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FOREWORD

The research described in this report was performed
in-house at the AFWAL Flight Dynamics Laboratory during the
period from September 1979 to March 1981. 1It is the result
of a joint effort between members of the Control Systems
Development Branch (AFWAL/FIGL) and the Control Dynamics
Branch (AFWAL/FIGC) of the Flight Control Division.

Work began in this area in late 1978 when the Control
Systems Development Branch initiated a work unit called
"Multi-Microprocessor Control Elements" (24030244). During
this time, Lt. James E. May, Lt. Scott L. Maher, John Houtz,
and Capt. Larry Tessler laid the foundation for a study of
how growing microprocessor technology could be applied to
the problems of modern flight control. It was decided to
design and build some form of fully distributed
microprocessor-based flight control system in order to
explore the potential problems and benefits 1in great
detail.

In September 1979, Lt. Scott Maher took over as
Principal 1Investigator ard Capt. Stan Larimer joined the
program as the Associate 1Investigator from the Control
Dynamics Branch. In the months that followed, Maher and
Larimer developed what has come to be known as the
"Continuously Reconfiguring Multi-Microprocessor Flight
Control System" architecture. Steve Coates, Richard
Gallivan, and Tom Molnar also provided invaluable input to
the research during this phase.

During the summer of 1980, Mr. Harry Snowball (Control
Data Group Leader) and Mr. Evard Flinn (Control Systems
Development Branch Chief) decided to intensify efforts to
develop this new architecture. They hired four new
engineers including Bill Rollison, Ray Bortner, Mark Mears,
and Stan Pruett to work on the project. They also assigned
technician sSgt. Jeff Lyons and co-op students Dan Thompson,
Russ Blake, and Bob Molnar to assist with the R&D activites.
At the same time, Mr. Dave Bowser (Control Analysis Group
Leader) and Mr. Ron Anderson (Control Dynamics Branch Chief)
increased FIGC support by assigning Lt. Allan Ballenger to
act as an architecture and control 1law consultant on the
project. In 1981, Lt. Jack Crotty joined the program as a
software designer thereby completing the CRMmFCS team.

The authors would like to thank these individuals for
their many contributions to the success of this program.
Bill Rollison was responsible for the design, development,
construction, and testing of the transmitter and receiver
circuitry. Ray Bortner designed the real-world interface
processor and helped to develop the CRMmFCS control laws and
corresponding aircraft simulation. Mark Mears was




responsible for the hartdware and software design of the
entire data collecticn and processing network for the
CRMmFCS laboratory implementation. Stan Pruett invented a
unique five-port RS-232 communications controller which
allows all systems in the laboratory to communicate with
each other. He also assisted in the development of CRMmFCS
processing module software and programmed the TRS-80 to act
as controller for the entire laboratory system.

Lt. Allan Ballenger was responsible for development of
the real-world plant simulation and overall control law
design. He also organized a national workshop on
multi-processor flight control architectures which provided
a vital link with:others working in the field. Tom Molnar
served as a technical consultant and work unit monitor for
the program. Lt. Jack Crotty was responsible for the
development of all CRMmFCS software. Dan Thompson provided
the original design for much of the TMS-9900 software used
to implement the CRMmFCS operating system.

Rick Gallivan was responsible for the development of a
real-world simulation on a Motorola 68000 microprocessor and
provided logistics support for the program. Steve Coates
handled the constraction of the entire laboratory setup and
nelped to develop a real-time graphics display for the pilot
interface. Jeff Lyons designed and constructed the first
working bus termination circuit. Russ Blake and Bob Molnar
provided drafting and breadboarding support for many of the
laboratory components.

The authors would also like to express special thanks
to Art Eastman and Dave Dawson for their outstanding work in
designing and producing the many figures which appear
throughout this document. Carl Weatherholt, Rudy Chapski,
and Bill Adams also provided invaluable support in the
laboratory. Many thanke also go to Pam Larimer, Jan
Robinson, and Dave Bowser for their assistance in the
preparation of this report.

Finally, the authors wish to express their appreciation
to Mr. Vernon Hoehne, Lt. Allan Ballenger, and Tom Molnar
for their considerable efforts in reviewing the technical
report.

This report covers work performed from September 1979
through March 1981. 1t was submitted by the authors in May
1981.
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SECTION I
INTRODUCTION

The use of microprocessors in flight control
applications is a subject which has received much attention
in recent years. Microprocessor technology 1is growing
rapidly and there is a strong desire to take advantage of
it. This report presents the results of several years of
research performed at the Flight Dynamics Laboratory into
how microprocessors might best be used for flight control
applications.

Microprocessors appear to have two major areas of
application to the flight control problem. These may be
termed "the low end" and "the high end." In the 1low end
approach, microprocessors are distributed around the system
in a dedicated fashion wherever a small amount of processing
power is needed. In this mode, microprocessors are
relegated to the role of "smart" peripherals to some central
computer system. This application has been demonstrated
with considerable success in many currently flying aircraft.
By performing many of the repetitive, time intensive
functions such as keyboard monitoring, sensor preprocessing,
display generation, and inner-loop control, microprocessors
can relieve the central computer of much of its
computational 1load so that it can concentrate on what it
does Dbest: number crunching, system management, and
outer-loop control. Since the low end application has been
demonstrated in many operational systems and its utility is
generally unquestioned, it will not be discussed further in
this report.

The "high end" application for microprocessors is a
much newer field of research. It is concerned with how to

use microprocessors as a distributed, multi-processing




replacement for the central computer itself. Since the goal

of this research program was to investigate the potential of
microprocessors for flight control and not to design a
working medel for near-term application (where a more
conservative approach would be necessary), it was decided to
attempt the most ambitious (and most promising) application
of microprocessor technology: "a fully decentralized,
continuously reconfiqguring, self-healing, adaptive, pooled
microprocessor-based flight control system." The result was
the development of an architecture known as the
"Continuously Reconfiguring Multi-Microprocessor Flight
Control System" (CRMmFCS).

This report presents the results of research to date in
the development of the CRMmFCS. Section II gives an
overview of the architecture and the philosophy behind it.
Section III presents a detailed discussion of the hardware
aspects of the architecture while Section IV does the same
for software. Both sections represent virtually stand-alone
discussions of their respective topics at a level which is
as thorough as possible without sacrificing readability.
Technical details which are of use to the reader only after
a complete study of the architecture have been removed to
the appendicies. Finally, Section VvV describes the actual
laboratory implementation and test procedure which will be
used to demonstrate the architecture. The results of these
tests will be published in a subsequent technical report.

.
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SECTION II
OVERVIEW

A. OVERVIEW OF THE CRMmFCS ARCHITECTURE

The CRMmFCS design centers around a system of
autonomous microprocessors connected by a common set of
serial multiplex busses. These processors operate in a
pooled <configuration where any processor can perform any
task at any time. Furthermore, task assignments are
continuously redistributed among all processors 1in a
never-ending process of reconfiguration. If a processor
fails in the system, it 1is simply left out of the next
reconfiguration cycle and the system continues to operate as
if nothing has happened. All of this is accomplished
without use of a central controller.

A diagram of the architecture is shown in Figure 1. 1In
the figure, six processing modules are shown connected to a
set of four common data busses. Each data bus consists of
one clock and one data line and information 1is transferred
between processors using a simple serial multiplexing
scheme.

Processors in the system compete for access to the
busses without central traffic control using a technique
called "transparent contention." Transparent contention is
a scheme which allows any processor to talk on any bus at
any time. In the event of a "collision" between two
transmissions only one message survives while the remaining
one is automatically retransmitted as soon as the bus is
free. Transparent contention provides one hundred percent
efficient bus wutilization, eliminates most communications
overhead, and completely avoids the need for a central

controller. It is discussed in detail in Section III.
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In addition to competing for the bus, processors also

compete for the right to perform tasks in the system.
During every time frame all processors "volunteer" for the
tasks to be done in the following frame. These tasks are
then divided by mutual agreement among all functioning
processors in the system, again without needing a central
controller.

Because tasks to be performed are redistributed at the
beginning of each frame, the task any particular processor
performs is changing all the time. The system is said to be

a i

"continuously reconfiguring." Continuous reconfiguration
has a number of important advantages over other approaches.
These include automatic recovery in the event of a failure,
constant spare checkout because no unit acts as a spare all
the time, latent fault protection, and zero reconfiguration
delay. A complete discussion of continuous reconfiguration
is presented in Section 1IV.

Finally, although processors communicate only via
simple serial busses, the architecture is configured so that
they appear to share a single common memory as shown in
Figure 2. This virtual common memory contains all
information available about the state and environment of the
entire system. Processors obtain the information needed for
any task from the virtual common memory and place their
results back there for use by other processors. Complete
details on how a set of serial busses can be made to act
like a common memory are presented in Section III.

B. DESIGN PHILOSOPHY

Before beginning a detailed discussion of the
Continuously Reconfiguring Multi-Microprocessor Flight
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Figure 2. Virtual Common Memory
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Control System (CRMmMFCS) it is desirable to briefly discuss
the design goals and philosophy which 1lead to this
architecture. The original objective of this in-house effort
was to develop an Air Force understanding and capability in
the area of multi- microprocessor flight control systems. It
was determined that a high risk - high payoff approach could
be taken in an effort to advance the state-of-the-art while
achieving the original objective. The approach taken was to
trade off low cost hardware for simplified software and to
distribute system control to its extreme in order to study
the extent to which 1its potential advantages could be
achieved. Other goals were to reduce overall hardware,
software, and life cycle costs of flight control systems
while maintaining high reliability and fault tolerance.
Design considerations also included expandability for
integrated control applications and reconfigurability to
meet future self-healing requirements.

C. EVOLUTION OF CONTINUOUS RECONFIGURATION

Figure 3 shows a breakdown of some of the possibilities
that exist for implementing digital control systems in
general, Starting at the top of the figure, it may be seen
that digital control systems can be broken down into either
uni-processor of multi-processor systems. The distinction
here 1is not so much whether there is one or more than one
processor in the system, but rather whether there is more
than one processor performing different functions. A system
with, say, four processors performing identical functions
for redundancy would, for the purposes of this report, be
considered a uni-processor system since its effective
throdghput is that of a single processor.

In this study, the multi-processor approach was chosen
for two reasons. First, since state-of-the-art
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microprocessors have somewhat lower throughput than their
mini-computer counterparts, it is unlikely that a single
microprocessor would be able to handle the workload of a
modern flight control system. Since we are constrained to
use microprocessors by the goals of this investigation, it
would seem that a multiprocessor architecture is mandatory
for flight control applications. Of course, with the rate
at which the field is developing, there may soon be
microprocessors that can handle the required workload in a
uni-processor configuration. But with the development of
ever more sophisticated estimation, parameter
identification, and self~-optimization algorithms and
increasingly demanding command and control functions, the
required workload may go up at an even faster rate. Since a
multi-processor architecture will always be able to improve
on the throughput of a uniprocessor architecture of the same
state-of-the-art, and since the only thing growing faster
than computer technology is the size of the problems to be
solved, there will always be a need for multi-processor
configurations. The need for better methods to construct
such architectures is the second reason why the
multi-microprocessor approach was selected for this
investigation.

Given then that a multi-microprocessor system is to be
implemented, there are two possible ways in which their
functions can be assigned. As shown in Figure 3, these ways
are "fixed" assignment of processing resources, where the
function of each processor 1is permanently assigned, and
"pooled" processing resources, where processors are
dynamically assigned to each function as the needs arise.
The fixed assignment is inherently simpler to implement and
is adequate for many applications. However, in systems
requiring great reliability and minimum hardware, the pooled
approach offers distinct advantages.
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Figure 4 demonstrates the advantages of the pooled

approach in systems requiring a large number of processing
tasks. The system shown requires six different tasks to be
performed concurrently and that a quad level of redundancy
be maintained. A fixed assignment implementation of this
system (Figure 4a) requires that six processors be
permanently assigned to the six tasks and that three spares
be permanently assigned to each processor. The net result
is a 24 processor system. Figure 4b shows an equivalent
system using a pooled architecture. This system still
requires at least six processors to perform the six
concurrent tasks but the number of spares 1is substantialy
reduced. This is because, since any processor can be
dynamically assigned to any task, the three spares are able
to cover for any three failures in the system. Thus both
systems can tolerate any three random failures but the
pooled architecture requires significantly fewer processors.
It is clear that, as the number of tasks to be performed
increases, this difference becomes even more important.

The argument just presented applies only to systems
where failure detection is provided externally and the only
requirement is to replace a faulty processor with a spare.
For systems which must detect and locate their own failed
processors as well as replace them, the distinction is not
so much in the number of processors saved as it is in the
level of redundancy provided.

For example, Figure 5 shows fixed and pooled
architectures each having 24 processors and providing triad
voting for fault detection and isolation. They each have a
complement of six spares for redundancy purposes, and both
detect and correct faults by comparing the results of Al,
A2, and A3 or Bl, B2, and B3, etc. and replacing the
disagreeing processor with a spare. Unfortunately, in the
fixed architecture when a failure has occurred in a given

11
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task group, no further failures can be tolerated in that

group because its only available spare has been used up.
Thus, the entire system can tolerate only one random failure
with guaranteod integrity of all six functions. The pooled
architecture, on the other hand, can tolerate up to six
random failures because all of its spares are free to be
assigned wherever they are needed throughout the system.

Because of its many benefits and great versatility, the
pooled processor approach was selected for wuse in this
study. Given that decision, and referring again to Figure 3,
there are at 1least three ways of implementing a pooled
processor architecture, These three approaches include
"cold spares", “hot spares", and "continuous
reconfiguration.”™ 1In each case a pool of spare processors
is maintained to replace failed processors. The difference
is in the way that the spares are brought on line.

Cold spares are the simplest approach to the problem.
A pool of idle spares is maintained and, when a failure
occurs, one of the spares is loaded with whatever data and
software it needs to perform the missing function and is
then brought on line. This is an acceptable method when the
system involved is not real-time and a brief interruption
during reconfiguration 1is unimportant. Unfortunately, in
real-time systems the delay involved in "warming up" a cold
spare is often unacceptable and may even be disasterous.

An obvious solution to the cold spare problem is to
maintain a pool of "hot spares."” That is, a pool containing
spares which are already loaded with all the software and
current data needed to come on line immediately after a
failure is detected. One hot spare is maintained for each
function in the system and the remaining spares are left
"cold." When a hot spare switches on line, a cold spare is

13
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"warmed up" to replace it so that a hot spare is maintained
for every function as long as the supply of cold spares
lasts.

The hot spare approach is a great improvement over cold
spares and is entirely adequate for most applications. Its
chief drawback is the large number of spares required to
ensure that every function has its own hot spare. Once a
processor has become a hot spare it is essentially dedicated
to one function. This is contrary to the goal of truly
pooled resources. In addition, although the switch-in time
is much improved, reconfiguration 1is still treated as an
emergency requiring special processing and introducing
delays and reconfiguration transients. What is needed is an
approach which requires a minimum number of spares, produces
no reconfiguration delays, and avoids the dedication of
spares to specific functions. Continuous reconfiguration is
such an approach.

