
. .AD 1 73 PENNSYLVANIA UNIV PHILADELPHIA COLL OF ENGINEERING A--ETC F/6 20/11
EFFECTIVE ELASTIC PROPERTIES OF CRACKED MATERIALS.fU)
MAY 81 T GOTTESMAN. .1 HASHIN. M A BRULL N00014-76-C-0544

UNCLASSIFIED TR-6 NL

IImhohhEmhhEEohEE I"zl



NAVAL AIR SYSTEMS OFFICE OF NAVAL RESEARCH

CONTRACT N00014-----78 --C - #544

,Technicaf7epwt No. 6

- .i "

EFFECTIVE ELASTIC PROPERTIES OF CRACKED MATERIALS,

by

T. Gottesman, Z, Hashin &ad M.A. Brull

$ee-f Engineering and Applied Science
University of Pennsylvania
Philadelphia, Pennsylvania

May V981 /

L ~i



ZECURITY CLASSIFICATION OF THIS PAGE !hen Date intered)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

I. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIi.NT'S CATALOG NUMOLR

6 A,/o/ /31
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

EFFECTIVE ELASTIC PROPERTIES Technical

OF CRACKED MATERIALS G. PERFORMING ORG. REPORT NUMBER

7. AUT40Rs} 8. CONTRACT OR GRANT NUMBER(aI

T. Gottesman, Z. Eashin, and M.A. Brul N00014-78-C-0544,

4. PERFO.RviNG LRGANIZATiON NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

AREA 6 WORK UNIT N.MBERS

University of Pennsylvania
Philadelphia, PA 19104

II. CONTRCLLIN OFFICE NAME AND AC)DRESS 12. REPORT DATE

Naval Air Systems Command, Washington, D. May, 1981
Office of Naval Research, Arlington, VA ,3 NUMBER OF PAGES

14. MONITORIIZ,5 4GE.NCY NAME & AMORESS(if different from Controlling Office) IS. SECURITY CLASS. (of this report)

IS.. DECL ASSI FICATION, DOWN GRADING
SCHEDULE

16. OISTR18UTION STATEMENT (of th s Feport)

Approved for Public Release; Distribution unlimited

17. DISTRIBUTION STATEMENT (o! te obstrat ort tred in Block 20, if different from Repot:)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reerse side it ne.essary and identify by block number)

Cracks, Crack Density, Effective Elastic Moduli, Fatigue Damage
Fiber Composites, Lower Bounds, Orthotropic Materials, Stiffnes.
Reduction, Stress Intensity Factor, Upper Bounds, Variational
Principles

20 A83TRACT 'Continue on reers side if necessary and Identilv by block number)

DD 1473 EDITION OF I NOV 65 IS OSOLTE

SECURITY CLASSIFICATION OF TIS PAGE (When Date Entered)



.7 K 'c tionl-.c t
EFFECTIVE ELASTIC PROPERTIES OF CRACKED MATERIALS: .

."::i!, , ']. t'! Codles
TGteaadMALlld/or

T. Gottesman ) Z. Hashin * and M A. Brull( Dit S pecial

IABSTRACT
VThe problem of the determination of effective elastic properties

of materials containing many interacting, cracks has been considered

by variational methods. It has been shown that effective elastic

moduli expressions for low crack density are general upper bounds for

the case of arbitrary crack density. Lower bounds on effective moduli

have been obtained on the basis of admissible, stress fields which

are expressed in terms of known crack field solutions. Upper and lower

bounds are reasonably close together for practically significant range

rf crack density.
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1. Introduction

The present work is concerned with the determination of the effec-

tive elastic properties of a body containing many interacting flat

cracks. The problem is of significant practical importance. For

example: it has been observed that crack density in rocks increases

before the occurrence of an earthquake. If it were possible to determine

the stiffness reduction due to cracks, analytically, the measurement of

rock elastic moduli could provide information about the density of crack

accumulation. Another example concerns fatigue damage. In unidirectional

fiber composites fatigue damage frequently accumulates in the form of

cracks parallel to to fibers. This reduces the elastic moduli of the

composite, a process which has become known as "wearout". The crack

density, thus a measure of the internal fatigue damage, could be easily

determined by elastic moduli reduction measurement if a quantitive re-

lation between moduli and crack density were available.

