
7 b-A191 4.35 AVAL POST6ARAOUATE SCHOOL MONTEREY CA F/6 111
INTRODUJCTION TO RELATIONAL PROGRAMMING. (U)
JUN 81 B J MACLENNAN

WdCLASSIFIED NPS52-81-008 N

E7m hhmhhh

/NPS52 81po

NAVAL POSTGRADUATE SCHOOL
Monterey, California

j INTRODUCTION TO RELATIONALRGRfIG

Bruce J./MacLennan

,JuJ;,81

Approved for Publ eease; distribution unlimited

Prepared for:
Naval Postgraduate School
Monterey, Ca. 93940

7; 8i15

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral J. J. Ekelund D. A. Schrady
Superintendent Acting Provost

The work reported herein was supported by the Foundation Research
Program of the Naval Postgraduate School with funds provided by the Chief
of Naval Research.

Reproduction of all or part of this report is authorized.

This report was prepared by:

BRUCE J. MhcLENNAN
Assistdpt Professor of
Computer Science

Reviewed by: Released by:

D H. a an WILLIAM M. TOLLES
Department of mp Science Dean of Research

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE ("mn Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
REPORTDOCUMENTATIONPAGE BEFORE COMPLETNG FORM

I. REPORT NUMBER '2. GOVT ACCESSION NO. 2. RECIPIENTS CATALOG NUMBER

NPS52-81-008 /

4. TITLE ,nd Subtitle) S. TYPE o
r

REPORT & PERIOD COVERED

Introduction to Relational Programming Technical Report
6. PERFORMING ORG. REPORT NUMIER

7. AUTHOR(a) S. CONTRACT O0 GRANT NUMSER(a)

Bruce J. MacLennan

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

AREA 8 WORK UNIT NUMBERS

Naval Postgraduate School 61152N,RROOO-01-10
Monterey, CA 93940 N0001481WRl0034

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Naval Postgraduate School June 1981
Monterey, CA 93940 13. NUMBER OF PAGES

14. MONITORING AGENCY NAME & AODRESS(II diffe,.n- from C w,-..ln.d Ollice) IS. SECURITY CLASS. (o this rport)

UNCLASSIFIED
IS. DECLASSIFICATION/DOWNGRADING

SCHEDULE

16. DISTRIOUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17, DISTRIBUTION STATEMENT (of the abstract entered In Block 20, It different (Mo Report)

18. SUPPLEMENTARY NOTES

Revised version to be presented at the ACM Conference on Functional
Programing Languages and Computer Architecture, October 18-22, 1981.

1. KEY WORMS (Continue on revee side it neceea and identity b block nimebe,)

Relational Programing, Functional Programming, Relational Algebra, Relations,
Relational Calculus, Applicative Languages, Combinators, Very-High-Level
Languages.

20. AMSTRPACT (Contin an rer. olde it neceeaMY md Identi'fP bV 6lok numer)

"A new method of programing, called relational programing, is introduced.
This is a style of programing in which entire relations are manipulated
rather than individual data. This is analogous to functional programming,
wherein entire functions are the value manipulated by the operators. Because
of its abiliLy to manipulate complex data structures other than lists,
relational programming seems to have distinct advantages over other very high-

0 IjA v" 1473 EDITION Or I NOV 65 Is o008LEIK UNCLASSIFIED
S/N 010 2-014-601 SECUITy CLASSPICATION Of T1NIg PAGl (Wh* De la r'1m

tINti AlqS1FTFn
-6.I4ITY CLASSIFICATION OF THIS PAGE(Whan Data Enter")

vel languages. This paper introduces the basic concepts of relational
- programming and a preliminary notation for expressing them; it does not

define a programing language, per se

UNCLASSIFIED
SUCURITY~ CLAWSFICATION OF THIS PA83(UMbe Dat hM

,.n For

INTRODUCTION TO RELATIONAL PROGRAMMING*

B. J. MacLennan. 81/02/24.

Naval Postgraduate School
- ty Codos

Monterey, CA 93940 i and/or
piecial

i.Introduction

In this paper we discuss relational programming, i.e. a

style of programming in which entire relations are manipulated

rather than individual data. This is analogous to functional

programming, wherein entire functions are the values manipulated

by the operators. We will see that relational programming sub-

sumes functional programming because every function is also a

relation. It is appropriate at this point to discuss why we have

chosen to investigate relational programming.