D. THE CONCEPT OF CONTINUOUS RECONFIGURATION

Continuous reconfiguration 1is defined as a scheme
whereby the tasks to be performed in a multi-processor
system are dynamically redistributed among all functioning
processors at or near the minor frame rate of the overall
system. This approach allows continuous spare checkout,
latent fault protection, and elimination of failure
transients due to reconfiguration delay. By treating
reconfiguration as the norm rather than the exception,
failures can be handled routinely rather than as
emergencies, resulting in predictable failure mode behavior.
Using this approach, it 1is projected that the need for
unscheduled system maintenance may be greatly reduced.
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An example of what is meant by continuous
reconfiguration is shown in Figure 6. A system of nine
processors is shown performing six different tasks, A thru
F, during three consecutive time frames. During the first
time frame processor 1 is doing task B, processor 2 task D,
processor 3 is a spare, and so on. In continuous
reconfiguration the tasks are redistributed among the
processors at the beginning of every time frame. For
example, in the second time frame , there 1is an entirely
different assignment of tasks to the processors. This
reassignment is accomplished by having all of the processors
that are currently healthy in the system compete for task
assignments. If a processor fails during any time frame, it
is no 1longer able to compete for task assignments and is
thereby automatically removed from the system. 1In Figure 6,
if processor 4 failed during the second time frame, then
during the next frame, it would not be able to compete for
task assignment. The six tasks which need to be done are

| taken by healthy processors and the two remaining processors

’ become spares (Figure 6c). In other words, a failed
processor simply disappears from the system without any
other processors being aware that it is gone.

i Assuming for the moment that it 1is possible to

‘ implement such a system efficiently, this scheme presents a
number of distinct advantages. These advantages will be
discussed next.

Advantages of Continuous Reconfiguration

The primary motivation for developing a continuous
reconfiguration scheme is to allow a multi-processor system
to detect and recover from random failures with no effect on
its performance. This is a major problem with
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recontiguration in general since the process of shutting

down a failed processor and starting up a spare almost
invariably causes a short delay during which the output of
the system 1is incorrect. This period of time is called a
reconfiguration delay and the result is a failure transient
which can be disasterous at the system output. The main
reason for these delays is that most reconfigurable systems
treat failures as emergencies requiring special actions
which take time. 1In a continuously reconfiguring system,
reconfiguration 1is the norm, not the exception. Task
reassignment is reqularly scheduled at frequent intervals so
that when a failure does occur the system takes it in stride ;
without missing a beat.

Figure 6c shows how this works. In the figure,
processor 4 has failed but the rest of the system doesn't
notice it. The task that processor 4 was performing in the
previcus frame (Figure 6b) has been automatically reassigned
to some other processor and the only effect is the net loss

of one spare. There has been no reconfiguration delay and
therefore no transients due to reconfiguration. This is the
first major advantage of continuous reconfiguration.

Eliminating reconfiguration delay by itself can not
guarantee that there will be no failure transients at the
output. A second source of these transients is failure
detection delay. For example, in Figure 6 processor 4 may
have been generating bad data for some time before its
failure was detected in frame 2. Without continuous
reconfiguration this stream of bad data would go to a single
output device (rudder, aileron, display, etc.) causing a
significant transient in that particular device. With
continuous reconfiguration, the bad data goes to a different
device every frame depending upon which task the processor
is doing at that time. Since real world dynamics are
usually much slower that the computer's frame rate, the
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aircraft will simply not respond to a single sample of bad
data. By moving the bad data around from surface to
surface, failure effects can be kept insignificant until

3 failure detection occurs. This dispersion of failure
effects 1is the second major advantage of continuous
reconfiguration.

A discussion of how to rapidly detect and isolate
failures and how to prevent any bad data from reaching the
system outputs will be presented in Section III when the
triad structure is introduced.

1 A third advantage of the continuous reconfiguration
approach is latent fault protection. Latent faults are a
class of faults that are inherently undetectable because
they produce no noticeable change in system performance or
output. This would seem to be no cause for alarm since a
fault which produces no error would appear to be harmless.
However, a latent fault can be very dangerous if it impairs

the system's ability to tolerate subsequent failures. For
example, if processor K fails in such a manner that its
outputs are correct but it is no longer able to check
processor D, then the system will continue to function
normally while the fault in K remains unobservable. if
processor D should fail, and the system is depending upon K
to detect it, a catastrophic system failure may result. The
continuous reconfiguration scheme avoids the problem because
the processor responsible for checking any other processor
changes with every frame. Thus, no dangerous combination of
failures is allowed to exist for more than one frame at a
time. The possibility of a "deadly embrace" between two
partially failed processors is also avoided.

Finally, continuous reconfiguration allows the constant

checkout of all processors because no processor serves as a
Bpare for more than one frame at a time. 1In an ordinary

18
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recontigurable system, where certain processors are always
spares, there is a danger that one of the spares will fail
; before it is needed. 1If this happens, a disaster may result
: when the failed spare is used in an emergency. The problem
is analogous to changing a tire and discovering that the
spare is flat. By constantly "rotating the tires" in a
continuously reconfiguring system, failures in any processor
can be detected as soon as they occur.

In this section it has been shown that there are four

major advantages to the continuous reconfiguration approach.
These include (1) zero reconfiguration delay, (2) dispersion
of failure effects, (3) latent fault protection, and (4)
continuous spare checkout. Because of these advantages and
their potential contribution to system reliability,
continuous reconfiquration was selected as the method to be
used for managing the pooled multi~-microprocessor
architecture developed in this program. The next section
looks at some of the problems involved in implementing a
continuously reconfiguring system.

controlling A Conti 1y ] c§ X

A unigue approach was taken for controlling the
continuously reconfiguring multi-microprocessor flight
control system. The traditional approach would have been to
have a central controller in charge of assigning tasks,
handling reconfiguration and controlling bus access.
Unfortunately, a central controller introduces the
possibility of a single point failure in the system
requiring redundancy incompatible with the architecture and
reducing the reliability of the continuous reconfiguration
concept.

An alternative to a central controller is the
autonomous control approach. This is a scheme whereby each
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processor independently determines its own next task based
upon the current aircraft state. This can be better
understood by using an analogy. Like the traditional
centrally controlled computer architecture, a company has a
president who has several vice-presidents working for him,
The president has access to all information concerning the
states of the company and an understanding of how the
company should function. He uses this knowledge to allocate
tasks to the vice-presidents and arbitrate any disagreements
that may arise between them. Autonomous control is analogous
to replacing each of the vice-presidents with a clone of the
president, The vice-presidents are now capable of making
the same decisions that the president would have made under
the same circumstances, since each has access to the same
data and would go through the same decision making process
that he would. The need for the president has been
eliminated and he has been replaced by autonomous
vice-presidents. This approach is not practical in the human
world because no two humans think alike. In the computer
world, however, it is a realizable possibility.

Requirements for Continuous Reconfiguration

In order to make continuous reconfiguration of
autonomously controlled processors possible, several
requirements must be satisfied. These requirements include
well-defined task assignment rules, availability of all
system state information to all processors, availability of
all software to every processor, and an efficient bus
contention scheme. The methods used to meet each of these
requirements in the laboratory implementation are covered in
detail later in this report.

The first requirement is for a set of well-defined task

assignment rules. Each of the processors must have an
efficient means of determining the next task that it is
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required to do. There must not be an opportunity for any

processor to conflict with other processors in the system
and cause system failures. The task assignment rules are a
function of the operating system software and are discussed
in detail in Section 1IV.

A second fequirement is that all processors must have
all software. 1In order for a processor to be capable of
doing any system task at any point in time, it must have the
software available to do the task. This may seem
unrealistic at first but the trends in memory technology
indicate that memoury may be expected to double in density
several times in the next five years while 1its cost
continues to decrease. This trend makes supplying all
software to every processor a reasonable exchange for the
benefits offered by the CRMmFCS.

A third requirement of this system is that all
processors must have all data. Since any processor must be
capable of doing any task at any point in time, each
processor must have access to all data concerning the
present state of the aircraft. This requirement has been
met by the development of a virtual common memory
architecture which allows every processor to access any
piece of data by what appears to be a simple read from a
shared common memory. This concept will be discussed in
detail in Section III.

Finally, if all processors are to operate independently

and yet share the same set of data busses for communication,
some method must be found for them to agree on who can talk
on a bus at any given time. Since central control of any
kind 1is not allowed 1in a fully distributed architecture,
this must be done without use of a central bus controller.
The scheme selected must also be very efficient since bus
bandwidth will be at a premium in systems with many
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processors. This requirement for an efficient, autonomous
bus contention scheme was satisfied through a new approach
called "transparent contention.” It will also be discussed
in Section III.

E. SECTION SUMMARY

This section has presented an overview of the CRMmFCS
architecture and the philosophy behind it. The concepts of
continuous reconfiguation, autonomous control, transparent
contention, and virtual common memory have also been
introduced. 1In the next two sections, these ideas will be
discussed thoroughly from both hardware and software points
of view. In the process, every major component of the
CRMmFCS system will be described in enough detail to give
the reader a complete understanding of the overall design.
Numerous references to the appendices will be made along the
way to aid the interested reader in an even more detailed
study of the architecture.
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SECTION III
HARDWARE ARCHITECTURE

A. INTRODUCTION

The CRMmFCS architecture consists of a collection of
autonomous microcomputers interconnected by a set of serial
multiplex busses so that they appear to share one common
memory through which they communicate. This section
presents the details of how the system was designed from a
hardware point of view. Section IV will address the same
subject from a software perspective.

One of the main requirements of the CRMmFCS design was
the elimination of any form of central control. This meant
that processors had to independently determine their own
task assignments and that some means was required to manage
communication without a bus controller. The problem of task
selection was solved with software in the CRMmFCS and is
discussed in Section IV. Autonomous bus control, on the
other hand, had a convienient hardware solution. It is
therefore discussed in this section. .

The CRMmFCS data bus 1is fundamental to the entire
architecture. The need for an autonomously controlled bus
which would act like a common memory influenced the design
of every system component. For this reason, the hardware
elemnents of the architecture will be discussed in terms of
their relationship to the global bus design.

B. DISTRIBUTED CONTROL OF A MULTIPLEX BUS

One of the most fundamental questions which must be
asked when designing a system of autonomous processors is
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how they will communicate with each other. Direct

connection between a large number of processors is clearly
impractical since the number of 1lines required for n
processors is n(n-1)/2, (which rapidly becomes very large).
A common serial multiplex bus is a more reasonable
alternative, but it introduces the problem of bus traffic
control: How does one resolve processor contention for the
bus without resorting to a central controller? This section
presents a promising solution to the problem.

Other Approaches

In order to place this new solution in proper
perspective, it 1is helpful to briefly review several
existing bus control schemes. Three such schemes will be
discussed including a well known central control approach
and two experimental distributed control methods.

The classical central control approach is the MIL-STD-
1553 class of busses. Using this scheme, each bus is set up
with a central controller and every processor in the system
is considered to be a "remote terminal." Any given
processor can talk on the bus only when instructed to do so
by the central controller. This provides secure and
flexible control of global bus resources, hut has a number
of limitations. First, a processor wishing to transmit must
wait until the controller gives it permission, resulting in
some 1inherent throughput delay. Second, there is even more
delay involved for one processor to obtain data from
another., This is because it must request the data through
the controller and wait until the other processor receives
the request, 1looks up the answer, and sends it back.
Finally, the system does not make efficient use of bus
bandwidth because part of the available transmission time is
used up in the overhead of bus control. Thus, the 1553 bus
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is simple and reliable but somewhat limited in performance.
Because it requires a central controller, it also violates
the assumed goal of a fully distributed system design.

It should be mentioned in passing that there are é
1553~-based designs which claim to implement distributed
control (Reference 3). Such claims are true only in a
limited sense. While potential control of the bus may be
distributed in such systems, at any given time there is
still only one central controller operating in the
traditional command/response mode. For the purposes of this
report, distributed control will imply €£free and open
competition for the bus under a set of rules which all
participants obey. At no time is such contention arbitrated
at any central location, even if the location does move
around the system.

There are at least two examples of truly distributed
bus control schemes already in existence. The following
paragraphs summarize some of the interesting features of
each approach but no attempt will be made to cover them
comprehensively. The reader may consult the indicated
references for further details.

4 The.first approach, found in the University of Hawaii
1 "Aloha" architecture (Reference 4), allows processors to
] transmit on the bus any time it is available. 1In the event
that more than one processor starts at the same time, a
"collision" is said to have occurred and they all stop
sending immediately. Each then waits a slightly different
interval before attempting to retransmit. The one which
"times out" first gains access to the bus and completes its
message while all other processors wait until the bus is
once again available.
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This approach avoids the need for a central controller,

but has the limitation that some time 1is wasted while
colliding processors "time out." This becomes serious when
demand for the bus is high and collisions are frequent.

Another approach to distributed bus control is used by
Honeywell (Reference 5). In this approach, all processors
take turns using the bus for a fixed amount of time in a
rotating fashion. If a processor has data to transmit, it
waits for its turn and then sends it all in a burst of some
maximum number of words. If it has nothing to transmit when
its turn arrives, it sends a null word and the system moves
on to the next transmitter. This is a fairly efficient
scheme, although some time is wasted for null messages. The
only real difficulty is keeping track of whose turn it is.

While each of the approaches mentioned above has been
made to work effectively, there are still a number of things
which can be done to improve bus utilization efficiency.
These possibilities include:

(1) Scheduling transmissions to avoid periods of bus
inactivity or overload.

(2) Forming a queue of data to be transmitted in
every processor so that every available micro-
second on the bus is in use.

(3) Making sure there is no wasted time between
transmissions.

(4) Making sure there are no wasted transmissions
due to collisions.

26




(5) Transmitting data when it is gepnerated instead of
waiting until it is needed (thereby reducing

access delays).

These five criteria served as design gquides for the
approach to be presented. In the remainder of this report,
it will be shown how these goals have been achieved using
the concepts of "transparent contention" and "virtual common
memory."

A New Approach to the Problem

This section describes a new approach to autonomous bus
control designed to meet the goals 1listed above. The
following is an overview of how the idea works.

Time on the bus is divided into a series of consecutive
intervals (slots) that are exactly one transmission word
long (32 to 46 bits, depending on word format). At the
beginning of each new slot, all processors compete to fill
the slot with a word of data. The resulting massive bus
collision 1is then resolved using "transparent contention.”
Transparent contention is a scheme which allows collisions
to occur on the bus in a manner such that only one of the
colliding messages survives, All other messages are
automatically suppressed without wasting a single bit of
transmission time. As a result, the slot is filled with one
and only one word and competition moves on to the next
available interval.

As long as there is data available to transmit, this
approach packs data onto the bus with absolutely maximum
density. No time is wasted during transmissions and no time
is wasted between them. One hundred percent efficient bus
utilization has been achieved.
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In order to ensure that there is always data available

for transmission, each processor maintains a queue of words
to be transmitted. As each new piece of data is generated,
the processor places it into a first-in first-out buffer
(FIFO) and "forgets about it." A special transmitter
circuit then emptys the FIFO onto the bus by competing for
time slices with all other transmitters in the system. This
frees the processor from transmission considerations and
ensures a constant flow of data onto the bus.

There are, of course, potential problems with this
approach. If data is not generated fast enough, it is
possible for all buffers to become empty resulting in unused
time slots on the bus. This is of no concern unless there
are other times when too much data is generated resulting in
backlogs and throughput delays. It is therefore important
to schedule data generation in the system such that an even
rate of transmission 1is wmwaintained. A technique for
scheduling data flow is presented later in this section.

All that remains now 1is to explain the details of
transparent contention. The following section discusses how
it can render bus collisions harmless. Subsequent sections
will present details on how to build and use such a system.

C. TRANSPARENT CONTENTION

This section presents the theory of operation behind
transparent contention. While almost any bus configuration
can make use of the idea, one specific design was chosen
because of its ease of implementation in the 1laboratory.
This design is covered first in order to clarify subsequent
discussion of the transparent contention concept.
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The approach selected 1is nothing new. It amounts to

nothing more than clocking data out of one shift register
across a serial bus and into another. What is unigue 1is
the manner in which this process is controlled to prevent
conflicts on the bus between contending transmitters. In
order to understand this process, it is helpful to review
how a single transmitter operates when there is no
competition from other transmitters.

s it] : ion

The essential elements of the bus architecture are
shown in Figqure 7. 1In the figure, three processing modules
are shown interconnected by a common serial bus made up of a
data line and a clock line. Each processing module consists
of an ordinary microcomputer with two I/0 devices including
a broadcaster (B) and a receiver (R). These devices use the
signal on the clock bus to shift data on to and off of the
data bus respectively. The box labeled "T" in the figure is
a bus termination circuit which generates the clock signal
and terminates the bus properly (See Appendix C).

