
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nice feature of this element is that weights change only
enough to make sure the right action is made every time. In
the associative search net element, on the other hand,
weights are changed every time payoff changes, even if the
best action has already been found and the payoff change

could have been completely anticipated.

3.4.4 An Element that Makes Two Uses of Prediction

aw ~ [(z - p) + p] xy (3.25)

where

By ~ (z - p) x (3.26)

This element is best seen as an extension of the
predictor based element discussed above (Equations 3.19,
3.20, and 3.21) to solve the associative search problem.
That element used only z-p as effective reinforcement,
whereas this rule adds a p term. That element, 1like the
payoff change predictor, does not wuse the new situation
input to evaluate action. This can be important, since
often the situation input can be an indicator of what
opportunities for payoff lie ahead. The second term, 5, in

this element's reinforcement term makes use of this
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situational information about upcoming payoff. Since p is a
predictor of future payoff, the <change in ©p can be
considered as rewarding as a change in payoff itself. In
this element, change in prediction of reward is merely added
into the reinforcement term of the payoff change predictor.
By a similar reasoning process, we might expect tha. an
element that uses i+ﬁ as effective reinforcement might work
well, However, at this point our wunderstanding has
progressed sufficiently that we can attempt a more

theoretical presentation.

3.4.5 A Proposal for an Alternative Problem

The primary purpose of considering the associative
search problem 1in our reseach has been to serve as a focal
point in the evaluation of various learning rules. As our
learning rules and our understanding of them has evolved, so
has our understanding of the problems we would like them to
solve. Most problems ignore <certain issues in order to
focus on others, and the associative search problem 1is no
exception, The associative search problem directs our
attention to a simple, stark form of situation sensitive
search for optimal actions. We would like now to propose a
problem which retains the emphasis on situation sensitive
goal-seeking, but which also introduces +two additional

considerations. 1In this new problem, unlike the associative
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search problem, the actions of the adaptive system will be
allowed to have an effect on which situation it next finds
itself in. Thus, we will want the adaptive system to learn
to control its environment to cause the occurrence of those
situations in which a high payoff can be attained. Second,
this ability to control the environment raises a major new
complication: There may be times when the highest payoff
can only be reached by passing through a temporary period of
low payoff. Similarly, an action which brings immediate
high payoff may inevitably be followed by a prolonged period
of very low payoff. In these cases, some sort of evaluation
extending over many time steps would seem to be essential
for successful adaptation. Thus, a new formulation of

optimal and adaptive behavior is required.

Several remarks are in order about some aspects of
adaptation that this new formulation is not focusing on.
The following are three assumptions made in the new
formulation which keep the problem reasonably limited. Of
course, as success is achieved on this delimited problem,

these assumptions can be gradually weakened or removed.

1. The identification of the states of the environment
is assumed to be simple given the situation
information. It is sufficient to assume each

environmental state activates a unique situation

o

|
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input line.

The next environmental state is assumed to be
dependent only on current state and current action.
In other words, all influences through the

environment have a delay of exactly one time step.

The element will not be expected to improve its

input representation with experience in any way.

p—
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3.4.5.1

The Problem Schema -

Q(t+1) = ENV{Q(t), y(t)}

y(t) =

X(t)

N
—

(ad
~

W(t)

¢{Q(t)}

2{Q(t)}

f{w(t = ])9 Z(t), X(t = ])» .Y(t = ])}

See Figure 3.8.
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(3.27)

(3.28)

(3.29)
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(3.31)
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Figure 3.8. The element task schema.
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3.4.5.2 Payoff Functions - In the ?bove specification, z(t)
is what is ordinarily thought of as;the payoff function. In
Jact, however, this momentary meaSﬁre can be a very poor
measure of the correctness of a certain action. z(t) is the
instantaneous payoff, but an action that results in
immediate reward may result in 1low payoff 1later. As
discussed earlier, it is necessary to introduce a new notion

of optimality to begin to deal with these delayed effects.

For a particular adaptive system and environment one

can define a function of time <called the ideal payoff

function U(t) which gives a measure of how well that

adaptive system has done, taking _into account the
~ -

consequences of past actions wrich have not yet

'

materialized. We take as one suqh/measure simply the sum of
the z values, both already/;eééived and yet to be received,

the latter in general ﬂ;zi only be partly determined:

u(t) = z z(T)/ L 2(T)Qa(t)s Qp(t)y (3.32)

where E{; indicates the expected value operator and
Qa(t) ~and QE(t) denote the states at time t of the

///jp ptive system and the environment respectively. A nearly
q

equivalent definition of the ideal payoff that is sometimes
more useful is to define it to be the expected average level

of z(t) over the lifetime of the organism:
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t

(3.33)

Qur approach to situation sensitive goal-seeking is to
think of the element as varying its action in order to
receive some feedback as to the evaluative effect of the
variation. 1Ideally, the effect on the ideal payoff would be

available, and the weight change equation would be simply

AW ~ AU + Xy (3.34)

Of course, del-U is no more available to most adaptive
systems than U 1is, and our adaptive elements will have to

settle for some approximation to it:

Aw ~ al - Xy (3.35)

where del-U-hat is the adaptive element's estimation of the

change in U,

The following is an example of how this approach might

be wused. First, note that U as defined in Equation 3.33

H
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consists of two parts, one which can be completely known by

the adaptive system and one which generally can not:
t ®
U(t) = 1 2(T) + EC_z _z(T)]|Qu(t), Qg(t)} (3.36)

This suggests taking as the estimate U-hat of U merely the

known part:
A t
u(t) = ¢ z(T) (3.37)

To yield an adaptive element, we solve for the change in

U=hat(t)
A A A t t-1
AU(t) = U(t) -U(t-1)= ¢ z(T)- = z(T)=2z(t) (3.38)
T=0 T=0

Substituting this into Equation 3.35 immediately yields the
associative search element. This is in fact a good way of
understanding that element. The associative search element
builds no estimate of what future payoff will be. From this
follows the two flaws of that element. First, every
positive z 1is seen as a reward and every negative one as a
punishment. The z value is always seen as a deviation from
zero rather than from some prediction, or estimate, of z,

Second, with a zero estimate of z for the future, it cannot
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recognize delayed effects of its actions on z. Thus, the
element cannot use secondary reinforcement; that 1is, it
cannot learn that a situation will soon be followed by

reward and should be interpreted as reward itself.

This analysis clearly suggests that it may be useful to
use an estimate U-hat of U which includes some estimate of
future values of z. One possibility currently under
investigation 1is to form a prediction of z with a separate
set of prediction weights, much as we did earlier for the
associative search with predictor element. Here, however,
we want the prediction to extend secveral time steps into the

future. This suggests the following equation:

p(t + 1) = p(t) - ap(t) + ap(t) (3.39)
0 < a < ]
where
n
p(t) = © w_ (t)x.(t) (3.40)
i=1 Py !
and
U x 3
Awp ~ AU X (3.41)

/
where p(t) is the prediction of z(t). As an estimate of z's

values in the future, we can use the values p will take in

the future, assuming no more input events occur, or that
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their net effect will be zero. This lets us use Equation
3.32 for U to form a new estimate U-hat:
A t
U(t) = 3z z(T) + by p(T) (3.42)
T=0 T=t+1
t T= (T -t +1)
= L z(T) + by p(t + 1)(1 - a) -
T=0 T=t+1
t —
= roz(T) + RLEL (3.43)
T=0
Taking the difference of both sides yields
A _ _
sU(t) = z(t) + RAEZ ]3 - p(t)
- 2(t) + zeB(t) * ap(t)
s}
= z(t) - p(t) + p(t) = z(t) + p(t) (3.44)
Tnis suggests, via our general Equation 3.35, the following
adaptive element:
= — e = - - -
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aw ~ (z + p) xy

with
. .3y T
Awp (z pP) x

This interesting element, and others of a similar

are curently under investigation.
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(3.45)

(3.46)

nature,
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SECTION 4

OPEN-LOOP LEARNING:

EXPECTATION, PREDICTION AND CLASSICAL CONDITIONING *

4.1 Introduction

One way to bridge the gap between behavioral and neural
views of learning is to postulate neural analogs of
behavioral modification paradigms. Hebb's suggestion that
when a cell A repeatedly and persistently takes part in
firing cell B, then A's efficiency in firing B is increased,
is the most familiar of these postulates (Hebb, 1949). This
rule for synaptic plasticity is a neural analog of
associative conditioning and continues to exert a powerful
influence on theoretical and experimental research in
learning and memory. Neural network models designed to

* This section is based on a paper entitled "Toward a Modern
Theory of Adaptive Networks: Expectation and Prediction" by
R. S. Sutton and A. G. Barto to be published in
Psychological Review, 1981.

—— — -




OPEN-LOOP LEARNING PAGE 4-2

explore the behavioral possibilities of modifiable
structures typically employ a pre- and postsynaptie
correlation for altering connectivities as a mathematical
representation of Hebb's postulate (e.g., Anderson,
Silverstein, Ritz, and Jones, 1977; Brindley, 1969;
Grossberg, 1974, Kohonen, 1977; Marr, 1969; von der
Malsburg, 1973). However, in addition to the fact that
there is no direct experimental support for the Hebbian rule
as a model of neural plasticity, several different bodies of
evidence have accumulated that suggest that such simple
contiguity rules can account neither for the behavioral
facts of learning, nor for the theoretical necessities of

successful adaptation.

The analysis of elemental processes of learning has a
long tradition within animal learning theory. To a large
extent it has been successful: Fundamental laws of wide, if
not complete, applicability have been found. Animal
learning theory constitutes a large body of carefully
explored and tested theories about fundamental processes of
learning. Given this, it is surprising how 1little contact
and interaction there have been between animal learning
theory and adaptive systems theory, particularly insofar as
the latter attempts to mimic neural networks or biological

adaptive systems in general.
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Numerous adaptive systems papers have made brief
reference to basic animal learning processes such as
classical and instrumental conditioning. But, almost
exclusively, inadequate models of these conditioning
processes have been used, and in some cases they are so
inadequate that while a theorist derives support for his
model by <citing a learning process, in reality the
exerimental evidence and modern learning theory contradict
even tihe sSimplest predictions of the model. Classical
conditioning 1involves an interplay between expectations and
stimulus patterns that is too complex to incorporate into a
simple correlation rule such as Hebb's. The common
modifications of a correlation rule, for example the
introduction of delay in input or output pathways, result in
benavior still not in agreement with experimental data.
Moreover, as we argue below, the phenomena actually observed
in classical conditioning is perhaps crucial for

sophisticated adaptive benavior.

The history of attempts to construct adaptive networks
of neuron-like components also suggests that something
essential is not preserved by the Hebbian model and its
variants. Network approaches to adaptive system design have
been notable in their failure to produce learning behavior
beyond a rather low level of sophistication. The

information processing success of adaptive networks is
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restricted almost entirely to moderate success in the
recognition, processing, and associative storage and
retrieval of spatial patterns. There 1is a conspicuous
absence of nontrivial processing of temporal patterns. It
may be true that in the brain some kinds of temporal
patterns are processed by being represented spatially as,
for example, suggested by Lashley (1951), and some models
use this principle (e.g., Fukushima, 1973; Grossberg, 1969;
Spinelli, 1970). However, little progress has been achieved
in our understanding of how a system can both learn and
effectively use knowledge while interacting in real time
with a complex environment. Yet these temporal aspects of a
system's interaction with 1its environment are central to

much intelligent behavior,

In the time since the first computational experiments
with adaptive networks were carried out, remarkable advances
in the understanding of the cellular basis of behavior have
occurred. In recent years, invertebrate animals have been
successfully used to study aspects of the neural basis of
behavioral modifications (e.g., Kandel, 1976, 1978).
Although this approach has not yet elucidated the cellular
basis of associative learning, simpler but possibly related
forms of nonassociative 1learning have been successfully
analyzed at the cellular level. These studies reveal that

neurons employ a wide variety of biochemical modulatory

-
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processes that interact 1in complex ways with electrical
activity and that this interaction mediates forms of

behavioral modification (Kandel, 1978).

Despite this evidence that neurons are capable of very
complex information processing, adaptive network theorists
continue to produce idealized neural element designs which
are constrained by the early view that neurons are
essentially switching elements having little internal
processing power. Although one of the most important
aspects of model building is simplification, the 1lack of
significant progress in adaptive network theory, together
with the high complexity of cellular and synaptic machinery,
suggests that these idealizations leave out some mechanisms
that are essential for producing sophisticated adaptive

behavior.

In this section we describe an adaptive element model
which 1is more reasonably in accord with the facts of modern
animal learning theory than models commonly used in adaptive
network research. After discussing several forms that
adaptive element analogs of classical conditioning have
taken in the past, we briefly introduce our model. We then
present the basic elements of a view of classical

conditioning that is more realistic than that commonly used

in adaptive network studies. We show how the behavior of
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our model is in good agreement with a variety of aspects of
animal learning data. We then discuss how our model is
related to a variety of other adaptive elements which form
part of adaptive system theory. No attempt is made to be
exhaustive. Learning theory is a complex subject with many
controversies, and adaptive system theory 1is extremely
diverse. We have tried to abstract from the very large
animal learning theory literature those points on which
there 1is a reasonable amount of agreement and which we
consider to be most pertinent for adaptive network modelling

and simulation.

Despite recent advances, it is still premature to
propose a testable molecular model of associative learning.
However, even though we see our model as being of interest
primarily from behavioral and theoretical perspectives, we
speculate as to how the cellular mechanisms which are
beginning to be elucidated could implement the required
computations,. Qur purpose in doing this 1is two-fold.
First, we desire to demonstrate that processing of the
proposed complexity is clearly possible at a cellular or
simple network level. Second, some aspects of the proposed
learning rule can be implemented sSo naturally by known
mechanisms that a discussion of these mechanisms in light or
our behavioral and theoretical observations, while

speculative, may contribute to experimental efforts to

e
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understand neuronal plasticity.

Although we restrict attention 1in this section to
classical conditioning, our research was motivated by an
interest in more complex forms of learning and, in
particular, the novel suggestion by Klopf (1972, 1979, 1981)
that neurons may be reinforcement learning devices of a kind
fundamentally different from those previously proposed in
neural theories. The aspects of <classical conditioning
which we consider here form a necessary prelude to moving
beyond the restrictions of the <classical conditioning

paradigm.

Finally, although our theory is an attempt to explore
the consequences of attributing quite complex computational
power to individual adaptive elements, it 1is not our
intention to suggest that all of the mechanisms must
necessarily reside in each element. Rather, our program of
endowing a single adaptive element wit% behavior having
detailed properties of classical conditioning represents our
feeling that these properties are fundamental to adaptive
behavior. In particular, what we call an adaptive element

may not correspond to a single neuron.
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4.2 Adaptive Element Analogs of Classical Conditioning

In a simple classical conditioning experiment the
subject 1is repeatedly presented with a neutral conditioned
stimulus (CS), i.e., a stimulus that does not cause a
response other than orienting responses [footnote], followed
by an unconditioned stimulus (UCS) that reflexively causes
an unconditioned response (UCR). After a number of such
pairings of the CS and the UCS - UCR, the CS comes to elicit
a response of its own, the conditioned response (CR), that
closely resembles the UCR or some part of it. For example,
a dog is repeatedly presented with first the sound of a bell
(the CS), and then its food (the UCS) which causes the dog
to salivate (the CR). This simplified description of

classical conditioning leaves much unsaid, as we shall see.

In studies of the cellular basis of - *ning and in
purely theoretical studies of adap -~ *tams it 1is
frequently convenient to postulate neuron-like mechanisas

which embody various types of "learning rules". The rules

Strictly speaking, this stimulus 1is not a conditioned
stimulus until the animal has begun to be conditioned to it.
However, as is often done, we simplify notation in this
section by referring to any stimulus that is meant to be
considered as eventually or potentially becoming conditioned
as a conditioned stimulus,
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describe how the strengths of interconnectivity change
between wunits that are intended to be crude models of
neurons., In keeping with this tradition, we shall sometimes
refer to synapses, synaptic weights, etc., but the reader
should remain mindful that the relationship between models
of this form and neural plasticity is often one of coarse
analogy. We prefer to think of the rules as describing the

behavior of "adaptive elements".

Figure 4.1 shows an element with input signals
IR S connection weights wy,..., w,, output vy, and a
specialized "teacher" input z. Since we wish to focus only

on rules for changing the weights w; Wwe will not pay

i ?
particular attention to the input-output function of the
element. For our purposes, it suffices to say that y is

some function of the weighted sum of the inputs; that 1is,

for any time t,

n
y(t) = fL = wi(t)x;(t)], (4.1)
j=1

where f is a function which resembles the one shown in
Figure U4.2 [footnote]). Of course, when an adaptive element

is proposed as an analog of animal learning, the form of

- o n - - -

According to Equation 4.1, the adaptive element computes its
output y instantaneously from its inputs x;. 1In order to
remedy the problematic consequences of this when networks
are considered, one can assume that a small delay exists in
the communication 1links between the elements, For our
present purposes, we do not need to consider this detail.
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FIGURE 4.1. An adaptive element with n modifiable 1input

pathways xj, i = 1,..., n, connections weignts Wi, is=
1y.4., N, a specialized input z required by some adaptive
elements to transmit the signals of a "teacher", and an

output labeled vy.

Output
frequency

—

0o Total stimulus strength

L
FIGURE 4.2.%, A common form of nonlinear input-output
function wused 1in neural and adaptive element models. When
these models - are used in analogs of conditioning
experiments, this function becomes a response mapping rule.
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this function becomes crucial in making precise predictions

about behavioral data. In these cases, the function is
related to response mapping rules (e.g., Frey and Sears,
1978) . If the adaptive element 1is proposed as a neuron

model, this function relates, for example, the firing

frequency of a neuron to its membrane potential.

For an adaptive element analog .of conditioning, the

presence of CS i=1,...,n, is indicated by activity on

i
the corresponding input pathway x,. For example, if xi(t)
denotes the signal on pathway X at time t, then the
presence of CS; at time t can be indicated by letting x,(t)
= 1. If CS; is not present, xi(t) = 0. The associative
strength of each CS; at time t is wi(t), the weight

associated with pathway x The CR is identified with the

.il
output y so that by Equation 4.1 the associative strengths
of the CSi, i=1,..., n, determine the magnitude of the CR.
Learning rules take the form of equations for changing the

values of the weights w. i = 1,..., n, over time as

1,
functions of various aspects of the element's inputs and
outputs. Usually the element's behavior is intended only to

qualitatively resemble animal learning data.

The most well known example of an adaptive element
analog of <classical conditioning is based on Hebb's neural

postulate that persistent pairing of pre- and postsynaptic
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activity increases a pathway's efficacy (Hebb, 1949).
Although Hebb did not provide a mathematical formulation of
this rule, the following expression has been widely used to

implement his postulate:

Wit + 1) = wi(t) + oxg(t)y(t) (4.2)

where ¢ is a positive constant determining the rate of
learning. Here, and throughout this section, we use a time
step of one unidentified unit that can be set -equal to
various values to suit particular interpretations of a
model. For the case in which the input signals X; and the

output signal y are binary valued, w; is incremented by c

i
whenever an input pulse arrives and the cell fires and 1is
unchanged otherwise. For the case of real valued signals,
W becomes a rough measure of the correlation between input
signal X5 and output signal y. Unlike several other ﬁules,

this rule does not require the specialized "teacher" input

shown in Figure 4.1.

It is easy to see how a Hebbian 1learning rule can
implement a simultaneous contiguity view of classical
conditioning (Figure 4.3). Suppose a Hebbian adaptive
element has an excitatory UCS input pathway having weight
wUCS sufficiently large so that UCS occurrence causes the

element to respond with the UCR. If the element also has an

input pathway for the CS naving an initially low weight Weg
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CS UCR and CR

FIGURE 4.3. A Hebbian element as an analog of classical
conditioning. The weight w associated with the UCS
pathway is sufficiently large so that UCS occurrence causes
the element to respond with the UCR. The weight wcg of the
CS pathway is initially too small for the CS 3lone to elicit
a response, but increases with repeated simultaneous pairing
of the CS and UCS until the CS alone can elicit a response -
the CR.

# UCR

ucs

“1;JRE 4.4, Some adaptive element analogs of classical
niitioning require a specialized UCS pathway that causes
- 1ifications in the CS pathway but does not have an
« .tatory effect on the element. This implies that the UCR
¥ pathways are separate so that stimulus substitution
=t Jo~ur at the element. Additional assumptions must

.» 12:ount for the similarity of the UCR and CR.

.

-
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then after sufficient simultaneous pairing of the UCS and
cS, Weg will increase to a value at which the CS will elicit

a response, the CR, in the absence of the UCS.

One reason the Hebbian rule has remained influential
among theorists is that it provides a very simple hypothesis
to account for a stimulus substitution view of <c¢lassical
conditioning. It is a common, though not wuniversally
accepted, theoretical position that in classical
conditioning, the CS comes to elicit a CR by effectively
substituting for the UCS. This explains the similarity
between the CR and the UCR since it implies that the two
responses occur via the same response pathway's being
activated by two different stimulus pathways. This view,
known as stimulus substitution theory, has proved to be a
reasonable generalization from the data (see discussion and
review in Mackintosh, 1974, pp. 100-109). In the Hebbian
model of classical conditioning (Figure 4.3), the CR and UCR
share the same pathway so that one would expect them to be

similar.

Other adaptive element analogs of classical
conditioning do not provide so natural an account of the
similarity between CR and UCR because they require the UCS
to be a specialized input to the adaptive element that does

not excite it (Figure 4.4). In these cases, separate

.
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pathways are required for the CR and UCR. To account for
the similarity of the CR and UCR it 1is necessary to
postulate that the CR and UCR pathways converge in some
manner "downstream" from the adaptive element. The
perceptron of Rosenblatt (1962) and the informon of Uttley
(1979) require this organization to form analogs of

classical conditioning.

Aside from providing a simple -explanation for the
similarity of the CR and UCR, that the UCS 1is an
unspecialized input in the case of the Hebbian element also
means that the activity of any input pathway can cause
changes in other pathways. In particular, pathways whose
efficacies have become strengthened through previous
training can further affect other pathways. A model with
this property can produce behavior suggestive of higher
order learning in animals: A previously conditioned CS can
act as a UCS for a second CS. This property has also
contributed to the interest in the Hebbian rule among
theorists. It 1is not necessary to fix from the start the
source of reinforcement, Any correlations among the input
signals to an element will tend to be reflected in the
connection weight values. The requirement for reinforcement
to be provided only from a fixed source, on the other hand,
raises the problem of somehow providing appropriate

reinforcing signals at the appropriate times. The
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significance of this problem may be reflected in the lack of
success in constructing powerful adaptive networks of
perceptron elements (see Minsky and Papert, 1969 and Minsky

and Selfridge, 1961).

We present a new adaptive element analog of <classical
conditioning that uses the stimulus substitution
organization shown in Figure 4.3. We briefly introduce the
model here and discuss it in detail below. In addition to

the stimulus signals X5 i'=1,..., n, and the output signal

Yy, our model requires the use of several other variables.

First, for each stimulus signal X3 i=1,..., n, we require

a separate stimulus trace which we denote by X By this we

.io

mean that the occurrence of CSi at time t, 1indicated by
xi(t) = 1, initiates a prolonged trace given by nonzero
values of separate variable ;i for some period of time after
t. This is accomplished by letting ;1(t) be a weighted
average of the values of X for some time period preceding
t. Similarly, we require a trace of the output y. Let y(t)
denote a weighted average of the values of the wvariable .y
over some time interval preceding t. In the computer
simulations which produced the data shown below, we
generated these traces using the first-order linear
diflerence equations

Yi(t +1) = a?i(t) + xg(t) (4.3)

y(t + 1) = gy(t) + (1 - 8)y(t) (4.4)
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where ao and B are positive constants with 0 a, B > 1.
Appendix B gives the values actually wused 1in the

simulations.

The behavior of the adaptive element 1is therefore
described by the values over time of the two variables y and
y, and the values of the threc variables X3 Yi, and W, for
each input pathway 1 = 1,..., n. In terms of these
variables, the model takes the form of a set of difference
equations for successively generating the values of the

associative strengths: for each i, i = 1,..., n,
wilt + 1) = w(t) + cly(t) - y(t)Ix,(t) (4.5)

where ¢ is a positive constant determining the rate of

learning.

We can describe the process given by Equation 4.5 as
follows: Activity on any input pathway i, i = 1,..., n,
possibly causes an immediate change in the element output vy
but also causes the connection from that pathway to become
"tagged" by the stimulus trace Yi as being eligible for
modification for a certain period of time (the duration of
the trace x;). A connection is modified only if it is
eligible and the current value of y differs from the value

of the trace y of y.
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The effectiveness of the reinforcement for the
conditioning process depends on the difference y(t) - y(t)
which determines how the eligible connections actually
change. The simplest case, and the one wused 1in our
simulations, results from letting B8 = 0 in Equation 4.4 so
that y(t) = y(t - 1). Then y(t) - y(t) = y(t) - y(t - 1)
which is a discrete form of the rate-of-change of the

variable vy.

Our use of stimulus traces to create periods of
"eligibility" was borrowed from the neural hypothesis by
Klopf (1972, 1981) that the temporal characteristics of
conditioning, both <c¢lassical and instrumental, can be
produced if one set of conditions makes synapses eligible
for modification of their transmission efficacies, but
actual modifications occur due to other influences during
periods of eligibility. This differs from related theories
in that eligibility is seen as being indicated in some way
completely separate from electrical activity. That is,
instead of being marked as eligible for modification by a
transient increase in efficacy, or by prolonged presynaptic
activation, a pathway would be marked by some mechanism
which does not participate directly in the electrical
signaling of the cell, such as a transient increase 1in the

concentration of a particular chemical.
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The weight change rule given by Equation 4.5 can be

roughly wunderstood by analogy with the Hebbian rule. While

‘the Hebbian rule detects correlations between input and

output signals, this r%le detects correlations between
traces of input stimuli and changes 1in output. These
differences have subtle and sometimes surprising
consequences which will be discussed in the next three

sections.

4.3 Temporal Relationships

The use of the stimulus traces Yi and the output trace
Yy in our model permits it to reproduce some of the
intratrial temporal relationships between stimuli and
responses observed 1in <classical conditioning experiments.
Here we discuss interstimulus interval dependency and CR
latency and review how earlier adaptive element models
account for these aspects of <classical conditioning. We
then present simulation experiments which show that our

model produces behavior in good agreement with experimental

data.

Ae have said a pairing between the CS and the UCS 1is
necessary for a classical conditioning association to form.
In fact, many aspects of the temporal relationship Dbetween

CS and UCS will affect the strength and rapidity of

™
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conditioning. Both the words "pairing” and "associative
learning™ commonly used in reference to classical
conditioning seem to imply a symmetrical relationship
between the CS and the UCS, and many theorists have created
models in which associations are formed when CS and UCS (or
their theoretical analogs) occur simultaneously.
Experimentally, however, simultaneous presentation of CS and
UCS typically results in very poor conditioning, if any

(e.g., Smith, Coleman and Gormezano, 1969).

An effective pairing of €S and UCS 1in classical
conditioning is not a symmetric--the CS must occur first,
The crucial variable with respect to the C3 - UCS temporal
relationship 1is +the time interval between the onset of the
CS and the onset of the UCS (the interstimulus interval, or
ISI). Associative strength between the CS and the CR is
usually found to be an inverted-U shaped function of this
interval, being zero at simultaneous presentation, maximal
at intermediate values (that depend strongly on the
particular response sysﬁem), and then falling toward zero at
longer ISIs., Conditioning for negative 1ISIs, or backward
conditioning, is generally considered not to occur (see
Mackintosh, 1974, pp. 58-60). Figure 4.5 shows an example

of this relationship.

A second important aspect of the intratrial temporal

T B
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100 ¢
@—@ Data from Smith et al. (1969)
O—O Data from Schneiderman and
80 } Gormezano (1964)
60 p
*CRs
40 ¢t
20
O b
5 5 1 2 3 4
Interstimulus Interval (sec)
FIGURE 4.5. Asymptotic associative strength versus

interstimulus interval in rabbit nictitating membrane
response delay conditioning. Optimal ISI times vary widely
from small fractions of a second for some response systems
to up to a minute and perhaps longer for others.
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relationships in c¢lassical conditioning is ¢the ¢time of
occurrence of the CR relative to the CS and UCS. The time
difference between CS onset and CR onset is called the CR
latency. For a particular response there is usually a
finite minimum value for the CR 1latency due to intrinsic
delays of various Kkinds. For +the nictitating membrane
response, for example, the minimum CR latency 1is on the
order of 70 =~ 80 msec. When the ISI is shorter than the
minimum CR latency, then the CR necessarily begins after UCS
onset. In the more usual case in which the ISI is longer
than the minimum CR latency, the CR begins before the UCS
(Mackintosh, 1974, p. 61). Two examples are shown in

Figure 4.6.

In Figure 4.6a the CR begins nearly immediately after
the CS, just as the UCR begins nearly immediately after the
UCS. However, in many experiments, post-training behavior
much 1like that shown in Figure U4.6b is observed, in which
the CR begins much later than a minimum CR latency after CR
onset. This appears to be the result of the animal
discrimination between earlier and later parts of the CS and
treating them as different CSs. (The CR initially begins
soon after the overt CS onset and then gradually shifts
later with «c¢ontinued training. This shifting is made more
rapid by increasing the discriminability of earlier and

later parts of the CS.) In these cases also the CR is
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cs | cs | 1
ucs . ucs 1

UCR
\
UCR
CR
N\
.
CR
a) Leg flexion b) Eyelid response

FIGURE 4.6. Tracings of CRs and UCRs in studies of leg
flexion and eyelid conditioning. In each case CR onset
occurs before UCS onset,

a) Leg flexion CR and UCR in dogs (after Kellogg, 1938).

b) ggelid CR and UCR in a human subject (after Hilgard,
1936).
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experimentally found to precede the UCS. Summarizing, we
can state: Except 1in the <case of an ISI less than the
minimum CR latency, a classically conditioned CR will begin

before its UCS (Mackintosh, 1974, p. 61).

It is on the basis of these temporal relatic ps that
we say that the C3S is a predictor of the UCS and the CR is a
prediction of the UCS. Many 1learning theorists (e.g.,
Dickinson and Mackintosh, 1978, and Kamin, 1969) have
emphasized the importance of the CS being an informative
predictor of the ucs rather than just occurring
appropriately paired with the UCS. To this we add that in
order for the predictive information made available by the
UCS to be useful, it must be available before the event
predicted. This suggests that the fact that the CR occurs
before the UCS in classical conditioning may be an important

aspect of the classical conditioning behavior.

However, not one of the adaptive -element models
currently in the literature is capable of producing behavior
whose temporal structure is in agreement with that observed
in animal learning as described above, It is usual practice
to add additional mechanisms, such as a delay in the CS
pathway, 1in order to account for some of the temporal
relationships between stimuli and responses. In most cases,

however, the resulting adaptive elements display only
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superficial aspects of this temporal structure.

4.3.1 Delays

As a first step it is important to understand what can,
and what cannot, be achieved by the addition of delays in
input and/or output pathways of elements requiring
siimultaneous pairing for changing weights. Consider the two
different ways of using adaptive elements to model classical
conditioning that we have described (Figures 4,3 and 4.4),.
These models differ in that the latter have a specialized
UCS pathway and a UCR pathway that is different from the CR

pathway.

First consider the consequences of adding a delay 1in
the CS pathway in either type of model (Figure 4.7a). When
the delayed C3 temporally overlaps the UCS, the associative
strength of the CS increases. This means that maximal
learning occurs when the UCS follows the CS by the time of
the delay, thus exhibiting a rough form of tne
experimentally observed ISI dependency. Suppose now that
conditioning continues wuntil the CS elicits the CR. Since
the CS is delayed, the CR is also delayed, so that it cannot
begin earlier than the UCS, i.e., the CR latency is always
greater than or equal to the ISI. The delay 1in +the CS

pathway necessarily also delays the CR thus preventing it
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a) ucs
Cs | 1
UCR
cs &CR
delay Delayed CS L
ucs L
UCR
ucs iTe; 1
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: delay
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1 b)
CS
delay N -
UCR Delayed CS
ucs e L
cs CR ucs M )
delay UCR J—l
| cR !
FIGURE 4.7. The use of delays in attempts to approximate
the temporal relationshios observed in classical
conditioning.
a) A delay in the CS pathway of both types of classical
conditioning models necessarily also delays the CR.
b) Delays in the CS and UCR pathways permit the CR t»
precede the UCR but not the UCS.
L
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from being a useful prediction,

For the case in which there are separate pathways for
the CR and the UCS (Figure 4.4), one can consider adding
delays to both the CS and the UCR pathways as is done, for
example, by Uttley (1975). In this case, the CR cannot
occur earlier than the UC3 for the same reason discussed
above, but it can occur earlier than the UCR due to the
delay in the UCR pathway (Figure 4.7b). However, in
classical <conditioning it is the UCS that is anticipated by
the CR. That is, an animal can predict stimuli by becoming
sensitive to external signals which regularly precede those
stimuli. Merely producing a response earlier than it
previously appeared, but not before the previously eliciting
stimulus, simply results in increased speed of response.
This is indeed a useful strategy, but it can be accomplished
more simply by reducing the delay in the UCR pathway. In
classical conditioning, on the other hand, a response can
occur earlier than the occurrence of the stimulus which
previously elicited it. This, of course, requires the
availability of predictive information in the environment (a

cs).

For elements requiring simultaneous pairing of stimuli
for forming associations, no combination of simple delays in

the CS, UCS, and UCR pathways can produce this kind of
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anticipatory response. The delays essentially just slow the
system down. In addition, delays on the order of seconds or
even longer required for this approach are very hard to

justify neurophysiologically.

4.3.2 Stimulus Traces

The notion that a stimulus sets up an internal neural
trace which persists after the stimulus ends has a long
history in theories of learning, notably in Hull's (1943),
and has been wused 1in neural network theories as, for
example, by Grossberg (1974). Although a simple delay 1is
one form of stimulus trace, the kind of trace to be
considered now 1is one which, wunlike a delayed signal,
persists 1in some form throughout the temporal interval. In
particular, such a trace is present in the interval's early
as well as late portions. There are two general classes of
possibilities for stimulus trace mechanisms: 1) traces are
maintained by the firing levels of some neurons, possibly by
means of reverberatory circuits, and 2) they are maintained
by something other than neuronal electrical activity,
perhaps by chemical concentrations. From our theoretical
point of view, the most important difference between these
two possibilities is that the former employs the same means
for storing traces as 1is wused for signaling stimuli and

producing responses. In the 1latter case, these two
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functions are performed by separate mechanisms. The first
type of trace, which we call a stimulating trace, is more
frequently hypothesized, and we discuss this possibility

first.

Suppose the CS gives rise to a stimulating trace which
persists long enough to span the interval between CS and UCS
presentations (Figure 4.8a). If this trace serves as the CS
input to an adaptive element requiring simultaneous pairing,
and the UCS does not produce such a trace, one can obtain an

ISI dependency curve whose shape resembles that of the

" stimulus trace function [footnote]l. If the UCS leaves a

.imilar stimulus trace that acts as input to the adaptive
element, then the ISI dependency curve shows substantial
learning for negative CS3-UCS intervals, i.e., for cases in

which the UCS precedes the CS (Figure 4.8b). Uttley (1975)

" Hull (1943) apparently believed that an experimental ISI

curve could be accounted for by assuming a neural trace of
the same shape. As Hilgard and Bower (1975) point out,
nowever, level of conditioning is such a complex function of
the ISI along with many other factors that this form of
explanation is untenable. It should be noted, though, that
since we are discussing adaptive elements out of which
adaptive networks can presumably be constructed, this
objection holds 1less force. The externally observed
behavior of a network would be a product of the interaction
of a variable mixture of local traces.

.-
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C-LIN pa
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LN
CS trace //”——\f::=__
ucs )
UCS trace /‘&
associative strength 6 I1SI

versus IS

FIGURE 4.8. Stimulating stimulus traces.
a) If the CS initiates a prolonged stimulating trace and the

UCS does not, then the CR can anticipate the UCS, but the CR
will tend to be prolonged also unless some additional

mechanism is postulated.
b) If both the €S and the UCS 1initiate traces which

stimulate one of the adaptive elements described in the
text, then there will always be backward conditioning.
Shown here is an ISI dependency curve for the case in which
the CS and UCS produce identically decaying exponential

traces.
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suggests the use of a long CS trace and a short UCS trace in

order to minimize (but not eliminate) backward conditioning.

A stimulus trace consisting of a prolonged CS signal

does permit the CR to anticipate the UCS since the signal

trace, unlike a delayed signal, is present at the beginning

the end of the ISI. For example, if we assume

as well as

that an element produces a response whenever the weighted

sum of its input signals exceeds a threshold, then after

sufficient training, the CS will elicit a CR whenever the CS

trace, multiplied by the connection weight of the (€S

pathway, exceeds the threshold (Figure 4.8a). As training

continues one would expect the duration of the CR to

lengthen as longer intervals of the stimulus trace exceed

threshold. Although various characteristics of the CR

change as training continues, there are no data indicating a

tendency for the CR to persist throughout the ISI: The CR
generally resembles the UCR. Some additional mechanism
would‘ have to be postulated to prevent the prolonged

stimulating trace from being manifested in overt behavior as

a prolonged response,

4.3.3 Non-Stimulating Traces

We now consider what one would expect if the stimulus

trace were provided by a signal different from the
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stimulating signal. Several proposed mechanisms fall into
this category. It has been suggested, for example, that a
stimulus might leave a temporarily persistent trace in the
form of an altered threshold of the postsynaptic element
(Milner, 1957; Rosenblatt, 1962, p. 55), or that a
transient increase in synaptic efficacy follows presynaptic
activity and is made more permanent by subsequent firing of

the postsynaptic cell (Rosenblatt, 1962, p. 57).

The use of a stimulus trace variable entirely separate
from the major signaling variable has been proposed by Klopf
(1972, 1981). He sugzests that when activity at a synapse
satisfies certain criteria, then that synapse becomes
eligible for modification and remains eligible for a period
of several seconds. The extent to which an eligible synapse
is modified depends on the reinforcement 1level during the
period of eligibility. Each synapse is therefore viewed as
possessing its own 1local trace mechanism which mediates
syaaptic modification but does not directly alter any other
aspect of the unit's behavior. Such a trace can parsist, as
Klopf suggests, for the relatively very long times suggested
by classical (and instrumental) conditioning data without
interfering with ongoing signal transmission. Further, the
large variation in ISI dcpendency for different response
systems might be accounted for by variations in eligibility

trace durations, This is the kind of stimulus trace
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provided by the term Yi in our model.

Our model implies that a synapse becomes eligible for
modification whenever a presynaptic signal occurs there, and
that eligibility forms a curve like that of the trace 1in
Figure #4.8a (see also Figure 4.10). Since learning occurs
due to an 1inveraction between the UCS signal and a
non-stimulating eligibility trace initiated by the CS, the
critical temporal aspects of classical conditioning can be
produced. In particular, the CR will begin immediately
after the CS and, unlike the case of a stimulating trace,
the CR will not extend in duration as conditioning proceeds

(see below). This 1s possible fbecause the trace is

different from the stimulating signal.

Although both stimulating and non-stimulating traces
might be postulated to account for the important temporal
aspects of classical conditioning, a non-stimulating trace
has the advantage of permitting a clear distinction to be
maintained between actual stimuli and traces of stimuli.
There are two countervailing requirements that need to be
met . First, fast electrical signals are necessary to
indicate as precisely as possible the time of occurrence of
specific events, It is to an organism's advantage to
perceive events as occurring as closely as possible to their

actual time of occurrence, and particularly as early as
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possible. Second, 1t 1is necessary to retain the knowledge
of these occurrences so that they can be associated with
later events, In a two variabhle system, these two
requirements are both satisfied whereas in a single variable
system, such as one using reverberatory activity, one of
these requirements can only be satisfied at the expense of
the other. If the association of events depends on their
precise temporal relationship, as indeed it appears to, then
we can expect there to be a high priority on precise
temporal 1localization of events. Thus, it seems most
reasonable not to confuse the need for a short distinct
signal with the need for a prolonged trace by using a single

trace for both purposes.

A common argument for a reverberatory activity theory
is based on certain studies of attention and distraction and
their effect on learning. These studies indicate that
reverberatory activity is probably important in the central
nervous system. However, this we do not mean to debate,
Reverberatory activity can be expected to play an important
role--for example, it can determine what information |is
picked wup or relayed to higher centers. We believe it is
unwarranted, however, to proceed from this to the conclusion
that reverberatory activity is the primary mechanism for
spanning the time between the sequential events upon which

learning is contingent.

et i e et e .
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4,3.4 Model Behavior in Classical Conditioning with a Single CS

One uninteresting steady state of our model occurs when
all the connection weights are equal to zero. In this case
y remains at zero so that no modifications to the weights
can occur, A simple way to exclude this steady state is to
set at least one weight to a fixed nonzero value. In an
analog of <classical conditioning, this fixed input pathway
carries the UCS, and the resultant effect on the element 1is

the UCR (see Figure 4.9).