The problem under consideration has received repeated attention.

Early work was primarily concerned with the case of low crack density

which implies that cracks are sufficiently far removed from one another

so that the stress field around each can be approximated by the stress

field around an isolated crack in an infinite medium. The first work

of this nature appears to be that of Bristow [1] who treated the plane

case of long rectangular aligned cracks extending indefinitely onx3

direction and randomly oriented in the x1 , x 2 plane. Walsh [2,3,4] solved

the case of randomly oriented plane elliptical cracks. Salganic [5] re-

considered the same problem by a dislocation approach. Knopoff and Garbin

[6,7] treated this problem in terms of scattering of long waves by the

cracks. Piau [8] used such an approach for the problem of aligned cir-

cular cracks. It should be pointed out that the scattering approach is
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very complicated and that the same results are obtained in much easier

fashion by static methods.

The case of interacting cracks is very difficult. The only exact

result available appears to be due to Delameter, Herrmann and Barnett

[91 who treated the case of a periodic rectangular plane array of cracks

in terms of periodic dislocation fields and solved the resulting integral

equations numerically.

The self consistent scheme (SCS) approximation has been applied by

Budiansky and O'Connell [10) to assess the effective elastic properties

* of an isotropic body containing randomly oriented elliptical cracks.

The same method was used by Hoenig [111 who considered oriented circular

cracks in isotropic material. Levin [121 gave an approximate treatment

using the Green tensor, assuming that the influence of any crack on the

other cracks can be replaced by the influence of a force dipole situated

at the crack center.

In view of the great analytical difficulty involved in direct computa-

tion of effective moduli the problem is here considered primarily by

variational methods which permit establishment of bounds on the effective

moduli. Here we -shall also be concerned with the case of orthotropic

matrix which is of importance for fiber composites. All of the available

treatments in the literature seem to be confined to isotropic matrix.

2. Formulation

An elastic body contains a large number M of volumeless flat stable

cracks whose distribution is, statistically homogeneous. The external

surface S is subjected to the homogeneous boundary conditions
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T i (s ) o = T (2.1)

a 0where . are constant stresses. In the absence of cracks, aij is the

stress field in the body. In the presence of cracks the stress field

b :comes very complicated since it must in addition satisfy the conditions

Ti (Sm ) = 0 (2.2)

on all crack surfaces Sm . However, by the average stress theorem, [131,

a. . (2.3)aij = ij(.3

where here and from now on overbar denotes average over the entire body,

and by statistical homogeneity also over any representative volume ele-

ment (RVE) containing sufficiently many cracks.

The effective elastic properties of a composite material or hetero-

geneou:3 medium are defined by the relations

ij = Cijkl kl (a)kl (2.4)

":-.. S* (b)

4ij ijkl akl

where Cijkl and S ijkl are effective moduli and compliances, respectively,

Ui, are given by (2.3) and are the average strains. It should be

noted that for a material containing holes or cracks C are average

strains taken over matrix and holes as if the latter were deforming

continua.

Decomposing average strains and stresses into weighted averages in

terms of phase region averages and their volume fractions and using the

elastic matrix stress-strain relations it follows that

* = -- + (2)(2 5

Sijkl - ijkl (kl 'ij v2 (2.)
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where I denotes matrix and 2 denotes holes of any shape. The average

strain theorem (see e.g. [13]) can be used to transform E into a

surface integral over the holes. In the special case when the holes

become flat volumeless cracks (2.5) assumes the form

ijkl 'kI ijkl "k i '1 (a)

(2.6)

y 01 + [,, n + u I (IS (b)
~m

S

where Sm is the surface of the mth crack and [ui ] are the displacement

jumps across the crack surfaces.

If the body is statistically isotropic with isotropic matrix it

follows from (2.6) that the effective bulk modulus K and the effective

shear modulus G are given by

K* K1 +O Y J (2.7)

C 1  (j 1 2 ( 12

4 here ca is an applied averagc isotropic stress and a 2 is an applied

a.rerage shear stress. Expressions of type (2.7) can easily be written

down for cases of anisotropic matrix and statistical anisotropy dic-

tated by crack distribution.

