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Introduction

The evaluation of contour integrals with analytic integrands is often ac-
complished by moving the contour to an equivalent one, such that the integrand is
better behaved or can be approximated more easily. In particular, movement of the
original contour to one that takes advantage of saddle points of the integrand or
paths of descent or steepest descent is a very fruitful procedure. It is presumed that
the reader is familiar with this technique; see references 1-3, for example. However.
one of the difficulties of this procedure is determining the locations of the steepest
descent contours (reference 1, p. 263). For complicated integrands, especially those
involving branches of multivalued functions, exact determination of steepest
descent contours is virtually impossible analytically, and recourse to some type of
computer aid is recommended. The procedure given here does not require solution
of nonlinear equations, but does give a very good indication of steepest descents
with a minimum of analytical and programming effort.
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Explanation of Technique

Suppose we wish to evaluate the contour integral

fdz g(z) exp(,w(z)) , (1)
C

where g(z) and w(z) are analytic functions of z, except for isolated singularities such

as poles, essential singularities, and branch points; and C is a contour (finite or
infinite) in the complex z-plane. The saddle points of the exponential in (1) occur
where (reference 1, p. 258)

W I(z S  0 (2)

For A real, the standard method of determining the paths of steepest descent out of a
saddle point is to keep the imaginary part of w(z) constant and equal to its value at
zs (reference 1, p. 255). This generally leads to difficult transcendental equations
that must be analytically investigated approximately or solved numerically.

An alternative procedure for finding the steepest descent directions at any point
in the z-plane is as follows: Let

z = x + iy

w(x + iy) = u + iv (3)

Then the magnitude of the exponential in (1) is exp(Au), and its direction of steepest
descent at x, y is proportional to the negative of the gradient (reference 1, p. 254):

V exp(Xu) = A exp(Xu) Vu , (4)

where
3U D UVu =- -ax  - ay (5)

and ?I and a are unit vectors in the positive x- and y-directions, respectively. The
y

explicit evaluation of (5) requires that one analytically evaluate u = Re{ w(x + iy)}
and then analytically derive au/ax and au/8y. This can be tedious and is liable to
human error.

An alternative simpler procedure is possible: By the Cauchy-Riemann conditions
applied to a function analytic at z, the derivative

au Wv
w'(z) - + I i

-7 - (6)

That is, we can express the desired partial derivatives as

_u = Re{w'(z)}, au Im{w'(z)} (7)

2
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Then the negative of the gradient in (5) can be written as

-Vu = -Re{w'(z)} a + Im{w'(z)} a (8)x y

So if we evaluate w '(z), the direction of steepest descent at any point z has
components in the x, v directions proportional to

-Re{w'(z)}, Im{w'(z)} (9)

for w '(z) # 0. The only analytical calculation necessary is that of derivative w '(z), a
task generally easily accomplished, and indeed necessary for evaluation of saddle

0! point locations anyway. A computer program can then be written to numerically
evaluate w '(z) in terms of its components (9) at all points of interest in the z-plane.
A program for this procedure is given in appendix A, along with the specific
examples displayed later in this report.

Presentation of this steepest descent information for human interpretation is
accomplished here by drawing a short standard-size line through each point
z = x + iy, centered on the point and with an arrowhead pointing in the direction
of steepest descent. The magnitude of the rate of steepest descent is discarded; only
the direction is preserved. How effective this procedure is will be demonstrated by
the following examples.

,4
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Examples

Airy Function

The Airy function, Ai, is proportional to (1) when g(z) = 1,

1 3 (10)
w(z) = Z - -.z ,(

and C is an infinite contour starting anywhere in the angular range -5n/6 < arg (z)
<-Tr/2 and ending in n/2 < arg(z) <5n/6; see reference 1, pp. 52 and 266. Then

W (z) = 1 - z) (1)

A computer need only evaluate the complex product z~z and subtract it from 1 in
order for (11) to be used in (9). An example of this procedure is given in figure 1.
The arrows clearly indicate the steepest descent paths from any point in the z-plane.
The two solutions of (11) equal to zero, namely, saddle points z. = ±1, have arrows
pointing both inward and outward at these points, reflecting the very nature of a
saddle point. Movement of the original contour C to the steepest descent contours
(solid lines) out of the saddle point at z, = -1 is easily accomplished; no
singularities of the integrand of (1) are crossed in the movement process.

