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1. . Introduction \

The present work is concerned with the determination of the effec-
tive elastic properties of a body containing many interacting flat
cracks. The problem is of significant practical importance. For
example: it has been observed that crack density in rocks increases
before the occurrence of an earthquake. If it were possible to determine
the stiffness reduction due to cracks, analytically; the measurement of
rock elastic moduli could provide information about the density of crack
accumulation. Another example concerns fatigue damage. In unidirectional
fiber composites fatigue damage frequently accumulates in the form of
cracks parallel to to fibers. This reduces the elastic moduli of the
composite, a process which has become known as "wearout'". The crack
density, thus a measure of the internal fatigue damage, could be easily
determined by elastic moduli reduction measurement if a quantitive re-
lation between moduli and crack density were available,

The problem under consideration has received repeated attention,
Early work was primarily concerned with the case of low crack density
which implies that cracks are sufficiently far removed from one another
so that the stress field around each can be approximated by the stress
field around an isolated crack in an infinite medium, The first work
of this nature appears to be that of Bristow [1] who treated the plane
case of long rectangular aligned cracks extending indefinitely on Xz
direction and randomly oriented in the X1, X, plane., Walsh [2,3,4] solved
the case of randomly oriented plane elliptical cracks. Salganic [5] re-
considered the same problem by a dislocation approach. Knopoff and Garbin
[6,7]) treated this problem in terms of scattering of long waves by the
cracks. Piau [8] used such an approach for the problem of aligned cir-

cular cracks. It should be pointed out that the scattering approach is




very complicated and that the same results are obtained in much easier
fashion by static methods.

The case of interacting cracks is very difficult. The only exact
result available appears to be due to Delameter, Herrmann and Barnett
[9] who treated the case of a periodic rectangular plane array of cracks
in terms of periodic dislocation fields and solved the resulting integral
cquations numerically.

The Sel} consistent scheme (SCS) approximation has been applied by
Budiansky and 0'Connell [10] to assesg the effective elastic properties
of an isotropic body containing randomly oriented elliptical cracks.

The same method was used by Hoenig [11] who considered oriented circular
cracks in isotropic material. Levin [12] gave an approximate treatment
using the Green tensor, assﬁming that the influence of any crack on the
other cracks can be replaced by the influence of a force dipole situated
at the crack center.

In view of the great analytical difficulty involved in direct computa-
tion of effective moduli the problem is here considered primarily by
variational methods which permit establishment of bounds on the effective
moduli. Here we -shall also be concerned with the case of orthotropic
matrix which is of importance for fiber composites. All of the available

treatments in the literature scem to be confined to isotropic matrix.

2. Formulation

An elastic body contains a large number M of volumeless flat stable

cracks whose distribution is statistically homogeneous. The external

surface S is subjected to the homogeneous boundary conditions
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Ti(S‘, = Oijnj Ty (2.1)

where J?j are constant stresses. In the absence of cracks, ogj is the
stress field in the body. In the presence of cracks the stress field
becomes very complicated since it must in addition satisfy the conditions
T,(5,) =0 (2.2)
on all crack surfaces Sm’ However, by the average stress theorem, [13], |
G5 = ogj (2.3) |
where here and from now on overbar denotes average over the entire body,
and by statistical homogeneity also over any representative volume ele-
ment (RVE) containing sufficiently many cracks.
The effective elastic properties of a composite material or hetero-
geneous medium are defined by the relations
- * .

°%ij 7 Cijx1 (a)

(2.4)

*
= - b
“ij Sijkl %1 (®)

* * - . - -
where Cijkl and Sijkl are effective moduli and compliances, respectively,

0y, arc given by (2.3) and Eij are the average strains. It should be
noted that for a material containing holes or cracks éij are average
strains taken over matrix and holes as if the latter were deforming
continua.