As we have noted, relational programming subsumes functional

programming; hence, anything that can be done with functional

programming can be done with relational programming. Further-

more, relational programming has many of the advantages of func-

tional programming: for instance, the ability to derive and

manipulate programs by algebraic manipulation. A well developed

algebra of relations dates back to Boole's original work and has

been extensively studied since then. Although relations are more

* The work reported herein was supported by the Foundation

Research Program of the Naval Postgraduate School with funds
provided by the Chief of Naval Research.

-2-

general than functions, t;aeir laws ate often simpler. For

instance, (tg) = g-- is true tor all relations, but true

only for functions that are one-to-one. Also, relational pro-

gramming more directly supports non-linear data structures, such

as trees and graphs, than does functional programming. In rela-

tional programming the basic data values are themselves rela-

tions, whereas in functional programming there is a separate

class of objects (lists) used for data structures. One final

reason for investigating relational programming is that it pro-

vides a possible paradigm tot utilizing associative and active

memories. As a teaser for what is to come, we present the fol-

lowing example of a Lelational program. We will take a text T,

represented as an array or words (i.e., T:i is the i-th word),

and generate a frequency table F so that F:w is the number of

occurences of word w in T. Now we will see (section 3) that T:w

is the set of all indices of the word w. If we let #:C be the

cardinality of a class, then the number of indices (occurences)

or w is just #:(T:w). Therefore we can write F = #T (section 6).

For a second example, we will see in section 13 that a program to

update a payroll file 6 can be written:

I' MdJ where u = (,H) (+)

2. Classes and Relations

As is usual we will use xRy to mean that x bears the rela-

-3-

tion R to y. Similarly, we will write xC OL xeC to mean x is in

* the class C (i.e. x has the property C). Out theory oL relations

will be typeless, like that described in [6]; this seems more

appropriate to programming than systems such as Russell's "rami-

tied type theory." In most other respects our notation follows

that of Carnap 11] and Whitehead and Russell [8]. There is no

special significance to the case of variables, although we will

often distinguish relations (and classes) from the things they

relate by putting them in upper case.

We often need to talk of the individuals that can occur on

the right or left of a relation. We say that x is a left-member

or R whenever there is a y such that xRy.

x Lm R ---> 3y (xRy)

Right-member and member (Rm and Mm) are defined analogously.

3. Functions

We define functions as special classes of relations: A rela-

tion F is a function if and only if it is left-univalent:

Felun 4-- Yxyz[yFx A zFx =* y=z I

If F is left-univalent then we can write F:x for the unique y

such that yFx (if such a y exists). This differs trom the usual

convention, in which y-F:x means xFy, but agrees with [8] and

-4-

works better with the rest of the notation. Right-univalent and

bi-univalent relations (tun and bun) are defined analogously.

The fact that F:x may be meaningless makes it convenient to

use several other relations derived from F. One of these is the

plural description. It F is any relation and C is a class then

FI:C is the set of all y such that yFx for some x in C, i.e.,

y e F! :C 3-- 3x(yFx A xC)

Notice that the operation F!:C is defined tot all relations F and

classes C, regardless of whether Felun or the members of C are

right members of F.

Related ideas are the image and converse image of an indivi-

dual. If R is a relation, then cRx means that c is the class of

individuals related to x. This class is called the image of x,

and is defined:

yeR:x * yRx

The analogous idea is that of the converse image of y:

4.--.

x e R:y 4- yRx

Like the plural description, R and R are defined for all R and

all arguments. It is generally safer to use f than t since f:x

may be undetined whereas t:x is always defined.

4 -5-

4. Combining Relations

We will next investigate ways of combining relations and

classes. The simplest methods are just abstractions of the logi-

cal connectives used between propositions: intersection, union,

negation and ditference (A, V, -). For instance R V S is defined

so that:

x(R V S)y <-4 xRy V xSy

As an example of the use of these operations, the definition ot

Mm can be written:

Mm = Lm V Rm

The logical connectives satisfy the usual properties of a Boolean

algebra (e.g., DeMorgan's theorem).

