
AD-AlOI 412 AIR FORCE WRIGHT AERONAUTICAL LAOS WRIWT-PATTERSON AFS ON4 F/O 9/2
A ONTINUOUSLY RECONIGURING MULTI-MICROPROCESSOR FLIGHT CONTRO-f*C (U)

MAY 61 S J LARINER, S L MAHER N
UNCLASSIFIED AFAT57 Nflllfffflllfff
I1 EhE EEEEEEhomhohhohhohEE
EEEEEEEEEEoohEI
mEEEohhEEEEEEE

AFWAL-TR-81-3070

! A CONTINUOUSLY RECONFIGURING MULTI-MICROPROCESSOR

M FLIGHT CONTROL SYSTEM

Stanley J. Larimer, Captain, USAF
Scott L. Ma.her, First Lieutenant, USAF

MAY 1981

Final Report for Period August 1979 to March 1981

Approved for public release; distribution unlimited.

j FLIGHT DYNAMICS LABORATORY
', AIR FORCE WRIGHT AERONAUTICAL LABORATORIES

AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

1- 7 13 311

NOTICE

When Government drawings, specifications, or other data are used for any
purpose other than in connection with a definitely related Government pro-
curement operation, the United States Government thereby incurs no respon-
sibility nor any obligation whatsoever; and the fact that the government
may have formulated, furnished, or in any way supplied the said drawings,
specifications, or other data, is not to be regarded by implication or other-
wise as in any manner licensing the holder or any other person or corpora-
tion, or conveying any rights or permission to manufacture use, or sell any
patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASDIPA) and
is releasable to the National Technical Information Service (NTIS). At NTIS,
it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

SCOTT L. MAIER, iLt, USAF STANLEY J
Project Engineer Project Engineer
Control Data Group Control Analysis Group
Control Systems Development Branch Control Dynamics Branch

EVARD H. FLINN, Chief RONALD 0. ANDERSON, Chief
Control Systems Development Branch Control Dynamics Branch
Flight Control Division Flight Control Division

FOT E COA*ANDER

ROBERT C. ETTINGE1j Colonel, USAF
Chief, Flight Control Division

"If your address has changed, if you wish to be removed from our mailing
list, or if the addressee is no longer employed by your organization, please
notify AFWAL/FIGC, W-PAFB, OH 45433 to help us maintain a current mailing
list".

Copies of this report should not be returned unless return is required by
security considerations, contractual obligations, or notice on a specific
document.
AIA FORCE/56780/23 Jun. 1981 - 510

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

,- REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
RE R DBEFORE COMPLETING FORM

I REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENTS CATALOG NUMBER

AFWAL-TR-81-3k7Q _
7

________'___ovAS
° SC

k. TITLE (and Subtitle) S./ . *5.- IPl OF REPORT A PERIOD COVERED

.A CONTINUOUSLY JRECONFIGURING MULTI-MICROPROCESS Final R pe~t-

FLIGHT CONTROL SYSTEM 1 Aug 1079 -- 30 Apr]W81 .

S. PERFORMING ORG. REPORT NUMBE4

, AUTHOR(S) S. CONTRACT OR GRANT NUMBER(e)

Stanley J. Larimer, Captain, USAF -

Scott L.lMaher First Lieutenant, USAF 4

9. PER;ORMING ORGANIZATION NAME AND ADDRESS SO. PROGRAN ELEMENT. PROJECT, TASK

Flight Dynamics Laboratory (AFWAL/FIGC) AREA& WRK UNIT NUMBERS

Air Force Wright Aeronautical Laboratories (AFSC) Program ement,: 62201FProj e c t : 2 403 1 1 -7 " -o.
Wright-Patterson AFB, Ohio 45433 Task: 02 Work Uni. " 44

1,. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

j'- May 181
13. NUMBER o"AGES

148 . .
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS. (of this report)

UNCLASSIFIED
IS.. DECLASSIFICATION DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

'7. DISTRIBUTION STATEMENT (of the *betract entered In Block 20, It different from Report)

IS. SUPPLEMENTARY NOTES

19. KFY WORDS (Continue on reverae aide if necessary and identify by block number)

Uig'tal Control Systems Reconfiguration

Multi-Microprocessor Distributed Systems
Flight Control Systems
Distributed Control

ABSTRACT (Continue ot reverse side if necessary end Identify by block number)

Recent research at the US Air Force Wright Aeronautical Laboratories (Flight
Dynamics Lab) has resulted in the development of a promising microprocessor-
based flight control system design. This system is characterized by a collec-
tion of cooperatively autonomous distributed microcomputers interconnected by
an arbitrary number of common serial multiplex busses. Each processor in the
system independently determines its assignments using a simple algorithm that

(continued)

DD JA m7, 1473 EDITION OF I NOV 65 IS OBSOLETE N

SECURITY CLASSIFICATION OF THIS PAGE (*%*. Data Entered)

* - / .

SECURITY CLASSIFICATION OF THIS PAGE(Wen DataEnlered)

dynamically redistributes system functions from processor to processor in a
never-ending process of reconfiguration. This approach offers several benefits
in terms of system reliability, and the architecture in general incorporates
many state-of-the-art features which promise improved system throughput, expand-
ability, and above all, ease of programming

The Continuously Reconfiguring Multi-Micropro ssor Flight Control System
(CRMmFCS) represents a major data point in multiprocessor control system
research. Promising ideas from a variety of ref rences have been included and
integrated in its design. Its laboratory impleme tation provides a demonstra-
tion of these ideas for improving throughput, relibility, and ease of pro-
gramming in flight control applications.

* - j"

SECURITY CLASSIFICATION OF THIS PAGE(When Dal Entered)

FOREWORD

The research described in this report was performed
in-house at the AFWAL Flight Dynamics Laboratory during the
period from September 1979 to March 1981. It is the result
of a joint effort between members of the Control Systems
Development Branch (AFWAL/FIGL) and the Control Dynamics
Branch (AFWAL/FIGC) of the Flight Control Division.

Work began in this area in late 1978 when the Control
Systems Development Branch initiated a work unit called
"Multi-Microprocessor Control Elements" (24030244). During
this time, Lt. James E. May, Lt. Scott L. Maher, John Houtz,
and Capt. Larry Tessler laid the foundation for a study of
how growing microprocessor technology could be applied to
the problems of modern flight control. It was decided to
design and build some form of fully distributed
microprocessor-based flight control system in order to
explore the potential problems and benefits in great
detail.

In September 1979, Lt. Scott Maher took over as
Principal Investigator and Capt. Stan Larimer joined the
program as the Associate Investigator from the Control
Dynamics Branch. In the months that followed, Maher and
Larimer developed what has come to be known as the
"Continuously Reconfiguring Multi-Microprocessor Flight
Control System" architecture. Steve Coates, Richard
Gallivan, and Tom Molnar also provided invaluable input to
the research during this phase.

During the summer of 1980, Mr. Harry Snowball (Control
Data Group Leader) and Mr. Evard Flinn (Control Systems
Development Branch Chief) decided to intensify efforts to
develop this new architecture. They hired four new
engineers including Bill Rollison, Ray Bortner, Mark Mears,
and Stan Pruett to work on the project. They also assigned
technician SSgt. Jeff Lyons and co-op students Dan Thompson,
Russ Blake, and Bob Molnar to assist with the R&D activites.
At the same time, Mr. Dave Bowser (Control Analysis Group
Leader) and Mr. Ron Anderson (Control Dynamics Branch Chief)
increased FIGC support by assigning Lt. Allan Ballenger to
act as an architecture and control law consultant on the
project. In 1981, Lt. Jack Crotty joined the program as a
software designer thereby completing the CRMmFCS team.

The authors would like to thank these individuals for
their many contributions to the success of this program.
Bill Rollison was responsible for the design, development,
construction, and testing of the transmitter and receiver
circuitry. Ray Bortner designed the real-world interface
processor and helped to develop the CRMmFCS control laws and
corresponding aircraft simulation. Mark Mears was

iii

responsible for the haidware and software design of the
entire data collectfcn and processing network for the
CRMmFCS laboratory implementation. Stan Pruett invented a
unique five-port RS-232 communications controller which
allows all systems in the laboratory to communicate with
each other. He also assisted in the development of CRMmFCS
processing module software and programmed the TRS-80 to act
as controller for the entire laboratory system.

Lt. Allan Ballenger was responsible for development of
the real-world plant simulation and overall control law
design. He also organized a national workshop on
multi-processor flight control architectures which provided
a vital link with others working in the field. Tom Molnar
served as a technical consultant and work unit monitor for
the proaram. Lt. Jack Crotty was responsible for the
development of all CRMmFCS software. Dan Thompson provided
the original design for much of the TMS-9900 software used
to implement the CRMmFCS operating system.

Rick Gallivan was responsible for the development of a
real-world simulation on a Motorola 68000 microprocessor and
provided logistics support for the program. Steve Coates
handled the construction of the entire laboratory setup and
h-lped to develop a real time graphics display for the pilot
interface. Jeff Lyons designed and constructed the first
working bus termination circuit. Russ Blake and Bob Molnar
provided drafting and breadboarding support for many of the
laboratory components.

The authors would also like to express special thanks
to Art Eastman and Dave Dawson for their outstanding work in
designing and producing the many figures which appear
throughout this document. Carl Weatherholt, Rudy Chapski,
and Bill Adams also provided invaluable support in the
laboratory. Many thanks also go to Pam Larimer, Jan
Robinson, and Dave Bowser for their assistance in the
preparation of this report.

Finally, the authors wish to express their appreciation
to Mr. Vernon Hoehne, Lt. Allan Balienger, and Tom Molnar
for their considerable efforts in reviewing the technical
report.

This report covers work performed from September 1979
through March 1981. It was submitted by the authors in May
1981.

iv

TABLE OF CONTENTS

I. INTRODUCTION 1

II. OVERVIEW 3

A. Overview of the CRMmFCS Architecture 3

B. Design Philosophy 5

C. Evolution of Continuous Reconfiguration . . . 7

D. The Concept of Continuous Reconfiguration . . 14

Example of Continuous Reconfiguration . . 15

Advantages of Continuous Reconfiguration . 15

Controlling A C. R. System 19

Requirements for C. R 20

E. Section Summary 22

III. HARDWARE ARCHITECTURE 23

A. Introduction 23

B. Distributed Control of a MUX Bus 23

Other Approaches 24

Improving Bus Efficiency 26

A New Approach to the Problem 27

C. Transparent Contention28

Transmission Without Contention 29

Transmission With Contention 31

An Extention to n Busses 36

D. Virtual Common Memory 39

The Virtual Common Memory Concept 39

Virtual Common Memory Design 42

E. Effective Use of Virtual Common Memory 48

F. Section Summary 53

v

TABLE OF CONTENTS (concluded)

IV. SOFTWARE STRUCTURE 54

A. Introduction 54

B. The Task Assignment Chart 56

Application of Task Assignment Charts . . 59

Real Time Chart Execution 61

Multi-Rate Considerations 65

Compound Millimodules 67

C. Autonomous Control Algorithms 67

Autonomous Control 68

Volunteering 69

Continuous Reconfiguration 72

D. Reliability Considerations 73

E. Section Summary 75

V. LABORATORY IMPLEMENTATION 76

VI. CONCLUSION 80

APPENDIX A. Bus Transmitter Design 82

APPENDIX B. Bus Reciever Design 97

APPENDIX C. Bus Termination Circuit Design 103

APPENDIX D. Real World Interface 106

APPENDIX E. Data Collection Circuitry 112

APPENDIX F. State Information Matrix (SIM) Theory . . 120

APPENDIX G. Multi-Rate Millimodule Design 135

REFERENCES 140

vi

LIST OF ILLUSTRATIONS

1. Major CRMmFCS Architecture Components 4

2. Virtual Common Memory 6

3. Breakdown of Possible Architectures 8

4. Fixed vs. Pooled Designs with Equal Redundancy . . 10

5. Fixed vs. Pooled Designs with Equal Numbers 12

6. Continuous Reconfiguration 16

7. Essential Architecture Elements 30

8. Transmitter-Bus Interface 32

9. Bus Contention Arbitration 34

10. Transmitter Circuit 37

11. Evolution of Virtual Memory 40

12. Physical Implementation of Virtual Memory 44

13. Receiver Block Diagram 46

14. Bus Transmission Scheduling 50

15. Data Flow Assignment 52

16. Approaches to Task Scheduling 55

17. A Generic Task Assignment Chart 57

18. CRMmFCS Task Assignment Chart 60

19. Task Assignment Table Generation 62

20. Executive Flow Chart 64

21. The High-Rate Task Scheduling Problem 66

22. Volunteering and the Volunteer Status Table 70

23. Laboratory Implementation 77

vii

LIST OF ILLUSTRATIONS (concluded)

A-i. Transmitter Block Diagram 83

A-2. Transmission Format 85

A-3. Transmitter Circuit 90

B-I. Receiver Functional Diagram 98

B-2. Receiver Block Diagram i. 100

C-i. Smart Bus Configuration 104

D-1. Real World Interface Processors 109

E-1. Bus and SIM Monitors 115

E-2. Data Collection and Post-Processing Circuitry 118

F-i. The State Information Matrix 121

F-2. The State-Time Form 123

F-3. State Information Matrix Processing 125

F-4. Single Copy / Multi-Access Architecture 129

F-5. Multi-Copy / Multi-Access Architecture 130

F-6. Distributed / Shared Information Architecture . . 131

F-7. Broadcast Data Vector Architecture 132

F-8. Virtual Memory Emulation 133

F-9. Virtual Memory Equivalent 134

G-1. Possible Rates for a Ten-Milliframe TAC 136

viii

SECTION I

INTRODUCTION

The use of microprocessors in flight control

applications is a subject which has received much attention

in recent years. Microprocessor technology is growing

rapidly and there is a strong desire to take advantage of

it. This report presents the results of several years of

research performed at the Flight Dynamics Laboratory into

how microprocessors might best be used for flight control

applications.

Microprocessors appear to have two major areas of

application to the flight control problem. These may be

termed "the low end" and "the high end." In the low end

approach, microprocessors are distributed around the system

in a dedicated fashion wherever a small amount of processing

power is needed. In this mode, microprocessors are

relegated to the role of "smart" peripherals to some central

computer system. This application has been demonstrated

with considerable success in many currently flying aircraft.