Decomposing average strains and stiresses into weighted averages in

terms of phase region averages and their volume fractions and using the

elastic matrix stress-strain relations it follows that

* - () - - (2)
Sijk1 = S'ijk1 %x1 t fij 0 V2
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wherce 1 denotes matrix and 2 denotes holes of any shape. The average

- (2 .
strain theorem (see e.g. [13]) can be used to transform ¢ (ij into a
surface integral over the holes. In the special case when the holes

become flat volumeless cracks (2.5) assumes the form

| - (]) -

‘ =S + ¥,
Siokn Txk1 7 Cigkt Yk T Vi (a)

(2.6)

Y.. = *I-Z ( ([u,]n, + fu_ In)dS b)

v i i (

m
S
m

where Sm is the surface of the mth crack and [ui] are the displacement
jumps across the crack surfaces.

If the body is statistically isotropic with isotropic matrix it
follows from (2.6) that the effective bulk modulus K* and the effective

*
shear modulus G are given by

L S I

* .

K K go 1j (2’7)
1 1 2

_ = = + =

G* G100 Y12

where o is an applied averacc isotropic stress and 022 is an applied
average shear stress. Expressions of type (2.7) can easily be written
down for cases of anisotropic matrix and statistical anisotropy dic-
tated by crack distribution.

If follows that the effective elastic properties of cracked bodies
are determined by the crack opening displacements. To determine these
it is in general necessary to find the entire displacement field in the
cracked body subject to (2.1) and (2.2). Thig, of course, is an enor-

mously difficult problem.

.
|



Lffective elastic moduli of heterogeneous materials can alterna-
tively and equivalently be defined in terms of elastic energy. The
stress energy stored in any heterogeneous body subject to (2.1) 1is

rigorously given by, [13].

o= L5t 6 60y Ly o« (2.8)
7 Pl ZiiC%a VR, e L .
m
wWilere
U -lq ﬂo oo V
O T2 %5k "1 Yy (2.9)

th

and §U, is the energy change due to the m  crack in the presence of

all the others.

According to a well known result, Eshelby, [14], 6Um for a hole

can be written as

T | o
6Jm = 5 [(’ij uinJ-jS (2,10)

D S
6Um- 2 oij[[uiJnJJS (2.11)




Eqns. (2.8-11) may be summarized in the form

o? (2.12)

f which is the equivalent of (2.6).
: Alternatively (2.11) can be expressed in terms of stress intensity
factor (SIF) integrals. For line cracks in plane isotropic elasticity
i A

2

T (0 Jux (2.13)

‘ e 40w f 2 2
: o= ¢ . [KL(X) + Kll(x) + {(1-v)K
0

wherc ¢ = 1 for plane stress, ¢ = 1- vz for plane strain, a, is half the
crack length and KI’ KII’ KIII are SIF in modes I, II and III respec-

| tively. For an isolated crack in an infinite body (2.13) assumes the
form

| & e e 2 .2
h Xﬁn L dml&[ + AII . (I—V)A[l[] (2.14)

Corresponding results are available for plane cracks of arbitrary plane

shapes and in particular for elliptical cracks, [10].

5. Direct Approaches

The case which is most easily solved is low crack density. In this
event it is assumed that cracks are sufficiently far apart so that the
energy change due to any one crack is determined as if it were isolated
in infinite matrix with the applied homogeneous stress field at infinity,

Examination of the form of 6Um for plane and elliptical cracks reveals

that for low crack density (2.8-9) are equivalent to




where rijkl depends on matrix properties and crack geometry and the

crack density narameter is given by

(a)

1 y o line cracks
(3.2)
(b)

J . 2 elliptical cracks

<~

where in the first case a, is half the crack length and A is the area

of the plane body while in the second case a, bm are major and minor

axes of the elliptical crack respectively, while V is the volume, Since

ogj and 021 are arbitrary stresses it follows that

~%

(3.3)

® 2ijkl w

®ijkl ijkl

where ~ denotes, here and from now on, low crack density result.