We will also define the converse of a relation. The rela-

tion R- i is called the converse ot R, i.e. xR-ly +-* yRx. If f

is a function then f- is the inverse of f.

5. Limiting and Restriction

It is often useful to limit the left or right domain of a

relation. Consider the relation x sin - 1 y, which means that x is

an arcsine of y. We cannot write x = sin- :y because sin -1 is

not left univalent (i.e. it is not a function). We can solve

this problem by defining a function Sin whose arguments are

-6

restricted to be in the range -w/2 to w/2. Let S be the class of

reals in this range:

S = (:-v/2) A (<:w/2)

then we will write sin S for the sine function with its arguments

restricted to S, which is exactly the Sin function we sought:

-A.

Sin = sin$[(>:-w/2) A (<:w/2)]

This function is bi-univalent, so it is invertible. It is now

perfectly meaningful to write Sin-l:y (if y Lm sin). The right-

restriction operation is defined:

x(RIS)y - xRyAyS

The left-restriction, S R, is defined analogously. These nota-

tions can be combined to restrict both domains: S RIT. The com-

bination SMR1S is so common that a special restriction notation

is provided for it:

r~s = s

For instance, pred*(>:O), is the predecessor relation restricted

to positive numbers.

6. Relative Product and Composition

If R is the relation "... is a son of ... " and S is the

relation ... is a brother of .. then the relative product,

4 -7--- 7 -

RIS, is the relation "... is a son or a brother or ...". More

rormally,

x(RIS)z 3-y(xRy A ySz)

Where there is little chance of confusion, we will write RS for

RIS. It t and g ate functions it is easy to see that rig is the

composition of these functions. Hence, fg:x = t:(g:x).

It is convenient to have a notation for relative products of

a relation with itself. For instance, the "grandparent" relation

can be written parentiparent, which we abbreviate parent 2 . In

general,

R1 = R

Rn+l (Rn)R = R(Rn)

R-n (Rn)-l = (R-i)n

R0 =(Mm:R)

It is easy to show these properties of the relative product:

r (xs)t = r(st)

r(s V t) =ts V rt

(t V s)t rs V rt

r(sA t) C rsA rt

(r A s)t C rt A st

3(rs) - 3(Rm:r A Lm:s)

8-

(r -l -

(s) = (s- 1) (r-1)

rmrn = rm+n (m,n>O)

(1m)
n = tmn (m,n>O, or rebun)

mtn C xm+n (rebun)

r-I t-it to(0 bnrr = r = r0 (rebun)

7. Structures

7.1 initial and terminal members

Suppose R is the relation represented by the following

diagram:

h

b fje 0

Since a=R:g and g=R- :a it can be seen that R- i follows an arrow

and R goes against an arrow. Now, notice that the lett and right

members of R are:

Lm:R = { a, b, c, d, e, f, g

Rm:R = { g, f, e, d, i, h }

We define the initial members of R to be those members which are

not pointed at by an arrow. Therefore, the initial members of R

-9-

are the left members that ate not tight members.

init:R = (Lm-Rm):R = [a, b, c)

The terminal members of a relation do not point to other members:

term:R = (Rm-Lm):R = {h, i

When a relation is used to represent a data structure, the above

functions become important.

For instance, a sequence is represented by a relation with

the structure:

S = a, a 2 a3 an-! an

In this case init:S is the unit class containing the first ele-

ment of the sequence (i.e., a1) and term:S is the unit class con-

taining the last element of the sequence (i.e., an). Similarly,

Sl(-init:S) is the sequence with its first element deleted.

Hence, the following common sequence manipulation functions can

be defined:

oc:S = e init: S, "first"

UnS = e term: S, "last"

.Q:S = S1(-init:S) , "final"

A:S = (-term:S) S, "initial"

where e selects the element of a singleton set (9=(=-)). More

- 10 -

operations on sequences are discussed in the next section.

As another example or the use or 'init' and 'term', consider

a relation T representing a tree. Then, e init: T is the root

or the tree, and term:T is set of the leaves of the tree. The

result is analogous for Lorests. Given a forest F the set of

roots is init:F and the set of leaves is term:F.

7.2 higher level operations

The set or nodes directly descended from n is just F-i:n.

For instance, the set of nodes directly descended from a root is

F- I 'init:F. and the set of nodes that point to leaves is

F!term:F.