By performing many of the repetitive, time intensive

functions such as keyboard monitoring, sensor preprocessing,

display generation, and inner-loop control, microprocessors

can relieve the central computer of much of its

computational load so that it can concentrate on what it

does best: number crunching, system management, and

outer-loop control. Since the low end application has been

demonstrated in many operational systems and its utility is

generally unquestioned, it will not be discussed further in

this report.

The "high end" application for microprocessors is a

much newer field of research. It is concerned with how to

use microprocessors as a distributed, multi-processing

replacement for the central computer itself. Since the goal

of this research program was to investigate the potential of

microprocessors for flight control and not to design a

working model for near-term application (where a more

conservative approach would be necessary), it was decided to

attempt the most ambitious (and most promising) application

of microprocessor technology: "a fully decentralized,

continuously reconfiguring, self-healing, adaptive, pooled

microprocessor-based flight control system." The result was

the development of an architecture known as the

"Continuously Reconfiguring Multi-Microprocessor Flight

Control System" (CRMmFCS).

This report presents the results of research to date in

the development of the CRMmFCS. Section II gives an

overview of the architecture and the philosophy behind it.

Section III presents a detailed discussion of the hardware

aspects of the architecture while Section IV does the same

for software. Both sections represent virtually stand-alone

discussions of their respective topics at a level which is

as thorough as possible without sacrificing readability.

Technical details which are of use to the reader only after

a complete study of the architecture have been removed to

the appendicies. Finally, Section V describes the actual

laboratory implementation and test procedure which will be

used to demonstrate the architecture. The results of these

tests will be published in a subsequent technical report.

2

SECTION II

OVERVIEW

A. OVERVIEW OF THE CRMmFCS ARCHITECTURE

The CRMmFCS design centers around a system of

autonomous microprocessors connected by a common set of

serial multiplex busses. These processors operate in a

pooled configuration where any processor can perform any

task at any time. Furthermore, task assignments are

continuously redistributed among all processors in a

never-ending process of reconfiguration. If a processor

fails in the system, it is simply left out of the next

reconfiguration cycle and the system continues to operate as

if nothing has happened. All of this is accomplished

without use of a central controller.

A diagram of the architecture is shown in Figure 1. In

the figure, six processing modules are shown connected to a

set of four common data busses. Each data bus consists of

one clock and one data line and information is transferred

between processors using a simple serial multiplexing

scheme.

Processors in the system compete for access to the

busses without central traffic control using a technique

called "transparent contention." Transparent contention is

a scheme which allows any processor to talk on any bus at

any time. In the event of a "collision" between two

transmissions only one message survives while the remaining

one is automatically retransmitted as soon as the bus is

free. Transparent contention provides one hundred percent

efficient bus utilization, eliminates most communications

overhead, and completely avoids the need for a central

controller. It is discussed in detail in Section III.

3

E C,

E
u.
C,

~ft - - -I-

IL C.)

MBA.
2 :...

0-

In addition to competing for the bus, processors also

compete for the right to perform tasks in the system.

During every time frame all processors "volunteer" for the

tasks to be done in the following frame. These tasks are

then divided by mutual agreement among all functioning

processors in the system, again without needing a central

controller.

Because tasks to be performed are redistributed at the

beginning of each frame, the task any particular processor

performs is changing all the time. The system is said to be
"continuously reconfiguring." Continuous reconfiguration

has a number of important advantages over other approaches.

These include automatic recovery in the event of a failure,

constant spare checkout because no unit acts as a spare all

the time, latent fault protection, and zero reconfiguration

delay. A complete discussion of continuous reconfiguration

is presented in Section IV.

Finally, although processors communicate only via

simple serial busses, the architecture is configured so that

they appear to share a single common memory as shown in

Figure 2. This virtual common memory contains all

information available about the state and environment of the

entire system. Processors obtain the information needed for

any task from the virtual common memory and place their

results back there for use by other processors. Complete

details on how a set of serial busses can be made to act

like a common memory are presented in Section III.

B. DESIGN PHILOSOPHY

Before beginning a detailed discussion of the

Continuously Reconfiguring Multi-Microprocessor Flight

5

Figure 2. Virtual Common Memory

6

Control System (CRMmFCS) it is desirable to briefly discuss

the design goals and philosophy which lead to this

architecture. The original objective of this in-house effort

was to develop an Air Force understanding and capability in

the area of multi- microprocessor flight control systems. It

was determined that a high risk - high payoff approach could

be taken in an effort to advance the state-of-the-art while

achieving the original objective. The approach taken was to

trade off low cost hardware for simplified software and to

distribute system control to its extreme in order to study

the extent to which its potential advantages could be

achieved. Other goals were to reduce overall hardware,

software, and life cycle costs of flight control systems

while maintaining high reliability and fault tolerance.

Design considerations also included expandability for

integrated control applications and reconfigurability to

meet future self-healing requirements.

C. EVOLUTION OF CONTINUOUS RECONFIGURATION

Figure 3 shows a breakdown of some of the possibilities

that exist for implementing digital control systems in

general. Starting at the top of the figure, it may be seen

that digital control systems can be broken down into either

uni-processor of multi-processor systems. The distinction

here is not so much whether there is one or more than one

processor in the system, but rather whether there is more

than one processor performing different functions. A system

with, say, four processors performing identical functions

for redundancy would, for the purposes of this report, be

considered a uni-processor system since its effective

throughput is that of a single processor.

In this study, the multi-processor approach was chosen

for two reasons. First, since state-of-the-art

7

digital
control
systems

multi.

11
processor

Epro":ssor I

F-
'fixed' pooled'

cold hot ontinuous
spares spares recon-

figuration

Fiqure 21.. Breakdown of Possible Architec ures

microprocessors have somewhat lower throughput than their

mini-computer counterparts, it is unlikely that a single

microprocessor would be able to handle the workload of a

modern flight control system. Since we are constrained to

use microprocessors by the goals of this investigation, it

would seem that a multiprocessor architecture is mandatory

for flight control applications. Of course, with the rate

at which the field is developing, there may soon be

microprocessors that can handle the required workload in a

uni-processor configuration. But with the development of

ever more sophisticated estimation, parameter

identification, and self-optimization algorithms and

increasingly demanding command and control functions, the

required workload may go up at an even faster rate. Since a

multi-processor architecture will always be able to improve

on the throughput of a uniprocessor architecture of the same

state-of-the-art, and since the only thing growing faster

than computer technology is the size of the problems to be

solved, there will always be a need for multi-processor

configurations. The need for better methods to construct

such architectures is the second reason why the

multi-microprocessor approach was selected for this

investigation.

Given then that a multi-microprocessor system is to be

implemented, there are two possible ways in which their

functions can be assigned. As shown in Figure 3, these ways

are "fixed" assignment of processing resources, where the

function of each processor is permanently assigned, and

"pooled" processing resources, where processors are

dynamically assigned to each function as the needs arise.

The fixed assignment is inherently simpler to implement and

is adequate for many applications. However, in systems

requiring great reliability and minimum hardware, the pooled

approach offers distinct advantages.

9

fixed *s:par* V, pooled

Figure 4. Fixed vs. Pooled Designs
with Equal Redundancy

10

Figure 4 demonstrates the advantages of the pooled

approach in systems requiring a large number of processing

tasks. The system shown requires six different tasks to be

performed concurrently and that a quad level of redundancy

be maintained. A fixed assignment implementation of this

system (Figure 4a) requires that six processors be

permanently assigned to the six tasks and that three spares

be permanently assigned to each processor. The net result

is a 24 processor system. Figure 4b shows an equivalent

system using a pooled architecture. This system still

requires at least six processors to perform the six

concurrent tasks but the number of spares is substantialy

reduced. This is because, since any processor can be

dynamically assigned to any task, the three spares are able

to cover for any three failures in the system. Thus both

systems can tolerate any three random failures but the

pooled architecture requires significantly fewer processors.

It is clear that, as the number of tasks to be performed

increases, this difference becomes even more important.

The argument just presented applies only to systems

where failure detection is provided externally and the only

requirement is to replace a faulty processor with a spare.

For systems which must detect and locate their own failed

processors as well as replace them, the distinction is not

so much in the number of processors saved as it is in the

level of redundancy provided.

For example, Figure 5 shows fixed and pooled

architectures each having 24 processors and providing triad

voting for fault detection and isolation. They each have a

complement of six spares for redundancy purposes, and both

detect and correct faults by comparing the results of Al,

A2, and A3 or Bl, B2, and B3, etc. and replacing the

disagreeing processor with a spare. Unfortunately, in the

fixed architecture when a failure has occurred in a given

11

* fixed
Al C D3 B3 E1 E spare

F 3 A2 D, 1, *3 pooled
r any spare

C2 D 2 B2 A,

Figure 5. Fixed vs. Pooled Designs
with Equal Numbers

12

task group, no further failures can be tolerated in that

group because its only available spare has been used up.

Thus, the entire system can tolerate only one random failure

with guaranteed integrity of all six functions. The pooled

architecture, on the other hand, can tolerate up to six

random failures because all of its spares are free to be

assigned wherever they are needed throughout the system.

Because of its many benefits and great versatility, the

pooled processor approach was selected for use in this

study. Given that decision, and referring again to Figure 3,

there are at least three ways of implementing a pooled

processor architecture. These three approaches include

"cold spares", "hot spares", and "continuous

reconfiguration." In each case a pool of spare processors

is maintained to replace failed processors. The difference

is in the way that the spares are brought on line.

Cold spares are the simplest approach to the problem.

A pool of idle spares is maintained and, when a failure

occurs, one of the spares is loaded with whatever data and

software it needs to perform the missing function and is

then brought on line. This is an acceptable method when the

system involved is not real-time and a brief interruption

during reconfiguration is unimportant. Unfortunately, in

real-time systems the delay involved in "warming up" a cold

spare is often unacceptable and may even be disasterous.

An obvious solution to the cold spare problem is to

maintain a pool of "hot spares." That is, a pool containing

spares which are already loaded with all the software and

current data needed to come on line immediately after a

failure is detected. One hot spare is maintained for each

function in the system and the remaining spares are left
"cold." When a hot spare switches on line, a cold spare is

13

"warmed up" to replace it so that a hot spare is maintained

for every function as long as the supply of cold spares

lasts.

The hot spare approach is a great improvement over cold

spares and is entirely adequate for most applications. Its

chief drawback is the large number of spares required to

ensure that every function has its own hot spare. Once a

processor has become a hot spare it is essentially dedicated

to one function. This is contrary to the goal of truly

pooled resources. In addition, although the switch-in time

is much improved, reconfiguration is still treated as an

emergency requiring special processing and introducing

delays and reconfiguration transients. What is needed is an

approach which requires a minimum number of spares, produces

no reconfiguration delays, and avoids the dedication of

spares to specific functions. Continuous reconfiguration is

such an approach.

D. THE CONCEPT OF CONTINUOUS RECONFIGURATION

Continuous reconfiguration is defined as a scheme

whereby the tasks to be performed in a multi-processor

system are dynamically redistributed among all functioning

processors at or near the minor frame rate of the overall

system. This approach allows continuous spare checkout,

latent fault protection, and elimination of failure

transients due to reconfiguration delay. By treating

reconfiguration as the norm rather than the exception,

failures can be handled routinely rather than as

emergencies, resulting in predictable failure mode behavior.

Using this approach, it is projected that the need for

unscheduled system maintenance may be greatly reduced.

14

Example Of Continuous Reconfiguration

An example of what is meant by continuous

reconfiguration is shown in Figure 6. A system of nine

processors is shown performing six different tasks, A thru

F, during three consecutive time frames. During the first

time frame processor 1 is doing task B, processor 2 task D,

processor 3 is a spare, and so on. In continuous

reconfiguration the tasks are redistributed among the

processors at the beginning of every time frame. For

example, in the second time frame , there is an entirely

different assignment of tasks to the processors. This

reassignment is accomplished by having all of the processors

that are currently healthy in the system compete for task

assignments. If a processor fails during any time frame, it

is no longer able to compete for task assignments and is

thereby automatically removed from the system. In Figure 6,

if processor 4 failed during the second time frame, then

during the next frame, it would not be able to compete for

task assignment. The six tasks which need to be done are

taken by healthy processors and the two remaining processors

become spares (Figure 6c). In other words, a failed

processor simply disappears from the system without any

other processors being aware that it is gone.

Assuming for the moment that it is possible to

implement such a system efficiently, this scheme presents a

number of distinct advantages. These advantages will be

discussed next.

Advantages gf Continuous Reconfiguxatign

The primary motivation for developing a continuous

reconfiguration scheme is to allow a multi-processor system

to detect and recover from random failures with no effect on

its performance. This is a major problem with

15

6a. Time Frame 1

6b. Time Frame 2

6c. Time Frame 3

Figure 6. Continuous Reconfiguration

16

recontiguration in general since the process of shutting

down a failed processor and starting up a spare almost

invariably causes a short delay during which the output of

the system is incorrect. This period of time is called a

reconfiguration delay and the result is a failure transient

which can be disasterous at the system output. The main

reason for these delays is that most reconfigurable systems

treat failures as emergencies requiring special actions

which take time. In a continuously reconfiguring system,

reconfiguration is the norm, not the exception. Task

reassignment is regularly scheduled at frequent intervals so

that when a failure does occur the system takes it in stride

without missing a beat.

Figure 6c shows how this works. In the figure,

processor 4 has failed but the rest of the system doesn't

notice it. The task that processor 4 was performing in the

previous frame (Figure 6b) has been automatically reassigned

to some other processor and the only effect is the net loss

of one spare. There has been no reconfiguration delay and

therefore no transients due to reconfiguration. This is the

first major advantage of continuous reconfiguration.

Eliminating reconfiguration delay by itself can not

guarantee that there will be no failure transients at the

output. A second source of these transients is failure

detection delay. For example, in Figure 6 processor 4 may

have been generating bad data for some time before its

failure was detected in frame 2. Without continuous

reconfiguration this stream of bad data would go to a single

output device (rudder, aileron, display, etc.) causing a

significant transient in that particular device. With

continuous reconfiguration, the bad data goes to a different

device every frame depending upon which task the processor

is doing at that time. Since real world dynamics are

usually much slower that the computer's frame rate, the

17

aircraft will simply not respond to a single sample of bad

data. By moving the bad data around from surface to

surface, failure effects can be kept insignificant until

failure detection occurs. This dispersion of failure

effects is the second major advantage of continuous

reconfiguration.

A discussion of how to rapidly detect and isolate

failures and how to prevent AUn3y bad data from reaching the

system outputs will be presented in Section III when the

triad structure is introduced.