As an example we consider a plane orthotropic sheet containing
cracks aligned in Xq direction, in a state of plane average stress 0?1'
The strain-stress relations of the uncracked material are

(o] 0O
9220 912°

11 1

- o+ :
22 Oy V2P 00 /F, (3.4)

= G
fl2 = 012720,

This may serve as a model for a unidirectionally fiber reinforced lamina

in which case E1=EA - axial Young's modulus; E2=ET - transverse Young's

modulus; Vi2=VA - axial Poisson's ratio; G12=GA - axial shear modulus.




"ne change in stress cenergy due to a crack of length Zam in an orthotropic

sheet is given by, [15, 10]

{ QO
. 2 2
- i d
Wy w e "f Ly K (x) ety & pxd Tl (3.5)
. 0
3
where
5o = s T IR
22 L 1/2.08/2 Lt 12 121
21 13 2
1 2
(3.6)
S 2v /K
1 TR 72 uF. 2 T AV
2F 1D i
, 1 2
¥
For an isolated crack in an infinited sheet this becomes

2 2
o

SU_ = maS(R O + RO
m

m 22 22 12 1_’) (3.7)

Since the crack does not perturb a homogeneous o,y field this
stress does not enter into the energy change. Comparison of (3.7) with
(3.1) and (3.3), taking into account the orthotropy of cracked and un-

. cracked material yields

" [
E AN Y o RNV (a)
2 1+ n{.n.z[(L1 E,) + ]/2(.12—\)12/1;]]} n (3.8)
a *
2 ; !
P 172 172~ (b)

121 mG 2/ [ |-:2)' /26, - vl{liljl (r
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L, = [y (a)
(3.9)

Y127V12 (b)

where o is given by (3.2a).

It should be noted that (3.9) are exact results for any aligned
crack distributions since such cracks do not perturb a homogeneous
stress.

When the crack density is not low and thus crack interaction cannot
be neglected the problem becomes extremely difficult. In view of the
formulation given above it is necessary to either know the crack face
displacements or their stress intensity factors. To obtain such informa-
tion it is in general necessary to determine the displacement fields or
the singular stress fields in the cracked body. The only exact treat-
ment available seems to be due to Delameter, lerrmann and Barnett [9]
for the case of a rectangular periodic array of plane cracks in isotropic
matrix. Using dislocation theory the problem was formulated in terms
of integral equations which were solved numerically. ([9b] corrects
numerical mistakes appearing in [9a]).

An approximate method known as the self consistent scheme (SCS) has
first been applied to the problem by Budiansky and O'Connell [10]. The
basic idea 1is very simple: it is assumed that the energy change associ-
ated with any crack can be estimated as if this crack were located in a
homogeneous elastic body whose elastic properties are the effective
clastic properties to be determined. The analytical consequence of such

an assumption is as follows: if the dependence of T,

iik1 in (3.3) on

matrix elastic moduli Cijkl or compliances Sijkl is denoted Fijkl(g) or

_




rijkl(§) then

[
Sk T ikt (3 (3.10)

ki

*
where Sijkl are the effective compliances to be determinad. Equs.

(3.10) are a set of simultaneous equations to determine the effective
compliances.

While this approach is simple and straightforward it must be realized
that it is based on the drastic assumption that the crack tip ''sees"
the effective medium, This is of course incorrect since the crack tip
sees matrix and other cracks. The concept of the effective medium is
valid only for averages over RVE containing many cracks. It can certain-
ly not be applied to the immediate vicinity of a crack tip where the
stress gradients are extremely large. The energy change due a a crack
may be accurately estimated by the SCS method when the crack is by an
order of magnitude larger than all others, but not necessarily when all
are of same order of magnitude,

As an example for (3.10) we consider again the cracked orthotropic
sheet with cracks aligned in x; direction. Combination of (3.10) with

1
(3.8) gives the equations

X

VPR RSN R R 1
“2- l ﬂlan‘,l(._]LJ) + I/auu - v\./tl“ /a:t
(3.11)
GF
12 * .
T Ieme /g e ey V2 ot WP V5
(‘]2 IZ{“ IL(C,‘LJ) + l/Zuu - \’18/‘;1“ 2

