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Introduction

The evaluation of contour integrals with analytic integrands is often ac-
complished by moving the contour to an equivalent one, such that the integrand is

E 1 better behaved or can be approximated more easily. In particular, movement of the
‘1 . original contour to one that takes advantage of saddle points of the integrand or
'- paths of descent or steepest descent is a very fruitful procedure, It is presumed that

the reader is familiar with this technique; see references 1-3, for example. However.
one of the difficulties of this procedure is determining the locations of the steepest
descent contours (reference 1, p. 263). For complicated integrands, especially those
involving branches of multivalued functions, exact determination of steepest
descent contours is virtually impossible analytically, and recourse to some type of
computer aid is recommended. The procedure given here does not require solution
of nonlinear equations, but does give a very good indication of steepest descents
with a minimum of analytical and programming effort.
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Explanation of Technique

Suppose we wish to evaluate the contour integral

Idz g(z) exp(iw(z)) ,
: n

1 where g(2z) and w(z) are analytic functions of z, except for isolated singularities such
as poles, essential singularities, and branch points; and C is a contour (finite or
infinite) in the complex z-plane. The saddle points of the exponential in (1) occur
where (reference 1, p. 258)

w'(zs) =0 . 2)

For A real, the standard method of determining the paths of steepest descent out of a
saddle point is to keep the imaginary part of w(z) constant and equal to its value at
e z, (reference 1, p. 255). This generally leads to difficult transcendental equations
{ that must be analytically investigated approximately or solved numerically. ‘ ]

¥ An alternative procedure for finding the steepest descent directions at any point
in the z-plane is as follows: Let
z = x + iy ,

(3)

w(x + iy) = u + iv

Then the magnitude of the exponential in (1) is exp(Au), and its direction of steepest
descent at x, y is proportional to the negative of the gradient (reference 1, p. 254):

DAl v % M 4

v exp(iu) = A exp(Au) Vu , 4)
where
[
, _ugy o, ua i
o M Ty Yy ® .
)
¢ and —a’,‘ and ﬁ’y are unit vectors in the positive x- and y-directions, respectively. The
explicit evaluation of (5) requires that one analytically evaluate u = Re{w(x + iy)} 2
and then analytically derive du/adx and du/dy. This can be tedious and is liable to ]

human error.

A
‘a An alternative simpler procedure is possible: By the Cauchy-Riemann conditions ! {
} applied to a function analytic at z, the derivative i
‘ l
! W) = S 2 |
* v . Ju

= W - 1 W . (6)

That is, we can express the desired partial derivatives as

2—;:= Re{w'(z)}, % = - Im{w' (2)} . M

;
1
i
{
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Then the negative of the gradient in (§) can be written as
-Vu = -Re{w'(2)} a_+ Im{w'(2)} é’y : (®)

So if we evaluate w'(z), the direction of steepest descent at any point z has
components in the x, v directions proportional to

Re{w'(2)}, Im{iw'(2)} 9)

for w'(z) # 0. The only analytical calculation necessary is that of derivative w '(z), a
task generally easily accomplished, and indeed necessary for evaluation of saddle
point locations anyway. A computer program can then be written to numerically
evaluate w '(z) in terms of its components (9) at all points of interest in the z-plane.
A program for this procedure is given in appendix A, along with the specific
examples displayed later in this report.

Presentation of this steepest descent information for human interpretation is
accomplished here by drawing a short standard-size line through each point
z = X + iy, centered on the point and with an arrowhead pointing in the direction
of steepest descent. The magnitude of the rate of steepest descent is discarded; only
the direction is preserved. How effective this procedure is will be demonstrated by

the following examples.
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Examples
Airy Function

The Airy function, Ai, is proportional to (1) when g(z) = 1,

w(z) = z - 22> (10)
3 ’
and C is an infinite contour starting anywhere in the angular range -5n/6 < arg (z)
<-n/2 and ending in n/2 < arg(z) <5n/6; see reference 1, pp. 52 and 266. Then

wi(z) =1-2° . (11)

A computer need only evaluate the complex product zez and subtract it from 1 in
order for (11) to be used in (9). An example of this procedure is given in figure 1.
The arrows clearly indicate the steepest descent paths from any point in the z-plane.
The two solutions of (11) equal to zero, namely, saddle points z, = +1, have arrows
pointing both inward and outward at these points, reflecting the very nature of a
saddle point. Movement of the original contour C to the steepest descent contours
(solid lines) out of the saddle point at z, = -1 is easily accomplished; no
singularities of the integrand of (1) are crossed in the movement process.