If follows that the effective elastic properties of cracked bodies

are determined by the crack opening displacements. To determine these

it is in general necessary to find the entire displacement field in the

cracked body subject to (2.1) and (2.2). This, of course, is an enor,

mously difficult problem.
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Effective elastic moduli of heterogeneous materials can alterna-

tively and equivalently be defined in terms of elastic energy. The

stress energy stored in any heterogeneous body subject to (2.1) is

rigorously given by, [13].

G 0 (3 0 V j ° . (2.8)
Uij noj o 0 (2n)

w i ire

U - liki ii 31 V (2.9)

and 6Um is the energy change due to the mth crack in the presence of

all the others.

According to a well known result, Eshelby, [14], 6Um for a hole

can be written as

6ti Q (j u 1ni J S (2, 10)

Sm

which in the case of a crack becomes

6u z J1 i S (2.11)

S
m

4i
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Eqns. (2.8-11) may be summarized in the form

U = j (2.12)
2 ij ij

which is the equivalent of (2.6).

Alternatively (2.11) can be expressed in terms of stress intensity

factor (SIF) integrals. For line cracks in plane isotropic elasticity

tL L - ,((x) + : 1(x) + (]-vb(< (X)Jd (2.13)

0

where t = 1 for plane stress, 4 = 1- v2 for plane strain, am is half the

crack length and KI, KII, KIII are SIF in modes I, II and III respec-

tively. For an isolated crack in an infinite body (2.13) assumes the

form

A j L.. 2 + < + (1-V) (2.14)

Corresponding results a.e available for ,lane cracks of arbitrary plane

shapes and in particular for elliptical cracks, [10].

3. Direct Approaches

The case which is most easily solved is low crack density. In this

event it is assumed that cracks are sufficiently far apart so that the

energy change due to any one crack is determined as if it were isolated

in infinite matrix with the applied homogeneous stress field at infinity.

Examination of the form of 6Um for plane and elliptical cracks reveals

that for low crack density (2.8-9) are equivalent to

-I 0 ('-1

3(3.1)
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where Fijkl depends on matrix properties and crack geometry and the

crack density narameter is given by

,1 y .I line cracks (a)
A

(3.2)

1 9) elliptical c-racks (b)

In

where in the first case a is half the crack length and A is the area

m

of the plane body while in the second case amp bm are major and minor

axes of the elliptical crack respectively, while V is the volume. Since

o 0
u.. and akl are arbitrary stresses it follows that

-J~1 k1 .-

ij4L ijkl + ijkl (3.3)

where denotes, here and from now on, low crack density result.

As an example we consider a plane orthotropic sheet containing

cracks aligned in xI direction, in a state of plane average stress a0
1Ii

022, 012" The strain-stress relations of the uncracked material are

22=O /L - 22 1221

22 - V1 12/EI +  (122 /E2 (3.4)

12 12 12

This may serve as a model for a unidirectionally fiber reinforced lamina

in which case E1 =E A - axial Young's modulus; E2=ET ' transverse Young's

modulus; v 12- -A axial Poisson's ratio; Gl 2=GA - axial shear modulus.



'!ne change in stress energy due to a crack of length 2am in an orthotropic

sheet is given by, [IS, 10]

;111

° 7! " 122 t (x)''{12  i((3.5)

0

where

)__/2 . 3/2 4E2  12 12 1

(3.6)

1 /2 1 + (i/ 2 -2 )
2 2 12

1 2

For an isolated crack in an infinited sheet this becomes

2 +
Um = 2Ta 2(R 22 12 12 (3.7)

Since the crack does not perturb a homogeneous O1 field this

stress does not enter into the energy change. Comparison of (3.7) with

(3.1) and (3.3), taking into account the orthotropy of cracked and un-

cracked material yields

F 2 

(a)
E2 1 + 7f{2F,[(E I.) + 1/2G -v /I.,

1 2 12 12 1 (3.8)

C.' 2 r; f) 1212 - _ __ _ -__/2 ______,: ] 1 /2 b)
G12 1 + >r; 2 Il (.1 I, 2) + I/C 1/(;( b)
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* E (a)

(3. (

12= V12 (b)

where X is given by (3.2a).