Using this simple bus structure, a word of data is
transmitted in the following manner. The processor wishing
to transmit first places its information in its 1local
broadcaster FIFO. 1If the bus is available (as we assume in
this section), the broadcaster immediately latches the FIFO
output into a serial shift register and shifts it onto the
data bus with each positive-going edge of the bus clock. On
each negative-going edge, a bit on the bus is shifted into
receiving shift registers in every processor. From there,
the complete word is moved into 1local memory in each
processor using direct memory access. This technique will
be discussed later in the section on "Virtual Common Memory
Design."
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The question now arises, "What happens when more than
one processor wishes to use the bus at the same time?" The
answer is simply, "one of them wins." Exactly which one
wins is determined by a special logic circuit in each
transmitter which resolves the conflict. 1Its operation is
described below.

In the first place, access to the bus is granted on a
first-come, first-served basis. While one processor is
actively using the bus, a logical BUSY signal is maintained
which prevents any other processor from initiating a
broadcast (See Appendix A). This eliminates many
conflicts, but sooner or later more than one transmitter
will begin wusing an available bus on the exact same clock
pulse. When this happens, some other method is required to
resolve the contention.

The solution 1is found by observing what actually
happens when two transmitters put data on the bus at the
same time. As shown in Figure 8, each transmitter is
connected to the bus by an open collector transistor buffer.
When a transmitter wants to send a "zero", it turns on its
output transistor shorting the bus to ground. To transmit a

"one" the transistor is turned off, allowing the bus to be
pulled high by the pull-up resistor. As long as all
transistors are turned off, the bus will float at a logic
"iv. If any transistor turns on, the bus will be pulled to

a logic "0" state.

The net result 1is that logic zeros have an inherent
prioriy on the bus. Because a "1" 1is transmitted by
"letting go" of the bus (so it will float high) while a "0"
is transmitted by actively pulling the bus 1low, units
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transmitting zeros will always win out over those sending
ones. It is this characteristic which allows transparent
contention.

The key to the 1idea is that every transmitter
constantly compares what it is trying to put on the bus with
what is actually there. 1In the event of a disagreement, the
transmitter simply stops sending and waits for the bus to
become available again. What makes this approach work is
that when any two transmitters disagree, only one of them
notices and drops off. The other one does not notice
(because it got its way on the bus) and therefore continues
its transmission. No bus time is wasted because one message
is finished without interruption.

At this point an example is helpful. Suppose two
broadcasters begin to transmit on the same clock pulse as in
Figure 9. Transmitter one attempts to send the binary
sequence 01001 while transmitter 2 sends 01101. During the
first microsecond, both pull the bus low and observe a =zero
on the bus. Since that is what they wanted, they continue
to transmit. During the next microsecond, both transmitters
"let go" of the bus allowing it to float high. They each
observe a logic 1 and, satisfied, continue to transmit.
However, during the third interval, transmitter 2 releases
the bus to let it float high while transmitter 1 actively
pulls the bus 1low. They both observe a zero on the bus.
Since that is what number 1 wanted, it continues to
transmit. Number 2, on the other hand, does not get its
desired "one" and concludes that some other transmitter has
pulled the bus 1low. It therefore aborts its transmission
and waits for the bus to become available again.

The net result 1is that transmitter 1 successfully

completes its transmission from start to £finish without
interruption while transmitter 2 aborts as soon as the two
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disagree. No transmission time was lost and, in fact,

transritter 1 was never even aware of its competition.
"Transparent contention” has been achieved.

This concept works equally well for any number of
transmitters in contention. If ten of them start
simultaneously, they all send in parallel until there is a
disagreement. At that time those sending =zeros win while
those sending ones drop off. The remaining transmitters
continue until the next conflict at which time still more
losers drop off. Eventually, only one transmitter is left
and it finishes its transmission, completely unaware of its
nine vanquished competitors.

This approach is based upon the assumption that no two
transmitters wjll ever try to send identical words at the
same time. If fhis coincidence should occur, each processor
would assume that its own broadcast was successful and only
one copy of the word in question would appear on the bus.
This may or may not be tolerable depending upon how
information appearing on the bus is used.

A more significant consideration is the event in which
two words being transmitted fail to disagree until near the
end of the word. At that time the losing processor would
abort its transmission, but only after having wasted its
time sending most of the word. 1In a system with only one
bus this is unimportant since the losing transmitter would
have nothing to do but wait for the bus anyway. But in a
system with n busses (to be discussed next), it is desirable
for a transmitter to find out if it is going to lose as soon
as possible so that it can begin searching for another bus.

If these considerations are important, there 1is a
simple solution. Each transmitter adds its own unique

identification code to the beginning of each message. 1In a
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system with 16 processors, this code would be 4 bits 1long.
Five bits would allow up to 32 processors, and so on. Using
this method, two processors are guaranteed to disagree
within the first 5 bits freeing the loser to seek another
bus. This aproach has the addec benefit that it is possible
to determine which processor initiated each broadcast for

fault isolation purposes.

An Extension to n Busses

The bus structure which has been discussed so far
represents a very simple way to interconnect a large number
of autonomous processors without need of a central
controiler. hHowever, a single bus system of any kind is
generally unacceptable from a reliability standpoint. At
the very least, some form of redundancy is required in order
to avoid a potential single point failure node in the
system. Also, a single serial bus has only a finite
bandwith. A large system of processors exchanging massive
amounts of data can quickly saturate such a bus. The
approach proposed in this report is 1ideally suited for
expansion to as many busses as are needed to meet the
reliability and throughput requirements c¢f nearly any
system. The following paragraphs detail the implementation
and advantages of an autonomously controlled n-bus design.

Figure 10 shows the transmitter interface of a single
processor in a system with four busses (4 sets of clock and
data lines). The circuit is controlled by the box labeled
"transmission control logic." Upon receiving a "START"
signal (from the CPU), this logic instructs the "bus finder"
to "SEARCH" for a free bus. When it finds one, it locks two
data selectors and a data distributor onto the bus (using
its "BUS SELECT" lines) and signals the control 1logic that
it has "FOUND" a bus. The control logic then loads the
shift register with data from the CPU output buffer and
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enables the shift register clock. Data is shifted (using

the appropriate bus «clock) out through the 1 to 4
distributor onto the selected data bus using the same
open-collector transistor buffers shown in Figure 8. As
always, a one-bit comparator monitors the difference between
the shift register (desired) output and the actual output on
the selected bus. If there is ever a miscompare, an "ABORT"
is generated and the transmission control logic instructs
the bus finder to locate another bus. This process
continues until the transmitter is successful at placing its
entire word on the bus, at which time another word is
obtained from the CPU buffer and the cycle begins again.

This bus design has tremendous flexibility. Its
bandwidth is exactly four times that of a single bus and can
be expanded still further with additional busses.
Reliability is also enhanced. Because processor to bus
connections are continuously reconfiguring, selection of an
alternate bus in the event of a failure is instantaneous and
automatic.

There are, however, a few physical 1limitations which
remain to be resolved. The first is that there is a limit
to how many open-collector transistors can be "wire-ored" to
one bus before the sum of their leakage currents pulls the
bus low even if no transistor is on. This 1limit can be
increased using low leakage transistors, but can never be
totally ignored. Noise considerations on such a bus will
also require further research. For the present, the triplex
data approach described in Section IV will be relied upon to
correct for noise-corrupted transmissions. ‘

Another consideration is the effect of bropagation
delays on the output of each transmitter comparator. The

fact that desired and actual outputs match at one 1location




is no guarantee that the same holds true many feet away on

the bus. This problem is avoided for reasonable line lengths
by the manner in which data is clocked onto the bus. Data
is shifted onto the bus on the rising edge of each clock
pulse, but the comparators output is not sampled until the
falling edge. This allows one half of a microsecond for the
data to settle before it is used.

Finally, the open collector transistor implementation
is only one approach to the transparent contention concept.
Any technique where one logic state wins out over another
will work. 1In the case of fiber optic busses, for example,
the presence of light on the bus could be made to win out
over its absence, and so on. For the purposes of concept
demonstration in the laboratory, the wired-or approach has
been shown to work very well.

D. VIRTUAL COMMON MEMORY

Up to this point, discussion has centered around the
transparent contention concept and its physical
implementation. In this section an actual application is
presented, allowing the development of what is called
"virtual common memory."

The Virtual Common Memory Concept

One of the main problems that occurs in the design of
multiprocessor systems is how to distribute and exchange
data efficiently. From a hardware standpoint, the easiest
approach is wusually to connect all processors to a common
serial multiplex bus (Figure lla). This minimizes hardware
complexity and allows expandability, but often involves a
large software overhead. This is because processors must
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exchange data on a "request" or "broadcast" basis, both of
which require special handling by every processor in the
system.

In the "request” mode of operation, a processor that
needs a piece of information simply asks for it on the bus
and receives it from some other processor a short time
later. This means that each processor must constantly
monitor the bus for data requests rather than concentrating
upon the task to which it has been assigned. Because
processors must wait for much of their data, processing
inevitably takes 1longer than it would if all data were
available in local memory at the start of a given task.
Additional processing time is also wasted in responding to
requests for data from other system processors.

The "broadcast" method is an alternate approach to data
exchange where every piece of data is transmitted as soon as
it 1is produced. Each processor then selects from the bus
whatever information it needs to accomplish its current
task. This approach also requires a lot of overhead as each
processor must now constantly monitor the bus for items of
local interest.

Thus, the common serial multiplex bus, while being the
most simple and flexible from a hardware point of view, has
serious drawbacks in terms of software complexity.

The simplest and most efficient approach to
interprocessor communication from a software point of view
is a common memory containing all information required by
all processors (Figure 1lb). 1In such a system, a processor
stores its output in the common memory where it can be
instantly accessed by any other processor in the system.
When one processor needs information from another, it simply
reads it from the common memory without delay.
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Unfortunately, what is ideal from a software standpoint

is difficult to implement in hardware. Serious contention
problems develop when more than one processor attempts to
access the same block of memory. Since each processor must
be connected to the common memory by a complete set of
address and data lines, the hardware complexity is also
large. Finally, system expandability is impaired. 1In a
serial bus system more processors can be added by simply
connecting them to the bus, but there is a limit to the
number of ports available in a common memory. When these
have been used, no more can be added without redesigning the
system,

So, it appears that what is good for hardware is bad
for software and vice~versa., Clearly, a scheme that could
combine the best of both approaches is highly desirable.
Virtual common memory is such a solution.

Virtual common memory is a method for making a serial
multiplex bus look like a single common memory to the system
programmer. As such, it combines the hardware simplicity of
a serial bus with the software simplicity of a common memory
(Figure 1lc¢). In the following paragraphs the physical
implementation of a virtual common memory containing all
information to be shared among processors will be
described.

{rtual C " Desi

This section describes the virtual common memory design
used in the CRMmFCS architecture. The essential features of
this design are shown in Figure 12. 1In the figure, six
processing modules are shown connected by four serial
multiplex busses of the kind described above. This
represents the system actually being constructed at the
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Flight Dynamics Laboratory, although additional busses or

processors could have been included. The number shown is
considered to be enough to demonstrate the overall concept.

In a true shared memory architecture, the common memory
contains all information required by any processor in the
system. This information describes the entire state of the
aircraft, and the memory which contains it is called the
"state information memory" (SIM). When a processor needs a
particular state variable, it accesses a well-defined
location in the SIM. When it generates a variable, it
places it in a specific SIM location where other processors
can find it. No other processing is required for complete
interprocessor communication. A complete discussion of the
SIM concept is presented in Appendix F.

In the virtual common memory design of Figure 12, each
processor is given its own copy of the SIM. To access a SIM
variable it simply 1looks wup 1its own copy. To store a
variable into the SIM, a processor broadcasts it over the
bus and every processor's copy is updated simultaneously.
Since reading from a local copy is the same as reading from
a common one, and since writing to the bus is the same as
writing to a common memory, as far as any processor is
concerned there 1is only one "virtual" common memory being
used by everyone.

In order to make bus transmissions appear to be reads
and writes on a common memory, two special «circuits were
designed. These circuits are described next.

The Transmitter. The transmitter circuit (labeled
"XMIT" in Figqgure 12) was shown in detail in Figure 10. It
is connected to the microcomputer through a two-page buffer
(P1 and P2) which is memory-mapped to the local CPU. These
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pages alternate functions every millisecond so that, while

one of them is being loaded by the CPU, the other is being
unloaded onto the bus. This dual buffer approach ensures
that all data 1is transmitted with no more than one
millisecond delay. 1Its application will be discussed in
greater detail later. Complete details on the transmitter
circuit are given in Appendix A.

The Receiver. The receiver consists of two major
parts including a serial to parallel converting shift
register (SIPO) and a block of random access memory (RAM)
which contains a complete copy of all state information in
the system. This state information memory (SIM) is mapped
into the microcomputer's address space as a block of "read
only"” memory and is accessed by the SIPO outputs as a block
of "write only" memory. Figure 13 shows how this works.

In the architecture under discussion, a word of
transmitted data is 37 bits long. It consists of four bytes
of significant data separated by a zero bit before and after
each byte (see Figure 13). A string of more than eight
consecutive "1" bits on the bus indicates that it is no
longer in use, so zero bits are included between each byte
to ensure that the bus continues to "look" busy in the event
that more than eight consecutive ones occur in the actual
data word.

Once the SIPO has been fully loaded with a 37 bit word
from the bus, the 32 significant bits (excluding the 5§
separating zeros) are loaded onto the address and data lines
of the SIM RAM as follows. The first 5 bits contain the
identity code of the sending processor. These bits were
used only for quick resolution of bus contention and could
be discarded unless it is important to record who sent each
word for fault isolation purposes. (In the CRMmFCS design,
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these bits are in fact saved in the SIM for use by

black-balling algorithms -- see Section IV-D.) The next 11
bits specify the location in the SIM to which this data word
is to be stored. They may be thought of as the name of the
SIM variable and, in this <case, they allow up to 2024
different variables. Finally, the 1last 16 bits of the
transmission contain the value of the variable. These 16
data bits are loaded into the SIM via direct memory access
(DMA). The variable is now available for access by the CPU
whenever it is needed.

While all of this is happening, the SIPO register is
collecting the next word of data as it appears on the bus.
This, in general, begins after nine bus clock cycles (during
which the bus floats "high"). At this time every other
transmitter realizes that the bus 1is no longer in use
(because nine consecutive "ones" have occurred) and
contention for the bus begins again. Thirty seven
microseconds later the SIPO is again full and another DMA
cycle is executed to load its contents into the SIM. Thus,
a word is received every 9 + 37 = 46 microseconds.

In a system with n busses, there are n SIPO shift
registers requesting direct memory access to the SIM. Since
there are 46 microseconds between successive DMA requests
from any one bus, and since current high speed RAM can
handle as many as four accesses per microsecond, it is
theoretically possible for a system to have as many as 4 x
46 = 184 serial busses, each operating at 1 MHz, for a 184
MHz total system bandwidth. Such a system would allow
processors to exchange up to 184 X (1 variable/46
microseconds) = 4 million variables per second.