Eqs. (3.11) are equivalent to 8th order algebraic equations for
cach of the effective moduli and therefore have multiple real roots.
Solution of the equations for matrix properties typical of unidirectional

. . *
glass epoxy fiber composite gave two different Ez(a) both mononotonically

N
e T . ,
i e —tTT T IR O
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decreasing with o and two different qu(a) one of which decreases with

a while the other increases with a. The second G:z(a) is therefore
physically unacceptable. To make a choice between the two E;(a) it
would be necessary to argue that the one associated with unacceptable
GIZ(a) via (3.11) is also unacceptable. Whether or not such an argument
is convincing remains an open question.

It is of interest to note that similar problems arise with the SCS
solution for aligned circular cracks given by Hoenig [11], but only a
single numerical solution has been presented in his paper.

Finally it is noted that the SCS may easily be generalized to the

casc when there are aligned cracks in X4 and X, directions., The results

which have been given in [17] are:

. i 1/ ) ) 1/2
SR n ] N M .- - - =
J(L] 1/td g) + ‘(t‘/u‘z'v Zv]?) i (1 m‘)nazl 0

. . 1/¢ . . 1/2
n T n (= /5 -2k v, /E )= (1~ ] =
Z(r.e 2/&.] ') + 2(r_z/\J]ZY 2\]/-/ ]) [(1 ﬂz)/ﬂﬂ]]

0 (3.12)

Y = C bt - Y - -
1/ P oG /ot (1 =1) w050, o ¥ (/- 1)

where

a [, = /A ’() = 2
m m

=l
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and aim and a,n are half crack lengths of cracks 1in X4 and X, directions

respectively. These equations also have multiple real roots.

4. Egunds for Effective Llastic Moduli

The problem of bounding the effective elastic properties of cracked
materials will here be considered in terms of the classical extremum

principles of minimum potential and complementary energies.

Upper Bounds

To construct upper bounds we shall use the principle of minimum
potential energy. The potential energy and the potential energy func-

-tional are defined by

;.
J A dV -

v
PN
P9 J' T
v

[
"
< j—

Yluid5 (a)
T (4.1)

oA ——

ol
1
} e

,
( Iiuidb (b)
ST

where W is the strain cnergy density, Ti are prescribed tractions on ST’
n, is an admissible displacement field which must be continuous in the
region excluding the cracks and satisfy displacement boundary conditions,

if imposed, and

o] ~ ’é'
ij - Vigxloxl (4.2)
\fF l N N,
A = 1o, e,
2 1j7i]
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The extremum principle states that

N
u_ > U

p (4.3) 1

p

In the case of a cracked body it follows from (2.2) that the crack
surfaces do not contribute to the surface integral in (4.1). Thus ST

becomes the external surface S on which (2.1) is prescribed. Since

O?j are constant it follows at once that
A, | gy o ru W
I - (]. - .3(. ) ‘. \ a
IR ARV T (a)
v (4.4)
5P I S It (b)
Up = 1 { ((siJ - 3rfij)cijd\l = 5 Si_j.(L(‘lJ”kl

v

The last equation (4.4b) following from the average theorem of virtual
work, [13], and (2.4b). It is noted in passing that (4.4) apply for
any heterogeneous body with (2.1) prescribed.

An admissible displacement field for a body containing an arbitrary
distribution of cracks is here chosen in the form

;\]’ _ .0 z . (4-5)
.= ui + u!

1 m 1

where

¢ o] [¢] Q
U)=€» X . €. =

i iy iy 7 2ijkl %al (4.6)

is the displacement field in the absence of cracks and ur. is the pertur-

th

bation field of the m crack, as if all the other cracks were absent.

