

UNLIMITED DISTRIBUTION ILLIMITEE (2) AFrom : Spatial Dissocial alian in Flight : Cornel Problems AGARD ATT - cP - 287 (G Porderal + A. J Binder, etc.) HATT ATP Speciel rest fronting, Bindy, N. in y, 20-23 May 1980. The a deneralized transfer ein took e e doordrigtorn 2 10 Jack F. Landelt, Ph. . Head Biddynumics Conting Defence and fivil lustifier of Environmental Medicine \sim 匕 4 Downsview, Ontari CANALA MRM 389 11 7980 AD A 1 0 1 and Manning J. Correia, Fh.D. Director of Research Department of Ptolaryngology 1 5 **1981** University of Texas Medical Branch Galveston, Texas 77550 U.S.A. 14 DZIEM-80-P-09 SUMMARY Steinhausen's hypothesis, that a simple torsion-pendulum model adequately describes the dynamics of atclinations and action, has received its share of criticism. This is primarily because of the fact that the time courses of afferent discharges and vestibular reactions to angular-acceleration stimuli only approximately relate to the time course obtained as a solution to the torsion-pendulum model for the same angular accelerations. Thus, there is a need to determine a peneralized transfer function which delineates those components that provide meaning to Steinhausen's hypothesis from those which describe other phenomena such as "adaptation". INTRODUCTION Rotational head movements stimulate the sensory end organs of the semicircular canals of the inner ear. notational near movements stimulate the sensory and organs of the semicircular canals of the inner ear causing compensatory eye movements (nystagmus), appropriate to the plane of rotation, via a vestibulo-ocular reflex arc. However, the sensory epithelia of the semicircular canals, the cristae ampullares, are relatively inaccessible for <u>direct</u> functional study during normal physiological head movements. In the first place, they lie deep within the skull, enclosed by sponky and petrous home and the osseous labyrinth. Secondly, any technique which exposes the bair cells or their nerve supply for neurobiological labyrinth. Secondly, any technique which exposes the hair cells or their nerve supply for neurobiologics experimentation necessarily disrupts the vascular supply to the neuroepithelium and interferes with the ionic balance between the perilymph and endolymph. Thirdly, even when the membranous ampullae are exposed, it is difficult to perceive the extent to which the normally invisible cupula covers the crista and fills the ampulla of the duct. (It is the cupula which couples the mechanical energy of head motion to the receptor hair cells of the crista for transduction into neural impulses at the afferent terminals.) Thus, it is not surprising that, for over a century, the dynamic response characteristics of the semicircular canals have not been completely elucidated despite continuous investigation by many vestibuler physicalogists. many vestibular physiologists. Historically, until the time of Fluorens (13), the semicircular canals were associated with the perception of sound. By sectioning the membranous semicircular canals are absorbated with the rabbit, Fluorens established that eye, head, and body movements always occur in the same plane as that of the injured canal. Goltz (16), also investigating the pigeon, first associated these canals with bodily equilibrium. Breuer (5), Grum Brown (9), and Mach (.26) suggested that the cristae ampulares respond to rotatory accelerations of the head. Moreover, they also hypothesized that the motion of the endolymph within the canai was responsible for eliciting the neural activity in the nerve endings the endolymph within the canal was responsible (or electing the neural activity in the herve ending: (hydrodynamic theory). (Mach, however, later appears to have favoured a hydrostatic theory, i.e., that pressure is the adequate stimulus--see refs. 10, 28.) Evald (11), using an "hydraulic hammer", produced artificial endolymphatic movements in the canals of pigeons and demonstrated that the direction of head nystagmus was dependent upon the direction of endolymph flow. Evald's "law" was placed on a firmer footing when Lowenstein and Sand (75) established that the action-potential (impulse) frequency in fibers innervating the cristae varied according to the direction of angular movement of the head. In order to describe the dynamics of the semicircular-canal system, Steinhausen (36, 37), and, subsequently, Egmond, Groen and Jonkees (10), proposed the so-called torsion-pendulum model. In this model, the instantaneous angular deflection of the cupula, E(t), caused by an instantaneous angular acceleration of the head, a(t), is governed by the linear differential equation $\Theta \frac{d^2 \xi(t)}{2} + \Pi \frac{d\xi(t)}{2} + \Lambda \xi(t) = \Psi \Theta \alpha(t),$ (1) dt where θ is the effective moment of inertia of the endolymph in the semicircular canal: I is the where σ is the effective moment or inertia of the enorymph in the semiciprular canai; it is the viscous damping moment per unit angular velocity of end-iymph relative to the well of the membranous canai; Δ is the elastic-restoring moment per unit angular displacement of the end-lymph relative to the membranous ampulary valls; and Ψ is a constant of proportionality relating ratio volumetric displacements (between the cupula and the canal endolymph). The transfer function of Eq. (1) can the membranous be written as:

1DCTEM Publication 80-P-09

17

1.

81

÷.

14

Ŷ

DISCLAIMER NOTICE

ş

-

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

DTIC TAK	- 11
Ungung S. S.	11
Ju-Romanne -	
Fv	
L.	
Di: ;	
A 234	

.

 $G_1(.) = \frac{\pi(s)}{A(s)} = \frac{\pi(s)}{(1+s+1)} +$

where A(i) and find are laplate transforms (fa(t)) and f(t), respectively; $\mathcal{O} = \Psi | t_1 | t_2$; and $t_1 \in \Pi/\Delta$ and $t_2 \in \mathcal{O}(I)$ are the so-called run and abort time constants of the heavily-damped cupula/end/lymph system (10, .0).

one way to test the adequacy of this model is to record the neural activity of the primary afferent fibers innervating the comicincular canals as they respond to appropriate stimulation. This has been done for a variety of species of animals (2, 3, 12, 17, 18, 23, 24, 33, 34, 35, 36) and the model has been found to be deficient. The present set of experiments was designed to study the mechanoneural response characteristics of primary afferent, semicincular-canal units in the pigeon, in order to determine whether or not a generalized transfer function could be obtained which would also describe similar neurodynamics in other species. (In testing to this model, the assumption is made that the afferent activity is proportional to the cupular displacement.)

METHODS

White King pigeons (<u>Columba livia</u>) were surgically prepared for microelectrode recording from peripheral units which innervated the semicircular canals (primarily, the anterior semicircular canal). The animal (with head immobilized) was oriented on board a rotatory device so that the center of its head plane was coincident with the plane of rotation (according to the type of canal being recorded from).

The main rotatory sequence consisted of a series of sinusoidal angular accelerations,

 $\alpha(t) = \alpha_m \sin 2\pi f t$,

(3)

(5)

(6)

(7)

4

which were delivered to anesthetized preparations at frequencies, f, from 0.01 to 10 Hz with peak angular accelerations, a_m , of 2.0, 4.0, 8.0, 12.0, and 20.0 degrees/s² (t : real time in Eq. (3)). The single unit neural activity was amplified, displayed on an oscilloscope and recorded on magnetic tape according to conventional techniques. (One channel of the tape recorder was used for voice commentary; another for the stimulus reference signal.)

The stimulus reference signal was used to trigger a physiological signal analyzer (Nicolet Instruments Inc.) to count and store the taped, entrained action potentials in preselected appropriate time periods (bins) for up to 4096 sequential bins (see Fig. 1 for typical binned response). Fourier techniques were used on the binned neural data to obtain the magnitude of the peak amplitude of the response and the temporal (phase) relationship between the angular acceleratory stimulus and the fundamental component of the neural response.

Amplitude- and phase-values were used in a curve-fitting program on a PDP-11/40 minicomputer (Digital Equipment Corp.) to provide a distinct mathematical expression for the best-fitting transfer function for a linear system. (The steady-state frequency response for a linear system to a sinusoidal input angular acceleration may be found from gain,

 $|G(f)| = ((\text{Re } G(f))^2 + (\text{Im } G(f))^2)^{\frac{1}{2}},$ (4)

and phase,

 $\Theta(\mathbf{f}) = \tan^{-1} \left\{ \operatorname{Im} \, \Theta(\mathbf{f}) / \operatorname{Re} \, \Theta(\mathbf{f}) \right\},$

spectra (Bode plots--see ref. 30), where He G(f) and im G(f) are the real and imaginary parts of G(f), respectively.)