Of course, connecting 184 shift registers to a single

block of memory is impractical with today's technology, but




if the entire CPU, SIM, transmitter, and receiver were

integrated on a single chip (with only the bus lines brought
out to the pins), such an approach might well be possible,
Until then, a practical 1limit is about 8 busses with a
corresponding bandwith of 8 MHz, Appendix B presents a
complete description of the receiver design.

While the ©potential for high throughput rates is
intriguing, the real usefulness of virtual common memory is
to allow easier programming of processors connected by
serial multiplex busses. The next section shows how a
virtual common memory architecture can be used most
effectively for this purpose.

E. EFFECTIVE USE OF VIRTUAL COMMON MEMORY

Knowing how to use a virtual common memory architecture
can make a big difference in how useful the idea is. This
section discusses the application of virtual common memory
to the CRMmFCS design. This is not the only way to use
virtual common memory, but it does illustrate some important
considerations for effective use of the concept.

In the first place, it 1is important to schedule
transmissions carefully in order to take full advantage of
the data packing capabilities of the architecture. Figure 14
shows how transmissions are scheduled in the CRMmFCS design.

Time in the system is divided into 1 ms frames and all
processors in the system are synchronized to this frame
rate. Since each transmission 1is exactly 46 microseconds
long, and since the transmitters pack data onto the bus with
no wasted time in between, there is room for 1000/46 or 21
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complete transmissions per bus per millisecond. Therefore,

when system software is being written, it is modularized
into 1 millisecond chunks (called "millimodules”) and no
more than 4 x 21 = 84 transmissions are scheduled for any
one millisecond. Since there are 84 slots available in each
frame, this guarantees that every scheduled transmission
will be completed sometime within its assigned millisecond.

Each dot in Figure 14 represents a 46 bit word of data
appearing on the bus. In this example, 22 of the 84
available slots are scheduled for use. At the beginning of
each millisecond, all transmitters compete to place their
part of the scheduled variables onto the bus. Transparent
contention packs these words into one slot after the other
on all four busses until every scheduled word has been
transmitted. Then the bus sits idle until the start of the
next millisecond.

It is, of course, possible to schedule 84 transmissions
per millisecond and never have the bus sit idle. However,
for reliability reasons, it is usually wise to leave enough
unused slots to "take up the slack" in the event that one of
the busses fails. 1In the CRMmFCS design, 42 slots are left
unused in each frame so that the system can tolerate two bus
failures without loss of throughput.

This approach makes processor task scheduling a lot
easier. Because it is known (to the nearest millisecond)
exactly when a variable will appear on the bus, it is also
known (to the nearest millisecond) how soon a task can be
scheduled using that variable. Figure 15 summarizes this
scheduling procedure and illustrates an efficient wvirtual
common memory system in operation.
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The figure is divided into four different rows showing
where variables A, B, C, and D are scheduled to be over a
period of four milliseconds. During the first frame,
variables A and B are shown in row 1 indicating that they
are currently in the SIM and available for use. As a
result, Task 1, which computes C = A + B, can be scheduled
for this frame as shown in row 2. Once C has been computed,
it is placed in the currently active page of the transmitter
buffer (refer to Figure 112) where it remains for the
duration of the frame. Let us assume that this was page 1.

At the end of frame 1, the two transmitter pages are
switched so that page 1 is connected to the bus and page 2
(which was emptied onto the bus during frame 1) is connected
to the CPU to collect any data generated during frame 2.
Now that page 1 is connected to the bus, the transmitter
circuit broadcasts variable C in the first available slot.
This is indicated in row 4 of the figure.

It 1is not possible to know exactly when during frame 2
variable C actually appears on the bus. This is a random
function of when transparent contention allowed the
transmitter to gain access. But since there are more slots
than there are scheduled variables, sooner or later C will
get its chance. It is therefore guaranteed to reach the SIM
in every processor by the end of frame 2. This is indicated
by showing C in row 1 ready for use during frame 3. Task 2,
which computes D = SQRT(C), can now be scheduled for frame 3
and the entire process repeats.

Thus, one of the major goals of the design has been
accomplished: elimination of access delay to global
variables. Because data is broadcast to every processor as
soon as it is generated, it is always available in the SIM
by the time a task is scheduled to use it,
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F. SECTION SUMMARY

This section has presented an overview of the essential
hardware elements of the CRMmFCS. It has also introduced
two new concepts 1in interprocessor communications. The
first is called "transparent contention™ and represents a
method for autonomous processors to share a common bus at
maximum efficiency without need of a central controller. It
has been shown that this approach opens up many new
possibilities for improved bandwidth while avoiding the
pitfalls of single point failures possible in many central
controller designs.

The second concept presented is called "virtual common
memory."” It represents a method of minimizing the hardware
and software involved in interprocessor communications.
While not essential to the concept, transparent contention
was shown to be an ideal method for implementing virtual
common memory in many practical situations.

The next section of this report discusses how the
CRMmMFCS software structure was designed to wutilize the ¥
hardware which was developed in this section.
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SECTION 1V
SOFTWARE STRUCTURE

A. INTRODUCTION

In Section III it was shown how a simple set of serial
busses could be made to look like a shared common memory to
the system programmer. Now that such a system may be
assumed to exist, it is time to show how software can be
designed to take advantage of this new architecture. This
section presents an approach to organizing software which
makes continuous reconfiguration possible and simplifies the
task of programming a multi-microprocessor system, This
approach is one of the major outgrowths of the CRMmFCS
research project.

Programming a system consisting of a large number of
processors can become a formidable task. If one 1is not
careful, task scheduling and synchronization problems can
make system software a nightmare to modify and maintain.
For example, Figure l6a shows how four different processors
might be programmed in a multiprocessor system. Each row in
the fiqure represents what one processor is scheduled to do
during a given time frame and is broken down into a series
of tasks of varying length. As each task is completed a new
one is scheduled immediately, thereby packing as many
functions into one processor as is physically possible.

This approach maximizes the throughput of every
processor in the system but can become very difficult to
synchronize. For example, processor 2 does task A in Figqure
l6a while processor 4 does task B. Processor 3 task C which
is supposed to combine the results of tasks A and B.

However, if task B 1is not completed before task C is
started, then task C will not have the information needed to
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complete its calculations. This possibility can greatly

increase the complexity of the software. A second problem
with this programming technique is that it can be difficult
to modify. If a block of software requires rewriting or a
new algorithm must be added, the timing of the software will
be changed. Since synchronization must be maintained
between certain tasks, this will require revalidation of all
software. One small change can therefore influence the
software of the entire system,

The CRMmFCS design takes a different approach to the
problem as shown in Figure 16b. In the figure, all software
has been divided into a series of standard modules of
uniform size. Tasks A, B, and C (and every other task) are
then rounded out to an integer number of these modules.
This allows control over which tasks are performed during
any given interval of time, so strict synchronization of
tasks can be maintained. Data 1is exchanged only on
boundaries between modules. As a result, the availability
of data for subsequent tasks is known at any given time.
Since all software modules are the same size, they can be
easily interchanged. The following paragraphs discuss this
software structure in greater detail.

B. THE TASK ASSIGNMENT CHART

The approach described above is known as the "quantized
software" approach. It divides all system software into
separate modules of some standard fixed length (in terms of
execution time, not number of instructions). Each of these
modules is then placed in a matrix of functions called a
task assignment chart (TAC). Figure 17 shows an example of
such a chart. 1In the figure, the horizontal time axis 1is
divided into a sequence of individual time slices of some
arbitrary unit length. The vertical axis represents the
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number of processors available in the system with each
additional processor representing a unit increment in
processing power. Thus, the TAC is made up of a matrix of
processing functions one time slice long and one processor
wide. These resource units are called "millimodules" and
each millimodule is said to occupy one "milliframe"” on the
time axis. In the CRMmFCS architecture, a milliframe is
exactly one millisecond long.

Once a standard millimodule size has been selected, all
necessary processing tasks may be assigned to the chart 1in
the following manner. A given task, say F, is first divided
into a group of subfunctions, fl, f2, ... fn, each of which
require at most one millisecond to execute. Each of these
subfunctions is then designated as a millimodule and placed
in a convenient location in the task assignment chart.
Figure 17 shows a variety of ways in which this assignment
can be accomplished.

In the figure, function F (fl1, f2, £3, £4) has been
assigned to processor 7 and executes in four consecutive
time intervals beginning in milliframe 1. Function G (4gl,
g2, g3, g4, g5) executes entirely in parallel requiring five
processors (5, 6, 7, 8, and 9) and only one time slice
(milliframe 8). Function H (hl, h2, h3, and h4) first
generates intermediate results in parallel and then combines
them in processor 4 during milliframe 6.

After milliframe 10 the entire process repeats for the
next iteration of each function. Faster iteration rates may
be achieved by assigning the same function several times in
the same chart as shown for function K (kl) in processor 1.

In a manner similar ¢to the example above, all
processing functions may be broken into millimodules and
assigned to the TAC. As the space fills up, it may be
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readily extended by simply adding more processors along the
vertical axis. Since all millimodules are one standard
size, they are easily manipulated, interchanged, and may
even be dynamically reassigned during real time. This
provides the system designer with great flexibility in
managing his processing resources.

The benefits of this approach are not without cost.
Very few functions will fit exactly into an integer number
of millimodules so some time must be wasted in rounding them
to the next whole module. This requires more processors to
make up for the reduced throughput of less densely packed
software. Fortunately, such a tradeoff is generally
desirable since reduced software costs will usually pay for
the small increase in hardware.

Application of Task Assignment Charts

% This section describes how the task assignment chart
| was applied in the CRMmFCS architecture. Figure 18 shows

the task assignment chart used for one flight control mode.
In this chart, milliframes have been selected to be exactly
~ne millisecond long. Ten consecutive milliframes make up a
minor frame and three minor frames form one major frame.
This major frame repeats continuously as long as the system
is in mode 1. If the mode changes (due to pilot inputs or
changes in flight condition), then a new task assignment
; chart is switched in at a major frame boundry.

The vertical axis has been changed subtly in Figure 18.
Each row still represents a particular set of tasks to be
performed, but there 1is no 1longer a specific processor
associated with each row. In the CRMmFCS architecture,
processor row assignments change with time. As a result,
the vertical axis has been relabeled in terms of task
numbers instead of the processor numbers used in Figure 17.
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Another difference between the generic form of Figure
17 and the application form of Figure 18 is that the latter
is actually a compound chart consisting of both major and
minor frames. This is to allow reconfiguration to occur
every ten milliseconds <(at minor frame boundries) while
maintaining the flexibility of a chart with a large number
of module slots.

Real Ti chart. ] "

Once a Task Assignment Chart has been laid out and all
task sets defined, some method of translating the chart into
executable software 1is required. This is done by storing
the charts in tabular form in every processor's memory.
Figure 19 shows the formation of a "task assignment table"
from the task assignment charts for ten £flight control
modes.

In Figure 19, all system software has been divided into
ten operating modes and presented in a large task assignment
chart. Each mode is further divided into three consecutive
frames with each frame divided into enough tasks for every
processor in the system. Finally, each task consists of 10
millimodules which are executed consecutively by a single
processor assigned to that task. Each task is identified by
its row location within a particular mode and frame.

At the beginning of each new frame, all processors
"renegotiate" their task numbers and then go to the
appropriate mode and frame of the chart to find out which
group of ten millimodules to execute. Exactly how
processors determine their current mode, frame, and task
numbers will be discussed shortly. For now, it will be
assumed that these numbers are "given" in order to simplify
discussion of how they are used in the system.

61




47] 3 J24]19[38] 8 [safo3] 4 [72

a.task assignment table

frame2 frame3

TTTITTITT]

frame 1
mode 1
pointer
{mode,frame, task)
mode 2
mode 10

Figure 19.

b.task assignment charts

Task Assignment Table Generation

62




In Figure 19b, task assignment information was
presented as a series of charts designed to allow easy
manipulation by the system programmer. Once these charts
have been completed, they are reorganized into a single task
assignment table as shown in Figure 19a. This table is just
a four-dimensional array of millimodule call names located
within a block of memory in every processor. Each processor
maintains a pointer in the table to the next millimodule it
is supposed to execute. This pointer is a function of four
variables including MODE, FRAME, TASK, and MODULE. These
variables point to a single word in the table which contains
the call address of the next millimodule to be executed.

Executive software in the system is now very simple.
During one of the milliseconds near the end of each frame,
every processor "volunteers" for its next task assignment.
Using a special autonomous control algorithm (discussed in
the next section) each processor determines its next task
number (TASK). It then looks up the current MODE and FRAME
values in virtual common memory and sets the millimodule
count (MODULE) equal to one. This defines a location in the
task assignment table, TABLE(MODE, FRAME, TASK, MODULE),
which contains the call address of the next millimodule to
be executed. The executive then calls this address and one
millisecond of software is executed on schedule.

When control returns from the current millimodule, the
MODULE count 1is incremented and the address of the next
millimodule is obtained from the table. This address is
called and another millisecond of software is executed.
This continues until ten modules have been completed at
which time all processors volunteer for new task numbers
(causing total system reconfiguration) and the process
begins again. Figqure 20 shows a flow chart which indicates
how simple the process becomes when the task assignment
chart approach is used.
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Multi-Rate Considerations

In the discussion thus far, the task assignment chart
has been described as a schedule of tasks to be performed by
a set of processors over a period of 30 milliseconds. This
schedule is then repeated continuously as long as the system
remains in the same mode. As a result of this
characteristic, every . module scheduled in the chart also
repeats at a fixed rate of once every 30 milliseconds.
Clearly, some technique is required to allow millimodules to
be scheduled at other arbitrary rates.

Figure 17 showed how faster rates could be achieved by
placing the same millimodule (k1) in the chart more than
once. Unfortunately, there 1is only a limited number of
rates for which this will work. Figure 21 illustrates the
problem.

In the figure, millimodule timing over a period of 30
milliseconds 1is shown for the case where a major frame is
only 10 milliframes long. Every 10 milliseconds the entire
process repeats as the system makes three passes through the
TAC. Ten millimodules lébeled A through J are shown
repeating at intervals ranging from every millisecond for
module A to every 10 milliseconds for module J. Inspection
of the chart shows that only modules A, B, E, and J execute
at uniform rates over the entire 30 millisecond period.
This is because only the periods of 1, 2, 5, and 10
milliseconds divide into the major frame period of 10
milliseconds evenly. All other rates do not divide evenly
and therefore lose synchronization at every major frame
boundry. Thus, in a 10 milliframe TAC, only rates of 1, 2,
5, and 10 can be scheduled (without resorting to the
compound millimodule approach discussed later).
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If the major frame length |is increased to 20
milliframes, a larger number of rates are made possible.
These rates include 1, 2, 4, 5, 10, and 20 milliseconds all
of which divide into the major frame rate evenly.
Similarly, for a 30 milliframe TAC rates of 1, 2, 3, 5, 6,
10, 15, and 30 are allowed. Fourty milliframe TACs allow 1,
2, 4, 5, 8, 10, 20, and 40 millisecond iteration rates, and
SO onh. A 30 milliframe TAC was chosen for the CRMmFCS
architecture because it provided the greatest number of
rates while minimizing the size of the required task
assignment tables. This 30 millisecond chart was then
divided into three 10 millisecond minor frames for
reconfiguration purposes. Processors volunteer for one
minor frame at a time and complete a single pass through the
TAC every three minor frames.

c 3 Millimodul

To provide rates slower than the major frame rate, the

concept of a "compound millimodule” must be introduced. A
compound millimodule 1is simply a module which does not
execute every time it is called. A modulo 2 millimodule,
for example, executes only every other time it is called.
By placing a compound millimodule in the chart at some legal
repetition interval (one that will divide evenly into 30),
and adjusting its modulus appropriately, abenlutely any
repetition rate can be obtained. (See Appendix G.)