The Airy function for complex argument (reference 1, section 7.3) has, more
generally,

1 3
w(-) = zexp(i9)- z (12)

Figure I corresponded to 0 = 0. For 0 * 0, the determination of steepest descent
paths is analytically difficult (ibid.). However, since

2

w'(z) = exp(ie) - z , (13)

computer evaluation of (13) and (9) is trivial. The steepest descent directions for
6 = 3n/ 4 , for example, are depicted in figure 2. The solid lines in the neighborhood
of the saddle points were hand-drawn upon observation of the descent arrows. The
interpretation of figure 2 is much easier than its counterpart in reference 1, figure
7.3.3. Also the determination of an equivalent contour to C is easily achieved by
reference to figure 2. First let the new contour come from o exp(-i2n/3) along a
steepest ascent to the saddle point at zs = exp(-i5n/8). Then let it continue in a
northeasterly direction along the steepest descent direction out of this saddle point
to the y-axis. Next proceed due north to a point near z = i and then follow a
steepest descent path out to -oexp(i21/3). The vertical portion of this new contour is
not a path of steepest descent, but it is obviously a path of descent because the
projections of the arrows on this vertical section all point in the upward direction of
travel. This discussion also points out that the other saddle point at zs = exp (i3n/8)
does not enter into the asymptotic development of Ai, at least for this value of 0.

An alternative equivalent contour to C is the pair of steepest descent contours
passing through the saddle points and connecting ooexp(-i2n/3) to + - and + -o to
OOexp (i2n/3), respectively; see figure 2. Observe that the movement of C to this new

4
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pair of paths is not an approximation; it is an alternative exact representation of the
original integral. If one now approximates these two path integrals by their con-
tributions near their peaks at the saddle points, the saddle point at z, = exp(i3n/8)
will yield exponentially small contributions relative to that at zs = exp(-iSn/8).
This can be seen from figure 2 by drawing a straight line between the two saddle
points; all projections of arrows along this line point at the upper-right saddle point,
meaning that the value of lexp(Aw(z)) is smaller there.

t t t I Ie of Of . , " I

t t \ ,.... .. . 'I II

I Figr 1 S Descen Direct.ons fo Air Funct t t t !

t I I 1 4-t

Y 0- - SADE SADL

Figure~ ~ ~ ~ ~~-0 1.f SteetDsetDrcin oiyFntor O=V
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When we continue on to the case e =r in (12), the character of steepest descents
is as depicted in figure 3. Now the straight line connecting the two saddle points has
all arrows perpendicular to it; thus this vertical line is a contour of constant
Iexp(Aw(z))I. This means that both saddle points contribute equally to the value of
integral (1). Again the pair of steepest descent contours through the saddle points
(mentioned in the above paragraph) represent exactly the original integral; one
could evaluate the original integral exactly by adding the total contributions of both
of these paths, or an approximation can be achieved by computing the integrand
near its peaks at the saddle points.

J [ r -v -v , ----T -- -- i -' 7
bt f t t k ,$,.,...-,.,t' 1IItIII
1 tf f t t I , x,..-- ,.~
i tt t t t t t , ,.. . . ,. ' f

2

*t I. t_ __ :SADDLE

POINT

*1- - ~ . 4 ~ - - -I -, - - - t--' I-, -- - -. - .--' -- -

y Or: ....- ~-~.. ._ ~ -_-_ .- ...-.....-... .. _. -.- _ - ~ ... .w w

-W .p' .- - ,- -W -V - W P -. a .4

A- X. SADDLE f

I ~~~- k t f t t I ''- - '"' t ttf
t t t

-31 

I

-3 -2 0 2 3
X

Figure 3. Steepest Descent Directions for Airy Function, 0 =
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Hankel Function

The Hankel function takes the form (reference 1, 7.2.23)

1,(.) = ilcos(z) + '. z - ,-) , (14)

where P is a constant. There follows immediately

w'(z) = i[- sin(z) + 3] (15)

Computer evaluation of (15) requires only a trigonometric sin of a complex number,

followed by subtraction and multiplication. Sample descent direction plots for/'3 =

0.5, 1, and 1.5 are given in figures 4-6, respectively. (It is informative to compare
these figures with figures 7.2.1-7.2.4 in reference 1.) Movement to equivalent
contours is obvious from figures 4-6. Since (15) has period 2Tr in x, only a 2T1 strip
has been plotted in figures 4-6. The character of the steepest descents in figure 5 for
/3 = I is different, in that the saddle points have coalesced; however, there is no
difficulty ascertaining from the plots what new contour to adopt.