The Airy function for complex argument (reference 1, section 7.3) has, more
generally,

w(z) = zexp(iv) - %23 . (12)

Figure 1 corresponded to 8 = 0. For 8 # 0, the determination of steepest descent
paths is analytically difficult (ibid.). However, since

w'(z) = exp(ig) - z2 , (13)

computer evaluation of (13) and (9) is trivial. The steepest descent directions for
0 = 3n/4, for example, are depicted in figure 2. The solid lines in the neighborhood
of the saddle points were hand-drawn upon observation of the descent arrows. The
interpretation of figure 2 is much easier than its counterpart in reference 1, figure
7.3.3. Also the determination of an equivalent contour to C is easily achieved by
reference to figure 2. First let the new contour come from o exp(-i2n/3) along a
steepest ascent to the saddle point at z, = exp(-i5n/8). Then let it continue in a
northeasterly direction along the steepest descent direction out of this saddle point
to the y-axis. Next proceed due north to a point near z = i and then follow a
steepest descent path out to ®exp(i21/3). The vertical portion of this new contour is
not a path of steepest descent, but it is obviously a path of descent because the
projections of the arrows on this vertical section all point in the upward direction of
travel. This discussion also points out that the other saddle point at z, = exp (i3n/8)
does not enter into the asymptotic development of Ai, at least for this value of 8.

An alternative equivalent contour to C is the pair of steepest descent contours
passing through the saddle points and connecting ®exp(-i2n/3) to + % and + to
ooexp (i2n/3), respectively; see figure 2. Observe that the movement of C to this new
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pair of paths is not an approximation; it is an alternative exact representation of the
original integral. If one now approximates these two path integrals by their con-
tributions near their peaks at the saddle points, the saddle point at z. = exp(i3n/8)
will yield exponentially small contributions relative to that at z, = exp(-iSn/8).
This can be seen from figure 2 by drawing a straight line between the two saddle
points; all projections of arrows along this line point at the upper-right saddle point,
meaning that the value of |exp(Aw(z))| is smaller there.
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Figure 1. Steepest Descent Directions for Airy Function, =0
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‘ When we continue on to the case 8 = nin (12), the character of steepest descents
! is as depicted in figure 3. Now the straight line connecting the two saddle points has
P all arrows perpendicular to it; thus this vertical line is a contour of constant

lexp(Aw(z))|. This means that both saddle points contribute equally to the value of
integral (1). Again the pair of steepest descent contours through the saddle points

Figure 3. Steepest Descent Directions for Airy Function, § =n

k, ' (mentioned in the above paragraph) represent exactly the original integral; one
- could evaluate the original integral exactly by adding the total contributions of both
, ] of these paths, or an approximation can be achieved by computing the integrand
3 g near its peaks at the saddle points.
»
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Hankel Function

The Hankel function takes the form (reference 1, 7.2.23)

w(z) = ifcos(z) + oz - 3)], (14)

|
r } where f3 is a constant. There follows immediately
w'(z) = i[- sin(z) + B8] . (15)

i Computer evaluation of (15) requires only a trigonometric sin of a complex number,
; followed by subtraction and multiplication. Sample descent direction plots for § = |
' 0.5, 1, and 1.5 are given in figures 4-6, respectively. (It is informative to compare ]
Py these figures with figures 7.2.1-7.2.4 in reference 1.) Movement to equivalent
' contours is obvious from figures 4-6. Since (15) has period 2n in x, only a 2n strip
has been plotted in figures 4-6. The character of the steepest descents in figure 5 for
b, B = 1 is different, in that the saddle points have coaiesced; however, there is no
: difficulty ascertaining from the plots what new contour to adopt.