Thus for cracks removed from the boundary ug+u1m is the displacement
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ficld when the crack is isolated in an infinitc¢ medium. The field
(4.5) is the actual solution for low crack density. It is continuous

in the region excluding the cracks and is thus an acceptable admissible

ficld for that region. Across cach crack (4.5) is discontinuous with

jump ruI] of the displacement of the isolated crack. It should be noted

that an admissible displacement field with no discontinuity across
cracks would lead to the trivial result that the upper bounds for ef-
[' fective moduli are the matrix moduli.

The strains and stresses associated with (4.5) are

A = 1
= ¢t )r
ij ij - 1jm
n
(4.7)
' |
v
a. = 0, o + E()r
i 1) igs oo ijm
¥
Since Oijm is the actual stress perturbation due to an isolated crack

with (2.1) prescribed, each of the associated tractions vanish on the

i cxternal boundary. Thus

! L on=0 o 5 (4.8)

= Ve n,
lllﬂ (IJIII 1

Introduction of (4.7) into (4.1b) yields the result
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th

It is easily shown that the m term in the first integral of

(4.9a) is - SUm, the negative of the stress energy change due to

an mth crack isolated in infinite medium. Therefore (4.9) assumes

the form

vo. _ ' '
p Vo 2‘; (SUm * E] ;21 I nijn\ Eijn v (4.10)

The stress ogj + Oijm is an actual stress field and therefore
1]

satisfies equilibrium. Since o;; 1s constant, © also satisfies

J ijm
1]
equilibrium. Similarly €ijn is a compatible strain field. Therefore
by virtual work
fv")jjmr‘ijmdv z fsfj.nujnd.)' 4-[ ri.nuiu“ (4.11)

on all cracks
The first integral on the right hand side vanishes because of (4.8).
The second integral must be evaluated on the two adjoining faces of

all cracks on which

1] 1)
Thus the integrand becomes - cgjuinnj and since Usn is continuous across
all cracks and since the signs of the normal are opposite on adjoining
crack faces, the last integral in (4.11) also vanishes and thus (4.11)

is zero. It then follows from (4.10) that

A
P 0
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Now GUm is the cnergy change due to one isolated crack in a large body.

Most cracks. are sufficiently removed from the boundary so that dUm
can be computed as if the crack were at infinite distance from the

boundary, thus by exprecssions of type (2.14). The cracks which are

near the boundary constitute the usual boundary layer of a hetero-
geneous body. Their number relative to that of cracks removed from
the boundafy can be made indefinitely small by increase of the size
of the cracked body. Therefore (4.12) can be determined to any de-
sired accuracy by interpreting all 6Um as energy changes of isolated
cracks removed from the boundary. It should be noted that the same s
reasoning tacitly enters into derivation of all previous results such
as low crack density, periodic crack arrays and SCS.

If follows from the low crack density analysis leading to (3.1),

(3.3) that (4.12) can be written as

“ X o o

Yoo o1 g
Up = =2 k%15 %k (4.13)

Then from (4.3) and the last of (4.1))

% (o] O

“Sied %ip a2 (4.14)

‘7':
(S ij

i ikl

%
This nositive definite form defines bounds for S ijk1 in terms of the

low crack density expressions §;jk1 as given by (3.3) in which, how-

ever, a is no longer small but arbitrary. Specializing (4.14) to the

0

%
case of one normal zero stress, 0,, say, it follows that S2222 is smaller
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b than 82222. Since the reciprocals of these compliances are Young's
! moduli in 2 direction we have
{
{
- LN X () 4.15
S, LK, = 1, ( )

. o
Analogously, for one nonzero shear stress, o

12 SaY, it follows that

S Ar R (4.16)
12 =12 7 2y

Similar results are valid for the other Young's and shear moduli for

any cracked material. Thus the effective moduli expressions valid

for low crack density are upper bounds for the effective moduli

at any crack density.