Klein-Gordon Equation

This example is complicated by the presence of branch lines in the exponent
function w(z). Specifically we have (reference 1,7.5.9)

w(z) = 6(z2 - 1)/2 _ z (16)

where the branch of the square root is taken as positive real for z = x > 1, and with
branch lines extending vertically downward from the branch points at z = +1. The
derivative of (16) is

S(z) -- e2,1/
2 - b 1 (17)

where the same square root branch must be taken as in (16).

If one has available a computer program that evaluates the principal square root
of a complex number, denoted here by z' , it can be used to evaluate (17) in the
following manner. Observe first that the branch line of principal square root z''
occurs where z = -p for p > 0; i.e., p can take on all nonnegative real values. So
consider the representation

_ 1/2 1212(8
z2 1)b = i(-iz + i) 1 12 (-iz - i) 1 / 2  (18)

For z real, positive, and large, the right-hand side of (18) approaches
i[exp(-in/4)z' ] [exp(-in/4)z'-j = z, as desired. Furthermore, the two branch lines
of (18) occur where the arguments of the two principal square roots have values

-iz + i = -p for p > 0

i.e., z = +1 - ip for p > 0 (19)

8
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These are vertically downward from z : ±1, as desired. Thus (17) can be easily
evaluated by taking the two complex principal square roots indicated in (18) and
performing multiplication, division, and addition of complex numbers. The specific
coding is illustrated in appendix A.

The pole of g(z) at z = vo for this example (reference 1, 7.5.8) has no effect on
the steepest descent contours of w(z). The steepest descent directions for 0 = 0.8
are depicted in figure 7. There are saddle points at zs = ±5/3, and the steepest
descent contours go vertically downward eventually. The steepest descent directions
near the branch lines emanate from the branch lines themselves, but these branch
lines have no effect on the steepest descent contours through the saddle points.
However, if the branch line emanating from the branch point at z = 1 had been
taken at angle -t/6, for example, it would have interfered with the steepest descent
contours in the 4th quadrant of the z-plane. Such a choice of branch for the square
root in (16) and (17) is undesirable and should be avoided, as was done in figure 7.

Function with Essential Singularity

This integrand is characterized by (reference 4)

exp(w(z)) = z exp --K (20)

which function has a zero at z = 0 and an essential singularity at z = 1. Then -

w(z) = ln(z)- z K- 1
, 1 K

w'(z) = 1 2 (21)
Z (z - 1) 2(1

The steepest descent contours for (21) are depicted in figure 8 for K = 3. The
essential singularity generates a "dipole effect" about z = 1, i.e., 0 at z = 1 +, and
00 at z = I-, for K > 0. The zero of (20) at z = 0 manifests itself as a point toward
which all the arrows point, since zero is the smallest magnitude that any complex
function can take on. The saddle points (roots of (21)) occur at

z = exp(±ie), where a = arc cos(1-.-/K, for 0 < K < 4 . (22)

Utilizing the information in figure 8, we find it relatively easy to decide what the
effect of moving an original contour around in the z-plane will do to integral (1).
Movement across the essential singularity at z = 1 will necessitate consideration of
the residue at this point. The zero and saddle points of (20) are not points of
singularity.

Cubic Function

This example comes from reference 3, pp. 296-302; it is characterized by
g(z) = 1/2 and (ibid., upper line of 6.6.25)

w(z) = -e (4z 2 - i5z + i (23)

12
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Figure 8. Steepest Descent Directions for exp (w(z)) = z exp (z-), K = 3

Also now the integral is a finite one, from z = -I to z = + 1. This example exhibits
a Stokes phenomenon at certain values of a, where we have represented A = IAleia.
We find

w '(z) = -e (8z - i5 + ,3z2) (24)

which has zeros (saddle points) at zs = i and i5/3.