It is useful to consider the simplest special case of a
single rectangular CS signal which ends when the UCS starts.
The discussion is also simplified if we assume that the UCS
is sufficiently 1long so that all synapses have lost their
eligibiity by the time of its offset. Figure 4.10 shows
this CS, the eligibility it generates, as well as a UCS and
the reinforcement signal generated. We have assumed that w,
the associative strength of the CS, is initially equal to
zero and that the term y takes the simplest form y(t) =
y(t-1) resulting from letting B = 0 in Equation 4.4. This
makes y - ; a rough form of the derivative of y. The
rectangular (S signal causes an increase in the eligibility
of the CS pathway which persists for some time after the C3S
offset,. The rectangular UCS signal, active through a fixed

excitatory input of strength A, causes a positive change in

PSSR o
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> ¥ -=UCR & CR

FIGURE 4.9. Our adaptive element as an analog of <classical
conditioning. There are n modifiable CS input pathways and
a pathway with fixed weight Wg whiich carries the UCS. The
element output y represents both the UCR and the CR.
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Eligibility i.——————/’///pﬂﬂ_—\\\\“‘—*

y-V s
Yot ~ yi—1 L

FIGURE 4.10, Time courses of element variables for a trial
in which a neutral (associative strength w = 0) CS is
followed by a UCS. For ease of explanation CS offset and
UCS onset coincide, and the UCS is of sufficient duration so
that X is zero at UCS offset. The trace ¥ of the CS signal
x indicates the eligibility for modification of the CS
pathway. This trace increases during CS presentation and
persists after CS offset. Element output y shows no change
during CS presentation since w = 0, but since the UCS
stimulates the element via a fixed positive weight, the
shape of the time course of y follows that of the UCS
signal. This causes y - ¥ to indicate UCS onset with a
positive pulse and UCS offset with a negative pulse. The CS
associative strength w changes according to the product of ¥
and y -~ y. Consequently, w increases at UCS onset and
decreases by a lesser amount (here, by zero) at UCS offset,
thus experiencing a net increase.
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ucs

cs x— 1

FIGURE 4.11. Time courses of element varjiables after the
asymptotic CS associative strength nas been reached due to a
series of trials. Element output y changes at CS onset
since w is now positive. UCS onset caises no additional
increase in y over that level produced by the CS. The CS
pathway eligibility Y is zero for the positive pulse of y-y
and, assuming a sufficiently long UCS, also zero for the
negative pulse. Under these circumstances, w does not

change.
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y at its onset and an equal but negative change at its
offset. The weight, or associative strength, of the CS
experiences a net increase: At the UCS onset it increases
by a certain amount and decreases by a lesser amount at the

C5 offset (in this case the decrease 1is zero since the

eligibility has decayed to zero by the time of UCS offset).

After one trial, w is positive so that on the next
trial the occurrence of the CS increases the output level vy.
Consequently, CS onset causes a transient increase in y - ¥y
that has no effect on the CS pathway since CS pathway
eligibility is zero at CS onset. However, the level of y is
raised by the CS so that UCS occurrence causes less of an
increase in y than it did on the preceding ¢trial. This
means that the value of y -y at the time of UCS onset
causes a further increase in w, but one of smaller magnitude
than in previous trials. With additional trials, this
process continues until the value of y - y at the UCS onset
is equal to zero, that is, until the C3 produces activity
equal to that produced by the UCS (Figure U4.11). Growth in
assocliative strength therefore is negatively accelerated and
stops when y remains constant during CS pathway eligibility.
Figure U4.14, trials 0-10, shows the form of the acquisition

curve produced by computer simulation.

The equilibrium reached after a number of trials and

—
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shown in Figure 4:.11 has the following important properties.
First, the CS has an excitatory effect on the adaptive
element when the effect of the UCS is also excitatory. This
permits a stimulus substitution model of classical
conditioning in which the CR and UCR share the same pathway
(Figure 4.3). Second, the CR produces an output level y of
magnitude equal to that produced by the UCS. Third, the CR
is produced earlier than the UCS. The element increases its

output level in anticipation of UCS o=currence.

Similar behavior is produced when UCS onset precedes or
follows C3 offset by some time interval or when the
eligibility trace outlasts the UCS. In these cases,
however, the CR will differ in magnitude from the UCR in a
manner depending on the precise temporal arrangement of the
CS and UCS. In addition, the equilibria in these cases are
dynamic rather than static. The CS associative strength
continues to change during each trial, but eventually there
is zero net change per trial. The behavior approaches a
stable 1limit cycle. Appendix A contains a related formal

analysis.

Figure U4.12 shows the resultant asymptotic connection
weight for a series of simulation experiments in which the
time interval between CS onset and UCS onset is varied. The

connection weight becomes the strongest when the CS ends
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FIGURE 4.12. Asymptotic connection weight versus

interstimulus interval in a simulated classical conditioning
paradigm. The 1interstimulus interval (ISI) was varied
between 0 and 40 time steps, CS length was 3 time steps, and
UCS length was 30 time steps.
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just as the UCS begins (ISI = 3 time steps). At ISIs 1less
than 3 time steps there is less time for the eligibility of
the CS pathway to increase before the arrival of the UCS.
At ISIs greater than 3 intervals the eligibility decays
toward zero since the CS is not present for some interval
between CS offset and UCS onset. These results have the

same overall form as those observed in animals.

However, in animal experiments optimal ISIs are not so
strongly tied to overt CS duration, although longer optimal
ISIs have been observed for long fixed delay C3s than for
short trace CSs (Schneiderman, 1966). The behavior of our
adaptive element can be reconciled with the experimental
observations if it is assumed that "effective", or
"internal" CS duration is not identical to overt, external
CS duration. A long CS is ignored shortly after it begins,
while even an instantaneous overt CS causes an internal
representation of some significant duration. This internal
duration, rather than overt CS duration, then, would

determine optimal ISI.

Behavior similar to that discussed above is produced by
our model if y is a more prolonged trace than that used for
the preceding discussion. Letting B be nonzero (but siill
less than one) in Equation 4.4 results in an exponentially

decaying trace y similar to the eligibility trace X. In
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this case, the term y - ¥ used in our model is a measure of
the deviation of the current output level from an average of
past values. The low pass filtering characteristic of this
measure prevents high-frequency fluctuations in y from
significantly influencing the associative strengths.
Equation 4.4 implies that for any B, 0 < B < 1, if y remains
constant over time, then y - ; will approach zeré, thus
providing for deceleration of the 1learning process in a

manner qualitatively similar to that produced when 8 = 0.

These illustrations of our model's behavior show that
it 1is sensitive to the temporal relationships between
stimuli within classical conditioning trials and is capable
of producing CRs that occur before the UCS., It is evident
from our discussion of how these properties follow from
Equations 4.3, 4.4, and 4.5 that considerable behavioral
sublety can be generated by the interaction of eligibility
traces and a measure of output change. In general, the
quantitative aspecits of our model's behavior depend on tne
timing, durations, and shapes of the CS and UCS signals, the
forms of the eligibility traces ;i and the output trace Vy,
and the «character of the output mapping function f. This
complex of dependencies provides considerable 1latitude for
making quantitative predictions about particular response

systems, and we restrict our attention in this report to the

qualitative aspects of the model's behavior. Appendix A
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contains a mathematical analysis of some of these

dependencies for a simplified version of the model.

4.4 Context and Expectation

Another aspect of classical conditioning which should
be included 1in even a very simple theory is the effect of
the context of a CS. The associative strengths of the
stimuli that act as context for a CS on a trial can nullify
or even reverse the effect of the occurrence of the UCS on
that trial. This can be seen in numerous experimental

paradigms, of which the simplest is known as blocking.

In blocking, as in all stimulus context experiments, a
compound stimulus consisting of at 1least two stimulus
components (one of which 1is frequently thought of as a
conglomerate background stimulus component) is used as a CS.
In part I of a typical blocking experiment one stimulus
component (C3,, which might be a light, is paired with a UCS
at an appropriate ISI until associative strength between
CS] and the CR reaches its asymptotic value. In part II,
the experimenter continues to pair CS] with the UCS, but
also pairs CSZ' say a bell, with identical temporal
relationship as diagrammed in Figure 4.13. 1In effect, the

compound stimulus CS] + C52 is being paired with the UCS.

——— et ot o
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' FIGURE 4.13. Temporal relationship between stimuli in the
second part of a standard blocking experiment. Learning to
each of the component stimuli CSy and CSy will depend on the
associative strength of the other component stimulus.
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The result of this procedure is that CSp, which is
appropriately paired with the UCS in part II, conditions
very poorly, if at all, compared to a control group without
part I conditioning to CSj. This is not an isolated result.
Effects of the associative strengths of context stimuli on
conditioning occur in a great variety of experimental
paradigms, in both classical and instrumental conditioning,
of which blocking, overshadowing, and conditioned inhibition
are only some of the more prominent examples (see Hilgard
and Bower, 1975, pp. 571-573). Context stimuli can have
such large effects on resultant associative strength that
they cannot satisfactorily be ignored by a nontrivial theory

of classical conditioning.

The simplest and most successful theory describing the
effects of stimulus context is generally considered to be
that of Rescorla and Wagner (1972). They state their theory

in cognitive terms as follows:

...organisms only learn when events violate
their expectations. Certain expectations are
built up about the events following a stimulus
complex; expectations initiated by the complex
and its component stimuli are then only modified
when consequent events disagree with the
composite expectation. (p. 75)

Applying this analysis to the blocking experiment: Part I
builds wup an expectation that the UCS will follow CS». The
events of part II do not violate this expectation, so there

is no learning. Other stimulus context effects can be dealt

o e — s -
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with in similar fashion. However, similar ideas have been
advanced by others, What distinguishes Rescorla and
Wagner's theory is that it is given a precise mathematical

form:

6V, = aAB[A - VAX] (4.6)

where AVA is the change in associative strength to a CS A,
A 1is the asymptotic value of associative strength possible
with the UCS, Vpy is the associative strength already
present to the stimulus complex A + X, where X is a
conglomerate background stimulus, and ap and g are positive
constants depending respectively on the CS being changed (A)
and the particular UCS used. 1Implicit here is that Equation
4.6 is only applied to a CS A if it is present on the trial,
and that the complex A + X is precisely all stimuli present
on the trial. Using the simplest assumption that VAX = VA +
Vy, taking c = a,8, and letting S be the set of (indexes of)

all stimuli present on a trial, Equation 4.6 can be written

as

clr - TV ] for i e S
jeS CSJ
CS
0 for i ¢ S.

Part I of the blocking experiment results in
VCS] reaching the value A Dbecause CS] is the only stimulus
present. In part II, VCSZ = 0 initially, and since

TV = ¥ + v = A+ 0 =12,
jesS CSj CS] CsS

R
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no changes in associative strength take place. Tt should be
clear how this equation implements Rescorla and Wagner's
cognitive theory referred to above: The -expectations that
are built wup are the associative strengths, and these are
modified when events such as the UCS, represented by 2,

differ from the composite expectation (the sum of the

associative strengths of the stimuli present).

This theory can account for blocking and a wide range
of the other stimulus context effects. The theory is not a
completely satisfactory one, the two most prominent and best
established shortcomings being: 1) There has been repeated
failure to demonstrate the extinction of conditioned
inhibitors predicted by the Rescorla-Wagner model (the
return to zero of negative associative strengths when their
stimuli occur without any correlation to the UCS:
Zimmer-Hart and Rescorla, 1974). 2) The strict application
of the Rescorla-Wagner equation requires the prediction of a
strictly negatively accelerated acquisition curve, The
consensus is that this curve 1is initially positively
accelerating (Mackintosh, 1974, p. 1), The
Rescorla-Wagner theory also does not correctly predict the
microstructure of individual response sequences (Prokasy and
Gormezano, 1979). Recent extensions to the Rescorla-Wagner
model have been proposed to remedy some of these problems

(Frey and Sears, 1978).
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Nur adaptive element uses a form of expectation closely
related to that of the Rescorla-Wagner model. Whereas in
that model the associative strengths are changed based on
the difference between received and expected UCS levels, in
our model weights are <changed based on the difference
between actual activity level y and expected activity level
y. In fact, our model results in all the stimulus context

behavior of the Rescorla-Wagner model.

This can be seen most clearly by considering another
special case. Assume there are many CS pathways, on which
rectangular pulse CSs may or may not be present, and that
all CSs present on a trial begin simultaneously (and, as
before, end as the UCS begins). If the UCS signaled by
Xo begins at time T and has a duration longer than the
eligibility traces, then the connection weight Wiy
corresponding to CSj, can only change at T. This is the
only time at which y changes when an input pathway can be
eligible. Then the total change in w; on a particular trial

is aw;(T). From Equation 4.5 we Have:

oWy (T) = cly(T) - ¥(T)Ixy(T)

Taking the simplest case y(t) = y(t-1), and Yi(t) = x(t-1):

n

Awi(T) = ¢[y(T) - jzowjxj(T - l)]xi(T - 1).

PR
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Letting y(T) = wgxg(T) = A, and noting that x3(T - 1) = 0,

we obtain

n
Awi(T) = ¢c[a - jE]wjxj(T - 1)]xi(T - 1).
And since xj(T -~ 1) = 1 indicates C3S presence, we can write
c[x - © w.,] forie$
JjeS J
Awi(T) =
0 for i ¢ S

where S is the set of stimuli present on the trial. Since
Awi(T) is the total change in connection weight on the

trial, this result is identical to the Rescorla-Wagner

equation (Equation 4.7).

Computer simulations illustrate this result in a
variety of standard stimulus context experiments. The
results of a computer simulation of our model in a blocking
experiment 1is illustrated in trials 0-20 of Figure 4.14.
For the first 10 trials of the simulation experiment CS] is
presented alone and followed by the UCS as discussed
earlier. The connection weight w1 of CS] quickly rises to
the UCS level A = .6 (see Figure 4.14, trials 0-10; Figure
4.11 shows the steady state element behavior; additional
details on the simulations are in Appendix B). The
acquisition curve is purely negatively accelerated as in the

Rescorla-Wagner theory.

P
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FIGURE U4.'4, The connection weights at the end of each
trial in a simulation experiment. The intratrial time
courses of the variables involved are not shown.

Trials 0-10: Presentation of CSy alone followed by the UCS
results in wy increasing.

Trials 11-20: (37 and C3p presented together followed Dby

the UCS produces no change since C32 is redundant. This is

the blocking paradigm.

Trials 21-35: (S, begins earlier than CSJ .
becomes sensitive to the earlier predictor and
sensitivity to the later.
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ucs 1

:
T

Wo- X\ W= X, W -0

FIGURE 4.15. Intratrial time courses of element variables
in part 1II of a blocking experiment (trials 11-20 shown in
Figure 4.14), Since the weight associated with CS] has
already reached its asymptotic value of A, y -y is zero
whenever CS, pathway eligibility Xo is nonzero,
Consequently, no changes in weight values occur.
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FIGURE 4.16.

Blocks of two trials

Simulation results of an experiment with two

CSs each of which accounts for a particular portion of the

UCS's reinforcement.
strength A = .4 were

Trials of CSq paired with a UCS of
alternated with trials in which the

compound CS7 + CS5 was paired with a UCS of strength x = .6.
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FIGURE u4.17. Simulation results of an experiment with two
CSs differentially associated with the UCS. CSy precedes
every UCS whereas 052 is absent every fourth UCS. Although
initially CS, is dominant (Wé = 0, wp = 1), eventually CSy,
the more reliably associated CS, dominates (w] = A,wz = 0).
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For trials 11-20, CS] is presented identically paired
with CSZ’ and both are followed by the UCS. This is the
blocking paradigm. Since it provides no new information
about UCS arrival, 032 is redundant. During these trials
Wi and Wy do not change. This result can be wunderstood by
exanining the behavior of the relevant element variables
during one of these trials (Figure 4.15). The decrease in y
occurs too long after the occurrence of the CSs for them to

be still eligible, and the increase in y occurs just as the

CSs begin, and thus before they are eligible.

Elements that implement the Rescorla-Wagner equation
find input signals whose presence is associated with the UCS
and that are not redundant. Each such signal generates an
expectation equal to the additional UCS magnitude indicated
by its presence. If there are many signals, the sum of
their expectations is of appropriate magnitude. For
example, if the compound stimulus CS] + C32 is paired with a
UC3S of strength A = .6, while CS] alone is concurrently
paired with a UCS of strength A= .4, then the two

associative strengths (connection weights) Wy and W, wiil

stapilize at .4 and .2 respectively (assuming X; = 1
indicates CSi present; in general WX, and WoX o will
stabilize at .4 and .2). A simulation experiment confirmed

this conclusion for the adaptive element we have introduced

(Figure 4.16).
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Elements that implement the Rescorla-Wagner equation
also have a tendency to find the input pathways whose
activity is most reliably associated with the UCS and to
ignore all others. For example, let CS] be paired with 100%
of the UCSs while CSy is paired with only 75% of the UCSs.
Even if (€S, is 1initially dominant in terms of associative
strength (wy = 0, wy = ), eventually CS becomes completely
dominant (w] = A, Wp = 0). This result contrasts strongly
with the blocking experiment in which equally reliable C(Ss
do not change their dominance relation (Figure 4.14, trials
11-20). A simulation of our element in this situation

produced results shown in Figure 4.17.

These simulations confirm that when viewed at the trial
level and given the assumptions made above, our model
behaves as the Rescorla-Wagner model, and, in particular,
produces the stimulus context effects of that model. When
viewed at the level of trials our model also shares the
shortcomings of the Rescorla-Wagner model regarding
extinction of conditioned inhibitors and the shape of the
acquisition curve. Extensions of the Rescorla-Wagner model
proposed to eliminate these shortcomings (Frey and Sears,
1978) are also applicable to our model. However, even with
these extensions, the Rescorla-Wagner model applies only at
the level of trials. It cannot supply predictions about the

effects on conditioning of the intratrial temporal

I
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relationships between stimuli. As we nave seen, our model
does apply to this intratrial structure for the case of a
single CS, having behavior consistent with data on CR
latency and ISI dependence. In addition, our model provides
an extension of the Rescorla-Wagner use of expectation to a
form having meaning within trials. This 1leads to several

novel and interesting forms of model behavior.

The adaptive element we have presented finds the
earliest predictors and ignores redundant later predictors.
A CS that arrives simultaneously with, or after, a UCS 1is
useless as a predictor. By the same reasoning, predictors
that occur earlier than others are 1in some sense more
predictive and potentially more useful. A later predictor
can be redundant to an earlier one in the same sense that an
unreliable predictor can be redundant to an identically
timed but reliable predictor. For example, let CS] and
C5, both always be followed by reinforcement, but let

C52 start earlier than CS Then even if initially CS.I is

1
dominant (wy = A, w, = 0), eventually CS,, the earlier
predictor, will completely dominate CS] as a predictor of
the UCS (eventually wys 0, wy,= 2 ). The result of a
simulation of this experiment is shown as trials 21-35 of
Figure U4.14 (recall that at trial 20, Wy o= oA and W, = 0).
Although both stimuli are being presented in trials 11-20

and in trials 21-35, in the former trials, CS, is blocked by

2
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CS1, while in the 1latter, the associative strength of
C82 increases quickly and CS, comes to completely dominate
CS1. In tvue earlisr trials, CSZ is redundant to CS], which
had already been conditioned, but 1in these later trials
CS2 provides important new information: It is the earliest
indicator that the UCS will occur. This advantage, combined
with the fact that €Sy is totally redundant to €Sy, produces
complete conditioning to C32 and the elimination of

conditioning to CS].

This steady state 1is approached quickly and in an
orderly manner, but the reasons for this behavior are
somewhat difficult to explain., Very briefly, on each trial
the associative strength w, of CS, increases and then
decreases by a lesser amount for a net gain, while the
associative strength W of CS1 only decreases: Wo increases
because CS2 predicts the onset of CS]'s excitation, and both
W, and W, decrease at the offset of CS3

1 1
these two stimuli together produce too much expectation.

and C52 because

Although this property of the adaptive element to
become sensitive only to earliest predictors of a UC3S when
the later ones provide no new information is reminiscient of
some learning theory results (notably the work of Egger and
Miller, 1962, on conditioned reinforcement), our primary

interest in it stems from adaptive systems considerations.




- ————— —

JQPEN-LOOP LEARNING PAGE 4-59

de feel that a simple mechanism which finds the earliest,
most reliable, and nonredundant predictors of important
events is potentially very useful for constructing powerful

adaptive systems.

4.4.1 Higher Order Conditioning

Although much of the discussion has been in terms of
fixed pathways (corresponding to UCSs) causing changes in
modifiable pathways, signals on these modifiable pathways,
since they also can affect y, can also cause such changes.
The simplest exanple of this corresponds to what is known as
higher order conditioning 1in animal learning theory. A
signal on a modifiable pathway (CS]) is paired with a fixed
input (UCS) wuntil the connection weight Wy reaches its
asymptotic value. Then a signal on a second modifiable
pataway (CSZ) is paired with a signal on the tirst
modifiable pathway (CS]). In this second pairing CS] acts
as a reinforcing UCS for CSZ‘ With repeated pairings the
second connection weight W, grows to the level of Wy but
Wis since its use is not followed by a UCS, gradually falls
to zero. The result is that W, rises to the 1level of w],
and then follows Wy to zero. The results of a simulation of

this experiment are shown in Figure 4,18,

"o
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FIGURE 4.18. Connection weight values at the end of each
trial in a simulation of higher order classical
conditioning. CSj has been paired with a UCS wuntil the
weight wq reached the asymptotic value .. For the trials
shown, CS, and CS4 are sequentially presented in the absence
of the UCS causing wp to increase as CSy acts as a
reinforcing stimulus for CSj. Since CSj is not being
followed by the UCS, LA decreases to zero causing a similar
decrease in wo.
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4.5 Adaptive System Tneory

In this section we discuss how the model we have
presented 1is related to a variety of other learning rules
used in adaptive system researcnh. This will serve to place
the model within a theoretical framework and indicate how it
differs from learning rules proposed in the past. The
history of adaptive systems research is too long and too
diverse to exhaustively review here. Useful reviews are
provided by Minsky (1963), Minsky and Selfridge (1961),
Hawkins (1961), Holland (1975), and Klopf (1979, 1981).
Even by restricting attention to adaptive systems based on
"neursl" mechanisms, we would be unable to give more than a
cursory treatment. Arbib, Kilmer, and Spinelli (1976)
provide a good, though also non-exhaustive, review of
adaptive neural models. Here we focus only on rules that
have received the most attention and are most closely

related to our model.

Consider a generalized 1learning rule (as in Amari,
1977a): A synaptic weight increases or decreases 1in

proportion to a reinforcement signal r:

wi(t + 1) = wi(t) + cri(t) (4.8)

where ¢ i3 a positive learning rate constant, wi(t) is the

weight of synapse i at time t, and ri(t) is the

Bl ol s T T LR R - ———y -
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reinforcement signal to synapse i at time t. We are using
the term "reinforcement signal" simply to denote that signal
which determines the changes 1in connection weights. For
some of the 1learning rules this signal only vaguely

resembles what would be called reinforcement in behavioral

studies.

4.5.1 Hebbian Rule

Within this framework the Hebbian postulate, in the
form which we briefly discussed above, is formulated by
letting ri(t) = xi(t)y(t) in Equation 4.8. The most highly
developed application of the Hebbian learning rule is its
use in networks which implement associative information
storage (e.g., Amari, 1977a, b; Anderson et al., 1977;
Kohonen, 1977; Nakano, 1972; Wigstrom, 1973). The network
shown in Figure 4.19 transforms stimulus patterns X =
(x],..., xn) to response patterns Y = (y],..., ym). The
inputs Zi act on the elements in exactly the same manner as
the inputs xi but are used to specify patterns 2Z =
(z],...,zn) to Dbe associated with the stimulus patterns X.
Repeated presentations of k different pairings of stimulus
patterns (X], Z]),..., (Xk, Zk), causes the network to
learn, using the Hebbian learning rule, to elicit Zu when

presented with Xu alone, a= 1l,..., k. This occurs

provided the patterns X],..., xk form an orthogonal set.

~
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x1x2...

FIGURE 4.19. An associative memory network consists of a
bank of m adaptive elements sharing the same n input
pathways. Any of the many types of adaptive elements
proposed can be studied in this configuration. Although
each type of welement 1leads to different storage and
retrieval capabilities, all such networks show the
properties of generalization, noise resistance, and content
addressability which have stimulated interest in these
structures.
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The matrix of synaptic weights (wij) converges to the
correlation matrix of the patterns X, and 2, , &= 1,..., Kk

[ footnote].

What accounts most strongly for the current widespread
interest in associative memory networks is that they exhibit
properties suggestive of the aspects of memory emphasized by
Gestalt or mass action theorists (e.g., Freeman, 1975, and
John and Schwartz, 1978). Since information can be stored
in distributed form, associative performance may not be
seriously impaired by various kinds of "lesions" (e.g.,
Wood, 13787 . Distributed storage also provides for
interesting forms of generalization and content
addressability (e.g., Kohonen, 1977; Nakano, 1972, and

Wigstrom, 19/7/3).

These models provide evidence that learning rules which
are wessentially connectionistic in character need not imply
a locationalistic view of memory. The theory of associative
memory networks is well understood, and as research
continues on mechanisms of this type, the result emerging is

It actually converges to the correlation matrix, also called
the covariance matrix, only if the averages of the input
patterns X, and Z, are zero. Amari (1977a) shows how the
Hebbian rule can be modified to remove this restriction.

e
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that any application of simultaneous, or spatial,
correlation c¢an be cast in a form that a Hebbian rule can

implement.

However, as we indicated when discussing temporal
relationships, thia temporal subtleties of «c¢lassical
conditioning are not produced by the Hebbian rule even with
the wuse of delays and other modifications. One would
therefore not expect the processing capabilities of networks
of Hebbian adaptive elements to extend far beyond spatial

correlation.

4,5.2 Widrow-Hoff Rule

For the Widrow-Hoff rule the reinforcement signhal 1is

defined as follows:

ri(t) = [z(t) - y(t)Ix,(t) (4.9)
where

y(t) = QW-(t)x-(t), (4.10)
and j=1 J J

z(t) and xi(t) are real numbers.

This rule requires the use of a specialized signal =z which
acts differently from the other input signals due to its
special role in Equation 4.9 and the fact that it does not

participate at all in the computation of the output y given

—
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by "quation 4.10. This rule causes the weights to converge
SO that the response is a particular desired real number for
each stimulus pattern Xy a=1,..., k, the value ¢to be
assocliated with it is presented as z, call it z,, then after
sufficient repetitions of the pairs (X,, z,), the elemnent
will respond witn <z when presented with X alone, 1 =
1,...,k. The rule implemer.ts an 1iterative algorithm for

computing a solution to a set of 1linear equations., A

X, are

solution exists if the stimulus patterns X],..., K

linearly independent.

If the stimulus patterns are not linearly independent,
convergence can still occur if the rule is modified by
making tne learning rate parameter ¢ a variable whose value
approaches zero as the trials continue, e.g., c(t) = c/t.

In this case, and provided the pairs (X zu) occur wWith

a’
sufficient frequency in the 1input sequence, the weights

converge so as to minimize the sum of the squared error over

the stimulus patterns; that is,

k
: (y -z

2
a (].)
a=1
is minimized where Y, is the element's output for pattern
Xu, and z, is the desired output. In this form, the
Widrow-Hoff rule is an iterative algorithm for forming the
Moore-Penrose pseudo-inverse of a linear operator which is
the same as saving that it computes a 1linear regression.

Duda and Hart (1973) provide a useful discussion of this and

l
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closely related stochastic approximation procedures. This
rule was proposed 1in the form of an adaptive element by

Aidrow and Hoff (1960).

Amari (1977a, b) discusses associative memory networks
of neuron-like elements which rely on the Widrow-Hoff rule
to form associations. In discussing the associative network
shown in Figure 4.19, we said that when Hebbian synapses are
employ2d, perfect*recall of z  upon presentation of Xa, a =
1,..., k, was possible only when the stimulus patterns
formed an orthogonal set. Using the Widrow-Hoff rule,
perfect recall occurs even if the stimulus pattern set is
only linearly independent. Amari (1977a, b) <calls this
"orthogonal learning" since non-orthogonal patterns are
"orthogonalized" by the network. For sets of stimulus
p.tterns that are not linearly independent, recall of the

vest pattern in the least-mean~square sense can be achieved.

A fact that is not generally realized 1is that the
Aidrow-Hoff rule is essentially identical to the
Rescorla-dagner equation. To see this, identify t with the
trial number, each input with a CS,wand the z signal with
tne UCS so that z = i+ when the UCS is present and z = O
atherwise. In tne Rescorla-Wagner equation (Equation 4.7)
the presence of a CSi input signal on a tfial is indicated

by the set notation ie 35, while the Widrow-Hoff form uses

EAE i WG VRGN S L




——

— e —————

OPEN-LOOP LEARNING PAGE 4-68

xi nonzero to indicate input signal presence on a trial and
xi = 0 to denote absence. The relevant equations and
correspondences are:

Rescorla-Wagner:

cr - = Ves ] for i e S

jeS 7]
AVCSi =
0 for i ¢ S
Widrow=Hoff:
n
bw, = clz - .E wjxj]xi
Ji=1
Correspondences:
“i® Vs
Z = A if the UCS is present, otherwise z = 0,

X = 1 if CS 1is present, otherwise X = 0.

That these two models are, in fact, identical 1is
striking since they were <constructed for very different
purposes. The Widrow-Hoff rule was formulated as an
algorithm to solve sets of linear equations, and its theory
addresses convergence properties, Not only are stimulus
context effects not discussed in this theory, their
existence 1is entirely incidental. The Rescorla-Wagner
theory was proposed to compactly describe a wide variety of
effects observed in animal learning experiments. That it

also provides an important algorithm with a strong
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connection to very useful areas of applied mathematics 1is
fortuitous. We feel that the confluence of mathematical and
empirical facts represented by what we shall <call the
Rescorla-Wagner/Widrow-Hoff rule might have considerable

significance for understanding associative learning.

Due to its similarity to the Rescorla-Wagner model, the
Aidrow-Hoff rule provides. a more adequate model of classical
conditioning than does the Hebbian model. Unlike the
Hebbian model, however, it does not provide a simple
explanation for a stimulus substitution view of
conditioning. Figure 4.4 shows the Widrow-Hoff rule as a
nodel of classical conditioning. The specialized input =z
corresponds to the UCS. Since z does not directly influence
the element's output, the UCR and CR must use separate
pathways {(compare to Figure #4.3). Also unlike the Hebbian
rule, the Rescorla-Wagner/Widrow-Hoff rule has the property
that weight modifications can only be driven by the

specialized "teacher" input z.

A learning rule closely related to the
Rescorla-Wagner/Widrow-Hoff rule 1is the perceptron rule of
Rosenblatt (1962). If z(t) in Equation 4.9 is restricted to
taking only the values 0 and 1 and the output is similarly
restricted by the use of a threshold, Equation 4.9 gives the

fixed increment perceptron rule. This rule is an iterative
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procedure for solving a set of linear 1inequalities. A
solution exists 1if the desired response is a linearly
spearable function of the stimulus patterns. Nilsson (1965)
provides several proofs of ccnvergence, and dinsky and
Papert (1969) discuss 1its 1limitations as a pattern

recognition sytem. Despite these limitations, the

~perceptron learning rule has resurfaced, in slightly

disguised form, as a way of storing data in associative
memory structures (Albus, 1979; Amari, 1977a, b). These
applications 1illustrate that 1in certain applications, and
using certain ways of representing data, the limitations of
linear 1learning rules are not as devastating as once

thought.

The perceptron seems to be most often thought of as a
model of instrumental conditioning in which reinforcement is
contingent on the response rather than one of c¢lassical
conditioning which involves no response contingencies. This
view, however, is mistaken. If the error signal z(t) - y(t)
in Equation 4.9 1is taken as being computed by the
perceptron's environment, then the perceptron can be viewed
as a response contingent system: If the response |is
correct, the error is 0; 1if it is incorrect, the error is 1
or -1. However, this feedback through the environment is of
such stereotyped form that it can be eliminated, for

arbitrary environments, by just letting the error be

Ve

- 343~




—_— c————

JOPEN~LOOP LEARNING PAGE 4-T71

computed by the perceptron itself with the environment
always simply providing the desired response rather than an
error signal. Viewed in this manner, +the perceptron 1is
essentially the same as the Rescorla-Wagner model: It
compares its own response (expectation) with the correct one
(UCS) and modifies the weights in order to make them agree.
The instrumental conditioning paradigm, on the other hand,
involves essential feedback through the organism's
environnent; that is, feedback which cannot be eliminated
in a uniform way for all environments. Nontrivial forms of
response-contingent learning have received very little

attention by adaptive network theorists.

4.5.3 Rescorla-Wagner/Widrow-Hoff Predictor

The Rescorla-Wagner/Widrow-Hoff rule does not produce
the predictive aspect of classical conditioning. Here we
discuss the minimal modifications to that rule which enable
it to produce predictive or anticipatory responses. From
the resulting rule, which we call the
Rescorla~Wagner/Widrow-Hoff predictor, it is possible to see
what additional properties our nodel provides. Wnile we
know of no instance in which the Rescorla-Wagner/Widrow-Hoff
predictor is used in an adaptive network theory, it is an
exanple of a linear prediction procedure and is part of a

larger tneory of predictior or forecasting (see, for

gty SR oGl 87 4 o2 Fe & 5 S bl N
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example, Box and Jenkins, 1976).

For the Rescorla-Wagner/Widrow-Hoff predictor the

reinforcement signal is defined as follows:

ri(t) = ¢fz(t) - y(t - r)]xi(t - 1) (4.11)

where y(t) is as defined by Equation 4.10 and T is some
positive constant. Changes in connection weights are such
as to reduce the difference between z(t) and y(t - 1t ) so
that an equilibrium is approached at which z(t) = y(t - 1),
or z{(t + 1) = y(t). This means that the element will learn
to produce activity that anticipates by t the activity f

the UCS pathway z if the input contains enough predictive

information. More precisely, recalling the discussion of
the Widrow-Hoff rule above, if ¢ is allowed to decrease as
conditioning proceeds, this element will produce a best
least squares prediction by of the <ignal z. All of the
stimulus context effects of the Rescorla-Wagner/Widrow-Hoff

rule are also produced by the predictor.

The process defined by the predictor can be described
as follows: Activity on an input pathway possibly causes a
response but also causes the connection from that pathway to
become eligible for modification a certain period of time
(1) later. An eligible connection is modified only if the

UCS signal strength differs from the expected strength.

(334
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Thus, each time z(t) deviates from y(t - 1) the input
pathways tnat were active earlier (and thus are eligible)
will modify their connection weights, or associative
strengths, W The reinforcement signal is a measure of how
strongly the current UCS confirms or contradicts the

previously formed expectation or prediction.

As a model of <classical conditioning the predictor
defined by Egquation 4.11 requires an ISI exactly equal to
vt for any conuitioning to occur. This 1limitation can be
eliminated, along with the arbitrariness of the choice of
T , by replacing the delayed signals x (t - 1) and y(t - © )
in Equation 4.11 by more general forms of traces such as
those used in our model. Let x;(t) and y(t) be some
weighted averages of their respective function values over
some time interval preceding t produced using Equations 4.3
and 4.4, Then the reinforcement signal for the

Rescorla-Wagner/Widrow-Hoff predictor becomes:
ri(t) = clz(t) - y(t)Ix;(¢t). (4.12)

The temporal relationships implied by this rule depend on
the characteristies of the CS and UCS, the form of the
traces ?i and y, and the parameters of the experimental

paradigm. Some details of these dependencies are presented

in Appendix A.
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4.5.4 Uttley's Informon

Uttley (1970, 1975, 1976a, b, ¢, 1979) has suggested a
learning rule which is closely related to the
Rescorla-Wagner/Widrow-Hoff procedure except that it
conforms to some of the constraints of the Hebbian rule.
Starting with the Widrow-Hoff rule (Equation 4.9), let z(t)
= -woxo(t) where W is a fixed positive number. That is,
let the specialized "teacher™ input be a signal to a fixed
inhibitory pathway. It is further assumed that this fixed
signal participates in the computation of the output y Jjust
like any other input sSignal, then Equation 4.9 can be

rewritten as follows:

n
[-w x,(t) - =
0*0 5o

r.(t)

i wj(t)xj(t)]xi(t) (4.13)

-[jgowj(t)xj(t)]xm)
e

-y(t)xi(t). ////

This is the Hebbian rule except for the minus i}gﬂ.

Uttley argues that this change of sign is desirable g&ince it

changes the positive feedback inherent in the ebbian rule

to negative feedback desirable fo ‘/its stabilizing
influence. Coincidence of pre- and,ﬂggg;;;aptic discharges
decreases rather than incrga§€;/ synaptiec strength. The

v
equilibrium weight valgs;/ére those which result 1in =zero

total input to thgxéiement. Uttley notes the similarity of

-
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this rule to the Rescorla-Wagner model and illustrates how

it can produce much of the same behavior (Uttley, 1975). ;

R

Uttley describes his model in4/the above manner but

actually simulates a more complex model based on the concept

of "mutual information;;//ﬁe uses exponentially weighted
time averages to ,Qéiimate the negative of the mutual
information begwéén input and output signals. At each time

step, thq/wgzghts are set to these estimates. Although the

et o et — L ko &

concepz/bf mutual information led Uttley to the informon
/
medel and provides an interesting view of the stimulus !
//” contingencies which produce learning, it is an unnecessary

///// complication to what is essentially the Widrow-Hoff rule.

If the special input 1labelled =z in Figure 4.4 1is
regarded as a fixed inhibitory input, then that figure shows
the use of Uttley's element in an analog of the <classical
conditioning paradigm. This is identical to the
corresponding situation or the Rescorla-Wagner/ Widrow-Hoff

and perceptron models. Here, however, there 1is the

additional consequence that the UCS actually inhibits the CR
both before and after 1learning. This is due to the
treatment of the UCS as an inhibitory signal that is used in
the computation of the element's output. In the
Rescorla-Wagner/Widrow-Hoff and perceptron models, the UCS

is a special input that never influences the output of the
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element except indirectly through the learning process.

In order to obtain the stability and stimulus context
effects of the Rescorla-Wagner/Widrow-Hoff rule, while at
the same time adhéring to the basic constraints of the
Hebbian rule, Uttley had to abandon the simple stimulus
substitution view of conditioning provided by the Hebbian
rule and make the behaviorally unsupportable assumption that

the UCS inhibits the CR.

By retaining the form of the Hebbian rule, however, the
informon has the property that even though there are fixed,
prespecified classifying input channels, these channels are
not the only sources of signals which can cause weight
modifications. This is an important property, but it can be
obtained 1in an entirely different manner (as illustrated by
our model) which also has the advantages of the
Rescorla-Wagner/Widrow-Hoff rule, but retains a stimulus
substitution view, produces appropriate 131 dependency, and
permits the CR to begin before the UCS. While we feel that
Uttley's approach reprgsents an independent discovery of the
advantages of the Rescorla-Wagner/Widrow-Hoff rule, we also
feel that it needlessly adheres too closely to the original

Hebbian postulate.

RN




—

P p—

OPEN-LOOP LEARNING PAGE 4-77
4.5.5 Qur Model

dithin the framework provided by Equation 4.8, our

model uses a reinforcement signal defined as follows:

ro(t) = [y(e) - y(t)Ix;(t) (4.14)

where y is as defined by Equation 4.10 and y and xj; are
traces of their respective signals as described above. This
differs from the Rescorla-Wagner/Widrow-Hoff predictor
(Equation 4.12) by the substitution of y(t) for the
specialized reinforcing signal z2(t). This eliminates the
requirement for reinforcement to be provided only by a fixed
reinforcing pathway. Since y(t) can be affected by activity
on any input pathway, any input signal can bring about
changes in the efficacies of other pathways. This permits
the adaptive element to extract predictive relationships
among its inputs in the same way that a Hebbian element or
an 1informon extracts simultaneous associations. Unlike the
informon, however, our model retains the stimulus
substitution properties of the Hebbian model since the CR

and the UCR share the same pathway.

We have been able to eliminate the need for a distinct
channel for reinforcing signals by, in effect, providing a
distinct time (with respect to a CCS) for reinforcement,

This was suggested by work of Klopf (1972, 1981) in which a
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sinilar method was proposed for eliminating the requirement
that response-contingent reinforcement be delivered over a
specialized chiannel. Here we have restricted this idea to

classical conditioning.

We note that it is possible to wuse our model 1in an
associative memory system such as those described above
which rely on the Hebbian rule or the
Rescorla-Wagner/Widrow-Hoff rule. One would obtain a
network capable of exhibiting the properties of our model
together with the properties of distributed, associative
information storage. We have not yet systematically
explored the implications of such a system, but it is
unlikely that it would lack any of the properties which have
stimulated interest in this kind of associative memory
structure. In particular, such a system would show that our
model, although connectionistic in character, need not imply

a locationalistic theory of memory.

4.6 Stability and Saturation

Some issues that were not directly addressed 1in the
preceding section concern technical problems that occur when
networks of elements based on various 1learning rules are
simulated. For example, a literal application of the Hebb

postulate implies a positive feedback 1loop (increases in
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excitatory synaptic weights cause higher correlation between
pre- and postsynaptic activity and hence further weight
increases). Excitatory synaptic weights tend to become
large irrespective of the significance of the input signals,
and some additional mechanism 1is required to prevent the
strengtns of all connections from growing without bound or
from reaching and remaining at their maximum values. Early
comnputer simulations illustrated the importance of solving
these problems [or preventing network "seizures" (Rochester,

Holland, Haibt, and Duda, 1956).

Here we discuss several approaches to solving the

stability and saturation problems associated with the liebb

rule and relate them to the solution provided by the

learning rule discussed here. Qur point is to show that
learning rules which are based on the
Rescorla-wWagner/vWidrow-Hoff rule, such as ours and that
proposed by Uttley, not only provide more valid models of
classical conditioning than the Hebbian rule, but also solve
these technical problems in a simple way. While there is no
logical or empirical necessity that the stimulus context
effects accounted for by the Rescorla-Wagner/Widrow-Hoff
rule arise at a cellular level, it is suggestive that if
they did, tnen additional mechanisms would not be required

in order to solve stability and saturation problems.
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Some of the current approaches to solving these
problems (notably Grossberg's, e.g., 1969, 1974, 1976a, b)
stress the importance of careful network design and use of
inhibitory connections for controlling network stability.
Other approaches attempt to achieve similar results by
modifying the original Hebbian postulate so as to
incorporate 1local stabilizing mechanisms which operate
irrespective of an element's network environment. This
latter approach has not been shown to be sufficient for
solving network stability problems but does contribute
their solution by making the adaptive <changes inherent.y
more manageable. While we feel that network 1level
considerations (i.e., a priori Structure) are very
important, they are str%ngly influenced by the choice of
local learning rules, and %er; we focus only on element

level issues.