It should be noted that (3.9) are exact results for any aligned

crack distributions since such cracks do not perturb a homogeneous

stress.

When the crack density is not low and thus crack interaction cannot

be neglected the problem becomes extremely difficult. In view of the

formulation given above it is necessary to either know the crack face

displacements or their stress intensity factors. To obtain such informa-

tion it is in general necessary to determine the displacement fields or

the singular stress fields in the cracked body. The only exact treat-

ment available seems to he due to Delameter, lerrmann and Barnett [9]

for the case of a rectangular periodic array of plane cracks in isotropic

matrix. Using dislocation theory the problem was formulated in terms

of integral equations which were solved numerically. ([9b] corrects

numerical mistakes appearing in [9a]).

An approximate method known as the self consistent scheme (SCS) has

first been applied to the problem by Budiansky and O'Connell [10]. The

basic idea is very simple: it is assumed that the energy change associ-

ated with any crack can be estimated as if this crack were located in a

* homogeneous elastic body whose elastic properties are the effective

elastic properties to be determined. The analytical consequence of such

an assumption is as follows: if the dependence of F ijkl in (3.3) on

matrix elastic moduli Cijkl or compliances Sijkl is denoted F ijkl(C) or

ijklij k.l ijk... ....



I'ijkl (S) then

';i~ L - ;ij l 'tt~ r (; )(3.10)i Jk kIj i

where Sijkl are the effective compliances to be determined. Equs.

(3.10) are a set of simultaneous equations to determine the effective

compliances.

While this approach is simple and straightforward it must be realized

that it is based on the drastic assumption that the crack tip "sees"

the effective medium. This is of course incorrect since the crack tip

sees matrix and other cracks. The concept of the effective medium is

valid only for averages over RVE containing many cracks. It can certain-

ly not be applied to the immediate vicinity of a crack tip where the

stress gradients are extremely large. The energy change due a a crack

may be accurately estimated by the SCS method when the crack is by an

order of magnitude larger than all others, but not necessarily when all

are of same order of magnitude.

As an example for (3.10) we consider again the cracked orthotropic

sheet with cracks aligned in xI direction. Combination of (3.10) with

(3.8) gives the equations

I- * I- I ,[ £1 -1/'-

fit26,)L E V 4 /A, - ' /E jJ+2 1li...12 1,~, l l l l l

(3.11)

I * - -1/2 I 112
12' 1 -21

122 121 11

Eqs. (3.11) are equivalent to 8th order algebraic equations for

each of the effective moduli and therefore have multiple real roots.

Solution of the equations for matrix properties typical of unidirectional

glass epoxy fiber composite gave two different E2 ((a) both mononotonically

____ ____ ___ ___--- ~ ~ ~-.2
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decreasing with a and two different G1 2 (a) one of which decreases with

u while the other increases with a. The second G1 2 (a) is therefore

physically unacceptable. To make a choice between the two E,(a) it

would be necessary to argue that the one associated with unacceptable

(;12 (c) via (3.11) is also unacceptable. Whether or not such an argument

is convincing remains an open question.

It is of interest to note that similar problems arise with the SCS

solution for aligned circular cracks given by Hoenig [111, but only a

single numerical solution has been presented in his paper.

Finally it is noted that the SCS may easily be generalized to the

case when there are aligned cracks in x and x2 directions. The results

which have been given in [17] are:

11 1122

2(E i/ r )1/E - rl ( /j y 2 V- 2 1 2 1 H )- ( 1- n 2 n 2 1/2

2/Y I 1 1(1/ 1) + M2r12 / '9 1 2- 1)

where

n =~. T =~/ Y21E2

1 £1/1 2 12/12

1 2 L o
nI
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and aim and a2m are half crack lengths of cracks in x1 and x2 directions

respectively. These equations also have multiple real roots.

4. Bounds for Effective Elastic Moduli

The problem of bounding the effective elastic properties of cracked

materials will here be considered in terms of the classical extremum

principles of minimum potential and complementary energies.