If the cracked material is statistically isotropic (4.14-16) be-
come bounds for that case. It is also easily shown that the bulk

*
| modulus K 1is bounded by

< <k 2 (4.17)

For randomly oriented circular cracks the results are,

S Lt L 150 (1-vT) (10-3v) /45(2-v) |

(4.18)

RIGIIRY

3/ +32a(1-V) (5-v) /45(2-V) ]

t
G.
"




Pl

th crack. Thus (4.18) are upper bounds

and a, is the radius of the m
for E*and G* of a body containing an arbitrary number of circular
cracks.

For an orthotropic sheet which contains an arbitrary number of
cracks aligned in Xy direction it follows from (4.15-16) that (3.8)

become upper bounds for the moduli E and G12

Lower Bounds

To construct lower bounds we shall use the principle of minimum
complementary energy. Since the imposed boundary conditions (2.1),

(2.2) are traction boundary conditions the principle simplifies to

that of minimum stress energy. The stress energy and the stress energy

functional are defined by

y [ l I ] Q ’\) ”\) v
o, — A = e ['4
2 "1_;!(1 lJ &L 4V 2 lJKl ij <1 (a)
v (4.19)

(6] a, N\,
f Sij1 %15 %% 9V (b)

U

N!o—'

where 3ij is an admissible stress field which must satisfy equilibrium
and all traction boundary conditions,

The principle of minimum stress energy states
%2 yo (4.20)

The major difficulty in construction of gij is satisfaction of

the crack boundary conditions (2.2). Consider a body with an arbitrary

distribution of cracks, fig. 1. The body is subdivided into regions

th

each of which contains one crack. Let it be assumed that the m such

region is subjected on its boundary Sm to (2.1), The elastic stress

field in this body satisfying (2.1) and (2.2) is denoted of; Then

T U S OO




evidently the stress field

fo P>
i
2

" - v
1j i fn m (4,21)

el roanen

is admissible for the entire body since it satisfies equilibrium and

all boundary conditions.

It should be noted that the proposed °ij is singular at the crack H

i triac adalliae

tips and the usual admissible fields considered in standard elasticity

texts do not seem to include such cases. It may be argued that éracks

! are limiting cases of very flat holes with finite tip curvatures and
no stress singularities. Then the stfess energy functional (4.19b)
must first be evaluated for stresses OTj in regions containing such

i holes and the 1limit of these integrals are taken when the holes become i

cracks. These integrals are the actual strain energies stored in these

regions subjected to (2.1) and each containing one crack and it is

known that these energies remain finite. We can write for the mth
region
v[\ld - “n + (Sl\'”
m om m
where (4,22)
i = 1/2 S 0 0
o 285 0k1 %45 "kt Vm

and 6U, can be expressed in terms of the stress intensity factor of

.‘ the crack in the m‘D region, if known,

For line cracks and plane elasticity 3Um will have the form (2,13).

i It is emphasized that the SIF entering into the expressions depend i




-20-

th

on the shape of the m region and its crack geometry.

If follows that

LP:'JQ + }: 5(’3

m

n
(4.23)
o] o
[l - R o
Yo = 12555 %45 %k Y
A crack solution useful for present purposes is due to Isida

[18) who considered the plane case of a finite rectangle with a central

crack in Mode I, fig. 2. His expression for the SIF may be written

1/2
Kl =0.a f](a/h,a/c)

(4.24)

where 00&1/2 is the mode I SIF for the same crack in plane stress when
it is isolated in an infinite sheet. Numerical values of the function
f1 have been given in [18].