A third advantage of the continuous reconfiguration

approach is latent fault protection. Latent faults are a

class of faults that are inherently undetectable because

they produce no noticeable change in system performance or

output. This would seem to be no cause for alarm since a

fault which produces no error would appear to be harmless.

However, a latent fault can be very dangerous if it impairs

the system's ability to tolerate subsequent failures. For

example, if processor K fails in such a manner that its

outputs are correct but it is no longer able to check

processor D, then the system will continue to function

normally while the fault in K remains unobservable. if

processor D should fail, and the system is depending upon K

to detect it, a catastrophic system failure may result. The

continuous reconfiguration scheme avoids the problem because

the processor responsible for checking any other processor

changes with every frame. Thus, no dangerous combination of

failures is allowed to exist for more than one frame at a

time. The possibility of a "deadly embrace" between two

partially failed processors is also avoided.

Finally, continuous reconfiguration allows the constant

checkout of all processors because no processor serves as a

spare for more than one frame at a time. In an ordinary

18

recontigurable system, where certain processors are always

spares, there is a danger that one of the spares will fail

before it is needed. If this happens, a disaster may result

when the failed spare is used in an emergency. The problem

is analogous to changing a tire and discovering that the

spare is flat. By constantly "rotating the tires" in a

continuously reconfiguring system, failures in any processor

can be detected as soon as they occur.

In this section it has been shown that there are four

major advantages to the continuous reconfiguration approach.

These include (1) zero reconfiguration delay, (2) dispersion

of failure effects, (3) latent fault protection, and (4)

continuous spare checkout. Because of these advantages and

their potential contribution to system reliability,

continuous reconfiguration was selected as the method to be

used for managing the pooled multi-microprocessor

architecture developed in this program. The next section

looks at some of the problems involved in implementing a

continuously reconfiguring system.

Controlling A Continuously Reconfiguring System

A unique approach was taken for controlling the

continuously reconfiguring multi-microprocessor flight

control system. The traditional approach would have been to

have a central controller in charge of assigning tasks,

handling reconfiguration and controlling bus access.

Unfortunately, a central controller introduces the

possibility of a single point failure in the system

requiring redundancy incompatible with the architecture and

reducing the reliability of the continuous reconfiguration

concept.

An alternative to a central controller is the

autonomous control approach. This is a scheme whereby each

19

processor independently determines its own next task based

upon the current aircraft state. This can be better

understood by using an analogy. Like the traditional

centrally controlled computer architecture, a company has a

president who has several vice-presidents working for him.

The president has access to all information concerning the

states of the company and an understanding of how the

company should function. He uses this knowledge to allocate

tasks to the vice-presidents and arbitrate any disagreements

that may arise between them. Autonomous control is analogous

to replacing each of the vice-presidents with a clone of the

president. The vice-presidents are now capable of making

the same decisions that the president would have made under

the same circumstances, since each has access to the same

data and would go through the same decision making process

that he would. The need for the president has been

eliminated and he has been replaced by autonomous

vice-presidents. This approach is not practical in the human

world because no two humans think alike. In the computer

world, however, it is a realizable possibility.

ReQuiremenf9__C9= ous Reconfiguration

In order to make continuous reconfiguration of

autonomously controlled processors possible, several

requirements must be satisfied. These requirements include

well-defined task assignment rules, availability of all

system state information to all processors, availability of

all software to every processor, and an efficient bus

contention scheme. The methods used to meet each of these

requirements in the laboratory implementation are covered in

detail later in this report.

The first requirement is for a set of well-defined task

assignment rules. Each of the processors must have an

efficient means of determining the next task that it is

20

required to do. There must not be an opportunity for any

processor to conflict with other processors in the system

and cause system failures. The task assignment rules are a

function of the operating system software and are discussed

in detail in Section IV.

A second requirement is that all processors must have

all software. In order for a processor to be capable of

doing any system task at any point in time, it must have the

software available to do the task. This may seem

unrealistic at first but the trends in memory technology

indicate that memory may be expected to double in density

several times in the next five years while its cost

continues to decrease. This trend makes supplying all

software to every processor a reasonable exchange for the

benefits offered by the CRMmFCS.

A third requirement of this system is that all

processors must have all data. Since any processor must be

capable of doing any task at any point in time, each

processor must have access to all data concerning the

present state of the aircraft. This requirement has been

met by the development of a virtual common memory

architecture which allows every processor to access any

piece of data by what appears to be a simple read from a

shared common memory. This concept will be discussed in

detail in Section III.

Finally, if all processors are to operate independently

and yet share the same set of data busses for communication,

some method must be found for them to agree on who can talk

on a bus at any given time. Since central control of any

kind is not allowed in a fully distributed architecture,

this must be done without use of a central bus controller.

The scheme selected must also be very efficient since bus

bandwidth will be at a premium in systems with many

21

processors. This requirement for an efficient, autonomous

bus contention scheme was satisfied through a new approach

called "transparent contention." It will also be discussed

in Section III.

E. SECTION SUMMARY

This section has presented an overview of the CRMmFCS

architecture and the philosophy behind it. The concepts of

continuous reconfiguation, autonomous control, transparent

contention, and virtual common memory have also been

introduced. In the next two sections, these ideas will be

discussed thoroughly from both hardware and software points

of view. In the process, every major component of the

CRMmFCS system will be described in enough detail to give

the reader a complete understanding of the overall design.

Numerous references to the appendices will be made along the

way to aid the interested reader in an even more detailed

study of the architecture.

22

SECTION III

HARDWARE ARCHITECTURE

A. INTRODUCTION

The CRMmFCS architecture consists of a collection of

autonomous microcomputers interconnected by a set of serial

multiplex busses so that they appear to share one common

memory through which they communicate. This section

presents the details of how the system was designed from a

hardware point of view. Section IV will address the same

subject from a software perspective.

One of the main requirements of the CRMmFCS design was

the elimination of any form of central control. This meant

that processors had to independently determine their own

task assignments and that some means was required to manage

communication without a bus controller. The problem of task

selection was solved with software in the CRMmFCS and is

discussed in Section IV. Autonomous bus control, on the

other hand, had a convienient hardware solution. It is

therefore discussed in this section.

The CRMmFCS data bus is fundamental to the entire

architecture. The need for an autonomously controlled bus

which would act like a common memory influenced the design

of every system component. For this reason, the hardware

elements of the architecture will be discussed in terms of

their relationship to the global bus design.

B. DISTRIBUTED CONTROL OF A MULTIPLEX BUS

One of the most fundamental questions which must be

asked when designing a system of autonomous processors is

23

how they will communicate with each other. Direct

connection between a large number of processors is clearly

impractical since the number of lines required for n

processors is n(n-l)/2, (which rapidly becomes very large).

A common serial multiplex bus is a more reasonable

alternative, but it introduces the problem of bus traffic

control: How does one resolve processor contention for the

bus without resorting to a central controller? This section

presents a promising solution to the problem.

Othe.rArproaches

In order to place this new solution in proper

perspective, it is helpful to briefly review several

existing bus control schemes. Three such schemes will be

discussed including a well known central control approach

and two experimental distributed control methods.

The classical central control approach is the MIL-STD-

1553 class of busses. Using this scheme, each bus is set up

with a central controller and every processor in the system

is considered to be a "remote terminal." Any given

processor can talk on the bus only when instructed to do so

by the central controller. This provides secure and

flexible control of global bus resources, but has a number

of limitations. First, a processor wishing to transmit must

wait until the controller gives it permission, resulting in

some inherent throughput delay. Second, there is even more

delay involved for one processor to obtain data from

another. This is because it must request the data through

the controller and wait until the other processor receives

the request, looks up the answer, and sends it back.

Finally, the system does not make efficient use of bus

bandwidth because part of the available transmission time is

used up in the overhead of bus control. Thus, the 1553 bus

24

is simple and reliable but somewhat limited in performance.

Because it requires a central controller, it also violates

the assumed goal of a fully distributed system design.

It should be mentioned in passing that there are

1553-based designs which claim to implement distributed

control (Reference 3). Such claims are true only in a

limited sense. While p control of the bus may be

distributed in such systems, at any given time there is

still only one central controller operating in the

traditional command/response mode. For the purposes of this

report, distributed control will imply free and open

competition for the bus under a set of rules which all

participants obey. At no time is such contention arbitrated

at any central location, even if the location does move

around the system.

There are at least two examples of truly distributed

bus control schemes already in existence. The following

paragraphs summarize some of the interesting features of

each approach but no attempt will be made to cover them

comprehensively. The reader may consult the indicated

references for further details.

The first approach, found in the University of Hawaii

"Aloha" architecture (Reference 4), allows processors to

transmit on the bus any time it is available. In the event

that more than one processor starts at the same time, a

"collision" is said to have occurred and they all stop

sending immediately. Each then waits a slightly different

interval before attempting to retransmit. The one which

"times out" first gains access to the bus and completes its

message while all other processors wait until the bus is

once again available.

25

This approach avoids the need for a central controller,

but has the limitation that some time is wasted while

colliding processors "time out." This becomes serious when

demand for the bus is high and collisions are frequent.

Another approach to distributed bus control is used by

Honeywell (Reference 5). In this approach, all processors

take turns using the bus for a fixed amount of time in a

rotating fashion. If a processor has data to transmit, it

waits for its turn and then sends it all in a burst of some

maximum number of words. If it has nothing to transmit when

its turn arrives, it sends a null word and the system moves

on to the next transmitter. This is a fairly efficient

scheme, although some time is wasted for null messages. The

only real difficulty is keeping track of whose turn it is.

Improving Bu s Effiiency

While each of the approaches mentioned above has been

made to work effectively, there are still a number of things

which can be done to improve bus utilization efficiency.

These possibilities include:

(1) Scheduling transmissions to avoid periods of bus

inactivity or overload.

(2) Forming a queue of data to be transmitted in

every processor so that every available micro-

second on the bus is in use.

(3) Making sure there is no wasted time between

transmissions.

(4) Making sure there are no wasted transmissions

due to collisions.

26

(5) Transmitting data when it is generated instead of

waiting until it is needed (thereby reducing

access delays).

These five criteria served as design guides for the

approach to be presented. In the remainder of this report,

it will be shown how these goals have been achieved using

the concepts of "transparent contention" and "virtual common

memory."

A New Approach to the Problem

This section describes a new approach to autonomous bus

control designed to meet the goals listed above. The

following is an overview of how the idea works.

Time on the bus is divided into a series of consecutive

intervals (slots) that are exactly one transmission word

long (32 to 46 bits, depending on word format). At the

beginning of each new slot, all processors compete to fill

the slot with a word of data. The resulting massive bus

collision is then resolved using "transparent contention."

Transparent contention is a scheme which allows collisions

to occur on the bus in a manner such that only one of the

colliding messages survives. All other messages are

automatically suppressed without wasting a single bit of

transmission time. As a result, the slot is filled with one

and only one word and competition moves on to the next

available interval.

As long as there is data available to transmit, this

approach packs data onto the bus with absolutely maximum

density. No time is wasted during transmissions and no time

is wasted between them. One hundred percent efficient bus

utilization has been achieved.

27

In order to ensure that there is always data available

for transmission, each processor maintains a queue of words

to be transmitted. As each new piece of data is generated,

the processor places it into a first-in first-out buffer

(FIFO) and "forgets about it." A special transmitter

circuit then emptys the FIFO onto the bus by competing for

time slices with all other transmitters in the system. This

frees the processor from transmission considerations and

ensures a constant flow of data onto the bus.

There are, of course, potential problems with this

approach. If data is not generated fast enough, it is

possible for all buffers to become empty resulting in unused

time slots on the bus. This is of no concern unless there

are other times when too much data is generated resulting in

backlogs and throughput delays. It is therefore important

to schedule data generation in the system such that an even

rate of transmission is maintained. A technique for

scheduling data flow is presented later in this section.

All that remains now is to explain the details of

transparent contention. The following section discusses how

it can render bus collisions harmless. Subsequent sections

will present details on how to build and use such a system.

C. TRANSPARENT CONTENTION

This section presents the theory of operation behind

transparent contention. While almost any bus configuration

can make use of the idea, one specific design was chosen

because of its ease of implementation in the laboratory.

This design is covered first in order to clarify subsequent

discussion of the transparent contention concept.

28

The approach selected is nothing new. It amounts to

nothing more than clocking data out of one shift register

across a serial bus and into another. What jk unique is

the manner in which this process is controlled to prevent

conflicts on the bus between contending transmitters. In

order to understand this process, it is helpful to review

how a single transmitter operates when there is no

competition from other transmitters.

Transmission Without Contention

The essential elements of the bus architecture are

shown in Figure 7. In the figure, three processing modules

are shown interconnected by a common serial bus made up of a

data line and a clock line. Each processing module consists

of an ordinary microcomputer with two I/O devices including

a broadcaster (B) and a receiver (R). These devices use the

signal on the clock bus to shift data on to and off of the

data bus respectively. The box labeled "T" in the figure is

a bus termination circuit which generates the clock signal

and terminates the bus properly (See Appendix C).

Using this simple bus structure, a word of data is

transmitted in the following manner. The processor wishing

to transmit first places its information in its local

broadcaster FIFO. If the bus is available (as we assume in

this section), the broadcaster immediately latches the FIFO

output into a serial shift register and shifts it onto the

data bus with each positive-going edge of the bus clock. On

each negative-going edge, a bit on the bus is shifted into

receiving shift registers in every processor. From there,

the complete word is moved into local memory in each

processor using direct memory access. This technique will

be discussed later in the section on "Virtual Common Memory

Design."

29

___________777-7_

clock
T data

B R B R IBY R]

micro micro micro

Figure 7. Essential Architecture Elements

30

Transmission With Contention

The question now arises, "What happens when more than

one processor wishes to use the bus at the same time?" The

answer is simply, "one of them wins." Exactly which one

wins is determined by a special logic circuit in each

transmitter which resolves the conflict. Its operation is

described below.

In the first place, access to the bus is granted on a

first-come, first-served basis. While one processor is

actively using the bus, a logical BUSY signal is maintained

which prevents any other processor from initiating a

broadcast (See Appendix A). This eliminates many

conflicts, but sooner or later more than one transmitter

will begin using an available bus on the exact same clock

pulse. When this happens, some other method is required to

resolve the contention.

The solution is found by observing what actually

happens when two transmitters put data on the bus at the

same time. As shown in Figure 8, each transmitter is

connected to the bus by an open collector transistor buffer.