A plot of steepest descent directions for a = 0 (positive real A) is given in figure 9.
It indicates that the steepest descent contours out of the limits at z = - 1, + I tend to
Goexp(-i5in/6) and 00exp(-in/6), respectively. But these two valleys at 0c can be

14
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zs= i must again be used to join them. The dominant contribution is seen to be due
to z = -1, by making use of the arrows of descent in this figure.

For a = 3ir/4, however, we see from figure I11 that both of the steepest descent
contours out of -!, + I tends to ooexp(-isn/12). Now there is no need to employ
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either of the saddle points. The integral over (-1,1) is given exactly by the sum of the

two steepest descent contributions. The dominant contribution is again due to
z = -1, since we have to descend from z = -1 to near z = 0 to reach magnitude
values comparable to those at z = + 1.

II.33 F v rr-V -' -I''-T- - --- , 'r-.r -- -7 -/" '- -  11- r" - -'-

e 'e e ef POINT
- I I - - - - -- ,-,A--L-e

~ ~ POINT

t t i +

t ft

-3~ -2 1 r 12.

t\ ,, t tI t t ,,,,,- --. -, ,.\ i

-i3 - -2 - 0 1 23

x

Figure 10. Steepest Descent Directions for Cubic, a = 5n/12
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B2)

f( ) exp exp 2 A (26)

The corresponding probability density function of this impulsive noise is given by
the Fourier transform

1 1 N B
p(v) = C d cxp -i v + A exp -- A) (27)

By expanding f(,) in (26) in a power series, we note that the mean square value of
the Poisson process is readily found to be AB2/2. Since we will be interested in
values for the dimensionless parameter A of the order of I (e.g., A = 0.35 in
reference 5, figure 3), we will normalize our random variable according to
t = v/(B2/2) ' : - v/a 0 . Also, as, 4 -" ±-, f(,) in (26) tends to nonzero value
exp(-A). Adding and subtracting this quantity and letting 4 = zIo, enables (27) to
be expressed as

p(v) = exp(-A) 6(v)

+ exp(-A) f dz exp(-itz)[exp(A exp(-z 2/2)) - 1]

Although there is no obvious parameter A in this form, it is shown in appendix B
that we can still use steepest descent procedures on the logarithm of the integrand of
(28); i.e., here we have

w(z) = -itz + ln[exp(a(z)) - 1] , (29)

where we have defined

2a(z) = A exp(-z /2) (30)

Observe that as z -- o with arg(z) in the two sectors within Tr/4 of the positive-real
or negative-real axes, a(z) becomes very small and

w(z) - -itz + ln[a(z)] = -itz + In A - z/2 ; (31)

this means that Re w(z) -- in these two sectors of the z-plane, and, therefore, the
integrand of (28) tends to zero in these sectors as z --..

The integrand of the integral of interest in (28) is zero in the finite z-plane only
when

h(z 0 exp(Ae=Z2 - 1= 0

2
Ae- z2/2 = i27n for n 0

18
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2
_T 12= n -- + i2Trm 1 n + ! 2 sgn(n) + i2-amJ

Li= i 1n 'I + '2'm+ gnn

where A > 0, the square root is the principal branch, and n and m are arbitrary
integers (negative, zero, or positive), except that n * 0. These zeros of h(z) are
important because they will be locations toward which all the steepest descent
arrows must point in their neighborhoods, since zero is the smallest magnitude that
a complex function can take on. These zero locations, of which there are an infinite
number, depend only on A, and not on normalized variable t = v/a o in expression
(28) for the probability density p(v). The locations of the zeros of h(z) in the third
quadrant closest to the origin are depicted in figure 12 for A = 0.35. There is
symmetry in the other quadrants since (from the first line of (32))

h(-z) = h(z) , h(z*) = h*(z) (33)

For purposes of evaluating steepest descent directions and saddle point locations,
we note that a(z) in (30) has the property

a" (z) = -za(z) , (34)

and so (29) yields
w'(Z) z a(z)

- exp(-a(z)) (35)

Thus the saddle points, z., of which there are an infinite number, are solutions of

zs a(zS)

1 - exp(-a(z )) it (36)

and obviously depend on both A and t. The most important saddle point is at
z, = -i3, P3 positive real, where (using (30)),

