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STABILITY CONSIDERATIONS FOR LIGHT-ION BEAM
TRANSPORT IN Z-DISCHARGE CHANNELS

1. INTRODUCTION

The development of terawatt-level ion beams has generated a great deal
of interest in using light-ion beams to drive thermonuclear pellet:s.l"9
Target design studies for light-ion beams indicate that v 2 MJ of ions must
be delivered in v~ 10 nsec to an v 1 cm diameter pellet in order to achieve
high-gain thermonuclear ignition. Since present technology can provide up
to 5 TW single-generator modules from which up to 200 kJ of ions can be
extracted in v 50 nsec, a multimodule system is required. 1In addition, a
transport scheme and a method for beam pulse compression are needed.

One possible transport scheme involves the use of a z-discharge channel
for transporting a prefocused ion beam (Fig. 1).11 Focusing is achieved by
a combination of geometric and magnetic-field focusing prior to injection into
the channel.12:13 peam pulse compression results from ramping the diode
voltage such that the tail of the beam catches up to the front of the
beam.13:14 The ideal diode voltage waveform is ¢(t) = ¢o(l-t/ta)'2 for
0 £t £ 1p < ty where T, is the beam pulse duration and t; is the beam arrival
time at the target.

Assuming that the z-discharge channel is produced in a MHD stable con-
figuration, the question of the effects that the passage of the beam will have
on the equilibrium and stability of the beam-plasma system is an important
one. The MHD response of the plasma has been treated elsewherel® and will
only be briefly reviewed here. BAnalysis of stable beam propagation in
straight and tapered channels, as well as in bumpy channels (subject to
sausage instability) has also been done previously.16 This work shows that,
in the absence of microinstabilities driven by the beam, good beam transport
and bunching is possible under the conditions set by MHD considerations
(which will be outlined in Sec. 2). However, in the presence of microinsta-
bilities, beam transport and bunching can be seriously affected.

Analysis of electrostatic (ES)17 and electromagnetic (EM) 18 velocity-
space instabilities, which can grow on a time scale much faster than the beam
pulse duration, will be reviewed in this report. The problem will be con-
sidered with the goal of identifying the conditions for good transport and
bunching. The results will be presented in a general form so that they may
be applied to beams of various low atomic number species propagating in
channel plasmas of different compositions.

Manuscript submitted on May 13, 1981,
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2. BEAM-PLASMA SYSTEM IN THE TRANSPORT CHANNEL

The beam-plasma system consists of a focused ion beam propagating down
the axis of an externally-driven z-discharge plasma channel.13,19 The jon
beam is focused at the entrance to the plasma channel (see Figs. 1 and 2) with
velocity components transverse to z given by V, /V, = tan a << 1. The current
being driven in the preformed z-discharge channel provides the radial confine-
ment of the beam. Because of the small perpendicular beam energy, the channel
current can be much less than the beam current. A high plasma density in the
channel insures good beam charge neutralization.20 Good beam current
neutralization in the interior of the beam also occurs, so that the total
magnetic field is comparable to that associated with the preformed channel
established before beam injection. Because Jp = Jch - Jb * =Jb, the electron
drift velocity is approximated by Vg = anbe/zpnp, where ny, and np are the
beam and plasma ion densities, 2p and Z, are the beam and plasma ion charge
states, and Jp, Jy and Jch are the plasma, beam and preformed channel current
densities, respectively. Note that the electron density is Zpnp.

Hydrodynamic modeling of the background plasma15 shows that a uniform
net-current model is appropriate for the early times associated with passage
of the beam front. This is because the low-temperature channel is established
microseconds before beam injection so that complete magnetic diffusion occurs.
Later in the ion pulse, Jp X B expansion of the beam-heated high-temperature
plasma reduces the magnetic field strength in the interior of the channel.