There are two fundqmentally different ways of
preventing wunbounded weight growth in theoretical models of
plastic synapses. The first technique is to.impose an upper
bound at some fixed, pre-determined value. Whether this is
done by setting the weight back to the preset maximum
whenever an increment makes it larger, or whether the
learning rule is modified in order to make tne value
asymptotically approach a preset finite 1limit, the same

problem arises: Unless weights decrease in some
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circumstances, all excitatory weights will tend to reach and
remain at their maximum values, Saturation of some weights
may be desirable, but if all the weights always eventually
reach their maximum value, then all learning eventually
ceases, and all stored information is eventually forgotten.
Either learning must occur slowly enough to postpone this
ultimate state of forgetfulness for as long as necessary,
the plasticity of some connections must be temporary, or a

means for decreasing weights must be introduced.

The second technique for preventing wunbounded weight
growth relies on the boundedness of the reinforcement signal
which drives the weight modification process. Instead of a
fixed, predetermined 1limit being enforced by the learning
rule, the limit is a function of the external reinforcing
input to the element. Larger reinforcement can always cause
weights to increase but, and this 1is the crucial point,
arbitrarily prolonged periods of nonzero reinforcement must
not produce arbitrarily 1large weights. Several of the
methods discussed below solve stability and weight

saturation problems in this manner.

4.6.1 Normalization

One of the most common techniques used in simulations

invokes a '"conservation of total synaptic strength", or

- -




——

OPEN-LOOP LEARNING PAGE 4-82

normalization, principle. This technique is a particular
way of presetting weight bounds. The total saturation
problem is avoided by requiring some weights to decrease 1in
order to maintain the sum of all the weights at a constant
value. New weight values wi' are computed according to the

Hebbian rule, and then each W' is divided by the sum of all

of the wi' to obtain the actual next weight values, that is

(cf. wvon der Malsburg, 1973),
n
wi(t + 1) = w.'/ ¢ ow;' (4.15)

where

wi' = wi(t) + cxi(t)y(t). (4.16)

This normalization procedure 1is successful in permitting
those pathways to dominate whose activity is most strongly
correlated with postsynaptic activity. One can view
synaptic strength modification computed in this way as a
competition among pathways for proportions of the sun. In
many models, this procedure 1is absolutely essential, not
only for stable operation of the model, but also for the
generation of behavior which resembles experimental data

(e.g., von der Malsburg, 1973).

While adequately solving some of the technical problems
associated with the Hebbian rule, this normalization
procedure has several deficiencies. First, it was pointed

out by Uttley (1976a) that although perfect normalization
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often produces desired results, small departures from this
ideal can cause rather drastic changes in behavior. If, for
exanple, one synapse is consistently favored by even a very
small amount in the normelization process, then it can gain
much more than its share of the total synaptic strength.
The weight values can reflect normalization asymmetries

ratner than the desired correlation measures.

A second criticism of the normalization procedure holds
to tne extent that a faithful representation of classical
conditioning phenomena 1is desired. Although stimulus
context effects are produced by normalization since this
technique does cause weights to change in a manner dependent
on all the other weights, these context effects are
different from those observed experimentally. For example,
suppose each input xi, i=1,..., n, to an adaptive element
using a normalized Hebbian scheme has a constant value xi(t)
= x; for all t. Using Equations 4.15 and 4.16, it is not

1

hard to show that the equilibrium weights are

W, = X,/ L X., i =1,..., n. (4.17)

These equilibrium values are independent of the initial
weight values. The stimulus context effects observed
experimentally, however, require that the associative
strengtns at the beginning of a series of trials crucially

determine their values at its end.
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Consider blocking, for example. Suppose an element has
two binary valued inputs X1 and Xy corresponding to
conditioned stimuli CS] and CS2 and an input of arbitrary
fixed strength representing an unconditioned stimulus,.

Assume that the associative strengths Wy and of CS] and

2
CS2 initially equal zero and are thereafter required always

to sum to one. Pairing CS] with the UCS wuntil equilibrium

is reached results by Equation 4.17 in w 1 and w, = 0.

17 2 °
Now, starting with these values and pairing both CS1and
C82 with the UCS results by Equation 4.17 in equilibrium
values w] = w2 = .5. This is the same result that would
have been produced if the weights were both zero at the
commencement of the paired trials. Blocking, on the other
hand, would occur if the series of paired trials did not
change the weights from the values they had when it began;
that is, w] =1, w2 = 0,

Another criticism of the normalization technique can be
made if a model wusing this method is intended to reflect
what might occur in actual neurons. Although it has been
suggested that synaptic modifications and normalization may
be the result of the redistribution of a constant amount of
receptor protein (Stent, 1973), this hypothesis goes far
beyond available data given the 1lack of corroborative

support from other 1lines of evidence. One way of meeting

the criticism that normalization is an wunlikely cellular
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mechanism 1is to postulate that normalization occurs at a
network rather than at a cellular level. The work of
Grossberg and his colleagues (Ellias and Grossberg, 1975;

Grossberg, 1974, 1975a, b) exemplifies this approach.

4.6.2 Autonomous Decay

If it is assumed that synaptic strength slowly decays
in the absence of a reinforcement signal, then a bound on
welght size is imposed that is a function of reinforcement
level and the decay rate. A weight can always increase when
its reinforcement signal increases, but if the reinforcement
signal remains bounded, then no matter how long the signal
persists the weight also remains bounded. Thus, 1learning
can occur whatever the system's "age," but experiences are
always "forgotten" within a certain period of time. In
system theoretic terms, the adaptaive element has "definite
memory" : It cannot remember anything that occurred
arbitrarily far in the past. Moreover, the weight bound is
inversely proportional to the length of time that memory
traces can be retained. That is, if weights are to be kept
below rather low levels, then the decay of the weights must
be rather fast, The normalization method described above,
in contrast, has "indefinite memory," meaning that
information 1is not 1lost unless it is actively replaced by

new information.
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Despite the lack of indefinite memory, 1learning rules
incorporating autonomous decay lead to behavior that can be
understood in mathematical terms. For example, if the decay
is sufficiently slow, then the 1longterm statistical
properties of the reinforcement signal can be reflected 1in
the weight values (e.g., Amari, 1977a, b; Uttley, 1976a, b,

c).

4.6.3 Negative Feedback

While normalization and autonomous decay schemes employ
negative feedback, rules resembling the
Rescorla-wWagner/Widrow-Hoff procedure use a more explicit
form. Uttley (1976a) directly eliminates the positive
feedback inherent in the Hebbian rule by changing it into
negative feedback by reversing the sign (Equation 4.13).
Coincidence of pre- and postsynaptic discharges decreases
rather than increases the synaptic strength. This produces
the stimulus context effects observed in classical
conditioning experiments while at the same time solving
stability and saturation problems (and producing //;ﬁg
undesirable consequences discussed earlier). Howevery’&t is

s

not the precise form of Uttley's model which pro@uﬁes these

-

soluticens, but rather the model's resemblance to the

e

Rescorla-Wagner/Widrow-Hoff rule.
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s
Recall that for the ReSCor1a—Wagner/Widrow-Hgff//;ule
weights change according to f///
n e
Awi(t) = cfz(t) - = .

]wj(t)xj(t{1§1(f)

J

A weight therefore cannot change/if either the input signal
on that pathway is zero,ki;(t) = 0) or the total stimulus
strength equals the tcﬁfﬁing signal z(t). Thus, the weights
are always boquéa, yet never saturate so as to be

insensitive to further changes in the environment. Negative

-,

feedbjji/}é/provided in the form of the expectation term

n
e L ow.lt)x. (t).
y ERHDIAS

o

7 ,
//’ Learning can always occur when the reinforcement differs

from the expected level, and thg asymptotic weight values
depend on the magnitude of the reinforcement signal.
Moreover, the rule permits memory of events which occurred
arbitrarily far in the past; that 1is, it has 1indefinite

memory [footnotel]. A weight will not decrease unless a

It is curious that the model Uttley actually simulates does
not possess indefinite memory. Exponentially weighted time
averages are used to estimate the negative of the mutual
information between input and output signals. This makes
the informon's staoility an obvious property, but memory
traces always decay to zero due to the exponential decay
used to estimate mutual information (Uttley, 1970). If no
estimates of mutual information were used, then indefinite
meinory would be present without additional mechanisms, and
none of the rule's other advantages would be lost.
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stimulus occurs that 1is not reinforced to the expected

level.

The model we have presented uses negative feedback in
the form of an expectation term which is a weighted average
of past values of the element's output. The weight
associated with a pathway cannot change unless that pathway
is eligible and the current output value differs from the
weighted average of past output values. As a weight grows,
the signals arriving on that pathway cause 1larger output
values and hence larger expectations. As the expectations
grow, they exert negative effects on weight growth. The

stability of this method 1is evident from the simulation

results shown above.

One consequence of this form of negative feedback 1is
that 1f a signal arrives via a modifiable pathway, for
example, as a positive rectangular pulse, but 1is not
followed by other activity within the eligibility period,
then the weight of that pathway will, if positive, decrease
toward zero. This wWill occur since the signal offset will
coincide with positive eligibility to cause a negative
change 1in weight. With repeated presentations of stimuli
not directly followed by other activity, weights will
converge to zero. This 1is why in the simulations of

classical conditioning presented above we required the UCS
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to arrive over a pathway of fixed weight. If this weight
were not fixed, then UCS presentation would eventually have
no effect on the output of the adaptive element. This does
not imply, however, that our model has definite memory. In
the absence of incoming signals, a pathway will exhibit no
change (since it will never be eligible for modification) no

matter how long the period of inactivity lasts.

It is useful to compare the form of negative feedback
empioyed by models resembling the
Rescorla-Wagner/Widrow-Hoff rule with that of normalization
schemes. In the former case, the feedback signal is the
total stimulus strength, while in the latter it is simply
the sum of the weights. Although one form of feedback is
additive and the other is multiplicative, the major
difference is that the Rescorla-Wagner/Widrow-Hoff rule uses
information from the current stimulus pattern while the
normnalization scheme does not. Without this information,
the stimulus context effects observed experimentally cannot
be produced. Further, if one is arguing for the cellular
plausibility of a learning rule, then negative feedback 1in
the form of total stimulus strength is easier to account for
thén feedback in the form of total synaptic efficacy. Since
total stimulus strength is reflected 1in neurons by the
membrane potential, it is plausible to hypothesize that this

signal is available, at 1least approximately, at each
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synaptic site.

We have seen, then, that not only does the
Rescorla-Wagner/Widrow-Hoff rule provide a strong model of
classical conditioning and a powerful iterative method for
solving sets of linear equations, it also solves some of the
technical problems which always accompany the use of the
Hebbian rule. OQur model retains these advantages while
accounting for some of the intratrial temporal structure of

classical conditioning.

4.7 Cgllular Mechanisms

There is always a risk in speculating about cellular
mechanisms for 1learning processes. On the one hand, not
enough is known about the <c¢ellular changes which occur
during associative 1learning to permit the construction of
detailed models. On the other hand, experimental progress
in this area 1is occurring so rapidly that any postulated
mechanism is likely to be soon invalidated by concrete fact.
Despite these hazards, we feel that a discussion of our
nodel in 1light of current electrophysiological and
biochemical knowledge of cellular plasticity can be of value
since the model is empirically supported at a behavioral
level and is of interest from a theoretical perspective. In

addition, the concepts of "eligibility" and "expectation" in

"
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our model are not only of critical importance in accounting
for animal learning behavior and, we believe, essential for
adaptive behavior of artificial systems, but can be
associated quite naturally, albeit speculatively, with

certain processing capabilities of neurons,.

There are four aspects of our rule to consider., First,
the notion of eligibility would be realized if a synapse
were "tagged" by a non-stimulating trace for some period of
time after each discnarge of the presynaptic cell. This
indication of previous stimulation would be required to
endure for a period on the order of at least a few seconds
rather than a few milliseconds. This trace should remain
local to the synapse. Second, some way of registering
changes in the postsynaptic cell's firing rate from its
previous level is required. This determines the
reinforcement which facilitates or inhibits eligible
synapses. The Téﬁgth of time over which the reference
firing rate is determined is not critical but should be
relatively 1long, perhaps with a time scale similar to that
of eligibility. Third, it is necessary for the measure of
eligibility, which is local to the synapse, to interact with
the reinforcement signal, which is a global feature of the
postsynaptic cell. This 1interaction should occur at each
synapse. Finally, the result of the interaction between the

eligibility of a synapse and the reinforcement level must




—_ e ——

OPEN-LOOP LEARNING PAGE 4-92

regulate modifications of the transmission efficacy of that

synapse.

The notion of a synaptic marker indicating previous
presynaptic discharges could be realized either
postsynaptically or presynaptically. We discuss a
postsynaptic site for eligibility first. There is good
evidence that in some cells the binding of a
neurotransmitter to its receptor site regulates postsynaptic
concentrations of an adenosine 3', 5'-monophosphate (cyeclic
AMP) or guanosine 3', 5'-monophosphate (cycic GMP). It has

been hypothesized that these cyclic nucleotides may mediate,

as second messengers, the action of several
neurotransmitters in generating slow postsynaptic
potentials. This hypothesis 1is supported in several

preparations by several lines of electrophysiological and
pnarmacological evidence. For reviews see Greengard (1976),
Nathanson (1977), or Rasmussen, Jensen, Lake, Friedmann, and

Goodman (1975).

However, studies of other preparations have suggested
that postsynaptic increases in cyclic nucleotide
concentrations may have roles other than the generation of
postsynaptic potentials. For example, it has been shown
that the administration of cyeclic AMP and cyclic GMP to

cells in a sympathetic ganglion of the bullfrog does not
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causz appreciable changes in membrane potential even though
synaptic stimulation 1increases both cyclic AMP and cyclic
GMP in tnese cells (Busis, Weight, and Smith, 1978). It has
been suggested that in addition to the role cyclic
nucleotides may play in simple neurotransmission, they may
also carry more indirect messages which might, for example,
mediate a stimulus trace which temporally 1links events in
associative learning at a cellular molecular level (Woody,

1976) .

Although the role of cyeclic nucleotides in synaptic
transmission and 1its regulation 1is not yet clear, it is
evident that in some cells, and for some neurotransmitters,
postsynaptic concentrations of cyclic nucleotides do reflect
the amount of presynaptic stimulation received and can
register previous stimulation for a time which is very long
compared to the millisecond times of electrical activity. A
difficulty, however, with the hypothesis that postsynaptic
chemical concentrations provide stimulus traces as required
by our model is that these traces would probably not remain

local to their initiating synapses.

The locality of the trace suggests that a presynaptic
site might be more plausible. Studies of the presvnaptic
mechanisms which are responsible for the nonassociative

Synaptic changes of post-tetanic facilitation and
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nabituation suggest that the notion of eligibility could be
represented presynaptically. Since these nonassociative
instances of synaptic modifiability involve time scales much
longer than that of electrical activity, we might postulate
that some of the same mechanisms realize the notion of
eligibility wused 1in our model of classical conditioning.
For example, intracellular concentration of free Ca2+ or
Ca2+ conductance characteristics (e.g., voltage dependence)
could provide relatively prolonged records of presynaptic
activity. The mechanisms which result 1in post-tetanic
facilitation or habituation for some temporal stimulus
patterns might provide important record keeping facilities

which operate whatever the stimulus characteristics are.

If eligibility were recorded presynaptically, then we
would need to postulate some way in which the activity of
the postsynaptic <cell could influence the presynaptic
terminal. Although it has been shown that postsynaptic
activity can influence a presynaptic terminal by altering
the 1ionic <content of the surrounding medium (Weight and
Erulkar, 1976), we discuss instead mechanisms whose roles in
synaptiec modulation are much better wunderstood. These
involve presynaptic facilitation via synapto-synaptic
connections. Figure 4.20 shows a simple circuit in which
presynaptic modulation is provided by extracellular feedback

from the postsynaptic cell. The figure shows a single

——
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x1 X; Xn
y-y
y =
FIGJRE 4.20. The adaptive element implem-=-ted via a
fzedback interneuron. Eligibility X; 45 computed

presynaptically, and the difference between actual and
ex,.ected firing rates, computed by the feadback interneuron,
modulates synaptic strengths through synapto-synaptic
connections,

PR TR e AR .

)

~ SRR

I




— - ——

OPEN-LOOP LEARNING PAGE 4-96

feedback interneuron, but a multisynaptic pathway is clearly
also possible. In fact, the feedback pathway could pass
through a brain region which integrates the signal with
other information in a manner not accounted for by our
model. For example, the signal may be integrated with other
stimulus context information by the septo-hippocampal
complex in a way similar to that suggested by Moore (1979).
Figure 4.20 also shows episynaptic connections from the
interneuron to all of the incoming fibers, As formulated
here, our model requires this feature, but it should be
regarded as a convenient simplification. Fibers not
contacted by the interneuron would not exhibit plasticity
(or, at least, not plasticity of the same form), and
episynaptic connections carrying signals from other than the
postsynaptic cell would permit processing of a form more

complex than that considered here.

It remains to suggest how the feedback signal from the
interneuron could represent the reinforement signal, that
is, the deviation of the postsynaptic <cell's firing rate
from previous 1levels. Perhaps the simplest possibility is
that the interneuron, or the network of interneurons,
responds only to changes in its input as has been commonly
observed for some cells responding to sensory stimuli. A
more complex hypothesis would be for the presynaptic input

from the feedback interneuron(s) to produce two superimposed
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effects on each synapse which it modulates. One effect
would be a fast change 1in the voltage dependence of

+
Ca2 conductance SO that depolarization would cause

2+ influx. The amplitude of this effect would

increasad Ca
depend on the eligibility of the modulated terminal
determined by its previous history of depolarization, This

2+ would facilitate the transmission

increased 1influx of Ca
effectiveness of the synapse by increasing transmitter
release. The second effect would be a slower and less
dramatic decrease in the peak Ca2+ conductance during
depolarization. Again the magnitude of this effect would
depend on the terminal's eligibility. This second effect
would decrease transmitter release. If one assumes that
these th effects linearly superimpose and that the effects
of different discharges of the presynaptic terminal
superimpose, then the resultant change in synaptic efficacy
would depend on eligibility and the amount of change in
activity of the feedback pathway as required by our model.
Summing the fast positive and slow negative effects would
produce a form of differentiation. The "expectation" would
be represented by the negative component of the presynaptic

effect.

We summarize this disucssion of cellular mechanisms by
making several observations. The model of classical

conditioning which we have presented was formulated on the
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basis of empirical evidence from behavioral experiments and
from a sensitivity to the technical difficulties which have
beset theoretical adaptive network studies. While the
evidence that this model, or some variant of 1it, might be
implemented at the 1level of single neural units or simple
neural circuits is not strong, there 1is evidence that a
relatively long lasting and non-stimulating memory of
previous activity as 1is required by our notion of
eligibility is 1indeed present at a cellular level. The
monosynaptic phenomena of post-tetanic facilitation and
habituation show that synapses themselves do possess
nontrivial forms of short term memory which do not require
one to hypothesize that reverberatory electrical activity
stores reflections of previous activity. Other evidence
exists suggesting that within a single cell <can exist
mechanisms for short term stimulus traces as well as longer
term memory (e.g., Alkon, 1979; Libet, Kobayashi, and
Tanaka, 1975; von Baumgarten, 1970; Weight, Schulman,
Smith, and Busis, 1979; Woody, Carpenter, Gruen, Knispel,

Crow, and Black-Cleworth, 1974).

4.8 Summary and Conclusions

While the spirit of Hebb's theory still seems to be
relevant, there 1is little support for the use of a literal

interpretation of the Hebbian rule in adaptive network

A
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studies. As a model of classical conditioning, it is not up
to the standard of sophistication now available 1in the
learning theory literature. As a model of neural

plasticity, it lacks experimental support and is based on a

-

view of the processing capabilities of neurons -and synapses
which does not take into account the —w&alth of data now
available. While networks eﬁﬁigying Hebbian-style rules
have been sucéessful in producing some interesting effects,
their behavior is far from the 1level of sophistication
required for complex tasks. Finally, models relying on
Hebbian-style rules require rather ad hoc additional

mechanisms to insure stable and flexible behavior.

The Rescorla-Wagner/Widrow-Hoff rule, to which the
perceptron and Uttley's informon are closely related,
provides a more valid model of <classical conditioning by
incorporating stimulus context effects while at the same
time cleanly solving a number of stability and saturation
problems. That the Rescorla-Wagner equation was developed
to account for animal learning behavior, while the nearly
identical Widrow-Hoff rule was formulated to approximate the
solutions of sets of linear equations, suggests that these
rules describe some 1ingredient essential for adaptive
behavior, One important aspect of the
Rescorla-Wagner/Widrow-Hoff rule's behavior is the

extraction of reliable and nonredundant information which
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correlates with reinforcement. The experimental results
regarding stimulus context effects in classical conditioning
indicate that animals similarly form reliable and

nonredundant associations.

We have presented a rule that preserves the properties
of the Rescorla-Wagner/Widrow-Hoff rule but also
incorporates the predictive nature of classical
conditioning. The problems of making useful and accurate
predictions seem to be solvea >y the ability to generate
expectations,. The actual events are then compared withn
those predicted, and appropriate incremental changes are
made if the two differ. The Rescorla-Wagner equation does
this while lumping together, as far as time of occurrence,
all stimuli present on a trial. One contribution of the
adaptive element developed here is to provide a mechanistic
implementation of the descriptive Rescorla-Wagner theory of
classical conditioning. 1In taking this lumped trial theory
to a mechanistic form in which system behavior is specified
at all times within the trial, it becomes possible to make
distinctions between inputs based on their relative time of
occurrence. Rather than extracting reliable and
nonredundant information which correlates with
reinforcement, this rule extracts reliable, nonredundant,
and early predictors of reinforcement. Moreover, an

adaptive element employing this rule is able to wuse its

e
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sensitivity to predictive information to make predictions
which occur earlier than the events predicted. A prediction
made at the same time as, or later than, the event predicted
is no more useful in guiding behavior than no prediction at

all.

In addition, the adaptive element presented here
preserves the simple account of stimulus substitution
provided by the Hebbian rule. This is true since the UCR
and CR share the same pathway--probably the simplest
hypothesis accounting for the similarity of the UCR and the
CR. Also, as in the case of the Hebbian model (and Uttley's
informon), activity on any input pathway can cause changes
in other pathways. This produces some higher order learning
effects and permits the element to extract regularities
whose constituents have not been predetermined by a priori
network structure. Unlike the Hebbian and informon models,
however, it extracts spatio-temporal rather than just

spatial regularities.

Although we feel that our model includes some of the
aspects of classical conditioning which have adaptive
significance, the model is not a completely valid model of
classical conditioning and obviously does not go beyond this
restricted learning paradigm. It does not, for example,

include the effects of experience on stimulus salience. 1In
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addition, like the original Rescorla-Wagner model, our model
makes only ordinal predictions about behavioral data.
Recent extensions of the Rescorla-Wagner model to deal with
these shortcomings (Frey and Sears, 1978) can perhaps also
be applied to our adaptive element model. Our theory also
does not address stimulus representation problems. We have
assumed that input signals arrive at an adaptive element on
discrete pathways of fixed "meanings." In a more
sophisticated model, these meanings would be changed by
"upstream" circuits as, for example, might occur in
configural learning where a compound stimulus is treated as
a nonlinear combination of its parts. Our theory does not
indicate how the adaptive mechanisms we have suggested can

be extended to extract arbitrary nonlinear regularities.

The model presented here also does not address the
issues arising from response-contingent reinforcement
paradigms. Although the exact nature of the relationship
between classical and instrumental conditioning remains
elusive (e.g., Rescorla and Solomon, 1967), the attention
given to temporal processing in our model makes extensions
possible which incorporate response contingencies. Klopf's
(1972, 1981) theory, which forms the basis of several
aspects of the model discussed here, incorporates response
contingencies, and Sutton (1978c) has extended this theory

to a single process view of expectation 1in <classical and
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instrumental conditioning using an adaptive element closely
related to that presented here. However, a thorough formal

treatnent of these issues is beyond the scope of the present

paper.

Also beyond this paper's scope is a discussion of the
kinds of behavior which <can be expected f:om networks of
adaptive elements like tnose proposed here. Can such a
natwork perform sophisticated learning tasks? This question
is central from a thneoretical perspective and notoriously
difficult to answer for any type of primitive compouuent.
Here we merely suggest that the predictive capabilities of
the adaptive -element presented here may permit adaptive
networks to exhibit forms of behavior not yet obtained from
network models. Qur reason for believing this is that
predictive capabilities permit response alternatives to be

evaluated before overt action is taken (see Section 7).

The model we have developed need not be thought of as a
neural model. It is supported at a behavioral level and has
potentially significant theoretical implications. However,
the search for neural analogs of behavioral conditioning
continues to guide 1learning and memory research in the
neurosciences, From our discussion of cellular mechanisms
it is clear that while there is no shortage of machinery for

implementing almost any learning model cne might construct,
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there is evidence indicating that some of the essential
aspects of our model could be implemented in a natural
manner. The stimulus trace required by the notion of
eligibility could involve either presynaptic or postsynaptic
biochemistry. Qur definition of reinforcement as the
difference between actual and expected output levels can be

realized via fast excitatory and slow inhibitory effects.

At the very least our discussion of cellular mechanisms
makes it clear that the concept of a neuron as a biological
logic gate that still pervades much neural network theory is
much too simple. Neurons and their sSynapses possess
processing capabilities that can wutilize relatively long
term histories of pre- and postsynaptic activity. 1In the
terms of system theory, they possess a rich internal state
space which can support behavior requiring nontrivial forms
of memory. Neural network theorists he-e . -used largely on
synaptic weights as a form of men. y and nave postulated
only relatively simple rules for controlling these memory
variables. Other forms of memory have generally been
assumed to be metabolic and genetic, and, to a first
approximation, not significantly implicated in computational
behavior. Notably absent from the theoretical literature is
a consideration of potentially powerful forms of
synaptically local short term memory and their possible

roles 1in synaptic modulation. The growing understanding of
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the role of biochemical mechanisms 1in synaptic action

indicates that there is considerable internal memory linking

events that occur at intervals of seconds, minutes, hours,

and days. Moreover, this processing interacts with

pnysiological events that occur in milliseconds. It seems

certain that these mechanisms are crucially involved in

neural plasticity. The model we have proposed takes a step

toward recognizing the theoretical importance of the first

few links in this chain.
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SECTION 5

ASSOCIATIVE SEARCH NETWORK:
A REINFORCEMENT LEARNING ASSOCIATIVE MEMORY *

5.1 Introduction

Numerous reports have appeared in the literature
describing associative memory systems in which information
is distributed across large areas of the physical memory
structure (e.g., Amari, 1977a, b; Anderson et al., 1977;
Cooper, 1974; Kohonen, 1977; Nakano, 1972; Wigstrom,
1973; Willeshaw, Buneman, and Longuet-Higgins, 1969). The
simplest of these are based on the properties of correlation
matrices, and all of them exhibit interesting and suggestive
forms of content addressability, generalization, and error
tolerance. There nave also been numerous discussions of the
possibility that these forms of memory structures may

* This section will appear in Biological Cybernetics, 1981
(authors A, G, Barto, R. S. Sutton, and P. S. Brouwer).
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provide models of biological memories. In all of these
studies, the storage process 1is one in which a series of
"keys" and "patterns™ are repeatedly presented to the memory

network which stores the key-pattern associations.

As models of memory, these associative memory
Structures suggest how a rapprochement might be reached
between connectionistic, locationalistic views of memory and
jestalt, mass action views (e.g., Freeman, 1975; John and
Schwartz, 1978). Associative memories wuse 1learning rules
tnat are connectionistic in <character yet need not store
information 1in 1localized form. However, as models of
learning they exhibit only a very simple form of open-loop
learning. 3ince the desired response (the pattern to be
reproduced) and the stimulus intended to elicit that
respons2 (the key) are Dboth explicitly presented to the
system Jduring the training phase, these studies do not
address the case of learning in which neither the
associative memory nor the environment knows the desired

response.

In this section we describe an associative memory
structure, <called an Associative Search HNetwork or AS3N,
wnich 1is not told by some outside process (e.g., a
"teacher") what pattern it is to associate with a given Kkey.

Instead, for each key, the network must search for that
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pattern which maximizes an external payoff or reinforcement

signal. The pattern that will produce the maximal payoff

for each key is never available to the system. It operates

by generating an output pattern, receiving an -evaluation
from its environmeut in the form of a scalar level of payoff
or reinforcement, updating the contents of its memory, and
then repeating this "generate-and-test" procedure. As this
kind of learning proceeds, each key causes the retrieval of
better choices for the pattern to be associated with that
key. What gets stored in the associative memory is a result
of reinforcement feedback through the environment. By
eliminating the need for a "teacher" to explicitly provide
the pattern to be stored, the A3SN effectively solves a
central problem faced by an adaptive system. No part of the
system need have a priori knowledge about what associations

are best.

This type of learning should not be confused with what
is commonly called "unsupervised 1learning" or "learning
without a teacher." These labels refer to the problem of
clustering input patterns according to a given measure of
similarity so that members of each cluster are more similar
to one another than they are to members of other clusters.
Like the learning -exhibited by the associative memory
structures cited above, this type of learning is open-loop:

any consequences of the system's actions are irrelevant.
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The type of learning 2xhibited by the ASN should also not be
confused with learning 1in which an error rather than
reinforcement or payoff 1s returned by the environment.
There are several important differences between error-signal
and reinforcement learning, but the most important one to be
noted nere is that for an associative memory system, the
error must Dbe a vector giviang the signed component-wise
error of the system's response. The reinforcement signal
returned to the ASN, on the other hand, is a scalar which is
just tne environment's evaluation of the system's response.
The fact that the ASN is able to lesarn to produce optimal
output vectors based on scalar environmental feedback should
be kept firmly in mind. This type of learning has tn=en
called "Jearning with a critic" by Widrow et al., (1973). A
critic need not know what each optimal response is in order

to provide useful advice.

The A3BN combines ¢two types of 1learning which are
usually only considered separately. First, it solves a
pattern recognition problem by learning to respond to each
Key with tne appropriate output pattern. This 1is the
problem solv:1 by the associative memory systems described
in tne literature. The method used is similar to stochastic
approximation pattern recognition methods (see, for example,
uda  ani  Hart, 1973, for a good discussion of these

technigues). At the same time, the ASN uses a different

V)
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type of learning to actually find what output pattern is
optimal for each key. It effectively performs a search
using a stochastic automaton method to maximize a payoff or
reinforcement function. Stochastic automaton search methods
originated in the work of Tsetlin (1971) and are reviewed by
Narendra and Thathachar (1974). Other systems capable of
performing this kind of search do not perform the pattern
recognition task. For example, the ALOPEX system of Harth
and Tzanakou (1974), to which the ASN is closely related,
performs a search but is not sensitive to different input
patterns or keys and thus is not an associative memory. The
learning the ASN accomplishes solves both the search and the

pattern recognition problem in a simple and effective way.

Although learning systems capable of solving both types
of problems have Dbeen discussed in the adaptive systen
theory literature (Mendel and McLaren, 1970), these systems
do not have the error tolerance and generalization
capabilities of distributed associative memories. The only
neural theory which contains tnis synthesis is that of Klopf
(1972, 1979, 1981). Klonf emphasizes closed-loop
reinforcement learning and correctly points out that,
despite common opinion to the contrary, it has been 1largely
neglected by neural theorists. The results presented here
demonstrate the significance and novelty of Klopf's theory.

We will discuss the ASN in light of Klopf's theory in some




USSR
i ————"
,._—r—'

—

- -

ASSOCIATIVE SEARCH NETWORK PAGE 5-6

detail Dbelow. Also closely related is the notion of

"pootstrap adaptation” of Widrow et al, (1973).

5.2 The Associative Search Problenm

Figure 5.1 shows an ASN interacting with an environment

E. At each time t, E provides the ASN with a vector X(t) =
(x](t),..., xn(t)), where each xi(t) is a positive real
number, together with a real valued payoff or reinforcement

signal z(t). The ASN produces an output pattern Y(t) -=
(y](t),..., ym(t)), where each yi(t)e fo,1}, which 1is
received by E. The problem the ASN is designed to solve can
be stated informally as follows. Each vector X(t) provides
information to the ASN about tne condition or state of its
eavironment at time t, or, viewed in another way, provides
infornation about the sensory context or situation in which
the ASN should act, Wwe call each X(t) a context or
situation vector. Different actions, or output patterns,
are appropriate in different contexts. As a consequence of
performing an action in a particular context, the ASN
receives from its environment, in the form of a payoff or
reinforcement signal, an evaluation of the appropriateness
of that action in that context. The ASN's task is to act in
each context so as to maximize this payoff. We are using
the term context merely to refer to the environmental

background in which an action is taken. We do not wish to

(3
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FIGURE 5.1. An A3N interacting with an environment E. The
ASN receives context signals x;,..., x5 and a payoff or
reinforcement signal z from E and Yransmits actyions to E

via output signals Yiseees Yo

Y
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inply that all of this term's more specialized meanings are

applicable here.

More formally, we assume that X(t) belongs to a finite
set X = {X1,..., Xk} of context vectors and that to each
Xa ¢ X there corresponds a payoff or reinforcement function
Za. Assuming that E always evaluates an output vector in
one time step, if X(t) = Xa, then z(t+1) = Za(Y(t)). We say

that E provides a training sequence over X if it implements

an infinite sequence of payoff functions and emits the

corresponding sequence of context vectors

Xi1, X12,..., X12,.

such that each XiEeX and each element of X occurs infinitely
often (Nilsson, 1965). The associative search problem is
solved if, after some finite portion of a training sequence,
the ASN responds to each Xa ¢ X with the output pattern Ya =

(y?,..,, y;) which maximizes Za. Generalizations of this

problem are discussed below.

5.3 The Basic Adaptive Element

An ASN consists of a number of 1identical adaptive
elements each determining a component of the system's
actions. It is useful to describe first a single element

which can be regarded as the simplest ASN (m=1). Figure 5.2
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shows an adaptive element interacting with an environment E.
The element has n context input pathways xi, iz 1,..., n,
one payoff or reinforcement pathway z, and one output vy.
Associated with each context pathway xi is a real valued
weignt W, with value wi(t) at time t. Let W(t) denote the
weight vector at time t. Let s(t) denote the weighted sum
at time t of the context inputs. That is,

s(t) =

oW (E)x(t) = () eX(t).
1

1 1

nm3

The output y(t) is determined from s(t) as follows:

1 if s(t) + NOISE(t) > 0 (5.1)

y(t) =
0 otherwise,

where NOISE is a random variable with mean zero normal
distribution. The sum s therefore biases the element's

output (ef. Harth and Tzanakou, 1974): Positive s makiqg

it more likely to be 1, and negative s making it more likely

to be 0.

The weights wy, 1 =1,..., n, change according to a
discrete time iterative process. At each time step, each

weight is updated according to the following éﬁuation: for

i=1,...,n,

w(t+1) = wi(t) +clz(t) - 2(t -DI0y(E-1) -¥(t-2)Ix(t-1)  (5.2)

where ¢ i3 a constant determining the rate of learning.
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Y o E
Context
FIZJRE 5.2. The simplest ASN: A single adaptive element

interacting with an environment E.
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Other rules also work, but this 1is one of the simplest.
Also for simplicity the response latency for the element is
zero; that is, there is no delay between input and output.
This causes no difficulties here because we do not consider
recurrent connections within a network. In other variants,
the inputs need not be positive, the output signal y need
not be binary, and the noise need not be normally
distributed. If the rightmost term xi(t-1) were removed
from Equation 5.2, the resulting 1learning rule would be
essentially that wused by Harth and Tzanakou (1974) in the

ALOPEX system.

To understand how Equation 5.2 works, consider a simple
example. Suppose a positive context signal was present on

pathway Xy at some time t-1, signaling some condition of the

environment. Suppose also that y(t-1) = 1 while y(t-2) = 0
(that is, the element "turned on" at time t-1), perhaps due

to an excitatory effect of signal x; or perhaps by chance.

Then, if the payoff signal z increases from time t-1 to t

(possibly as a result of the element’'s action), W, will

increase, Since wi(t)xi(t) is used to compute y(t), the

increased weight Wy will make it more likely (other things

being equal) that y will be 1 when signal x occurs in the
future. Similarly, if z decreases following the element's
action, w5 Wwill decrease thereby decreasing the probability

that y will be 1 when signal x; occurs again., Consequently,

s e S TR Mt -
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if turning on in a specific context is followed by an
increase in payoff, the element will be more likely to turn
on (or stay on) in that context in the future. Other cases
can be analysed similarly: If going off in a context leads
to a payoff increase, then the probability of being off in
that context increases. of course, a pathway can
participate in signaling a large number of different
contexts., This 1is where the associative memory properties

become relevant.

For an ASN consisting of a single adaptive element, the
search for the optimal action for each context vector is not
very difficult since the ASN has only two actions. However,
a property of the adaptive element that is essential for its
use as a component in a larger ASN is that it is capable of
operating effectively in environments with random payoff
response characteristiecs. If for each context the output of
the adaptive element only determines a probability for the
payoff value, the adaptive element is capable of acting so
3s to increase its expected payoff value, It is beyond the
scope of the present discussion to thoroughly discuss these
aspects of +the adaptive element's behavior. Thé relevant
theory is that of stochastic automaton learning algorithms,
and the reader 1is referred to the review by Narendra and

Thathachar (1974).

o
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5.4 The Problem of Context Transitions

According to Equation 5.2, the adaptive element uses
the change 1in the payoff signal z as a factor determining
weight changes. However, when the context changes, that is,
when the payoff function implemented by E changes, the
change in the value of z is due to the change in payoff
function as well as the adaptive element's action. The
difficulty this creates can be <clearly appreciated by
considering the worst case 1in which the payoff function
changes at every time step. Consecutive values of z in this
case result from evaluating different functions rather than
the same function twice, and hence they do not provide
useful gradient information about any single payoff
function. Unless the payoff functions implemented by E vary
smoothly over time, one would not expect an adaptive element
operating according to Equations 5.1 and 5.2 to be capable

of solving an associative search problem.

Two methods of solving the problem of context
transitions are wused in the examples which follow. One is
to require E to implement each payoff function, and emit the
corresponding context vector, for at least two consecutive
time steps and, when transitions do occur, to set the
learning constant ¢ to zero so that the change in payoff due

to the transition has no effect. This procedure requires
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either a priori knowledge 2hout when transitions occur or a
mechanism for detecting transitions. Such mechanisms can be
devised (Didday, 1976, and Grossberg, 1976, discuss this
problem and propose neurally plausible methods). For
simplicity in some of the examples to follow, Wwe set ¢ to

zero "manually" when a transition occurs.

In other examples, however, we use a method that does
not require .transitions to be known or detected. Suppose
the adaptive element produced action y(t-1) in response to
context wvector X(t-1). Instead of comparing the resulting
payoff z{(t) with z(t-1), which may have been determined by a
different payoff function, we compare it with the payoff
"expected" for acting in context X(t-1). If a higher than
expected wvalue 1is obtained, then the action which produced
it is made more likely to occur in that context again. In
this way, the gradient of each payoff function can be
estimated from samples which do not occur consecutively in
time. Instead of computing weight values according to

Equation 5.2, we use the following rule:
wi(t+1) =wi(t) +clz(t) -p(t-1)Ily(t-1) - y(t-2)Ix;(t-1) (5.3)

which differs from Equation 5.2 by the substitution for

z(t-1) the value p(t-1) predicted for z(t) given X(t-1).

We use another type of adaptive element to compute

.

PP
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p(t-1) from X(t-1). This element is a variant of one
described in Section 4 and proposed as a model of classical
conditioning. It learns to anticipate the payoff rather
than to maximize it, and we <call it a predictor. The

predictor has n context pathways x i=1,..., n, one

-i ’
payoff pathway z, and one output pathway p. Associated with
each context pathway X4 is a wvariable weight WP - The

output at time t is
wpi(t)wi(t).

The weights change over time according to the following

equation: For i = 1,..., n,

wpi(t + 1) = wp,i(t) + cplz(t) - p(t - T)Ix;(t - 1)

where cp is a learning constant determining the rate of
learning. This rule is identical to Equation 5.3 but with
y(t-1)-y(t-2) fixed at the value 1. This element implements
a stochastic approximation wmethod for finding weights (if
such weights exist) such that p(t-1) = z(t) for all t. In
other words, the predictor output anticipates by one time
step the payoff supplied by the environment. If a linear
prediction is not possible, Equation 5.4 will find the best-
least-square linear prediction if cp is allowed to decrease
over time. See Duda and Hart {(1973) and Kasyap, Blaydon,

and Fu (1970) for good discussions of these methods.
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5.5 A Network

Figure 5.3 shows an ASN consisting of m adaptive
elements and one predictor. Each context pathway from the
environment connects to each adaptive =element and to the
predictor, as does the payoff pathway 2z. The adaptive
element weights form an mxn matrix W = (wij) where wij is
the weight of the i-th adaptive element for the j-th context
pathway. The random variables NOISE for each element are

independent and identically distributed, and the learning

constants are the same for each element.

While the training sequence is being presented, each
adaptive element comprising the ASN faces the problen
discussed above of maximizing each payoff function. Due to
the dependence of each element's payoff on the joint
activity of all the elements' activity, each -element's
payoff appears to have a random component since it depends
on the unknown outputs of the other adaptive elements
comprising the ASN. As a result of the capability of each
adaptive element to increase its expected payoff when
interacting with an environment having random response
characteristics, an ASN consisting of any number of adaptive
elements can solve the corresponding associative search

problem under certain conditions.
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For each context vector, the associative search problem
is an example of what is known in the theory of learning
automata as a cooperative game of learning automata
(Narendra and Thathachar, 1974), Unlike other learning
automata studied, however, the ASN solves such a problem for
each context vector. By combining notions from the theory
of cooperative games of learning automata and the theory of
pattern recognition, we can formulate a conjecture about the
conditions under which the ASN as described here can solve
the associative search problem. For each i, i = 1,..., m,

let

x? = {Xa € X|y? 0}

)= (xa e x|y = 11,
i i
. 0 1 . .
That is, ¥y (Xi) is the set of all context vectors in
which it 1is optimal for element i to produce output 0 (1).
1
Tne sets x? and X are linearly separable if
there exists a real vector W, = (wi],..., Wip) such that

. 0
wi’x < 0 1f X € xi
) 1
Wi-X > 0 if X ¢ Xj -

We conjecture that for any n, m > 0, there exist ASN
parameters (c, cp, and the variance of the random variables)
such that it can solve the asssociative search problem with
as high a probability as desired if 1) each Za is unimodal

(i.e., does not possess suboptimal "peaks") and 2)

— o . e s Al
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1 .
xq and Xj are linearly separable for each i = 1,..., m.

j
The performance of learning automata in optimizing

multimodal functions is a topic of current research.