The method employs techniques in non-linear, least squares approximations and is applicable to both high- and low-order transfer functions (h). On the final interpolation in the program, the least squares error, LSE, of the best-fitting transfer function is obtained as

LSE = $\gamma^{T}\gamma$,

where Y is a residuals matrix $(Y^{T_{\pm}}$ transpose of Y) which is made up of error terms that express the differences between the experimental data and the model which is to be fitted. The mean square error,

MBE = LSE/(2L - S),

compares the goodness-of-fit of the derived transfer function to that of the experimental data (2L for number of real and imaginary components of the data points, and $8\pm$ number of parameters in the transfer function).

A more detailed description of the methodology may be found in a special monograph (7) and elsewhere (6, 21).

RESULTS AND DISCUSSION

The simplest transfer function that fitted the data for all units is of the form,

B10-2

T

$$(x_{1}) = \frac{x_{1}^{2} k}{(x_{1} + x_{1})^{2}},$$

where s^k is a Gractional-order differential operator with $0 \le k \le 1$, and C is a gain constant with units in impulses: $s^{-1}/depresents^{-2}$ (.1). The Rode plots for four of the units are shown in Figs. 2-5, together with their best-fitting of(s), and the best-fitting torsion-pendulum model

 $d^{n}(\mathbf{a}) = \frac{C}{(\tau, s+1)},$

(In Figs. 2-5, the effects of the $\tau_{\rm C}$ = 2.0 ms (vide infra) contributes no more than 1% to the gain spectra between f = 0.01 and 10 Hz; consequently, the single-pole transfer function, G"(s), was an adequate representation of the torsion-pendulum model.) As is evident in the plots in Figs. 2-5, G'(s) is a much better fit to the data than is G"(s) (cf. the MSE values for the two models); and, in particular, the fit appears to improve with increasing k.

What, then, is the significance of k, or better still, $s^{{\bf k}_{\gamma}}$. Elsewhere, it is shown that

$$s^{k} = \kappa \prod_{i=1}^{M} \left[\frac{D_{i} s \left(\zeta_{i-1} s+1\right)}{\left(\tau_{i} s+1\right)} \right], \tag{10}$$

where K and D_i are constants, M = ∞ (in theory, but finite when fitting Eq. (10) via a digital computer), and τ_i and ζ_{i-1} ($\zeta_0 \equiv 0$) are time constants (21). Interestingly, when M = 1, Eq. (10) becomes

 $s^{k} = \frac{\kappa D_{1}}{\tau_{1}} \left[\frac{\tau_{1}s}{\tau_{1}s+1} \right], \tag{11}$

which has previously been defined as the transfer function of the adaptation operator (27, 40). Thus, s^k appears to be a form of adaptation. Work by Thorson and Biederman-Thorson (39) suggests that s^k represents a distributed relaxation process which is inherent in the sensory-adaptation mechanics of <u>Limulus</u> photoreceptors, vertebrate retinal receptors, chemoreceptors, and other mechanoreceptors. Investigations by Taglietti, Rossi and Casella (38) further suggest that s^k likely represents a relaxation phenomenon consisting of a time-varying intracellular electrogenic process, the components of which are summed with the generator potential in the receptor hair cell.

The coefficient of variation, CV, was determined as the ratio of the standard deviation of intervals to the mean interval, as obtained from intervale. Interval distributions of spontaneous single unit activity. When a regression of CV on k was made for 28 units, a statistically-significant product-moment correlation (r = 0.384, P < 0.05) was obtained (21). Thus, the larger the CV is, the larger the value of k and, consequently, the amount of adaptation. Other work by Goldberg and Fernandez (15), in squirrel monkeys, shows that the (V is statistically correlated with semicircular-cenal afferent fiber conduction rates. The thicker fibers have faster conduction rates and larger CVs. Together, these findings suggest that sensor' adaptation phenomena are directly dependent on the innervation pattern of the afferent fibers.