Upp-er Bounds

To construct upper bounds we shall use the principle of minimum

potential energy. The potential energy and the potential energy func-

tional are defined1 by

? P I J /- LUI d: (a)

V ST (4.1)

o, f , r. u i, (b)

V

where W is the strain energy density, T. are prescribed tractions on STO

n. is an admissible displacement field which must be continuous in the

. region excluding the cracks and satisfy displacement boundary conditions,

if imposed, and

C -Cu +U .)
ij 2 i J J'

(3

ij 0ijxl ,(l (4.2)

2 j .1
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The extremum principle states that
lu

U > U (4.3)p - p

In the case of a cracked body it follows from (2.2) that the crack

surfaces do not contribute to the surface integral in (4.1). Thus ST

becomes the external surface S on which (2.1) is prescribed. Since
o

a.r. are constant it follows at once that1J

(cY - d (a)Op 2 J I

Jv (4.4)

L( - 2 .)ci = _ V 1 S O V (b)

2 = (Tk

The last equation (4.4b) following from the average theorem of virtual

work, [13], and (2.4b). It is noted in passing that (4.4) apply for

any heterogeneous body with (2.1) prescribed.

An admissible displacement field for a body containing an arbitrary

distribution of cracks is here chosen in the form

0, o [ (4, S)
U. U U(.

where

Ui Cjj X . (4.6)ui ij j i ji°x

is the displacement field in the absence of cracks and u' is the pertur-

bation field of the mth crack, as if all the other cracks were absent.

Thus for cracks removed from the boundary ui+UI is the displacement

i ....

• , .. .. .... . . .. ... ....... .. ... , "'" " _ _ .I.
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field when the crack is isolated in an infinite medium. The field

(4.5) is the actual solution for low crack density. It is continuous

in the region excluding the cracks and is thus an acceptable admissible

field for that region. Across each crack (4.5) is discontinuous with

jump [u1] of the displacement of the isolated crack. It should be noted

that an admissible displacement field with no discontinuity across

cracks would lead to the trivial result that the upper bounds for ef-

fective moduli are the matrix moduli.

The strains and stresses associated with (4.5) are

U\ IJ 1 Ijiij * Ji i j

in (4.7)

1J ij, Jijmm

Since aijM is the actual stress perturbation due to an isolated crack

with (2.1) prescribed, each of the associated tractions vanish on the

external boundary. Thus

I I
1', = j . J =  0 .I : (4.8)

Introduction of (4.7) into (4.1b) yields the result

U = o II +< i - 0r. + Y . . W + (a)
tIII U ' 1rn M ijm ji

(4.9)

+ ~ jm F (IV
m1 un 7in

mill V (b)

' 7vOO f d V

. .



It is easily shown that the mth term in the first integral of

(4.9a) is 6Um, the negative of the stress energy change due to

an mth crack isolated in infinite medium. Therefore (4.9) assumes

the form

S- U +
p m " n f dV (4.10)

m m n " "~

min V

0The stress ij+ 0 ijm is an actual stress field and therefore

satisfies equilibrium. Since a o is constant, a. also satisfies

equilibrium. Similarly cijn is a compatible strain field. Therefore

by virtual work

fiv = fV U I U J3 + r. J J( (4.11)
fV i n i n .n i I)

on all cracks

The first integral on the right hand side vanishes because of (4.8).

The second integral must be evaluated on the two adjoining faces of

all cracks on which

+r. = O.n. U-[. -
1 1 J iDi

Thus the integrand becomes - u innj and since uin is continuous across

all cracks and since the signs of the normal are opposite on adjoining

crack faces, the last integral in (4.11) also vanishes and thus (4.11)

is zero. It then follows from (4.10) that

11) 1m (4.12)
|n

-" pI• ll" 11
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Now 6U is the energy change due to one isolated crack in a large body.