When a transmitter wants to send a "zero", it turns on its

output transistor shorting the bus to ground. To transmit a
"one" the transistor is turned off, allowing the bus to be

pulled high by the pull-up resistor. As long as all

transistors are turned off, the bus will float at a logic
"I". If any transistor turns on, the bus will be pulled to

a logic "0" state.

The net result is that logic zeros have an inherent

prioriy on the bus. Because a "1" is transmitted by

"letting go" of the bus (so it will float high) while a "0"

is transmitted by actively pulling the bus low, units

31

*ref

pull-up resistor

transmitter open-l transmitter olecto
A 'collector B transetor

transistor tasso
buf fer buf for

Fiquro 8. Transmitter-Bus Interface

32

transmitting zeros will always win out over those sending

ones. It is this characteristic which allows transparent

contention.

The key to the idea is that every transmitter

constantly compares what it is trying to put on the bus with

what is actually there. In the event of a disagreement, the

transmitter simply stops sending and waits for the bus to

become available again. What makes this approach work is

that when any two transmitters disagree, only one of them

notices and drops off. The other one does not notice

(because it got its way on the bus) and therefore continues

its transmission. No bus time is wasted because one message

is finished without interruption.

At this point an example is helpful. Suppose two

broadcasters begin to transmit on the same clock pulse as in

Figure 9. Transmitter one attempts to send the binary

sequence 01001 while transmitter 2 sends 01101. During the

first microsecond, both pull the bus low and observe a zero

on the bus. Since that is what they wanted, they continue

to transmit. During the next microsecond, both transmitters

"let go" of the bus allowing it to float high. They each

observe a logic 1 and, satisfied, continue to transmit.

However, during the third interval, transmitter 2 releases

the bus to let it float high while transmitter 1 actively

pulls the bus low. They both observe a zero on the bus.

Since that is what number 1 wanted, it continues to

transmit. Number 2, on the other hand, does not get its

desired "one" and concludes that some other transmitter has

pulled the bus low. It therefore aborts its transmission

and waits for the bus to become available again.

The net result is that transmitter 1 successfully

completes its transmission from start to finish without

interruption while transmitter 2 aborts as soon as the two

33

transmitter 11 0 0
desired output

transmitter 2 11 0 1 1
desired output

actual output 0 0 -1
appearing on bus

time (microseconds) 1 2 3 4 5 6

Figure 9. Bus Contention Arbitration

34

disagree. No transmission time was lost and, in fact,

transmitter 1 was never even aware of its competition.

"Transparent contention" has been achieved.

This concept works equally well for any number of

transmitters in contention. If ten of them start

simultaneously, they all send in parallel until there is a

disagreement. At that time those sending zeros win while

those sending ones drop off. The remaining transmitters

continue until the next conflict at which time still more

losers drop off. Eventually, only one transmitter is left

and it finishes its transmission, completely unaware of its

nine vanquished competitors.

This approach is based upon the assumption that no two

transmitters will ever try to send identical words at the

same time. If this coincidence should occur, each processor

would assume that its own broadcast was successful and only

one copy of the word in question would appear on the bus.

This may or may not be tolerable depending upon how

information appearing on the bus is used.

A more significant consideration is the event in which

two words being transmitted fail to disagree until near the

end of the word. At that time the losing processor would

abort its transmission, but only after having wasted its

time sending most of the word. In a system with only one

bus this is unimportant since the losing transmitter would

have nothing to do but wait for the bus anyway. But in a

system with n busses (to be discussed next), it is desirable

for a transmitter to find out if it is going to lose as soon

as possible so that it can begin searching for another bus.

If these considerations are important, there is a

simple solution. Each transmitter adds its own unique

identification code to the beginning of each message. In a

35

BE,. ,- - - A

system with 16 processors, this code would be 4 bits long.

Five bits would allow up to 32 processors, and so on. Using

this method, two processors are guaranteed to disagree

within the first 5 bits freeing the loser to seek another

bus. This aproach has the added benefit that it is possible

to determine which processor initiated each broadcast for

fault isolation purposes.

An Extension to n Buzes

The bus structure which has been discussed so far

represents a very simple way to interconnect a large number

of autonomous processors without need of a central

controller. however, a single bus system of any kind is

generally unacceptable from a reliability standpoint. At

the very least, some form of redundancy is required in order

to avoid a potential single point failure node in the

system. Also, a single serial bus has only a finite

bandwith. A large system of processors exchanging massive

amounts of data can quickly saturate such a bus. The

approach proposed in this report is ideally suited for

expansion to as many busses as are needed to meet the

reliability and throughput requirements of nearly any

system. The following paragraphs detail the implementation

and advantages of an autonomously controlled n-bus design.

Figure 10 shows the transmitter interface of a single

processor in a system with four busses (4 sets of clock and

data lines). The circuit is controlled by the box labeled

"transmission control logic." Upon receiving a "START"

signal (from the CPU), this logic instructs the "bus finder"

to "SEARCH" for a free bus. When it finds one, it locks two

data selectors and a data distributor onto the bus (using

its "BUS SELECT" lines) and signals the control logic that

it has "FOUND" a bus. The control logic then loads the

shift register with data from the CPU output buffer and

36

cdock busse m

w data busses = -

bus ,4 to 1 4 tol to 4
available selector selector distributor
detector

control logic *:-w register

CPU

strt

Figure 10. Transmitter Circuit

37

enables the shift register clock. Data is shifted (using

the appropriate bus clock) out through the 1 to 4

distributor onto the selected data bus using the same

open-collector transistor buffers shown in Figure 8. As

always, a one-bit comparator monitors the difference between

the shift register (desired) output and the actual output on

the selected bus. If there is ever a miscompare, an "ABORT"

is generated and the transmission control logic instructs

the bus finder to locate another bus. This process

continues until the transmitter is successful at placing its

entire word on the bus, at which time another word is

obtained from the CPU buffer and the cycle begins again.

This bus design has tremendous flexibility. Its

bandwidth is exactly four times that of a single bus and can

be expanded still further with additional busses.

Reliability is also enhanced. Because processor to bus

connections are continuously reconfiguring, selection of an

alternate bus in the event of a failure is instantaneous and

automatic.

There are, however, a few physical limitations which

remain to be resolved. The first is that there is a limit

to how many open-collector transistors can be "wire-ored" to

one bus before the sum of their leakage currents pulls the

bus low even if no transistor is on. This limit can be

increased using low leakage transistors, but can never be

totally ignored. Noise considerations on such a bus will

also require further research. For the present, the triplex

data approach described in Section IV will be relied upon to

correct for noise-corrupted transmissions.

Another consideration is the effect of propagation

delays on the output of each transmitter comparator. The

fact that desired and actual outputs match at one location

38

is no guarantee that the same holds true many feet away on

the bus. This problem is avoided for reasonable line lengths

by the manner in which data is clocked onto the bus. Data

is shifted onto the bus on the rising edge of each clock

pulse, but the comparators output is not sampled until the

falling edge. This allows one half of a microsecond for the

data to settle before it is used.

Finally, the open collector transistor implementation

is only one approach to the transparent contention concept.

Any technique where one logic state wins out over another

will work. In the case of fiber optic busses, for example,

the presence of light on the bus could be made to win out

over its absence, and so on. For the purposes of concept

demonstration in the laboratory, the wired-or approach has

been shown to work very well.

D. VIRTUAL COMMON MEMORY

Up to this point, discussion has centered around the

transparent contention concept and its physical

implementation. In this section an actual application is

presented, allowing the development of what is called
"virtual common memory."

The Virtual Common Memory Concept

One of the main problems that occurs in the design of

multiprocessor systems is how to distribute and exchange

data efficiently. From a hardware standpoint, the easiest

approach is usually to connect all processors to a common

serial multiplex bus (Figure Ila). This minimizes hardware

complexity and allows expandability, but often involves a

large software overhead. This is because processors must

39

a, b.w
common data bus common memory

"virtual memory"

Fiqure 11. Evolution of Virtual Memory

40

exchange data on a "request" or "broadcast" basis, both of

which require special handling by every processor in the

system.

In the "request" mode of operation, a processor that

needs a piece of information simply asks for it on the bus

and receives it from some other processor a short time

later. This means that each processor must constantly

monitor the bus for data requests rather than concentrating

upon the task to which it has been assigned. Because

processors must wait for much of their data, processing

inevitably takes longer than it would if all data were

available in local memory at the start of a given task.

Additional processing time is also wasted in responding to

requests for data from other system processors.

The "broadcast" method is an alternate approach to data

exchange where every piece of data is transmitted as soon as

it is produced. Each processor then selects from the bus

whatever information it needs to accomplish its current

task. This approach also requires a lot of overhead as each

processor must now constantly monitor the bus for items of

local interest.

Thus, the common serial multiplex bus, while being the

most simple and flexible from a hardware point of view, has

serious drawbacks in terms of software complexity.

The simplest and most efficient approach to

interprocessor communication from a software point of view

is a common memory containing all information required by

all processors (Figure llb). In such a system, a processor

stores its output in the common memory where it can be

instantly accessed by any other processor in the system.

When one processor needs information from another, it simply

reads it from the common memory without delay.

41

Unfortunately, what is ideal from a software standpoint

is difficult to implement in hardware. Serious contention

problems develop when more than one processor attempts to

access the same block of memory. Since each processor must

be connected to the common memory by a complete set of

address and data lines, the hardware complexity is also

large. Finally, system expandability is impaired. In a

serial bus system more processors can be added by simply

connecting them to the bus, but there is a limit to the

number of ports available in a common memory. When these

have been used, no more can be added without redesigning the

system.

So, it appears that what is good for hardware is bad

for software and vice-versa. Clearly, a scheme that could

combine the best of both approaches is highly desirable.

Virtual common memory is such a solution.

Virtual common memory is a method for making a serial

multiplex bus look like a single common memory to the system

programmer. As such, it combines the hardware simplicity of
a serial bus with the software simplicity of a common memory

(Figure llc). In the following paragraphs the physical

implementation of a virtual common memory containing all

information to be shared among processors will be

described.

Virtual Common Memory Design

This section describes the virtual common memory design

used in the CRMmFCS architecture. The essential features of

this design are shown in Figure 12. In the figure, six

processing modules are shown connected by four serial

multiplex busses of the kind described above. This

represents the system actually being constructed at the

42

Flight Dynamics Laboratory, although additional busses or

processors could have been included. The number shown is

considered to be enough to demonstrate the overall concept.

In a true shared memory architecture, the common memory

contains all information required by any processor in the

system. This information describes the entire state of the

aircraft, and the memory which contains it is called the
"state information memory" (SIM). When a processor needs a

particular state variable, it accesses a well-defined

location in the SIM. When it generates a variable, it

places it in a specific SIM location where other processors

can find it. No other processing is required for complete

interprocessor communication. A complete discussion of the

SIM concept is presented in Appendix F.

In the virtual common memory design of Figure 12, each

processor is given its own copy of the SIM. To access a SIM

variable it simply looks up its own copy. To store a

variable into the SIM, a processor broadcasts it over the

bus and every processor's copy is updated simultaneously.

Since reading from a local copy is the same as reading from

a common one, and since writing to the bus is the same as

writing to a common memory, as far as any processor is

concerned there is only one "virtual" common memory being

used by everyone.

In order to make bus transmissions appear to be reads

and writes on a common memory, two special circuits were

designed. These circuits are described next.

The Transitt . The transmitter circuit (labeled

"XMIT" in Figure 12) was shown in detail in Figure 10. It

is connected to the microcomputer through a two-page buffer

(P1 and P2) which is memory-mapped to the local CPU. These

43

... _- _

'tp T PI P2 rpi. P2 P' i,P 2 IP1 P2 , iP 2

local local local local local local
meoymemory memory memory memory memory

1-'icluiru 12. Ph.,2 .icAI -I npleinecnta.tioa of Virtual Niemory..

44

pages alternate functions every millisecond so that, while

one of them is being loaded by the CPU, the other is being

unloaded onto the bus. This dual buffer approach ensures

that all data is transmitted with no more than one

millisecond delay. Its application will be discussed in

greater detail later. Complete details on the transmitter

circuit are given in Appendix A.

The Recer. The receiver consists of two major

parts including a serial to parallel converting shift

register (SIPO) and a block of random access memory (RAM)

which contains a complete copy of all state information in

the system. This state information memory (SIM) is mapped

into the microcomputer's address space as a block of "read

only" memory and is accessed by the SIPO outputs as a block

of "write only" memory. Figure 13 shows how this works.

In the architecture under discussion, a word of

transmitted data is 37 bits long. It consists of four bytes

of significant data separated by a zero bit before and after

each byte (see Figure 13). A string of more than eight

consecutive "I" bits on the bus indicates that it is no

longer in use, so zero bits are included between each byte

to ensure that the bus continues to "look" busy in the event

that more than eight consecutive ones occur in the actual

data word.

Once the SIPO has been fully loaded with a 37 bit word

from the bus, the 32 significant bits (excluding the 5

separating zeros) are loaded onto the address and data lines

of the SIM RAM as follows. The first 5 bits contain the

identity code of the sending processor. These bits were

used only for quick resolution of bus contention and could

be discarded unless it is important to record who sent each

word for fault isolation purposes. (In the CRMmFCS design,

45

date bus serial-in parallel-out shift register(SIPO)

clock bus 0 byte4 01 byte3 10 byte* 01 bytel 101

16 bit j state
Sim data s Information

word j6 memory jot P
S2k by6 bit ram

>

Iw Id'. bi kmades fomCU

Figure 13. Receiver Block Diagram

46

e ~~ ~~,-.. . -i .

these bits are in fact saved in the SIM for use by

black-balling algorithms -- see Section IV-D.) The next 11

bits specify the location in the SIM to which this data word

is to be stored. They may be thought of as the name of the

SIM variable and, in this case, they allow up to 2024

different variables. Finally, the last 16 bits of the

transmission contain the value of the variable. These 16

data bits are loaded into the SIM via direct memory access

(DMA). The variable is now available for access by the CPU

whenever it is needed.

While all of this is happening, the SIPO register is

collecting the next word of data as it appears on the bus.

This, in general, begins after nine bus clock cycles (during

which the bus floats "high"). At this time every other

transmitter realizes that the bus is no longer in use

(because nine consecutive "ones" have occurred) and

contention for the bus begins again. Thirty seven

microseconds later the SIPO is again full and another DMA

cycle is executed to load its contents into the SIM. Thus,

a word is received every 9 + 37 = 46 microseconds.