The transfer function, G'(s), differs also from that of G"(a) in that τ_L is not single-valued as it is in the torsion-pendulum model; rather, it is unit dependent, taking on values from $\tau_L = 4.45$ to 22.17 s (mean \pm SEM = 10.24 \pm 1.20 s) (21). (In fitting Eq. (8), the coupling between k and τ_1 Would account for some of the five-fold range of values that were determined for τ_L . However, there is sufficient indication from other studies (32) that the response dynamics of small groups of contiguous hair cells are quite different from those of other groups.) Realizing that the nair-cell tufts are stiff (14), that their lengths vary according to their position on the sensory epithelium (crista) (22), that the number and thickness of the stereocilia can be variable (22), and that the mechanical properties of the cupula are not necessarily uniform across the crista (29), then it is plausible that τ_L could have

The form

$$G(s) = \frac{Cs^{K}}{(\tau_{L}s+1)(\tau_{S}s+1)},$$

or sometimes,

G(s)(τ_s+1)

(12)

was fitted to published afferent-response data in the squirrel monkey (<u>Saimiri sciureus</u>) (12), the frow (<u>Rana esculenta and R. temporaria</u>)(3), the perbil (<u>Meriones unguiculatus</u>) (35), and the guitarfish (<u>Rhinobatos productus</u>) (33). The parameter $\tau_m \equiv$ high frequency time constant which results from both the displacement and the rate of displacement of the cupula. Such a term has been obtained from analysis of vestibular-driven eye movements in man (Benson and Sternfeld, cited in ref. 1), and primary afferent canal responses in the squirrel monkey (12) and the elasmobranch fish (24). Table 1 lists k, τ_1 , τ_2 , π_3 , π_1 for these four species and for unit responses to white-noise stimuli obtained from pigeons that were primarily encompate to or smaller than that obtained with other models. Further details are given elsewhere (8).

B10-3

(9)

B10-4

TABLE 1: Parameters of a generation dynamics in five selected

function (Eqs. (12) or (13)) describing semicircular-canal

Species	1:	ינ <u></u> (ms)	т т (s)	Frequency range, f (Hz)
Squirrel monkey				
(a) "regular" unit.	. *…	3	-	0.0125-8
(b) "irregular" and	.01	1	0.03	0.0125-8
Gerbil				
(a) CV ≤ 0 1	. 41	i.	-	0.01-5
(b) (V > 0.1	.0 T	.t	-	0.01-5
Freg	n _t en	-	-	0.0125-0.5
Guitarfish	44	-	-	0.02-4
Pigeon		2	-	0,5-16

In Table 1, the frequency adequate value of τ_S . In generation from the biophysical properties of the membranous vestibular alter Money and colleagues (31) for the (f = $1/2\pi\tau_S$) of 80 Hz in the me from canal afferents in the point given evidence that $5.70 \leq t \leq 1$ fitting to afferent data $f_{11} = t \int_{0}^{\infty}$

REFERENCES

(1) BARNES, G.R. The General Farnborough, Hampshire: Roya' A.

(2) BLANKS, R.H.I., ESTER, M. canal neurons in the cat. 11. 1250-1268, 1975.

(3) BLANKS, R.H.I. AND PRECHT. . frog. Exp. Brain Res. 25: "

(4) BRASSARD, J.R., CORRETA, M fitting of low and high rder -

(5) BREUER, J. Uber die Hank'

(6) CORREIA, M.J. AND LANS anterior semicircular cana

(7) CORREIA, M.J., LANDGLC, Single Unit Recording and a Ganglion. Rept. 927. Destr. Ganglion. 1973.

(8) CORREIA, M.J., LANDOLL, and nonlinear transfer divers ' Vestibular Function and Morit -1980.

(9) CRUM BROWN, A. On the se of the inner ear. J. Anat.

(10) EGMOND, A.A.J. VAN, it + J. Physiol., London. 110: 1-

(13) EWALD, J.R. Physics Co. Bergmann, 1892.