Once this task is solved, the ASN functions as an
associative memory similar to those discussed in the
literature. For example, if a degraded context vector |is
presented, then the ASN can still perform an appropriate
action if the degraded context vector is still sufficiently
distinctive. Similarly, the ASN will produce actions in
situations never before encountered by acting in a way
appropriate in similar situations which it has experienced
in the past. The ASN also exhibits the same resistance to
damage shown by distributed associative menories (see Wood,
1978). In addition it is possible to prime the associative
matrix with information 1likely to be useful for specific

problem domains.

We note that if our conjecture is correct, perfect ASN
performance does not require orthogonal context vectors,
Associative memories have been discussed by Amari (1977a, b)
and Kohonen and Qja (1976) which are able to exhibit perfect
recall if the keys are linearly independent but not
orthogonal. Amari (1977a, b) calls this orthogonal learning
since it requires the orthogonalization of the set of keys.

It can ©be shown that if the context vectors Xi,..., Xk are
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linearly independent, then X? and X} are linearly
separable for each i = 1,..., m. This implies that if our
conjecture is true, the A3SN can solve the associative search
problem 1if weach Za is unimodal and tne context vectors are
linearly independent. This is an 1instance of orthogonal
learning, but, as discussed above, it differs in that the

ASN does not require the desired response for each key to be

explicitly provided.

5.6 Examples

For illustrative purposes we let each payoff function
Za in the following examples be a simple linear function of
the ASN actions. To each context vector Xa is associated a

a a a
vector Ya = (y1,..., ym) where y; €{-1,1}. We define Za as
Za(Y) = Y-.Ya

so that Za is maximized when each adaptive element i, i =
1,000y, m, is "or" if y? = +1 or "off" if y? = -1. That is,
Za is maximized by Y = (Ya+1)/2. We use the symbol Ya to
denote both the 1,-1 valued vector Ya and the binary vector
(Ya+1)/2 since no confusion is likely to arise. Comp&ting
Za in this manner implies that if an adaptive element "turns

on" in a context in which it should be on, or if it "turns

off* in a context in which it should be off, then the value

of Za increases by 1 (assuming the other -elements don't
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change their actions). Similarly, "turning on"™ when off is
best, or "turning off" when on is best, decreases Za by 1.
We do not «claim that the optimization of such a simple
linear function is a difficult task. Our intent here is to
illustrate that a search is in fact performed by the ASN.
More research 1is required to delineate the search
capabilities of the ASN and related structures. In each of

the following examples, the adaptive element learning

constant ¢ = .03 and the standard deviation of each random
variable is .1. 1In the cases using the predictor, cp = .1.
Example 1

Figure 5.4 shows ASN behavior for the simplest case of
two orthogonal context vectors X1 and X2 with n = 8 and m =
9. The optimal output patterns are determined by Y1 and Y2
(Figure 5.4a). Notice that Z1(Y1) = 6 and Z2(Y2) = 5 so
that a higher payoff 1is obtainable in context 1. The
contexts were alternately presented, each held constant for
10 time steps. A predictor was not wused. In order to
prevent the transition from one context to another from
providing misleading information, the 1learning constant ¢

was momentarily set to zero while the contexts changed.

The dashed lines in Figure 5.4b show the payoffs which
cauld be expected 1in each context for output patterns

generated purely by chance. The payoff actually received by

C — R
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(b)

FIGURE 5.4, Example 1. a) Two orthogonal context vectors
X1 and X2 and tha corresponding optimal output patterns Y1
and Y2. b) Graph of payoff received by the ASN during a
training saquence in which contexts were presented
altzarnately, 2ach held constant for 10 time steps.
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the ASN increases over time and attains th2 optimal values
for each context; 1i.e., 6 for contaxt X1, 5 for context X2.
After learaing, the preszantation of a context vector
immediataly "Kkeys out" the pattern optimal for that context.
Unlike othar associative memory systems, however, the
optinal patterns weras never directly available to the
system. Since the ccntext patterns in this case have
totally disjoint regions of nonzero values, th2 more
inter=ssting associative aspects of thz2 systam are not
demonstrated. Th2 resultant associative matrix simply

stores th2 separat2 associations.

Figure 5.5 shows th2 behavior of the ASN for exactly
the sanz2 problem as illustrated in Figur=2 5.4 with the
exception that tha learaing constant ¢ was not set to zero
for context transitions. Learning occurs, but the almost
perfect bzhavior shown in Figure 5.4b is not attained even
after 500 time steps. The reason for this is that the
transition fron X1 to X2 tends to penalize elements which
M3y have been corr2ctly responding to X1 since thz payoff

tends to decr=2as2 at the transition.

Figure 5.6 illustrates tha behavior of the ASN with a
predictor for the same problem shown in Figures 5.4 and 5.5,
The learning curvz2 (Figure 5.6a) 13 comparable to that

obtaina2d with ¢ set to zero during transiticns.
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Tims Steps

FIGURE 5.5. Thz ASN payoff for the
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illustratad in Figure 5.4 but with the learning constant

hz211 nonzero throughout. Tha parfect
Fizure 5.4a is not attained.
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6» -

4.

2.

Chance for Xt

8. Chance for X2
-2. L
—‘. L
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0. 100 200 . 300 <00, 500 .
Time Stops
(@
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..
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Prediction
Error
Q.
-2
o]
'y 100 200 300 . 480 see
Time Steps
(b)

FIGURE 5.6, 1) Th2 ASN payoff for the training :saquence
illustriated in Figure 5.4 but with the use of a3 predictor.
b) Pradiction zrror p(t) - z(t+1).
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Fizure 5.6b shows the predictor error p(t)-z(t+1) during thz
training s2quence. The predictor comes to successfully
pradict that tha highest payoffs in contexts X1 ani X2 are
raspzctively 6 and 5. Transitions from X1 to X2 4o not
panalizz2 2lements correactly responiing to X1 since the
payoff Jdrop is "expect2i". Notice in Figur=z 5.6 tha errors
zonnitta2d approxinataly at time staps 400 and 459. Sincz2 we
us? normnally distributed randon wvariablass to drive the

sz2arzh, there always r2mains a nonzero probability that 1an

2lenent will pearform 2ither aztion.

Exanple

N

Herz n = 3, = = 25, and four non-orthogonal but
lin=2arly independant contaxt vactors are considered (Figure
5.7a). Thes optinal output pattzrns Y1,..., Y4 ar=s shown as
5x5 arrays, but should be thouzht of as "actions" and not as
visual inages. Again, =2ach cont2xt was presented for 10
conszcutive tine staps, with th2 sequance rapeating. No
predictor was used. Tha learning constant was s2t to zero
during context transition, After sufficient learning =ach
context veator causes the retriaval of the optimal output
pattern. This oaccurs 2ven though tha context vectors do not
forn an orthogonal set. Figure 5.7b shows the learning
curve for context X1. Th=2 abscissa zives cunulative times
3teps ia whizh contaxt X1 was presant, An  ASN wusing a

predictor has essantially the same benavior,

RS
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Exanple 3

Wita th2 associative matrix W containing the wvalu=s
obtainad after training in Example 2, context vector X1 was
corruptad by additive noise and presented to thz ASN (Figure
5.3a). As for other associative memories, keys corrupted by
noise cause ratrieval of patterns similar to tane desired
ones provided the <corrupted key remains sufficiently
distinguishable from tha others. Thz pattern ratrieved
using the corrupted version of X1 resembles the stored
pattarn Y1. For the ASN, however, the retrieved pattarn is

just thz initial guess (Figure 5.8a) for the optimal pattzrn

and the search rasumes. Like most search procedures, the
time to convergence for the ASN is reduced if the initial
quess is close to the optimal pattern. Hence, with ths
corrupted X1 Dbeing pressnted to the ASN and Y1 still the
best output pattarn, the ASN gquickly corrects 1its response
(Figure ©5.3b). At the conclusion of the search, the
corrupted version of X1 1is able to cause the inmediate

retrieval of Y1.

Example 4

Again with thz2 associative matrix containing the values
obtained by training in th2 four contexts of Example 2, a
fragment of X) is presented as a context vactor (Figure

5.9a). The pattern rzatrieved again acts as an initial guess
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FIGURE 5.7. Example 2. 3) Four non-orthogonal but linzarly
indiz2p2adant context vactors and thzir corrasponding optimal
s>utput pattaras. b) A3SN payoff for time stzps ia which
contaxt wvzctor X1 i3 presant. There is a3 similar curva for
21320 context vactor,

— e —— — ..

B < — —
STy e ——— s m——




ASSIOCTATIVE 3EART! NETWHORK PAGE 5-2)

CONTEXT
OPTIMAL PATTERN INITIAL GUESS
[ @.8 |
1.2
8.2
8.0
@.9
1.1
8.0
8.1
S (@)

Payoft

———————— - — -— — — |Chance
100 200

Time Steps for New Context

(b)

FIGJRE 5.8. Exanple 3. a) The corrupted contaxt vector,
ta2 optimnal output pattern, 3anid tn2 ASN's initial gusss.
o) ASN payoff 2s it szarchas for the optimal output pattarn.
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CONTEXT
OPTIMAL PRTTERN INITIAL GUESS
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(b)

FIGURE 5.9. Example 4, 13) Thz fragment of X1, the optimal
pattarn, and the initial gu=ss., b) ASN payoff as th2 search
zontinuzs.
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CONTEXT
OPTIMAL PATTEKN INITIAL GUESS
[ 1.0 ]
2.0
1.0
B.@
1.0
2.0
1.0
L_B .9__ (a)

Payoft

— — — — |Chance

Time Steps for New Context

(b)

FIGURE 5.192. Exaaple 5. 3) Th2 cont2xt vaztor X1 + X2, the
optinal output pattern Y2, 3and th=2 ASN's initial ZFuess.
b) ASN payoff 13s the 323arch continuas.
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and th2 ASN corrects it under control of environmantal

feadback (Figure 5.9b).

Exanple 5

Her2 tha2 sum of the two context signals X1 aand X2 of
Figure 5.7a is presented as a context vector to the ASN, but
th2 payoff function is the one previously signalled by X2
(that is, Y2 is best). 1In this case, the initial qu=ss is a
conbination of the pattarns Y1 and Y2 (Fizure 5.10a). Again
tha szarch process brings th2 initial gusss to the optimal

pattern (Figure 5.10b).

5.7 Neural S=zarch

Th2 ASN aros: fromn our invastigation of thz neural
hypothesis of Klopf (1972, 1979, 1931). He hypothesizad
that neurons try go maxinize their 1level of membrane
depolarization by changing synaptic effactiveness in the
following way: Whz2never a nz2uron fires, those synapses that
were active during the summation of potentials leading to
tha discharge become eligible to undergo changes 1in their
transmission 2ffectiveness. If tha discharge is followed by
furthear depolarization, than the eligible excitatory
synaps2s become nore excitatory. If the discharge 1is

followsd by hyperpolarization, then =eligible inhibitory




— - ————

ASSOCIATIVE SEARCH NETAORK PAGE 5-33

Synapsas baczome more innibitory. 1In this way a neuron will
becone more likely to fire in a situation in which firing is
follow2d by further depolarization and less likely to fire

in 3 situation in which firing l=ads to hyperpolarization.

Th2 basic adaptive =2lsment operating according to
Ejution 5.2 is very similar to Klopf's model of a nauron.
The tern x (t-1) in Equation 5.2 corresponds t5 Klopf's
eligibility. A weight can change at time t only if there
was activity on its pathway at t-1; that is, x (t-1) = 9.
Mors gzneral forms of =2ligipbility can be implema2ntad by
replazing tnis term with a nore prolonged trace »f activity
as is discussed in S=zction 4. The restricted form of
elizibility us=2a here is suitable because E always evaluates
an output pattern in a3 single time step. The idea of
2ligibility is essential for thz search behavior of an

adaptive element since it pe2rnits the cons=2quences »of

actions to influ2nce thz probability of these actions in the
future. This cannot be accomplished by 3 Hebbian-t{ype rule
whizh associatas simultansous, or nearly simultan=0us,

signals with no sensitivity tn which occurred 2arliest.

Unlike Klopf's hypothasiz2d nauron, thz adaptive
e2lenant presanted here tends to wmaximize 13 specializad
payoff or reinforcement signal (z) rather than what would

correspond to membrane potantial (s). There are sevaral

e e
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intaresting consequences of a rule that tends to maxinizz s.
It pe2rmits secondary reinforcament to occur whereby thz
oczurrance of a previously rewarded context itself 1is
rewarding, and 1t may permit a single adaptive element to
perform both the szarch and prediction tasks, eliminating
th2 need for a separate predictor element. In this section
we hava focused only on the simpler case in which there is 2

spa2cializad payoff or reinforcement signal.

Th2 adaptive element presented here is an illustrative
example of a class of adaptive mechanisms, some of which are
mor2 closely related to Klopf's hypothesis, and should not
b2 literally interpret2d as a model of a single neuron. In
fact, w2 have purposefully referred to it 3s an adaptive
elemant rathesr than a neural model. We do wish to suggest,
howavar, that the genaral form of stochastic, closzd-loop,
optimization Llearning realized by the adaptive element
nmerits close experinental investigation. Theory has shown
that stochastic search procedures can be very effective
means for the optimization of functions about which 1little
is known. This capability, combined with pattern
recognition capabilities, 1leads to considerable adaptive
powar. As a neural hypothesis, the adaptive element
suggests that tha stochastic component of neural discharge
night parform th2 function of stochastic search. A closely

related adaptive element is discussed with respect to
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behavioral and neurophysiological data in Section 4.

5.3 Sensorinotor Control Surfaces

It nas been suggested that associative mamories might
provide effactive means for the storage of sensorimotor
associations requirad for sensory guided motor behavior
(Albus, 1979) . However, in every case there 1is the
requirement for a signal to be pressnt giving the "desired
response" in order to form the correct sensorimotor
association. Yet this kind of information is wusually not
available to an organism nor easy to obtain. After
considerabls experience in a given set of sensory contexts,
the "desired reasponse" for each context might become known
through a learning process. But the associative memory
structures proposed in the literature are not able to
perform this type of learning. Their structure suggests how
associations anight be stored but does not address the very
important questions conceraing what information is chosen

for storage. The ASN suggests how such questions might be

e2xplored.

Sensorimotor tasks provide natural examples of the type
of problem the ASN is capable of solving. Sensory context
is provided by exteroceptive and interoceptive stimulus

patterns, and output patterns provide control signals to
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motor systems. Global rezinforcemant systems might provide
information anialogous to the ASN payoff signal. The
associative matrix formed wdould implement a sensorimotor
control surface. This interprztation of the ASN task
sugiests that reszarch sihould continuz in order to extend
tha ASN's capabilities in several d4ifferent ways. 1) Most
conplex control tasks require nonlinzar control surfaces.
Elaboration of tha ASN to permit thz formation of nonlinezar
associations can be accomplished in the same manner as
suziest2d for other associative memories in tha literature
(Poggio, 1975). 2) Most s=2nsorimotor tasks have the
proparty that the context which occurs n2xt is partially a
funztion of the control system's action. In the problen
discussz1 in this section, the ASN has no control over which
sontext dccurs. An inter2sting generalization of the ASN
task 1s to require the ASN to control not only the payoff
siznal but also the context vectors in order to rzach 3
context in which the highest payoff is available. This is a
more zeneral learning control problen. 3) The ASN task
presentad here is simplified by the occurrence of a payoff
signal at every time step. In actual sensorimotor learning
tasks the reinforcing events occur only occasionally.
Secondary reinforcement capabilities would provide a first
stap toward thz solution of this substantially more

difficult problem.
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5.9 Conclusion

The distributed memory properties of associative memory
systems makz2 them particularly interesting learning systems
from both biological and theoretical persp=ctives. Although
all associative memory systems described in the literature
require the desired responsz for each key to be provided by
sone other source, th2 interesting properties of associative
manory systems ar=2 not restricted to this form of 1learning.
A more difficult type of learning, which can occur even if
no part of th2 system or of the environment knows the
desired behavior, 1is reinforcemant learning. In this form
of learning, the environment provides only a performance
measure of responses rather than desired responses, making
the problem both more difficult for the learning system and
less demanding for the environment. The ASN 1is an
associative memory systam capablz of solving reinforcement
learning tasks. Qur results illustrate that the important
properties of associative memories can be retained by a
system capable of this more genesral and more difficult form

of learning.
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CHAPTER 5

LANDYMARK LEARNING: AN ILLUSTRATION OF ASSOCIATIVE 3EARCH *

5.1 TIatrosiuction

In Szztisn 5 wa Jdefined tha associativz2 s2arch  proablem
ani pra2sant24d a systen, called an Assoziative Sesarch N2twork
(ASN), 2apiblas of solving it undz2r certain conditions. An
ASN iacorporates learning rules that hive besn 23rz2fully

d2signad followinz Klopf's hypothesis that nz2uroas are

W

goal-s22king systens (Klopf, 1972, 1979, 1981). Harz w:
pr2sznt 3 sinpla spatial learninz problem as an 2xample of
th2 assoziative sz2arch task. This interpr=tation
illustratas th2 task in an intuitively z2lear form, shows how
naturally it <can arise, and allows th=2 capabilities of a
sinple A3N to be <clzarly described. It was not our
intention =2ither to model animal spatial learning behavior
or to fully exploit tha capabilities of an ASN; rather, we
want2d to illustrate its capabilitiss in as simple a problem

as w2 cduld construzt.

* This sz2ction will appz2ar in Biological Cybernztics, 1981,
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6.2 Associative Search

Figure 5.1 shows an ASN interacting with an environment
E. At each time t, E provides the ASN with a vector X(t) =
(x1(t),..., xn(t)), where each xi(t) is a positive real
number, together with a real valued payoff or reinforcement
signal z(t). The ASN produces an output pattern Y(t) =
(y](t),..., ym(t)), where each yi(t)e {0,1}. The ASN's
action Y is received by E. Each vector X(t) provides
information to the ASN about the sensory situation at time t
in which it acts. After performing an action; that 1is,
after producing an output pattern, the ASN receives (1 time
step later) an evaluation from E of the appropriateness of
that action for the situation in which it was made. This
evaluation is received by the A3N as the value of a payoff
or reinforcement signal z. The evaluation alone is not
sufficient to determine whether the preceding action was the
best possible in the given context. The associative search
task is to learn, for each input vector, to perform the
action which maximizes the payoff value. In other words, it
must learn to perform the best action in each sensory
situation. Different actions can be optimal in different
sensory contexts. This class of problems is more completely
described in Section 5 where it is distinguished from the
simpler pattern recognition tasks that can be solved by

perceptron-like learning rules.
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5.3 3patial Learning as Associative Search

If an ASN is viewed as controlling the 1locomotory
behavior of an organism in a spatial environment, then input
vectors are associated with places in space, and ASN output
patterns control movement. We have created a simple spatial
environment in which to illustrate this 1interpretation of
the associative search problem and a simple ASN's behavior.
Figure 6.1 shows a spatial environment consisting of a
central 1landmark (shown as a tree) surrounded by four other
landmarks (shown as disks). Thinking of this as an
olfactory environment for a simple organism, we let each
landmark possess a distinctive "odor"” which can be sensed at

a distance. Accordingly, to each landmark is associated a

spatial distribution, linearly decreasing with distance from
the landmark, which extends as far as the large ellipses

shown in Figure 6.1. The asterisk shows the location of the

ASN.

When the ASN is in a particular 1location, its input
pattern is determined by 1its distance from each of the

landmarks. We let the central landmark act as an attractant
for the ASN by letting its "odor" be the value of the payoff
or reinforcement signal =z. The other landmarks are
"neutral" in that proximity to them is not rewarding to the

ASN. An input vector therefore consists of five values
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FIGURE 6.1. A spatial environment consisting of a central
landmark (shown as a tree) surrounded by four other
landmarks (shown as disks). Each 1landmark possesses a
distinctive T"odor" which can be sensed at a distance. Odor
distributions decrease linearly from their associated
landmarks and become undetectable at the large ellipses.
The asterisk shows the location of the ASN.

.
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giving the odor concentrations due to the central "tree" and

the nortn, south, east, and west neutral landmarks.

Figure 6.2 shows an ASN with 5 input pathways, labeled
vertically on the left according to the landmarks to which
they respond. The shaded input pathway N indicates that the
ASN is near the north neutral landmark. There are 4 output
patnways labeled horizontally at tne bottom as controlling
"actions." The manner in which these actions determine
locomotion was chosen solely for the sake of simplicity.
Tnere is an output element for each compass direction. Each
output element produces an output of 0 or 1 at each time
step. For example, if N=0, 3=1, E=1, and W=0 (as shown by
the shaded output elements in Figure 6.2), the ASN will move
a fixed Jistance south and east,. We wuse a kind of
"raciprocal inhibition" between the north and south elements
and between the e2ast and west elements so that at each time
Step usually only one of each pair of elements outputs a 1.
Clearly, we are not attempting to model in any detailed
manaer the motor control system of an organism (for example,

there is no explicit spatial orientation of the ASN).

The arrangemnent of input and output pathways wused 1in
Figure 5.2 pernits the connection weizhts to be displayed in
conveniz2nt form as circles centered on the intersections of

input pathways and the vertical output elenent "dendrites."
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FIGURE 6.2. The ASN controlling locomotion in the spatial
environment. The five input pathways are labeled vertically
on the 1left according to the 1landmarks _to which they
respond. The shaded input pathway N indicates that the ASN
is near the north neutral landmark. The four output
pathways controlling actions are labeled horizontally at the
bottom according to the direction of movement they cause.
The shaded output elements 1indicate that a southeast
movement is being made. The associative matrix weights are
displayed as circles centered on the intersections of the
horizontal input pathways and vertical output pathways.
Positive weights are shown as hollow circles, and negative
weights are shown as solid circles.
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Positive weizhts are shown as hollow circles, and negative

weigzhts are snown as 3o0Lid circles. The sizes of the
circles indicate the relative magnitudes of the
corresponding weights, Tne uppermost "tree" input is the

specialized payoff pathway 2z which has no associated
w2izhts. These connection weights form an associative
matrix which is similar to those widely discussed in the
literature (e.g., Anderson et al., 1977; Amari, 1977a, b;
Kohonen, 1977) but one that gathers information by means of

the more complex closed-loop learning rules to be described.

The ASN's task in this environment is to 1) find the
central landmark by climbing the attractant distribution and
2) assoclate with each place that action which causes
movement toward the <central 1landmark. The first part of
this task is a simple hill-climbing problem that does not
require long-term memory. The second part is an example of
the associative search task. Although the payoff signal |is
derived from a single spatial distribution (the "odor" of
the tree), the optimal action is clearly a function of the
ASN's location. For example, 1if the ASN is south of the
central landmark, it is best for it to move north; if it is
north of the central landmark, it is best for it to move
south. Consequently, the sea.ch for the optimal action in
each place requires maximization of functions of ASN actinons

which differ from place to place. (A predictor as discussed

I B e e e




LANDMARK LEARNING: ASSOCIATIVE SEARCH PAGE 6-3

in Section 5.4 1is not required for this spatial learning
task since the functions to be maximized vary smoothly over
time.) As a vresult of solving the second part of this
problem, the ASN can proceed directly to the central
landmark simply by performing the actions associated with
its successive locations. Importantly, this direct approach
is possible when the attractant distribution is very noisy,
intermittant, or even totally absent (as we demonstrate

below).

6.4 The Learning Rule

The ASN presented here uses the same type of learning
rule as discussed in Section 5. Let x](t), xz(t), x3(t),
and x4(t) denote the signals at time t from the north,
south, east, and west landmarks respectively, and let z(t)
denote the signal from the central landmark. Each output
element j, j = 1,..., 4, has a weight wij asociated with
neutral landmark input xi, i=1,..., 4, and an additional
weight wOj' Let wij(t)’ i=0,..., 4, denote the values of
theseiweights at time t. Let

n

s.(t) = was{t) + < w,.
J 0j j=1 13

The output of element j at time t is

(t)xi(t).

1 if Sj(t) + NOISEj(t) > 0

.Vj(t) = (6.1)

0 otherwise
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where each NOISEJ, J=1,...,84, 1s a mean zero normally
distributed random variable (with the same variance for each

3.

At each time step, each weizht wij’ i, = 1,...

updated according to tne following equation:

wij(t +1) = wij(t) +clz(t) -z(t-1)]y(t '])Xi(t -1). (6.2)

The weiznhts wOj are updated as follows:

wOj(t +1) = f[woj(t) +c0(z(t) -z(t-1))y(t -1)] (6.3)

where

BOUND if x > BOUND

f(x) = 0 if x < O

X otherwise
bounds each wOj to the interval [0, BOUND]. The parameters
¢ and )y are positive real numbers determining rates of
learning. In all of the simulatons described below, ¢ =
.25, ¢, = 0.5, BOUND = 0.005, and the standard deviation of

0
tne random variable NOISEj was 0.01 for j=1,...,4.

Equation 6.2 implies that if the firing of an output
element in a given place is followed by a movement toward
nigher attractant concentration z, then the element will
becon2 nqore i1ixkely to fire in that place in the future. If

firing is followed by a movement toward lower values of 1z,
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firing will become less likely in that place. See Section §
for a more detailed discussion of this class of learning

rules [footnote].

The weights wOj changing according to Eguation 6.3
permit the ASN to climb the attractant distribution in the
absence of landmark information. Equation 6.3 is similar to
Equation 6.2 applied to a constant signal from a universally
present landmark (xo(t) = 1 for all t). If o is
sufficiently 1large compared to BOUND (as it was in our
simulations), then complete learning will occur in a single
trial so that a moyement in an up-gradient direction will
tend to be followeé by a movement in the same direction.
This straight line trajectory will tend to continue until it
takes tne ASN down-gradient. Down-gradient moves will drive
wOj to zero so that the random component will dominate. The
bound function f is necessary to insure that down-gradient
moves can return the weight to zero,. The resulting
hill-climbing strategy is similar to that wused by certain

types of bacteria to c¢limb nutrient gradients (Koshland,

1973). Fraenkel and Gunn (1962) call this strategy

Equation 6.2 is identical to Equation 5.2 except that the
term y(t-1) is used here instead of y(t-1) - y(t-2). 1In the
experiments of Section 5, changes in z were attributable to
changes 1in y. Here, vy itself determines the change in z
because it causes a change in spatial location ratner than
movenent to a particular place.
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klino-kinesis and Selfridgs (1973) <calls it "Run and
Twiidle" (if tnings are improving, keep doing what you are

Jdoing; if things get worse, do something else).

6.5 Learning in a Noiseless Environment

If the attractant concentration can be reliably sensed,
then thne nill-climbing part of the ASN's task can be
accomplished easily. Figure 6.3 shows the ASN's trajectory
for the <case in which there are no neutral landmarks. The
central landmark is approached due to the action of Equation
5.3, Since no associations are formed in this case, that
is, since no long-term memory traces are formed, later
attempts to climb the same hill will proceed at essentially

the same rate as the first attempt.

Figure 6.4 illustrates the ASN behavior in the presence
of the neutral landmarks. Figure 6.4A1 shows the ASN
behavior for 35 time steps. Figure 6.4A2 shows the state of
the ASN as a result of this behavior. Nonzero weights have
appeared associated with the north and east landmark input
pathways since the ASN has remained in the vicinity of these
landmarks (and hence only these pathways were eligible for
modification). Since movements north and south were

correlated respectively with decreases and increases in the

L e TR w t E VOB, Mg Y e
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FISURE 6.?. The ASN's path is shown as it climbs the
attractant gradient in the absence of landmark guidance. No
long-term memory traces are formed, and later attempts to
climb the same gradient will proceed at essentially the same
rate.
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attractant level, weights have formed so that the north and
east landmark "odors"™ inhibit movement north and excite
movement south. Weights associated with the east landmark
pathway are smaller in magnitude than those for the north
landmark since the ASN remained closer to the north
landmark. Similarly, the north and east landmark inputs
inhibit movement west. Weights for the east output element

are too small to be visible since the ASN only infrequently

moved east.

Figure 6.4A3 shows the results of learning in a vivid
form. A vector is shown at each point in a grid covering
the entire space. Each vector is the result of computing
the wvalues Sj’ j = 1,..., 4, from the ASN input vector
associated with the place at which the vector appears. The
resulting U4-tuple 1is displayed as a vector in the obvious
way, The direction of the vector at each location gives the
direction of the ASN's most probable first step if it were
to start at that 1location, The vector's magnitude is
related to the protability that the ASN will take this step.
It is important to note that the attractant distribution of
the central landmark is not used to determine the vector
fields. The vectors represent information stored 1in the
ASN's memory; not information directly present 1in the

environment. The vectors show how the ASN would tend to

move eve

if the central landmark and its attractant

RIS o

|



[ )]

LANDMARK LEARNING: ASSOCIATIVE SEARCH PAGE 6~14
At A2 A3
R R AT A A A A A
LR A A AP A A A A A A A A A
Py l LR A A A A SV AV AN B B RV A
¥ L[ R AR
z ~ AP N AV SV AN SV B B SV A A
B T - AR R
[} 3 AR AV N A A R
= & L A A A A 2 A A
o4 LA I A A A VAN AN S P A
® F Py s | w R SRAPANEN VEVEVENE YRV
R A A I Y SV A APV
3 A A A A A N RN
:::::: L AT A A A I B )
........ PP N A
N s E W] e P A AP A
. RCTIONS ........... P ) 4
82 | 2]
e L R O A | ddd d s v
»»»\\\xtlutll(////r
J sevNMM ANVl Il
k ™ MMM NNYANV VL S IS
L] l YN SY NN N bW bl  wrrr
1 N > TN N N YN Y VY b S e
H s e T T TR
: Radindi e i T T e e o
4 [ "~ [P e e e e
s N Va Y P PN .
. d //ﬂ//ﬂ!'*l‘\\\&&.:
AAPAL PP T LN N NN
AAAAL L2270 VNN
R A A 2 A I B B U R VR NE RN
N S E M o A 3 A O B B B U WL N N NEN
A A A A O A 3 U8 U B UL VL N NN
ACTIONS PALLIILY I BB RRRESS
P APPrPIPPN? Fruya s
A B o | BB
o [AESRAR  a B B S S S R TN W W W

FIGURE 6.4, ASN behavior in the presanc2 of neutral
landmarks. A1) ASN behavior for 35 time steps. A2) The
state of tha ASN as a result »f thz experience shown in A1.
A3) A vactor field representation of thz ASN state shown in
A2. B1) ASN behavior for about 300 time staps. B2) The
stata of tha ASN after about 800 time steps shows that
proximity to the north landmark will make tha2 ASN move
south, proximity to the south landmark will make it move
north, and simnilarly for the east and west landmarks. B3) A
vertor fi=2ld reprasentation of the ASN state shown in B2.
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Jdistribution wara not presant. Thz generalization

capability »f the ASN 1is <clearly shown by the vectors

associatad with places nevear visited by tha AS3SN.

Figure 5.4B shows how the ASN bzhaves for about 899
time staps. It =2limbs the attractant distributinn ani
rz2mains in th=2 vizinity of th2 central 1landmark (Figure
6.481). Th2 resultant associative matrix values (Figure
65.4B2) show that thz north 1landmark signal 1inhibits the
north output elemnent and excites the south output element.
Consa2quently, whan the ASN is in the vicinity of th2 north
landmark, it will t=nd to nove south. Simnilarly, a strong
signal from tha south landmark will cause the ASN to wmova
north, Th2 weights associated with thz east and west
landnarks similarly affect th2 east and wast output
elements. Th=2 rasultant novenent tandencies are shown as a
vactor field in Figure 5.4B3. This form of learning is not
1apaendent on the, central location of th2 attracting
landmnark. Figure 5.5 shows a vector field d2termined from
the contents of tne ASN's memory after about 800 tine steps
2f learning with the attracting landnark located off centar.
The importance of this illustration is that it shows that
th2 laarning rule is capable of naot only determining the

corract signs for th2 weights but also their corract

nagnitudas.
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FIGURE 6.6. Use of long-term memory. With the ASN state as
shown in Figure 6.4B2 and the2 central landmark and its
attractant gradient removed, the ASN takes 3 direct route to
th2 central 1landnark's former position from a plac2 it has
naver before visited,. Stimulus pattarns associated with
successive positions "kay-out" thz appropriats actions.
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Thz2 information stored in th2 association matrix formed
during exploration of this spatial environment can be us=2d
by tha ASN to guide movement =2van in th2 absence of the
attractant gradisnt. Ia Figure 5.6 is shown thz2 benavior of
th2 ASN aftzr lzarning by 2xploration of +the =2nvironment
wita th2 attraztant landmark in the center. Th2 central
landmark and its attractant distribution have been removed
from thz2 ~nvironment, and tn2 ASN starts at a3 place it has
navar beforz visitad. The ASN takes a2 direct route to the
former location of tha c2ntral lanidmark. This occurs
bazausa thz input vezstsr associatzd with =2ach place "kays
out" the appropriate action. The ASN r2zmains nzar the

2entral landnark's former location.

6.6 R2lzarning in 3 Modified Environmant

H2r2 we illustrate how the ASN <can reorganizz 1its
associative matrix du2 to changes in its esnvironment. A2
allow2d the ASN to learn in tha original environment (Figure
5.1) wuntil it was able to associate thz best movemnent with
2ach place. Ade th=2n interchanged the east and west
landmarks. Figure 6H.7A shows the vector field resulting
fron evaluating tne ASN's associative matrix in the altsred
2nvironnent. Th=2 central landmark location is now a3 saddle

point rather than a stable focus. Starting from a cantral

4
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position, th2 ASN is "misl=2d" by its sz2nsory information and
follows tha veztor field away fron the centr=i landnark
(Figurz2 5.7B1). Since this movenent is down th2 attractant
graiiant, th2 ASN altars the weigzhts to the 2ast anil west
Jutpuat 2lenents from the 23st nz2utral landmark input (which
now reasponis to taz landmark to tha w2st). This rzl=arning
rasalts in tn2 natwork of Figur= 5.7B2 and th=2 v2ctor fizld
of Figura H.7B3. A similar 2xcursion to the east nodifi=s
tha weizhts associated with the w2st neutral input which now
rasponis to tne landnark to the east (Figure 5.7C). If ta=z
attractant distribution had been absa2nt, no r2lzarning would

hava oczurrai.

6.7 Lz2arning in a Noisy Environment

Clinbing a hill as large and reliably sensed as th2
attractant - distribution of th2 precading illustrations is
not a difficult task. Whan the attractant concentration can
be sens2d only in the presence of nois2, th2 task becomes
nor2 1iffizult and more interesting. The sensitivity of the
ASN to nautral context information permnits it Lo improve its
p:rfornanze in climbing a noisy hill with repzatzd attenpts

[footnota]. Figure 5.34 shows the ASN performance, starting

Althougn we 40 not illustrat: it here, we would expect that
contaxt information would also facilitate the mora difficult
problem of higher dinensional saarch.
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with all weights zero, as it clinbs tha attractant
concentration corrupted by additive noise. The noisz2 is
nornally distributad with a3 standard deviation of 0.02.
Comparing Figure 5.3A with Figurz 6.3 or Figure 6.4B1 snows
that nill-clinbing performance 1is significantly degraied.
Aftar sufficient expearience with the noisy attractant
conzentration (1107 time st=zps), the ASN uses n=autral
landmark guidance to dirz2ctly approach the goal even with
th2 same noisza level in the attractant concentration (Figure

5.38).

Th=2re are othar mneans for improving 4ill-climbing
performance in the praszanca of noise such as dirzct low-pass
temporal filtering of the attractant signal as it is
rz2ceived by the ASN over time. W2 have not optimized
hill-clinbing behavior of tha ASN in the absence of landmark
guidance. Conszquantly, Figure 6.8 does not compare
landmark guided hill-climbing with the best hill-climbing
behavior that can be acczomplished without landmark quidance.
What is important in this comparison, howaver, is that the
association of neutral context information during a search

parnits the system to inprove its performance with repeated

attanpts to approach a gzoal in the same or similar

2nvironments. Even the most highly tuned pure hill-climbing

stratzgy do2s not learn from its expsrience in this manner,.
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FIGURE 6.8. Lzarning in 3 noisy environment. A) ASN
benavior, starting with all weights z2ro, as it climbs the
attractant gradiesnt corrupted by additive nois=z.

Hill-climbing p2rformance 1is significantly degraded (cf.
Figure 5.3 or Figure 5.4B1). B) After sufficient experience
with the noisy attractant gradient (1107 time steps), tha
ASN us2s n2utral landmark guidance to directly approach the
goil evea with th2 same noise 1level in the attractant
gralient. Pravious experiance in tnhe same or similar
environments can be used to improve parformance.




- ~ —— g -

LAND4ARK LEARNING: ASSOCIATIVE SEARCH PAGE 6-23

Tnis 2xanple illustratas that th2 exploitation of sensory
context 2an provide significant adaptives advantages if the

San2 or similar szarch problams occur repzatedly.

5.8 A Rzmark on Linzarity

The associative search problem posed by the spatial
2nvironnent of Figure 5.1 is simple enough to bz solvable by
an ASN capablz2 of mnaking only 1linear associations. The
influ2nces of tha na2utral landmarks merely suparimpose to
forn th2 desirasd control surface. If this were not ths
¢a3s2, the ASN which we have d=2scribzd would not be able to
forn a stable mapping. Duz to its linearity, it is not able
to raprasant arbitrary patterns of lozation-action
associations; that is, only certain typas of vector fielis

2an be learned.

In our currant research, we are ianvestigating two
mz2thods for extanding th2 ASN's capabilities to include
nonlinzar associations. The first relys on the observation
that morz varied associations can be formed as the nunber of
landmarks 1increasszs. If, for example, th2re ware 3
distinguishable landmark at each spatial location, then a
linzar ASN could learn arbitrary location-action

1ssociations (this would be similar to the approach taken in

e AR o ARG e <5 A - s e e
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th2 BOXES system of Michie and Chambers, 1968). This
sugiests that it would be usaful for a system to effactively
"crzate" lanimarks where needed in order to refinz its
rzpresantation of space. Such a3 landmark, which w3 call a
"yirtual landmark," would be crzatad by the formation of an
appropriatz nonlinzar combination of thz s2nsory signals
provided by th2 re2al landnarks. Anoth=2r approach to

nonlinzarity is ra2lztad to tn

w

"Patchwork Map"™ thesory
dasz2ribzd by Kuip2rs (1977). Her=2, tha systemn's knowlzdge
of spazea would consist of several different associative
mippings appropriate for zuiding bzhavior in different
rz23ions of space. The system would need to develop
nonlinear switching capabilities for accessing the correzct
associative structure when entering each region. Both of
th2se approaches to nonlinear learning are applicable to a
wide variety of spatial and non-spatial problems. We are
finding that th2 simple spatial interpretation dascribed 1in
this section providess a concrete and generalizable framework

for approaching thase very difficult and general problems.

6.3 Conclusion

W2 have illustratad the behavior of an ASN in a simple
spatial learning task. The spatial problem provides a vivid
way to denonstrate tha Search, association, and

ganzralization capabilities of an ASN. Although we have
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illustrated thes2 capabilities in an extremely simple form,
it should be realized that the methods employad have much
wider applicability. Tha spatial learning problem 1is an
exanple of a wide class of problems, some of whizh require
paths to be learned through spaces which do not n2cessarily
represent physical space. For example, the space may be the
state space of a dynamical system, in which case the vector
fields developad represent hypothesized systen dynamics.
Associative learning capabilities provide a simple means
whereby experience in attempting to solve a problem can be
accumulated and used to drastically improve performance in
similar problems. The necessity for explicit search is
minimized by storing in long-term memory the information

gained in pravious searches.

Finally, we wish to comment on the simplicity of the
ASN illustrated. It consists of just four adaptive elements
acting in parallel. Since the adaptive elemants themselves
enbody fairly sophisticated learning rules, utilizing both
short-term and long-term memory, we did not need to
construct a special purpose network to perform the landmark
learning tasks which we have presented,. The behavior
illustrated is a very natural conssquence of 12 set of
elements operating according to a carefully designed

closed-loop learning rule.




SECTION 7

AN ADAPTIVE NETWORK THAT CONSTRUCTS AND USES
AN INTERNAL MODEL OF ITS WORLD

7.1 Internal Models for Search and Simulation

The words "internal model of the world" have been used
by many theorists of the mind to refer to some kind of store
of Knowledge within an adaptive system that it uses to

2tter interact with its world (e.g., Arbib, 1972; Craik,
1943; Gregory, 1969, MacKay, 1955; Piaget, 1954). The
ideas behind these mnodels vary from the idea of a very
general knowledge store capable of answering any sort of
question about the world, to extremely limited knowledge
stores that can answer only a single question: What should
be done next? The kind of internal model we are concerned
with in this section is of a generality intermediate between
these two extremes. By an internal model we will mean any

part of an adaptive system which can provide expectations or

"™
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prediztions about what would happen in particular
situations. Furthar, we are concerned specifically with
taose cases in which the model is used to mentally simulate
the consequences of various actions in order to choose among
them without having to try them overtly. The following few

pazes focus and expand upon this idea.

Kenneth Craik (1943) was one of the first to clearly
state the view of thought as an internal simulation of the

world, allowing many courses of action to be hypothetically

attempted and evaiuated:

If the organism carries a "small-scale model™ of
external reality and of 1its own possible actions
within its head, it 1is able to try out various
alternatives, conclude which is the best of them,
react to future situations before they arise, utilize
the knowledge of past events in dealing with the
present and future, and in every way to r-zact 1in a
nuch fuller, safer, and more competent manner to the
emergencies that face it. (p.61)

Aspects of this theory of thought, however, are much older
than Craik's work. Donald Campbell (1962) traces a very
similar theory of "creative thought" back to the writings of

Alexander Bain (1855, 1874), Ernst Mach (1896), and
Poincare~ (1908, 1913).