21
e 4 4
o Klein-Gordon Equation |
2 This example is complicated by the presence of branch lines in the exponent
1 function w(z). Specifically we have (reference 1, 7.5.9) :
i
3 1 :
4 w(z) = i[e(z2 -1/% - z] , (16)
X where the branch of the square root is taken as positive real for z = x > 1, and with *
1 branch lines extending vertically downward from the branch points at z = +1. The ]
derivative of (16) is
, ’ . 0z i
W(Z)=1|:”2—_—W'1]’ |
. @ - 1), (17) |
Rl ’ 1
: where the same square root branch must be taken as in (16). |
. If one has available a computer program that evaluates the principal square root
of a complex number, denoted here by z'%, it can be used to evaluate (17) in the i
A following manner. Observe first that the branch line of principal square root z'*
occurs where z = -p for p 2 0; i.e., p can take on all nonnegative real values. So
consider the representation
1/2 1
5
) <z“ - 1>b - i(eiz + DM? iz - Y2 (18)
1 ;

For z real, positive, and large, the right-hand side of (18) approaches
ilexp(-in/4)z':] [exp(-in/4)z':] = z, as desired. Furthermore, the two branch lines ]
of (18) occur where the arguments of the two principal square roots have values i

-iz +i=-p forp >0 ;

i.e., z = 1 - ip for p > 0 . (19)

»
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|
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These are vertically downward from z = =1, as desired. Thus (17) can be easily
evaluated by taking the two complex principal square roots indicated in (18) and
performing multiplication, division, and addition of complex numbers. The specific
coding is illustrated in appendix A.

The pole of g(z) at z = v for this example (reference 1, 7.5.8) has no effect on
the steepest descent contours of w(z). The steepest descent directions for 8 = 0.8
are depicted in figure 7. There are saddle points at z, = +5/3, and the steepest
descent contours go vertically downward eventually. The steepest descent directions
near the branch lines emanate from the branch lines themselves, but these branch
lines have no effect on the steepest descent contours through the saddle points.
However, if the branch line emanating from the branch point at z = 1 had been
taken at angle -n/6, for example, it would have interfered with the steepest descent
contours in the 4th quadrant of the z-plane. Such a choice of branch for the square
root in (16) and (17) is undesirable and should be avoided, as was done in figure 7.

Function with Essential Singularity

This integrand is characterized by (reference 4)

exp(w(z)) = z exp (z-lf 1> s (20)
which function has a zero at z = 0 and an essential singularityatz = 1. Then
w(z) = In(z)- e M
' 1 K
w(z) ==+ — 21
z (- 1)2 21

The steepest descent contours for (21) are depicted in figure 8 for K = 3. The
essential singularity generates a ‘‘dipole effect’’ aboutz = 1,i.e.,0atz = 1+, and
oatz = |-, for K> 0. The zero of (20) at z = 0 manifests itself as a point toward
which all the arrows point, since zero is the smallest magnitude that any complex
function can take on. The saddle points (roots of (21)) occur at

z, = exp(+i6), where 6 = arc cos(l - g) , for 0 <K <4 . (22)

Utilizing the information in figure 8, we find it relatively easy to decide what the
effect of moving an original contour around in the z-plane will do to integral (1).
Movement across the essential singularity at z = 1 will necessitate consideration of
the residue at this point. The zero and saddle points of (20) are not points of
singularity.

Cubic Function

This example comes from reference 3, pp. 296-302; it is characterized by
g(z) = Y2 and (ibid., upper line of 6.6.25)

W(z) = -ei® (4z2 - i5z + iz3) . 23)
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Also now the integral is a finite one, fromz = -1toz = + 1. This example exhibits
a Stokes phenomenon at certain values of a, where we have represented A = |A|eie.
We find
w'(z) = -e® (82 - i5 + i3zz) s (24)
4
i which has zeros (saddle points) at z, = iandi5/3.
A plot of steepest descent directions for @ = 0 (positive real A) is given in figure 9.
i It indicates that the steepest descent contours out of the limitsatz = -1, +1tend to
3 oexp(-i5n/6) and %exp(-in/6), respectively. But these two valleys at o can be
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Figure 9. Steepest Descent Directions for Cubic, a =0

joined by the saddle point contribution through the point z, = i. Thus the integral
over (-1, 1) is exactly equal to the sum of these three steepest descent contours. The
saddle point at z, = i5/3 need not be considered. The dominant contribution is
obviously that at the saddle point z, = i, as may be seen by the arrow directions.

For a = 5n/12, figure 10 indicates a similar behavior. Since the steepest descent
contours out of -1, + 1 tends to ~175° and -55°,respectively, the saddle point at
z, = i must again be used to join them. The dominant contribution is seen to be due
toz = -1, by making use of the arrows of descent in this figure.

