
r4D-AlGI 43 AMMY ENINEER WATERWAYS EXPERIMENT STATION VICKSBURG NS I's 9/2
TWO-DINENSIONAL GRAPHICS COMPATIBILITY SYSTEM. VERSION 3.0. OEV--ETC(U)

UNCLASSIFIED DO/DF-al/005A NRmEEEEEE-ehhEE

WATERWAYS
EXPERIMENT

CO COP OF STATION
qz

.rn Vicksburg, Miss.

- -

5 i
EE

4 AL* 1 77 5JUL 16 19814

~ 0 0

0 ~ ~ QO 4. wJ~

-.4 4.' 4 0 -r 0 4 r-l

-H =' 14 r.. 0 '4

4-3~ 0o .01

-4 -k-. I 1-

+C O 0 U 1 10 I k' DEVICE
0 *3 o- ,- 4 - ,,:: +

$..-..-4U *S. 4) $4+)

-r4 = 'o IMPLEMENTATION
.P '"o t k 0 GUIDELINES

A.4 . ' A-0 " 4+' 0 . 0
I.. : 1 ', ,

02 o ed C ,4.- 1, 0 0
* 4j °1j 0 !i FOR Z-D GCS

a P, 0

4- 4 0 $ been approved
41 2 Id 4 0 4, W' dfor publi- and sale; its
0 w r-4 4 54+31 iiWriblitin is ul-lrnited.

V m ,0 4 0+ o .r- 4 1 k for the WES Automatic Data
0 0 o ca P . o Processing Center

... 81 7 1 069

6
TWO-DIMENSIONAL

___GRAPHICS COMPATIBILITY SYSTEM

Version 3.0

DEVICE IMPLEMENTATION 4;UIDELINES.

..

44C:, ~ Ju, ,

6? -- ', [

Contents

Page

Introduction I

Graphics Status Area Initialization 2

Guidelines for Intelligent Devices 21

Implementation Sequence 23

Introduction

The following paragraphs develop guidelines for implementing new devices

for 2-D GCS. Included will be the definition of device-dependent Graphics

Status Area initialization values, functional specifications for each of the

2-D GCS device-dependent routines, a discussion of factors involved in

supporting intelligent refresh devices, and a description of phased sequence

for implementating new devices.

Graphics Status Area Initializations

In this section, each of the device-dependent elements of the Graphics

Status Area (GSA) will be listed along with the procedures required to

calculate the value, if appropriate.

KBEAMX Logical pen x-position in raster units. Default position is
lower left corner of largest square on the plotting surface.
If the screen is rectangular, the square is right- or bottom-
justified.

KBEAMY Logical pen y-position in raster units. Default position is
lower left corner of largest square on the plotting surface. If
the screen is rectangular, the square is right- or bottom-justified.

TRSVX Ratio of screen to virtual units in x-direction. Default is the
width of the UDAREA in raster units divided by the width of the
UWINDO (100.).

TRSVY Ratio of screen to virtual units in y-directton. Default is the
height of the UDAREA in raster units divided by the height of
the UWINDO(100.).

KMINSX Minimum X screen window (UDAREA) boundary in raster units. Default
is the same as KBEAMX.

KMAXSX Maximum X screen window (UDAREA) boundary in radter units. Default
is the maximum address in the x-direction.

KMINSY Minimum Y screen window (UDAREA) boundary in raster units. Default
is same as KBEAMY.

KMAXSY Maximum Y screen window (UDAREA) boundary in raster units. Default
is the address of top boundary of largest square on plotting surface
whichever is less.

KCOLOR Color or greyscale switch. Default is the actual color produced by
the plot head when the device is initialized.

KHORSZ Horizontal hardware character position size in raster units. Default
is the width of the smallest size character position.

KVERSZ Vertical hardware character position size in raster units. Default
is the height of the smallest character position.

KLMRGN Left alphanumeric margin boundary in raster units. Default is
normally zero (minimum plotting surface address in x-direction).

KMRN Right alphanumeric margin boundary in raster units. Default is
the maximum plotting surface address in y-direction.