The built-up field in the expanding cylindrical shock wave is also enhanced
by significant current non-neutralization in the cool plasma surrounding the
beam-heated channel. The maximum field strength just outside the ion-beam
radius can exceed that established by the preformed z-discharge current by a
large factor. Thus, at late times during beam passage, the magnetic field
distribution can be approximated by a surface-current model. Although the
induced V, x Bg electric field is important when considering beam energy
losses during transport, at no time does the electric field become large
enough to significantly affect the stability analysis.

The linearized stability analysis presented here strictly applies only
when the mode under consideration grows on a time scile faster than any
changes in the beam-plasma system (i.e., y > Tgl). For growth on a time
scale slower than the beam pulse duration, the perturbation analysis breaks
down since small perturbations will be washed out by the zero-order changes
in the system before growth can occur. Thus for those modes which are shown
to e-fold less than once during the passage of the beam, the results should
be interpreted as showing that significant growth does not occur.

The distribution of particles in axial velocity is illustrated in Fig. 3.
The plasma ions form a stationary background while the drift of the plasma
electrons provides for beam current neutralization. Because of the high
plasma density, this drift velocity, Ve, does not exceed the electron thermal
velocity even before the beam heats the plasma. As the beam passes through a
given point, the plasma is heated and the conductivity increases. The
electron-ion collision frequency, vgi, decreases but the electrons generally
remain collisional (Vg > woe) at all times during the pulse for purposes of
the stability analysis. Since the electron-ion equilibration time is on the
order of the beam pulse duration the electron temperature will not exceed
the ion temperature by more than a factor of ten.




The ion beam density is typically much less than the plasma density and,
beams of intercst are nonrelativistic. The spread in axial velocities,
designated by V¢ in Fig. 3, is on the order of Vba%/z before beam bunching
occurs., Here Vp, is the beam velocity and oy is the maximum ion injection
angle into the channel. For oy = 0.1-0.2 rad, V¢/Vp is relatively small. As
tha beam bunches, V¢/Vp car increase by an order of magnitude as the faster
ions generated later in the pulse catch up to slower ions at the front of the
beam. The beam pulse Juration, Tp, decreases and the beam density, np,
increases as the beam bunches. The dependence of the beam parameters on axial
position due to bunching will be expressed explicitly as V,(z), TL(2), etc.

Since the ES stability analysis depends strongly on the shape of the
beam distribution function, it is important to use a theoretical mouel which
contains the appropriate physics. For a distribution in v, which has a
large slope on the low velocity side such as illustrated in Fig. 4a, a
resistive instability persists in spite of the thermal spread in v, and the
high frequency of collisions between the plasma electrons and ions.21,22
However, if the slope of the distribution function is not as sharp, such as
for the Gaussian distribution shown in Fig. 4b, electron-ion collision are
damping if the thermal spread in v, is sufficiently large. The slope of the
distribution function on the high velocity side does not affect the stability
analysis.

Before the beam bunches, the distribution in v, is determined by the
injection condition. Since the ions are injected into the channel nearly
uniformly over a range o angles predominately in the r-z plane and since
the t1me—averaged axial velocity for an ion injected at a given G varies like
Vb(iﬂl /2), the distribution in v, vises slowly as indicated in Fig. 4c.
Additivonal smoothing out of the distribution in v, will result from beam
energy spreading due to radial variations in the diode voltage. The stability
properties of this distribution closely resemble those of the Gaussian distri-
bution. The beam ion distribution after bunching is also similar in shape
to Fig. 4c. Since the ion diodes which are used in the experiments have a
constant impedance behavior during the duration of the {ion pulse, more ions
(higher currents) are generated at higher energies as the diode voltage ramps
upward. Thus in the bunched state there are more ions at higher velocities
than at lower velocities and the spread in axial velocities is on the order
of (ZZde/mi)2(¢f{-¢04) Here Zy is the charge state of the beam ions in the
diode and ¢, and ¢f are the initial and final diode voltages. This spread
can be considerably larger than the initial spread before bunching(Vtvvglm/Z)

Thus a Gaussian distribution can be used to properly model the ion beam
distribution function both before and after bunching when considering ES
modes. When the analysis is not sensitive to the detailed shape of the dis-
tribution function (e.g. for analyzing the stability of EM modes), simpler
models may be used.