C. AUTONOMOUS CONTROL ALGORITHMS

Now that the system software has been defined using the
task assignment chart, all that 1is needed is a set of
algorithms to implement autonomous control and continuous
reconfiguration. This section discusses how these
algorithms were designed in the CRMmFCS architecture.




Autonomous Control

Autonomous control is a method for dynamically
3 distributing tasks among a group of processors without using
a central controller. It is defined as "a scheme whereby
each processor independently determines its own next task
based upon the current state of the system". In the CRMmFCS
architecture, every processor has access to all system state
information through the virtual common memory. All that is
needed is an algorithm which uses this information ¢to
determine each processor's next assignment.

In order for a processor to know which row of the task
assignment table (Figure 19a) to execute during a given
frame (reconfiguration cycle), three pieces of information
are required. These include the current system mode, MODE,
the current frame, FRAME, and each processor's own specific
task number, TASK. The values of MODE and FRAME are
continuously updated in virtual common memory by an ordinary
set of millimodules placed in the task assignment chart for

that purpose. 1In general, the values of MODE and FRAME
computed can be complex functions of any variable or set of
variables available in virtual common memory. The specific
portion of the TAC which is executed at any given time can
therefore be made to vary with the instantaneous values of
aircraft flight condition, pilot switch settings,
configuration, and so on.

Since the values of MODE and FRAME may be looked up in
virtual common memory at any time, all that remains 1is for
processors to determine which task they are to perform
within the given mode and frame. This is accomplished
through a process known as "volunteering."
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Yolunteering

If system reconfiguration was not required, it would be
possible to simply assign a different TASK number to each
processor for all time. Each processor would then always
execute the same row in the TAC for every frame and mode 1in
every time period. But reconfiguration is required, not
only in the event of a failure, but continuously in the case
of the CRMmMFCS architecture. Thus, a new value of TASK must
be computed during every reconfiguration cycle.

The algorithm wused to do this computation may be
summarized as follows. At the beginning of each
reconfiguration cycle, every processor does a brief self-
test to determine if it is healthy . If it passes this
test, it volunteers for a new assignment by setting a flag
in the volunteer status table (VST). The VST consists of a
memory location for each processor in the system serving as
the volunteer status flag for that processor. If a flag is
set to "1", the corresponding processor is known to have
volunteered for task assignment. Otherwise, the processor
is assumed to have failed and is not included in the next
reconfiguration.

After all processors have volunteered, each one
examines the VST to determine its next assignment. It
counts the number of healthy processors ahead of it in the
table, assumes they will each take a task, and selects the
next available task number for itself. Figure 22 shows how
this works.

Figure 22a shows the volunteer status table for a
system of ten microprocessors. In the table it may be seen
that processors 1, 2, 4, 5, 7, and 10 have volunteered for
duty while the remaining processors (3, 6, 8, and 9) have
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not. Given this information, every processor in the system

is capable of independently determining its next assignment.
For example, when processor 5 examines the table it finds
that processors 1, 2, and 4 have also volunteered and
presumably taken the first three tasks. It therefore
concludes that it is responsible for task number 4. In a
similar manner, processors 7 and 10 select tasks 5 and 6
respectively.

In the task assignment chart of Figure 22b, there are
only six tasks to be performed by the 10 processors in this
system. If all ten processors were healthy, the first six
would perform the tasks and the remaining four would act as
spares. In the event that a processor fails to volunteer,
all those below it in the table move up one task and the
first spare in line takes over task 6. Four processors have
failed in Fiqgure 22 leaving just enough to do the required
tasks. If one more fails, only the first five tasks in the
chart will be taken and task six will not be done. For this
reason, tasks are placed in the TAC in order of priority so
that the least important ones are dropped first.

Now that the general concept of volunteering has been
introduced, the details of its implementation may be
presented. Figure 22b shows the specific millimodules
involved in making the process work.

Sometime during the first three milliframes of each
reconfiguration cycle, a set of type "A" millimodules are
executed., Each A module is responsible for storing zeros in
all ten locations of the VST to clear it for the next round
of volunteering. Three copies of the module are included
for redundancy purposes to make sure that the table is fully
cleared. During the next three milliframes (whenever it is
convenient for the programmer), every processor spends one
millisecond doing a type "B" millimodule. The function of a
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B module is to do a brief self-check and volunteer if the
processor is healthy. It is the type B module which places
ones in the volunteer status table. Finally, during one of
the last three milliframes 1in each cycle, all processors
execute a type "C" millimodule to determine what task to do
during the following frame. Type C modules examine the VST
and count ones to determine the value of TASK for each
processor. This value and the values of FRAME and MODE from
virtual common memory specify exactly which set of ten
modules 1in the task assignment table (Figure 19a) are to be
executed during the next frame.

Continuous Reconfiguration

The scheme discussed thus far provides a simple method
for achieving autonomous control of task assignment in a
system of pooled microprocessors. It does not, however,
quite meet the requirements of continuous reconfiguratation.
In its current form, task assignments only change when there
is a failure in the system. When all processors are
tealthy, number 1 always gets task 1, number 2 gets task 2,
and number 10 is always a spare. Continuous reconfiguration
requires that task assignments be randomly redistributed
among all functioning processors during each cycle so that
spare checkout and latent fault detection can be provided.
This section discusses how a simple modification to the
current task assignment algorithm can make this possible,

The modification required involves only a slight
change to how module C uses the contents of the VST.
Instead of counting the number of ones between itself and
the start of the table, the count is taken relative to a
"random offset pointer” located somewhere in the table. In
Figure 22a, the random offset pointer is set at location 7
in the table. All processors then compute their next
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assignments relative to this 1location. Processor 5, for
example, begins counting healty processors at location 7 and

concludes that processors 7, 10, and (wrapping around to the
top of the table) processors 1, 2, and 4 are ahead of it
during this frame. Processor 5 therefore takes task 6 for
its next assignment. If the offset pointer had been at 4,
processor 5 would have taken task 2, and so on.

Because the random offset pointer is recomputed every
frame, processor task assignments are continuously
redistributed in a pseudo-random manner. This pseudo-random
redistribution is sufficient to ensure that, over a period
of time, every processor gets to perform every task.
Continuous reconfiguration has been achieved.

There are a number of ways to generate the random
offset pointer. A brute-force approach is to assign three
millimodules (for redundancy) to execute a pseudo random
number routine. These modules would then store their
results in virtual common memory where all processors could
compare them and arrive at a common pointer number,

A more elegant method is to simply wuse the least
significant bits of some rapidly changing state variable
already 1located in virtual common memory. Since all
processors have access to this variable, it is a simple
matter to use it to compute a common offset pointer. This
is the app: ch taken in the CRMmFCS design.

D. RELIABILITY CONSIDERATIONS
Up to this point, very little has been said about how
computational errors are eliminated from the system. It has

been assumed that the rudimentary self checks performed in
the process of volunteering were infallable and that only
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guaranteed healthy processors are ever given tasks to do.

This final section discusses what steps have been taken to
ensure that the system operates reliably.

In the first place, every processor is isolated from
the bus by a "combination lock" called the bus access gate
(BAG). 1In order to gain access to the bus, a processor must
successfuly complete a self check routine ("B" in Figure 22)
during which it generates a combination to unlock the BAG.
Once unlocked, the BAG remains open for 20 milliseconds
until it 1is relocked by a watchdog timer circuit. If a
processor fails to generate a correct combination at
periodic intervals, the BAG will lock it off the bus and
prevent it from volunteering for further tasks. Complete
details on the BAG circuit are present in Appendix A.

A second level of fault tolerance is provided through
the use of triplex data and triad millimodules. Three
processors are assigned to execute each- millimodule by
simply including three copies of each module in different
rows of the task assignment chart. These in turn generate
three copies of each variable which are stored at three
locations in virtual common memory. All processors then
perform a quick vote on each triplex variable when they
obtain it from virtual common memory. In this manner, bad
data 1is suppressed until the processor which generated it
can be eliminated from the bus.

The third level of the "fault filter" involves use of a
virtual common memory black mark table containing every
processor's opinion of every other processor. When a
processor finds a piece of bad data in the virtual common
memory, it adds a black mark against the processor which
generated it., If sufficient black marks accumulate against
a processor from more than three of its peers, its
combination generating algorithm will be unable to produce
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the right combination to unlock its BAG. This prevents the
processor from volunteering for any more tasks and provides
an effective means for a group of processors to "pull the
plug” on a bad one.

A final level of protection is continuous
reconfiguration itself. Because a processor constantly
changes tasks, the errors it may produce never accumulate at
any one output. Instead, they are scattered among all
outputs where they can be suppressed by triplex voting until
the processor is eliminated by black mark accumulation.

E. SECTION SUMMARY

This section has presented a summary of the approach
used to manage software in the Continuously Reconfiguring
Multi-Microprocessor Flight Control System. It represents a
collection of techniques, not all of which are new, that
allow systematic implementation of continuous
reconfiguration and autonomous control while maintaining as
much software simplicity and modularity as possible. The
reader is referred to the appendices for additional specific
details on the various software aspects of the CRMmFCS
design.
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SECTION V
LABORATORY IMPLEMENTATION

Up to this point discussion has centered around the
theoretical design of the CRMmFCS architecture but very
little has been said about the actual laboratory
implementation of the system. This section describes the
prototype multi-microprocessor flight control system which
is currently under construction at the Flight Dynamics
Laboratory.

3 The purpose of the 1laboratory implementation was to

provide a means to test, evaluate, and demonstrate the
L CRMmFCS concepts discussed in the previous sections. Data
gathered from this in-house program will be used to quantify
the extent to which expected benefits and limitations of the
architecture exist. The laboratnry model will also be used

to validate a detailed software simulaticn of the entire
system, This validated simulation will be used to project
the throughput, fault tolerence, and other quantifiable
characteristics of modifications to the baseline hardware
without actually building them.

The in-house facility, shown in Fiqure 23, has been
designed to maximize data gathering, data reduction and
programmability of the system. The basic CRMmFCS
architecture is represented by the bus termination circuit,
real-world interface module, and six processing modules
shown in the fiqure. The remaining blocks represent an
aircraft simulator, a cockpit CRT display, and data
gathering, reduction, and software development facilities.

A processing module consists of a 16-bit microcomputer,

‘ 8K words of memory, and custom engineered transmitter,
receiver, and state information memory (SIM). The custom
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circuitry uses small and medium scale integrated circuits

and is described in detail in Appendices A and B.

The block labeled "68000" is an advanced l16-bit
microcomputer which will be used for a single axis digital
aircraft simulation. It is interfaced through a dedicated
processing module (see Appendix D) to demonstrate one method
of accessing external system components such as sensors and
actuators. A follow-on effort will use an analog computer
to do more complex aircraft simulations.

A Tektronix 8002 microprocessor development system is
also shown in Figure 23. It is used for both hardware and
software development. The 8002 interfaces to the CRMmFCS
hardware by replacing the microprocessor chip in one of the
processing modules with its own connecting cable. This
allows direct control of that module for debugging and
evaluation purposes. It also permits downloading software
to the rest of the system through that module's transmitter
circuitry. The 8002 transmits software over the global bus
to every processing module prior to a simulation run. After
the run, it is used to make software modifications based on
data gathered during the simulation. The new software can
then be rapidly redistributed and the system brought up for
another run.

A Radio Shack TRS-80 microcomputer is wused in
conjunction with a dedicated processing module and custom
serial bus interface to gather data during a simulation run.
The processing module (or SIM monitor) records the history
of specific wvariables in the SIM during each test run and
then transfers the data to the TRS-80 for further
processing. The serial bus interface is used to gather raw
data from each of the four serial busses which the TRS-80
then processes to pinpoint specific problems and to
determine bus utilization and system throughput. The TRS-80
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also controls the RS-232 switching circuit which allows data
and software to be -easily transferred between the major
components of the test system. Further details on data
collection are available in Appendix E.

Also included in the laboratory setup is a
microprocessor-based color graphics diéplay which can be
configured as a cockpit instrumentation aisplay or used to
monitor the system status in real time. The display
contrcller also has a joy stick input which can be used in
more advanced aircraft simulations. The real time display
demonstrates the ease with which the architecture can be
interfaced to other aircraft subsystems. (See Appendix D.)

The Tektronix 4081 is a stand alone minicomputer with
graphics capability and a link to a main frame computer. It
is used for further data reduction and display and for the
development of complex software for the millimodule compiler
and software simulation.
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SECTION VI
CONCLUSION

There are three major potential benefits to designing
a flight control system using the methods described in this
report. The first is expandability as system needs grow.
It 1is a well known fact that from the time the first model
of a particular aircraft rolls off the assembly line until
the 1last one 1lines wup in mothballs, there are inumerable
changes that occur to the system. This causes excessive
increases in cost due to the difficulties of changing
hardware and adding new software to the system. The
CRMmFCS approach has the potential to greatly reduce these
costs. Modularity of both hardware and software should
allow much more expandability.

A second potential benefit is the ibility to reduce
software costs which are the single biggest cost in digital
systems today. By designing an architecture that is
inherently "easier to program, the cost of programming,
maintaining, and updating software should be greatly
reduced. This contributes to a reduction in life cycle
costs.

The third potential benefit is the possibility of
avoiding unscheduled maintenence. With the present
redundant flight control computers, if any component of the

computer has failed the aircraft is not allowed to take off.
As digital technology progresses, it will become practical |
to contiqure the CRMmFCS with as many as one hundred
processors., 1£f only 40 processors are required to
accomplish the necessary processing, then there will be 60
spare processors. A requirement that at least 20 spares be

available when the aircraft takes off leaves 40 processors
that can fail before the aircraft 1is grounded. When
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scheduled maintenence occurs, any failed processors can be
replaced. Since it 1is unlikely 40 processors will fail
between maintenance periods, the 1long sought goal of no
unscheduled maintenance may actually be achieved.
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APPENDIX A

BUS TRANSMITTER DESIGN

In Section III of the report, an overview of the
transmission circuit used by each processor to talk on the
global bus was presented. This appendix presents further
details on the transmitter design as they exist at the time
of this writing. Although subsequent research may change
some of the specifics of this design, it 1is expected to
remain substantially as described below.

Transmitter Function Review

The purpose of the transmitter is to relieve the
prnrcessor from the burden of obtaining access to the bus and
formatting data for transmission. Figure A-1 shows the main
components of the transmitter in block diagram form.

The transmitter works in the following manner. First,
the 1local processor 1loads one of its two output buffers
(Page 1 or Page 2) with data to be transmitted during the
next milliframe. When the next milliframe begins, the block
labeled "transmission control logic" (TCL) takes control of
that page and unloads it onto the global bus. To do this,
it must first locate an available bus. It instructs the
"bus availability detector" (BAD) to locate a free bus and
then unloads one transmission word from the buffer through a
shift register onto that bus. It then tells the BAD to find
another free bus and the process continues until the output
page 1is empty. After that, the transmitter sits idle until
the start of the next milliframe at which time the 1local
processor supplies it with another page of data for
transmission. The following paragraphs describe each of

these steps in detail.
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Transmission Format

In order to understand transmitter operation, it is
helpful to first discuss the format of the transmission
which it generates. Figure A-2 shows that a single
transmission word consists of three parts including (1) a
five-bit source identification field, (2) an eleven-bit
variable name field, and (3) a sixteen-bit variable value
field. Together these three fields add up to 32 bits of
meaningful data in each transmission.

The source identification field is different for each
transmitter in the system. It serves two functions. First,
it identifies which of up to 32 different transmitters
originated the message. This 1is useful for failure
isolation and 1is used by system voting algorithms for
blackballing purposes. The second use for the
identification field is that it makes messages from
different transmitters begin differently. This allows
transparent contention to resolve bus collisions in less
than five microseconds. (See Section III of the report.)