Campbell (1962) emphasizes that the interaction with
both the world and the internal model can involve trial and

error;

i At S nmies St
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At this level [the level of creative thought] there is
a substitute exploration of a substitute
representation of the environment, the Wsolution™
being selected from the multifarious exploratory
thought-trials according to a c¢riterion substituting

for an external state of affairs. In so far as the
three substitutions are accurate, the solutions when
put into overt 1locomotion are adaptive, leading to
behavior which lacks blind floundering... (p.212-3)
Unfortunately, the idea of "trial and error" in search has
frquently been mistaken for that of random or blind search.
A search by trial and error can be a highly structured and
heuristically guided one. By trial and error search we mean
any searchundertaken under the guidance of a certain kind of
feedback process in which options are tried and then
evaluated and retracted or changed 1if in error. Any
"hypothesis and test" search, or any search using

backtracking, would qualify as a search wusing trial and

error in this sense.

Internal trial and error as a model of thought and
reasoning turns out to be a view that is held extremely
widely among theorists of the mind. Such a
modeling/simulation view plays an important role in the
theories of Dennett (1978) in philosophy; Simon (1969) in
artificial intelligence; Sommerhoff (1975) and Arbib (1972)
in brain theory; Dawkins (1976) in biology; Galanter and
Gerstenhaber (1956) and Miller, Galanter and Pribram (1960)
in psychology; to name just a few. Figure 7.1 summarizes

the essential features of this view of thought as used in

v
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this section: An organism constructs an internal model of
the world that allows prediction of the observable behavior
of the world as a function of possible actions by the
organism. The internal model is used to select behavior in
an interactive manner identical to the interaction with the
external environment in the absence of a model. Trial and
error search for the action which achieves the best result
from the external environment 1is replaced by covert,
iiternal trial and error search for the hypothetical action
which secures the best anticipated result from the internal
model. The internal model must be either faster, easier, or
safer to interact witn than the external environment in

order for it to be useful.

This section takes a few first steps towards
formalizing this model-based theory of thought. The animal
learning theory literature has been found to be extremely
useful in obtaining a more concrete idea of what it means to
create and use an internal model of the world. Since the
concept of an internal model is, by definition, a mediating
theoretical construct not directly associated with overt
behavior, psychologists have concentrated on devising
experiments which we can view as revealing indirect effects
of the model on behavior. These animal learning theorists
called tne phenomena their experiments revealed such things

as reasoning, latent learning, and insight. The centerpiece

ST g A TR TR . > 5




A NETWORK WITH AN INTERNAL MODEL OF ITS WORLD PAGE 7-6

of this saction is the presentation of a completely defined
adaptive network which constructs and uses an internal model
to solve a task similar to one in the animal learning theory
literature. Both the adaptive network and the task
environment were simulated by computer. The intent was to
find as simple a network and task as possible while still
being able to demonstrate behavior that psychologists wo:ld

consider "reasoning," or model-requiring.

Figure 7.2 is a floor plan of an early form of a
classic maze problem for rats (Tolman and Honzik, 1930).
Its solution is considered to involve spatial reasoning
capabilities. To oversimplify, the rats were familiar with
all three paths to the goal, and preferred them in order of
increasing path 1length: A over B, and R over C. When a
block was introduced as shown, the rats tried A, discovered
the Dblock and then predominantly chose path C, the longest
of the paths, next. Since their normal preference when A is
blocked was B, the path of intermediate length, this result
indicated that the rats used some sort of spatial map, or
model of the maze, which informed them that path B was also
blocked. This experiment was seen as a positive test of

insight or reasoning in the rat,

A much simpler experiment of the same intent uses a

one-choice T-maze with detachable distinguishable goal boxes

e
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Figure 7.2. A maze used to test insight in rats. The rats
are familiar with all three paths to the goal box and prefer
them in order of decreasing length: A over B, B over C. If
they have "insight," then after taking A to discover the
block, they next try path C rather than B.
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Figure 7.3. A simple T-maze task with distinguishable »
detachable goal boxes wused to test latent learning and

reasoning in rats. The rat cannot see or backtrack
the one-way doors indicated by dashed lines. Thi
conceptually very similar to the one posed to the
adaptive network presented in this paper.

through
s task is
simulated
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(Figure 7.3). Since this problem is very similar to the one
we have posed to the simulated adaptive network, we will
describe it in greater detail. There are three phases to

the experiment: In the exploration phase the subject is

repeatedly placed at the entrance to the maze. When the
subject reaches one of the goal boxes, it is removed from
ths apparatus. There is no food or other reinforcer
anywhere in the maze. Backtracking is not allowed. 1In the

association phase the goal boxes are separated from the

T-maze and carried to another room., There the subject is
fed in the red goal box that was on its right, and given a
painful electric shock in the green goal box that was on its

left. 1In the testing phase the subject is returned to the

start of the T-maze.

The key question is: Which way will the subject turn
on the first post-training trial? Most rats will turn
right. Note that n=zither the action of turning right nor
the action of turning left is ever temporally associated
with reward or punishment in this experiment. In order to
solve this task, the subject has to combine two separately
learned facts about the world: 1) that turning right in the
T-maze will bring it to the red goal box and turning left
will bring it to the green goal box, and 2) that the red
goal box is a place where it may be fed, and tne green goal

box a place where it may be shocked. It is this combination




A NETAORK WITH AN INTEZRNAL MODEL OF ITS WORLD PAGE 7-10

“ni:n is  tnought of as the reasoning process, a sort of

transitivity of prediction or primitive modus ponens.

Viewing the solution of tnhis T-maze problem as an
ii1stance of tnhe wuse of an internal model, in this case a
spatial cognitive map, suggests two aspects of the idea of
simulation by internal model that may account for the
popularity and apparent promise of the 1idea. First, the
sort of reasoniny by predictive transitivity mentioned above
is precisely the sort of reasoning that 1is achieved by a
sinulation. To simulate a complex system by computer, we
provide the step-by-step transition dynamics of the system,
and the simulation scheme repeatedly applies these dynamics
to update the state of the simulated model. In just this
way a simulation can combine "right turn predicts (arrival
at) red goal box" and "red goal box predicts food" to infer
tnat food <can be attained by turning right. Such a
capability for propagating predictions 1is an important
component of the ability to generate the consequences of

proposed actions.

The second important aspect of the idea of simulation
by internal model that appears in this simple T-maze example
is that it provides a framework for 1learning about the
environment even in the absence of rewarding or punishing

events. For example, forming an internal model becomes the

At
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purpose and explanation for the T-maze subjects' learning
that turning right leads to a red area, even though no
reinforcing events occur. The problem of learning about the
determinants of all stimuli is much more difficult than that
of merely learning about the determinants of a few
designated reinforcing stimuli. This turns out to be an
important problem for adaptive network research as well as
animal learning theory. Early attempts in both these fields
(e.g., Thorndike, 1911; Clark and Farley, 1955) used
reinforcement to form associalions b between stimuli and
responses. However, as was learned from the latent learning
experinents (Blodgett, 1929), animals do learn 1in the

absence of reinforceing events of any kind.

Reinforcement, being a one-dimensional measure,
provides very little information compared to the torrent of
sensory information available. It has become generally
recognized that intelligent artificial adaptive systems also
must use this additional information (see the discussion of
the "apportionment of credit problem" in Minsky (1961)).
Much of the promise of the idea of an internal model may be
that this concept explicitly encourages and provides a way
of understanding learning in the absence of reward or
punishment. This type of learning involves the construction
of an accurate predictive model, a process that is normally

independent of reinforcement. Once the model is formed,
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internal trial and error through simulation provides a
franework for using the information picked wup from the

environmnent.

7.2 The Simulated Task Environment

In the exanple that we implemented, the experimental
desiin, tne environment, the experimental subjects, and the
alaptive networks to control them, could all be selected for
our convenience. This allowed further simplification in the
design of the reasoning task. The ground plan of the
environment is snown in Figure 7.4. The lower area is used
in a manner analogous to the T-maze, the two regions on the
rizht and 1left being analogous to the rad and green goal
poxes at tne ends of the T-maze. The two enclosed regions
snown in the upper part of Figure 7.4 are analogous to these
sane goal boxes when they have been moved to another room
for association with food and shock in the absence of the
T-maze. That these are actually separate regions is of no
inportance here: The adaptive networxkxs controlling the
Simulatad beasts have only three sensory input lines, one
for sensing being within a3 green region, one for sensing
beinz within a red region, and one for sensing rewarding

stimulation. In terms of this limited sensory vocabulary,
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RED

GREEN

GREEN |8 d RED

Figure 7.4. Ground plan of the simulated environment. The
lower area 1is wused in a manner analogous to the T-maze in
Figure 7.3, the two regions on the right and 1left being
analogous to red and green goal boxes at the ends of the
T-maze. The upper two enclosed regions are analogous to
those same goal boxes when they have been moved to another
room for association with food and shock in the absence of
the T-maze.
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all regions of the same color are indistinguishable. This
1s clearly an enormous simplification of the perceptual

process,

The simulated beasts hnhave only two graded actions:
move to the right, move to the left. These are meant to be
extreme sinplifications of, and yet analogous to, the
rignt-turn and left-turn actions of the T-maze task. In the
exploration phase of the simulation experiment, the beasts
are placed at A, between the two large colored regions
(Figure 7.4), and allowed to wander back and forth randomly.
The Dbarriers at B and C obstruct their movement thereby
preventing them from moving too far away. This insures that
tney eventually gain experience moving to and from both
regions. Thus, all trajectories are along a straight
horizontal 1line between the two barriers. The two upper
goal box areas shown in the upper part of Figure 7.4 are
used in the association phase. For the testing phase, the
beasts are returned to location A between the 1lower two

regions to see which region is entered first,

We next describe the adaptive network and then proceed
through each phase of the simulation experiment, discussing
the experimental manipulations and network changes in
detail. For reference, Appendix D contains a summary of the

details of the three phases of the simulation experiment,
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and Appendix E contains a detailed specification of the

simulated adaptive network model.

7.3 The Simulated Adaptive Network

Figure 7.5 is a block diagram of the adaptive network
design. The network is divided into two major components:
An action selecting mechanism and an internal model of the
environment. The action selection mechanism uses the actual
environment and the model of the environment in exactly the
same way - both provide feedback to evaluate actions
attempted by the action selecting mechanism. The
evaluations by the model and by the environment of the most
recently selected action are added to yield the -evaluation
input to the action selecting component. Importantly, the

feedback loop through the internal model is much faster than

the feedback loop through the environment, and thus proposed

actions can be evaluated by the model so quickly that the
rejected alternatives have very 1little influence on the
environment and the organism's overt behavior, This 1is
accomplished 1in the simulated example system by letting the
motion of the simulated beasts depend not only on the
instantaneous action selected, but also on past values, in

an exponentially weighed manner. The result is that even

Wiy Kbl NS 5 '.“A.lw.wu-.... B T
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Figure 7.5. Block diagram of the adaptive network and 1its
connection to the environment. The action selecting
mechanisn has its choices evaluated via two feedback 1loops;
one tnrough the environment, and one through an internal
model of the environment. If the model is faster than the
anvironment, then the feedback loop through the model will
control overt behavior.
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taough both the action selection and the overt action are
changed and updated every time step of the simulation, the
environment is slightly "viscous" relative to the network
dynamics, acting as a "leaky integrater,” or a system with
inertia that must be overcome before overt action aligns
with the current action selection. A decisive overt
movement only occurs once the system has converged onto a
particular choice of action. Maintaining a particular
action as the one selected for a significant period of time
(about four time steps in the simulated system) causes that

action to become expressed in overt movement.

7.3.1 The Acticon Selecting Component

The division of the adaptive network 1into the action
Selecting and internal model components makes its
construction from adaptive elements relatively simple. All
that 1is needed for the action selector is a bank of action
elements which <c¢orrelate their output, or action, with
increases or decreases 1in the evaluation or reinforcement
input to this subsystem (Figure 7.6). We vill need one
elenent whose action represents the tendency to turn right
and one whose action represents the tendency to turn 1left,

The environment will then resolve any conflict between these

T — e
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Figure 7.6. Detail of the action-selector component of the
simulated network blocked out in Figure 7.5. The elements
correlate their output, or action, with increases or
decreases in the evaluation input.
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two by responding to the difference in the tendencies, much
as our skeletons resolve the conflict between agonist and
antagonist muscles (this is explained in detail in Appendix
D). The action levels are originally chosen randomly, but
if a correlation 1is found between action level and
subsequent evaluation, the choice of action is biased to
make positively correlated actions positively correlated
more likely to be selected and negatively correlated actions
less likely. Mathematically, the momentary action choice of
each element is the sum of 3 random component and a bias or

accumulated correlation component:

Afal(t) = F{ v(t) + B[al(t) } for all actions a (7.1

Where: Afal(t) is the strength with which action a is

selected at time t (contained in the real
closed interval [0,1]);
F{-}] is a bounding function, simply
restricting its argument to the interval [0,11];
v(t) is a random variable, usually normally
distributed with mean 0;
Blal(t) is the bias weight for action a at time t,
an accumulated measure of the
correlation observed between action a and
reward changes (see below).

To correlate actions with subsequent evaluation changes,
each element maintains a short-term memory, known as its
eligibility, of the extent to which it has been active.
When an evaluation change occurs, element biases are
modified according to the extent of their eligibility.

Mathematically the correlation bias weights are accumulated
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as follows:

Blal(t) = Blal(t-1) + C[a] {E(t)-E(t-1)} TA[al(t)
for all actions a (7.2)

Where: Blal(t) is the bias toward action a at time t;

C{al is a learning rate parameter for the bias
weight of action a;

E(t) is the feedback evaluation or reinforcement;

TAfal(t) is the eligibility of action a, an
exponentially decreasing weighted trace of values
of Afal before time t; in the simplest case
TA(al(t) is merely Af[al(t-1).

At the start of the simulation experiment, the bias for
each action 1s zero, favoring neither right nor left
actions. During the exploration phase, the simulated
experimental subjects move back and forth randomly between
the lower large red and green regions of the environment
(Figure 7.4%) without reinforcement of any sort. Since
reinforcenent does not occur, nothing is predictive of
reinforcemnent, and reinforcement is never predicted by the
internal anodel component, Without reinforcement or its
prediction, the action evaluation is always zero, and there
can be no correlations between action and changes in
evaluation during the exploration phase. Consequently, the
bias weizhts remain zero. Once the testing phase has been
reached, an internal model will have been constructed such
that a correlation will exist through the internal model
aven in the absence of any external stimulation. This will

result in the action selector converging on a preference for

e e i A
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one of the actions (this will be discussed in more detail

later).

This sort of trial and error learning system is well
known from the work on Harth's neural receptive field
mapping technique ALOPEX (Harth, 1976; Harth and Tzanakou,
1974; Tzanakou, Michalak, and Harth, in preparation) and
from the learning automata literature inspired by Tsetlin's
work (Tsetlin, 1973). 1In a less simplified system than the
network described here, it would be highly desirable to
modify this action selecting mechanism so that it is able to
use context information in selecting actions. This would
allow it to learn to perform different actions in different
situations or contexts without starting its search all over
again each time the situation changed. 1Instead, it could
remember for each context what actions were most successful
in previous experiences. Trial and error learning
mechanisms can be made sensitive to context in a fairly
straightforward manner (see Michie and Chambers, 1968;
Mendel and MclLaren, 1970; and Section 5). However, it |is
not clear whether the actual current input, or the predicted
input, or some combination of the two should be used as the
context for the action selector. This problem with the
current design is closely related to several others that
emerge when sSequences of actions need to be internally

simulated in order to evaluate possible next actions. An
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additional mechanism, such as a method for clearly
separating actual from anticipated situations, 1is probably
necessary to handle these cases. This example system is
only a first step towards an adaptive network capable of
creating and searching general internal models, and we do
not consider these possibilities further. The artificial
intelligence literature on planning would be highly relevent

to future extensions of this adaptive network mechanism,

7.3.2 The Internal Model Component

The construction of the model of the world is a system

ideatification task, and the solution adopted here follows

Kohonen's suggestion (Kohonen, 1977) for doing system
identification using an associative memory. Kohonen's
general idea was to train the associative memory with sample
input to the system to be identified as the recall key, and

to use the resultant output of the unknown system

as the training pattern to be recalled (Figure 7.7).
If the unknown system has no memory (that is, it simply
implements a function from input to output), then the

associative memory will form a best least squares linear
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Figure 7.7. Kohonen's (1977) suggestion for doing
input-output system's identification with a standard
learning associative memory. The associative memory 1is
trained by presenting paired samples of the input and output
of the unknown system.
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approxination of the unknown function. See Sections 2.4.1

and 4.5,

If the unknown system 1s the environment for an
idaptive system, then this process will yield nearly the
appropriate sort of model. Figure 7.8 is a slightly more
daotailed block diagram of the associative memory based
nacninery used in the simulated adaptive network for model
construction and use. The associative memory in use here
Jiffers from the standard associative memories 1in being
predictive: It produces as its reccllection a prediction of
wnat tne next key will be. (In this sense it is similar to
some of the early models of temporal assoclative memories;
for exanple, Longuet-idiggins, 1968 a, b; Longuet-~-Higgins
2, al., 1370.) 3ections 4.3 and 4.5 more fully describe

pradiction.

Fizure 7.9 shows a detailed wiring diagram of the model
2onstruction and readout machinery. This component consists
2f 3 bank of elements, =2ach responsible for the prediction
> 3 certain feature of the environmesntal stimulation,
available in thnis case as the. separate input lines for red,
sreen, and reward stimclation. As a basis for making these
pr=dictions, ~ach elenent 1is providaed with the current
action s3election fron the aztion selector component and the

nost recent predictions of stimulation
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Figure 7.8. A more detailed block diagram of the adaptive

network (cf. Figure 7.5) showing the central role of a
predictive associative memory,.
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from the other predictor elements in this component. The
fact that predictions of stimulation are used to make
further predictions results in the recurrent architecture

that we see in this network.

These adaptive elements signal their predictions by
responding as they would if the predicted stimulation were
already present. For example, if the 1input information
indicates that an element 1s going to receive strong
excitatory stimulation, then the element becomes highly
active immediately. This property, combined with the
recurrent network architecture, results in the ability ¢to
chain predictive associations of as great a depth as there
are features to predict (e.g., A predicts B, B predicts C,

etec.).

The predictor elements used in this system are those
extensively discussed in Section 4. However, although
sufficient for the simple example system presented here,
these elements may not be ideal for the purposes of
constructing and using an internal model. Without going any
further into the details of this element or the
alternatives, we can note that these elements require the
recurrent connections from each to itself to be made
ineffective (zero and non-plastic) for effective operation

in the architecture chosen for this network., This is easily
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arranged, as it is in the simulated example system, but it
is not an elegant solution, suggesting that there may be
other hidden difficulties. This problem may suggest
directions to proceed in deriving elements better suited to

this purpose.

7.4 The Exploration Phase

During the random wanderings of each simulated adaptive
creature in the exploration phase, the internal model
component is forming a model to predict the red and green
stinulation changes it experiences when it occasionally
wanders into or out of one of the two colored regions.
Figure 7.10 shows the state of the net near the end of the
exploration phase for one of the simulated experimental
sub jects. The four relatively large connections from the
actions to the green and red predictors of the predictor
module indicate that the net has learned that right-moving
actions predict increases in red stimulation and decreases
in green stimulation, while 1left-moving actions predict
increases in green stimulation and decreases in red

stimulation.

The particular snapshot of the network activity in
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Figure 7.10. The state of the network near the end of the |
exploration phase for one of the simulated exp-.rimental ‘
subjects. The four relatively large connections from the
actions to the green and red predictors of the predictor
module indicate that the net has learned that right-moving '
actions predict increases in red stimulation and decreases
in green stimulation, while left-moving actions predict |
increases in green stimulation and decreases in red |
stimulation. !
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Fizure 7.10 shows how this knowledge 1is accumulated. The
right-moving action has been selected more than the
left-moving action in the last few time steps, as indicated
by the greater eligibility of the connections from this
action to the predictor elements, and in fact the subject
has moved right during the most recent time step. This
rightward movement has just brought the subject into the red
region (this 1is 1indicated by the high activity in the red
input while its trace of activity - indicated by the size of
the box - is still =zero). The resultant sensory input
stimulates the red predictor element, causing an increase in
its activity (indicated by the circle of this element being
larger than the square), and this causes an increase in the
eligible connections. The most eligible connections, as we

have already seen, are those from the right-moving action.

The nét result 1is to further strengthen the pattern of

learned associations that we allready see present in these

connections.,

7.5 The Association Phase

After 1000 time sSteps of the exploration phase, each
Ssubject 1is moved to the red goal box, left there for two

time steps, and then provided with full reward stimulation.
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Figure 7.11 shows the network state just after the reward is

provided. Note the large positive connection from the red

predictor to the reward predictor. The net has concluded

that a prediction, or actual occurrence, of red predicts

reward, since the red predictor element was highly active

just prior to the increase in reward stimulatinon. The

eligibilities of the connections from the red predictor are

indicated by the large circles at these connections. Next,

each subject is moved to the green goal box, left there for

two time steps, and then the reward stimulation is removed.

analogous the green prediction

completely process,

By a
becomes z predictor of loss of reward, and the corresponding

connection becomes negative (Figure 7.12).

7.6 The Representation Problem

This examnple system was constructed to be the simplest

possible complete system capable of constructing and using

an internal model. As such a minimal example, it only

begins to address some of the critical issues involved. The
simulated network was provided with a representation of the

environment specially tailored to the task it was to solve.

It had unique input lines for red and green stimulation, and

the environment consisted only of areas that were entirely
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Figure 7.11. The network state just after the reward is
provided. Note the large positive connection from the red
predictor to the reward predictor. The net has concluded
that a prediction, or actual occurrence, of red predicts
reward, since the red predictor element was highly active
Just prior to the increase in reward stimulation. The
eligibilities of the connections from the red predictor are
indicated by the large circles at these connections.
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indicated by the negative connection between the predictor
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Zreen, or entirely red, or neither. The relationships to be
learned between actions and resultant stimulation, and
betwean stimulations, were very simple ones in terms of the
available action and stimulation representations.
Mathematically, a network such as the one used here can only
learn 1linear relationships between 1its representation of
action, stimulation, and subsequent stimulation. To the
extent that the actual relationships depart from linearity,

such a network would be unable to form an accurate model.

One strétegy for solving this difficulty is to retain
the 1linear 1learning rules but Lo attempt to continuously
evolve a representation compatible with that linearity. In
general this is a difficult wunsolved problem, Input
features, output commands, and internal representations of
environmental state (in the example system, environmental
state was not necessary in forming a predictive model) all
need to be developed. Probably the representation
development is best done continuously and simultaneously
with environmental interaction and the use of the model.
This problem 1is closely related to the representation
problem of artificial intelligence. Unfortunately, however,
most of the AI work on the problem is unhelpful in that it
merely attempts to find a good representation for a
particular task rather than to find techniques for evolving

representations in a more general setting. Genuinely
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relevant work includes the feature extraction work in
pattern recognition (Uhr and Vossler, 1961; Bledsoe and
Browning, 1959; Klopf and Gose, 1969), Samuel's checker
player (Samuel, 1959), Selfridge's pandemonium (Selfridge,
1959), and the work on non-linear associative memories
(Poggio, 1975). A fundamental heuristic central to much of
this representation development work is to direct the search
for better representations according to which representation

elements have already proved most useful.

Although the example network was given a sufficient
representation ab initio, and has no capabilities for
representation development, it does serve as a basis for
considering what simultaneous environmental interaction and
representation development may involve. In particular, we
assume that there must be some property of the environmental
interaction that indicates when and in what way the current
representation needs to be changed. If this sort of example
allows us to observe these properties in a simple case, then
we will have made good progress toward making an adaptive

network appropriately sensitive to them.

7.7 The Testing Phase
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In the testing phase, each subject is returned to the
initial location Dbetween the 1lower large red and green
regions. As soon as the subject enters one of these regions
the trial 1is over and the simulation is stopped. O0Of 200
subjects, 141 - over 70% - entered the red region first, a
highly statistically significant result (P<<.005). A second
experiment was also performed in which the 1lower red and
green regions and their barriers were removed during the
training phase, but which was otherwise 1identical to the
first experiment. The testing phase was halted after 300
tine steps and the position of the subject was recorded.
Each of the 100 subjects had moved far to the right, many
timss beyond the original location of the red region, at the
2nd of that time. This 1indicates that the statistical
nature of the primary result 1is due to random movements
bringing some of the subjects within the green region, and
tnus ending the trial, before they have had enough
experience with their internal models to be directed to the

right.

7.3 Superstitious Learning

During the association phase reward 1is provided and

then taken away from each subject while it is in the red and
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green goal boxes respectively. During this time, whatever
action the subject happened to select just before the reward
stimulation 1is changed will be strongly reinforced or
punished by that change. For example, the subject whose
network state is shown in Figure 7.12 happened to associate
the left action with reinforcement, as shown by the larger
bias weight for the left action than for the right action.
One might expect that the effect of these reward changes
would be dependent on whatever action was randomly chosen
just before the reward changes and that the effect on later
behavior would thus be, on the average, symmetrical with
respect to right and left moving actions. To ensure that
this was the case, a third experiment was performed that was
identical to the first one in all respects except that the
action, bias weights were set to =zero just prior to the
testing phase. This insured that there would be no initial
bias either to the right or the left. Of the 100 subjects
in this third experiment, just over 70% entered the red area
first, confirming that the decision to move right can be
made during the testing phase based completely on
information stored in the internal model of the predictor

module.

Figure 7.13 shows the state of the network of one of
the subjects of the primary experiment several time steps

into the testing phase but before either region has been

(SRR - . SR I 7 T TRV PR

i



L
CELL VARIABLES: D EDi
Cirece D Rcriny T- S
BOX - TRACE OF RACT.
SYNRPTIC VARIRBLES:
DIsK -~ EFFICARCY NF’F‘
CIRCLE ~ ELIGIBILITY
BOX - INEFFECTIVE |

N~+4ZMmMaoamnmnDd

A NETWORK WITH AN INTERNAL MODEL OF ITS WORLD PAGE 7-38

PREDICTOR MODULE

GREEN |
RED
REWARD
LEFT
RIGHT

Figure 7.13. The state of the network of one of the
subjects of the primary experiment several time steps into
the testing phase but before either region has been entered.
Notice that the bias weight for moving right (toward the red
region) has become positive, whereas the bias weight for
moving left (toward the green region) has become negative.
The action selecting module happens to choose the
instantareous action causing movement right this time step.
This selection results in an increse in the activity of the
red predictor element, because moving right was found to be
a predictor of red stimulation in the exploration phase.
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entered. Notice that the bias weight for moving right
(toward the red region) has become positive,whereas the bias
weight for moving left (toward the green region) has become
negative. The succesive snapshots of network state in
Figures 7.13 and 7.14 provide an example of how this comes
about during the testing phase. In Figure 7.13 we see the
action selecting module happening to choose the
instantaneous action causing movement right. This selection
results in an increse in the activity of the red predictor
element, because moving right was found to be a predictor of
red stimulation in the exploration phase. At the next time
step (Figure 7.14), we see the prediction of red stimulation
cycling around to activate the reward predicting element via
the excitatory connection established during the association
phase. Thus, as a consequence of the action selector's
momentary choice of the right action, the predictor module,
acting as an internal model, has generated the prediction of
increased reward. Since the right action was selected at
the previous time step, 1its bias weight |is eligible
(indicated by the 1large circle at its bias connection in
Figure 7.14) when the prediction of increased. reward
arrives. Thus, this bias weight is increased, and the beast
is further biased towards moving right. If on the other
hand, the action selector had momentarily chosen the left
action, green stimulation would have been predicted. This

in turn would have predicted a decrese in reward
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PREDICTOR MODULE
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Figure 7.14. The state of the network one time step after

Figure 7.13. The prediction of red stimulation cycles
around to activate the reward predictor element via the
eaxcitatory connection established during the association
pnase. Since the right action was selectad at the previous
Lime step, 1its bias weight is eligible (indicated by the
large circle at its bias connection in Figure 7.14) when the
prediction of 1increased reward arrives. Thus, this bias
weizht is increased, and the beast is further biased towards
noving right,
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stimulation, and the selection of the left action would have

been punished.

Recall that these momentary selections of right or left
actions will not in general be accompanied by actual right
or left movement. The environment responds to the actions
selected in a relatively slow inertial manner: 3everal
action selections 1in the same direction are usually
necessary to cause actual motion in that direction. Both
overt and covert actions are updated every time step of the
simulation. The only difference is that the overt action,
the "physical"” movement, depends not only on the current
covert action selection but also on past selections,
weighted according to recency. Thus a consistently selected
covert action becomes the overt action, while rapid
fluxuations in covert action selection are averaged out. 1In
this way the process of covert, internal trial and error via
the predictive internal model can occur with relatively
little overt action by the subject. No other delaying or
decision making machinery 1is necessary to make thne
transition from covert thought trials to overt movement. In
fact, the action selecting component (referring to Figure
7.5) is completely oblivious to whether it is receiving
feedback from the external environment or from its internal
model. From the action selecting component's point of view,

the acquisition of an internal model merely means that the
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feedback for its action selections returns more rapidly,
significantly easing its prob em of controlling that

feedback.

7.9 Discussion

This section began with a presentation of philosophical
and psychological views of thought as an internal modeling
and simulation process. The construction of the example
adaptive network presented here was guided by and
exenplifies a theoretical perspective. In the authors!
view, there are ¢two novel aspects of this theoretical
perspective: The nature and method of use of the internal
model, and the way in which the construction and use of the
internal nodel is coordinated with continuous environmental
interaction. These two aspects are discussed further in the

rest of this section.

This section has presented a method for adaptive
control based on svstems identification (model construction)
that is extremely general (and apparently little
investigated): 1) use repeated experiments with the

input-output behavior of the system to be controlled to

construct a model which yields similar behavior, and 2) to
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select each control action, first interact with the model,

in an input-output or black-box manner, to determine which
action is optimal in terms of the model. The essential
aspect of the model is that it is a behavioral model: Its
successful use depends only on its input-output validity.
The model can be interacted with to achieve an optimal
response just as the external world is interacted with in
the absence of a model. These perspectives on the nature
and use of a model were summarized pictorally in Figure 7.1.
It should be noted that appropriate general techniques for
this sort of interaction with an environment or model are
not currently well understood. This is an area of current

active investigation by our research group.

Although we emphasize an input-output view of the
internal model, this is not a return to the pre-state-space
ways of thinking characteristic of the work of the 1950s.
Such an internal model will in general include states (even
though the model in the simulated example system did not).
However, we do wish to emphasize that for this use of the

model only the input-output aspects are important.

The second novel feature of this example network is the
method used for coordinating interaction with ‘the real
environment and interaction with the model of that

environment. Consider the approach taken in most artificial

™
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intelligenc : (AI) systems for problem solving or reasoning
about actions, such as SRI's famous robot SHAKY. SHAKY
operates in three identifiable modes. 1In one, he visually
scans the environment and constructs an internal model of
it, aided by a priori knowledge and assumptions. In another
mode, he uses his model of the environment and his current
goals to perform a sophisticated search through the space of
possible paths and actions. This search takes the form of
an internal simulation with backtracking of many of the
possible action paths. Finally, in the third mode, SHAKY

snuts off his internal model and visual apparatus and

.2xecutes "ballistically" his precomputed next action or

series of actions. When the action 1is complete, or some
unusual event ocurs, SHAKY returns to the first mode. A lot
of work in AI has concentrated on the model search step of
the above scenario, without going any further towards
coordinating the model interaction and the interaction with
the real environment. By contrast, the example adaptive
networik presented here performs all three of functions -
model acquisition, model interaction (search), and real time
environmental interaction - simultaneously. If this example
adaptive network 1is of interést, it is not because of its
search capabilities, which are limited and primitive, but
because it is a first step towards integrating the learning,
search and use of internal models of the world. The fact

that this 1integration was possible with little specialized
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machinery - both adaptive elements used have been stuidied
for more primitive purposes, and their interconnection

pattern is not a highly restricted one - 1is a promising

sign.

As mentioned earlier, the example network has been so
constructed that the action selecting component (referring
to Figure 7.5) is completely oblivious to whether it |is
interacting with the real world or the internal model. The
effect of acquiring an internal model is merely that the
thing with which the action selector is interacting begins
to respond more rapidly to contemplated actions, and thus
becomes easier to control. When an internal model is viewed
from this perspective, it becomes clear that there 1is an
even simpler case of the use of an internal model. A
secondary reinforcer is an originally neutral event which
has taken on reinforcing properties by virtue of being
predictive of a primary reinforcer. To a network receiving
this secondary as well as primary reinforcement, the
development of the secondary reinforcer means that
reinforcement for its actions arrives sooner following the
actions than it did previously. The model consists of the
rapid simulation of the tendency of the primary reinforcer
to follow the secondary reinforcer. This results in an
effective environment for internal action selecting elements

tnat is more amenable to learning techniques. In this way
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secondary reinforcement can be seen as a very simple case of

the construction and use of an internal model.

"




SECTION 8
GOAL-SEEKING SYSTEMS OF GOAL-SEEKING COMPONENTS

8.1 Introduction

Klopf (1972, 1979, 1981) has put forward the hypothesis
that neurons are goal-seeking components and that an
understanding of neural function requires us to view animal
brains as goal-seeking systems each of whose primitive
components possesses its own local goal and adaptive
machinery that makes progress toward that goal possible. In
this section we discuss, in rather broad form, some of the
conclusions reached in our study of how goal-seeking systems
might be constructed from goal-seeking components. We
address such gquestions as: How can components possessing
their own 1local goals and means for approaching them
interact so as to produce goal~directed behavior at a higher
level? Can we expect to produce intelligent computer
systems from goal-seeking components? Are there existing
theories that are relevant to these issues? Has this

approach already been tried and largely abandoned due to
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lack of progress? Is there support for the hypothesis that
animal intelligence arises from the interaction of
goal-se:king components? More specifically, is there
support for the idea that neurons are goal-seeking
organisms? We cannot as yet answer all of these questions
in unqualified terms, but as a result of our research we are
able to frame some of them in forms that can provide a rich
basis for future research. Our discussion of these issues
Wwill touch on many different areas, ranging from the
mathematical theory of games to the biochemical regulatory
mechanisms of single cells. It is hoped that this far
ranging, and still largely speculative, essay will provide
the reader, as our research has provided us, with a vivid
sense of Yow intelligence could have evolved, how it might
be understood, and, perhaps, how some of 1its more subtle

characteristics might be produced artificially.

8.2 Goal-Seeking Components

In Section 2 we discussed in rather technical form
various types of goal-seeking behavior. Only some of these
forms, we will argue here, can be expected to yield
interesting forms of higher level behavior in collections of
goal-seeking components. The key issues involve the forms
of environments in which a component can succeed in

achieving, or in making progress toward, a goal (or goals),
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and the kind of information a component can take advantage
of in the goal-seeking process. Some types of goal-seeking
systems can succeed only if their environments always act in
very restricted ways. For example, a thermostat can achieve
its "goal" of maintaining a room's temperature near a
certain set-point only if 1its environment cooperates by
always reacting to the thermostat's control signals in the
manner anticipated by the thermostat's designer. Its
success depends entirely on the adherence of the environment
to restricted forms of behavior. Here we discuss a number
of different types of environments, in increasing order of
generality, that a goal-seeking component might face. We
end the discussion with the observation that the environment
confronted by a living organism is not likely to be of the
restricted form required for the success of most previously

studied goal-seeking strategies.

8.2.1 Learning with a Teacher

Many of the systems commonly studied as goal-seeking
systems can only Succeed if their environments always
provide them with very "high quality" information about what
actions they should take in various situations. Typically,
adaptive systems of this kind produce a response to a
stimulus pattern, and then are told by their environment how

far and in what direction they must change their response in
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order to be correct (a signed error signal). Some systems
have two possible responses and are told whether their
responses were right or wrong (e.g., the perceptron of
Rosenblatt, 1962) [footnotel. The system's goal is achieved
when the error is zero for its response to each siimulus

pattern.

In order for an environment to provide reliable error
signals, it must, in effect, "know" what each response ought
to be. The stimulus patterns for which the environment
knows the correct response, and can therefore provide an
error signal, constitute a "training sequence" (cf. Nilsson,
1965) . Success 1is measured solely by how closely the
system's responses match the correct ones during the
training sequence., The interest in a goal-seeking system of
this type 1s its ability to generalize. After achieving its
zoal of zero error for the training sequence, its responses
to stimulus patterns for which the correct responses are
unknown by the environment provide possibly correct (and

It is important to note that being told if one is right or
wrong 1in the case of only two alternative responses is
equivalent to being given a signed error. 1In fact, it is
equivalent to being told exactly how you should have
responded., We discussed this fact and the misunderstanding
of the perceptron learning rule arising from it in
considerable detail in Section 2.
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possibly incorrect!) generalizations of the environment's
knowledge. But here is the rub. Many environments will not
be able to provide a training sequence because they may not
know any more than the system about what responses ought to

be made.

This type of goal-seeking behavior 1is often called
"learning with a teacher", Teachers interact with their
students in many different ways, but what is meant here |is
that the teacher knows the answers to a set of questions and
provides the student with very informative error signals
that the student tries to reduce to zero. In Section 2 we
pointed out that most such formal teacher-student
interactions are equivalent to those in which the teacher
simply provides a set of questions together with their
correct answers (and the student computes its own error
signal). We therefore arrive at this curious dilemma:
These types of goal-seeking systems can only solve problems
about which so much is Kknown beforehand that explicit and

detailed instructions can be given.

8.2.2 Learning without a Teacher

A digression is in order here to consider what is
sometimes <called '"learning without a teacher”. This term

has been applied to the problem of clas, fyian
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patterns in the absence of error signals or indications of
correct responses. The object of this type of system is to
form 1its own classification scheme based on some measure of
similarity between input patterns. Patterns that are
sinilar to one another are to be placed in the same class.
This problem is also known as the problem of clustering.
The term "learning without a teacher" applied to this
problen 1s misleading in the context of our discussion. We
are discussing goal-seeking systems that receive varying
degrees of help from their environments, and a clustering
algoritnm would appear to require no help at all from its
environment. This is true, but it is also true that its
environment has nothing to do with the success or failure of
the clusterinz system since no interaction with the
environnent is involved. It is an open-loop problem. While
clustering may be an important part of a learning system, we
are interested 1in problems in which a system's environment
does determine success or failure but provides 1little

explicit help to the system about how it should act.

8.2.3 Learning with a Critic

A type of goal-seeking system that can achieve its goal
in 1less cooperative, or less knowledgeable, environments is
one capable of M"learning with a critie" (to wuse the

terminology of Widrow, 1977). The environment of this type
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of system need only evaluate the system's response to each
sensory situation. The crucial point here 1is that an
evaluation can be made by an environment that does not know
what each correct, or best, action is. The critic may not
know enough about the problem in order to say, in effect,
"do this in response to this input." Without this knowledge,
however, it may still be able to say, "whatever change in
behavior you just made was an improvement." A system whose
goal is to maximally satisfy an environmental critic must
effectively search througnh its repertoire of actions for
that which optimizes whatever evaluation function the critic
happens to be using at any time. This type of goal-seeking
behavior is sometimes called "reinforcement learning" (e.g.,
Mendel and Mclaren, 1970). The critic can be viewed as
providing "rewards" and '"penalties"™ to the goal-seeking
system when its behavior becomes, respectively, better or
worse with respect to whatever criterion is being wused for
evaluating actions. Alternatively, one could effectively
place the critic inside the goal-seeking system and speak of
the system as possessing a preference ordering of its
inputs. Using this formulation, we say that the goal of the
system is to cause its environment to provide inputs that
are maximal according to this order. This 1latter view 1is
more general and was adopted 1in our more technical

discussion of Section 2.
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Reinforcement learning systems are cabable of using the
critic's information to provide knowledge beyond that
possessed by the critic. They can determine the actual
structure of good responses. A critic need not have this
knowledge from the start, but a teacher, 1in the sense
described above, must start with this knowledge for a rich

set of cases.

In many cases the environment of a goal-seeking system
may not even be able to provide evaluations of the system's
actions that are constant and reliable. A goal-seeking
strategy that can make progress under the guidance of a
reliable critic may not be sufficient to operate with an
unreliable, or noisy, critic. Problems characterized by
constant but noisy critics are sometimes called "decision
problems under uncertainty," and strategies that are useful
under these circumstances are a step more general than those
recguiring consistent evaluations. Methods for succeeding in
thes2 types of environments are fairly well studied as in
the theory of 1learning automata which commenced with the
work of Tsetlin (1974). Another way in which an environment
can be 1less helpful is by being able to provide evaluatory
information only occasionally. Achieving the goal of
satisfying an occasional critic presents very considerable
difficulties which have not been surmounted by any general

methods. It 1is this type of environment to which we now

P
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turn.