., i.e. restricted in the frog and guitarfish to utilize an final (= 0/R) in the fits have been predetermined indirectly symple and the dimensions of the pertinent anatomical features in only to g = 2 ms, which was determined biophysically by convert: that there should be an upper break frequency response dynamics in semicircular-canal afferents. Recording an oral for the american and Klinke (18) have the site in the same range as those determined empirically for in the same range as those determined empirically for 1, 1, 35).

Lie Fye Movements in Vestibular Nystagnus. Rept. 529.

CAM, C.H. Physiologic characteristics of vestibular first-order constant angular accelerations. <u>J. Neurophysiol</u>, 38:

and characterization of primary vestibular afferents in the

W. HT, J.P. A computer program for graphical and iterative in tions to biological data. <u>Comp. Prog. Biomed.</u> 4: 1-20, 1974.

. Mien. Med. Jahrb. 4: 72-124, 1874.

Subsequences and driven responses from primary neurons of the Adv. <u>Oto-Rhino-Laryngol</u>, 19: 134-148, 1973.

A. F.F.S., ANDERSON, P.J., AND LEE, M.A. <u>Techniques for Prolonged</u> <u>Scientarges from Primary Neurons in the Pigeon's Vestibular</u> Institute of Environmental Medicine,

See, EDEN, A.R., AND BAE, J.L. A species comparison of linear primary afferents innervating the semicircular canal. In: test by T. Gualtierotti. Heidelberg/New York: Springer (in press),

s i n and the anatomy and physiology of the semicircular canals $\sim 7 \sim 0.1$, 1874_0 .

3 NUKEED, L.B.W. The mechanics of the semicircular canal.

tangen ucher das Endorgan des Nervus octavus. Wiesbaden:

-

* ¥

2

(1.2) FERNANDES, C. AND GOLDERG, J.M. Thysi depy of peripheral neurons innervating semicircular canais of the squirrel monkey. II. Response to pinusoidal stimulation and dynamics of peripheral vestibular system. <u>d. Neurophysici</u>, do: of 1-675, 1971.

. . .

1

(13) FLOORENS, F. <u>Recherches Expérimentales sur les Eropriétés et les 'autions du Système Nerveux</u> dans les Animaux Vertébrés. Paris: drevet, 1826.

(14) FLOCE, Å., FLASE, S., AND MURGAY, E. Studies on the sensory hairs of receptor cells in the innerear. <u>Acta sta-insyncil</u>, 233: 85-91, 1977.

(15) GOLDBERG, J.M. AND FERMANDEL, C. Conduction times and background descharge of vestibular afferents. <u>Brain Res</u>. 101: 545-550, 11471.

(16) GOLTE, F. Muer the physic barbache betentung der Bogengange des Ohr abgrinthes. Arch. Ges. Physic: 3: 172-190, 1870.

(17) GROEN, J.J., LOWENGTEIN, C., AND VERDERIE, A.J.J. The mechanical molysis of the responses from the end-organs of the horizontal semicircular canal in the isolated elacobranch labyrinth. <u>J. Physiol.</u>, <u>London</u>, 117: 809-346, 1952.

(18) HARTMANN, K. AND KLINGE, K. System analysis of properties of prime, afferent vestibular fibres from the horizontal semicircular canal in goldfish. In: <u>IFAC-Symposium in Control Mechanisms in Bio- and Ecosystems</u>, Vol. 3, Visual and Vestibular control of Movements, Leipzig, D.D.R., 1977, p. 108-115.

(19) HENN, V. AND YOURC, L.R. Ernst Mach on the vestibular organ 100 ye rs ago. OKL 37: 138-148, 1975.

(20) JONES, G.M. AND MILLON, J.H. Spatial and dynamic aspects of visual fixation. <u>IEEE Trans. Bis-Med.</u> <u>Fug.</u> 12: 54-62, 1965.

(21) LANDOLT, J.P. AND CORRELA, M.J. Neurodynamic response analysis of caterior semicircular canal afferents in the pigeon. <u>J. Neurophysici</u>, (in press), 1980.

(22) UINDEMAN, H.H. Studies on the morphology of the sensory regions of the vestibular apparatus. Ergeb. Anat. 42: 1-114, 1969.

(23) LOUIE, A.W. AND KIMM, J. The response of 8th nerve fibers to horizontal sinusoidal oscillation in the alert monkey. <u>Exp. Brain Res</u>. 24: 447-497, 1976.