For @ = 3n/4, however, we see from figure 11 that both of the steepest descent
contours out of -1, +1 tends to oexp(-i5n/12). Now there is no need to employ

15
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either of the saddle points. The integral over (-1,1) is given exactly by the sum of the
two steepest descent contributions. The dominant contribution is again due to
z = -1, since we have to descend from z = -1 to near z = 0 to reach magnitude

values comparable to thoseatz = +1.
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Gaussian Exponent

The characteristic function of a particular type of impulsive noise is given in
reference 5, equation (5), in the form

|>

00 m 1
£(5) = exp(-A) 2, = expl- = =2 ¢
L < 277 ¢ (25)

for a purely Poisson process (no Gaussian background). This summation can be
evaluated in the closed form
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| —

22
! BO >
. f(s) = exp<A exp |-5 5 & ) - A

i The corresponding probability density function of this impulsive noise is given by
the Fourier transform

—
+0 B”
1 1 _ L. 1 0 .2
p(v) = = J- dexp \-i7v + A expl- 3 5 f > - A/ Cen

By expanding f(£) in (26) in a power series, we note that the mean square value of
the Poisson process is readily found to be AB2/2. Since we will be interested in

(26)

lﬂi values for the dimensionless parameter A of the order of 1 {e.g., A = 0.35 in

reference 5, figure 3), we will normalize our random variable according to
"4 t = v/(B/2)* = v/o,. Also, as, £ = +o_ f(£) in (26) tends to nonzero value
v exp(-A). Adding and subtracting this quantity and letting & = z/0,, enables (27) to
¢ be expressed as

p(v) = exp(-A) 8(v)
s EXpL-A) ('A)I dz exp(-itz)[exp(A eXP(-ZZ/Z)) -1] .

270
o

(28)
Although there is no obvious parameter A in this form, it is shown in appendix B
that we can still use steepest descent procedures on the logarithm of the integrand of
(28); i.e., here we have
w(z) = -itz + Infexp(a(z)) - 1] , (29)
where we have defined

a(z) = A exp(-z2/2) . (30) ;

Observe that as z = o with arg(z) in the two sectors within n/4 of the positive-real &
or negative-real axes, a(z) becomes very small and

w(z) ~ =itz + 1ln{a(z)] = -itz + 1ln A - 22/2 H 31
this means that Re w(z) = - in these two sectors of the z-plane, and, therefore, the
integrand of (28) tends to zero in these sectors as z = o,

The integrand of the integral of interest in (28) is zero in the finite z-plane only
when

2
h(z ) = exp(Ae-zo/z) -1=0,

-22/2
Ae “0’° = j2mn for n # 0 ,




A

2
z
- -5(1 = 1n<’1 2;">+ i2nm = m(ﬁr_]_n_l_) + i!?:— sgn(n) + i2mm ,

A

1/2
z, = *i [2 1n (2—“-(3-1-) + in(4m + sgn(n))] s

. (32)
where A > 0, the square root is the principal branch, and n and m are arbitrary
integers (negative, zero, or positive), except that n # 0. These zeros of h(z) are
important becauvse they will be locations toward which all the steepest descent
arrows must point in their neighborhoods, since zero is the smallest magnitude that
a complex function can take on. These zero locations, of which there are an infinite
number, depend only on A, and not on normalized variable t = v/g_ in expression
(28) for the probability density p(v). The locations of the zeros of h(z) in the third
quadrant closest to the origin are depicted in figure 12 for A = 0.35. There is
symmetry in the other quadrants since (from the first line of (32))

h(-z) = h(z), h(z*) = h*(z) . (33)

For purposes of evaluating steepest descent directions and saddle point locations,
we note that a(z) in (30) has the property

a’ (2) = ~za(z) (34)

and so (29) yields

z a(z)
1 - exp(~a(z)) 35)

W (z) = -it -
Thus the saddle points, z,, of which there are an infinite number, are solutions of

z a(z)
s s - it
1 - exp(-a(z)) ’ (36)

and obviously depend on both A and t. The most important saddle point is at
z, = -ip, f positive real, where (using (30)),

5
BA exp(B“/2) _ _

2 =t
1 - exp(-A exp(B7/2))

€y)