8.2.4 Learning with an Occasional Critic

Although a system capable of learning with a critic
need not have an environment as cooperative or as
knowledgeable as that required for learning with a teacher,
its environment must still provide helpful evaluatory
information. What if the environment provides a critic, but
one that only occasionally offers advice? Or, viewed in a
slightly different manner, what if reward and penalty events
accur only seldomly? A goal-seeking system that performs
well under the guidance of a constant critic may not have
much of a chance of finding action sequences leading to such
isolated rewarding events, This 1involves the well-known
"apportionment of credit" problem, If a rewarding event
does occur (e.g., winning a game of chess), how do you
apportion credit among all of the various actions taken
before the reward? This is closely related to the problem
of optimizing an evaluation function that has large
"plateaus" or "mesas™; that is, one that shows no variation
over large areas (Minsky and Selfridge, 1960). The search
for peaks in an evaluation function is greatly facilitated
by the presence of broad "foothills," and in their absence a

Ssearch method can become inefficient to the point of being

useless.
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One form that a partial solution to the apportionment
of credit problem can take is the effective "creation" of
foothills surrounding the 1isolated peaks provided by an
occasional or late critic. In order to do this a system
must be sensitive to a multitude of environmental signals in
addition to the critic's occa§ional evaluation. This
information can form the substrate out of which "foothills"
can be constructed. If a system can learn from 1its
experliences that a particular type of action in a particular
type of sensory situation can make the occurrence of a
rewarding event more 1likely, then it <can interpret the
occurrence of that sensory situation itself as a step in the
right direction. Of course, the environment must contain
regularities that can be discovered and explcited, but these
regularities need not be "prepackaged" and transmitted over
predetermnined teacher or critic channels. In other words,
the environment of the component may contain many sources of
information some of which can act as useful critics, but the
component does not know from the beginning what sources of
information are important in this way. In addition to
learning what it must do to satisfy the occasional critic,
it must learn to recognize other sources of useful guidance

information.
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Most organisms find themselves in environments that act

as occasional critiecs. The environment implicitly acts as a

critic by occasionally providing sensory stimulation

acts, through genetically determined mechanisms,

that

as

reinforcement. (We can avoid the <considerable controversy

surrounding the meaning of reinforcement by accepting,

our present purposes, the operational view

that

for

a

reinforcing event is any event that alters the likelihood of

the organism's preceding actions. Dennett's, 1978,

essay

"Why the Law of Effect Won't Go Away" provides an excellent

view of why some events might be reinforcing for

But only rarely +<is an animal provided with

reinforcement gradient that can simply be <c¢limbed.

animals.)
a neat
This

does happen in the animal kingdom, as when a bacterium

encounters a nutrient gradient 1leading up to

the most

profitable place to eat, but the world is usually not so

helpful. The world does provide, however, a

wealth

of

information that can be used to "figure out" how to cause

reinforcing events. Experience can show, for exaample,

that

if food is seen in the distance, then eating it can be made

more likely by moving in its direction! An organism

sufficient complexity) 1is able to construct for

advice a useful critic would provide by using the wealth

(of
itself the

of

information 1its senses, tuned by its evolutionary history,
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provide. We think that one of the primary uses of
associative learning capabilities is to permit a
goal-seeking system to, in effect, create its own foothills

out of originally neutral sensory stimulation.

This is the sort of goal-seeking behavior that our
interpretation of Klopf's hypotheses attributes to
individual neurons. They are organisms that seek
reinforcement and are able to obtain it in environments that
do not provide explicit help. Early adaptive network

theorists did not study networks of components having this

kind of robustness.

8.3 Networks of Goal-Seeking Components

We cannot characterize any precise level of
goal-seeking capabilities that components must possess in
order for an interacting collection of them to exhibit
"higher-level"” goal-seeking behavior, by which we mean
goal-seeking behavior that is more sophisticated than that
of which the components themselves are capable. Instead, we
see a spectrum of possibilities in which the potential for
interacting collections to exhibit emergent behavior
increases as the sophistication of the components increases.
We have a sense of some extreme cases. A computer, for

example, is constructed from non- goal-seeking components

e s

e o i 5 i £ ot | v




———— —

GOAL-SEEKING SYSTEMS OF GOAL-SEEKING COMPONENTS PAGE 3-13

and, altnough it can exhibit a very high level of behavioral
complexity, cannot be said to be a goal-seeking system
(altrough it c'n certainly be programmed to become one). A
network of components each of which requires an explicit and
knowledgeable teacher in its environment (e.g., a network of
perceptrons) tends not to produce behavior of a
significantly higher 1level than that exhibited by the
components themselves. At the other end of the spectrum, we
see that nhuman societies are capable of solving problems
that individual humans cannot, and, if Klopf's neural
hypothesis is correct, then the brains of the more
pnylogenetically advanced animals provide other examples of
collections of goal-seeking systems that can solve more

complex problems than their components can solve.

We think that the characteristics of component systems
most relevant to their potential for interacting to exhibit
higher-level behavior are as follows:

1) How much knowledge a component's environment must have,
or how much cooperation it must give, in order for the
component to be able to make progress toward its goal.

2) What amount of information the component can take
advantage of in pursuing its goal.

We think that as components become more capable of adapting
in less structured environments and come to use more

environmental information in pursuing their goal, the
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likelihood that they <can form the basis of networks with
higher-level behavior 1increases. We think it is the
conjunction of these two properties that is important. A
high level of performance in one of these areas without a

high level in the other (if this situation is even possible)

would, we think, be insufficient.

de are not able to prove this conjecture, but we can
indicate why we think it is true. A component of a complex
system has as its environment aspects of the whole system's
external environment and an environment provided by its
interactions with other components. If each component
always acts in its own se2lf-interest, then the environment
of any given component cannot always be explicitly helpful.
In fact, due to the self-interest of all of the components,
any component's immediate world may be a rather hostile
place. A component must not be completely stymied by this
adversity but must do the best it can under the
circumstances. But how can a group of selfish individuals
possibly form a coherent structure? The answer lies in the
possibility for cooperation. In some circumstances the
components of a cnoperative zroup can achieve more progress
toward their own goals than they would be able to achieve by
always unilaterally acting for their own best interests. It
is a high degree of inter-component communication that forms

the substrate in which cooperation can take place. Much of
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the rest of this section deals with what 1is meant by
cooperation, how it can come about, and how it can 1lead to
systems capable of solving problems +that the individual

components, working alone, cannot solve.

8.4 Games and Cooperation

If we are to study how goal-seeking behavior can arise
from a collection of goal-seeking components, each operating
solely according to its self-interest, we must develop a
view of what might constitute the goal of the collection.
In our discussion ¢f goal-seeking components, we assumed
that the progress of a component toward its goal could be
determined by the values of an error-signal (in the case
requiring an explicit teacher) or a payoff, reinforcement,
desirability criterion, or performance index (in the case of
learning with a critic, or reinforcement learning). The
goal of a component is to minimize or maximize (as the case
may pe) this criterion. In most formal studies the
desirability criterion is modeled as a number, or at least
is measured on an ordinal scale, so that it is clear what
constitutes an improvement in performance. But when can we
say that the performance of a collection of components, each

having its own desirability criterion, improves?

Tne generalization of the problem of optimizing a

- - : M&ﬁ‘éﬁn’mm . -

[



3

GOAL-SEEKING SYSTEMS OF GOAL-SEEKING COMPONENTS PAGE 8-16

single desirability criterion to the case of many
desirability criteria constitutes the Theory of Games of von
Neunann and Morgenstern (1943), also known as Multicriterion
Decision Theory, and, extended to dynamical cases, as
Generalized Control Theory (Ho, 1970). It is game theory
that 1s most relevant to the study of goal-seeking systems
of goal-seeking components. In fact, it requires a
formulation as general as a game to even begin to express
with any precision notions such as coalition, team,
cooperation, trust, and threat. These concepts become
meaningful the momnent one considers optimization under more
than one criterion of performance. This situation arises in
organizations of all types, including societies, and indeed
any collection of goal~seeking components. If neurons are
in fact goal-seeking organisms, then the concepts of game
theory also provide a starting point for the study of neural
organization (and it would not be surprising that social
analogies to neural function seem appropriate as 1in Crane,

1978) .

Game theory has never had a significant role in studies
of machine intelligence. We think this is largely due to
the fact that game theory provides help in formulating
problems but provides very little help ir actually solving
them. For example, game theory says almost nothing that is

useful for the design of a chess playing program. But when
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we consider the construction of problem solving systems from
components that are robust adaptive systems, then, by the
technical definition of a game, such a system plays a game,
and the adaptive strategies of the components collectively
provide an algorithm for playing the game. Games that arise
in this way c¢an Dbe far simpler than games like chess or
checkers, but successful strategies for playing them c¢an
provide solutions to what are far from trivial problems.
Game theory "applied" at this level 1is beginnirg to find
important applications in the field of problem solving by
distributed processing systems (e.g., the approach to access
control of Yemini and Kleinrock, 1978, and Brooks, 1980) and
in the study of evolution (e.g., Dawkins, 1976;
Maynard-Smith, 1978). We believe that concepts from game
theory are relevant for the study of brain function, but
they require some notion of 1local goals in order to be

applicable in their technical sense.

8.4.1 Group Optimality

Consider a collection of goal-seeking components in
which each component receives its own payoff or
reinforcement signal from its environment, or, more
generally, in which each component has its own preference
ordering on its inputs. Further, suppose that the input a

component receives depends not only on its own actions but
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. n.oonents,  This situation

L S .3 a function of the
10 e >omponents, Each
Sy Tame If the preference
SRS R ; n-nnar  Of the collection
anil  2acn e eloe s 0 s+ . a7 from o its environment, then
primality tor Lo 2ruug .3 a'n1aved by maximizing this
comnon preference ordering. [In tnis case of components with

no conflicts of interest tne problem reduces to the single
criterion case we have already considered. Such a group is
often called a team (Marshak and Radner, 1972). The
associative search network that we described in Section 5 is

a team of adaptive elements in this sense.

If the preference orderings of the components differ,
the situation becomes much more complicated. The input
situation that is best for one component may not be best for
another. In other words, it may be impossible for the
collection %o act so as t> maximize all of the preference
criteria at the sama time. An example is provided by the
special case of a zero-sum, two-person game in wnich what is
best for one player is, by jefinition, worst for the other,
Other examples occur whenever the preference orderings
depend on tne allocatiyn of 1limited resources (e.g.,
resources in an economi: system, computer processing

resoures, transmission time in a picket radio network). In
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fact, multicriterion decision problems that involve
conflicts of interest, or require tradeoffs, are probably

the rule rather than the exception in most domains.

We want to describe two game theoretic concepts that
provide a starting point for considering how a system of
goal-seeking components might itself be goal-seeking. The

first 1is the notion of an equilibrium point (sometimes

called a Nash point) of a game. An action of the system
(consisting of the individual actions of each of its
components) is an equilibrium action if no single component
can improve 1its own local payoff by unilaterally changing
its own action. Examples of this kind of equilibrium may be

provided by the driving styles that predominate in various

cities. The aggressive driving style of many large cities
might by considered an equilibrium point of some
appropriately defined game of transportation. Any
individual driver takes serious risks by driving less
aggressively than most other drivers. More efficient
transportation may be possible if all, or most, drivers use
different styles, but in the absence of this kind of
collective decision, it is optimal for a driver to drive

aggressively (because everyone else does).

For many games there exist collective actions that are

more preferable to each of the players than any of the

froi
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equilibrium collective actions,. In other words, 2
collective action that is stable with respect to unilateral
individual actions (an equilibrium) does not necessarily
provide the highest payoff to each of the players thnat is
possible. For exanple, traffic flow might be improved so
that nearly every driver can expect to get to his
destination more quickly if nearly every driver adopted a
driving style more courteous than the aggressive equilibrium
one. But a player can take advantage of this kind of
situation by acting so as to improve his own performance at
the expense of other players (a few aggressive drivers among

many cautious ones can often make very good time).

A collective action that a single 1individual can
improve upon according to its own preference ordering only

at the expense of others 1is called pareto-optimal. Some

pareto-optimal actions in a game may be better for all
players than any of the possible equilibrium acticns (those

that are better constitute the game's negotiation set), but

these actions are unstable. It requires cooperation among
the players in order for these collective actions to be
maintained. In a game the term cooperation is applied to
any means of introducing dependencies among the actions of
the players (and is therefore used in a sense more technical
than the common wusage). These 1interdependencies may be

enforced by pre-play communication 1leading to a binding

I
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agreement on a collective action. All forms of cooperation

require inter-player communication.

Precisely which collective action constitutes the best
and most equitable solution of a general n-person game is
not automatically clear. Various proposals have been made,
but each has certain shortcomings (see Luce and Raiffa,
1957). It is <clear, however, that the solution should
belong to the game's negotiation set and that cooperation
among the players is required to achieve it in the general
case. Unless the goal-seeking components of a system
cooperate, they must generally settle for 1lower individual

payoffs than are possible,.

8.4.2 Goal-Seeking Systems as Game Players

One of the fundamental assumptions of all the classical
game theoretic studies has been that the players know the
entire structure of the game from the start. That is, they
know what payoff each player will receive for each possible
combination of individual strategies. The emphasis of these
Studies 1is 1largely on the explication of what constitutes
the game's solution and all of this concept's associated
complexities, There has been relatively little discussion
of algorithms for attaining a solution (whatever it may be)

for the case in which the structure of the game is not known
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a priori. In this case, the players must accumulate
knowledge about the game by performing a collective action,
receiving their respective payeffs, incorporating the
kxnowledge so gained into their decision algorithm, and then
playing again. The problem of finding a game's solution via
"iterative-play" under these restrictions is the
multicriterion generalization of the usual function
optimization problem, and it is this problem in which we are
most interested. The general paradigm suggested here 1is
recognizable as the "generate-and-test" procedure that forms

the basis of many Artificial Intelligence programs.

The research begun by Tsetlin (1974), concerning what
have since become known as "learning automata," illustrates
how goal-seeking components that are sensitive only to their
own payoff signal (and nc other input information) can
function as players in a gZame. Narendra and Thathachar
(1974) provide a good review of this research. A collection
of zoal-seeking components, each capable of improving its
performance 1in a suffiently general type of environment (in
the case of learning automata, environments that provide a
constant but unreliable critic), will naturally converge to
an equilibrium play of the game. A collection of such
indiependently operating goal-seeking components is not able,
however, to converge to any solution that 1is not an

equilibrium point since they do not communicate with one
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another. We do not Know of attempts to extend this research
to produce systems that are capable of finding a game's
better-than-equilibrium solutions. Some means of

inter-component communication must be introduced.

We think that the adaptive elements that we have
developed based on Klopf's notion of a heterostat have
precisely the characteristics that will permit collections
of them to achieve solutions in a game's negotiation set,
These adaptive elements are sensitive to more information
than just their own payoff signals. This context
information can include information about what actions other

elements are performing.

8.5 Coalitions and Cell Assemblies

For the "iterative-play" or "generate-and-test"
paradigm which we have been discussing it is possible to
give a more concrete view of forms that cooperation can
take. One way to improve a generate-and-test strategy is to
find some way of being very selective in generating
structures,. One should try to test only structures that
have a high likelihood of being improvements over structures
already tested. One of the most frequently suggested
methods of doing this is to generate new structures that are

novel recombinations of parts of structures that have

N
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already proven successful. Additional power can be achieved
by somehow identifying what parts are 1likely to be
important. Selfridge (1978) describes this approach, and it
has been studied extensively by Holland in the study of

analogs of the process of evolution through reproduction and

natural selection (Holland, 1975).

A striking and -easily observed example of the
recombination approach is seen in the evolution of
television programs. Television programming has become an
almost explicit example of a single criterion optimization
problem: Maximize the Nielson rating. Since a television
series is characterized by many attributes, this
optimization problem can be viewed as a special case of a
game in which each player (whose actions are the possible
values of one of the attributes) shares the same payoff
measure or preference ordering. (Actually a television
network is attempting to optimize its entire schedule, and
an explicit game 1is played with the other networks. In

addition, other criteria, such as production cost are also

involved.)

It 1is increasingly clear how network programmers
generate new series. One strategy is to produce a program
that exaggerates certain features of an ~lready existing and

successful program, One sees sequences of programs
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containing more and more of certain characteristics. This
is straightforward hill-climbing and does not necessarily
involve cooperation among program attributes. Another
method is to produce programs that are novel combinations of
attributes of programs that have already proven _successful
(e.g., "Police Woman"). A very successful program will
generate numerous "spinoffs" which have its major attributes

mixed with a variety of others.

A recurring group of attribute values characterizing a
successful program and frequently occurring in numerous
spinoffs might be viewed, from a game theoretic point of
view, as the action of a cooperating collection of players -
a coalition or, in genetiecs, a co-adapted set of alleles.
From an individual player's point of view, it is better to
perform a particular action when the other players 1in the
group are performing certain specific actions. 1If players!
actions are attributes for television programs, then this
cooperative process will cause constellations of features to
occur together frequently., These constellations can then be
used as parts of the recombination process which can, in
turn, recombine to form higher level parts. This leads to a
generate phase of the generate-and-test paradigm that tends

to produce structures having high likelihoods of success.

This provides a rough view of one way 1in which
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cooperation in the game theoretic sense can occur and what

problem solving advantages it may provide. There is a close
relationship between this view and cooperativity in neural

systems. If the goal-seeking players are neurons, one

arrives at a wview of cell assemblies as coalitions in the

literal game theoretic sense. The view has been put

forward, notably by Arbib (1978, 1981a, 1981b) and Amari and
Arbib (1977), that important phases of neural processing
might usefully be thought of as types of relaxation
processes in which consistent interpretations of input
mutually excite one another and compete with rival
interpretations through inhibitory interactions. The
reticuiar formation model of Kilmer, McCulloch, and Blum
(1969) is the first neural model to exhibit this form of
cooperation. Studies based on this view provide interesting
examples of how cooperation can arise in plausible neural
architectures. They do not, however, make contact with the
literal game theory notion of cooperation since the
goal-seeking nature of the components is not made explicit.
We think that these studies provide an important part of a

more general view of neural cooperation in which there is a

sense of "why" components might come +to interact 1in this

manner.,
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8.6 Heterostats as Cooperating Game Players

We mentioned above that studies of goal-seeking
components as game players show that, when acting in
parallel with no inter-component communication, they are
able to converge to one of a game's equilibrium points.
Tsetlin's learning automata studies, for example, show this
(Tsetlin, 1974) . Not one of these studies, however,
considers the case in which the goal-seeking components are
able to communicate among themselves. Tsetlin mentioned the
potential importance of inter-component communication but

did not pursue it.

The adaptive elements that we have developed based on
Klopf's heterostat concept are sensitive not only to
reward/penalty signals but also to other signals that
provide information about the sensory situations in which
actions are performed. These adaptive elements are capable
of learning to perform the optimal action in each sensory
situation (under certain conditions) as illustrated by the
associative search network described in Section 5. In the
study reported there, the adaptive elements comprising the
network were not interconnected, and we assumed that the
sensory situation in which an element acted was provided
solely by an input vector generated external to the network.

However, if recurrent connections were to exist among the
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adaptive elements, then the input to each adaptive element
could depend on the internal situation consisting of the
actions of the other players as well as the external
environment situation. These recurrent connections can form

the basis of cooperative behavior.

Suppose, for example, that a group of adaptive elements
fire together at a particular time, and that this activity
pattern (i.e., the network's collective action) produces a
response from the environment that ranks high according to
the preference orderings of the elements 1in the group.
Since each element fires 1in the context of the others'
firing, the high preference measure will cause excitatory
connections to form among the elements in this group
(according to the learning rules we have been using). The
result is a cell assembly that will tend to become active if
any of its constituents become active. Similarly, 1if the
firing of a group of elements results in a response of low
preference, then the eleme 's will tend to become mutually

inhibitory.

The development of cell assemblies in this manner is
similar to the theories often proposed, beginning most
explicitly with Hebb (1949), However, what we are
suggesting takes an important step toward making the

intuition behind these theories more precise. If the
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elements are goal-seeking systems, we can say that a cell

assembly forms because coordinated activity furthers

progress toward the goals of the elements forming the

assembly. The use of closed-loop learning rules (Hebb's
suggested learning rule is open-loop) allows us to make this
view explicit. In order to make the notion of
cell-assembly-as~coalition more than a superficial metaphor,
it seems necessary to endow the components with their own
local goals. Further, if the elements are capable of
achieving progress toward these goals in a general class of
environments, and can communicAate with one another, then one

would expect such elements to assemble because it is better

for them if they do.

8.7 Cooperation by the Creation of Environments

The formation of cell assemblies, or coalitions, as a
form of cooperation is perhaps the simplest form that
cooperative behavior might take. It requires each component
to sense the actions of other components in order to detect
situations in which its activity will yield a high payoff.
Goal-seeking components can interact in another way if they
are able to provide each other not only with neutral context
information but also with rewards and penalties. Klopf has
suggested that components ought to be able to communicate

with one another by means of signals that can take on
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reinforceing qualities, a capability he described as the

abiltity to wuse generalized reinforcement (Klopf, 1972,

1931). We indicated above that this capability can provide
3 means for a component to construct for itself the advice a
useful critic would provide if a constant or reliable critic
were not available in its environment. But the ability of
components to communicate via non-neutral signals can
provide the basis for other forms of organizational

capabilities.

Suppose we want a goal-seeking system to do something
for us. If we know what the system's goal is, can sense the
system’s actions, and have enough control over the system's
inputs, we can arrange contingencies in its environment to
cause It to do something that we want done as it pursues its
own goal. By doing this we, in effect, use its goal-seeking
capabilities for our own ends. We create an environment for
the system in which 1its goal and our own are the same.
Since a goal-seeking system may have capabilities that we do
not have ourselves (it may have access to information we do
not have and have specialized control capabilities), we are
able to cause problems to be solved that we are not able to
solve ourselves. We can "tap" another goal-seeking system's

31oal-seeking capabilities.
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3.8 Control Strategies for Problem Solving

The preceding discussion related cooperativity in games
to the generate-and-test paradigm which has been exploited
in many artificial systems. We viewed the generate-and-test
procedure as a means for finding structures that optimize
some measure of desirability or performance. By restricting
ourselves to this paradigm, we did not wish to imply that it
is the only paradigm in which the problem solviag power of a
system of goal-seeking components can be manifested. While
we do think that the generate-and-test paradigm is basic to
problem solving procedures (Dennett, 1978, argues that it is
the only way to create novel solutions), it provides only
one part of efficient problem solving control strategies.
The "monolithic" application of generate-and-test to a
problem (formulated as an optimization problem as discussed
above) 1is likely to disregard important information that can

be used to guide the solution procedure.

All that we have sald about generate-and-test, however,
can be extended to the problem of adaptively forming more
complex strategies for problem solving if we recall that the
adaptive power of the components we have considered permits
them to wuse information other than just a measure of
performance. They are able to learn to perform the optimal

action in a variety of input situations as illustrated by
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th2 associative search network (Section 5). This additicnal
information can indicate, along with other things, the state
of the problem solving procedure. In other words, the
search performed need not be a "blind" search as suggested

by the stark form of the generate-and-test paradigm.

An example is useful  here. Imagine the problem of
tuning a television, all of whose controls are very far from
their optimal settings. This task requires a search through
the multidimensional space of control settings for the
setting that maxinizes some measure of picture clarity. It
is wusual to formulate this task as a function optimization
problem. But this formulation applies equally well to the
problem faced if we had access to the controls and were
provided with a meter that registered "picture clarity" but
were not allowed to see the picture itself. In actuality,
the problem we solve is really quite different. We do see
the picture, and we make extensive use of information it
provides other than just its clarity. We quickly gain a
sense of what effect each knob has on the picture. If the
picture is rolling, we can (after sufficient experience)
directly alter the appropriate control. Similarly, if it is
too dark, we can directly change that too. The picture
provides information that tells us what to do. Different
actions are appropriate for different pictures; that is, in

different sensory situations. Consequently, tuning a
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television is not a standard function optimizaton task but
is 1instead an example of what we have called an associative
search task (Section 5). 1In solving it, we use a strategy
more complex than a unitary hill-climbing procedure. (In
fact, labels such as VER and BRT on the control are useful
only because this is the case: These words do not describe
a scalar clarity measure but rather describe the picture
itself.) The strategy is to search for the best rules of the

form "in situation X, do Y" for a given set of situations.

It is our 1impression that there have been two
approaches to solving these kinds of problems and that they
have not been integrated as thoroughly as they could be.
One approach, as we have just discussed, is to view these
problems as function optimization tasks in which much of the
avallable information is neglected. The other approach
focuses on control strategies for applying a given set of
rules, or "productions," of the form "in situation X, do Y."
In this approach the function optimization aspects of the
problem tend to be ignored since either a fixed set of
productions is used or only simple methods are wused for
generating new productions. We think that a combination of
these two approaches can yield generally useful methods for
solving problems of this kind. Qur associative search
network (Sections 5 and 6) illustrates some of the

possibilities in a simple form.
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3.9 Neurons as Goal-Seeking Systems

Klopf hypothesized that neurons are goal-seeking
systems that are able to make progress toward their goals in
a rather general class of environments and that possess
sensitivity to wide ranges of contextual information. Klopf
has argued for the biological reality of this hypothesis by
indicating tne kinds of data it might make understandable
(Klopf, 1972, 1981). In Section 4.7 we put forward
hypotheses about how neural mechanisms could implement

adaptive strategies of the required complexity.

However, all of this empirical support 1is, at best,
circumstantial: Certainly many other hypotheses are
consistent with this range of observations., Here we discuss
another 1line of support which, while certainly indirect and
speculative, seems to wus to be particularly compelling.
This 1s an evolutionary argument based on the adaptive
capabilities observed in freely 1living wunicellular (or
acellular) organisms. Neurons are not, of course, freely
living organisms, but it seems plausible to wus that they
possess mechanisms that are not too distantly related to

those of unicellular organisms.

In their classic work The Orientation of Animals:

Kineses, Taxes and Compass Reactions (1961), Fraenkel and
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Gunn discussed a number of methods used by animals for
finding and remaining near light or dark areas, warm or cool
areas, or, 1in general, for approaching attractants and
avoiding repellants. One of the most primitive mechanisms
is a strategy that they called klino-kinesis. The most
intensely studied example of :klino-kinesis occurs in the
behavior of various types of bacteria such as Escherichia

coli , Salmonella typhimurium, or Bacillus subtilis. This

manifestation of klino-kinesis, Known as bacterial
chemotaxis, was discovered 1in the 1880's and was recently
reviewed by Koshland (1979). These bacteria propel
themselves along relatively straight paths by rotating (!) a
flagellum. With what at first appears to be random
frequency, they reverse flagellar rotation, thus causing a
momentary disorganization of flagellar filaments. This
causes the organism to stop almost instantaneously and
tumble in place. As the disorganized flagellum continues to
rotate in the new direction, its filaments reorganize
causing the organism to be again propelled along a straight
path. Consequently, flagellar reversal causes a random

change in direction of travel.

Adaptively wuseful behavior results because the
frequency of flagellar reversal 1is modulated by the
direction of movement with respect to levels of attractants

and repellants. Reversal frequency decreases if movement is

W oy G s« o AN - o m m ey




- — e = o

GOAL-SEEKING SYSTEMS OF GOAL-SEEKING COMPONENTS PAGE 8-36

toward higher attractant concentrations and 1increases if
novement 1s toward itower concentrations. Repellants have a
similar effect, mutatis mutandis,. This modulation of
flagellar reversal biases locomotion so that the organism
approaches and remains near places of maximal attractant
concentration or minimal repellant concentration, It is a
very effective strategy, particularly when gradient
information is very noisy. Koshland (1979) describes this
type of behavior and the underlying biochemical mechanisms
in great detail., Selfridge (1978) emphasizes the generality
of this type of adaptive strategy, which he calls the run
and twiddle strategy, by describing it as follows: If
things are getting better, keep doing what you are doing;

if things are getting worse, do something else.

One sees in these single cells the -existence of
goal-seeking behavior. The receptor repertoire and
chemotaxic responses of various species of bacteria indicate
that they either move toward chemicals that are needed for
surviva. or, more generally, move toward conditions that
favor their survival (Koshland, 1979). It is completely
clear, moreover, that the strategies used to make progress
toward these goals are closed-loop strategies that require
short-term memory in order to detect gradients. Changes 1in
a cell's receptor activity are caused by the cell's actions

by means of a chain of influences that passes from the motor
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apparatus, through the external environment, and then back
to the input apparatus of the cell. Memory 1is required
because this feedback path requires time to be completed.
The locomotory manifestation of this adaptive strategy in a
freely swimming organism makes the closed-loop nature of the
interaction obvious. Moreover, it is just this sense of
what a bacterium is doing that renders the regulatory
mechanism intelligible. It would be much more difficult to
understand this mechanism if one had to consider it
completely outside of its role in guiding locomotion. There
would be no sense of its function and adaptive significance,
Neurons, on the other hand, continue to be studied without
consideration of the possibility that important information
is passing from the neuron, through its environment, and

then back as modifications in afferent signals.

Chemotactic responses have been suggested as possible
mechanisms for guiding fiber outgrowth during neural
development. Although numerous trophic factors may be
involved, no conclusive experimental support for this
hypothesis seems to exist (see Lund, 1978). We are not
suggesting, however, that neurons necessarily use literal
forms of chemotactic responses to quide growth and migration
during development. Rather, we are suggesting that in fully
developed nervous systems neurons may use closed-loop

adaptive strategies similar in 1logical structure to
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chemotactic strategies. Instead of actual spatial movement
there need only be a kind of logical or virtual movement as
a neuron's output influences 1its input. LLike bacteria,
neurons possess receptors located in their membrane, or just
inside, that detect chemical signals from their
environments. The sensory processing system produces
signals that control the motor response of the bacterium by
altering the probability of flagellar reversal. Neurons
similarly respond +to afferent signals, transmitted by
chenical means, by means of chemically mediated processes
whose details are not yet understood, and produce "motor"
responces consisting of action potentials. Of particular
interest is the fact that some bacteria respond to changes

in membrane potential in the same way they do to changes 1n

attractant or repellant 1levels. In B. subtilis, for
exanple, increases 1in membrane potential cause tumble
suppression ("running") and decreases cause tumble

generation ("twiddling") (Miller and Koshland, 1977) (cf.
Klopf's hypothesis about neural goal-seeking behavior.) What
tends to Dbe disregarded in the study of single unit
information processing is the possibility that important
aspects of a neuron's behavior involve its abiltiy to
influence 1its own 1input when operating 1in 1its usual

environment.

We think that the similarity between the mechanisms
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producing goal-seeking behavior in freely living cells and
machinery within the neuron provides the most promising line
of support for the hypothesis that neurons do implement
closed-loop, goal-seeking strategies. We think, along with
Koshland, that the continued study of the numerous
commonalities between bacterial chemotaxis, and other simple
forms of adaptive behavior in single cells, and the
signaling systems of neurons 1is a promising avenue for
future investigation. We hope that our theoretical research

will help 1lay the groundwork for thorough empirical

investigation.

8.10 A Sense of Neural Function

Maintaining the evolutionary point of view hinted at in
the preceding section, we can see the outlines of a vivid
sense of neural function. Let Js suppose that as neurons
became specialized 1in fast electrical signaling, they did
not lose all of the properties of their less specialized
ancestors. Let us suppose that these ancestors were able to
follow chemical gradients in their fluid environments,
approaching some chemicals and avoiding others, using
hill-climbing strategies implemented by wmechanisms not
unlike those we see 1in present day bacteria and other
unicellular organisms. Since these strategies obviously

confer great adaptive advantages, we would expect them to be
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refined and extended by the evolutionary process. We
tnerefore arrive at the view that neurons are using
strategies closely related to those that are successful 1in
promoting the survival of freely 1living cells. The
environments in which neurons "swim," however, consist of
the very complex and abstract contingencies of the brain of
which they are a part and, more indirectly, of the organism
and its environment to whose survival they contribute. Of
course, we do not mean "swim"” in a literal sense, but the
term provides a vivid image of the essential closed-loop
nature of a neuron's interaction with its environment. The
consequences of motor output are felt, at varying later
times, as changes in the patterns and intensity of afferent
activity. When a cellular action is followed by cellular
sensory reception indicating an increase in the
concentration of a particular chemical, then we can think of
that action as causing a kind of virtual movement up a
virtual concentration gradient. Mechanisms that cause real
movement toward attractants and away from repellants in real
spatial coancentration distributions can do the same in these
virtual distributions if the <closed-loop dynamics are
similar to those produced by movement 1in space. 3Some
neurotransmitters may act as "attractants" and others as
"repellants" for the neuron in 1its wvirtual spatial
environment. This would mean, simply, that the neuron would

act so as to increase its stimulation by some transmitters
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and decrease its stimulation by others.

We could imagine a further step in abstraction in which
the attracting and repelling qualities of certain chemicals
were transferred to the electrical events that tended to
co-occur wWith chemical reception. This might have provided
important increases in processing speed. Among the
functions neurons perform 1is that of relaying chemical
signals at high speeds (diffusion need only occur across
synaptic clefts). In this role, a neuron acts as a kind of
high speed "repeater"™ of chemical signals. Electrical
signals could therefore be viewed as representations of
chemical signals that can be transmitted more quickly and
manipulated more easily than the chemical signals
themselves. Analogs of chemotactic mechanisms could then
provide control mechanisms for "swimming" in virtual
concentration distributions represented by electrical
potentials. The control of the feedback dynamics of a
neuron's environment by other, perhaps phylogenetically
later, neural levels could provide a means for tapping
primitive adaptive capabilities to provide parts of the
solutions to complex problems. We are imagining a situation
in which a higher-level center might pose a problem to a
lower center in the form of an environment having particular
dynamical characteristics. By "swimming" in this

environment guided by its own goal-seeking strategies, each

L AU T AR LAY DRI sy a8 Vv




GOAL-SEEKING SYSTEMS OF GOAL-SEEKING COMPONENTS PAGE 8-U42

cell in the lower-level center contributes to a cooperative

solution of the given problen.

Based on existing experimental data, this is an
admittedly speculative view of neural function. But we also
do not know of any strong experimental counter evidence.
While the importance of closed-loop control processes is
very well recognized, both at a basic biochemical level and
at the behavioral level as in the study of insect optomotor
responses, it 1is our impression that the possible
closed-1loop nature of a neuron's interaction with its
environment 1is not a familiar concept. Experimental
paradigms designed to study single units tend to break the
feedback pathway through a neuron's natural environment.
Our observations from computer experimentation with
artificial closed-loop adaptive strategies indicate that
systems which appear quite simple when embedded in
appropriate feedback can appear much more complex when
observed in open-loop mode. This suggests that in order to
understand the information processing capabilities and
adaptive mechanisms of ncurons, it may be necessary to gain
a sense of what kinds of environments form their natural
habitats. This is not so problematic in the case of freely
living unicellular organisms since the dynamics of their
spatial environments are similar to those of our own. It is

much more difficult to understand the intricate

conting:ncies of a na2uron's world.




CHAPTER 9
CONCLUSIONS

The major objective of this project was to assess the
promise of constructing adaptive systems from adaptive
components based on Klopf's (1972, 1979, 1981} theory of
heterostatic components. It quickly became apparent that a
great variety of 1issues were involved. A methodology
evolved 1in which we attempted to 1isolate the various
features of Klopf's hypothesis and study each of them in as
stark and as simple a form as possible. We attempted to
determine exactly which behavioral capabilities of a variety
of learning rules were due to which specific features. As a
result, we have experimented with adaptive elements that
differ from Klopf's hypothesis in numerous ways. As is
perhaps common for this kind of analytical methodology, we
have not given equal time to the process of reassembling our
findings into a simple and unified picture. Nevertheless,

we can state some overall conclusions.
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9.1 dAnhat is New?

Some of the intuition underlying the notion of

constructing g30al-seceking systems from goal-seeking
components has always played a role in studies of
"seglf-organizing" systems. However, early studies are

characterized by the use of components whose capabilities
are too limited to support network bzhavior beyond a rather
low level of sopnistication. In the wmost general terms,
these comnponents required from their environmnents a great
deal of explicit help in order to make progress toward their
goals. In order to provide this help, a component's
environment must know more about the problem's solution than
is generally possible (Section 8.2). The central idea of
the research reaported here, on the other hand, is that the
components of an adaptive system must be robust enough to be
able to make progress toward their goals in environments

that are unhelpful, indifferent, or even hostile.

Qur research has given us a strong 1impression that
adaptive network research was left in a very primitive state
when emphasis shifted to the more symbolic approach that
characterizes most current Artificial Intelligence research.
This is not so much a criticism of these earlier studies;
they were necessary beginnings. Rather, it leads us to

gquestion the tendency to dismiss the entire network approach
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based on the lack of dramatic success in the first attempts.
In the years since these attempts, considerable
sophistication nhas been achieved in tne field of computer
science. It now seems clear that the problens to which
2arly adaptive network efforts were directed ars too
difficult to be so quickly solved by any approach. We
cannot claim to have solved these general problems by the
research reported here, but we can claim to have shown that
some important features were absent from earlier network

studues.

We have uncovered several widespread misconceptions

about the nature of adaptation and 1learning. These
nisconceptions are largely due to an overestimation of the
generality of particular learning rules or of psrticular
theories. 'le think that the pervasiveness of the following
fallacies has greatly hindered progress:
a) The perceptron learning rule and simil;r stochastic
approximation methods solve problems that are open-loop
problems, or can be recast as open-loop problems without
additional assumptions. These rules are not adequate models
of animal learning behavior in instrumental conditioning
experiments, but are more <closely related to classical
conditioning (Section 2.4.4).

b) The formulation of adaptation as function optimization
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1s too abstract to shed much 1light on most forms of

learning. It does not permit the importance of 1information
other than payoff of reinforcement infcrmation to be
considered. This type of "blind search" 1is not always

necessary in applications (Sections 2.4.5 and 8.8).

c) Two very different types of search problems are
usually confounded. One type, which we called
error-correction, is characterized by the fact that the
desired situation can be recognized as such when it is first
enzountered. These problems can therefore be solved without
evaluating all possible situations. Negative feedback
techniques, whether explicit or in the guise of gradient
descent procedures, are associated with these types of
searches. An extremum search problem, on the otner nand, is
not fully solved until the entire range of possibilities has
been explored (although in practice such full solutions are
not genzsrally possible). In the former type of Ssearch,
sptinality is a local property of individual trials, whereas
in the latter type, it is a property of the entire set of
possible trials. This rather subtle distinction is perhaps
most inportant in distinguishing the research reported here
from otner adaptive network research (Section 2.3.1.4).

3 The view that adaptation can be equated Wwith
equilibriun-seeking (as 1in "homeostasis") 1is misleading.
Equilibriun-seeking involves error-correction search rather

than extrenun search. It 1s an important but restricted
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nrocess (Sections 2.3.1.4 and 2.5).

Much of the criticism of the approach to developing
intelligent systems based on numerical, data-directed
methods typified by the perceptron rests on the difficulty
in extending these methods to solve more difficult examples
of the same types of problems they were already solving.
For example, implications of the perceptron's limitation to
forming linear discriminant functions were pointed out by
Minsky and Papert (1969), and the shortcomings of
hill-climbing methods for the optimization of functions with
large plateaus or many false optima were pointed out by
Minsky and 3elfridge (1960). The criticisms we have
implicigly made in this report are of a completely different
kind. We have pointed out the restricted nature of the
problems these methods were designed to solve rather than
their limited abiltiy to solve them. We, of course, agree
that general pattern recognition and function optimization
problems are very difficult to solve completely, but we
think problems of this difficulty need never occur. Pattern
recognition is usually just one part of a complex adaptation
or learning task, and the function optimization task is so
abstract that the formulation of a problem as such a task
usually requires potentially valuable structure and
information to be ignored. It seems to us that

sophisticated adaptive behavior <can result from a system
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designed to solve a variety of interrelated adaptation and
learning tasks, each of which 1s relatively simple. In
other words, when formulated in an appropriate manner,
sophisticated adaptative behavior need not require any
single subsystem to form highly nonlinear discriminant
functions or optimize functions having broad plateaus or

nany extrema.

It remains for future research to provide substantive
support for this claim. The ability of an adaptive system
to learn to exhibit overall nonlinear behavior clearly
reamains necessary, and the research reported here does not
demnonstrate how this is possible. We do, however, believe
that the groundwork has been done by our exploration of
novel types of adaptive elements. Linearity and
nonlinearity are not properties of problems or control tasks
per se but are properties of particular representations of
them. The search capabilities of the adaptive elements
studied here suggest that representations can be adaptively
formed in which the necessary discriminations can be simply

made.

The approach to adaptive network design suggested by

Klopf appears to be novel for the following reasons:
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a) The components suggested by Klopf are most <closely

related to the control theoretic notion of reinfgzgggent

learning control systems (Section 2.4.10). These systems

combine pattern recognition, function optimization, and
control functions so as to solve control problems about
which there is 1little a priori knowledge. It is novel to
cénsider adaptive networks composed of components as
sophisticated 1in their capabilities as even simple learning
control systems (such as the various heterostat formulations
with which we have experimented).

b) The type of component suggested by Klopf combines the
capabilities of components previously studied. Components
such as the perceptron classify input vectors but do not
conduct extremum searches; that is, they are not
reinforcement learning systems. Components such as the
learning automata of Tsetlin and his school (Tsetlin, 1973)
perform extremum search but are not sensitive to information
other than the reward/penalty signal and therefore do not
perform pattern discrimination. The components on which our

research has focussed combine these capabilities,

9.2 Open-Loop Learning

At an wearly 3stage of our research, we devised a
learning rule having several 1interesting properties even

though it went only part way toward including the features
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required for genuine closed-loop reinforcement learning.
[his is the learning rule described in Chapter 4 where we
related its behavior to animal behavior in <classical
conditioning experiments.- From the perspective of the
entire research effort, this learning rule is of interest

largely for the following reasons:

a) It permnitted us to make strong contact with animal
learniry data and the Rescorla-Wagner model of classical
conditioning.

b) It permitted us to gain an understanding of some of
the consequences of Klopf's notion of eligibility irn a
context relatively free from the complication of other
i3sues.

c) We concluded that by basing adaptive <changes on the
deviation of reinforcement level from an average of past
levels (or the "expected" level) together with eligibility,
oane obtained a stable, well-behaved rule that also produced
a variety of interesting effects (notably predictive
behavior and stimulus context effects).

d) The predictive benavior of these adaptive elements
sugiests that they can be used to represent knowledge of
environnental contingencies in a form permitting its access
for real-time decision making. If the predicted
consequences of a particular action taken in a particular

situation were available before the actual consequences,
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then decisions could be made by evaluating proposed actions
before they were executed. This type of internal model use
has often been discussed, but we were able to show how a
simple network could implemant it (Chapter 7). Although our
demonstration of this capability remains in extremely simple
form, we think that the principles illiustrated can be

extended.