These operations can be used for obtaining the maximum and

minimum or sets. Suppose '<' is the less-than relation on

integers and S is some set of integers. Then <IS is the less

than relation restricted to this set, i.e. it is a sorting of the

set. Now note that c: (<*S) and Lu: (<*S) are the minimum and max-

imum elements of the set:

min:S - cc:(<*S)

max:S = uu(<*S)

These operations are only defined if S has two or more elements,

since an irreflexive relation cannot relate less than two ele-

ments. That is, an irreflexive relation when restricted to a

unit or empty class becomes the empty relation. Notice that we

can select the maximum and minimum based on any relation that is

a series (i.e., transitive, irreflexive and connected).

The following are simple properties or these operations:

init:L = term:(r -1)

term:r = init:(-1)
i init= (r~s) =term: (t-lms)

8. Sequences

8.1 pairs

In this section we will continue the discussion of sequences

begun in the last section. We saw that it was easy to detine the

selector functions on sequences (cc, Lu, A, ZI). This provides us

with functions for taking sequences apart. We will define the

ordinal couple or pair, which puts them together. It x and y are

two objects, then 'x,y' is the relation that relates x and y but

no other objects.

(x,y)

x y

Observe that

cc: (x,y) = x

u"(x,y) = y

-12-

It will occasionally be convenient to write ordinal couples in a

vertical format:

(X) =(X,y)

The class of all the ordinal couples (or pairs) that can be made

from the classes S and T is SXT:

pe(SXT) 3 -xyxeS A yeT A p=(x,y) I

8.2 catenation and consing

It s and t are sequences then we can define an operation 's't',

which is the catenation ot s and t. To form this catenation we

must hook the last element of s to the first element of t:

s't = s V (wu:s, cc:t) V t

The catenation operation is only defined for sequences, which are

required to have at least two elements (since an irreflexive

relation with less than two elements is the empty relation).

How do we add a single element to the left or right of a

sequence? The "cons left" and "cons right" operations are easy

to define:

x cl s - (x, oc:s) V s

s cr y - s V (w-s, y)

It is easy to show that if s is a sequence, then:

- 13 -

cc:(x cl s) = x

n: (x cl s) = s

un (s cr y) = y

A: (s cr y) s

Also, it s is a sequence, then s V (uws, oc:s) is a ring formed by

joining the last element of s to the first element.

It s is a sequence, then s - I is the reverse of s. Hence,

0=:s = uw:s -1

wns = Cc:s - 1

A:s - I (1 :s) - i

Z:s - 1 (A:S)- 1

(s-t)-1 =t-l-s-1

(x cl s)-l = s- 1 cr x

(s cr X) = x cl s

(X,y)-l = (y,x)

(Yz) - ()

9. Binary Operations

In this section we will discuss our approach to binary

operations - that is, to functions with two arguments and one

result. We have already seen how unary functions are connected

- 14 -

to relations. For instance, we can write the fact that y is the

sine of x by either: 'y sin x' or y = sin:x. Since we only deal

with binary relations, we will have to have a new convention for

handling binary functions. This convention is: we will combine

the two arguments of an operation into a pair. For instance, we

can define a relation 'sum' such that

x sum (y,z)

it and only if x is the sum of y and z. We can use our colon

convention as usual, e.g.,

x = sum:(y,z) <-> x sum (y,z)

Now, it would be inconvenient to have to invent names, such as

'sum', for each operation, such as '+'. Hence, we will adopt a

systematic convention for making such names: either placing the

conventional infix symbol for the operation in bold face or in

parentheses. For instance,

x+(y,z) (--4 x = -:(y,z) - x = y+z

x (+) (y,Z) - x = (+):(y,z) *--> x = y+z

This notation will permit us to manipulate in a more regular

fashion the usual arithmetic operations (+, -, *, /) as well as

the relational operations (A, V, etc). For instance, it S is a

class of classes, then

(A) I :SXS

- 15 -

is the class ot all pairwise intersections or members of S.