Each transmitter is given its own unique ID at the time
of system assembly. In the CRMmFCS laboratory model, this
is accomplished by burning a different number into the EPROM
(programmable read-only memory) associated with each
processing module. In an operational system, this would
more likely be accomplished through hardware jumpers on each
circuit board or by coding the connectors into which each
board plugs.

The second part of each transmission is the variable
name field. This field determines into which SIM 1location
the variable will be stored. Since the name field is 11
bits long, it can specify up to 2048 different state
variables.
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Finally, the 1last 16 bits of meaningful data make up
the variable value field. This is the actual value stored
in the SIM at the address specified by the address field.
It may be in any format (even part of a floating-point
number} depending upon its application.

Up to this point, only the 32 meaningful transmission
bits have been discussed. The actual format of data
appearing on the bus is slightly different. 1In Figure A-2,
the 32-bit message has been divided into four 8-bit bytes
and a zero has been inserted between each byte. These zeros
are used to make the bus look busy throughout the duration
of the transmission. This requirement is clarified in the

next section.
The Bus "BUSY" Signal

At the time the transparent contention scheme for
autonomous bus control was being developed, a requirement
emerged for independent processors to be able to tell if at
any time a particular bus was being used. Since the normal
state of a wired-or bus when not in use is a continuous
stream of logic ones, a natural thing to conclude when a
zero is observed was that the bus is currently in use. This

fact was used to develop a "BUSY" signal which would allow a
transmitter to instantly determine the availability of any
particular bus.

The BUSY detector is simply a circuit which counts ones
on the data bus and turns off after eight of them have
occurred in a row. Each time a zero is detected, BUSY is
turned on and the count is reset to zero. As long as zeros
occur often enough to keep the ones count from reaching

nine, BUSY stays on and no other transmitter will try to use
that bus. Once a transmission is over, there are no mors
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zeros to reset the detector so it counts on up to nine and

the BUSY signal shuts off. Every transmitter that is
waiting for a bus is then free to try to use it and, through
transparent contention, one of them gains control and
completes another message.

Most 32-bit transmissions (ID, name, and value) are
made up of a fairly well-mixed collection of ones and zeros.
This means that zero bits would usually occur often enough
so that the BUSY signal would stay on during the entire
transmission. Unfortunately, this is not always the case.
For example, if transmitter number 11111 sends variable
number 111 1111 1111 with a value of 1111 1111 1111 1111,
then the transmission would consist of 32 consecutive ones.
After the eighth bit, the BUSY signal would disappear and
other transmitters would be free to transmit right on top of
the last 23 bits of the message. (Actually, the BUSY signal
would not even appear during the first 8 bits because there
were never any zeros to set it in the first place.)
Clearly, some means is needed to set BUSY at the beginning
of every transmission and to keep it set until the end. The
zeros shown inserted between each byte in Figure A-2 perform
this function.

A complete transmission, therefore, consists of 37
total bits including 32 significant bits and 5 zeros spaced
throughout. Each transmission is also trailed by nine ones
which occur as the bus floats high while the BUSY counter
times out in every transmitter. Thus, the effective 1length
of a transmission is actually 46 bits. Using this
definition of word length, CRMmFCS transmitters pack 46-bit
words onto the bus one after another with no wasted time in
between and 100% efficient bus utilization has been

achieved.
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Of course, it is possible to argue that the 9 trailing

ones after each 37-bit message do constitute wasted time on

the bus. In one sense this is true, but on the other handg,
they constitute a very simple and reliable set of "stop
bits" for the transmission. In the future, more
sophisticated circuit designs may be able to optimize this
format, but the basic concept will still remain valid.

The Processor Interface

Now that the format of the transmitter output has been
specified, it is possible to discuss the nature of each
transmitter component. This section describes the interface
between the transmitter and the processor which uses it.

The purpose of the transmitter is to relieve its
processor of the burden of formatting data and obtaining
access to the bus. It was designed to 1look as much as
possible 1like a block of common memory to which the
processor can write. For this reason, the interface between
them has been implemented as a simple shared memory.

As was shown in Figure A-1, the shared memory is
divided into two pages of 256 words each. These pages
alternate functions every millisecond at milliframe
boundries. While the processor writes its output for the
current milliframe to one page, the other page (containing
data from the previous milliframe) 1is wunloaded by the
transmitter onto the bus. This process is controlled by the
transmission control 1logic (TCL) which maintains counters
and pointers to keep track of the data in each page.

Throughout the discussion to follow, the page which is
connected to the processor will be called the "input page"
and the one connected to the transmitter the "output page."




Loading the Input Page

This section describes how a processor fills the input
page with data to be transmitted. The procedure requires
four consecutive writes to the page, one for each byte in
the message (see Figure A-2). The first byte contains the
five source ID bits and the first three variable name bits.
The second contains the remaining eight name bits. Bytes
three and four contain the most significant and least
significant eight wvariable value bits respectively. Since
there are 256 bytes of memory in a page, the current
implementation allows the processor to generate up to 64
four-byte messages per millisecond.

After all messages for a given milliframe have been
loaded, the processor writes one more byte to the input
page. This byte consists of all zeros and serves as a
signal to the transmitter that all messages have been
unloaded. This "end of data" byte is identical to the first
byte of a potential transmission by processor 00000 of a
variable whose name begins with 000. For this reason, no
transmitter in the system is given an ID number of 00000.
That way., when five zeros do occur in the first byte of a
message it can only mean one thing: the end of data in the
output page has been reached.

Unloading the Output Page

While one page is being loaded by the processor, the
other one is unloaded by the transmitter onto the bus. This
section describes how data is removed from the output page
and prepared for broadcast.

Figure A-3 shows a more detailed view of the output

portion of the transmitter. The arrow labeled "cpu data"
represents the eight output lines from the output page of
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the interface buffer. This arrow is shown entering the

inputs of a parallel-in/serial-out (PISO) shift register.
The shift register is actually nine bits long with its first

bit permanently hardwired to a logic zero. The remaining
eight bits contain one byte from the output page.

This configuration allows very simple generation of the
desired transmission format. When the transmission control
logic (TCL) locates a free bus (see next section), it
generates a LOAD command which causes the PISO to load nine
bits (a hard-wired zero and one data byte from the output
page) . It then enables the shift function of the register
and the bus clock shifts these bits onto the data bus. Nine
clock pulses later the shift register is empty and the
control logic loads another nine bits from the output page.
This process repeats four times resulting in 36 bits (4
bytes and 4 zeros) of the message being placed on the bus.
The TCL then allows one final shift from the now empty (full
of zeros) PISO register. This places the 37th bit of the
transmission (a 2zero) onto the bus and the transmission is
complete.

After the last bit of the message has been placed on
the bus, the TCL disables the shift register, increments its
pointer to the next byte in the output page, and instructs
the bus availability detector (Figure A-3) to find another
free bus. This is the subject of the next section.

Bus Availability Detection and Bus Selection

In a previous section of this appendix the bus BUSY
signal was introduced as an indicator of whether or not a
particular bus was in use. This BUSY signal was turned on
by the appearance of a zero on the bus and remained on until
eight consecutive ones occurred. There is a separate BUSY
indicator circuit for each bus in the system.
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The "bus availability detector" (BAD) shown in Figure

A-3 is simply a circuit which monitors the BUSY signal from
each bus. When it is instructed to SEARCH for a bus by the
TCL, it latches its BUS SELECT lines onto the first bus it
finds that is not BUSY. It then signals the TCL that it has
"FOUND" a bus and the TCL transmits one message from the
output page.

The BUS SELECT lines which are set by the BAD circuit
are connected to three selector circuits as shown in Figure
A-3. These circuits include a 4 to 1 clock selector, a 4 to
1l data selector, and al to 4 data distributer. These
circuits are used to connect the transmitter to whichever
bus is to be used for the current message.

The bus availability detector is instructed to find a
new opus after every message. As a result, the messages from
the output page are automatically distributed at random over
every available bus in the system. If one bus fails, its
termination circuit (Appendix C) pulls it permanently low.
This makes it 1look constantly busy so that the bus
availability detector never locks onto it. Every message is
automatically routed onto one of the other working busses.

Transmitter Error Protection

Another function of the transmitter is to ensure that
only good data is placed on the bus. For this reason, a
one-bit comparator constantly monitors what is actually on
the bus and compares it to what is supposed to be at the
PISO register output. If there 1is ever a mis-compare
(caused by noise, hardware failure, or a contending
transmitter) the <circuit genarates an ABORT command which
resets the transmission control 1ogic and causes it to
restart the message whenr it finds another free bus.




In order to prevent false ABORT signals caused by
delays Dbetween the output of the PISO and actual appearance
of a bit on the bus, the output of the comparator is only
sampled on the falling edge of the bus clock. Since the
register output changes only on the rising edge of the
clock, a full clock pulse width (500 ns) is allowed for bus
data to settle before it is used.

When an ABORT does occur during a transmission, one of
two things can happen to the part of the message which has
already appeared on the bus. If the abort was caused by
noise or failure, the immediate halt in transmission leaves
an incomplete message on the bus. Messages which are less
that 37 bits long without all 5 separating =zeros in place
are automatically discarded by the receiver circuit
(Appendix B) and cause no further problems. Aborts which
are caused by disagreement with another transmitter sending
at the same time are also no problem. Since the part of the
message reaching the bus prior to the abort matched that of
the contending processor exactly (or an abort would have

3 occurred sooner), it simply becomes part of the contending
processor's message and remains transparent to the system.
The concept of transparent contention was discussed
thoroughly in Section III of this report.

The Bus Access Gate

? In any system where there is a 1large number of
transmitters using the same bus, there is always the concern
that a failed unit may "babble™ on the bus preventing any
other unit from using it. This section discusses how this
is prevented in the CRMmFCS architecture.

The key to the CRMmFCS approach is a device known as
the "bus access gate™ (BAG). The bus access gate is the
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last output buffer between the transmitter and the serial
data bus. it has the unique characteristic that it can be
disabled by an external 1logic signal. (Almost any
integrated <circuit with a chip enable pin can be made to
work.) In the CRMmFCS design, this external signal is
called UNLOCK. Whenever UNLOCK is true, the BAG is enabled
and data may pass through it from the transmitter to the
bus. As long as a reliable means is provided to generate
the UNLOCK signal, the BAG provides complete protection from
one bad transmitter wiping out an entire bus. The next
section discusses how this vitally important UNLOCK signal
is generated.

Of course, it is possible to argue that the bus access
gate itself may fail and wipe out an entire bus. While this
possibility exists, its probability is sufficiently small
(because of the circuit's simplicity) that it can be
tolerated. For the purposes of reliability analysis, the
BAGs in every transmitter are considered to be integral
parts of the busses to which they are connected. In this
sense, failure of a BAG is synonomous with failure of the
bus itself. Sufficient spare busses (each with its own
independent BAG interfaces to every transmitter) are
provided so that such failures can be easily tolerated.

One final note must be made. It is not good design
practice to make more than one BAG from a single IC package.
Failure of such a package could disable every bus to which
it is connected. For this reason, individual discrete
components are recommended for construction of each BAG in
every transmitter.

Generation of the UNLOCK Signal

Generation of the signal needed to unlock the bus

access gate 1is a relatively simple matter. In every




transmitter there is included a resettable 8-bit latch
connected to the 1local processor as an output port. This
port is referred to as the "combination register.®™ An 8-~bit
comparator constantly compares the contents of this register
with a hard-wired "correct" combination and its output is
used as the required UNLOCK signal. As long as the register
contents match the hardwired combination, the UNLOCK signal
is true and the BAG is allowed to place transmissions on the
bus. If the contents ever fail to match, the transmitter is
locked off of every bus until its processor generates the
correct combination and places it back in the combination
register.

As one final level of protection, a "watchdog timer"
circuit is included in every transmitter which periodically
resets the combination register to all =zeros. When this
happens, a processor must successfully generate and store
the correct combination back in the register before it can
make any more transmissions. In the CRMmFCS, every
processor must unlock its BAGs once every reconfiguration
cycle (10 ms) in order to "stay in business."

This approach provides protection from a wide variety
of possible failures. 1If a processor itself fails, it will
be unable to generate a correct combination periodically and
the entire module will be permanently locked off the bus by
the watchdog timer. 1If the transmitter circuit fails, the
processor will notice bad data accumulating in the SIM and
can deliberately store a wrong combination to lock the BAG.
Finally, if the processor fails only partially (a memory
fault, for example) such that it can still generate
combinations and transmit but some of its results are
incorrect, it is possible for other processors to shut it
down by destroying information in the SIM which it needs to
generate its combination. This procedure is
"blackballing”.

known as
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summary

This appendix has presented the conceptual details of
the CRMmFCS transmitter design. It has shown that the
transmitter contains circuitry which automatically competes
for the bus, formats transmissions, and broadcasts them
while checking for errors and rebroadcasting if one occurs.
Although a working model has already been demonstrated in
the laboratory, detailed schematics have not been included
in this report because the final design 1is still being
perfected. This information will be published in a future
technical report.
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APPENDIX B

BUS RECEIVER DESIGN

Introduction

This appendix contains a detailed description of the
hardware design and the operation of the CRMmFCS receiver
circuit. This circuit is a part of the £flight control
computer architecture which is being constructed in-house at
the Flight Dynamics Laboratory. It was custom designed for
the in-house effort and is implemented with small scale and
medium scale integrated circuits.

Receiver Overview

The receiver consists of two major parts including a
serial to parallel shift register (SIPO) and a block of
random access memory (RAM) which contains a complete copy of
all the state information in the system. This state
information memory (SIM) is mapped into the microcomputer's
address space as a block of "read only" memory and is
accessed by the SIPO as a block of "write only" memory.
Figure B-1 shows how this works.

The in-house CRMmFCS implementation utilizes four 1 Mhz
data busses for data transfer and a TI-9900 microcomputer as
the processing element. A block diagram of the receiver

i circuit is shown in Figure B-2, There are four identical
[ bus receiver and control logic circuits designed to receive
information from a data bus using the corresponding clock
bus to synchronize data reception. The direct memory access
(DMA) controller handles contention for the state
information memory (SIM) between the receiver and the
TI-9900 microcomputer.
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Data Format

In the architecture under discussion, a word of
transmitted data is 37 bits long and consists of four bytes
of significant data separated by a zero bit before and after
each byte (see Figure B-1). A string of more than eight
consecutive "1" bits on the bus indicates that it is no
longer in use, so zero bits are included between each byte
to ensure that the bus continues to look busy in the event
that more than eight consecutive ones occur in the actual
data word.

Bytes one and two in Figure B-1 consist of five bits of
source identification indicating the processing module which
originated the transmission and an 11l-bit wvariable name.
The variable name 1is the address of the actual memory
location in the SIM where the data is to be stored. Bytes
three and four contain the variable data to be stored in the
SIM.

Bus Receiver_ and Control Logic

The bus receiver (Figure B-2) consists of a 19-bit
serial in parallel out (SIPO) shift register, one 1l1l-bit
latch for the address, and one 16-bit latch for data. Data
is continually shifted into the SIPO by the bus clock.

Byte one and two boundaries (Figure B-1) are detected
by monitoring bits 1, 9, and 18 of the incoming data stream.
When these bits are simultaneously zero, as discussed in the
section on data format, the receiver control logic
immediately latches the ID and address inform.tion into the
16-bit data latch and the address information into the
11-bit address latch. After the information is latched,
bits 1 through 17 of the SIPO are set to ones allowing the
next 18 bits of information to be received. Wwhile new data
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is being received, the DMA controller stores the ID/address
information in the designated SIM 1location and increments
the address by one. The DMA controller will be discussed in
detail later,

Bytes three and four of the data word (Figure B-1) are
shifted into the SIPO while the DMA controller is emptying
the data latch. When the control logic again detects zeroes
simultaneously at bits 1, 9, and 18 of the 1incoming data
stream the information is 1latched into the 16-bit data
latch. The address latch is unchanged this time. After the
information is latched, bits 1 through 17 of the SIPO are
set to ones and the receiver is then ready to receive a new
ID, address, and data transmission.