KTMRN Top alphanumeric margin boundary in raster units. Default is
the maximum plotting surface address in y-direction.

2

KBMRGN Bottom alphanumeric margin boundary in raster units. Default
is normally zero (minimum plotting surface address in y-direction).

KGIN Graphics input device selector. Default is the primary graphics
input device on the display.

KMINDX Minimum x-address of display surface in raster units. Default
is zero.

KMAXDX Maximum x-address of display surface in raster units. Default
for devices with variable size plotting surface is largest
square using normal plotting medium.

KMINDY Minimum y-address of display surface in raster units. Default is
zero.

KKAXDY Maximum y-address of display surface in raster units. Default
for devices with variable size plotting surface is largest square
using normal plotting medium.

TRASTX X-resolution in raster units per inch. Default is KMAXDX divided
by width of plotting surface in inches.

TRASTY Y-resolution in raster units per inch. Default is KMAXDY divided
by height of plotting surface in inches.

KTYMNU Device type for menu generation. Possible values are: Graphics
device - 1, Alphanumeric device - 2, Batch device - 3.

KILS ILS device indicator. Possible values are: Intelligent device - 1,
Unintelligent device - 0.

KBAIUDR Speed of communication line in characters per second. Default is
usual speed for device.

KPCHAR X,Y component buffer. Used by GCSPEN as a work area. Default
should reflect an impossible or unusable value.

KPREVC Color which terminal is currently generating. Default is the same
as KCOLOR.

3

UDIMEN(XHAX,YMAX)

XKAX Defines the maximum extent of a variable display surface dimension
along the x-axis.

YMAX Defines the maximum extent of a variable display surface dimensions
along the y-axis.

Comments

This routine is used to set the size of a variable plotting surface

such as CALCOMP drum plotters. The value contained in each dimension

which varies is converted from current device units to raster units

and tested for legal value. If the new dimension is legal for the

device, the resulting raster unit value is stored in KMAXDX or KMAXDY as

appropriate.

For display-devices with a fixed size plotting surface, this routine

need only set the UDAREA boundaries to the entire plotting surface. This

should be done if the plotting surface is variable also.

This routine is not implementable at the display-device.

UERASE

Comments

This routine provides a clean plotting surface by either erasing

the plotting surface or advancing the plotting medium to an unused frame.

In implementing this routine, care must be taken to insure that the

current pen/beam position remains unaltered but in the new plotting

surface. This may require a call to the GCSPEN routine after the

erase" occurs.

This function may be supported at the display-device. In this ase,

only an indication that the erase must occur need be transmitted to the

device. The beam position must still be insured.

URESET

Comments

This routine returns the Graphics Status Area to its initial condition.

Aside from setting the device-dependent GSA elements to agree with those

in the BLOCK DATA subroutine for this dev'ice before compilation, no

further modifications are required.

This routine can not be supported at the display-device.

UWAIT (TIME)

TIME Indicates the amount of time which GCS will wait before sending
further commands to the display.

Comments

This routine is usually implemented by sending a sufficient number

of null-operation control characters across the communication line to

cause the required delay.

The KBAUDR GSA element specifies the line speed in characters per

second.

For batch devices, this routine is a null operation.

This routine can not be supported at the display.

7

GCSALF (ICHAR)

ICHAR Is one ASCII character, right-justified, zero-fill.

Comments

This routine causes one hardware character to be displayed after

the terminal is placed in alpha mode and KKMODE is set to reflect alpha

mode. If a hardware character generator is not available and if the

device is not intelligent, a device-independent hardware character

simulator version of GCSALF is available. If a hardware character
generator or simulator is available at the display, the printable

ASCII character is simply sent to the display. Only displayable ASCII

characters are output from this routine. The receipt of control

characters implies that the terminal be placed in alpha mode and that the

character size be updated if necessary. Two control characters have special

extra meaning for intelligent displays. A value of 0018 indicates start

of alpha string and 0028 indicates end of alpha string. Thisallows strings

4of characters to be processed as one primitive operation.at the display.