In a system with n busses, there are n SIPO shift

registers requesting direct memory access to the SIM. Since

there are 46 microseconds between successive DMA requests

from any one bus, and since current high speed RAM can

handle as many as four accesses per microsecond, it is

theoretically possible for a system to have as many as 4 x

46 = 184 serial busses, each operating at 1 MHz, for a 184

MHz total system bandwidth. Such a system would allow

processors to exchange up to 184 x (1 variable/46

microseconds) = 4 million variables per second.

Of course, connecting 184 shift registers to a single

block of memory is impractical with today's technology, but

47

if the entire CPU, SIM, transmitter, and receiver were

integrated on a single chip (with only the bus lines brought

out to the pins), such an approach might well be possible.

Until then, a practical limit is about 8 busses with a

corresponding bandwith of 8 MHz. Appendix B presents a

complete description of the receiver design.

While the potential for high throughput rates is

intriguing, the real usefulness of virtual common memory is

to allow easier programming of processors connected by

serial multiplex busses. The next section shows how a

virtual common memory architecture can be used most

effectively for this purpose.

E. EFFECTIVE USE OF VIRTUAL COMMON MEMORY

Knowing how to use a virtual common memory architecture

can make a big difference in how useful the idea is. This

section discusses the application of virtual common memory

to the CRMmFCS design. This is not the only way to use

virtual common memory, but it does illustrate some important

considerations for effective use of the concept.

In the first place, it is important to schedule

transmissions carefully in order to take full advantage of

the data packing capabilities of the architecture. Figure 14

shows how transmissions are scheduled in the CRMmFCS design.

Time in the system is divided into 1 ms frames and all

processors in the system are synchronized to this frame

rate. Since each transmission is exactly 46 microseconds

long, and since the transmitters pack data onto the bus with

no wasted time in between, there is room for 1000/46 or 21

48

complete transmissions per bus per millisecond. Therefore,

when system software is being written, it is modularized

into 1 millisecond chunks (called "millimodules") and no

more than 4 x 21 = 84 transmissions are scheduled for any

one millisecond. Since there are 84 slots available in each

frame, this guarantees that every scheduled transmission

will be completed sometime within its assigned millisecond.

Each dot in Figure 14 represents a 46 bit word of data

appearing on the bus. In this example, 22 of the 84

available slots are scheduled for use. At the beginning of

each millisecond, all transmitters compete to place their

part of the scheduled variables onto the bus. Transparent

contention packs these words into one slot after the other

on all four busses until every scheduled word has been

transmitted. Then the bus sits idle until the start of the

next millisecond.

It is, of course, possible to schedule 84 transmissions

per millisecond and never have the bus sit idle. However,

for reliability reasons, it is usually wise to leave enough

unused slots to "take up the slack" in the event that one of

the busses fails. In the CRMmFCS design, 42 slots are left

unused in each frame so that the system can tolerate two bus

failures without loss of throughput.

This approach makes processor task scheduling a lot

easier. Because it is known (to the nearest millisecond)

exactly when a variable will appear on the bus, it is also

known (to the nearest millisecond) how soon a task can be

scheduled using that variable. Figure 15 summarizes this

scheduling procedure and illustrates an efficient virtual

common memory system in operation.

49

* S
* S S S
* S S S
* S S S
* 5 5 5
* S S S

-4

w
U

S*
U)

LI)

* S 5 2
U)

* 5 5 S
* 5 S S
* 5 S S
* S S S
* S S S U)

m

.~j.
-4

I))

-4

* S
* S S S
* S S S
* S S S
* 5 5 5
* 5 5 S

liii

50

The figure is divided into four different rows showing

where variables A, B, C, and D are scheduled to be over a

period of four milliseconds. During the first frame,

variables A and B are shown in row 1 indicating that they

are currently in the SIM and available for use. As a

result, Task 1, which computes C = A + B, can be scheduled

for this frame as shown in row 2. Once C has been computed,

it is placed in the currently active page of the transmitter

buffer (refer to Figure 12) where it remains for the

duration of the frame. Let us assume that this was page 1.

At the end of frame 1, the two transmitter pages are

switched so that page 1 is connected to the bus and page 2

(which was emptied onto the bus during frame 1) is connected

to the CPU to collect any data generated during frame 2.

Now that page 1 is connected to the bus, the transmitter

circuit broadcasts variable C in the first available slot.

This is indicated in row 4 of the figure.

It is not possible to know exactly when during frame 2

variable C actually appears on the bus. This is a random

function of when transparent contention allowed the

transmitter to gain access. But since there are more slots

than there are scheduled variables, sooner or later C will

get its chance. It is therefore guaranteed to reach the SIM

in every processor by the end of frame 2. This is indicated

by showing C in row 1 ready for use during frame 3. Task 2,

which computes D = SQRT(C), can now be scheduled for frame 3

and the entire process repeats.

Thus, one of the major goals of the design has been

accomplished: elimination of access delay to global

variables. Because data is broadcast to every processor as

soon as it is generated, it is always available in the SIM

by the time a task is scheduled to use it.

51

variables in sim A
ready for use AB C

variables generated 2
during this millisecond 2C=A+B D=vC

variables in buffer C D
ready for broadcast 3D
variables appearing A

on bus this millisecond C D
time (milliseconds) 1 [2 1 3 1 4

Figure 15. Data Flow Assignment

52

F. SECTION SUMMARY

This section has presented an overview of the essential

hardware elements of the CRMmFCS. It has also introduced

two new concepts in interprocessor communications. The

first is called "transparent contention" and represents a

method for autonomous processors to share a common bus at

maximum efficiency without need of a central controller. It

has been shown that this approach opens up many new

possibilities for improved bandwidth while avoiding the

pitfalls of single point failures possible in many central

controller designs.

The second concept presented is called "virtual common

memory." It represents a method of minimizing the hardware

and software involved in interprocessor communications.

While not essential to the concept, transparent contention

was shown to be an ideal method for implementing virtual

common memory in many practical situations.

The next section of this report discusses how the

CRKmFCS software structure was designed to utilize the

hardware which was developed in this section.

53

SECTION IV

SOFTWARE STRUCTURE

A. INTRODUCTION

In Section III it was shown how a simple set of serial

busses could be made to look like a shared common memory to

the system programmer. Now that such a system may be

assumed to exist, it is time to show how software can be

designed to take advantage of this new architecture. This

section presents an approach to organizing software which

makes continuous reconfiguration possible and simplifies the

task of programming a multi-microprocessor system. This

approach is one of the major outgrowths of the CRMmFCS

research project.

Programming a system consisting of a large number of

processors can become a formidable task. If one is not

careful, task scheduling and synchronization problems can

make system software a nightmare to modify and maintain.

For example, Figure 16a shows how four different processors

might be programmed in a multiprocessor system. Each row in

the figure represents what one processor is scheduled to do

during a given time frame and is broken down into a series

of tasks of varying length. As each task is completed a new

one is scheduled immediately, thereby packing as many

functions into one processor as is physically possible.

This approach maximizes the throughput of every

processor in the system but can become very difficult to

synchronize. For example, processor 2 does task A in Figure

16a while processor 4 does task B. Processor 3 task C which

is supposed to combine the results of tasks A and B.

However, if task B is not completed before task C is

started, then task C will not have the information needed to

54

P3

4

16a. Continuous Software

P

P
3

P4
16b. Quantized Software

Figure 16. Approaches to Task Scheduling

55

complete its calculations. This possibility can greatly

increase the complexity of the software. A second problem

with this programming technique is that it can be difficult

to modify. If a block of software requires rewriting or a

new algorithm must be added, the timing of the software will

be changed. Since synchronization must be maintained

between certain tasks, this will require revalidation of all

software. One small change can therefore influence the

software of the entire system.

The CRMmFCS design takes a different approach to the

problem as shown in Figure 16b. In the figure, all software

has been divided into a series of standard modules of

uniform size. Tasks A, B, and C (and every other task) are

then rounded out to an integer number of these modules.

This allows control over which tasks are performed during

any given interval of time, so strict synchronization of

tasks can be maintained. Data is exchanged only on

boundaries between modules. As a result, the availability

of data for subsequent tasks is known at any given time.

Since all software modules are the same size, they can be

easily interchanged. The following paragraphs discuss this

software structure in greater detail.

B. THE TASK ASSIGNMENT CHART

The approach described above is known as the "quantized

software" approach. It divides all system software into

separate modules of some standard fixed length (in terms of

execution time, not number of instructions). Each of these

modules is then placed in a matrix of functions called a

task assignment chart (TAC). Figure 17 shows an example of

such a chart. In the figure, the horizontal time axis is

divided into a sequence of individual time slices of some

arbitrary unit length. The vertical axis represents the

56

8 g
7f, f2 f3 f4 93

,WR 6 94-

04 - - -- - _
- h: h4 - -

03 h3
0 2

.1 k, k, k, k, k,
1 2 3 4 5 6 7 8 9 10

time slice axis(milliframes)

Figure 17. A Generic Task Assignment Chart

57

number of processors available in the system with each

additional processor representing a unit increment in

processing power. Thus, the TAC is made up of a matrix of

processing functions one time slice long and one processor

wide. These resource units are called "millimodules" and

each millimodule is said to occupy one "milliframe" on the

time axis. In the CRMmFCS architecture, a milliframe is

exactly one millisecond long.

Once a standard millimodule size has been selected, all

necessary processing tasks may be assigned to the chart in

the following manner. A given task, say F, is first divided

into a group of subfunctions, fl, f2, ... fn, each of which

require at most one millisecond to execute. Each of these

subfunctions is then designated as a millimodule and placed

in a convenient location in the task assignment chart.

Figure 17 shows a variety of ways in which this assignment

can be accomplished.

In the figure, function F (fl, f2, f3, f4) has been

assigned to processor 7 and executes in four consecutive

time intervals beginning in milliframe 1. Function G (gl,

g2, g3, g4, g5) executes entirely in parallel requiring five

processors (5, 6, 7, 8, and 9) and only one time slice

(milliframe 8). Function H (hl, h2, h3, and h4) first

generates intermediate results in parallel and then combines

them in processor 4 during milliframe 6.

After milliframe 10 the entire process repeats for the

next iteration of each function. Faster iteration rates may

be achieved by assigning the same function several times in

the same chart as shown for function K (kl) in processor 1.

In a manner similar to the example above, all

processing functions may be broken into millimodules and

assigned to the TAC. As the space fills up, it may be

58

readily extended by simply adding more processors along the

vertical axis. Since all millimodules are one standard

size, they are easily manipulated, interchanged, and may

even be dynamically reassigned during real time. This

provides the system designer with great flexibility in

managing his processing resources.

The benefits of this approach are not without cost.

Very few functions will fit exactly into an integer number

of millimodules so some time must be wasted in rounding them

to the next whole module. This requires more processors to

make up for the reduced throughput of less densely packed

software. Fortunately, such a tradeoff is generally

desirable since reduced software costs will usually pay for

the small increase in hardware.

Application of Task Assignment Charts

This section describes how the task assignment chart

was applied in the CRMmFCS architecture. Figure 18 shows

the task assignment chart used for one flight control mode.

In this chart, milliframes have been selected to be exactly

rne millisecond long. Ten consecutive milliframes make up a

minor frame and three minor frames form one major frame.

This major frame repeats continuously as long as the system

is in mode 1. If the mode changes (due to pilot inputs or

changes in flight condition), then a new task assignment

chart is switched in at a major frame boundry.

The vertical axis has been changed subtly in Figure 18.

Each row still represents a particular set of tasks to be

performed, but there is no longer a specific processor

associated with each row. In the CRMmFCS architecture,

processor row assignments change with time. As a result,

the vertical axis has been relabeled in terms of task

numbers instead of the processor numbers used in Figure 17.

59

mode I
frame 1 frame 2 frame 3

taski1

2

3

4

6

milliframei Tas AssgnmntChaota e

OMS) o tak 60

Another difference between the generic form of Figure

17 and the application form of Figure 18 is that the latter

is actually a compound chart consisting of both major and

minor frames. This is to allow reconfiguration to occur

every ten milliseconds (at minor frame boundries) while

maintaining the flexibility of a chart with a large number

of module slots.

Real Time Chart Execution

Once a Task Assignment Chart has been laid out and all

task sets defined, some method of translating the chart into

executable software is required. This is done by storing

the charts in tabular form in every processor's memory.

Figure 19 shows the formation of a "task assignment table"

from the task assignment charts for ten flight control

modes.

In Figure 19, all system software has been divided into

ten operating modes and presented in a large task assignment

chart. Each mode is further divided into three consecutive

frames with each frame divided into enough tasks for every

processor in the system. Finally, each task consists of 10

millimodules which are executed consecutively by a single

processor assigned to that task. Each task is identified by

its row location within a particular mode and frame.

At the beginning of each new frame, all processors
"renegotiate" their task numbers and then go to the

appropriate mode and frame of the chart to find out which

group of ten millimodules to execute. Exactly how

processors determine their current mode, frame, and task

numbers will be discussed shortly. For now, it will be

assumed that these numbers are "given" in order to simplify

discussion of how they are used in the system.

61

frame I frame 2 frame 3
mode I

713141 368 54 3 pointer
(mode,frame,task)

mode 2

mode 10

a.task assignment table b.task assignment charts

Figure 19. Task Assignment Table Generation

62

In Figure 19b, task assignment information was

presented as a series of charts designed to allow easy

manipulation by the system programmer. Once these charts

have been completed, they are reorganized into a single task

assignment table as shown in Figure 19a. This table is just

a four-dimensional array of millimodule call names located

within a block of memory in every processor. Each processor

maintains a pointer in the table to the next millimodule it

is supposed to execute. This pointer is a function of four

variables including MODE, FRAME, TASK, and MODULE. These

variables point to a single word in the table which contains

the call address of the next millimodule to be executed.

Executive software in the system is now very simple.

During one of the milliseconds near the end of each frame,

every processor "volunteers" for its next task assignment.

Using a special autonomous control algorithm (discussed in

the next section) each processor determines its next task

number (TASK). It then looks up the current MODE and FRAME

values in virtual common memory and sets the millimodule

count (MODULE) equal to one. This defines a location in the

task assignment table, TABLE(MODE, FRAME, TASK, MODULE),

which contains the call address of the next millimodule to

be executed. The executive then calls this address and one

millisecond of software is executed on schedule.

When control returns from the current millimodule, the

MODULE count is incremented and the address of the next

millimodule is obtained from the table. This address is

called and another millisecond of software is executed.