It is oztLen convenient to be able to generate simple rela-

tions from a binary operation. Following Russell and Whitehead,

let w represent any binary operation. We define:

x(wz)y - x = ywz

x(yw)z 4-. x = ywz

Hence,

x(-l)y 4- x = y-1

theretore (-I) is the predecessor relation. These can be used as

functions:

(-l):x = x-l

(+i):x = x+l

This convention makes it very easy to form more complex func-

tions. For instance, it we want f:x = sin:(l/x) then we can

define f = sin(l/) To see that this works:

f:x = [sin(l/)]:x = sin:[(1/):x I sin:[i/x I

10. Combinators

In this section we will discuss several powerful operations

for manipulating relations. These are called combinators because

of their similarity to the combinators of Curry and Feys [4].

- 16 -

First observe the action ot the (x,) and (,y) functions:

(x,):y - (x,y)

(,y):x = (x,y)

Now note that

f(x,): y = f:[(x,):y] = :(x,y)

In general, if f is a binary function, then f(x,) and f(,y) ate

the "partially instantiated" unary functions. This is the effect

of Curry and Feys "B" combinator [41, the elementary compositor.

If ':R = R- 1 then, since S- 1 is the reverse of a sequence,

W' is the reverse form of an operation. For instance, (-)' is

the reverse subtract operation:

(-)':(x,y) = (-): (t: (xy)

(-):(y,x)

= y-x

Thus (-)' can be read "subtract from" and (I) ' can be read

"divide into". This is Curry and Feys "C" combinator, ot elemen-

tary permutator.

The next combinator we will discuss is the paralleling of

relations, which is defined:

eluRxAvSY

- 17 -

So, it t and g ate tuncrtions,

x (f~x)

Hence, tis the element-wise combination or f and g.

4 Another combinator is the elementary duplicator, W, defined

so that

(W:f): x = :(x,x)

Ir we define &.-x = (X,x) then it is easy to see that W:f is just

4 ft&. For instance, (x)A& is the squaring function:

(x)L.:n = ()(:) (x):(n,n) nxn n2

It should be clear that Backus' Ef,g] combining form is just our

tsince

=(x(= (:X

Since this combination is so common we will adopt a special nota-

tion for it:

Some or the properties satistied by these combinators are:

- 18 -

R T = RT

(R)n R Rn

T-

(R)e S SSR)

c = R* (Rm:g)

wu = SI (Rm: f)

cl r

ci

As an example of these combinatots it is easy to show that

f=

is the function t:t - t2+2t.

Our last combinator is the meta-application operator, ::,

which corresponds to Curry and Feys' S combinator:

(f::g):x = (f:x):(g:x)

Fot instance, [(1)']::init is the operation that gives the set of

descendents of roots of a forest, F, since

([(Il]::init) :F (F-If) :(init:F).

- 19 -

!I. Arrays

An array is just a function from a contiguous subset of the

integers to some set of values. It A is an array and i Rm A then

A:i is the i-th element or A. Similarly, if I C Rm:A is a set of

index values then AI:I is the corresponding set of array values

and Al1 is the subarray or A selected by those indices.

It is easy to define multi-dimensional arrays: they are

just arrays whose elements are selected by sequences of integers,

e.g. M:(i,j). If M is a two-dimensional array, then M(i,) is the

i-th row of M and M(,j) is the j-th column of M. Also, if I is a

set or row indices and J is a set of column indices then M$(IXJ)

is the submatrix of M selected by these sets. It is easy to see

that M' is the transpose of M, since

M': (i,j) = M:(':(ij)) = M:(ji)

More generally, if P is a permutation function (i.e. a bijection

from an index set into itself) then AP is the result of permuting

A by P.

Suppose x is an element of the array A (i.e., for some i,

x-A:i). Then A:x is the set of all indices for which x=A:i.

Therefore we can find the index of the first occurence of x in A

(i.e. APL's iota operator) by minA:x. In general, if P is some

property (i.e. class), then A-1 1:P is the set of indices of all

elements of A that satisfy P. A sorted reflexive sequence of

- 20 -

these indices is just < X (A-.1:P)

It is easy to convert arrays to sequences and vice versa.

Suppose all the elements of A are distinct, then A-1 is a func-

tion that returns the index of an element of A. We want to

define a sequence S such that xSy if and only if x preceeds y in

A, i.e. the index of x is one less than the index ot y.

xSy - (A-I:x) = (A-1 :y)-l

-(A-l:x) (-1) (A-1 :y)

4-> x[(AI (-l) IA-1lIy

Hence, S = A(-l)A- .