To update the character size, on input the value of KSIZEF is compared

to the value of KPREVS. If their values agree, then no size change need be

processed. If their values disagree, the value of KSIZEF is stored in

XPREVS and the new sizes are stored in KHORSZ and KVERSZ.

This function may be supported at an intelligent display-device either

by sending single characters or by using 0018 and 0028 brackets to send

character strings.

8

GCSARC(XYANGLE,RADIUS.ICHECK)

X,Y Are the coordinates of the center of the circle defined by the
arc.

ANGLE Indicates the angle the arc will subtend and the direction of
travel of the arc. A positive angle is counterclockwise;
a negative angle is clockwise.

RADIUS Specifies the radius of the circle.

ICHECK Is set to 1 if the arc is not drawn by GCSARC. It is set to
zero otherwise.

Comments

If hardware arc generation is available and if the arc can be drawn

and does not intersect the window, the flag is set to zero and the

appropriate instruction is sent to the display. If, for some reason,

the arc can not be drawn at the display, the flag is set to 1. Reasons

which might apply are lack of an arc generation facility at the device

or intersection of the arc with the window.

This function may be supported at the device if the arc to be

drawn does not intersect the window. If it does intersect the window,

GCSARC may calculate the visible arc segments and issue several instructions

to draw each segment. However, the instructions to perform these calculations

are somewhat complex and it is usually left to UARC to draw the desired arc.

I

]9

GCSBPK (IX, IY, ICHAR)

IXIY Is the location to be marked by the character or dot.

ICHAR Is the ASCII code fill character for the designated raster
position.

Comments

This routine maintains the internal raster buffer for raster devices

such as line printers and alphanumeric terminals without cursor addressing.

The buffer is a FORTRAN Common Area GCSBUF which contains storage for the

entire frame or a page of the frame. The IX,IY values are mapped into a

buffer character position and the character (after translation into

internal computer code) is inserted in this position.

This routine only does packing. Flushing of the buffer is handled

by GCSPEN.

This routine may be supported at the display-device if an intelligent

raster-scan terminal or an unintelligent raster-scan terminal with local

storage is being implemented. In this case, this routine should be

eliminated and GCSPEN should send the packing request ditectly to the

terminal.

10

GCSDSH(IX,,IY)

IXIY Raster unit location of the end of the dashed line.

Comments

This routine draws a dashed line based on the current dash

specification contained in the KDASHT GSA variable. KDASHT values
between one and nine indicate selection of various hardware dash modes.
In none are available, a standard dash is simulated. A value of nine refers

to hardware dotted line mode if available.

If a hardware dash is available, a call is made to GCSPEN with an opcode

value of four to draw the line. If a hardware dash is not available or

not requested, the desired dash sequence in simulated by calling GCSPEN to

draw alternating solid and invisible lines,

This function is not supportable at the display-device.

11

GCSBEG

Comments

This routine performs any initialization functions required by the

display. For intelligent devices, it may pass the initialization request

to the device.

12

GCSEND

Comments

This routine performs any termination functions required by the

display-device. For intelligent devices, it may pass the termination

request to the device.

13

GCSFRA(INDEX .OPCODE)

INDEX Is the numeric identifier for the frame.

OPCODE Is the action to be performed related to the designated frame.

Comments

This routine processes the frame manipulation function requests of
"open", "close", "show", and "unshow". Since these operations are

currently supported only in an intelligent display, this function becomes
a null routine for unintelligent devices. The function of this routine
is primarily to reformat the requested operation as necessary and transmit

it to the display.

This is an interface routine which communicates with a program executing

in the display-device general processor if the display is intelligent.

144

... 1 4[1
. II il " *

GCSIN.(ICOUNT ,IUFR)

ICOUNT Indicates the upper limit of the number of ASCII characters to

be received as input.

IBUFR Is a buffer in which the ASCII characters will be placed right-
justified, zero-fill.

Comments

This is primarily an interface routine to the operating system

function which actually obtains the character. If less than ICOUNT

characters are received, the remaining buffer positions should be zeroed.