The steepest descent directions for A = 0.35,t = 2 are depicted for (35) in figure
13. The saddle point at z, = -iff = -il.341 satisfies (37); there are five other saddle
points indicated by X in the figure, in addition to the zeros carried over from figure
12. The steepest descent contour out of the saddle point z, = -i1.341 isdrawn as a
solid line; it is asymptotictoy = -t as z = % with arg(z) within n/4 of the positive-
and negative-real axes. Movement of the original contour from the real axis in (28)
to the steepest descent contour is easily justified.
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To deduce the asympiotic nature of the steepest descent contours, recall (31); thus
the imaginary part of w is

Va~-tx - Xy = -X{(y + t) as z —» = (38)

in the sectors under consideration. But, since from (29),
wi-i.) = --t + Infexp(h exp(+7/2)) - 1} (39

is real, we require (38) to approach 0 as x — oo, This requires that y = -t, as
claimed.

We observe from figure 13 that no use is made of the saddle point at (-1.71,
-2.38), nor of the infinite number of other saddle points. We also observe that the
descent directions in the neighborhood of the closely spaced zeros and saddle points
near the bottom of the figure is very detailed and complicated; however, none of

that information is needed.

When t is increased to 5, figure 14 applies. Now the steepest descent contour out
of the saddle point at z,. = -iff = -i1.945 heads into the zero at (-0.632, -2.485).
How to connect from this latter point toz = -9 is not clear. Instead, we consider a
horizontal descent contour out of z, = -i1.945 until we get in the neighborhood of
(-2, -2), and then we resume a steepest descent contour heading toward
y = -t = -5. The major contribution to this descent contour is given by the
neighborhood of the saddle point at x = Q; the descent and steepest descent con-
tours are tangent at this saddle point.

The aid afforded by the steepest descent directions depicted in figures 13 and 14 is
extremely worthwhile, since the exponential in (29) and (35) makes an analytical
approach very difficult. The ability to discard or avoid certain regions of the z-plane
in determining an appropriate descent contour is rather obvious from the figures
when coupled with basic information about the integrand, like the asymptotic

behavior of the steepest descent contour.

The above results yield exact values for the original integral, since we have simply
determined contours equivalent to those originally specified. Now we will derive an
asymptotic expansion for the probability density in (28) for large t = v/0, i.e., at
values v much larger than the standard deviation of the Poisson process.

To do this, we need

wherea = a(z) is defined in (30). Then we find

" 2
w (zs) =t o+ it (1 - zi - zi a(zs)> 41)

Z \

%)

and, in particular,

w'(-ig) = t% - %(1 + 82+ g2 A exp(82/2)> , 42)
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for the saddle point at z, = -iff. Also w(-if}) is given by (39). Then we have the
approximation (reference 1, chapter 7)

1/2
exp(-A - Bt) 2 2
p(V)~ _%0—— [exp(A eXP(B /2))- 1]<WTT-TWT) as t -+ 4+

(43) |

One drawback with this solution is that  depends on t through the solution of
transcendental equation (37). For large t, we have, to first order,

1/2

Y ¥ S Y

gx[21n(t/A) 1% = 1L (44)

For development of additional terms and the general philosophy of solution of
these types of problems, see reference 6, pp. 11-16 and 83-84. We find, more

.. generally,
3 2 L
: B ™ L - v In(L) . (45)
Even so, substitution into (43) yields a very complicated expression for the
probability density function unless t is excessively large. It can be seen that (43)
decays slightly faster than an exponential for large t.
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Summary

A technique for simpie determination of the steepest descent direction at any
point in the complex plane has been presented and illustrated with numerous
examples. The movement of the original contour to an equivalent descent or
steepest descent contour is an exact representation and can be deduced fairly easily
from the descent information. At this point, two alternatives are available, either
exact numerical evaluation of the integral or an approximation such as Laplace’s
method. Very difficult integrands can be handled very effectively via this approach.
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Computer Programs
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The major part of the calculations required for the six examples in the main text is
that of w'(z). This is accomplished in the Subroutine Wderivative in the main
program written in BASIC and listed at the end of this appendix. But, first, the six
subroutines for the examples given are listed. They illustrate how little program-
ming is actually needed to compute w '(z), provided that one has already written
subroutines for the standard complex operations and functions like multiply,
divide, exp(z), log(z), square rooi, arg(z), sin(z), cos(z), etc. These latter functions
are listed for completeness as subroutines at the end of the enclosed program.