We will finish our discussion of arrays by investigating the

generation of sorted arrays. Let S be a set of integers to be

sorted, then <IS is a structure which relates lesser elements to

greater elements. Now if x is any element of the set, (<S):x is

the set of all elements less than x. Thus [(<S-)1:x is the

number of elements of S less than or equal to x. This is just

the index of x in the sorted array we seek. Hence if A is the

sorted array, xAi if and only if i[#_-S)]x, so A = [#(<S)] - l.

Of course this can be generalized to any ordering relation.

12. Scanning Structures

It is often useful to scan a structure while performing some

processing at each node. When the data structure is a sequence

-21-

this amounts to APL's reduce operator and Backus' insert opera-

tot. We will define a scanning operation that works on a more

general class or structures. This operator can be understood

intuitively as follows: The state of the scanning process is

represented by a set of "read heads" each of which is "positioned

over" a node and holds state information accumulated from the

nodes it has already visited. A node can be processed when a

read head has moved to that node over each edge which leads into

the node. When this occurs a processing function is applied to

the node (as first parameter) and the union of the state inftma-

tion ot each or the read heads (as second parameter). The result

OL this processing step becomes the state information associated

with a new set of read heads which are advanced along each edge

leading out from the node. The processing of the structure is

completed when all read heads have arrived at terminal nodes

(hence this scanning operation is not defined for cyclic struc-

tures). Scanning a structure is started by positioning a read

head with initial state information over each initial node.

The scanning operation is symbolized by fli, where f is the

processing function and i is the initial state for the read

heads. For instance, it V is a vector, (+)IO:V will scan the

elements ot V using (+) (i.e. APL +/V or Backus' (/+):V). For a

more interesting example, suppose T is an attributed parse tree,

E is a function that evaluates attributes and B is the initial

set ot attribute bindings. Then EIB:T propogates the values of

- 22 -

inherited attributes down to the leaves ot the tree. Conversely,

EIB:(T -) propogates the values of synthesized attributes back to

the root. Hence, repeated applications of EIB and (EIB)g will

evaluate all of the attributes. Of course, this program will

work just as well if T is a forest of parse trees. The I opera-

tor is still undergoing evaluation as it is one of several possi-

ble structure-directed scanning operations.I

13. Examples

In this section we will give several examples of relational

programs.

PAYROLL EXAMPLE: Suppose we have a file 6 of employee

records, where r = §:n is the record for the employee with the

employee number n. We will suppose that employee records are

functions defined so that:

r:N = employee name

r:H = hours worked so far this week

r:R = pay rate

We are given an update file U such that U:n is the number of

hours worked by employee n today. We wish to generate a new pay-

roll file §'.

SOLUTION: Let r = I:n and t' = I':n be the old and new

employee records. It is clear that t' is the same as r except

A -23-

tot its H field. In order to modiry part of a relation, we will

use the Md function defined by:

Md:(S,R) = R V Sl(-Rm:R)

Then, it h' represents the new value of the H field, the new

employee record is

~1tr Md: (t , (h' ,H))

Now, h' is just the cumulative hours worked:

h' = (:n):H + U:n

By combining these results we have,

':n = r' = Md:(D:n, (h',H))

To find §' we must factor out the employee number n. To do this,

note that (§:n):H = (:H):(§:n) = (:H)O:n. That is, (:H)§ is a

slice of the payroll file: the hours worked for each employee.

Thererote,

h'= (§:n):H + U:n = (:H)§:n + U:n

- (+) 1 :n

Now, define the updating function u by

u:n ((+) j :n, H) = (,H) (+)(:n

Then, §':n = Md:(§:n,u:n) = Md. :n.Therfote, the solution to

- 24 -

out problem, the new payroll file, is

I' = Md§

where u H))

CHECK ISSUING EXAMPLE: Suppose we wish to take the payroll file

from the previous example and generate checks for the employees.

We will assume that a function C is available such that C:(nm,p)

returns a check in the amount p made out to the name nm.

SOLUTION: We will ignore ovextime computations. Hence, it n

is an employee number then §:n:N is his name and

p:n = I:n:H x §:n:R

is his pay. Hence, his check C:n is C:n = C: (nm,p:n) -C:(pn

=C:((.N) 1 C(:N)61:n

Combining these we have the tile F mapping employee numbers into

checks:

F C Ci

from which we can factor out the old payroll file:

F = C §

It we just want a set of checks, this is Lm:F.