This function can not be supported at the display since it is really

not device-dependent but operating system dependent. However, to insure

correct 'linkage editing on all operating systems, it is grouped with

the device-dependent routines.

For batch devices, this routine issues an error message and returns

null characters.

15

GCSINN(ICOUNT, ISTRING)

ICOUNT Indicates the number of ASCII characters to be read from the
terminal.

ISTRNG Is a buffer into which the ICOUNT characters will be placed.

Comments

This routine accepts strings of ASCII characters from the terminal.

Prior to issuing an input operation using GCSIN, the terminal is placed

in the appropriate mode to activate the keyboard input. If ICOUNT is

less than or equal to zero, no input operation takes place.

This function can not be supported at the display.

J1

GCSOUT (ICOUNTIBUFR,IRESP)

ICOUNT Indicates the number of ASCII characters to be transmitted
to the display.

IBUFR Is the buffer containing ICOUNT ASCII characters right-justified,
zero-fill.

IRESP Is a count indicating the number of acknowledgement characters
required from the terminal. This is only used for supporting
intelligent devices.

Comments

This is the interface routine between GCS and the operating system

routine which sends characters to the terminal. It is called by all GCS

routines which need to transmit to the display. If ICOUNT - 0, the

operating system is requested to flush any internal buffers.

This routine can not be supported at the display.

For batch devices, this routine performs only one function: It

intercepts GCS error messages and displays them on the system-print file.

For supporting intelligent displays, the IRESP arguments can be

used to request an acknowledgement from the device before further characters

are sent. It is usually used when sending functions which require

considerable execution time at the display.

17

GCSPEN(IXIY,IPEN)

IX,IY Is the end point of the line to be drawn in raster units.

IPEN Indicates the operation to be performed. Zero specifies a move;
one specifies a solid line; two specifies a point; three specifies
a buffer flush request; and four specifies a dashed line.

Comments

This routine is the basic line drawing routine for each device. Several

variables have been set aside in the GSA for use by this routine. The

array KPCHAR is for use as an internal work space and usually is where the

command to be sent to the display is constructed. KPREVX and KPREVY are

updated with the value IX and IY to always point to the current beam

position when GCSPEN terminates. GCSPEN may also need to fetch additional

information to insert intensity, blink, or other information into the command.

The variable KIMODE is updated to reflect any mode changes initiated by

GCSPEN. If the display-device is such that a separate invisible line mode

is used, GCSPEN will set KMOVEF to one whenever he will exit with the

display-device primed for a blank line. Otherwise, IHOVEF is set to zero.

This routine can be supported at an intelligent display-device. If

such is to be the case, GCSPEN must still process buffer flush requests,

must check for redundant "moves" to the current beam position, must maintain

KKMODE settings as necessary, and reformat the line drawing instruction to

be sent to the display.

For terminal devices, output from GCSPEN is sent through GCSOUT. For

batch devices, output is written on the appropriate files either directly or

using a device-specific support package.

Note: GCS assumes that the plotting surface is addressed from zero to

some maximum number. If the actual address range contains negative numbers,

it is the responsibility of GCSPEN to add in the appropriate displacement

before building the display processor commands.

18 i

GCSSET (OPTION)

OPTION Is a standard form (four-character, left-justified, blank-fill)
USET option passed from USET.

Comments

This routine performs hardware-supported mode setting. All USET

requests are passed to GCSSET. If a particular option requires immediate

mode setting at the display, it is recognized by GCSSET and the

appropriate request is sent to the display.

This function can not be supported solely at the display. However,

intelligent displays which support some mode setting will require a parallel

routine to receive the requests sent by GCSSET.

19

GCSWHR(IXIYIC)

IX,IY Will contain the raster unit coordinates of the input cursor
position.

IC Is a mode, status, or option character obtained during the input
operation. If IC - 0 upon entry to GCSWHR, only the character is
requested.

Comments

This routine performs "positioning"-type input operations from the

input device specified by GSA variable KGIN or the closest available

equivalent. Whatever the form of the input coordinates when received,

they must be converted to standard raster unit format. The mode, status,

or option character is returned as received to the calling routine.