3. LINFAR STABILITY ANALYSIS

The results of linear stability analyses reported previously”’la’22

are presented here in a more general form so that they may be applied to

beams of various species. The composition of the channel plasma is also .
unspecified. Growth rates will vary as tlic beam heats the channel plasma :
and as the channel expands. The changes in the hydrodynamic ctructures of
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the channel occur gradually over the pulse duration of the beam. Growth rate
expressions appropriate near both the front and the tail of the beam are
presented in order to determine how hydrodynamic changes alter the results.
Most notably these changes include (1) a reduction in the e-i collision
frequency at the tail of the beam where the plasma is heated, and (2) a reduc-
tion in the magnetic field in the interior of the channel at late times in the
pulse as the now highly conducting heated plasma expands due to J X B forces.
Near the front of the beam, the beam ions follow betatron-like orbits while

1 at the tail of the beam, the beam ions move in more straight line-like orbits
with reflections off of the magnetic field piled up at the edge of the
channel.

3.1. ES Modes

The ES modes are the fastest growing modes when driven unstable,
Unstable growth will generally reach nonlinear saturation on a time scale much
faster than the beam pulse duration. These modes involve either charge
bunching (e-b and e-i modes) or density bunching (ion-acoustic mode) and
generally exhibit their largest growth for k = ké;, which is a result of the
small thermal spread in the axial direction before axial beam compression
occurs.

3.la. e-b Two Stream Mode

The e-b two stream instability is driven by the relative streaming
between the beam ions and plasma electrons. In general the beam can be
considered warm because Vi (z)/Vy 2 Z[mezﬁnb(z)/mbzpnp]1/3 even before beam
bunching occurs. Here mp is the beam ion mass. Near the front of the beam
h the betatron motion of the ions can reduce the growth rate of the mode which
' is given by

2
v o, we, (2) Y
3 = 81 pb b
Yy 2 + 0.76 m Vt‘Z) R (1)

|
} where mzb = 4wezz%nb(z)/mb and w§e= 4ﬂe2Z(n /m, are the beam and electron

‘ plasma frequencies respectively.  The electron-ion collision frequency is

given by vgi = l.45x10‘622npkei/Tg/2, where T, is in eV and }gj is the

¥‘ Coulomb logarithm. The reduction factor, R, equals the fraction of beam ions
. which can effectively participate in the wave growth. If y, > ZwB, which is
{ the usual case, all ions can participate and R = 1. Here wg = (wacb/rc)g is
| the ion betatron frequency and wc)p, is the beam cyclotron frequency. If
t Y, < 2wg, only those ions with Az < 1/k can partigipate, where Az is the
{ amplitude of the betatron oscillations about z = vyt (see Fig. 5). The 17
i

amplitude, Az, depends on the ion injection conditions, r(z=0) and a(z=0).
If this amplitude is large, the ion moves across many wave fronts before the
instability e-folds even once, and thus cannot effectively participate in
wave growth. The value of R must be calculated from the actual distfibution
function. For a Gaus§ian distribution R Vv 8wgVp/kVy for k > 8uwgVyp/Vy and
’ R = 1 for k < 8wgVy,/Vi. At the tail of the beam, betatron effects are less
important, so that R = 1 in Eq. (1).
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Beam heating of the plasma can considerably reduce the damping term
in Eq. (1) as e-i collisions become less frequent. Beam bunching, on the
other hand, reduces the driving term in Eq. (1) as Vi increases dramatically.
Thus the potentially most dangerous position for wave growth lies at the tail
of the beam (R=1) at the beginning of the transport channel before signifi-
cant beam bunching occurs.