Direct Memory Access Controller

The function of the direct memory access (DMA)
controller is to transparently store data in the state
information memory (SIM) as it becomes available from the
receivers. It must also transfer information requested by
the processing element (TI-9900 microcomputer) to the
TI~9900 data bus at the proper time in the TI-9900 read
cycle (see Figure B-2),

A priority encoder circuit is used to start the DMA
cycle. The TI-9900 read signal is given the highest
priority and the four receiver circuits are arbitrarily
assigned the next four priorities. When a receiver buffer
becomes full, it sends a logic one control signal to the
priority encoder circuit. The priority encoder then
activates the output corresponding to the highest priority
input and disables further inputs until the end of the DMA
cycle. The remaining inputs stay active until they have
been serviced. The DMA controller detects the priority
encoder output and enables the address and data bus of the
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indicated receiver and generates a memory write «cycle for
the SIM. Upon completion of the write cycle, the DMA
controller resets the "receiver buffer full" indicator for
the receiver which has just been serviced and enables the

priority encoder circuit.

The DMA controller is designed to transparently service
the TI-9500 no matter when the TI-9900 read request signal
becomes active. This capability is achieved by using high
speed memory in the SIM. The memory was chosen so that a
DMA cycle is less than 300 nanoseconds. The TI-9900 memory
read cycle is 660 nanoseconds. Therefore the DMA controller
can complete a memory write cycle and still have enough time
to service the TI-9900 read cycle.

Conclusion

The receiver «circuit and SIM concept allows a large
amount of information to be made available to the processing
element in a multi-processor system. The processing element
can treat the SIM as local memory and access any information
it requires immediately. Also, it is conceivable that much
higher data rates could be achieved with the receiver as it
is presently implemented. Taking into account the maximum
access rate of the TI-9900 the maximum total bandwidth of
the receiver circuit is nearly 50 Megabaud. Calculating the
bandwidth assuming it is not necessary to store the
ID/address information and a 1lower access rate from the
TI-9900 indicates a maximum possible bandwidth approaching
184 Megabaud.
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APPENDIX C

BUS TERMINATION CIRCUIT

The bus termination circuit is an integral part of the
CRMmFCS ‘"smart" bus design. A "bus" actually consists of a
data bus, a clock bus, and a bus termination <circuit (see
Figure C-1)}. The bus termination circuit serves four
purposes. It terminates the data bus, monitors the clock
and data busses for faults, generates the clock for the
clock bus, and generates a milliframe synchronization pulse
every millisecond.

B Termi : i Fault [ £

Both ends of the data bus are terminated at the bus
termination «circuit. The wired-or data bus is terminated
with pull-up resistors for impedance matching. This
minimizes ringing on the bus and helps to suppress noise. A
monitor circuit checks both ends of the bus for faults. 1f
a fault occurs the bus termination circuit disables the data
bus and corresponding clock bus. A timer <circuit 1is then
initiated and after 100 microseconds an attempt is made to
restart the bus.

The bus termination circuit drives the clock bus with a
one megahertz clock signal. The clock supplies the timing
for data transmission over the data bus by the processing
modules in the CRMmFCS. Both ends of the «clock bus are
terminated at the bus termination circuit so that the clock
bus can be monitored for faults. As with the data bus, if a
fault 1is detected the bus termination circuit disables both
the clock and data bus and initiates a restart attempt after
100 microseconds.
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Each bus termination circuit generates a frame
synchronization pulse every millisecond. The pulse pulls
the clock bus low for 5 microseconds. A missing pulse
detector is used by each processing module to detect the
frame synchronization pulse. This pulse synchronizes the
processing modules to millimodule boundaries.

In the laboratory implementation, four sets of data and
clock busses are used. The frame synchronization pulse of
each bus termination circuit is internally tied to each of
the other three bus termination c¢ircuits. Each bus
terminator has a voting circuit which forces its
synchronization pulse to be generated when two other bus
terminator circuits simultaneously generate a frame
synchronization pulse. The voting circuit acts as a master
reset, synchronizing the frame synchronization «circuits.
The processing modules wuse a similar voting <circuit,
requiring that two frame synchronization pulses occur
simultaneously before the millimodule boundary is accepted.

The voting circuits are wused to maintain system
sychronization while protecting the system from certain
faults. For example if one frame synchronization pulse
occurs at sporadic intervals the voting circuits prevent it
from causing erroneous millimodule sychronization. Also, if
the frame synchronization pulses occur at slightly different
intervals the voting circuits will prevent the pulses from
becoming slewed in time with respect to one another.
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APPENDIX D

PEAL VIORLD INTERFACE

This appendix addresses the problen of how to interface
the CRIRPCS system to the outside world. Up to this point,
it has more or less been assumed that all data needed by the
system processors is somehow already available in the state
information matrix (SIM). It has also been assumed that
results stored in the SINM would somehow be able to influence
the operation of other aircraft systems and control
surfaces. In the following paragraphs a plan will be
presented for interfacing the CRMmFCS to aircraft sensors,
actuators, and displays. A discussion of how this technique
will be demonstrated in the laboratory is also included.

Smart Sensors and Actuators

The key to the approach 1is the assumption that all
sensors, actuators, and displays will be "smart." That is,
every device has associated with it a processor of
sufficient power to perform the necessary conversions of
real world signals to and from virtual common memory
format.

For example, every sensor has an associated processor
which knows how often to sample its output, what signal
processing to do, and where to place the resulting
information 1in the state information matrix. For this
reason, each sensor processor must have its own transmitter
in order to broadcast the information into the virtual
common memory where any other processor can access it. It
may also be desirable to give each sensor processor a
receiver «circuit so that it may access the SIM for
information on the current aircraft mode, flight condition,
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blackball table, and other data which may influence the
sensor processor's performance.

Similarly, each actuator, display, or other output
device has an associated processor which controls it. This
processor accesses the SIM for information on what it is
supposed to do and uses other SIM information to accomplish
it. For this reason, each output processor must have a
receiver circuit to access the SIM. It may also be
desirable for it to have a transmitter so that it can report
on its own health and the state of its output device.

In the most general case, each sensor, actuator, and
display could have its own dedicated processor and
transceiver circuitry interfacing it to the CRMmFCS global
bus. Each device and its processor would then be considered
to be a single peripheral unit and failure of either part
would result in shutdown of the entire unit. System
redundancy and fault tolerance capability would then be
designed at the unit level.

This is not at all, however, the only configuration
allowed in the CRMmFCS. It is equally possible to have one
very large and powerful and reliable "real world interface
processor" responsible for sampling all sensors, controlling
all actuators, and doing all associated processing. It
would then be necessary to use only one transmitter and
receiver pair to interface to the real world.

In actual practice the system designed will probably
lie somewhere 1in between the two extremes described above.
Each sensor may be connected to several processors and each
processor may be able to perform several different I/0
(input/output) tasks depending upon system requirements.
The important thing is that, no matter how the real world
devices are sampled or controlled, they may be easily

107




llllllllIIIIlIIIIIlIlllllIIIlIIIIIIIIIIIIIIIIIIIIlIIIIII::f'f-!::::===I.....................Il.

interfaced to the CRMmFCS through a standard transmitter and
receiver pair. Even an external MIL-STD-1553 multiplex bus
may be interfaced if one of its remote terminal processors
has a CRMmFCS transceiver.

Laboratory Implementation

In the CRMmFCS laboratory prototype, only two 1I/O
processors will actually be implemented. This is enough to
demonstrate the concept while minimizing research costs. It
is also enough to allow testing of an extention to the task
assignment chart approach which will be discussed in the
next section,

The two I/0 processors which will be constructed in the
laboratory .will include an aircraft interface unit and a
pilot interface unit. The aircraft interface processor
(Figure D-la) will be connected to a real time demonstration
of aircraft dynamics and sensor/actuator characteristics.
It will be responsible for sampling simulated sensor outputs
and providing control commands through simulated
digital-to-analog converters connected to simulated aircraft
actuators.

The pilot interface processor (Figure D-1b) will serve
two functions in the CRMmFCS prototype. First, it will
sample a joystick input to allow reseachers to "fly" the
system through a variety of maneuvers., This will allow an
evaluation of system response and provide a certain amount
of "hands-on" capability for demonstration purposes.

The pilot interface processor will also drive a CRT
disp'ay, performing all the functions necessary to generate
graphic and alphanumeric output. The display will operate
in two modes., The first allows real-time readout of any
combinaton of SIM variables. This is expected to be very
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useful ror debugging, testing, and evaluating system
performance during actual operation rather than waiting
until the run is over to study the <collected information.
The second display mode will generate a simple vertical

situation display for hands-on demonstration purposes.

1/0 Processor Software

Software for the CRMmFCS 1/0 processors will be managed
in the same manner as for the rest of the system. Tasks
will be divided into millimodules and a separate task
assignment chart (TAC) will be used to schedule them. Vhen
a particular sensor 1is sampled will depend upon where its
millimodule is placed in the TAC. Actuator and display
updates will also be controlled by TAC scheduling.

Operating system software will change slightly for I/0
processors because continuous reconfigquration will not be
required. Since I/0 processors may differ widely in
capability (from powerful minicomputers for complex displays
to simple 4-bit microprocessors for solonoid and relay
control) and since different processors may be connected to
different devices, constant redistribution of tasks among
them will be impractical. For this reason, each processor
will execute only one fixed row of the 1/0 TAC for each
system MODE,

Of course, it is possible to visualize a system where
every real-world signal 1is connected to every processing
module (perhaps through a common motherboard). If this were
true, then the control TAC and the I/C TAC could be combined
and any processor in the system could perform absolutely any
task. For now, however, separate task assignment charts and
specialized I/0 processors appear to be the more practical
approach.
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Data Flow Scheduling

The single biggest reason for taking a task assignment
chart approach to I/0 processing is to allow control over
the scheduling of data flow on the bus. 1In Section III-E,
it was shown how a "data flow assignment chart" could be
used to prevent bus overloads and maximize bus utilization
efficiency. It was also shown that there was a definite
bandwidth limitation which allowed a maximum of 88 variables
(in the current four 1 MHz bus configuration) to be placed
on the bus per millisecond. 1If there is to be a slot on the
bus for every variable generated, then this limit must not
be exceeded. For this reason, I/0 processor transmissions
must be included in the overall system data flow assignment
chart. The use of an 1I/0 task assignment chart with
synchronized milliframes greatly simplifies this scheduling
problem.
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APPENDIX E

DATA COLLECTION CIRCUITS

Introduction

In the design of any laboratory experiment, some means
must be provided for collecting the necessary data. This is
especially true if the experiment is a new micro-electronic
system design where most of the data of interest consists of
voltage levels which change in the sub-microsecond range.
If anything other than the most simple input/output
observations are to be made, some means must be provided for
automatically collecting and processing selected data
wherever it occurs. This appendix describes the provisions
which have been made for data collection in the CRMmFCS
laboratory implementation.

Data Collection Reqguirenpents

There are three major requirements for data collection
in the CRIImFCS. The first is the ability to monitor what is
going on 1inside the processing module itself. Some means
riust be provided to observe the processor's data and address
lines continuously as it executes instructions and transfers
information to and from memory. This function 1is provided
by a Tektronix 8002 llicroprocessor Development System which
will be referred to as the "PM monitor."

A second requirement 1is some means to monitor traffic
on the global data bus. A mnajor part of the CRMmFCS
research involves the precise timing and scheduling of large

anounts of data on the bus by a great many free~running
independent transmitters. Ilulti-trace storage oscilloscopes
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and high speed logic analyzers are helpful for part of this
requirement, They can be used to measure voltage vs. time
relationships and even many bit patterns but they fall short
in one important area. There is a need to be able to record
every bit that appears on the bus over an extended period of
time and then process that information to put it in a form
more usable to the human researcher. To meet this
requirement, a special "bus monitor" circuit was developed.
It will be discussed later in this appendix.

Finally, there 1is a very important need to be able to
monitor all of the state variables in the system as they
change with time. The state information matrix (SI!i) stored
in virtual common memory contains this data which changes
constantly as information surges back and forth across the
global bus. The "SIM monitor" circuit allows the sampling
of any state variable or group of variables over very long
periods of time at a variety of rates., It is data from the
SIM monitor which is used to plot the time response of every
variable in the CRMmFCS.

The PM Monitor

The Tektronix 8002 1is a piece of laboratory test
equipment designed to help develop and debug microprocessor-
based systems. It plugs into the system under test using a
ribbon cable in place of the system's own microprocesor chip
and then emulates that chip to the extent that the system is
totally unaware of the replacement. Everything operates as
usual except that now the 8002 ic capable of displaying
every instruction executed and every bit of data manipulated
by the particular module to which it is connected.

The 8002 allows the user to take over complete control
of any processing module in the CRMmFCS system. Data
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collected may be sent to a CRT screen, to a line printer, or
stored on disk for future reference. Since the 8002 meets

every requirement specified for a P!l monitor, no custom
designed circuits were necessary for this part of the data
collection system. All that was required was a simple
ns-232 data 1link to send the collected data to the
post-processor for analysis. The post-processor will also

be discussed later in this appendix.

The Global Bus Honitor

The purpose of the bus monitor is to record every bit
of data appearing on each of the four global busses
implemented in the laboratory design. Figure E-1 shows 1its
essential features.

Data Collection. The bus monitor consists of four 32K
memory boards (Bl1, B2, B3, and B4) which are connected to

the four global busses via four custom serial to parallel
conversion circuits (SIPOs). Each <circuit collects data
from a bus eight bits at a time and stores it using direct
memory access (DMA) into its corresponding 32K memory bank.
A counter is incremented after each store operaton to point
to the next available location in memory. When it reachés
32K (32768), the counter overflows to zero and the circuit
either stops collecting or continues to c¢ount overwriting
previously stored wvalues until it is halted by an external
command. (Which option occurs is wuser selectable.) In
either <case, the net result is that each bank of memory is
loaded with 32768 consecutive eight-bit samples of what
appeared on its corresponding bus during the last run. This
amounts to 262,114 bits of bus data or just over 0.26
seconds worth of transmission time.
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While on the surface 0.26 seconds does not seem to be
very much time, it actually allows the collection of an
enormous amount of data. During that interval, the CRMmFCS
has completed nearly 9 iterations of its control laws and
has reconfigured over 26 times. This is more than 1long
enough to determine what the bus monitor was designed to
find out: when and where data appeared on the bus, if any
faulty or incomplete transmissions occurred, and the
efficiency with which the bus is being used.

Data Analysis. Once a 0.26 second "picture" has been
taken of the bus by the SIPO circuits, some means is
required to access and analyze the data stored in each
memory bank. A Radio Shack TRS-80 microcomputer is used for
this purpose.

Referring again to Figure E-1, each 32K buffer (Bl, B2,
B3, and B4) is memory-mapped into the upper half of the
TRS-80's address space. By storing the appropriate number
in an output port, the TRS-80 can access any buffer in a
bank-select fashion. The information in each buffer may
then be processed, displayed, stored on 1local five-inch
floppy disks or transferred to a Tektronix 4081
mini-computer for further processing, mass storage, or
high-resolution plotting. This post-processing of data will
be discussed later.