This routine can not be supported at the display, but may require

a parallel function to execute in an intelligent device.

20

Guidelines for Intelligent Devices

Display-devices which have computing power of their own may be termed

intelligent. Appropriate use of the intelligence can greatly increase

the capabilities of the entire system. Most such display-devices have

a refresh capability. Thus much of the capacity of the general processor

of the capability of the general processor of the device is involved with

display list management.

In GCS, a display list management facility has been provided to support

dynamic pictures in a device-independent manner to the extent that the

program will execute even while using dynamic instructions on a non-refresh

device. This is the framing facility. A more commonly used name for this

feature is transformed, segmented, unstructed display list. Four functions

are suppported for these frames: open (UFRAME), close (UFREND), make visible

(USHOW), and make invisible (UNSHOW). These four routines all call the device-

dependent routine GCSFRA with the number of the frame to initiate the

requested operation. GCSFRA passes these requests to the intelligent terminal.

If no named frame is open, an unnamed frame is maintained which is always

visible.

In the display, an open operation starts up a new segment for the

indicated frame number. If a segment for that frame is already being displayed,

a double buffering takes place which continues showing the elder of the two

frames with identical numbers until the newer frame definition is complete

(indicated by receiving a clode (UFREND) comand). At this time, the elder

frame is discarded and the newer frame is displayed. A frame may be

constructed either visibly or invisibly. If a frame is constructed visibly,

it will be shown when completed. It can then be made invisible by executing

an UNSHOW command. If a frame is constructed invisibly, it will not be

displayed until a USHOW command is received. Subsequent USHOW and UNSHOW

commands can turn off and on defined frames as requested.

The logical organization of the display list is as above, The actual

physical organization and technique of memory management will depend on the

particular display-device. Some will more naturally use a paging memory

management scheme; others may use some type of linked list,

In addition to display list management routines, the intelligent device

general processor will also need to interface available hardware functions

with the device-dependent routines of GCS and to provide simulators as desired

21

for device-dependent functions not available in the particular hardware

under consideration.

In designing the format in which the device-dependent GCS routines
communicatewith the display-device, it is wise to select an encoding scheme

that does not violate ASCII coding conventions. This requires that only

seven bits be used as data and the parity-bit reserved for parity or marking
even if the particular operating system does not require it. Following

this procedure will allow connection of the terminal with the host-computer

over standard communication lines without special communications software.

4

22

Implementation Sequence

GCS is a modular system. Since many of the devices supported by GCS

are relatively unsophisticated, many of the GCS device-dependent libraries

contain simulators for many of the hardware functions. By using these

simulators, it is possible to shorten the initial implementation time for
new devices allowing later replacement of the simulators as time permits.

The following scheme for phased implementation of new devices has been

designed to maximize the benefits mentioned above.

Phase 1: Identify the required initialization values for each device-
dependent GSA variable and insert them in the Block Data and
URESET subroutines.

Phase 2: For intelligent devices, design the co-munication data structure
to be used between the device-dependent GCS routines and the
program executing in the display-device. This program should be
developed in parallel to the device-dependent GCS routines in the
retaining phases if not already available.

Phase 3: Implement the GCSBEG, GCSSET, and GCSEND functions if necessary.

Phase 4: Implement the UERASE and GCEPEN routines. The GCSOUT routine can

usually be used without modification from one bf the other libraries.
Simulators or null routines can be used for the remaining functions.

Phase 5: Implement the GCSALF routines if a hardware character generator
is available. This would replace the hardware character simulator.

Phase 6: Implement the GCSFRA routine, if the terminal is intelligent. If
not, the null version of the GCSFRA routine is appropriate.

Phase 7: Implement GCSIN, GCSINN, and GCSWHR functions if the device is
interactive. These would then replace the null routines which
probably were used until this phase.

Phase 8: Implement all other functions which do not yet support the capabilities
of the device.

By following the sequence above, experience has shown that implementation of
new devices should proceed smoothly.

23