Most cracks are sufficiently removed from the boundary so that 6Um

can be computed as if the crack were at infinite distance from the

boundary, thus by expressions of type (2.14). The cracks which are

near the boundary constitute the usual boundary layer of a hetero-

geneous body. Their number relative to that of cracks removed from

the boundary can be made indefinitely small by increase of the size

of the cracked body. Therefore (4.12) can be determined to any de-

sired accuracy by interpreting all 6Um as energy changes of isolated

cracks removed from the boundary. It should be noted that the same

reasoning tacitly enters into derivation of all previous results such

as low crack density, periodic crack arrays and SCS.

If follows from the low crack density analysis leading to (3.1),

(3.3) that (4.12) can be written as

0 0

U = 2 ijkl ij Okt (4.13)

Then from (4.3) and the last of (4.1b)

(S * 0 0 >(Sik - Si k) rii (1k > 0 (4.14)
i k] ijk I i 1 ki (4 14

This positive definite form defines bounds for S ijkl in terms of the

low crack density expressions Sijkl as given by (3.3) in which, how-

ever, a is no longer small but arbitrary. Specializing (4.14) to the
0o ay it follows that S* i mle

case of one normal zero stress, a20 say, 22w h is smaller2222
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than S 2222 Since the reciprocals of these compliances are Young's

moduli in 2 direction we have

i (4.15)
2- 2 '2

Analogously, for one nonzero shear stress, 012 say, it follows that

A* + (4.16)
12- 12 L 12

Similar results are valid for the other Young's and shear moduli for

a y cracked material. Thus the effective moduli expressions valid

for tow crack density are upper bounds for the effective moduli

at any crack density.

If the cracked material is statistically isotropic (4.14-16) be-

come bounds for that case. It is also easily shown that the bulk

modulus K is bounded by

< ( . (4,17)

For randomly oriented circular cracks the results are,

I /+lIa(l-V-)(lO-3v)/45(2-v)

(4.18)

,U U U /Il+..2e(1-\)(5-V)/45(2-V) ]

where

v 3
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and am is the radius of the mth crack. Thus (4.18) are upper bounds

for E and G of a body containing an arbitrary number of circular

cracks.

For an orthotropic sheet which contains an arbitrary number of

cracks aligned in x. direction it follows from (4.15-16) that (3.8)

become upper bounds for the moduli E and

Lower Bounds

To construct lower bounds we shall use the principle of minimum

complementary energy. Since the imposed boundary conditions (2.1),

(2.2) are traction boundary conditions the principle simplifies to

that of minimum stress energy. The stress energy and the stress energy

functional are defined by

~~-x r. - (a)iJV ij <L 2 Ca)L
(4.19)

U -I S. *. d
2 Sijkl aij 0kl dV (b)

V

where G is an admissible stress field which must satisfy equilibrium

and all traction boundary conditions.

The principle of minimum stress energy states

G . UG (4.20)

The major difficulty in construction of a.. is satisfaction of
iJ

the crack boundary conditions (2.2). Consider a body with an arbitrary

distribution of cracks, fig. 1. The body is subdivided into regions

each of which contains one crack. Let it be assumed that the mth such

region is subjected on its boundary Sm to (2.1). The elastic stress

field in this body satisfying (2.1) and (2.2) is denoted a'Pj. Then

• = [~1 -



evidently the stress field

01. ij M (4,21)

is admissible for the entire body since it satisfies equilibrium and

all boundary conditions.

It should be noted that the proposed o is singular at the crack

tips and the usual admissible fields considered in standard elasticity

texts do not seem to include such cases. It may be argued that c racks

are limiting cases of very flat holes with finite tip curvatures and

no stress singularities. Then the stress energy functional (4.19b)

must first be evaluated for stresses aT1 in regions containing such

holes and the limit of these integrals are taken when the holes become

cracks. These integrals are the actual strain energies stored in these

regions subjected to (2.1) and each containing one crack and it is

known that these energies remain finite. We can write for the m t

region

where (4.22)

[ 1/2 S i. k I

and 6U m can be expressed in terms of the stress intensity factor of

the crack in the mth region, if known.

For line cracks and plane elasticity WUtJ will have the form (2.13).

It is emphasized that the SIF entering into the expressions depend
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on the shape of the mth region and its crack geometry.