BA exp(B"/ 2) t

1 - exp(-A exp(1 2/2)) (37)

The steepest descent directions for A = 0.35, t = 2 are depicted for (35) in figure
13. The saddle point at z. = -P = -il.341 satisfies (37); there are five other saddle
points indicated by X in the figure, in addition to the zeros carried over from figure
12. The steepest descent contour out of the saddle point z, = -il.341 is drawn as a
solid line; it is asymptotic to y = -t as z - 00 with arg(z) within R/4 of the positive-
and negative-real axes. Movement of the original contour from the real axis in (28)
to the steepest descent contour is easily justified.
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To deduce the asymptotic nature of the steepest descent contours, recall (31); thus
the imaginary part of w is

v~-tx - xy = -x(y + t) as z (38)

in the sectors under consideration. But, since from (29),

W(-i. -,t + ln[cxp(A cxp(K/2)) - ] (39)

is real, we require (38) to approach 0 as x - ±00. This requires that y - -t, as
claimed.

We observe from figure 13 that no use is made of the saddle point at (-1.71,
-2.38), nor of the infinite number of other saddle points. We also observe that the
descent directions in the neighborhood of the closely spaced zeros and saddle points
near the bottom of the figure is very detailed and complicated; however, none of
that information is needed.

When t is increased to 5, figure 14 applies. Now the steepest descent contour out
of the saddle point at z, = -ifi = -il.945 heads into the zero at (-0.632, -2.485).
How to connect from this latter point to z = -- is not clear. Instead, we consider a

horizontal descent contour out of z, = -il.945 until we get in the neighborhood of
(-2, -2), and then we resume a steepest descent contour heading toward
y = -t = -5. The major contribution to this descent contour is given by the
neighborhood of the saddle point at x = 0; the descent and steepest descent con-
tours are tangent at this saddle point.

The aid afforded by the steepest descent directions depicted in figures 13 and 14 is
extremely worthwhile, since the exponential in (29) and (35) makes an analytical
approach very difficult. The ability to discard or avoid certain regions of the z-plane
in determining an appropriate descent contour is rather obvious from the figures
when coupled with basic information about the integrand, like the asymptotic
behavior of the steepest descent contour.

The above results yield exact values for the original integral, since we have simply
determined contours equivalent to those originally specified. Now we will derive an
asymptotic expansion for the probability density in (28) for large t = v/oa, i.e., at
values v much larger than the standard deviation of the Poisson process.

To do this, we need

w"(z) = a (1 - e-a [2 = 1 2 e-a Z 2 _ 2 2 a)] (40)

where a a(z) is defined in (30). Then we find

W: "(Zs t 2 + Z 2 z2 a(z s (41w"z)= + .-- (1 - 2 -z (41)
S Z S S

S

and, in particular,

wi = t 2  t( + a2 + 82 A exp(a 2 /2)) , (42)
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for the saddle point at z, = -if3. Also w(-if8) is given by (39). Then we have the
approximation (reference 1, chapter 7)

exp(-A exp()2 - ( 2 1/2p (v) - 2Tra Iexp(A exp(a /2)ws-
0

(43)

One drawback with this solution is that P3 depends on t through the solution of
transcendental equation (37). For large t, we have, to first order,

a %[2 In(t/A)11/2 L (44)

For development of additional terms and the general philosophy of solution of
these types of problems, see reference 6, pp. 11-16 and 83-84. We find, more
generally,

a f2 L L In (L) (45)

Even so, substitution into (43) yields a very complicated expression for the
probability density function unless t is excessively large. It can be seen that (43)
decays slightly faster than an exponential for large t.
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Summary

A technique for simple determination of the steepest descent direction at any
point in the complex plane has been presented and illustrated with numerous
examples. The movement of the original contour to an equivalent descent or
steepest descent contour is an exact representation and can be deduced fairly easily
from the descent information. At this point, two alternatives are available, either
exact numerical evaluation of the integral or an approximation such as Laplace's
method. Very difficult integrands can be handled very effectively via this approach.
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Appendix A

Computer Programs

The major part of the calculations required for the six examples in the main text is
that of w'(z). This is accomplished in the Subroutine Wderivative in the main
program written in BASIC and listed at the end of this appendix. But, first, the six
subroutines for the exampie. given are listed. They illustrate how little program-
ming is actually needed to compute w '(z), provided that one has already written
subroutines for the standard complex operations and functions like multiply,
divide, exp(z), log(z), square root, arg(z), sin(z), cos(z), etc. These latter functions
are listed for completeness as subroutines at the end of the enclosed program.