This continues until ten modules have been completed at

which time all processors volunteer for new task numbers

(causing total system reconfiguration) and the process

begins again. Figure 20 shows a flow chart which indicates

how simple the process becomes when the task assignment

chart approach is used.

63

volunteer for now tusk number
(reconfigure)

look up current system
mode and frame

module -0

rmodule=moue1

look uo millimodule call address

address --table (mode, frame, task, module)

Call subroutine at address

Figure 20. Executive Flow Chart

64

Mut ae Consideraio

In the discussion thus far, the task assignment chart

has been described as a schedule of tasks to be performed by

a set of processors over a period of 30 milliseconds. This

schedule is then repeated continuously as long as the system

remains in the same mode. As a result of this

characteristic, every module scheduled in the chart also

repeats at a fixed rate of once every 30 milliseconds.

Clearly, some technique is required to allow millimodules to

be scheduled at other arbitrary rates.

Figure 17 showed how faster rates could be achieved by

placing the same millimodule (kl) in the chart more than

once. Unfortunately, there is only a limited number of

rates for which this will work. Figure 21 illustrates the

problem.

In the figure, millimodule timing over a period of 30

milliseconds is shown for the case where a major frame is

only 10 milliframes long. Every 10 milliseconds the entire

process repeats as the system makes three passes through the

TAC. Ten millimodules labeled A through J are shown

repeating at intervals ranging from every millisecond for

module A to every 10 milliseconds for module J. Inspection

of the chart shows that only modules A, B, E, and J execute

at uniform rates over the entire 30 millisecond period.

This is because only the periods of 1, 2, 5, and 10

milliseconds divide into the major frame period of 10

milliseconds evenly. All other rates do not divide evenly

and therefore lose synchronization at every major frame

boundry. Thus, in a 10 milliframe TAC, only rates of 1, 2,

5, and 10 can be scheduled (without resorting to the

compound millimodule approach discussed later).

65

f irst second
pass through pass through pass through
A-A-A-A-A-A-A-A-A-A A-A-A-A-A-A-A-A-A-A A-A-A-A-A-A-A-A-A-A

E 2 B-B-B-B-B-B-B-B-B-B-B-B-B-B-B-
3 C C CC C C CC C C C
0D DD D D D D D
E EE - E -E - E -E

c eF F F F F F
~7G G G G G 0

H H HH H

__ __ __ _ J
time(ms) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

I major major major
frame I frame 2 frame 3

Figure 21. The High-Rate Task Scheduling Problem

66

If the major frame length is increased to 20

milliframes, a larger number of rates are made possible.

These rates include 1, 2, 4, 5, 10, and 20 milliseconds all

of which divide into the major frame rate evenly.

Similarly, for a 30 milliframe TAC rates of 1, 2, 3, 5, 6,

10, 15, and 30 are allowed. Fourty milliframe TACs allow 1,

2, 4, 5, 8, 10, 20, and 40 millisecond iteration rates, and

so on. A 30 milliframe TAC was chosen for the CRMmFCS

architecture because it provided the greatest number of

rates while minimizing the size of the required task

assignment tables. This 30 millisecond chart was then

divided into three 10 millisecond minor frames for

reconfiguration purposes. Processors volunteer for one

minor frame at a time and complete a single pass through the

TAC every three minor frames.

ComDound Millimodules

To provide rates slower than the major frame rate, the

concept of a "compound millimodule" must be introduced. A

compound millimodule is simply a module which does not

execute every time it is called. A modulo 2 millimodule,

for example, executes only every other time it is called.

By placing a compound millimodule in the chart at some legal

repetition interval (one that will divide evenly into 30),

and adjusting its modulus appropriately, absolutely any

repetition rate can be obtained. (See Appendix G.)

C. AUTONOMOUS CONTROL ALGORITHMS

Now that the system software has been defined using the

task assignment chart, all that is needed is a set of

algorithms to implement autonomous control and continuous

reconfiguration. This section discusses how these

algorithms were designed in the CRMmFCS architecture.

67

4l

Autonomous Control

Autonomous control is a method for dynamically

distributing tasks among a group of processors without using

a central controller. It is defined as "a scheme whereby

each processor independently determines its own next task

based upon the current state of the system". In the CRMmFCS

architecture, every processor has access to all system state

information through the virtual common memory. All that is

needed is an algorithm which uses this information to

determine each processor's next assignment.

In order for a processor to know which row of the task

assignment table (Figure 19a) to execute during a given

frame (reconfiguration cycle), three pieces of information

are required. These include the current system mode, MODE,

the current frame, FRAME, and each processor's own specific

task number, TASK. The values of MODE and FRAME are

continuously updated in virtual common memory by an ordinary

set of millimodules placed in the task assignment chart for

that purpose. In general, the values of MODE and FRAME

computed can be complex functions of any variable or set of

variables available in virtual common memory. The specific

portion of the TAC which is executed at any given time can

therefore be made to vary with the instantaneous values of

aircraft flight condition, pilot switch settings,

configuration, and so on.

Since the values of MODE and FRAME mitt be looked up in

virtual common memory at any time, all that remains is for

processors to determine which task they are to perform

within the given mode and frame. This is accomplished

through a process known as "volunteering."

68

-- - _ _ J.,, : - " ., _ai

If system reconfiguration was not required, it would be

possible to simply assign a different TASK number to each

processor for all time. Each processor would then always

execute the same row in the TAC for every frame and mode in

every time period. But reconfiguration is required, not

only in the event of a failure, but continuously in the case

of the CRMmFCS architecture. Thus, a new value of TASK must

be computed during every reconfiguration cycle.

The algorithm used to do this computation may be

summarized as follows. At the beginning of each

reconfiguration cycle, every processor does a brief self-

test to determine if it is healthy. If it passes this

test, it volunteers for a new assignment by setting a flag

in the volunteer status table (VST). The VST consists of a

memory location for each processor in the system serving as

the volunteer status flag for that processor. If a flag is

set to "l", the corresponding processor is known to have

volunteered for task assignment. Otherwise, the processor

is assumed to have failed and is not included in the next

reconfiguration.

After all processors have volunteered, each one

examines the VST to determine its next assignment. It

counts the number of healthy processors ahead of it in the

table, assumes they will each take a task, and selects the

next available task number for itself. Figure 22 shows how

this works.

Figure 22a shows the volunteer status table for a

system of ten microprocessors. In the table it may be seen

that processors 1, 2, 4, 5, 7, and 10 have volunteered for

duty while the remaining processors (3, 6, 8, and 9) have

69

processor- volunteer task I reconfiguration cycle

Id status table (minor frame) /

21 1 A B C

3 0 3 C C
41 4 A B C
5 15_-------
66
7 random A

offset A a C
8 0 pointer A, zero out volunteer status table

90 a. self-check & broadcast if healthy

101 C -determine next task

8. volunteer status table b. the volunteering process

Figure 22. Volunteering and the Volunteer Status Table

70

not. Given this information, every processor in the system

is capable of independently determining its next assignment.

For example, when processor 5 examines the table it finds

that processors 1, 2, and 4 have also volunteered and

presumably taken the first three tasks. It therefore

concludes that it is responsible for task number 4. In a

similar manner, processors 7 and 10 select tasks 5 and 6

respectively.

In the task assignment chart of Figure 22b, there are

only six tasks to be performed by the 10 processors in this

system. If all ten processors were healthy, the first six

would perform the tasks and the remaining four would act as

spares. In the event that a processor fails to volunteer,

all those below it in the table move up one task and the

first spare in line takes over task 6. Four processors have

failed in Figure 22 leaving just enough to do the required

tasks. If one more fails, only the first five tasks in the

chart will be taken and task six will not be done. For this

reason, tasks are placed in the TAC in order of priority so

that the least important ones are dropped first.

Now that the general concept of volunteering has been

introduced, the details of its implementation may be

presented. Figure 22b shows the specific millimodules

involved in making the process work.

Sometime during the first three milliframes of each

reconfiguration cycle, a set of type "A" millimodules are

executed. Each A module is responsible for storing zeros in

all ten locations of the VST to clear it for the next round

of volunteering. Three copies of the module are included

for redundancy purposes to make sure that the table is fully

cleared. During the next three milliframes (whenever it is

convenient for the programmer), every processor spends one

millisecond doing a type "B" millimodule. The function of a

71

B module is to do a brief self-check and volunteer if the

processor is healthy. It is the type B module which places

ones in the volunteer status table. Finally, during one of

the last three milliframes in each cycle, all processors

execute a type "C" millimodule to determine what task to do

during the following frame. Type C modules examine the VST

and count ones to determine the value of TASK for each

processor. This value and the values of FRAME and MODE from

virtual common memory specify exactly which set of ten

modules in the task assignment table (Figure 19a) are to be

executed during the next frame.

Continuog..UL tiQD

The scheme discussed thus far provides a simple method

for achieving autonomous control of task assignment in a

system of pooled microprocessors. It does not, however,

quite meet the requirements of continuous reconfiguratation.

In its current form, task assignments only change when there

is a failure in the system. When all processors are

healthy, number 1 always gets task 1, number 2 gets task 2,

and number 10 is always a spare. Continuous reconfiguration

requires that task assignments be randomly redistributed

among all functioning processors during each cycle so that

spare checkout and latent fault detection can be provided.

This section discusses how a simple modification to the

current task assignment algorithm can make this possible.

The modification required involves only a slight

change to how module C uses the contents of the VST.

Instead of counting the number of ones between itself and

the start of the table, the count is taken relative to a
"random offset pointer" located somewhere in the table. In

Figure 22a, the random offset pointer is set at location 7

in the table. All processors then compute their next

72

assignments relative to this location. Processor 5, for

example, begins counting healty processors at location 7 and

concludes that processors 7, 10, and (wrapping around to the

top of the table) processors 1, 2, and 4 are ahead of it

during this frame. Processor 5 therefore takes task 6 for

its next assignment. If the offset pointer had been at 4,

processor 5 would have taken task 2, and so on.

Because the random offset pointer is recomputed every

frame, processor task assignments are continuously

redistributed in a pseudo-random manner. This pseudo-random

redistribution is sufficient to ensure that, over a period

of time, every processor gets to perform every task.

Continuous reconfiguration has been achieved.

There are a number of ways to generate the random

offset pointer. A brute-force approach is to assign three

millimodules (for redundancy) to execute a pseudo random

number routine. These modules would then store their

results in virtual common memory where all processors could

compare them and arrive at a common pointer number.

A more elegant method is to simply use the least

significant bits of some rapidly changing state variable

already located in virtual common memory. Since all

processors have access to this variable, it is a simple

matter to use it to compute a common offset pointer. This

is the app, ch taken in the CRMmFCS design.

D. RELIABILITY CONSIDERATIONS

Up to this point, very little has been said about how

computational errors are eliminated from the system. It has

been assumed that the rudimentary self checks performed in

the process of volunteering were infallable and that only

73

guaranteed healthy processors are ever given tasks to do.

This final section discusses what steps have been taken to

ensure that the system operates reliably.

In the first place, every processor is isolated from

the bus by a "combination lock" called the bus access gate

(BAG). In order to gain access to the bus, a processor must

successfuly complete a self check routine ("B" in Figure 22)

during which it generates a combination to unlock the BAG.

Once unlocked, the BAG remains open for 20 milliseconds

until it is relocked by a watchdog timer circuit. If a

processor fails to generate a correct combination at

periodic intervals, the BAG will lock it off the bus and

prevent it from volunteering for further tasks. Complete

details on the BAG circuit are present in Appendix A.

A second level of fault tolerance is provided through

the use of triplex data and triad millimodules. Three

processors are assigned to execute each- millimodule by

simply including three copies of each module in different

rows of the task assignment chart. These in turn generate

three copies of each variable which are stored at three

locations in virtual common memory. All processors then

perform a quick vote on each triplex variable when they

obtain it from virtual common memory. In this manner, bad

data is suppressed until the processor which generated it

can be eliminated from the bus.

The third level of the "fault filter" involves use of a

virtual common memory black mark table containing every

processor's opinion of every other processor. When a

processor finds a piece of bad data in the virtual common

memory, it adds a black mark against the processor which

generated it. If sufficient black marks accumulate against

a processor from more than three of its peers, its

combination generating algorithm will be unable to produce

74

the right combination to unlock its BAG. This prevents the

processor from volunteering for any more tasks and provides

an effective means for a group of processors to "pull the

plug" on a bad one.

A final level of protection is continuous

reconfiguration itself. Because a processor constantly

changes tasks, the errors it may produce never accumulate at

any one output. Instead, they are scattered among all

outputs where they can be suppressed by triplex voting until

the processor is eliminated by black mark accumulation.

E. SECTION SUMMARY

This section has presented a summary of the approach

used to manage software in the Continuously Reconfiguring

Multi-Microprocessor Flight Control System. It represents a

collection of techniques, not all of which are new, that

allow systematic implementation of continuous

reconfiguration and autonomous control while maintaining as

much software simplicity and modularity as possible. The

reader is referred to the appendices for additional specific

details on the various software aspects of the CRMmFCS

design.

75

=-a _

SECTION V

LABORATORY IMPLEMENTATION

Up to this point discussion has centered around the

theoretical design of the CRMmFCS architecture but very

little has been said about the actual laboratory

implementation of the system. This section describes the

prototype multi-microprocessor flight control system which

is currently under construction at the Flight Dynamics

Laboratory.

The purpose of the laboratory implementation was to

provide a means to test, evaluate, and demonstrate the

CRMmFCS concepts discussed in the previous sections. Data

gathered from this in-house program will be used to quantify

the extent to which expected benefits and limitations of the

architecture exist. The laboratory model will also be used

to validate a detailed software simulation of the entire

system. This validated simulation will be used to project

the throughput, fault tolerence, and other quantifiable

characteristics of modifications to the baseline hardware

without actually building them.

The in-house facility, shown in Figure 23, has been

designed to maximize data gathering, data reduction and

programmability of the system. The basic CRMmFCS

architecture is represented by the bus termination circuit,

real-world interface module, and six processing modules

shown in the figure. The remaining blocks represent an

aircraft simulator, a cockpit CRT display, and data

gathering, reduction, and software development facilities.

A processing module consists of a 16-bit microcomputer,

8K words of memory, and custom engineered transmitter,

receiver, and state information memory (SIM). The custom

76

-, I

I 4J

I E

'-4

0

~0
FlC

CN

= I

77

circuitry uses small and medium scale integrated circuits

and is described in detail in Appendices A and B.