3.1b. e-i Two Stream Mode

The e-i two stream mode is driven by the relative streaming between
the background electrons and ions. The electrons drift with an average
velocity Veﬁvnbzbvb/anp relative to the stationary ions and in general Vg <ue.
Here ug is the thermal velocity of the electrons. The expression for the
growth (damping) rate is

& kcs / Te
Y = -\)ei ~ (m/8) —Tz——z- Zp(Te/Ti)3 2 exp |- ——2—2—]
(1+k ADe) 2Ti(l-k ADe)
Te Ve ]
= ) 242
+ o (l . [1+k ADe] ) (2)
i s

where cg = (Te/mi)& is the ion sound speed, Apg = (Te/4nezzpnn)% is the
electron Debeye length and where a simple Krook model was used for the
collision term. 1In deriving Eg. (2), it was assumed that Vai < kcs/(l+k2A%e)¥.
When Tg v T; this reduces to

1
kc \Y Z _ exp [— ]
5 s e _p 2(1+sz§;).
Yo B Vgt (n/8) 3 (3)

252 y3/2 252 4
(1+k ADe) e (1+k ADe)

Since V. is usually less than uor the mode is typically stable.

3.1¢c. 1Ion-Acoustic Mode

If Te >> Tj, then the drifting electrons can drive an ion-acoustic
instability. 1In this case Eq. (2) reduces to |

™ ¢! Xk s
Y %-v.+< ) P '______] @
3 el \Bmi/ (14x2x2 3372 L ®  (1+x222 )2
De De

This predicts instability (y > 0), if V_/cg > (1+k2A%e)'5 and if vg; is
sufficiently small. However, the severity of the condition on To/T; is often
overlooked. For Vgo/cg as large as 5, Te/Tj must be greater than 12 for
instability even for kADe << 1. Figure 6 shows the critical values of Te/Ti
for instability versus k for various values of Vg/cg (assuming ve; = 0).
Since To/Tj is not expected to reach such high levels, in general ion- ?
acoustic turbulence is not expected.
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3.1d. ES Stability Conditions

Since the e-b mode is the only ES instability which could be gen-
erated, it is important to state under which conditions it may be avoided.
For stability (y1 < 0) Egq. (1) states that

1 p_p el . 3.5 x 107 b'b (5)
3/2 UbVZ(z)
e
ﬁ is required. Here Vp = Mmp/my;, Te is measured in eV and all other variables
A are in Gaussian units. This condition used in conjunction with the condition
n o« 1.4 x 102 1_r2 (1 (2)1,(2)/5)" (6)
n P ch"ch ''b b !

derived from MHD considerationsls, set constraints on n, and Te for good
transport. Here I,y and Iy are measured in amps and S is the beam stopring
power of the plasma measured in erg-cm /g. Eq. (6) gives “he ion
; density in the channel required for minimum beam energy loss in the
'f channel during transport. Given this required ion density, Eq. (5) sets an
i: upper limit on Tg, beyond which electrostatic turbulence will set in. For
) good transport both of these conditions must be satisfied. Generally the

| stability criterion in Eq. (5), is most severely tested at the tail of the
beam where Te is largest and at the beginning of the transport channel before
significant bunching occurs where V, (z) is smallest (V¢(2)/Vy ™ u%/Z).

! 3.2 EM Modes

The EM modes are slower growing modes than the ES modes, s that even
if the mode is unstable, growth may not have sufficient time to reach non-
linear saturation during the pulse duration of the beam. The modes are nearly
purely growing (i.e. do not convect with the beam) and involve current

bunching or filamentation of the beam and/or plasma channel. The wave vector, :
‘ X, is oriented perpendicular to the direction of beam propagation with
e k = kéy for the Weibel mode (radial current bunching) and k = k&g for the

whistler mode (azimuthal current bunching). 1In addition, the cylindrical
{ geometry dictates that k, 2 27/rp and kg 2 2/rp where & is an integer.