410 SUB Wier 1 .i t, i,. (X, Y, Rew , I ntw I A i r-.., fu r,: t ion
411 CO l 0 ' , St co ( t het. & , -1 rj t ,A te a)
412 CALL Mu1 ( X,/,,Y, B)
420 Re,.I1 =Ct-A
430 IMJ=St-B
440 SUBEND

410 SUB Wderti vat i .e ., , Rewl , Im l H ar, e I f. r ' or.. ,
411 Bet a=. 5
412 CALL Si n(,Y,A,B)
420 Rewl=B
430 I mw I1=Bet a-F
440 SUBE14D

4 10 SUB Wder i .. .. , (X , R ' m w ) K :,i -wI,..m-,t
411 Theta=.8
412 CALL Sqr(',"-X+1,8,B)
413 CALL Sqr(", -X-1,CD)
414 CALL Mul(A,B,CD,E,F)
415 CALL Div(Thet.a*,Theta*Y,E,Fi'.,H)
420 Rewl=G
430 IMwl=H-1
440 SUBEND

4 1 0 S U B W d e r i ,., t i , ', Y , R e w , Irn,,,l I E s E n t. i .a 1 .: ri,. al & I t ,

411 K=3
412 CALL Mu I(X-1,Y,X'-1,Y,A, B)
413 CALL DI0.(K,O,F.B,CD)
414 CALL Di'.(1,0, X,YEF)
420 R.,...1=C+E
430 Imwl-+F
440 SUBEND

A-I
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*I410 SUB LWderiv)ativ.e(X,V,Rewl, Imwl"- cubic: furctiDr
411 CON Ca, Sa co alh) s i i::a!pl- a)
412 CALL Mul(X,Y,X,Y,A,3)
413 CALL NiH (Ca,Sa,8*X-3*B,8*Y-5+3*A,C:,D)
420 Rewl=-C
4:30 Int I'=-D
440 SUBEND

410 SUB Wier i vat 1 ve ( X, 7, Rewl 15 I r 1) du i a
411 A=.35
412 T=2
41:3 CALL Nul(X,V,X,Y,T1,T2)
414 CALL E>:x:p(-.5*T,-.5*T2,TS,T4)
415 ArAR*T3
416 Ai=A*T4
417 CALL E::p'-Ar,-Ai,Ev,Ei)
418 CALL Nul(X,Y,Ar,Ai,T1,T2)
419 CALL Div(TL, T2, 1-Er*,-Ei,T3,T4)
420 Rewl=-T3
430 Emwl-T-T4
440 SIJEEND

A-2



TR 6433I Steepest Descent via w'(z); use SUB Wder .. ot ie in lirle 410

10 X1=-3 LEFT ABSCISSA
20 X2=3 RIGHT ABSCISSA
30 Y1=-3 BOTTOM ORDINRTE
40 Y2=3 TOP ORDINlATE
50 Dx=.2 X INCREMENT
60 D=.2 Y INCREMENT
70 PLOTTER IS "GRAPHICS"
80 GRAPHICS
90 SCALE XI,X2,YI,Y2
100 LINE TYPE 3
110 GRID 1,1 GRID LINE SPACING
120 LINE TYPE I
130 F=.2*SQR(Dx*Dx+Dy,*Dy) ARROW
140 Q1=-COS(PI.12)*.8 INFOR-
150 Q2=SIN(PI.."12)*.S MATION
160 FOR X=X1 TO X2 STEP Dx
170 FOR Y=Y1 TO Y2 STEP Dy
180 CALL WderivativecX,Y,Rewl,mw l) wu'(z)
190 CALL Direction,:Rewl,Imwl,Cos,Sin) direction of steepest descent.
200 IF ABS(Cos)+ABS(Sin)>0 THEN 230
210 OUTPUT 0;"SADDLE POINT AT ";X;Y
220 GOTO 350
230 TI=F*Cos
240 T2=F*Sin
250 Xa=X+TI*Ql
260 Xb=T2*Q2
270 'ra=Y+T2*Q1
280 'b=T1*Q2
290 MOVE X-TIY-T2
300 DRAW X+T1,Y+T2
310 MOVE Xa+Xb,Ya-Yb
320 DRAW X+TI,Y+T2
330 DRAW Xa-Xb,Ya*Yb
340 PENUP
350 NEXT Y
360 NEXT X
370 PAUSE