The block labeled "68000" is an advanced 16-bit

microcomputer which will be used for a single axis digital

aircraft simulation. It is interfaced through a dedicated

processing module (see Appendix D) to demonstrate one method

of accessing external system components such as sensors and

actuators. A follow-on effort will use an analog computer

to do more complex aircraft simulations.

A Tektronix 8002 microprocessor development system is

also showni in Figure 23. It is used for both hardware and

software development. The 8002 interfaces to the CRMmFCS

hardware by replacing the microprocessor chip in one of the

processing modules with its own connecting cable. This

allows direct control of that module for debugging and

evaluation purposes. It also permits downloading software

to the rest of the system through that module's transmitter

circuitry. The 8002 transmits software over the global bus

to every processing module prior to a simulation run. After

the run, it is used to make software modifications based on

data gathered during the simulation. The new software can

then be rapidly redistributed and the system brought up for

another run.

A Radio Shack TRS-80 microcomputer is used in

conjunction with a dedicated processing module and custom

serial bus interface to gather data during a simulation run.

The processing module (or SIM monitor) records the history

of specific variables in the SIM during each test run and

then transfers the data to the TRS-80 for further

processing. The serial bus interface is used to gather raw

data from each of the four serial busses which the TRS-80

then processes to pinpoint specific problems and to

determine bus utilization and system throughput. The TRS-80

\78

also controls the RS-232 switching circuit which allows data

and software to be easily transferred between the major

components of the test system. Further details on data

collection are available in Appendix E.

Also included in the laboratory setup is a

microprocessor-based color graphics display which can be

configured as a cockpit instrumentation display or used to

monitor the system status in real time. The display

controller also has a joy stick input which can be used in

more advanced aircraft simulations. The real time display

demonstrates the ease with which the architecture can be

interfaced to other aircraft subsystems. (See Appendix D.)

The Tektronix 4081 is a stand alone minicomputer with

graphics capability and a link to a main frame computer. It

is used for further data reduction and display and for the

development of complex software for the millimodule compiler

and software simulation.

79

SECTION VI

CONCLUSION

There are three major potential benefits to designing

a flight control system using the methods described in this

report. The first is expandability as system needs grow.

It is a well known fact that from the time the first model

of a particular aircraft rolls off the assembly line until

the last one lines up in mothballs, there are inumerable

changes that occur to the system. This causes excessive

increases in cost due to the difficulties of changing

hardware and adding new software to the system. The

CRMmFCS approach has the potential to greatly reduce these

costs. Modularity of both hardware and software should

allow much more expandability.

A second potential benefit is the ability to reduce

software costs which are the single biggest cost in digital

systems today. By designing an architecture that is

inherently easier to program, the cost of programming,

maintaining, and updating software should be greatly

reduced. This contributes to a reduction in life cycle

costs.

The third potential benefit is the possibility of

avoiding unscheduled maintenence. With the present

redundant flight control computers, if any component of the

computer has failed the aircraft is not allowed to take off.

As digital technology progresses, it will become practical

to conrigure the CRMmFCS with as many as one hundred

processors. if only 40 processors are required to

accomplish the necessary processing, then there will be 60

spare processors. A requirement that at least 20 spares be

available when the aircraft takes off leaves 40 processors

that can fail before the aircraft is grounded. When

80

scheduled maintenence occurs, any failed processors can be

replaced. Since it is unlikely 40 processors will fail

between maintenance periods, the long sought goal of no

unscheduled maintenance may actually be achieved.

81

APPENDIX A

BUS TRANSMITTER DESIGN

In Section III of the report, an overview of the

transmission circuit used by each processor to talk on the

global bus was presented. This appendix presents further

details on the transmitter design as they exist at the time

of this writing. Although subsequent research may change

some of the specifics of this design, it is expected to

remain substantially as described below.

Transmitter Functon Reiew

The purpose of the transmitter is to relieve the

pticessor from the burden of obtaining access to the bus and

formatting data for transmission. Figure A-i shows the main

components of the transmitter in block diagram form.

The transmitter works in the following manner. First,

the local processor loads one of its two output buffers

(Page 1 or Page 2) with data to be transmitted during the

next milliframe. When the next milliframe begins, the block

labeled "transmission control logic" (TCL) takes control of

that page and unloads it onto the global bus. To do this,

it must first locate an available bus. It instructs the

"bus availability detector" (BAD) to locate a free bus and

then unloads one transmission word from the buffer through a

shift register onto that bus. It then tells the BAD to find

another free bus and the process continues until the output

page is empty. After that, the transmitter sits idle until

the start of the next milliframe at which time the local

processor supplies it with another page of data for

transmission. The following paragraphs describe each of

these steps in detail.

82

bus av a bl selector director
detector

shift~ reise

838

Transmission Format

In order to understand transmitter operation, it is

helpful to first discuss the format of the transmission

which it generates. Figure A-2 shows that a single

transmission word consists of three parts including (1) a

five-bit source identification field, (2) an eleven-bit

variable name field, and (3) a sixteen-bit variable value

field. Together these three fields add up to 32 bits of

meaningful data in each transmission.

The source identification field is different for each

transmitter in the system. It serves two functions. First,

it identifies which of up to 32 different transmitters

originated the message. This is useful for failure

isolation and is used by system voting algorithms for
blackballing purposes. The second use for the

identification field is that it makes messages from

different transmitters begin differently. This allows

transparent contention to resolve bus collisions in less

than five microseconds. (See Section III of the report.)

Each transmitter is given its own unique ID at the time

of system assembly. In the CRMmFCS laboratory model, this

is accomplished by burning a different number into the EPROM

(programmable read-only memory) associated with each

processing module. In an operational system, this would

more likely be accomplished through hardware jumpers on each

circuit board or by coding the connectors into which each

board plugs.

The second part of each transmission is the variable

name field. This field determines into which SIM location

the variable will be stored. Since the name field is 11

bits long, it can specify up to 2048 different state

variables.

84

L Z

transmission format
source Id variable name variable data value

byte no.1 byte .0.2 byte no.3 byte no.4

Figure A-2. Transmission Format

85

Finally, the last 16 bits of meaningful data make up

the variable value field. This is the actual value stored

in the SIM at the address specified by the address field.

It may be in any format (even part of a floating->oint

number) depending upon its application.

Up to this point, only the 32 mnaingful transmission

bits have been discussed. The actual format of data

appearing on the bus is slightly different. In Figure A-2,

the 32-bit message has been divided into four 8-bit bytes

and a zero has been inserted between each byte. These zeros

are used to make the bus look busy throughout the duration

of the transmission. This requirement is clarified in the

next section.

The Bus "BUS_Y.Sig.19

At the time the transparent contention scheme for

autonomous bus control was being developed, a requirement

emerged for independent processors to be able to tell if at

any time a particular bus was being used. Since the normal

state of a wired-or bus when not in use is a continuous

stream of logic ones, a natural thing to conclude when a

zero is observed was that the bus is currently in use. This

fact was used to develop a "BUSY" signal which would allow a

transmitter to instantly determine the availability of any

particular bus.

The BUSY detector is simply a circuit which counts ones

on the data bus and turns off after eight of them have

occurred in a row. Each time a zero is detected, BUSY is

turned on and the count is reset to zero. As long as zeros

occur often enough to keep the ones count from reaching

nine, BUSY stays on and no other transmitter will try to use

that bus. Once a transmission is over, there are no moro

AD-AI01 412 AIR FORCE WRIGHT AERONAUTICAL LAOS WRIBIT-PATTERSON APS O F/6 9/2
A CONTINUOUSLY RECONFIGURING MULTI-MICROPROCESSOR FLIGHT CONTRO-ETC(U)
MAY S1 S J LARIMER, S L NAHER

UNCLASSIFIED AFWALTR-61-3070

L'2

END

eN

zeros to reset the detector so it counts on up to nine and

the BUSY signal shuts off. Every transmitter that is

waiting for a bus is then free to try to use it and, through

transparent contention, one of them gains control and

completes another message.

Most 32-bit transmissions (ID, name, and value) are

made up of a fairly well-mixed collection of ones and zeros.

This means that zero bits would usually occur often enough

so that the BUSY signal would stay on during the entire

transmission. Unfortunately, this is not always the case.

For example, if transmitter number 11111 sends variable

number 111 1111 1111 with a value of 1111 1111 1111 1111,

then the transmission would consist of 32 consecutive ones.

After the eighth bit, the BUSY signal would disappear and

other transmitters would be free to transmit right on top of

the last 23 bits of the message. (Actually, the BUSY signal

would not even appear during the first 8 bits because there

were never any zeros to set it in the first place.)

Clearly, some means is needed to set BUSY at the beginning

of every transmission and to keep it set until the end. The

zeros shown inserted between each byte in Figure A-2 perform

this function.

A complete transmission, therefore, consists of 37

total bits including 32 significant bits and 5 zeros spaced

throughout. Each transmission is also trailed by nine ones

which occur as the bus floats high while the BUSY counter

times out in every transmitter. Thus, the effective length

of a transmission is actually 46 bits. Using this

definition of word length, CRMmFCS transmitters pack 46-bit

words onto the bus one after another with no wasted time in

between and 100% efficient bus utilization has been

achieved.

87

Of course, it is possible to argue that the 9 trailing

ones after each 37-bit message Ad constitute wasted time on

the bus. In one sense this is true, but on the other hand,

they constitute a very simple and reliable set of "stop

bits" for the transmission. In the future, more

sophisticated circuit designs may be able to optimize this

format, but the basic concept will still remain valid.

The Processor IDterface

Now that the format of the transmitter output has been

specified, it is possible to discuss the nature of each

transmitter component. This section describes the interface

between the transmitter and the processor which uses it.

The purpose of the transmitter is to relieve its

processor of the burden of formatting data and obtaining

access to the bus. It was designed to look as much as

possible like a block of common memory to which the

processor can write. For this reason, the interface between

them has been implemented as a simple shared memory.

As was shown in Figure A-1, the shared memory is

divided into two pages of 256 words each. These pages

alternate functions every millisecond at milliframe

boundries. While the processor writes its output for the

current milliframe to one page, the other page (containing

data from the previous milliframe) is unloaded by the

transmitter onto the bus. This process is controlled by the

transmission control logic (TCL) which maintains counters

and pointers to keep track of the data in each page.

Throughout the discussion to follow, the page which is

connected to the processor will be called the "input page"

and the one connected to the transmitter the "output page."

88

Loading the Input PaQ&

This section describes how a processor fills the input

page with data to be transmitted. The procedure requires

four consecutive writes to the page, one for each byte in

the message (see Figure A-2). The first byte contains the

five source ID bits and the first three variable name bits.

The second contains the remaining eight name bits. Bytes

three and four contain the most significant and least

significant eight variable value bits respectively. Since

there are 256 bytes of memory in a page, the current

implementation allows the processor to generate up to 64

four-byte messages per millisecond.

After all messages for a given milliframe have been

loaded, the processor writes one more byte to the input

page. This byte consists of all zeros and serves as a

signal to the transmitter that all messages have been

unloaded. This "end of data" byte is identical to the first

byte of a potential transmission by processor 00000 of a

variable whose name begins with 000. For this reason, no

transmitter in the system is given an ID number of 00000.

That way, when five zeros do occur in the first byte of a

message it can only mean one thing: the end of data in the

output page has been reached.

Unloading the Output Page

While one page is being loaded by the processor, the

other one is unloaded by the transmitter onto the bus. This

section describes how data is removed from the output page

and prepared for broadcast.

Figure A-3 shows a more detailed view of the output

portion of the transmitter. The arrow labeled "cpu data"

represents the eight output lines from the output page of

89

4-J

Q-)

4)
.41

qw..

90

the interface buffer. This arrow is shown entering the

inputs of a parallel-in/serial-out (PISO) shift register.

The shift register is actually nine bits long with its first

bit permanently hardwired to a logic zero. The remaining

eight bits contain one byte from the output page.

This configuration allows very simple generation of the

desired transmission format. When the transmission control

logic (TCL) locates a free bus (see next section), it

generates a LOAD command which causes the PISO to load nine

bits (a hard-wired zero and one data byte from the output

page). It then enables the shift function of the register

and the bus clock shifts these bits onto the data bus. Nine

clock pulses later the shift register is empty and the

control logic loads another nine bits from the output page.

This process repeats four times resulting in 36 bits (4

bytes and 4 zeros) of the message being placed on the bus.

The TCL then allows one final shift from the now empty (full

of zeros) PISO register. This places the 37th bit of the

transmission (a zero) onto the bus and the transmission is

complete.

After the last bit of the message has been placed on

the bus, the TCL disables the shift register, increments its

pointer to the next byte in the output page, and instructs

the bus availability detector (Figure A-3) to find another

free bus. This is the subject of the next section.

Bus Av i iJyg±_J1Dgnhand Bus Selection

In a previous section of this appendix the bus BUSY

signal was introduced as an indicator of whether or not a

particular bus was in use. This BUSY signal was turned on

by the appearance of a zero on the bus and remained on until

eight consecutive ones occurred. There is a separate BUSY

indicator circuit for each bus in the system.

91

The "bus availability detector" (BAD) shown in Figure

A-3 is simply a circuit which monitors the BUSY signal from

each bus. When it is instructed to SEARCH for a bus by the

TCL, it latches its BUS SELECT lines onto the first bus it

finds that is not BUSY. It then signals the TCL that it has

"FOUND" a bus and the TCL transmits one message from the
output page.

The BUS SELECT lines which are set by the BAD circuit

are connected to three selector circuits as shown in Figure

A-3. These circuits include a 4 to 1 clock selector, a 4 to

1 data selector, and a 1 to 4 data distributer. These

circuits are used to connect the transmitter to whichever

bus is to be used for the current message.

The bus availability detector is instructed to find a

new bus after every message. As a result, the messages from

the output page are automatically distributed at random over

every available bus in the system. If one bus fails, its

termination circuit (Appendix C) pulls it permanently low.

This makes it look constantly busy so that the bus

availability detector never locks onto it. Every message is

automatically routed onto one of the other working busses.

Another function of the transmitter is to ensure that

only good data is placed on the bus. For this reason, a

one-bit comparator constantly monitors what is actually on

the bus and compares it to what is supposed to be at the

PISO register output. If there is ever a mis-compare

(caused by noise, hardware failure, or a contending

transmitter) the circuit generates an ABORT command which

resets the transmission control logic and causes it to

restart the message whe. it finds another free bus.

92

In order to prevent false ABORT signals caused by

delays between the output of the PISO and actual appearance

of a bit on the bus, the output of the comparator is only

sampled on the falling edge of the bus clock. Since the

register output changes only on the rising edge of the

clock, a full clock pulse width (500 ns) is allowed for bus

data to settle before it is used.