3.2a. Beam-Whistler Mode

The beam-whistler instability is driven unstable by the relative
streaming motion between the beam ions and the channel plasma. Since the
wave vector is in the azimuthal direction and the beam ions execute their
0 betatron orbits in the r-z plane, the betatron motion of the beam has little
L effect on the mode. However, a small spread in angular momentum, which is 4
observed experimentally, can reduce the growth rate significantly. With no
spread in angular momentum (Ve/c <2ve1wprb/pre) the growth rate is

Y = Upb(Z)Vb/C ’ 7
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and with V%/c2 >2veiwpb(z)vb/cw%e the peak growth rate is

- 2 2 j2,,2
Yy 2\)eimpb(z)Vb/vempe (8)

at k v v,/V,. Here Vj is a measure of the thermal spread in the azimuthal
velocity of the beam ions. If kry < 1, peak growth rate is reduced to
[1“(korb)-2]Yh because of geometry constraints and if kgry < 1, no growth is
possible. The critical wavenumber ko = /Ehpb(Z)Vb/cve[see £q. (35), Ref. 18].

If there is wave growth at a given point in 2z, the number of e-folds that
occurs is just

Tb(z)
N = S y(t)ydt , (9)
(o]

where the time dependence of the plasma parameters must be considered. Most
importantly vgi decreases at Te'a/z(t) as the plasma is heated by the passing
beam. Note that beam thermal effects do not completely quench the instability
because of the finite plasma resistivity. Given information from MHD consid-
erations on the time variation of the plasma parameters due to beam passage,
one can then determine from Eq. (9) whether significant azimuthal beam current

bunching occurs.

3.2b. Beam-Weibel Mode

For the beam-Weibel instability the wave vector is in the radial
direction. In this case the spread in perpendicular velocities associated
with the betatron motion of the beam ions reduces the growth rate of the
instability. A measure of the radial velocity spread is given by Voo, so
that the peak growth rate is given by

_ o4/5 2 2 ,8/5
Y, =2 veimpb(z)/wpeam (10)
7/5
at k YS/Vbam . Again the number of e-folds that occur at a given point

in z can be determined by Eq. (9) and MHD considerations. Since the thermal
spread in the radial velocity is typically comparable or larger than the
thermal spread in the azimuthal velocity, the beam-Weibel instability is
generally less dangerous than the beam-whistler mode. A superposition of
both unstable modes, however, will lead to beam filamentation.

3.2c. Plasma-Electron Mode

If beam thermal effects or geometry constraints prevent the beam
from driving strong EM wave growth, instability can still result from the
electron return current established with the plasma. Because of the high
collisionality (ve; > wge) Of the plasma electrons, radial (k = kéy) and
azimuthal (k = ké&g) EM modes driven by the plasma electrons are essentially
indistinguishable (aside from small geometric effects). The analysis must
include electron thermal effects, as well as collisional effects since the
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electron streaming velocity is subthermal even early in the pulse before beam
heating occurs.

At early times in the pulse when wpeue/CVei > 1, the peak growth rate is

y = (wpive/c)(Z-Z;I)I’ . (11)

Later in the pulse after the beam heats the plasma if wpeue/cvei > 1, then
thermal effects slows the growth of the mode. The maximum growth rate is then
given by

= »=-3/2 2 . 1
Y 2 wpeve/cue (12)
At all times in the pulse geometry constraints prevent wave growth if
korp < 1 where in this case k, = wpeVe//Ehec. Since again this mode does not
convect, the number of e-folds at a given point in 2z can be obtained from

Egs. (11), (12) and (9) and MHD considerations.