(24) LOWENSTEIN, O. AND COMPTON, G.T. A comparative study of the responses of isolated first-order semicircular canal afterents to angular and linear acceleration, analysed in the time and frequency domains. <u>Proc. Roy. Coc., London, Ser. B.</u> 202: 313-338, 1978.

(25) LOWENSTEIN, O., AND SAND, A. The activity of the horizontal semicir-alar canal of the dogfish, Scyllium canicula. J. Exp. Biol. 13: 416-428, 1936.

(26) MACH, E. Physikalishe Versuche uber den Gleichgewichtssinn des Menschen. <u>Vien. Akad.</u> <u>Sitzungsberichte III</u>, 69: 124-143, 15/3.

(27) MALCOLM, R. AND MELVILI JONES, G.A. A quantitative study of vestibu ar adaptation in humans. <u>Acta Oto-Laryngol</u>. 70: 126-135, 1970.

(29) MCLAREN, J.W. The Configuration of Movement of the Semicircular Can 1 Cupula (Ph.D. Thesis). Iova City: Univ. of Iowa, 1977.

(30) MILSUM, J.H. Biological Control System Analysis. New York: McGraw-Fill, 1966.

(31) MONEY, K.E., BONEN, L., BEATTY, J.D., KUEHN, L.A., SOKOLOFF, M. AND \EAVER, R.S. Physical properties of fluids and structures of vestibular apparatus of the pigeon. <u>Am. J. Physical</u>. 290: 140-147, 1971.

(32) O'LEARY, D.P., DUNN, R.F., AND HONRUBIA, V. Functional and anatomical correlation of afferent responses from the isolated semicircular canal. <u>Nature</u> 251: 225-227, 1974.

(33) O'LEARY, D.P. AND HONRUBIA, V. Analysis of afferent responses from isolated semicircular canal of guitarfish using rotational acceleration white-noise inputs. II. Estimation of linear system parameters and gain and phase spectra. <u>J. Neurophysicl</u>. 39: 645-659, 1976.

(34) PETERKA, R.J., O'LEARY, D.P., AND TOMKO, V.L. Linear system techniques for the evaluation of semicircular canal afferent responses using white noise rotational stimuli. In: <u>Vestibular Mechanisms</u> <u>in Health and Disease</u>, edited by J.D. Hood. London/New York: Academic, 1978, p. 10-17.

(35) SCHNEIDER, L.W. AND ANDERSON, D.J. Transfer characteristics of first and second order lateral canal vestibular neurons in gerbil. <u>Brain Res.</u> 112: 61-76, 1976.

.

B10-5

B10-6

7. - 4 13

1

4

(36) STEINHAUSEN, W. Über den Nachweis der Bewegung der Cupula in der intaken Bogengangsampulle des Labyrinthes bei der naturlichen rotatorischen and calorischen Beizung. <u>Arch. Ges. Physiol</u>, 228: 322-328, 1931.

(37) STEINHAUSEN, W. Über die Beobachtung der Cupula in den Bogengansampullen des Labyrinths des lebenden Hechts. <u>Arch. Ges. Physiol</u>. 230: 500-512, 1933.

(38) TAGLIETTI, V., ROSSI, M.L., AND CASELLA, C. Adaptive distortions in the generator potential of semicircular canal sensory afferents. <u>Brain Res.</u> 123: 41-57, 1977.

(39) THORSON, J. AND BIEDERMAN-THOP ON, M. Distributed relaxation processes in sensory adaptation. Science 183: 161-172, 1974.

(40) YOUNG, L.R. AND OMAN, C.M. Model of vestibular adaptation to horizontal rotations. <u>Aerospace</u> <u>Med</u>. 40: 1076-1080, 1969.

.....

5

is VIII

Ţ.

- 94

B10-7

B10-8

Fig. 2. Bode plot of Unit <u>31170</u> re <u>angular acceleration</u> and fits of models to data.

.

~

Fig. 4. Bode plot of Unit <u>92270 re angular acceleration</u> and fits of models to data.

B10.9