416
411
412
429
428
448

419
411
412
421
430
440

419
411
412
4173
414
415
420
430
449

41
411
412
4132
414
4.0
430
449

SUE Wderivatived,Y,Rewl, Inuwll

COM Ct, 5t I cozithetal,

CALL Mulo¥,y¥,®,Y,A, B>
Rewl=Ct-A

Imu1=5t-R

SUBEND

SUR Wderiwvativeld,¥Y,Reuwl,Inuwl>
Beta=.5

CALL Sindi,Y,A, B

Rewl=B

Ims1=Bet a-R

SUBEND

SUE bderivativedd,v,Fewl, Imnwl?
Theta=.3

CRLL Sqrev,-¥+1,A,B)

CALL 3grdv,-A-1,C,D3

CALL Mul<R,B,C,D,E,F2

CALL DiviTheta*?®,ThetasV,E,F,5,H
Rewl=0

Imwli=H-1

SUBEND

SUE Wderivativetd,¥Y,Reul,Imwls |
K=3

CALL MuldX-1,Y,8-1,¥,A, B>

CALL Div‘k,d,A,B,C,D>

CALL Diwcl,8,4,7,E,F>

Rewl1=aC+E

Inwl=D+F

SUBEMD

R ey Fuictian

Tinithetas

furction

P Eleim-Sordar

Ezzential

simngatarity

ERS AP

VP VPR
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410
411
412
413
420
438
449

416
411
412
413
414
415
415
417
418
419
429
430
448

A-2

SUB Hderivativel¥,Y,Rewl, lawl? ! cubic furction
0M Ca,Sa ! cosvalphal, zinialphal
CALL Mulcdx,Y,®,Y,RA,B>

CALL Mul<Ca,Sa,8*X-3%B,8%Y~5+3#A,C,D>

Rewl=-C

Imwl=-D

SUBEND

SUE Wderivativetsd,VyRewl, Inuld P Gauzzian es=panent

.35

=2

CALL MulCx, Y, K, ", T1,T2)

CALL Exp(-.5#T1,-.5+T2,T3,T4)
Ar=A*T3

Ai=R*T4

CALL Expi-Ar,-Ri,Er ,Ei>

CALL Muli¥,Y,Ar,Ai,T1,T2)
CALL Diw(TL,T2,1-Er,-Ei,T3,T4>
Rewl=-T3

Inwl=-T-T4

SUBEND
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450
4£0
4793
49
490
15
S10
P
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TR 6433

€€ use SUER MWderivative 1n line 410
wl ! LEFT RBSCISSH

we V RIGHT ARZCISSH

P! | BOTTOM ORDINRTE

Va=3 ! TOF ORDIHATE

xX=,2 I % INCEREMEHT

Dw=,2 I %Y INCREMENT
PLOTTER IS “GRAFHICS"

GRAPHICE

SCHLE ®1,x2,%1,v2
LINE TYFE 2

GRID 1,1 | GRID LIME SPACING 1
LINE TYFE 1 .

Fz,2%30F Dx*Dx+Dyu%iyd ! ARROW

Qi=1-COSCFI~123%.8 ! INFOF -

Q2=SINCPI-12r%, 3 ! MATION

FOR ®=X1 TO X2 STEP Dx ]
FOE ¥Y=Y1 TO Y2 STEP Dy

CALL WderiwvativeiX,Y,Rewl,Imuwl) P dza

CALL Direction“Rewl,Imwl,Cos,S5iny ! direction of stecepest descent

IF ABS(Coz +ABS(Sin»>8 THEN £38
QUTPUT 9; “SADDLE POINT AT " &5Y
GOTO 359

T1=F#*Cos

T2=F#Sin

Ka=X+T1%Q1

2b=T2#02

YasrT+T2%#Q1

Yb=T1#QZ

MOVE ¥-T1,%-T2

DRAKW X+T1,7Y+T2

MOVE Xa+ib,va~-7b

DRAW X+T1,v+T2

DRAW Xa-Xb,Ya+'b

PENUF

NEXT ¥

NEXT X

FPAUSE

DUMP GRAFPHICS

END

)

SUB Wderivative(¥,V,Rewl, Inul?
Fewlzsl-lu+n'%Y

Imal=-2%AxY

SUBEND

)