3.2d. EM Stability Conditions

If the growth rates of the EM instabilities are slow enough such
that less than one e-fold (N<1l) occurs during beam passage, wave growth will
be washed out by the MHD changes in the beam-plasma system. Only wave growth
with N>1 will affect beam transport. In order to prevent the beam from
filamenting, the beam should then have

nb(z) Ty (2) anei
o2 z v3/vE > 1.6x1077 — —+==)at , (13)
b T 3/2
e
where again Tg is in eV's and ny is measured in cm™3. This condition is

derived from Eq. (8) for azimuthal current bunching which is typically more
severe than the condition for radial current bunching since oy is usually
greater than Vg/Vy,. Here it is also assumed that /EQpb(Z)rbe/cVe > 1, which
is the usual case. In order to evaluate Eq. (13), a knowledge of the MHD
response to beam passage is required, in particular, one must know the time
history of the electron temperature.

If the beam is warm enough to prevent beam filamentation {(i.e.,
Eq. {(13) is satisfied), it is still possible for the channel to filament.
Channel filamentation is avoided if

t (z) T, (=)

J (2) 1 () b~

b 9.4x10 (2-z"hyat + 6.9x10" J_(2) - L PR
n% uk P b n Z3/2TH

D n o t(='Pp e

(14)

Here U, = mp/mH, Jy, (z)=Cpenp (2) Vp, Iy, is measured in sA/cm? ani t.
is defined as the time it takes for the beam to heat the plasra

e el A e b 4 i e b




to Tl = 1.4x10-4(zgclxbxgi)% in eV. If Tg(0) >T!, then t; = 0 and the first
term in Eq. (14) does not contribute. If t; = T, then the second term in
Eq. (14) does not contribute and the limits on the integration of the first
term go from 0 to Ty(Z). In Eq. (14) it was assumed the wperbve/Zuec >1,
which is the usual case. Eq. (14) sets an upper limit on transportable beam
current density above which channel filamentation will develop.

4. CONCLUSIONS

The stability conditions in Egs. (5), (13) and (14), identify important
constraints on beam propagation. Eg. (5) together with Eq. (6) states that
the plasma cannot be heated above a certain critical temperature without
generating electrostatic microturbulence. Such turbulence will degrade beam
guality and confinement. In general the most severe constraint on To exists
at the tail of the beam before bunching occurs where the critical temperature
is defined by

2.3,5,2 48 \ 1/3
Vit AL SN}
(ev) = 107° bu peinm (15)
2=
anb(z 0)

where n, is given in Eqg. (6). By increasing n, the critical temperature can
be raised at the expense of increasing the beam energy loss during transport.
Operating at twice the density specified in Eq. (6) increases Tg by a factor
of two but only increases the beam energy loss by 25%. The actual temperature
that the electrons will reach for a given beam and background gas is not
always easily estimated and must be calculated on a case to case basis and
compared with the critical temperature defined in Eq. (15). Here ap is a
measure of the spread in axial velocities in the beam, which for a monoener-
getic beam is given by_AVZ/Vbﬁ«n%/2. If the beam has a spread in energy such
that a2 < AE/E, then o) in Eq. (15) should be replaced by (AE/E)“.

Growth of electromagnetic waves can be held to a tolerable level by
allowing for a reasonable spread in beam perpendicular energy and limiting
the beam current density. If the beam is too cold, beam filamentation can
occur during beam transport. The condition for good beam transport is given
in Egq. (13). 1If the beam does not filament but the beam current density is
too high, the return current in the channel can cause channel filamentation.
In order to prevent this from occurring Eq. (14) should be satisfied. The
conditions given in Egs. (13) and (14) may actually be too severe since
channel hydrodynamic effects have not been included self consistently in the
analysis. Channel expansion due to JX B force may tend to prevent growth of
these transverse modes. These effects are presently under investigation.
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Fig. 1-Schematic of ion diode, focusing region and transport channel for light jon beam ICF module.
The ideal diode voltage waveform for axial bunching is also shown where ¢ in the initial diode voltage,
ty is the beam arrival time at the target and 7y, is the beam pulse duration at injection.
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ion charge state in the diode and o 15 the diode voltage), @, 1> the maximum injection angle, rg is the
beam spot size (or aperturc size} and ry, is the beam radius in the channel. Also shown is the channel
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