The same problem for an orthotropic rectangle has been treated
numerically by Bowie and Freese [19). The SIF for this case may be
expressed as

=g al/zfz(a/b,a/c, material properties) (4.25)

K1 0

Consider now a large plane specimen containing m randomly dis-
tributed cracks, all in x4 direction, fig. 3. We can subdivide this

specimen into rectangles, each rectangle containing a central crack

or no crack as shown by the dashed lines. The aggregate of the solutions
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of finite rectangles with dimensions me and Zcm and central cracks

of length Zam (a_ can also vanish) under simple tension % is an

m
admissible stress fields. 1In the special case when the ratios am/bm,

am/cm and bm/cm remain constant throughout the specimen, eqs. (4.21 -

%
24) together with (2.13) give a lower bound on E2 for isotropic

matrix with aligned cracks in the form

* h

(1 + L‘zf I rlz(a/b,a.c)a dal”!

a

=

)

(4.26)
o]

For orthotropic matrix we use (4.25) together with (3.5) and obtain

*
a lower bound on E 2 in the form

‘)
i 222 ‘”’:21/“ <1/2 112
Y o SU/2 VAN
Fk i1+ 12 [(E]RZ) +1/_(.Iz le/l!,
] (4.27)
2 material -1
. 1
f f2 (a/b, alec, properties) a da

]

The bounds (4.26) and (4.27) are evidently valid also for the case of

a doubly periodic array of cracks, since in this case a bm and Cm

m’
are constant.

Another useful crack solution is due to Wilson [20], who consider-
ed the plane case of a finite isotropic rectangle with a central in-

clined crack under various loadings.




The solution for a finite rectangle, in tension or in shear,

containing an inclined crack can be used to obtain lower bounds on

* *
E and G for a plane sheet with randomly distributed cracks. The

solution for a finite rectangle with a central oblique crack sub-

——

jected to uniform shear tractions on crack edges can be used to ob-
tain a lower bound on GIZ for a nlane isotropic sheet with aligned
cracks.

Some of the results obtained are plotted in fig. 4 as a function
of the crack density parameter a. This parameter is the only geo.
metrical information entering into the upper bounds (small crack density)
and into the SCS. However, o is insufficient information to charac-
terize the exact results given in {9] or the lower bounds. In both

cases the results are based on specific geometries which are charac-

terized by the ratios c/b and a/b. Then o = a2/4bc and is clearly

insufficient to specify the geometry. The c/b ratios used for lower
bound calculations are indicated in the figures.

The upper and lower bounds are quite close for a respectable range
of #, up to a = 0.15. For small a(a<0.05) all the results coincide.
The SCS curves are close to the lower bounds. As the cracks become
closer, i.e. for large a/b and small ¢/b, the distance between the
bounds increasecs, and the small concentration result deviates further.
This is reasonable, as the influence of the interactions between the i
cracks should become more important. The results are presented for
a range of up to o = 0.3, however the cracks may become unstable be-

fore o attains this value.

[t has been found that in certain cases the results of [9] are

above the general upper bound, which is unacceptable. The reason for

this phenomenon is not known to us at the present time. §
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The problem of analytical determination of clastic pronerties of
cracked materials has been considered by variational methods. The
motivation for this approach is that exact direct analysis of the
problem is extremely difficult. The only exact solution available for
arbitrary crack density is for a periodic crack array and had to be
performed numerically.

The bounds obtained are reasonable close for crack densities of
practical significance. When the bounds are close the small crack
density results can be regarded as a good approximation since it has
been shown that they are general upper bounds.

On the basis of the results obtained it appears that the SCS ap-
proximation tends to underestimate the effective elastic properties,

A more serious problem with this method is that it can give non-unique
results for cffective elastic moduli.

The bounds derived in this work are based on known crack field
solutions and require only small computational effort. It is to be

expected that additional and perhaps better bounds can be derived as

more crack solutions become available.
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Fig. 1 - Subdivision of cracked body for construction
of admissible stress fields: General case.

Fig. 2 - Finite rectangle with a central crack.
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Fig. 3 - Subdivision of cracked body for construction of
admissible fields: aligned plane cracks in a plane sheet.
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Fig. 4 - Bounds and results for Young's and shear moduli (a) Isotropic matrix,
randomly distributed cracks (b) Isotropic matrix, aligned cracks
(c) Orthotropic matrix (glass/epoxy composite E., = 26.4 GPa;

E, = 7.17 GPa; Gyp = 5.12 GPa; vy, = .267).with aligned cracks.