SUE DirectioniReuwl,Inwl,Cos,Si1no
T=S0R(Reuwl+Rewl+Imul*Imwl’

IF T:8 THEN 510

Coz=3in=0

GOTO 539

Cos=-Rewl- T

Sinzxlmul - T

SUBEND

|

P Aairy functian
"

' wizisgz-ozo

! direction af
! steepest deszcent

A-3
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S50 SUE MulCX1,71,X2,YZ,A, K> 1 Z1#22
e ASKIEHI-VIsY2
T BsNl#v2+RI*TL
S3@  SUBEND
seg !
S88  SUB DiuwdXi,71,%2,%2,R,B) | 21022
£10 SA2¥NZEVIRYE
2 BI@  A=ClENZeVIsv T
. 20 Bslv1¥RI-N1svasT .
‘ 549  SUEEND
~ 65 !
L | EE@  SUB ExpiX.v,A, B | EXPCZ)
670 EXP
R 680  R=T*COS' V)
N €90  B=T#SINCY)
{ 7o®  SUBEND
‘ T1e
: 723 SUB LogiX,Y,H,B) ! PRINCIFAL LOG¢2%
Y TI0 F=.S5%LOGC EX+Y*Y )}
: 74@ IF #<>8 THEN 770 :
] 750 B=.5+PI*3GNCY) ‘
¥ 760 GOTO 790
¥ 77O B=RATNCY XD :
; =1 IF %<® THEN B=B+PI#{1-Z%(Y{B)2 !
¥ 799  SUEBEND f
gop !
814 SUE SqriX,Y,A,B» I PRINCIPAL SGR(Z:
, 320  IF %<>@ THEN 8£0
3 g3  A=B=30R¢.S#ABS(Y)) j
248 IF ¥<@ THEN B=-B ;
858  GOTOD 979 é
, 868 F=SORCSORCX*H+Y#Y))
| 870 =, S#ATNCY 1)
§ 220  A=F*COSC(T
| 838  B=F#SINCT) :
g 9a@ IF X>@ THEN 979 ;
$ 218  T=A
52 A=-B
339  B=T
] 340 IF ¥>=3 THEN 970
I5H  A=-A
) 969 B=-B
3 370 SUBEND
ys0 !
1 998 SUB Argi¥,Y,A> ( PRINCIPAL RRG:Z
1608 IF %=9 THEN A=.S«PI#SGNCY)
§ 1818 IF X<30 THEN ASATNCY XD
i 1920 IF X<0 THEN R=R+PI#¢1-2%(¢i@))
! 1936 SUBEND
. 1a49 !
f 1954 SUB Powerid,Y,R,A,B> | PRINCIFAL POMEFR IR

1869 F=EXP<., S*R*LDG #*X+Y*Y))
1679 CALL ArgdX,v,T.

1920 A=F*COS(R*T?

10989 B=F*SINCR=T)

1196 SUBEND

1116 !

A-4
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f
|
|

1129
11z8
1140
1156
116@
1170
1130
11%9
1290
1210
1228
1230
1240
1250
1260
127
12380
1290
1280
1219
1320
1320
1240
1350
1260
1376
1380
1399
1420
1410
1420
1430
1440
1458
1469
1470
14320
1490
1500
1519
1520
1530
1540

SUB ':-.:i"l"\,l,ﬂ B
E=E¥P:

A=.95#% lNkX5*\E*1 ‘E

IF RES(Yr<.1 THEN 1180
S=,5+0E- IFE)

GOTD 1209

Sy

S=EYR{1 20320 20+50)-120
E=C0SC) %S
SUREND

LY

SUE Cos¢X,%,R, B>
E=EXPCY )

A=, S5%#C0S(nI)*#(E+1-E>

IF ABS«YY><.1 THEN 1290
S=,5#(E-17E>

GOTO 13180

S=Y %Y
S=V+(120+5%.204S>02-120
B=-SINC(X)>»*S

SUEBEND

]

SUB Sinh(X,Y,A,B
E=EXP(X)
B=.S#SINCY)%CE+1-E>

IF ABS<¥3<.1 THEH 1499
S=.5%(E-1-E>

GOTO 1420

S=X#¥
S=K¥(120+5%(20+52>-120
A=COS(Y)*S

SUBEND

]

SUE Coshi(¥,%,A,B>
E=EXP (R
A=,5%#COS Y r+(E+1-E)