380 DUMP GRAPHICS
390 END
400
410 SUB Wder1iti e(XYRow1,Ii'l) i r.' fLrnc t on
420 RewI=I-X+*,Y*Y w(.z)=z-z"3. :.3
4.30 Imwl=-2*Xw*Y Z) = I-z,-2
440 SUBEND
450 I
460 SUB Directior(RekolIrwlCosSin) direction of
470 T=SQR(Rewl*Rewl+Imwl*Imwl) steepest descent
480 IF TO THEN 519
490 CosaSinaz
500 GOTO 530
510 Cos-Rewl'T
520 SinuImtlT
l!0 SUBEND
540
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5 70 B=X1I*,Y2+X2*Y1I

58S0 SUBEND

600 UB it~(XlYl,' Y,A,B i"7

10 T=XP':bY2*

690 AT* OS' , +Y *Y

640 SUBENDPINIL --

710 LUBoyp(X,Y,A,3. ekPZ

670 SU=EXP .'! -

730 A=.5tL0G0X*X+Y*Y)
4740 IF X-'>13 THEN 770

750 B=.54PI*SGN(Y,:1760 GOTO 790
770 B=ATN(Y-X.
780 IF X<O THEN B=B+PI*(1-2e_*(YV:0'))
790 SUBEND
800
810 SUE Sqr'X,Y,A,3 I PRINCIPAL SCOR('Z.

8 20 IF :: 0THEN 860
8 2.0 A=E=SQRC .5*AEBS(Y))
840 IF Y<O THEN 3=-B
850 GOT') 970
860 F=SQR(SQR'(X*-.+Y*o))

4870 T=. 5*ATN (YJ:
880i A=F*COS<T)

890 B=F*SIN(T)
900 IF X>0 THEN 970
910 T=A
920 8=-B
930 B=T
940 IF '&-=0 THEN 970
950 A=-Ai
960 3=-B
970 SUBEND
980
~90 SUB Arg(X,YV,A' I PRINCIPAL APGK Z.'
1000 IF X=O THEN A=.5wPI*SGtV'Y"
1010 IF X(>0 THEN AATN(Y',X)
1020 IF xzO THEN A=A.PI*(1-2*('Y(0))
10:30 SUDEND
1040 I
1050 SUB Powe-r(X,Y,P,A,B". ! PRINCIFAL PO.WEF PR
1060 FUEX.P(.5*R*LOGK"X*X+Y*Y))
1070 CALL Arg(X,Y,T.
1080 A=F*C:OS(R*T)
1090 BtF*SIN(R*T)
1100 SUDEND
1110
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1 120 SUE Sit(tYRE' SIN'2)
113,0 E=E::,P-Y)
1140 R=.5*S1N.,X)*(E+1'E)
1150 IF ABS20,).l THEN 1188
1160 S=.5*'E - 1 .E
1170 GOTO 1200
1188 S=Y*Y

1190 S=Y*d120.S*'28+W') '12841208 Ico0S (:)*S
1210 SLEEND
1122 0
1238 SUEBo',YAD Cos'.,Z)

12I48 E = EA,.P (.Y
1250 A=.5*COS (X) *(E+I 'E~
12.60 IF ADBS&.Y)\.1 THEN 1290
1270 S=.5*(E-lxE>
1 280 GOT') 1318
1290 S=Y*Y
1380 SV+('120+S*(20+S))/ 120
1:310 E=-SIN(X)*S
1320 SUBEND
13:30
1340 SUE Sinh(X,Y,A,E) ISINH(Z.)
1350 E=EXP(X)
1.360 E=.S*SINY>*(E+1-E)
1370 IF AnscX)v.1l THEN 1400
1388 S=.5*(E-1/E)
1390 COTO 1420
1400 S=X*X
1410 S=X*(120+S*(20+S" >120
1420 A=COS(Y)*S
1430 SUBEN4D
1440
1450 SUE Cosh(X,r A,E) ICOSH(Z):
1460 E=EXP(X
1470 A=.5*COS(Y)*( E+1E'
1480 IF RBS(X)<.1 THEN 1510
1490 S=.5*(E-1/E)
1500 COTO 1530
1510 S=X*X