9.3 Generalized Reinforcement

Klopf distinguished his heterostat component from
others previously studied by emphasizing its property of

generalized reinforcement as contrasted with restricted

reinforcement. A restricted reinforcement component has

specialized positive and/or negative reinforcement inputs in
addition to excitatory and inhibitory inputs. There is a
consequent sharp distinction between the ™teacher"™ as the
source of reinforcement signals and other types of
information. A generalized reinforcement component, on the
other hand, has the property that all (or many) input
signals are potential reinforcers. In the course of our
research it became apparent that Klopf's proposal contained
novel features even without considering the property of
generalized reinforcement. We recognized that an extremunm
seeking component that 1is also sensitive to information

other than a reinforcement signal had unexplored
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inplications even with reinforcement arriving over a
specialized channel. Adaptive elements previously studied
(e.g., the peceptron) have specialized "teacher" channels,

but the signals arriving over them are error signals rather
than reinforcement signals. Consequently, the networks
described in Chapters 5 and 6 (assocative search networks)
consist of components with specialized reinforcement
ctiannels. These simulations illustrate novel capabilities
without tne additional complication of generalized
reinforcenent. Ae regarded an understanding of these
capabilities to be a logical prerequisite to tackling the
more general case. We have not yet determined what
additional adaptive power generalized reinforcement may

provide.

We have, however, gained a fairly clear view of what
issues generalized reinforcement involves. These are most
clearly discussed in Sections 3.4.5 and 8.2.4 (learning with
an occasional critic). In environments in which pure or
"wired-in" reinforcing events occur only occasionally,
simple hill-climbing strategies are not effective in causing
the reinforcing events to occur. We see the role of
generalized reinforcement as the construction of the advice
that a constant and reliable critic would provide if such a
critic were available as an initially identifiable source of

information. The system need not Know "who the critic is"
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from the beginning. Indeed, a critic may not exist as a
prepackaged source of information. It is well known that
the ability to form its own performance evaluation functinn
is a very important feature of a sophisticated adaptive
system. Samuel's famous checker playing ©program, for
example, most strongly relies on this type of learning

(Samuel, 1959).

We think that the following ideas are 1likely to play
roles in the elucidation of these issues: a) Prediction and
the wuse of predictions of reward as rewarding events
themselves; b) The notion of secondary reinforcement from
animal learning theory; and c) The problem of "mesas" in
function optimization. Qur discussion of prediction and
higher order learning in Chapter 4 is most relevant to these
issues. It 1is a point of interest that our development of
components which combine pattern discrimination and extremum
search sets the stage for a concrete investigation of these
additional features, but only a few steps have been taken in

the research reported here,.

9.4 Associative Search

The network which we <called the associative search
network (Chapter 5) 1is the result of placing components

capable of both pattern discrimination and extremum search
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in a paradigm that has become well known among present day
adaptive network theorists. We were thus able to clearly
Jenonstrate what additional capabilities these components
provide. Research on associative memory networks has
Jenarated a relatively recent and sizable literature. These
networks have aroused interest because tney can successfully
retrieve information under noisy <conditions and are
insensitive to various degrees of localized damage. We have
not discussed these capabilities at 1length since good
treatnents are available elsewhere (e.g., Anderson, et al.,
1377; Kohonen, 1977; Palm, 1980). The associative search
network retains all of these features but has the additional
ability to determine for itself what information should be
stored by conducting searches through the set of possible
associations and retaining the most highly rewarding ones.
Thus, in addition to questions about how information |is
stored, Qquestions about what information should be chosen
for storage are addressed. This permits aﬁplications of
associative memory systems to a wider class of problems than
previously possible. The landmark learning problem (Chapter

5) provides a simple illustration.

9.5 Biological Implications

Although progress toward an understanding of the

cellular basis of animal learning is proceeding at a rapid
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rate, it is still premature to propose detailed hypotheses
about the biological mechanisms that might implement the
learning procedures we have studied. We have speculated
about what mechanisms could be involved (Section 4.7), but
the possibilities still remain too numerous to warrant the
singling out of any specific, detailed neural model.
Nevertheless, our theoretical study leads us to make several
observations. First, the general failure to find clear
examples of associative learning at the synaptic level may
be due to the possibility that learning is taking place
there that is more complex than simple association rather
than less complex. If associative 1learning requires
short-term momory at a cellular level (as it would 1if the
adaptive elements we have studied were implemented at a
cellular level), then one would not expect to observe it
experimentally wunless the <cell's internal state and the
context of the stimulation could be controlled. Second, it
may be profitable to conduct experiments designed to test
cellular responses in closed-loop situations. Closed-loop
studies of unicellular organisms have led to an
understanding of adaptive mechanisms that would have
remained obscure if the organisms were always observed
outside of their natural closed-loop relationships with
their environments (Sections 2.4.8.1 and 8.9). Neurons may
use similar adaptive strategies to control their

environments.
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Tha inmportance of <closed-loop control processes 1in
biology is well recognized. At the most basic level, the
notion of feedback regulation in chemical reaction systems
is a central concept 1in biochemistry. At the behavioral
level, it is very clear that certain forms of behavior are
explicitly directed toward controlling input. For example,
insect optomotor responses reveal their function clearly
when their influence on the environment is permitted to be
reflected as changes in sensory input. Despite the ubiquity
of <control concepts 1in biology, it is our impression that
the possible closed-loop nature of a neuron's interaction

with its environment is not a familiar concept.

Experimental paradigms designed for the study of single
neurons tend to break any feedback pathway through a
neuron's environment. It 1is often wuseful to break the
feedback loop of a control system in order to experimentally
determine the details of its control law. Breaking the loop
permits the experimenter to exert complete control over the
system's input (this, for example, is what voltage clamping
accomplishes). But these open-loop studies of feedback
control systems are generally useful only after it is
realized that the functionality, and perhaps the adaptive
significance, of the system manifests itself only when the
control loop is in oplace. Otherwise, the open-1loop

observations are likely to appear complex and confusing.
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This 1is especially true for closed-loop systems that are
adaptive or are capable of learning. This suggests that in
order to understand the adaptive properties of neurons, it
may be profitable to 2sign experiments which permit a

neuron's output to influence its input.

9.6 In Summary

As a consequence of our research, we believe that
considerable adaptive power can be achieved by systems
composed of goal-seeking components, provided the components
possess sufficiently robust adaptive capabilities. Previous
adaptive network studies have considered components having
only 1limited adaptive power. We have shown that components
designed with attention to the temporal dimensions of
information processing can behave as simple reinforcement
learning control systems. These components acquire
knowledge about feedback pathways in which they are embedded
and use this knowledge to seek preferred 1inputs. Simple
networks composed of these dbmponents can solve types of
problems that are completely beyond the capabilities of
networks studied in the past. Although we believe these
results to be novel, they represent only a small step. Much
remains to be done in furthering what we believe to be a

promising approach to distributed, adaptive systems.




APPENDIX A

ANALYSIS OF STEADY STATE BEHAVIOR OF THE

RESCORLA-AWAGNER/WIDROW-HOFF PREDICTOR FOR A SIMPLE CASE

For sinplicity we treat the continuous time case 1in
which a trial consists of a single 1impulsive CS of
amplitude « at time t = 0 and a single impulsive UCS of
amplitude x at time t = T. Letting the time functions x and

z respectively denote the C3 and UCS signals, then for t>O0:

a for t =0
x(t) = a&o(t)
0 otherwise,
A for t = 7
and z{t) = AdT(t) =

0 otherwise.
Let the element's output be the 1linear result of one CS
input pathway:
¢ aw(0) for t = 0

)
[}

~<
—
-
~—

"

? 0 otherwise.

R IR S RUPRIEE Sy R, T A

-




ANALYSIS OF A SIMPLE CASE PAGE A-2

For continuous time, the Rescorla-Wagner/Widrow-Hoff

Predictor rule (Equation 4.12) becomes:

[«
z

= cfz - y1 X (A1)

al

t

where x and y'are respectively the eligibility generated by
x and the expectation generated by y. We assume that x and

; are exponential traces of their respective variables.

That is, let

"Yt

i

i —)_(_(t) ae

{

| v(t) = aw(0)e **

where v and ¢ are positive decay rates. Then Equation A1
becomes '

dlt) - chne (t) - aw(0)e *t] ae™Y* (A2)

Here we investigate the conditions under which a  trial
leaves the associative strength of the CS unchanged; that
is, we ask what initial weight w(0) is such that w(t) = w(0)
for some time t occurring after the trial. But when is a
trial over? Weight changes can occur as long as X and y are
not botn equal to zero and thus can occur during the ISI and
after the UCS offset (t = T). Since exponential traces
never return to zero, we consider the case of an infinite

intertrial interval and ask what w(0) should be so that
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Tim w(t) = w(0)

tow

Integrating Equation A2 we obtain:

(1im w(t)) - w(0) =/w -dld%l dt
0

tre

= i/mg[)éT(t) - uw(O)e'Et] we Yt gt
0
= crae” YT cazw(o){/r ) e'(Y vt dt)
0

! 2
‘ = cme'YT - 93~%L%l

Then w(0) must be such that

| crae VT o Calu(0)
£

Y +

or,
w(0) = 2 e ¥T(y + ¢) (A3)
A trial of the form we have assumed is such that if the
weight is the value given by Equation A3 at its
commencement, then the weight will return (asymptotically)
to this value after the trial. The weight can change during
the trial, however. When viewed at the ¢trial 1level,

Equation A3 gives the asymptotic associative strength of the

CS. It depends on the CS strength o, the UCS strength A,
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the ISI 1length T, and the characteristics vy and & of the
traces. For more general types of trials, the asymptotic
associative strength will also depend on the durations and

shapes of the CS and UCS.
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APPENDIX B

A FORA4AL DESCRIPTION OF THE MODEL SIMULATED IN SECTION 4

In the following, R denotes the real numbers, R+
Jenotes the non-negative reals, and [0,1] denotes the closed

r2al interval.

Conponents:
one adaptive elemnent
n plastic pathways lapeled 1,...,n
1 fixed input patnway labeled O

pescriptive Variables:

Input variabpbles:
For eacn i, 0 < i < n, xi(t) e R denotes input
level on input pathway i.

Output variables:
y(t) ¢ [9,1] denotes the output 1level »f the
adaptive elenent.

State variables:

y(t) € [2,1] is called the element's expectation,
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or expected ocutput level.

For each i, 0 < i < n, wi(t) € R

transmission efficacy or connection

input pathway i.
For each i, 1 < i < n, Yi(t) e R+
eligibility of input pathway i.

Interaction equations:

1) wi(t + 1) = wit) + cly(t) - y(t)Ix;(¢)

2) X;(t + 1) = axj(t) + x;(¢)

neMm>=S

3) y(t) =

i=0

4) y(t + 1) = gy(t) + (1 -~ gly(t)

5) wo(t) = Wy

Parameters:

In all simulation experiments, n = 4, g = 0.

denotes

weignt

PAGE B-2

the

of

denotes the

wf(t)xi(t) (bounded to remain in [0,1])

The other

parameters change from experiment to experiment (see

below) .

In all sinulation experiments, rectangular

CSis and UCSs were represented as

amplitude

rectangular pulses in xi and x_, respectively.

0

pulse
1

A low

level of normally distributed pseudo-randomly generated
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noise (mean = .00%, standard deviation = .03) was then
added into the rectangular pulses. Pulse lengtns
varied fron exparinent to e2xperiment (see below). The

intertrial interval was usually 50 time steps, except

wnere otherwise noted.

Simulation experinent particulars, by figure number in
which results appeared:

Figure 4.12:

CS duration was 3 time steps; UCS3 duration was 30
time steps.
Figure 4.14:
¢ =z .5; &= .6; w = .6
€3y duration was 10 time steps in trials 21-35.
Figure 4.,16:

¢ = .13 o = .,6; w = .6 alternating with .4

c = .2y a = ,6; Ww = .6; w(0) = .6
Figure 4.,18:
c = .1; o= .6; w = .6; w(0) = .6




APPENDIX C

ADAPTATION OF LEARNING RATE PARAMETERS

C.1 Preface

The work presented in this appendix is directed toward
developing an algorithm for adjusting the learning rate
parameter ¢ of each synapse individually. Consider a single
synapse in one of the 1learning elements, such as a
Widrow-Hoff element or the "classical conditioning" element
discussed 1in Section 4. This synapse is trying to use the
information in its presynaptic signal to contribute to the
prediction of subsequent input. One problem is that all the
other synapses will also be trying to do this. If each
changed 1itself independently of the others so that its
contribution would make up the difference or error in
prediction, then the next time the situation occurred, there
would probably be a huge overshoot as the hundreds of active
synapses each provided enough to correct the original error.
In this sort of situation each synapse must proceed

cautiously, changing 1its weight but 1little to prevent
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overshoct, yet not so 1little as to make learning

unnecessarily slow (undershoot).

A second and similar problem is that the signel may
only provide information in a statistical sense; 1i.e., its
presence meay indicate that the input will probably be higher
(cr lower), but not that it definitely will be. 1In this
case the synarse must average out the cases in which the
synapse 1s right and wrong to arrive at a compromise measure
combining both the size of the change in input predicted and
the probability with which it is predicted. Again, this
averaging means a slowing in the 1learning rate for the
synapse, which must be counterbalanced against the need for
speedy learning (which requires a high 1learning constant).

How then is this learning constant to be set?

The above discussion suggests the general form of the
enswer: Each synepse can determine from its local measure
of success in prediction - its overshoots or undershoots -
whether its learning rate is too large or too smell. Thus,
€ach synapse should set its learning rate parameter as the
adaptation proceeds, according to some iterative algorithm.
The work presented in this appendix is the beginning of the

search for, and formalization of, that algorithm.

It should be clear irom the discussion of the problem
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facing the individual synapse that it 1is basically a
tracking task. The synapse is trying to track the actual
input with 1its prediction of that input by changing its
prediction proportionally to the difference between
predicted and actual input in those cases in which the
synapse is involved, i.e., 1in those cases in which the
synapse 1is presynapticaly. active. In the terminology of
servo-mechanism tracking, that constant of proportionality,
the 1learning rate constant, 1is known as the gain. Thus,
this appendix considers the problem of setting the gain of a
simple tracking servo-mechanism. It 1is felt that the
results are highly relevant to the learning rate parameter
setting problem for synapses, but the work has not yet
progressed to the point where it can be directly translated
into this form. Further work 1is necessary both on the
abstracted tracking problem and on mapping the results back
into a . learning rate parameter adaptation algorithm for a

neuron-like adaptive element.

The rest of this appendix was origirally a self
contained paper entitled "A Method for 1e  Automatic

Selection of Gain for Ciscrete~Time Algorithms."
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C.2 Introduction

Consider a one-dimensional, discrete-time tracking
problem and 1its solution by a simple servomechanism (see
Figure C.1). The pursuing function y(t) and the target
function Y(te) are related according to the «classic

servcmechanism equation:

y(t+1) = y(t) .+ G [ Y(t)-y(t) 1, (c.1)

where G is called the gain. In general, the target function
Y(t) and the gain G will determine the quality of
performance. 1If Y(t+1) 1is determined from Y(t) by the
addition of a random variable chosen according to a
symmetric probability distribution with an expected value of
zero, then the optimal gain will be G=1.0, since then y(t)
will equal Y(t-1), the best guess for Y(t). If the target
function Y has inertia, the optimal gain will lie between
1.0 and 2.0, and if Y(t) is a noise corrupted version of an
inertialess function 2z(t), then the optimal gain will lie
between 0 and 1.0. In this context the problem considered
in this appendix 1is the automatic selection of a gain
parameter through experience with attempts to track a target

function Y.

An adaptive tracking system should have both the

- ¢ i et
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E(T)
SIGNED ERROR

GENERATOR

(T) Y (T)
servg \/Z\; UNKNOWN

FIGURE C.1. A block diagram of a simple tracking

servomechanism, y(t) 1is the pursuing function, Y(t) the
target function, and E(t) the signed error.
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property of refinement, meaning the ability to carefully
zerc in on the target function by averaging out noise, and
the property of responsiveness, meaning the ability to stop
converging and follow the target closely if it begins to
mcve rapidly. To have both of these properties in a
tracking servonmechanism requires a method of adaptively
medifying the gain. Previous work on this problem
apparently has not found a satisfactory solution (e.g.,

Eisenstein, 1972).

C.2 The Gradient Lescent Approach

To optimize some parameter or vector C(t) according to
some evaluation function J(t) to be minimized, a
straightforward apprcach is that of gradient descent with

fixed increment:

Clt+1) = C(t) - a ¢ J(t)

c(t)
where a is the fixed positive increment size. Ideally, one
can anaslyticelly compute an expression for the gradient to
get the desired algorithm., For example, this technique can

be wused to derive the servo equation (Equation C.1). Here

e e s e < ek -
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the parameter to be optimized is y(t), the evaluation
function J(t) tc be minimized is [Y(t)-y(t)]z, and the

positive increment is G/2:

y(t+1) y(t) ~ G/2 v J(t)

y(t)

d [Y(t)-y(t)]

y(t) ~ G/2
d y(t)

y(t) + G [ Y(t)-y(t) ]

Yielding the servo-mechanism equation (Equation C.1).

Now let us apply the same methodology to derive an
algorithm for optimizing the gain term G which we now vary

as a function of time:

y(t+1) y(t) + G(t+1) [ Y(t)-y(t) ]

G(t+1) G(t) - a v J(t)

G(t)

d

G(t) - a [Y(t)-y(t)1?

aG(t)

d
G(t)

a

{Y(t) = y(t-1)+G(t)[Y(t=1)oy(t=1)] }2
dG(t)

G(t) + 2a [Y(t)-y(t)] [Y(t-1)-y(t-1)]

G(t) + b E(t) E(t-1) (c.2)

R dhain b an o REA RS B Y N
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for b = 2a and E(t) = Y(t) - y(t).

The intuition behind the workings of this algorithm is
fairly straightforward: If the gain is too large, there
will be & tendency for the pursuing function y(t) to
overshoot the target, which causes oscillation in the error,
and thus via this algorithm will cause a decrease in the
gein. If the gain is too small, on the other hand, then the
pursuer will tend to uyndershoot, and successive errors will
usually be of the same sign, and this algorithm will cause

the gain to decrease. Previous apprcaches to this problem

and 1its relatives have been based only on the signs of the
succesive errors, completely ignoring the sizes of the
errors (Kesten, 1958; Sardis, 1970; Perel'man, 1967).
That the algorithm presented here wutilizes more of the
information available in the successive errors suggests that

it may be an improvement over these earlier methods.

C.4 Analysis of a Special Case

For the purposes of analysis, we now consider a special
case of the general problem. Assume Y(t) 1is a noise
1
corrupted version of a random variable z(t), and that z(t) !
i
— —— —— — v l
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is verying as in a "random walk":

Y(t) = z(t) + B(t) (C.2)
z{(t+1) = z(t) + A(t), (C.4)
for movement and noise random variables A(t) and B(t). Let

us assume that the random variables A(t) and E(t) are chosen
according to normal probability distributions with zero
means and variances sA and sBE respectively. (Since the
movement of z 1is an 1inertialess random walk, for this
special «case the optimsl gain will never be greater than
1.0.) For this case, we <can prove that algorithm (C.2)
converges to the gain that minimizes the expected mean
square error EXP{[Y(t)-y(t)]z}. The proof has two main
steps: 1) find an expression for the optimal gain in terms
of sA and sB, and 2) proves that Equation C.2 converges to
that optimal gain. To find an expression for the cptimal
gain, first we find an expression for the expected
asymptotic mean square error (MSE) in terms of sA, sB, and

the gain G.

Let e(t) = z(t) - y(t)

Then note that the total error can be written

E(t) = e(t) + b(t) . (C.5)

P

)
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Now we solve for asymptotic e(t):

e(t+1) = z(t+1) - y(t+1)
= z(t) + A(t) - y(t) - G E(t)
= e(t) + A(t) - G [e(t)+B(t)]
= (1-G)e(t) + A(t) - G B(t)
cr

t t-1 n
e(t) = (1-G) e(0) + I (1~G) [ A(t-1-n) ~ G B(t=1-n) 1]

Let e(=) cenote the limit of this expression as t goes to
infirnity. Since e(») 1is a sum of independent identically
riormelly distributed random variables, it will also te
normelly distributed, will have mean zero, and will have

variance the sum of the variances of the summands:

2 t 2
S = lim b S
e(x)  two n=0  {(1-6)" [ A(t-n)-GB(t-n)]}
t 2n 2 2
= lim £ [(1-G) ] [sA + G sB ]
t w0 n=0

<

where s denotes the variance of the random variable X.
X

This geometric series is convergent for 0 < G < 2.0:
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Ey (C.5), and since e(») is normally distributed with mean
zerc, E(x) 1is also normally distributed with mean zero and

of variance

2 sA? + G2 sB2 )
s = + 8B (C.6)
E(w) 1 - (1-G)

Which is just the desired equation for the mean square error
in terms of sA, sB, and G. The value of G which minimizes
this MSE can bte found by the straightforward but tedious
process of differentiating Equation C.6 with respect to G
and setting it to zero. After simplification and solving a

gquadratic, & single positive root is found:

2 4 2 2
-sAc + sA" + U4 sA¢ sB
G = \V/i > (C.7)
opt 2 sE

For the seccnd part of the proof we must show that
Equation C.2 converges to the optimal gain (C.7). From

(C.2) and (C.6):

G(t+1) = G(t) + b E(t) E(t-1) (c.8)

We will assume that if the constant b is chosen properly,
G(t) will (nearly) converge to the fixedpoint of (C.8), and
only prove that that fixedpoint is (C.7). (Note: to really

complete the convergence proof it is necessary to let the
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increment b become an decreasing sequence and [prove a
contraction property on the expected change in G(t) as t

gces to infinity.) At the fixedpoint G of (C.8)

0 = EXP{ E(ts1) E(t) }
= EXP{ [ e(t+1) + B(t+1) 1 E(t) )
= EXP{ [ (1-G)E(t) - B(t) + A(t) + B(t+1) 1 E(t) }
= EXP{ (1-G)E(t)? - E(t)E(t) + E(t)A(t) + E(t)B(te1) }
= (1-G)EXP{E(t)?} - EXP{ [e(t)+B(t)] B(t) }

= (1-G)EXP{ E(t)2 } - EXP{ B(t)? }
2

= (1-G) s - sB?
E()

Substituting in with (C.8), and simplifying yields

whose only positive root 1is the same as (C.5), the

expression for the optimal gain.

—
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C.5 Computer Simulation

The algorithm (Equations C.1, CC.2, (C.3, C.4) was
programmed on a digital computer, with the distributions of
the random variables approximated by pseudo-random number
generating programs. Figure C.2 reports the results of an
experiment in which the observation noise standard deviation
sE was step changed from sB=0.3 to sb=2.C and btack again.
Figure C.Z2a shows the optimal gain compared to the actual
gain, both versus time. This figure demonstrates that the
gain adaptation algorithm can both increase and decrease the
gain, whichever 1is appropriate. Figure C.2b shows the
analytic asymptotic error for the actual and optimal gains
plotted versus time. This figure illustrates that the
algorithm can keep the error of the tracking system at very
nearly the optimal theoretical limit despite occasional or
slow changes in the unknown system and thus in the optimel

gain.

C.6 Further Levels of Adaptation

One nice aspect of the algorithm presented here is that

only one parameter, the gain increment parameter b, needa be
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FIGURE C.2. Computer simulation of the single level
adaptive gain selection algorithm. In this experiment the
observation noise standard deviation parameter was step
changed from sb=0.3 to sBz2.0 and then back again while the
random movement standard deviation parameter remained
constant at 1.0. These changes were made at the 1000th and
2000th time steps respectively.

FIGURE C.Za.compares the analytic optimal gain (dashed line)
with that found by the single-level gain adaptation
algorithm (solid line). Note that the algorithm can both
increase and decrease the gain.

FIGURE C.2b compares the analytic asymptctic error (NMSE)
levels wunder the optimal (dashed 1line) and zctual gains
(solid line). The changes in actual gain keep the error
nearly at the theoretical minimum despite the changes in the
observation noise. The gain change rate parameter was
b=0.G601 in this experiment.
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chosen arbitrarily by the designer or user of the technique
to fit the <characteristics of the particular application.
This is in sharp contrast to the methods of Perel'man (1967)
and Kesten (1958), whose performance 1is dependent on &
series of possible gain parameters that need to be specified
by the user. 1In the algorithm here, even the dependence on
the b parameter <c¢an be reduced, i.e., can be made
autometically adeptive to the environment, by extending the
scheme to additional levels of adaptation. Applying the
same methodolcgy we used twice above, we let b become a
function of time and change it in proportion to the gradient

cf the evaluation function J(t) with respect to b(t):

b(t+1) = b(t) = a ¢ J(t)
b(t)

Solving this analyticzly results in an algorithm for the
optimal rate of change of gain parameter. This algorithm
will in turn have a rate paramter, and an optimizing
algorithm car be derived for that. The result 1is an
arbitrarily deep hierarchy of rate of change or gain
algorithms. A pattern in these algorithms quickly becomes
apparent. We change notation slightly at this point to
allow a statement of the multiple-level adaptive gain
selection scheme which makes this pattern more apparent.

For a gain selection algorithm with n levels of adaptation:
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y(t+1) = y(t) + G (t+1) E (t)
1 0

where E (t) = Y(t) - y(t)
0

G (t+1) = G (t) + G (t+1) E (t) i=z1,...,n=1
i i i+ i

where E (t) = E (t) E (t-1) i=1,...,n=1
i i=1 i-1

and G (t+1) = G , a small positive constant for the last
n n

level of adaptation.

This multiple-level algorithm was also programmed on a
digital computer for the special case of normally
distributed movement and noise random variables. An
experiment was run comparing the previous two level system
(the first level of adaptation was Jjust the simple servo
itself) to a three 1level system for & case in which the
optimal gain remained constant. We see from Figure C.3a
that while the two level system found the optimal gain very
quickly, there was no tendency for the gain to converge to
that value. The three level system, on the other hand, was
able to detect that the optimal,/ﬁain itself was not
changing, and reduced the rate at which it changed the gain,
resulting in the convergence of the gain to its optimal
value (Figure C.3b). However, simulation results also

revealed that the multiple-level algorithm can become
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FIGURE C.3. Comparison of a single 1level gain adaptation
algorithm with a two level algorithm for the case of a
constant optimal gain. While the single 1level system
(Figure C.3a) finds the optimal gain (dashed line), there is
no tendency for the gain to converge to it. The two 1level
gain adaptation algorithm (Figure C.3b), on the other hand,
can adjust the rate with which it varies its gain, and does
converge to the optimal gein. In this experiment sA=z1.0,
sB=3.0, and the rate or gain constants for the 1last 1levels
of adeptation were gain(2)=0.001 for Figure C.3a and
gain(C.3)=5.0e¢-8 for Figure C.3t.
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unstable for some unknown systems and for some settings of
the rate or gein constants for the last level cof adzptetion.
This is probebly due to the fact that the gradient descent
znalysis technique 1s due to a linear approximation cf the
gradient of the evaluation function J(t). 1If the increment
is smell, this approximation is a good one, but if the
increment is large, it can be a very poor &pproximation to
the actual gradient. 1In the multiple-level algorithm this
increment is under adaptive contrecl, and thus there 1is no
guarantee that the increment will remain sufficiently smzall,
and instability can result. Further work is needed to solve
this problem with the otherwise promising multiple-level

algorithm.

C.7 Conclusions

The multirle-level gain selection algorithm presented
here seems to be applicable to any case of discrete-time
adaptation involving a signed error and an associated gain
or rate parameter. This algorithm is able to both increase
and decrease gain in response to changes in the target
function's behavior, wutilizes all the information in the
error signal, and is extremely simple. Comparisons are

dificult to make between disimilar algorithms, but the above

—————— e = - =
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properties suggest that this algoerithm may be a significent

improvement over other gain or rate rarameter selecticn

algorithms in the literature.

Finally, a multiple-level version of this algorithm was
presented. 1Its particular advantages will be most important
in systems which must handle with high performance a wide
range of uncertain environments. Al though the approach
seems promising, further work is necessary on the

multiple-level algorithm.
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APPENDIX D

DETAILS OF THE SIMULATION EXPERIMENTS OF SECTION 7

D.1 Comnputation of movement

At each tine step the simuiated adaptive network provides an
instantaneous action vector {Alrightl(t), A[left]l(t)}. The
computation of this vector is detailed 1in Appendix E. A
record SAlal](t) is kept of the extent to which each action a
nas been instantaneously selected recentiy:

3Alrizht](t) = alpha*3A(right](t-1) + (1-alpha)*A[right](t)
SAlleft](t) = alpna*SA[left](t-1) + (1-alpha)¥®Alleft](t)

Movenent is determined by which of these traces is largest:
dotion(t) = Beta * {SA[right](t) - SA[leftl(t)},

where positive motion means motion to the right, and
negative motion mneans motion to the left. In all of the
simulation experinents the constants alpha and beta were set
at 0.3 and 50.0 respectively. If the motion computed above
causes tne subject to run into a barrier, the actual motion
is nalted at tne point of contact. In addition, barrier
colision neutralizes the inertial tendency to continue

qaotion in tnat direction. Specifically, the inertial traces

3Alrignt] and SA[left] are set to their average upon
collision with a barrier., The inertia was also neutralized
by setting both of these traces to zero each time a subject
w13 "picked up" and moved as part of an experiment,
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D.2 Experiment I

Experiment 1 used 200 subjects, each run individually
through the following three phases.

D.2.1 Exploration Phase

Each subject was recleased between the lower large colored
regions (point A in Figure 7.4). 1If the center of its body
passed into a <colored region, the <corresponding sensory
input 1line was set to a value of approximately 0.5. All

motion was computed as described above. After 1000 time

steps the association phase began.

D.2.2 Association Phase

Each subject was moved to the enclosed red region D of
Figure 7.4, The red input line was activated in the same
way it was activated during the exploration phase when the
subject was within the lower red region. After two time
steps the reward input line was also set to 0.5. After one
time step of this stimulation pattern, each subject was
transferred to the enclosed green box wmarked B in Figure
7.4, The input pattern there was I[red]=0.0, I[green]=0.5,
and I[reward]=0.5. After two time steps of this, the reward
input line was set to zero again for one time step, and then
the testing phase pegan. The following chart summarizes the
stimulation regime during the association phase.

absolute time duration Ilred] Ilgreen] I[reward]
1000-1001 2 0.5 0.0 0.0
1002 1 0.5 0.0 0.5
1003-1004 2 0.0 0.5 0.5
1005 1 0.0 0.5 0.0
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D.2.3 Tne Testing Pnase

[n the testinz phase of the primnary experinznt each subject
was reaturned to location A of Figure 7.4 and reieased, just
as in tne exploration phase. Tn2 testing phase ended when
either of the two colored regions was entered. Of the 200
subjects, 141 entered the red region first and 59 entered
the 3Ir2en region first. This result 1is statistically
siznificant to at least the P=.005 level.

D.3 Experiment II

[ne second experiment was identical to thne first during the
exploration and association phases. Its testing phase
Jdiffered in that the lower red and green regions and the
parriers inside then were removed. After 300 time steps the
testing phase ended and the position of the subject was
recorded. All of the 100 subjects had moved very far to thne
rignt after the 300 time steps, the nearest being about
twice as far off the ©page as the distance from A to the
riznt edge of the page in Figure 7.4.

D.4 Experiment III

Tl tnirg 2riment was identical to the first experiment
alept Lo tne bias weights WAC[right] ans WAC[lert] (also
voi23d sir1aat] and Blleft] in the text) were set to zero at
: crinning  of th2 testing phase. This ensured the
14 a1 initi:l tendency to move either right or
. sezinning  of  the testing phase. O0Of the 100
wtoarad tne red area first, a result

. ant oat least the P=.005 level.




APPENDIX E

DETAILS OF THE ADAPTIVE NETAORK STMULATED IN SECTIOH 7

Notation: R is the Reals, R+ the positive Reals

E means "element of"

STIMULI is the set {RED, GREEN, REWARD}
ACTIONS is the set {RIGHT, LEFT}

This i1s a discrete time model, i.e. £=0,1,2,...

E.

1

Components

A PREDICTOR-MODULE, consisting of 3 PREDICTOR-ELEMENTS
(corresponding to the 3 stimuli), a 3x3 matrix of
PREDICTOR-TO-PREDICTOR-CONNECTIONS, and a 3x2 matrix of
ACTOR-TO-PREDICTOR-CONNECTIONS.

An ACTION-SELECTING-MODULE, consisting of 2
ACTOR-ELEMENTS and a 2 element vector of
CONSTANT-TO-ACTOR-CONNECTIONS.

A vector of 3 INPUT-LINES, corresponding to the three
STIMULI.

A vector of two OUTPUT-LINES, corresponding to the 2
ACTIONS.

R — — —
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E£.2

PAGE E-2

Descriptive Variables

£.2

(s

A Input Variables

I[[s1(t) E [2,1], for all s E STIMULI, is the input
to tne networx at time t. These indicate the
color of th2 rezion the subject is in (if any) and

tn2 presence or absence of reward.

.2 Jutput Variaoles

Alal(t) € [0,1), for all a E ACTIONS, 1is the
activity level at time t of the ACTOR-ELEMENT for
action a, indicating the instantaneous selection
of novement to th2 right or left.

.3 JState Variables

P{s](t) E [2,1]1, for all s E STIMULI, 1is the
activity 1level at time t of the PREDICTOR-ELEMENT
for stimulus s, This indicates a conbination of
pr2diction of stimulation and actual stimulation.

APP[s1,s2](t) E R, for all s1, s2 E STIMULI, Iis
the efficacy of the
PREDICTOR-TO-PREDICTOR-CONNECTION to tne

PREDICTOR-ELEMENT for stimulus s1 from the
PREDICTOR-ELEMENT for stimulus s2.

APA(s,2](t) E R, for all s E STIMULL, a E ACTIOWS,
is the afficacy at timne t of the
ACTOR=-TO=-PREDICTOR=-CONNECTION to the
PREDICTOR-ELEMENTfOr stimulus s fron the
ACTOR-ELEMENT for action a.

WAC[a](t) E R, for all a E ACTIONS, 1is the

efficacy Tat tine t of the
CONSTANT-TO-ACTOR-CONNECTION to the ACTOR-ELEMENT

b

———
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E.2.

M- ey e

for action a. These weights were called the bias
weights and denoted B{al rather than WAC[a] in the
text.

TAlal(t) E {3,1], for all a E ACTIONS, 1is the
trace at time t of Ala)(t), the activity of the
ACTUR-ELEMENT for action a.

TA2(aj(t) E [0,1], for all a E ACTIONS, is another
trace at time t of Alal(t).

TP(s](t) E {0,1], for all s E STIMULI, 1is the
trace at time t of P[s]l(t), the activity of the
PREDICTOR-ELEMENT for stimulus s.

4 Parameters:

CPP[s1,s27 £ R+, for all s1, s2 E STIMULI, is the
learning rate parameter for the PREDICTOR-TO
PREDICTOR-CONNECTION from the PREDICTOR-ELEMENT
for stimulus s2 to the PREDICTOR-ELEMENT for
stinulus s1,.

CPAls,al(t) E R+, for all s E STIMULI, a E
ACTIONS, 1is the 1learning rate parameter for the
ACTOR-TO-PREDICTOR-CONNECTION from the
ACTOR-ELEMENT for action a to the
PREDICTOR-ELEMENT for stimulus s.

CACl{a] E R+, for all a E ACTIONS, is the 1learning
rate parameter for the
CONSTANT-TO-ACTOR-CONNECTION to the ACTOR-ELEMENT
for action a.

Mean E R, Stdev E R+ are the mean and standard
deviation parameters for the normally distributed
noise component of the activity of the
ACTOR-ELEMENTS.

Ap E R is the trace decay parameter for the trace
of activity in the PREDICTOR-ELEMENTS.

Aa E R is the trace decay parameter for the trace
of activity in the ACTOR-ELEMENTS that is used to
changes the ACTOR-TO-PREDICTOR-CONNECTION

efficacies,.

Aa2 E R is the trace decay parameter for the trace
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E.

3

E

of activity in tne ACTOR-ELEMENTS that is used to
changes the CONSTANT-TO-ACTOR-CONNECTION
efficacies.

Equations of Interaction

.3.1 Equations of primary network operation:

Alright]l(t) = F{ A'[right](t) - A'[left](t) }
Alleft](t) = F{ A'[left](t) - A'[left](t) }

where A'[al(t) = MAX{ 0, WAC[aJ(t) + NOISE{mean,stdev} }

for all a E ACTIONS and f{x} = MAX{O,MIN{x,1.0}},
and NOISE{mean,stdev} is a normally distributed
random variable,

P(t) = f{ I(t) + WPA(t) A(t) + WPP(t) P(t-1) }

E.

(using vector and matrix notation)

3.2 Equations for change of connection efficacies:

WPP[s1,s21(t+1) = WPP[s1,32])(t) + CPP(s1,s2] *

{ P[s1]1(t) - TP[s11(t) } * TP[s21(t-1)

WPA[s,al(t+1) = WPA[s,al(t) + CPA[s,a] *

{ P[s](t) - TP[s]I(t) } * TA[al(t)

WAC{al(t+1) = WAC[al(t) + CAC[a] *

{ Plreward]l(t) - TP{rewardl(t) } * TA2[a]l(t)

I
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E.

where:
TP(s](t+1) = Ap*TP[s](t) + (1.0-Ap)*P[s](t)
TA{al(t+1) = Aa*TAl[al(t) + (1.0-Aa)*A[al(t)
TA2[al(t+1) = Aa2*TA2[al(t) + (1.0-Aa2)*A[a](t)

For all a E ACTIONS and s, s1, s2 E STIMULI.

s . + e

4 Parameter Settings:

_ e e e

CPP(s1,s2] \ s1
52 \ RED GREEN REWARD
REWARD 0.5 0.5 0.0 %
GREEN 0.5 0.0 1.5 '
RED 0.0 0.5 1.5
CPA[s,al: \ s
a \ RED GREEN REWARD
RIGHT 0.2 0.2 0.0
LEFT 0.2 0.2 Q.0

CAC[right] = 0.5

Ap = 0.0
CAC[left]) = 0.5
. Aa = 0.8
Aa2 = 0.0
Mean = 0.2
Stdev = 0.4

peS




APPENDIX F

DESIGNNET: NETWORK SIMULATION DISPLAY PACKAGE

F.1 Description

DESIGNNET is a collection of routines for interactively
creating a network display on the Grinnell and then using
the display to show the values of variables associated with
the network. The network resembles a neural structure
consisting cf sets of neurons with input and output fibers
and weighted caonnections (synapses). At most ‘three
variables can be displayed at each cell and at each synapse.
Their values are shown as color intensity, the radius of a
circle, or the width of a square. The values of the
variables are assigned by the user's program; the values
are not changed by DESIGNNET.

F.2 User Instructions

The user instructions are presented in (w0 sections:

the creation of a network display, and the subsequent use of
tne display.

F.2.1 Creating a Network Display
A network displav can be created or modified by running
the DESIGNNET program as follows:
RUN DR1:[ANWCA.DNETIDESIGNNET
You will then be asked to type a name for the file in which

you will save your network, or for a file of an existing
network that you wish to modify.
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FILENAME FOR SAVING AND RETRIEVING?
example.net

From this point on you will be interacting with the
program through the Grinnell. Various options will appear
in a list on the right side of the screen. Any one of these
options can be selected by moving cursor one into the box
surrounding it and pressing the enter button. Some of the
options will present a new list of options to select from.
The previous option list can be returned to by pressing
home, then enter (cursor one must be on).

Initial Options and Descripticons

REFRESH
Redraws the entire network display.

EDIT
Allows the creation and modification of a network
display. This option requires the selection of

further options that are described below.

SAVE NET
Saves the current network display 1in the file
specified by the file name entered when DESIGNNET was
started, or the file name entered in response to the
option SET FILE.

RETRIEVE NET

Replaces the current network display with the network
that was previously saved in the file specified by the
file name entered when DESIGNNET was started, or the
file name entered in response to the option SET FILE.
This option will erase the current network so a safety
feature requires this option to be selected a second
time to continue.

SET FILE
Allows you to enter the name of a file to be
referenced when saving and retrieving networks with
the SAVE NET and RETRIEVE NET options.

UPDATE NET
This option will operate only if an UPDATE NET_DISP
and a BRAIN RETRIEVE routine have been compiled and
linked to DESIGNNET. BRAIN RETRIEVE must read the
data stored in the BRAIN data file. The I/0 unit
number for the BRAIN data file is passed to

BRAIN RETRIEVE. UPDATE_NET_DISP must call
UPDATE MOD DISP or UPDATE_SHORTMOD to display the
variabTes retrieved by BRAIN RETRIEVE.

et W
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UPDATE NET _DISP has no arguments. The documentation

for the EXPER progran explains the use of
BRAIN RETRIEVE and the BRAIN data file.

MOD NUMBERS
This option displays a number on each module of the
network, representing their respective module numbers.
These numbers must be known when you call the various

entry points for updating the network display. (see
section 2.2)

EDIT Option List and Descriptions

ADD SHAPE
This will add a new shape to the display. Shapes can
be wused to enhance the display by emphasizing certain

areas, highlighting 1lettering, etc. (The maximum
number of shapes is 20.)

First ADD SHAPE Options:

RECTANGLE
The added shape will be a rectangle.

SYMBOL
Not functional at this time.

Second ADD SHAPE Options:

POSITION

Use one or two cursors (depending on the shape)
to position the shape and to specify its size.

COLOR
Allows you to select the shape's color by

adjusting the intensities of red, green, and
blue with cursor one.

ADD STRING

This will add a new string of characters to the
display. The characters must be typed on the terminal
when requesced to do so. Strings of characters can be
used to label parts of a network or as titles. (The
max imum number of strings is 20, and the maximum
number of characters per string is 70.)

ADD STRING Options:

POSITION
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Use cursor one to position the character string.

Cursor one 1is at the lower left corner of the
character string.

HEIGHT

Changes the height of the characters from single
to double height, or vice versa. Single height
is 9 pixels, and double height is 18 pixels.

WIDTH

Changes the width of the characters from single
to double width, or vice versa. 3Single width is
7 pixels, and double widtn is 14 pixels.

ANGLE
Changes the angle of the character string in 45
degree increments., The character string 1is
rotated around the first character of the
string.

TEXT

Requests you to type a new string of characters

at the terminal to replace the old character
string.

COLOR

Allows you to select the color of the characters

by adjusting the intensities of red, green, and
blue with cursor one.