IF RBS(X»<.1 THEN 15109
S=,.5%CE-1-E>

GOTO 1538

S=d#L
SEKEC120+5%020+52 0120
B=3INC(Y»#5

SUREND

TR 6433
! SINCED
bCO502)
SINHCZ?
COSHUZ
A-5/A-6
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Appendix B
Steepest Descent for General Analytic Function

Here we do not force the integrand to be of the form in (1), but consider the
general integral f . dz f(2). Let f(2) be analytic in a region in the complex plane. The
magnitude-squared value is

: 2
M= |[f(2)]|° = fi + fi . (B-1)

The direction of steepest descent for M is opposite to the gradient of M, which is
M - M >

UM = < 3* ?y— ay . (B-2)
But, from (B-1), _
aof of .
oM _ T 1
X 2<fr w tfi 5 > ’
of of . \
oM _ r i
B—y— = 2<fr ay + fl V/ . (B-B)
Now if function f is analytic at z, then
afr afi afi afr B
’ - . - o -4
£f'(z2) % i T ey i~ - (B-4)

So we can express

3% - 2Relf* (@) £1(@))
M x ’ B-S
3y -2 Im{f*(z) f (2)} . (B-5)

Therefore, the steepest descent direction for M has components that are the
negatives of (B-5) or, equivalently, are proportional to

[} ’
f (z) f (2)
-Re 3 f(Z) » Im 3 f(zj‘ . (B_6)
The basic calculation for determination of steepest descent directions is thus seen to
be
' I
f'(z)/f(z) = & In f(2).

When f'(z) = 0, we have a saddle point of f at z = z.. Near the saddle point,

~ 1.1t 2 _ 1 2
f(z) = f(zs) + ?f (zs) (z - zs) = fo + -2-sz for small A . (B-7)

TR 6433
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Then
2
~ 1. 2\/.*x 1.x *°\
= (e b - 2
T|f |2 + Re f* f Az} for small a (B-8)
o) o 2 .
Now let
fof?_ = ac™” , & = re’® | (B-9)
Then (B-8) yields
- 2 2
M < |fo| + ar® cos(a + 208) (B-10)

which has two peaks and two valleys versus 8 in a 2n interval (for a # 0); this is
characteristic of a saddle point. The directions of steepest descent, 8, at z = z,

occur when

¢+ 2y, = vor 3, 0, = — or —— + T . (B-11)
Notice, from (B-9), that
.= urg{f;fz} - arg{f*(zs) f”(zs)}= arg{f"(zs)/f(zs)} . (B-12)

Now let us investigate the behavior of the complex function f(z) near z_, along the
steepest descent contours. For 8, as given by (B-11), A in (B-9) becomes

A = ir exp (in 5 a) , A2 = -rze'ia ; (B-13)
and there follows, from (B-7) and (B-9), for smallr,
12 . 2
£(z) Tf -rfet*=f (1o L2
o 2 o zlfo[:’

-14
on steepest descent contour near A (B-14)

That is, since the term in parentheses is real and positive,
arg f(z) = arg f(zs) on steepest descent contour near z_- (B-15)
More generally, it can be shown that
arg f(z) = arg f(zs)
everywhere on steepest descent contour through z_. (B-16)
Now let us apply these general results to the special case where f(z) = exp(w(2)).

Then f'(z) = w'(z) exp(w(2)), and f'(z) = 0 when w'(z) = 0. Thus saddle point
locations are as usually stated. Also, as needed in (B-6),
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TR 6433

ﬁ;i;’ =w(z) , (B-17)
and then (B-6) agrees with (9). Furthermore, since
£'(2) = W'(2) + W 2(D)] expu(z))
£7(z) = w(z) expw(z)) (B-18)
then (B-12) yields
a = arg w"(zs) . (B-19)

When (B-19) is used in (B-11), the steepest descent directions corroborate reference
1, (7.1.8) and (7.1.19). Finally, (B-16) vields

arg f(z) = arg{exp(w(z)} = argl{exp(u + iv)l=v , (B-20)

meaning that v is constant on steepest descent conitours; this agrees with reference 1,
Lemma7.1.

What this all demonstrates is that, for a general given integrand f(z), we can let
w(z) = In f(z) and apply our usual techniques on w(z). This procedure was adopted
in the Gaussian exponent example in the main text of this report.

B-3/B-4
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