1520 S=X*(120+S*20+S> /120
1530 E=SIN(Y.,*S
1540 SUBEND
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Appendix B

Steepest Descent for General Analytic Function

Here we do not force the integrand to be of the form in (i), but consider the
general integral fh dz f(z). Let f(z) be analytic in a region in the complex plane. The
magnitude-squared value is

1 + If~ 2 f2 2= -- + (B-I)
Mi f (Z)l f + f(B1r 1

The direction of steepest descent for M is opposite to the gradient of M, which is
= -4, a +a . (B-2)

VM = ax+ - - ay(B2

But, from (B-i),

3f 3f.
m 2 r + i)

am r 2 y (f f

Now if function f is analytic at z, then

af af. af. 3f
f'(z) r + -  - - (B4)

ax a-X- -

So we can express

_X = 2 Re{f*(z) f'(z)}

-M = -2 Im{f*(z) f'(z)} (B-5)
5y

Therefore, the steepest descent direction for M has components that are the
negatives of (B-5) or, equivalently, are proportional to

-Re Im f(Z) (B-6)

The basic calculation for determination of steepest descent directions is thus seen to
be d

f'(z)/f(z) =T In f(z).

When f'(zs) = 0, we have a saddle point of f at z = z,. Near the saddle point,

. - s 2 1 2
f(z) +z ) - s  -+ 2 1f2A for small A . (B-7)
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Then

I if* f 2

I fo 2 + Re f f A2) for small A (B-8)

Now let

* i 
fof, = ac A = re (B-9)

0

Then (B-8) yields

2 2
Nt If 0 + ar cos(a + 26) , (B-10)

which has two peaks and two valleys versus 0 in a 2n interval (for a 0 0); this is
characteristic of a saddle point. The directions of steepest descent, 0d, at z = z,
occur when

+ 2 r .7 7T or 2 + IT (B-I1)

Notice, from (B-9), that

arg fofj, = argjf (z,) f (z,)= argjf(z 5 )/f(z (B-12)
S- S

Now let us investigate the behavior of the complex function f(z) near zs, along the
steepest descent contours. For @d as given by (B-I 1), A in (B-9) becomes

A = ±.r exp (1 2 =-r e  ;(13-13)

and there follows, from (B-7) and (B-9), for small r,

f(z) 2f - o-r r f)0 2 fo[2 ]

on steepest descent contour near z (B-14)
s

That is, since the term in parentheses is real and positive,
arg f(z) = arg f(z s ) on steepest descent contour near z . (B-I5)

More generally, it can be shown that

arg f(z) = arg f(z S)

everywhere on steepest descent contour through z . (B-16)

Now let us apply these general results to the special case where f(z) = exp(w(z)).
Then f'(z) = w '(z) exp(w(z)), and f'(z) = 0 when w '(z) = 0. Thus saddle point
locations are as usually stated. Also, as needed in (B-6),

B-2
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f'(z)
f(-) - (z) , (B-17)

and then (B-6) agrees with (9). Furthermore, since

f"(z) = [w"(z) + w 2(z)] exp(w(z))

fft(z ) ! (z ) exp(w(zS)) (B-18)

then (B-12) yields

= arg w (zS  (B-19)

When (B-19) is used in (B-I 1), the steepest descent directions corroborate reference
1, (7.1.8) and (7.1.19). Finally, (B-16) yields

arg f(z) = argfexp(w(z))} =arg{exp(u + iv)} = v , (B-20)

meaning that v is constant on steepest descent contours; this agrees with reference 1,
Lemma 7. 1.

What this all demonstrates is that, for a general given integrand f(z), we can let
w(z) = In f(z) and apply our usual techniques on w(z). This procedure was adopted
in the Gaussian exponent example in the main text of this report.

I
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