- 25 -

14. Implementation Notes

The primary goal of our investigation has been to determine

it relational programming is significantly better than conven-

tional methods. It would be premature to devote much effort to

implementation studies before it is even determined it relational

programming is an effective programming methodology. However, a

brief discussion of implementation possibilities is probably not

out of line.

The most obvious representation of a relation is the exten-

sional representation, in which all the elements of a relation or

class are explicitly represented in memory. There are many kinds

or extensional representations, such as hash tables, binary trees

and simple sorted tables. Of course, performance can be improved

through the use of associative memories and active memories (in

which each memory cell has a limited processing capability).

Some reiations and classes will be so large that it is

uneconomical to represent them explicitly in memory. In these

cases an intensional representation should be used. Here a class

or relation is represented by a formula or expression for comput-

ing that relation or class. operations on the class or relation

are implemented as formal operations on the expression. This is

feasible because of the simple algebraic properties satisfied by

relations. It can be seen that an intensional representation is

really just a variant of a lazy evaluation mechanism. Sometimes

-26-

an intensional representation is necessary; for instance, rela-

tions of infinite cardinality, such as the numerical operators

and relations, require an intensional representation.

Although the programmer could be allowed to choose between

extensional and intensional representations for his relations,

this is not necessary. It is probably feasible, and certainly

higher level, to have the system choose representations on the

basis of cardinality estimates of the classes and relations

involved. The algebra of relations is regular enough that many

of these decisions can be made at compile time. Any that can't

can be deterred to run-time when exact cardinality information is

available.

15. Conclusions

Of course, we are not the first to propose introducing

aspects of a relational calculus into programming. Space limita-

tions prohibit a comparison with previous work, such as that by

Feldman and Rovner [51, Codd [31 and Childs [2]. What does dis-

tinguish this investigation is the exclusive use of relations in

a general purpose programming language. It is hoped that the

preceeding discussion has made plausible some of the advantages

claimed for relational programming in the Introduction. Consid-

erable work remains to be done in evaluating the effectiveness of

a relational calculus as a programming tool. For instance, the

- 27 -

optimum set of combinatots and relational operators must be

selected. Another non-trivial problem is the selection of a good

notation for the relational calculus. More from convenience than

conviction we have used the notation of (81 and (1]. Making

relational programming an effective tool will require designing a

notation that combines readability with the manipulative advan-

rages or a two-dimensional algebraic notation. This is all prel-

iminary to any serious considerations of software or hardware

A implementation techniques. The reader who is interested in more

details about programming in a relational calculus should consult

(71.

16. Reierences

[1] Carnap, R. Introduction to Symbolic Logic and its Applica-

tions, Dover, 1958.

[2] Childs, D.L. Feasibility of a set-theoretic data structure

based on a reconstituted definition of relation. IFIP 68

Proceedings, 420-430, North-Holland, 1969.

[3] Codd, E.F. A relational model for large shared data banks,

CACM 13, 6 (June 1970), 377-387.

(4] Curry, H.B., Feys, R. and Craig, W. Combinatory Logic, I,

North-Holland, Amsterdam, 1958.

- 28 -

[5] Feldman, J.A. and Rovner, P.D. An Algol-based associative

language, CACM 12, 8 (August 1969), 439-449.

[61 MacLennan, B.J. Fen - an axiomatic basis tot program

semantics, CACM 16, 8 (August 1973), 468-474.

(7] MacLennan, B.J. Programming with a Relational, Calculus,

Computer Science Department Technical Report, Naval Post-

graduate School, 1981.

(8] Whitehead, A.N. and Russell, B. Principia Mathematica to

*56, Cambridge, 1970.

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314

Dudley Knox Library 2
Code 0142Naval Postgraduate SchoolMonterey, CA 93940

Office of Research Administration
Code 012A
Naval Postgraduate School
Monterey, CA 93940

Chairman, Code 52Bz 40Department of Computer Science

Naval Postgraduate School
Monterey, CA 93940

Professor Bruce J. MacLennan, Code 52M1 12
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940