ADD MODULE
A module is a set of cells and fibers or just fibers.
There are three types of modules, one of which must be

selected in the next option list. (The maximum number
of modules is 15.)

First ADD MODULE Options:

STANDARD

This type of module consists of cells arranged
in a 1line with parallel dendrites and axons.
Input fibers, which are optional, are parallel
to each other, but perpendicular to the cell's
dendrites. The intersection of the input fibers
and dendrites represent synapses at which
several variables can be displayed. Recurrent
fibers, -~lso optional, connect the cell's axon
with all dendrites in the module. These also
form 1intersections, representing synapses, with
the dendrites. After selecting this option two
numbers must be chosen as follows:

e e it S
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NUMBER OF CELLS
Choose the number of cells in this module
by moving cursor one vertically. There
can be from 1 vo 10 cells in one module of
this type. Push home and enter when you
nave chosen the cesired number of cells.

NUMBER OF INPUTS
Choose the number of input fibers in this
module by moving cursor one vertically.
There can be from 0 to 10 input fibers 1in
one module of this type. Push home and
enter when you have cnosen the desired
number of input fibers.

PARALLEL

This type of module consists only of straight, ‘

‘ parallel fibers. This module can be used to

i connect two other modules., After selecting this ¢
} option one number must be chosen as follows:

! NUMBER OF CELLS

| In this «case, the number of cells is

actually the number of fibers. Choose the

number of fibers by moving cursor one !
vertically. There can be from 1 to 10

fibers in one module of this type. Push

nome and enter when you have chosen the

desired number of fibers.

CORNER
This type of module consists of parallel fibers, ;
each with one 90 degree bend. This module can
be used to connect two other modules. After
selecting this option one number must be chosen
as follows:

NUMBER OF CELLS

In this case, the number of cells 1is
actually the number of fibers. Choose the
number of fibers by moving cursor one
vertically. There <can be from 1 to 10
fibers in one module of this tyge. Push
home and .enter when you have chosen the
desired number of fibers.

Second ADD MODULE Options:

POSITION
A module may be moved to any location on the
screen with cursors one and two; cursor one

Wwill be one corner of the module and cursor two
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will be the opposite corner. The cursors also
control the size and orientation of the module.
Push enter when you have positioned both
cursors.

AXON LENGTH
This allows you to extend the axons of all cells
in a STANDARD module, and the fibers of the
PARALLEL and the CORNER modules, by moving
cursor one. Push enter when you are done.

RECURRENCY
This option affects only a STANDARD module. If
the STANDARD module does not have recurrent
fibers, then selecting this option will put
recurrent fibers in the module, and vice versa.

FLIP

This will flip a module of STANDARD or PARALLEL
type by 90 degrees, 1i.e., the module 1is
reflected on the diagonal between the module's
corners 1in which the two cursors appear during
positioning. This option will not flip a CORNER
module in this manner. Instead, it reverses the
order of the fibers along one side of the
module.

NUM VARS
This option is used to designate the number of
variables to be displayed at cell bodies and at
fiber intersections. These numbers are entered
as follows:

NUMBER OF CELL VARIABLES

Choose the number of cell variables to be
displayed with this module by selecting
one of the numbers 1, 2, or 3. The number
of cell variables is initially 1.
Variable 1 is displayed as the intensity
of the color (yellow) of the cell.
Variable 2 is displayed as the radius of a
white <circle centered at the cell body.
Variable 3 is displayed as half the width
of a white square centered at the cell
body.

NUMBER OF SYNAPTIC VARIABLES
Choose the number of synaptic variables to
be displayed with this module by selecting
one of the numbers 1, 2, or 3. The number
of synaptic wvariables 1is initially 2.
Variable 1 is displayed as the radius of a
green or red disk, corresponding to a

| )
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positive or negative value, centered at
the synapse. Variable 2 is displayed as
the radius of a white circle centered at
the synapse. Variable 3 is displayed as
half the width of a white square centered
at the synapse.

BOUNDS
This option allows you to set the minimum and
maximum values of the cell and synapse variables
for one module. These are wused to scale the
intensity or size of the variable's display.
The bounds are entered as follows:

CELL VARIABLE BOUNDS

Move cursor one vertically to set the
minimum and maximum values for each cell
variable in turn. Push enter after each
number 1is selected. Push home and enter
when both the minimum and maximum have
been chosen. The cell variable bounds are
initially 0.0 to 1.0

INPUT VARIABLE

In a similar manner, set the minimum and
maximum values for the one input variable.
These bounds will scale the intensity of
the color of the input fibers. The input
variable bounds are initially 0.0 to 1.0.
(The input variable bounds are needed only
if this module has input fibers.)

INPUT SYNAPSE VARIABLES
In a similar manner, set the wminimum and
maximum values for each input synapse
variable,. The 1input synapse variable
bounds are initially -0.1 to C.1. (The
input synapse variable bounds are needed
only if this module has input fibers.)

RECURRENT SYNAPSE VARIABLES

In a similar manner, set the minimum and
maxinmum values for each recurrent synapse
variable. The recurrent synanse variable
bounds are initially -0.1 to 0.1. (The
recurrent synapse variable bounds are
needed only 1if this module has recurrent
fibers.)

MODIFY ELEMENT
This option will allow you to change any object
currently in your network. You must designate which
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object you want to modify by placing cursor one on it
and pressing enter. Choosing a character string,
however, requires cursor one to be <close to the
initial character of the string. If the cursor was
not close to any object when enter was pressed, you
must try again,. After successfully choosing an
object, the appropriate set of options become
available. They are listed here:

Options if a SHAPE is chosen: described under main
option ADD SHAPE)

POSITION
COLOR

Optiggi if a character string is chosen: (described
under main option ADD STRING)

POSITION
HEIGHT
WIDTH
ANGLE
TEXT
COLOR

Options if a module is chosen: (described under main
option ADD MODULE)
POSITION
AXON LENGTH
RECURRENCY
FLIP
NUM VARS
BOUNDS

DELETE ELEMENT

This option allows you to remove an object from your
network. You designate the object to be deleted by
placing cursor one on it and pressing enter. A
character string, however, is chosen by placing cursor
one close to the initial character in the string. If
an object is in a complex area of the network it might
be necessary to choose it after you have moved some of
the nearby elements away from the object. After
deleting the object, these elements may be moved back
into position. If the <cursor 1is not close to an
object when enter is pressed, you must try again.

BACK COLOR
This option allows you to change the background =olor.
Set the intencities of red, green, and blue by " vine
cursor one vertically. When done with one >l v [ .=
enter to set the next color. When al}l 1 rs v
push home and enter.

SKEL COLOR
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The skeleton of a network is that part of the fibers
and cells that does not change color during variable
display, such as the fiber borders. This option
allows the skeleton color to be changed by setting the
intensities of red, green, and blue by moving cursor
one vertically. When done with one color push enter
to set the next color. When done with all colors push
home and enter.

F.2.2 Displaying the Network from Your Program

This section describes the entry points that c¢an be
called to display a previously constructed network and
dynamically update the display variables.

Your program must be linked to the library of DESIGNNET
routines, the 1library of ANW graphiecs routines, and to the
library of Grinnell routines, for example:

LINK your_program,DR1:[ANWCA.DNET]DNETLIB/LIB,
[ANWRS.GRFIGLIB/LIB,[MOVIEIGRLIB1/LIB

Initializing the Display

Before displaying the network vyour program must
initialize tne Grinnell. This can be done by putting the
following two sStatements in your program before any
DESIGHNET routines are called:

CALL GR_INITIALIZE (0, ' ')
CALL GR_CONFIGLU4Y

To prepare a network for display call the subroutine
PREPARE_NET (filename)

where filename is a character string giving the name of the
file in which a network has been stored. This file can be
interactively generated or modified by using the DESIGNNET
program described in section 2.1. PREPARE NET does not

display anything and need only be called once. To display
the initial state of the network call the subroutine

DISP_NET_SKEL

which will draw all shapes, texts, and modules on the
Grinnell. DISP_NET_SKEL can be <called at any point to
refresh the network display.
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Displaying Variables

To display the current state of the network variables
in one module call one of the following subroutines:

UPDATE MOD DISP (module number,
“cell var1, cell var2, cell var3,
input var,
ret s?n vartl, ret_syn _var2, rct syn var3,
inp_syn var1, inp syn var2, 1np‘syn—var3,
num_celTs_in moduTe, num 1nputs in_module)

or

UPDATE _SHORTMOD (module number, cell var1)
where the arguments are:

module number: INTEGER variable

This is the number corresponding to the module that is
to be updated.

cell var1, cell var2, cell var3: REAL arrays dimensioned
(num_cells_in_module)

These are the values of the 3 cell variables for each
cell. Var1 is displayed as the cell's color
intensity. Var2 is displayed as the radius of a
circle centered at the cell body. Var3 is displayed

as half the width of a square <centered at the cell
body.

input_var: REAL arrays dimensioned
(num_inputs_in_module)

These are the values of the variable for each input
fiber, displayed as the fiber's color intensity.

rct_syn_varl, rect_syn_var2, rct_syn var3: REAL arrays
dimensioned (num cells in module, num _cells_in_module)

These are the values of the 3 recurrent fiber synapse
variables., Var1 is displayed as the radius of a green
or red disk, corresponding to a positive or negative
value, centered at the synapse. Var2 is displayed as
the radius of a circle centered at the synapse. Var3

is displayed as half the width of a square centered at
the synapse.

inp syn_varl, inp_ syn_var2, inp syn_var3: REAL arrays
dimensioned (num 1nputs in module, num cells_in _module)

—
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These are the values of the 3 1input fiber synapse
variables, and are displayed in a manner similar to
the rct_syn var's,

Not all modules will require the display of all 3
variables of each type. A single variable can be used as a
dummy for values that are not needed. For example, if only
the first variable of each type 1is needed, call the
subroutine with:

UPDATE MOD DISP (module number, cell varil, dummy, dummy,
input_var,
rct_syn_varl, dummy, dummy,
inp syn_vari, dummy, dummy,
num cells in module,
num_inputs in_module)

If only the first cell variable is needed, then
UPDATE_SHORTMOD can be called. Every module of type
PARALLEL and CORNER should call UPDATE_SHORTMOD.

To display the current state of the entire network
UPDATE_MOD DISP or UPDATE SHORTMOD must be called for each
module in the network.

Changing Display Parameters

There are routines available for changing the color of
the network skeleton and the bounds of the variables. These
routines can be called at any time.

To change the color of the network skeleton call:
DEF_SKEL_COLOR (red, green, blue)

"Sk=2leton" refers to the cells and fibers without the
associated variables. This color is seen on the cell and
fiber borders at all times and on the cells and fibers in
which variable 1 is at a minimum. The arguments red, green,
and blue are of type INTEGER.

The bounds of the network variables are set when the
network is created, but can be changed for the duration of a
program's execution. To change +the bounds of the cell
variables call:

DEF_ACT_RANGE (module number, var_number, var_minimum,
var_maximum)

To change the bounds of the input fiber variable call:
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DEF_INP_RANGE (module number, var_minimum, var_maximum)

To change the bounds of the input fiber synapse variables
call:

DEF_IWGHT_RANGE (module number, var number, var minimum,
var_maximum)

To c¢change the bounds of the recurrent fiber synapse
variables call:

DEF_RWGHT_RANGE (module number, var number, var_minimum,
var_maximum)

The arguments to these four routines are:

module number: INTEGER variable
This is the number corresponding to the module whose
bounds will be changed.

var_number: INTEGER variable
This is the number of the variable whose bounds will
be changed. When changing cell and synapse variable
bounds this can be 1, 2, or 3; when changing the
input fiber variable bounds it can only be 1.

var_minimum: REAL variable
This is the minimum value of the variable that will be
displayed. If the variable's value is less than this
it will be displayed as if it equals this minimum
value.

var_maximum: REAL variable
This is the maximum value of the variable that will be

displayed. If the variable's value is greater than
this it will be displayed as if it equals this maximum
value.

F.3 Example

Assume that a network display has been created which
consists of the following modules, and saved in the file
named Mod3.Net.

Module 1 is of STANDARD type and has U4 cells, 4
input fibers, and has recurrent fibers. It will display
the following variables:
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Number Minimum Max imum
input fibers 1 0.0 1.0
cells 1 0.0 1.0
2 -5.0 10.0
input synapses 1 -1.0 1.0
recurrent synapses 1 -3.0 3.0

Module 2 is of CORNER type connecting Module 1 and
Module 2. It has 4 fibers and will display 1 variable
(cell var 1).

Number Minimum Maximum
fibers 1 0.0 1.0
Mpdule 3 is of STANDARD type and has 4 inputs, 2
cells,’ and no recurrent fibers. It will display the
following variables:

Number Minimum Max imum
input fibers 1 0.0 1.0
cells 1 0.0 1.0
2 -5.0 10.0
input synapses 1 -1.0 1.0

The following user's program calculates the values of
all variables and calls the appropriate routines in
DESIGNNET to display their values at each interation.

program example

real cellvi(4), cellv2(d4), inp var(l),mod1 iwts(l, 4),
% modl rwts(4,4), mod3 iwtsTl,2) -

data mod1 iwts, mod1 rwts, mod3 iwts /16%0.5,
2 16%370, 8%1,0/ — -

INITIALIZE THE GRINNELL

OO0

call gr _initialize (0,' ')
call gr_configiiy

PREPARE THE NETWORK

(SN NP

call prepare net ('MOD3.NET')

DISPLAY THE NETWORK SKELETON

aOa0

call disp net_skel

DO THE FOLLOWING LOOP FOR 20 ITERATIONS (TIME STEPS)

OO0

do 70 istep = 1,20

B T e N
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C

¢ COMPUTATIONS FQOR MODULE 1

C

10
&
&

20
&
&

30

40

C

C

C
&
&

C

C

C

C

c

C

50
&
&

60

C

C

C
&
&

C

70

do 10 numinp = 1,4

inp var(numinp) = env(istep,numinp)
'TUSER'S FUNCTION)
continue

do 40 numcell = 1,4
cellvi{(numcell) = 0.0
do 20 numinp = 1,4
cellvi{numcell) = cellvi(numcell) +
mod1_iwts(numinp,numcell) *
inp var{numinp)
continue
do 30 numrct = 1,4
cellvi{numcell) = cellvi(numcell) +
mod1 rwts(numrct,numcell) #*
cellv1(numrct)
continue

cellv2(numcell) = cellvi(numcell) * istep / 4.0

continue
DISPLAY STATE OF MODULE 1

call update_mod disp (1,cellvi,cellv2,dummy,
inp var,mod1 rwts,dummy,dummy,mod1_iwts,
dummy,dummy,B, 4)

DISPLAY STATE OF MODULE 2
call update shortmod (2, cellvl)
COMPUTATIONS FOR MODULE 3

do 50 numcell = 1,2
inp var(numinp) = cellvi(numinp)
continue
do 60 numcell = 1
cellvi(numcell)
do 60 numinp = 1,4
cellvi(numcell) = cellvi(numcell) +
mod3_iwts{numinp,numcell) *
inp var{numinp)
continue -

y 2
= 0.0

DISPLAY STATE OF MODULE 3

call update mod_disp (3,cellvi,dummy,dummy,
inp_var,dummy,dummy,dummy, mod3 iwts,
dummy ,duamy ,dummy, 2,4)

continue
stop

PAGE F-14
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end

F.4 Restrictions

The following 1limits are imposed by the DESIGNNET
routines:

Quaatity Minimum Max imum
Number of modules 1 15
Number of cells per module 1 10
Number of inputs per module 0 10
Number of shapes 0 40
Number of texts 0 60
Number of characters per text 1 70
Number of cell variables 0 3
Number of input fiber variables 1 1
Number of synapse variables 0 3

F.5 Error Messages
Error messages that appear at the terminal:

UNABLE TO OPEN filename
DESIGNNET was trying to open the file named ‘'filename’
containing a stored network, but the file didn't exist.
DESIGNNET will continue to ask for a valid file name
until one is successfully opened.

PREMATURE END OF FILE filename
DESIGNNET was reading from the file named ‘'filename!
containing a stored network. The end of the file was
encountered before all data was read in. The file is in
error, and the network should be recreated,.

ERROR WHEN READING FILE filename
DESIGNNET was reading from the file named ‘'filename’
containing a stored network. An invalid data type was
encountered in the file. The network should be
recreated.

¥%% VARIABLE MIN AND MAX THE SAME
A division by zero was encountered, because the minimum
and the maximum values (the bounds) of a variable were
set equal. The bounds can be changed by modifying the
network using DESIGNNET.

##% VARIABLE THRESH AND MIN THE SAME

[ P el
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**% VARIABLE THRESH AND MAX THE SAME

A division by zero was encountered, because the minimum
or the maximum value of a variable was equal to the
variable's threshold, which is the value at which the
first synaptic variable's disk changes from red to green,
The threshold is zero, so use DESIGNNET to change the
minimum or maximum value (the bounds) of the variable so
they are not zero.

NO BRAIN RETRIEVE PROGRAM LINKED
The main option UPDATE NET was selected, but you did not
link your BRAIN_RETRIEVE routine to DESIGNNET.

NO UPDATE_NET_DISP LINKED

The main option UPDATE NET was selected, but you did not
link your UPDATE NET DISP routine to DESIGNNET.

Error messages that appear on the Grinnell:

YOU ALEADY HAVE THE MAXIMUM NUMBER OF MODULES - COMMAND
ABORTED
YOU ALREADY HAVE THE MAXIMUM NUMBER OF STRINGS - COMMAND
ABORTED

NO DISPLAY ELEMENT NEAR THERE, TRY AGAIN
PLEASE PICK AGAIN - MODULES ONLY
WARNING: CURRENT STATE WILL BE LOST. REPEAT TO CONFIRM.

F.6 Program Origin

Authors: Rich Sutton and Chuck Anderson
Dept. of Computer and Information Sc.
University of Massachuseatts
Amherst, MA 01002

Date: 1-Mar-1980

Funded by: Air Force Office of Scientific
Research and the Avionics Laboratory
(Air Force Wright Aeronautical
Laboratories) through contract
F33615-77-C-1191.

Source Language: FORTRAN IV-PLUS on VAX 11/780 VMS

Relevant Files: All in DR1:[ANWCA.DNET]
Designnet.doc

e e e e+ e i
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Designnet.exe

Dnetlib.olb

Netspecs.for

Netpoints.for

Desnet.for

Drawnet .for

Delink.com creates Desnet.Exe,
which is equivalent

) to Designnet.Exe

Dir .doc explanation of files

in [ANWCA.DNET]

F.7 Sumnary of Method

To design or modify a network display:
RUN DR1:[ANWCA.DNETIDESIGNNET

Wnen the network display is created, select the SAVE NET
option to place the network display in a file. The name of
this file must be used whenever the network display 1is
wanted.

The following routines must be <called by the user's
progran to display the network (see section 2.2):

GR_INITIALIZE

GR_CONFIGHUY

PREPARE NET

DISP_NET SKEL

UPDATE MOD DISP or UPDATS SHORTMOD

To access these routines and the Grinnell graphics routines,
the user's program must be linked by:

LINK user's orogram,DR1:[ANACA.DNET]DNETLIB/LIB,
[ANWRS.GRFIGLIB/LIB,[MOVIE]GRLIB1/LIB

F.3 Additonal Documentation

The routines in the Grinnell graphics 1library are
documented in the file: DR1:[MOVIE]GRDOC1.DOC

The EXPER package, which simulates a robot and its
environment, is documented in the file:
DR1:[ANWCA.DNET]JEXPER.DOC . This will explain the use of
the data file named EXPER.BRA referred to in this document.

.&\\)‘ L - PWNE M—-nu.?ﬂ» Bl Lol




APPENDIX G

EXPERIMENTER: SIMULATION OF A ROBOT'S ENVIRONMENT

G.1 Description

EXPERIMENTER is a system for creating, modifying,
manipulating, and simulating robots and their
two-dimensional planar environments, The model world
consists of an arbitrarily 1large number of independently
moving robots, goal or landmark objects, and movement
restricting barriers. A user provides the subroutines for
the control of the robot, and this ¢tool allows him to
experiment with the capabilities of his control algorithm in
a range of different environments much as a psychologist
might investigate the behavior of some Dbeast. The
limitations on robot and environmental structures are
particularly suited to the investigation of the learning,
reasoning, and planning capabilities of a robot control
algorithm.

EXPERIMENTER is a tool. EXPERIMENTER is not a complete
system but only a starting place for an applications
project. Only in the rarest of circumstances will major
modifications and additions be unnecessary.

Nor is EXPERIMENTER everyman's robot simulation system.
As a category of simulation objects, "robots and their
environments” is far too broad to be handled by a unified
system. Many different applications require the simulation
of quite different world models. Thus, EXPERIMENTER is only
appropriate for a restricted class of applications: It
seems inappropriate for applications requiring a three
dimensional model world or objects of complex internal
structure, Where a two dimensional view of space |is
sufficient, as for spatial planning and reasoning tasks,
then EXPERIMENTER may be very useful.

One way of thinking of EXPERIMENTER is as a software
substitute for an actual robot. As a shape on a CRT screen
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it is a poor substitute for a physical crawlinz beast, but
for convenience and flexibility, it has the hardware version
bzaat.

G.2 User Instructions

The use of EXPERIMENTER is described in three sections.

First, the <construction of a robot's brain routine is
explained. The procedure for linking EXPERIMENTER with your
routine and data files 1is then given. Finally, the

execution of EXPERIMENTER 1is described by defining the
functions of the options that are available during
execution,.

G.2.1 The Robot's Brain

The robots' control system, referred tc as 1its brain,
must be supplied by the wuser in the form of a FORTRAN
subroutine named BRAIN. The BRAIN routine 1is passed an
array of real values representing the state of the
environment as perceived Dby the robots. BRAIN should
process these values and generate an action to be performed
by the robots. The action is represented by an array of
real values passed back to EXPERIMENTER. A typical
declaration for the subroutine would appear as:

SUBROUTINE BRAIN (ENVIR _ARRAY, ACTION ARRAY)

If the state of the robots' brain will ever need to be
saved and retrieved, then entry points BRAIN SAVE and
BRAIN RETRIEVE should be included in BRAIN and would be
declared as:

ENTRY BRAIN_SAVE (i/o unit number)
ENTRY BRAIN RETRIEVE (i/o unit number)

The following summary of the variable names used by
EXPERIMENTER to represent the environment is included to aid
in the design of a BRAIN routine. These variables can be
accessed within the BRAIN routine by including the common
block declarations contained in file
DR1:[ANWRS.EXP]WORLDCOM.FOR.
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AN INFORMAL DESCRIPTION OF THE WORLD MODEL OF EXPERIMENTER

As well as providing an "informal" description of
the simulated system, the following constitutes a concise
exposition of the data structures of experimenter. The
common block structure should be apparent from the source
code. In the following, I am using E as the "element of"

symbol, and R (R+) as a range to be the reals (positive
reals).

A Discrete Time Model:
Components:

An infinite PLANE, upon which the following three
Kinds of objects are distributed.

NB BARRIERs, each of two ENDPOINTs

NL LANDMARKS, each a POINT OBJECT (PO)

NR ROBOTS, each a POINiT OBJECT capable of motion

NR+NL SYMBOLS, the display representations of POINT
OBJECTs

1 BRAIN, with
NA AFFERENTS (input lines)
NE EFFERENTS (output lines)

Descriptive Variables:

POX(PON)[t], POY(PON)[t] E R, PON=1,...,NR+NL
The x and y coordinate at time t of the PONth POINT
OBJECT (PON is short for Point-0Object-Number; POX
is short for Point-Object-X-coordinate). The first
NR POINT OBJECTS are ROBOTS, the last NL are
LANDMARKS.

POSIZE(PON)[t] E R+, PON=1,...,NR+NL
The size (radius) of the PONth POINT OBJECT at time
t

BX(PN,BN)[t], BY(PN,BN)[t] E R, PN=1,2; BN=1,...,NB
The x and y coordinates at time t of the PNth
ENDPOINT of the BNth BARRIER (BX is short for
Barrier-X-coordinate; BN is short for
Barrier-Number; PN is short for endPoint-NUmber.)

BW(BN)(t] E R+, BN=1,...,NB
The size (width) of the BNth BARRIER at time ¢t.

AFF(AN)[(t] E R, AN=1,...,NA .

The signal on the ANth AFFERENT or input line to
the BRAIN (AN is short for Afferent-Number).

EFF(EN)[t] E R, EN=1,...,NE
The signal on the ENth EFFERENT or output line from
the BRAIN (EN is short for Efferent-Number). 1In
the demo application, There are two EFFERENT lines

a~
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for each robot in the world - so that EFF looks

like DX1, DY1, DX2, DY2, ..., DXNR, DYNR, where

(DXi, DYi) is the change in x and y coordinates

being attempted this time step (DXi is short for
Delta-X-of-the-ith-robot).

Parameters (for display purposes):

SYMTYPE(SN) E {1,2,...,NST}, SN=1,...,NR+NL
The type of symbol (the shape) of tne SNth SYMBOL.
In the demo application, each SYMBOL corresponds to
the POINT OBJECT of the same index. (SYMTYPE is
short for Symbol-Type; NST is short for
Number-of-Symbol-Types)
SCR(SN), SCG(SN), SCB(SN) E {0,1,...,255},
SN=1,...,NR+NL:
The color of tne SNth SYMBOL, corresponding in the
demo application to the SNth POINT OBJECT. (SCR is
short for Symbol-Color-Red.)
BCR(BN), BCG(BN), BCB(SN) E {0,1,...,255},
BN=1,...,NB:
The color of the BNth BARRIER (BCR is short for
Barrier-Color-Red.)

Equations of Interaction:

POX(RN)[t+1] = POX(RN)[t] + EFF(RN*2-1) RN=1,...,NR
(in the demo application and if no barriers are
hit; RN is short for Robot-Number.)

POY(RN)[t+1] = POY(RN)[t] + EFF(RN*2) RN=1,...,NR

EFF[t] = BRAIN[AFF[t]]) AFF[t] = CALC_AFFERENTS[t] (in

the demo application)

The standard way of using the network display package
from EXPERIMENTER 1is to <create an entry point called
UPDATE NET DISP which takes no arguments and merely makes
all necessary calls to UPDATE MOD DI3P or UPDATE SHORTMOD to
update the dipslay of your network. [All other network
display functions are handled by EXPERIMENTER.] See the
documentation for DESIGNNET for an explanation of the
network display package.

G.2.2 Linking EXPERIMENTER

EXPERMENTER must be linked with your BRAIN routine.
This 1is done by executing the command file EXPLINK, which

_
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will ask you several questions regarding the following
options:

Linking Options

GRADIENT DISPLAY

The gradient display shows the direction and magnitude of
a robot's movements from points in the environment
arranged in a rectangular array. Movement 1is shown by
vectors originating at each of the points. Selecting
this option also permits the display of the potentials of
objects in the environment (see Edit Display Option
POTENTIAL) .

NETWORK DISPLAY

Use this option only if you have previously created a
network display, wusing DESIGNNET, that corresponds to
your BRAIN routine. This will 1link all the needed
DESIGNNET routines to your program. Your BRAIN routine
must include an UPDATE NET DISP entry point that performs
the calls to UPDATE MOD DISP or UPDATE SHORTMOD (see
DESIGNNET documentation). — -

ROBOT TRACK DISPLAY
This option causes each robot to 1leave a trail as it
moves in the environment. Each time a robot moves a line
is drawn from its new location to its previous location.

NUMBERED SAVE/RETRIEVE FILES
This option allows you to have several different BRAIN
states saved during execution. Each file is identified
by an integer number which must be specified when saving
and retrieving files. Without this option, the normal
file name is used for the BRAIN state file.

The sequence of questions are shown below as they would
appear at the terminal. The first line is what you type to
execute EXPLINK.

@(anwrs.exp]explink your_brain routine file name
GRADIENT DISPLAY OPTION (Y OR CR) ? y

NETWORK DISPLAY OPTION (Y OR CR) ? y

ROBOT TRACK DISPLAY OPTION (Y OR CR) ? y

NUMBERED SAVE/RETRIEVE FILES OPTION (Y OR CR) ? y
LINK EXIT

Data Files

There are 3 files that EXPERIMENTER can reference.
They are described below with their names that EXPERIMENTER
will initially refer to. When executing EXPERIMENTER you
can select main option SET FILES to tell EXPERIMENTER the
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names of your files if they differ from tne names below.

EXPER.ENV Contains all information needed to display an
environment. This can be retrieved to modify
an existing environment or written into to
save the current environment.

EXPER.BRA Contains a state of the user's BRAIN routine.
This can be retrieved to reset the BRAIN to a
past state, or written into to save the
current BRAIN state. Several different
states can be saved in numbered files if you
select the numbered files option when linking
with EXPLINK.

EXPER.NET Contains all information needed to display a
network. This can be retrieved to display the
network and subsequently updated by the BRAIN
routine. EXPERIMENTER cannot change the
network structure; use DESIGNNET to modify
the network (see DESIGNNET documentation).

If a file does not exist or there is some other error
in opening it for reading, then no data will be read in,
leaving the original configuration unchanged, and no error
message will be given. If the numbered files option is
used, then the file names will be 1.ENV, 1.BRA, 1.NET,

2.ENV, etc.

G.2.3 Executing EXPERIMENTER

To start executing EXPERIMENTER with your BRAIN routine
type

RUN your_brain_routine_file_name

Since EXPERIMENTER is run in the DEBUG mode enter "go" in
response to D>DBG. Most of the interaction will be through
the Grinnell. An option can be selected by moving cursor
one 1into a box in the option list and pressing enter. Some
options require subsequent option selections; to return to
a previous option list press home, then enter.

Main Qg&ion§

REFRESH
Redraw the current state of the environment or the
network.

EDIT WORLD
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Allows you to change some aspect of the environment.
Another 1list of options will appear and are described
below, following the Main Options.

SIMULATE
Performs a number of time steps in the robot-environment
interaction. One step 1is defined as one call to BRAIN

and the execution of the resulting action. One of the
following options must be selected to indicate the number
of steps to perform and display. The accumulated number
of steps will appear in the lower left corner of the
screen.

SIMULATE Options

QUICK
Time steps will be continuously performed, but not
displayed. Press enter to stop the simulation and

to display the final state.

CONTINUOUS
Time steps will be continuously performed and the
results of each step will be displayed. Press
enter to stop the simulation.

SINGLE STEP
One time step is performed each time this option is
selected, i.e., each time enter is pressed.

EDIT DISPLAY
Allows you to change the current display without
affecting the structure of the environment. Another list

of options will appear and are described below, following
the EDIT WORLD options.

RETRIEVE ALL
All information in the environment, brain, and network
data files 1is retrieved. This could change the current
state of each, so a safety feature requires you to select
this option a second time. Use the main option SET FILES
to change the file name.

SAVE ALL
All information concerning the current states of the
environment and the brain are saved in their respective
data files. Use the main option SET FILES to change the
file names,

PHOTO
The option list is erased and the display 1is refreshed.
A photograph can then be taken of the display without the
option list. Press enter to make the option list visible §
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again,

MAKE GRADIENTS
Not functional at this time.

EXIT

Stops the execution of EXPERIMENTER. Since EXPERIMENTER

is run in the DEBUG mode, you must enter "exit"
response to >DBG at the terminal.

EDIT WORLD Options

ADD ROBOT

in

This adds another robot to the environment (world).

After selecting this option the following questions wi

11

be asked on the Grinnell to help you specify the new

robot.

ADD ROBOT Questions

SYMBOL TYPE?

Several different symbols, e.g., square, circle, or
box, will appear on the Grinnell. Place cursor one
on the symbol that you want to represent the new
robot and press enter. The symbol that you
selected will be placed 1in the center of the

screen.

SIZE?

Move cursor one towards or away from the screen
center to reduce or enlarge the symbol. The cursor

should be in track mode.

COLOR?
For this question you have two options.

COLOR Options

ARBITRARY

You select the color of the robot by choosing

the red, green, and blue intensities

by

moving cursor one vertically and pressing
enter for each color. Press home and enter

when done.,

BY MATCHING

The robot 1is given the color of another
object in the environment by placing cursor
one near the object having the desired color

and pressing enter.
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POSITION?
With the cursor in track mode, move cursor one to
position the robot in the environment. Press enter
when done.

ADD LANDMARK

This adds a landmark to the environment. A landmark is a
stationary element of the  environment and has the
capability of being observed by the robots. This is done
by assigning a landmark a "scent", which is a function of
the distance from the landmark. In this way, the robot
can determine its location relative to the landmarks that
it observes. The option MODIFY OBJECT under main option
EDIT WORLD 1is wused to assign a "scent" to an object.
After selecting this option the following questions are
asked on the Grinnell. Refer to the EDIT WORLD option
ADD ROBOT for an explanation of these questions.

ADD LANDMARK Questions

SYMBOL TYPE?
SIZE?

COLOR?
POSITION?

ADD BARRIER

A barrier is a "wall" in the environment through which
the robots cannot move. An object's "scent", nowever,
will pass through a barrier., Barriers can be wused ¢to
build mazes in which the robots can be placed. A barrier
is specified by a rectangle that can be placed anywhere
in the environment. Several questions will be asked on
the Grinnell screen to help you specify the rectangle.

ADD BARRIER Questions

COLOR?
You must specify the color of the barrier in one of
two ways, 1i.e., one of the following options must
be selected. See the ADD ROBOT option for an
explanation of each of these.

COLOR Options

ARBITRARY
BY MATCHING

1ST ENDPOINT?
An endpoint is the center point of one of the
rectangle's short sides. Move cursor one to the
position at which you want one end of the barrier.
Press enter when done.

e —— =

|
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2ND ENDPOINT?
In a sinilar manner, move cursor one to specify the
second endpoint, and press enter.

WIDTH?

The width of the rectangle (barrier) 1is decreased
or increased by moving cursor one towards or away

from the line through the +two endpoints. Cursor
one should be in track mode. Press enter when
done.

MODIFY 0BJECT
This allows you to change any of the following aspects of
an object in the environment. Place cursor one near the
object you want to modify and press enter. The following
options will appear.

MODIFY OBJECT Options

SYMBOL
You select a new symbol to represent the object by
putting cursor one on the symbol and pressing
enter.

COLOR
Choose a new color for the object in one of the
following two ways. See ADD ROBOT option for an
explanation of these options.

COLOR Options

ARBITRARY
BY MATCHING

AFF EFFECT

With this option you can change the way that this
object 1influences the inputs to the robots' BRAIN
routine. The object's influence can be referred to
as its "scent", The object's 1influence on the
inputs is determined by two items: the EFFECT and
the POWER LAW. The EFFECT is set by selecting a
real number for each input, or afferent. These
numbers are the maximum values that the object can
contribute to each input 1line. The POWER LAW
determines the spatial extent of the object's
influence., 1Its influence is maximal at the object
and zero at its extent and beyond. Currently, its
influence changes linearly from the object to the
influence's extent. Each input value to the BRAIN
routine is calculated by summing the contributions
from all objects. Use the following options to
change the object's influence.
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AFF EFFECT Options

SCALE
This allows you to change the scale in which
the EFFECTS and the POWER LAW are displayed.
Their values are not changed.

SCALE Options

DOUBLE EFFECT SCALE
Reduces the EFFECT scale.

HALF EFFECT SCALE
Expands the EFFECT scale.

DOUBLE POWER SCALE
Reduces the POWER LAW scale.

HALF POWER SCALE
Expands the POWER LAW scale.

ZERO ALL
Sets the EFFECTS and POWER LAWS for the
object to zero.

POWER LAW
You select the extent of the object's
influence by moving cursor one vertically
while in track mode. Press enter when done.

EDIT EFFECT
You select the EFFECT of this object on each
input value by moving cursor one vertically
while in track mode. Press enter to change
the next input value and when done.

NEXT ROBOT
Allows you to change the AFF EFFECT for the
next robot.

SIZE-WIDTH
Alter the size of the object by moving cursor one away or
towards the center of the object, or the line through the
endpoints if the object is a barrier. The cursor should
be in track mode. Press enter when done.

POSITION
Move the object to any point in the environment by moving
cursor one to that point. The cursor should be in track
mode. Press enter when done,

EDIT DISPLAY Options

—— - — o+t
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BACKGROUND
Specify the color of the background by choosing the red,
green, and blue intensities by moving cursor one

vertically and pressing enter for each color. Press home
and enter when done.

GRADIENT

Tnis option is wvalid only if you have compiled a
gradient-calculating subroutine called BRAIN_NOSIDEEFF
and have answered "y" to the 1linking option "GRADIENT
DISPLAY?"., 1If this has been done, then the gradient will
be displayed. The gradient shows the direction and
magnitude of the robot's movements from many points in
the environment arranged in a rectanglar array. The
BRAIN NOSIDEEFF subroutine should perform all of the
BRAIN routine functions except changing the brain's
state, 1i.e., Jjust <calculate the efferents given the
afferents.

POTENTIAL

This option is valid only if you have answered "y" to the
linking option "GRADIENT DISPLAY?". This will allow you
to see the potential, or "scent", of an object 1in the
environment. It 1is displayed as a color intensity
surrounding the object. The object must be chosen by
selecting its number in the option list that appears
after selecting the POTENTIAL option. The objects'
numbers correspond to the order in which they were
created.

SHRINK
If the environment 1is currently displayed, then the
environments dimensions are reduced. It appears as if
you have stepped back from the environment to get a
broader view. If the network is currently displayed,
then the network's variable bounds are widened so the
size or intensity of the variable displays are reduced.

EXPAND
This has the reverse effect of the SHRINK option.

TRANSLATE
The environment display can be shifted in any direction
by placing cursor one on the point that you want to be
snifted to the center of the screen. Press enter when
you have positioned the cursor.

NETAORK
This option is valid only if you have previously created
and saved a network with DESIGNNET (see DESIGNNET
documentation) corresponding to the current BRAIN
routine, and have included an UPDATE NET DISP entry point
that will display the values of the neftwork variables.

——— e e s
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You also must have linked the network display option when
performing EXPLINK. 1If this has been done, then the
environment display is erased and the network is
displayed. You cun then select SIMULATE and observe the
changes in the network display.

ENVIRONMENT

This option erases the network display and displays the
current state of the environment. This option is the
reverse of the NETWORK option.

SET RANGE

This option is valid only if the network 1is currently
displayed. It allows you to change the range, or bounds,

or the network display variables (see DESIGNNET
documentation).

G.3 Example

The following FORTRAN IV-PLUS is an example of a BRAIN
subroutine.

C o ot o o v = v o o = o > = = = = = R T = = = T T R R Y R = = v = = . = - = - - -
e This BRAIN routine performs a Run and Twiddle algorithm.
¢ If a robot perceived a stronger "scent" now than it did

c one time step ago, it will continue in the same

direction.
¢ Otherwise, it selects a new direction at random.

- - D S - W T D AR . - - — - W T R G M S em wm e N R R e e e

subroutine BRAIN (afferents, efferents)

include 'DR1:[ANWRS.EXP]WORLDCOM.FQR"

parameter maxnumrobots = 10

real afferents(nr), efferents(nr¥*2),
& oldlevel(maxnumrobots)

integer i, unit, iseed

if (nr .1t 1) return 1if no robots, then return

do 20 i = 1, nr
if (afferents(i) - oldlevel(i) .le. 0.0) then
efferents(i*2-1) = 20.0 * (ran(iseed)*2 - 1)
efferents(i%*2) z 20.0 * (ran(iseed)*2 - 1)
endif

oldlevel(i) = afferents(i)

20 continue
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raturn

------- entry for BRAIN SAVE —cccomcmm e e

entry BRAIN SAVE (unit)

write (unit,*) (oldlevel(i),i=1,nr)
write (unit,*) iseed

raturn

------- entry for BRAIN RETRIEVE —cccccmccmmem e

entry BRAIN RETRIEVE (unit)

read (unit,*) (oldlevel(i),i=z1,nr)
read (unit,*) iseed

return

-------- entry for calculating action gradient -—--—-—-----

entry BRAIN NOSIDEEFF (afferents, efferents)

This entry is meant to calculate the efferents as a
function of the afferents, but have no side effects
on the brain state. The resultant action choice is
interpretted as the direction the robot would tend to
move, This is used to display movement tendencies as
a function of position (see the Edit Display Option
GRADIENT) .

return

-------- entry for updating the network display -=------

entry UPDATE_NET_DISP

There is no network display for this example. 1If
there was, the appropriate calls to UPDATE MOD DISP
or UPDATE_SHORTMOD would go here.
return

end
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G.4 Restrictions

The following restrictions are placed on the given
quantities.

|

Quantity Maxinum |

...................................... i

Number of robots 20 i

Number of point objects 60 ;

Number of barriers 100 i

Number of input values passed :

to BRAIN 20 ;

Number of output values returned '
by BRAIN 20

G.5 Error Messages (not applicable)

G.6 Program Origin |

Author: Richard S. Sutton
Dept. of Computer and Information Sc. !
University of Massachusetts i
Amherst, MA 01002 '

Date: 1-Mar-1980

Funded by: Air Force Office of Scientific
Research and the Avionics Laboratory
(Air Force Wright Aeronautical
Laboratories) through contract
F33615-77-C-1191.

Source Language: FORTRAN IV-PLUS on VAX 11/780 VMS

P

G.7 Summary of Method

Step 1.

Create a file containing a subroutine named BRAIN with
entry points for BRAIN RETRIEVE and BRAIN_SAVE, and
optionally BRAIN NOSIDEEFF and UPDATE_NET_DISP.

Step 2.
Compile the BRAIN subroutine.
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EXPERIMENTER: SIMULATION OF A ROBOTS' ENVIRONMENT PAGE G-16
Summary of Method

Step 3.

Link EXPERIMENTER with you BRAIN routine by:
@[ANWKS.EXP]JEXPLINK your_brain_routine file name
Step 4.

Run EXPERIMENTER. Create the environment and then
simulate the robot-environment interaction.

G.8 Additional Documentation
The network display package, DESIGNNET, is described in
the documentation file: DR1:[ANWCA.DNETJIDESIGNNET.DOC

The graphics routines for the Grinnell display are
documented in DR1:[{MOVIE]GRDOC1.DOC.

-
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