The SIM Monitor

The third major piece of data collection equipment is
also a custom circuit called the SIM monitor. It 1is
responsible for recording the time histories of selected
system variables over the duration of each test run.
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The SIM monitor 1is just a standard processing module
which has been modified to contain two receiver circuits and
no transmitter. Its sole function is to listen to the bus
and transfer variables of interest from the SIM to its own
local memory. Two receivers have been provided so that one
can listen to the bus while the other is being copied into
local memory. Every millisecond, the receivers alternate
functions allowing the local processor that much time to
examine what the contents of the SIM were at the end of the
previous millisecond.

The SIM monitor may be programmed by the TRS-80 to
sample any number of variables in the system at any number
of rates. The only limitation is the number of words a 9900
microprocessor can transfer per millisecond and the size of
its local memory.

The SIM monitor is programmed from the TRS-80 keyboard.
Prior to a run, the operator uses an interactive program
(written in TRS-80 Basic) to select which variables are to
be recorded and the rate at which they are to be sampled.
After a run, the processing module dumps its 1local memory
through a parallel poft to the TRS-80 for processing,
storage, and display. The final section of this appendix
discusses how this data is processed.

Post-Processing

The TRS-80 microcomputer is the heart of the CRMmFCS
data collection system. It is connected to the bus monitor
through memory mapping, to the SIM monitor through a
parallel port, and to the 8002 PM monitor via an RS-232
interface (Figure E-2). Unfortunately, the TRS-80 has only
limited processing, storage, and graphics capability. For
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this reason, it was relegated to the role of data
collection system manager and operator interface console.
Through the TRS-80 and its custom designed RS~232 switching
circuit, the entire CRMmFCS laboratory system can be
controlled.

One of the devices connected to the TRS-80 by the
RS-232 circuit is a Tektronix 4081 minicomputer. The 4081
is a stand~alone 32-bit computer with hardware floating
point, hard disk storage, and superb graphics capability.
All data collected in the system is routed to the 4081 for
reduction, storage, and hard copy plot generation. It may
also be routed from there to a CDC Cyber mainframe computer
for even more processing and the generation of
report-quality Calcomp plots.

Summary

This appendix has described the major components of the
CRMmFCS data collecton and reduction system. This system
consists of three data collecton devices (including PM, Bus,
and SIM monitors), a TRS-80 system manager, a custom RS-232
switching circuit, and a 4081 post processor. All of these
~devices have been integrated into a single system designed
to maximize the amount of information which can be obtained
in the 1laboratory. Since the main reason for building a
working model of the CRMmFCS was to generate this data, the
development of an effective means to colilect and analyze it
is every bit as important as the const-uction of the flight
control system itself.
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APPENDIX F

STATE INFORMATION MATRIX THEORY

This appendix discusses the state information matrix
(SIM), a concept which is fundamental to the design of the
entire CRMmFCS architecture. The SIM 1is defined as "an
n-dimensional array containing the current best estimate of
all information available about the state and environment of
an aircraft." It is designed to help manage the wealth of
real time information available to a modern flight control
system,

The SIM contains information about traditional state
variables (rates, velocities, positions), cockpit switch
settings, target states, air data, telemetry data, aircraft
model parameters, and raw sensor data. It also includes a
sufficient number of their past values to implement any
required difference equations.

The state information matrix may be visualized as a set
of post office "rnigeon holes," As shown in Figure F-1,
there is a separate cell for every piece of information
known about the aircraft and its environment. Some cells
contain only static information which never changes (such as
aircraft dimensions and numerical constants). Others
contain discrete information which only changes when a
switch 1is thrown or a new mode is selected. Still others
contain information that is continuously updated at a

variety of rates.

There is nothing particularly revolutionary about the
state information matrix. The concept of a state vector has
been around for a long time. The state information matrix

simply extends the concept of state (traditionally reserved
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The State Information Matrix




for positions, rates, and accelerations) to include all
information about the system. It also extends the
dimensionality of the representation from a one-dimensional
vector to an n-dimensional array.

A special case of the SIM, called the state-time form,
is wuseful for introducing the concept. The state-time form
is just a two-dimensional array of past and present state
vectors. Figure F-2 is a generic example of the state-time
form.

In the figure, the vertical axis contains each state
variable of interest and the horizontal axis contains the
vast n values of each variable. Conceptually, this matrix
is of infinite dimension along both axes. However, due to
hardware limitations and actual requirements, it is
necessary to implement only enough of it to keep track of
variables of practical interest.

; . he Stat E tion Matri

Now that all available information has been collected
in one conceptual place, all that is necessary is to develop
an effective way to process, distribute, and use it. This
is the topic to be addressed next.

The processing which is required for a typical flight
control system may be broken down into three general types:

Type 1: Processing raw sensor signals to obtain
usable input data. (Signal conditioning,
scaling, filtering, etc.)

Type 2: Processing current input data and past
state information to obtain a best
estimate of current state information.
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(Estimation, parameter identification,

analytic redundancy, observers, etc.)

Type 3: Processing past and present state information
to obtain the required control signals for
all onboard systems. (Aero surfaces,
displays, telemetry, etc.)

This partition divides the required processing into
three sets of independent functions that (1) obtain data
from all available sources, (2) squeeze all possible
information out of that data, and (3) use this information
to generate the "best possible" control signal for every
onboard system. If these functions are shown in their
relationship to the state information matrix, what results
is a processing structure of the form shown in Figure J-3.

In the figure, £ is a set of vector functions of
Type 1. These functions process row sensor data to generate
the elements, s, of the SIM that are functions of current
sensor
inputs only. The set of functions, h, (of Type 2) generate
the remaining variable elements, x, of the SIM as functions
of s and past values of x. The entire SIM is then used by
a set of Type 3 functions, g, to generate the control
output signals required by all aircraft systems,

This simple partition is important because it allows
the separation of all processing into functions that are
independent of each other and that require only simple
interactions with the state information matrix. Using this
approach, all functions in each of the three sets are (by
construction) completely decoupled and may be designed
independently by experts in each area. For example, sensor
designers can be asigned the task of developing the
individual f functions for each particular sensor subject
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compatible with the SIM. Similarly, control experts can
design their algorithms knowing that the best possible
estimate of every required state variable is readily
available at a well-defined location 1in the state
information matrix.

This Aapproach can also have a high payoff in terms of
maintenance and modification throughout the 1life cycle of
the system. If a new and better estimation algorithm is
developed, for example, it can simply replace the old
algorithm and use the same inputs (or any other information
in the SIM for that matter) to generate the same outputs for
deposit to the same locations in the SIM. No other
functions are affected or even notice the change, except
that now some of the variables they are getting from the SIM
are of higher quality.

This modularity, as always, is the key to conquering
any large-scale design task. Modularity of software 1is a
well-known and proven concept., Partitioning of processing
into £, g, and h functions operating on a common set of
data may enable a designer to take advantage of this fact.

. {buti the State Inf ion M .

Up to this point it has more or less been assumed that
the state information matrix is a set of "pigeon holes"
somewhere with a label for every piece of information and
the £, g, and h functions busily updating the contents of
every hole. This is strictly true only for a standard
uni-processor architecture where a section of memory may be
set aside for exactly this purpose. For multi-processor
architectures 1like the CRMmFCS, some other approach is
necessary. The following paragraphs discuss some of the
ideas that were evaluated in the development of the CRMmFCS
architecture,
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Single Copy / Multi-Access. It is possible to

implement a multiprocessor architecture in which all
processors share a common memory which contains the state
information matrix (Figure F-4). While this approach may be
the most straightforward, it has serious problems in terms
of bus contention and throughput. This is because only one
processor can access the memory at any one time.

Multi-Copy / Multi-Access. A brute force solution

is to replace the single common memory with n common

memories where any memory can be used by any processor

(Figure F-5). This solves the contention problem and even

provides a measure of inherent redundancy. However, it

introduces the new problem of how to ensure that all

memories contain the same current information. The cost,
é weight, and complexity of this method are also large.

i Distributed Data Shared on Request. This is a common

method used in many existing multiprocessor systems. Each
processor has a portion of the SIM s:tored in its own local
memory (Figure F-6). If a processor requires a piece of
information not in its own memory, it simply asks for it and

receives it over the bus a short time later. This method is
simple and works well for many applications, but it runs
into difficulty when large numbers of processors make bus
contention a problemn.

u Broadcast Data Vector. Using this technique, the
entire state information matrix is transmitted, one value at
a time in a specific order, over the bus at periodic
intervals (Figure F-7). Frocessors listening to the bus
collect the variables they need as they come by and store
them in 1local memory for use when needed. This makes
maximum use of the bus bandwidth because no variable names
need to be transmitted. Each variable is identified simply
by its order of occurrence in the transmission.
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Virtual Memory Emulation. This architecture is the
one which eventually evolved into the CRMmFCS design. Each

processor is given its own copy of the SIM which it accesses

for all required data (Figure F-8). When a processor needs
to update the SIM with a new value, it does not store it to
the SIM directly. Instead, it broadcasts the value onto the
global bus where it is received simultaneously by all SIM
copies (including its own). Thus, storing to one SIM is the
same as storing to all of them and reading from a local copy
is the same as reading €from any SIM (because they all
contain the same data). This means that, as far as any one
processor is concerned, there is only one SIM that is being
transparently accessed by every processor in the system.

sSupmary

Regardless of how the state information matrix is
distributed, it is important that it remain transparent to
the application software. As far as anything but the
operating system is concerned, the SIM is simply stored in a
virtual common memory somewhere and accessed directly by a
specific address or variable name (Figure F-9). This makes
programming applications software very simple and allows the
power of modular top-down programming techniques to be
employed. It may be seen from the discussion above that the
SIM concept is applicable in any application from
conventional to the most exotic.
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APPENDIX G

MULTI-RATE MILLIMODULE DESIGN

In Section IV~-B of this report the concept of the task
assignment chart (TAC) was introduced and it was shown how
tasks could be scheduled to execute at a variety of rates.
This appendix provides further elaboration on how this is
done.

For the task assignment chart to be generally useful,
it should allow millimodules to be executed at any arbitrary
repetition rate. Since execution of the TAC repeats after
every pass through 1it, every millimodule in the chart is
guaranteed to repeat at the major frame rate of the system.
If the major frame 1is only one minor frame 1long (10
milliframes), then a given millimodule in the chart will
repeat once every 10 milliframes (a rate of 100 Hz in the
CRMmFCS architecture).

Figure 17 showed how faster rates could be achieved by
placing the same millimodule (kl) in the chart more than
once a periodic intervals. Unfortunately, there is only a
limited number of rates for which this will work. Figure
G~1 illustrates the problem,

In the figure, millimodule timing over a period of 30
milliseconds is shown for the case where a major frame is
only 10 milliframes long. Every 10 milliseconds the entire
process repeats as the system makes three passes through the
TAC. Ten millimodules labeled A through J are shown
repeating at intervals ranging from every millisecond for
module A to every 10 milliseconds for module J. Inspection
of the chart will also show that only modules A, B, E, and J

135




OVIL SWeIITTITIW-USL e I03J sajey I[qrssod

*1-9 2anbrg

(sw) @)es uonnadal

¢ swel}|——Z swesj}— sweay
Jofews Jofew Jofew
OC 62 9T LT 9T ST YZ CZ TZT 1T 0T 6L 8L 4L 9L SL PL €L ZL LL OL 6 8 £ 9 § » € T ?E.QE:
r r Clo
i 11 1 i
H H H H H H|s
9 9 9 D 9 ).
4 3 4 4 4 F10
a 3 3 | 3 Als
a a a a a a a a al»
) 0o e o0 ) o o 1) o o) Ol¢
—a—a—a—a—a—4a—a—a—a—8 jnln|nlnln e
V-V-V-V-V-V-V-V-V-V{V-V-V-V-V-V-V-V-V-V{V-V-V-V-V-V-V-V-V-¥]:
ybnoayy ssed ybnouy; ssed ybnouy) ssed
- pnpa]  puoses] 1811

136




execute at uniform rates over the entire 30 millisecond

period. This is because only the periods of 1, 2, 5, and 10
milliseconds divide into the major frame period of 10
milliseconds evenly. All other rates do not divide evenly
and therefore lose synchronization at every major frame
boundry.

For example, module C correctly executes in milliframes
l, 4, 7, and 10. However, when the second pass through the
chart begins at milliframe 11, module C is forced to execute
immediately (because it is always located in the first
column of the chart) and fails to execute at its correct
time during milliframe 13. A similar problem exists for
modules D, F, G, H, and I. Thus, in a 10 milliframe TAC,
only rates of 1, 2, 5, and 10 can be scheduled (without
resorting to the compound millimodule approach discussed
later).

If the major £frame 1length is increased to 20
milliframes, a larger number of rates are made possible.
These rates include 1, 2, 4, S5, 10, and 20 milliseconds all
of which divide into the major frame rate evenly.
Similarly, for a 30 milliframe TAC rates of 1, 2, 3, 5, 6,
10, 15, and 30 are allowed. A 40 milliframe TAC allowus 1,
2, 4, 5, 8, 10, 20, and 40 millisecond iteration rates, and
so on. A 30 milliframe TAC was chosen for the CRMmFCS
architecture because it provided the greatest number of
rates while minimizing the size of the required task
assignment tables, This 30 millisecond chart was then
divided into three 10 millisecond minor frames for
reconfiguration purposes. Processors volunteer for one
minor frame at a time and complete a single pass through the
TAC every three minor frames.
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Conmpound [lillimodules

Up to this point it has been shown how repetition
intervals of 1, 2, 3, 5, 10, 15, and 30 can be obtained by
simple placement of millimodules in a 30 milliframe TAC.
This section briefly discusses how absolutely any repetition
rate can be achieved using the technique of "compound
millimodules."

A compound millimodule is simply a module which does
not execute every time it 1is called. A modulo-2
millimodule, for example, executes only every other tire it
is called. !lodulo-3 modules execute every third call, and
SO on. By placing a compound millimodule in the chart at
some legal repetition interval and adjusting its modulus
appropriately, absolutely any repetition rate can be
achieved.

For example, if a repetition rate of six milliseconds
is desired for a particular millimodule, it may be placed in
the TAC every 3 milliseconds and given a modulus of two. It
will then execute every second time it 1is called at the
desired six millisecond rate. Alternatively, the module
could have been scheduled every 2 milliseconds with a
modulus of 3 or a modulo-6 module could be scheduled every
millisecond. 1In general, it is desirable to minimize the
modulus of every millimodule because each time a module is
called but not executed an entire millisecond is wasted in
the chart. A modulo-19 module wastes 18 milliseconds for
every 1 millisecond of productive execution time.

- . - 3 Millimodul

Once it has been decided to create a compound
millimodule in order to achieve some special repetition
rate, some method is needed to tell the module that it is
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compound. This may be accomplished through the wuse of a
"modulius count variable" (MCV). There is a separate INCV
associated with every compound millimodule. This wvariable
tells the module how many times it has been called since the
last time it executed its low-rate task. It is located in
the SIM where it can be accessed by whichever processor is
responsible for executing the module during a given nmninor
frame.

When a compound millimodule is executed, it first checks
to see if its MCV has reached its maximum count (the modulus
of that module). If it has reached maximum, the module
resets it to zero (by broadcasting on the bus) and then
executes its assigned low-rate task. If it has not, then
the module increments it one count (by broadcasting on the
bus) and marks time without doing anything until the
millisecond is over. The net result is that the assigned
task is executed once every M calls where M is the modulus
of the millimodule.

Another variation to the compound millimodule design
; attempts to make use of the M-1 milliseconds in each
low-rate iteration during which the module only marks time.
This approach interlaces 11 diffferent low~rate tasks so that
one of them (depending upon the I[ICV) gets executed every
# time the module is called. While this method may be used in
! special circumstances, it is not recommended because it
makes the task assignment chart less readable and introduces
complexities that are contrary to the goal of very simple

software.
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