If follows that

In

(4.23)

0
J= I/2z 0 o °

Uo ijl1 ii ki

A crack solution useful for present purposes is due to Isida

[181 who considered the plane case of a finite rectangle with a central

crack in Mode I. fig. 2. His expression for the SIF may be written

1/2 4 4
K] = 0 a f (a/b,a/c) (4.24)

where aoa 1/ 2 is the mode I SIF for the same crack in plane stress when

it is isolated in an infinite sheet. Numerical values of the function

f have been given in [18].

The same problem for an orthotropic rectangle has been treated

numerically by Bowie and Freese [19]. The SIF for this case may be

expressed as

K1 = 0al/ 2 f2 (a/b,a/c, material properties) (4.25)

Consider now a large plane specimen containing m randomly dis-

tributed cracks, all in x1 direction, fig. 3. We can subdivide this

specimen into rectangles, each rectangle containing a central crack

or no crack as shown by the dashed lines. The aggregate of the solutions
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of finite rectangles with dimensions 2bm and 2cm and central cracks

of length 2am (am can also vanish) under simple tension a is an

admissible stress fields. In the special case when the ratios am/bm,

am/cm and bm/Cm remain constant throughout the specimen, eqs. (4.21 -

24) together with (2.13) give a lower bound on E2 for isotropic

matrix with aligned cracks in the form

+1 4I 2 2(a/b'a'c)a (!,, - I

-1- _a [ 1 (4.26)

0

For orthotropic matrix we use (4.25) together with (3.5) and obtain
,

a lower bound on E 2 in the form

2
9 3/2f 4d,2 1 2 1/21 2

a ((4.27)

af2 (a/b a/c, materi sa a da } -1

properties

The bounds (4.26) and (4.27) are evidently valid also for the case of

a doubly periodic array of cracks, since in this case am, bm and cm

are constant.

Another useful crack solution is due to Wilson [20], who consider-

ed the plane case of a finite isotropic rectangle with a central in-

clined crack under various loadings.
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The solution for a finite rectangle, in tension or in shear,

containing an inclined crack ;--an be used to obtain lower bounds on

E and G for a plane sheet with randomly distributed cracks. The

solution for a finite rectangle with a central oblique crack sub-

jected to uniform shear tractions on crack edges can be used to ob-

tain a lower bound on G 12 for a plane isotropic sheet with aligned

cracks.

Some of the results obtained are plotted in fig. 4 as a function

of the crack density parameter a. This parameter is the only geo.

metrical information entering into the upper bounds (small crack density)

and into the SCS. However, a is insufficient information to charac-

terize the exact results given in [91 or the lower bounds. In both

cases the results are based on specific geometries which are charac-

terized by the ratios c/b and a/b. Then a =a 2/4bc and is clearly

insufficient to specify the geometry. The c/b ratios used for lower

bound calculations are indicated in the figures.

The upper and lower bounds are quite close for a respectable range

of --., up to a - 0.15. For small ac(a<0.OS) all the results coincide.

The SCS curves are close to the lower bounds. As the cracks become

closer, i.e. for large a/b and small c/b, the distance between the

hounds increases, and the small concentration result deviates further.

This is reasonable, as the influence of the interactions between the

cracks should become more important. The results are presented for

arange of up to a = 0.3, however the cracks may become unstable be-

fore a attains this value.

It has been found that in certain cases the results of [9] are

above the general upper bound, which is unacceptable. The reason for

this phenomenon is not known to us at the present time.
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5.

The problem of analytical determination of elastic proet)rties of

cracked materials has been considered by variational methods. The

motivation for this approach is that exact direct analysis of the

problem is extremely difficult. The only exact solution available for

arbitrary crack density is for a periodic crack array and had to be

performed numerically.

The bounds obtained are reasonable close for crack densities of

practical significance. When the bounds are close the small crack

density results can be regarded as a good approximation since it has

been shown that they are general upper bounds.

On the basis of the results obtained it appears that the SCS ap-

proximation tends to underestimate the effective elastic properties.

A more serious problem with this method is that it can give non-unique

results for effective elastic moduli.

The bounds derived in this work are based on known crack field

solutions and require only small computational effort. It is to be

expected that additional and perhaps better bounds can be derived as

more crack solutions become available.

4
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