When an ABORT does occur during a transmission, one of

two things can happen to the part of the message which has

already appeared on the bus. If the abort was caused by

noise or failure, the immediate halt in transmission leaves

an incomplete message on the bus. Messages which are less

that 37 bits long without all 5 separating zeros in place

are automatically discarded by the receiver circuit

(Appendix B) and cause no further problems. Aborts which

are caused by disagreement with another transmitter sending

at the same time are also no problem. Since the part of the

message reaching the bus prior to the abort matched that of

the contending processor exactly (or an abort would have

occurred sooner), it simply becomes part of the contending

processor's message and remains transparent to the system.

The concept of transparent contention was discussed

thoroughly in Section III of this report.

The Bus Access Gate

In any system where there is a large number of

transmitters using the same bus, there is always the concern

that a failed unit may "babble" on the bus preventing any

other unit from using it. This section discusses how this

is prevented in the CRMmFCS architecture.

The key to the CRMmFCS approach is a device known as

the "bus access gate" (BAG). The bus access gate is the

93

last output buffer between the transmitter and the serial

data bus. it has the unique characteristic that it can be

disabled by an external logic signal. (Almost any

integrated circuit with a chip enable pin can be made to

work.) In the CRMmFCS design, this external signal is

called UNLOCK. Whenever UNLOCK is true, the BAG is enabled

and data may pass through it from the transmitter to the

bus. As long as a reliable means is provided to generate

the UNLOCK signal, the BAG provides complete protection from

one bad transmitter wiping out an entire bus. The next

section discusses how this vitally important UNLOCK signal

is generated.

Of course, it is possible to argue that the bus access

gate itself may fail and wipe out an entire bus. While this

possibility exists, its probability is sufficiently small

(because of the circuit's simplicity) that it can be

tolerated. For the purposes of reliability analysis, the

BAGs in every transmitter are considered to be integral

parts of the busses to which they are connected. In this

sense, failure of a BAG is synonomous with failure of the

bus itself. Sufficient spare busses (each with its own

independent BAG interfaces to every transmitter) are

provided so that such failures can be easily tolerated.

One final note must be made. It is not good design

practice to make more than one BAG from a single IC package.

Failure of such a package could disable every bus to which

it is connected. For this reason, individual discrete

components are recommended for construction of each BAG in

every transmitter.

Geeai0-fteJNLO _ tgn l

Generation of the signal needed to unlock the bus

access gate is a relatively simple matter. In every

94

transmitter there is included a resettable 8-bit latch

connected to the local processor as an output port. This

port is referred to as the "combination register." An 8-bit

comparator constantly compares the contents of this register

with a hard-wired "correct" combination and its output is

used as the required UNLOCK signal. As long as the register

contents match the hardwired combination, the UNLOCK signal

is true and the BAG is allowed to place transmissions on the

bus. If the contents ever fail to match, the transmitter is

locked off of every bus until its processor generates the

correct combination and places it back in the combination

register.

As one final level of protection, a "watchdog timer"

circuit is included in every transmitter which periodically

resets the combination register to all zeros. When this

happens, a processor must successfully generate and store

the correct combination back in the register before it can

make any more transmissions. In the CRMmFCS, every

processor must unlock its BAGs once every reconfiguration

cycle (10 ms) in order to "stay in business."

This approach provides protection from a wide variety

of possible failures. If a processor itself fails, it will

be unable to generate a correct combination periodically and

the entire module will be permanently locked off the bus by

the watchdog timer. If the transmitter circuit fails, the

processor will notice bad data accumulating in the SIM and

can deliberately store a wrong combination to lock the BAG.

Finally, if the processor fails only partially (a memory

fault, for example) such that it can still generate

combinations and transmit but some of its results are

incorrect, it is possible for other processors to shut it

down by destroying information in the SIM which it needs to

generate its combination. This procedure is known as

"blackballing".

95

This appendix has presented the conceptual details of

the CRMmFCS transmitter design. It has shown that the

transmitter contains circuitry which automatically competes

for the bus, formats transmissions, and broadcasts them

while checking for errors and rebroadcasting if one occurs.

Although a working model has already been demonstrated in

the laboratory, detailed schematics have not been included

in this report because the final design is still being

perfected. This information will be published in a future

technical report.

96

APPENDIX B

BUS RECEIVER DESIGN

This appendix contains a detailed description of the

hardware design and the operation of the CRMmFCS receiver

circuit. This circuit is a part of the flight control

computer architecture which is being constructed in-house at

the Flight Dynamics Laboratory. It was custom designed for

the in-house effort and is implemented with small scale and

medium scale integrated circuits.

eceiye Overvie

The receiver consists of two major parts including a

serial to parallel shift register (SIPO) and a block of

random access memory (RAM) which contains a complete copy of

all the state information in the system. This state

information memory (SIM) is mapped into the microcomputer's

address space as a block of "read only" memory and is

accessed by the SIPO as a block of "write only" memory.

Figure B-1 shows how this works.

The in-house CRMmFCS implementation utilizes four 1 Mhz

data busses for data transfer and a TI-9900 microcomputer as

the processing element. A block diagram of the receiver

circuit is shown in Figure B-2. There are four identical

bus receiver and control logic circuits designed to receive

information from a data bus using the corresponding clock

bus to synchronize data reception. The direct memory access

(DMA) controller handles contention for the state

information memory (SIM) between the receiver and the

TI-9900 microcomputer.

97

9"1 M-lop um

2 0 2of EE

U . of,

0
C r H

.1 98

Data Format

In the architecture under discussion, a wbrd of

transmitted data is 37 bits long and consists of four bytes
of significant data separated by a zero bit before and after
each byte (see Figure B-1). A string of more than eight

consecutive "1" bits on the bus indicates that it is no

longer in use, so zero bits are included between each byte

to ensure that the bus continues to look busy in the event

that more than eight consecutive ones occur in the actual

data word.

Bytes one and two in Figure B-I consist of five bits of

source identification indicating the processing module which

originated the transmission and an 11-bit variable name.

The variable name is the address of the actual memory

location in the SIM where the data is to be stored. Bytes

three and four contain the variable data to be stored in the

SIM.

Bus Rece yer -nd Control Logic

The bus receiver (Figure B-2) consists of a 19-bit

serial in parallel out (SIPO) shift register, one 11-bit

latch for the address, and one 16-bit latch for data. Data

is continually shifted into the SIPO by the bus clock.

Byte one and two boundaries (Figure B-I) are detected

by monitoring bits 1, 9, and 18 of the incoming data stream.

When these bits are simultaneously zero, as discussed in the

section on data format, the receiver control logic

immediately latches the ID and address inform-uion into the

16-bit data latch and the address information into the

11-bit address latch. After the information is latched,

bits 1 through 17 of the SIPO are set to ones allowing the

next 18 bits of information to be received. While new data

99

IS

ImAIi

cil Lo

Ci U-

1000

is being received, the DMA controller stores the ID/address

information in the designated SIM location and increments

the address by one. The DMA controller will be discussed in

detail later.

Bytes three and four of the data word (Figure B-l) are

shifted into the SIPO while the DMA controller is emptying

the data latch. When the control logic again detects zeroes

simultaneously at bits 1, 9, and 18 of the incoming data

stream the information is latched into the 16-bit data

latch. The address latch is unchanged this time. After the

information is latched, bits 1 through 17 of the SIPO are

set to ones and the receiver is then ready to receive a new

ID, address, and data transmission.

Direct Memory Access Controller

The function of the direct memory access (DMA)

controller is to transparently store data in the state

information memory (SIM) as it becomes available from the

receivers. It must also transfer information requested by

the processing element (TI-9900 microcomputer) to the

TI-9900 data bus at the proper time in the TI-9900 read

cycle (see Figure B-2).

A priority encoder circuit is used to start the DMA

cycle. The TI-9900 read signal is given the highest

priority and the four receiver circuits are arbitrarily

assigned the next four priorities. When a receiver buffer

becomes full, it sends a logic one control signal to the

priority encoder circuit. The priority encoder then

activates the output corresponding to the highest priority

input and disables further inputs until the end of the DMA

cycle. The remaining inputs stay active until they have

been serviced. The DMA controller detects the priority

encoder output and enables the address and data bus of the

101

"4I

indicated receiver and generates a memory write cycle for

the SIM. Upon completion of the write cycle, the DMA

controller resets the "receiver buffer full" indicator for

the receiver which has just been serviced and enables the

priority encoder circuit.

The DMA controller is designed to transparently service

the TI-9900 no matter when the TI-9900 read request signal

becomes active. This capability is achieved by using high

speed memory in the SIM. The memory was chosen so that a

DMA cycle is less than 300 nanoseconds. The TI-9900 memory

read cycle is 660 nanoseconds. Therefore the DMA controller

can complete a memory write cycle and still have enough time

to service the TI-9900 read cycle.

The receiver circuit and SIM concept allows a large

amount of information to be made available to the processing

element in a multi-processor system. The processing element

can treat the SIM as local memory and access any information

it requires immediately. Also, it is conceivable that much

higher data rates could be achieved with the receiver as it

is presently implemented. Taking into account the maximum

access rate of the TI-9900 the maximum total bandwidth of

the receiver circuit is nearly 50 Megabaud. Calculating the

bandwidth assuming it is not necessary to store the

ID/address information and a lower access rate from the

TI-9900 indicates a maximum possible bandwidth approaching

184 Megabaud.

102

APPENDIX C

BUS TERMINATION CIRCUIT

The bus termination circuit is an integral part of the

CRMmFCS "smart" bus design. A "bus" actually consists of a

data bus, a clock bus, and a bus termination circuit (see

Figure C-1). The bus termination circuit serves four

purposes. It terminates the data bus, monitors the clock

and data busses for faults, generates the clock for the

clock bus, and generates a milliframe synchronization pulse

every millisecond.

Bus Termination and Fault Detection

Both ends of the data bus are terminated at the bus

termination circuit. The wired-or data bus is terminated

with pull-up resistors for impedance matching. This

minimizes ringing on the bus and helps to suppress noise. A

monitor circuit checks both ends of the bus for faults. If

a faLlt occurs the bus termination circuit disables the data

bus and corresponding clock bus. A timer circuit is then

initiated and after 100 microseconds an attempt is made to

restart the bus.

The bus termination circuit drives the clock bus with a

one megahertz clock signal. The clock supplies the timing

for data transmission over the data bus by the processing

modules in the CRMmFCS. Both ends of the clock bus are

terminated at the bus termination circuit so that the clock

bus can be monitored for faults. As with the data bus, if a

fault is detected the bus termination circuit disables both

the clock and data bus and initiates a restart attempt after

100 microseconds.

103

bus I-
-~~ bus2 dt

__ _ _ __ _ _ __ _ _ _ clock

== bus3 daa

busN 6"

Figure C-1. Smart Bus Configuration

104

Frame Synchronization

Each bus termination circuit generates a frame

synchronization pulse every millisecond. The pulse pulls

the clock bus low for 5 microseconds. A missing pulse

detector is used by each processing module to detect the

frame synchronization pulse. This pulse synchronizes the

processing modules to millimodule boundaries.

In the laboratory implementation, four sets of data and

clock busses are used. The frame synchronization pulse of

each bus termination circuit is internally tied to each of

the other three bus termination circuits. Each bus

terminator has a voting circuit which forces its

synchronization pulse to be generated when two other bus

terminator circuits simultaneously generate a frame

synchronization pulse. The voting circuit acts as a master

reset, synchronizing the frame synchronization circuits.

The processing modules use a similar voting circuit,

requiring that two frame synchronization pulses occur

simultaneously before the millimodule boundary is accepted.

The voting circuits are used to maintain system

sychronization while protecting the system from certain

faults. For example if one frame synchronization pulse

occurs at sporadic intervals the voting circuits prevent it

from causing erroneous millimodule sychronization. Also, if

the frame synchronization pulses occur at slightly different

intervals the voting circuits will prevent the pulses from

becoming slewed in time with respect to one another.

105

APPENDIX D

PEAL UORLD IINTERFACE

This appendix addresses the problem of how to interface

the CR!IPPCS system to the outside world. Up to this point,

it has more or less been assumed that all data needed by the

system processors is somehow already available in the state

information matrix (SIM). It has also been assumed that

results stored in the SIM would somehow be able to influence

the operation of other aircraft systems and control

surfaces. In the following paragraphs a plan will be

presented for interfacing the CRMmFCS to aircraft sensors,

actuators, and displays. A discussion of how this technique

will be demonstrated in the laboratory is also included.

Smart S ors and Actuators

The key to the approach is the assumption that all

sensors, actuators, and displays will be "smart." That is,

every device has associated with it a processor of

sufficient power to perform the necessary conversions of

real world signals to and from virtual common memory

format.

For example, every sensor has an associated processor

which knows how often to sample its output, what signal

processing to do, and where to place the resulting

information in the state information matrix. For this

reason, each sensor processor must have its own transmitter

in order to broadcast the information into the virtual

common memory where any other processor can access it. It

may also be desirable to give each sensor processor a

receiver circuit so that it may access the SIM for

information on the current aircraft mode, flight condition,

106

blackball table, and other data which may influence the

sensor processor's performance.

Similarly, each actuator, display, or other output

device has an associated processor which controls it. This

processor accesses the SIM for information on what it is

supposed to do and uses other SIM information to accomplish

it. For this reason, each output processor must have a

receiver circuit to access the SIM. It may also be

desirable for it to have a transmitter so that it can report

on its own health and the state of its output device.

In the most general case, each sensor, actuator, and

display could have its own dedicated processor and

transceiver circuitry interfacing it to the CRMmFCS global

bus. Each device and its processor would then be considered

to be a single peripheral unit and failure of either part

would result in shutdown of the entire unit. System

redundancy and fault tolerance capability would then be

designed at the unit level.

This is not at all, however, the only configuration

allowed in the CRMmFCS. It is equally possible to have one

very large and powerful and reliable "real world interface

processor" responsible for sampling all sensors, controlling

all actuators, and doing all associated processing. It

would then be necessary to use only one transmitter and

receiver pair to interface to the real world.

In actual practice the system designed will probably

lie somewhere in between the two extremes described above.

Each sensor may be connected to several processors and each

processor may be able to perform several different I/O

(input/output) tasks depending upon system requirements.

The important thing is that, no matter how the real world

devices are sampled or controlled, they may be easily

107

interfaced to the CRMmFCS through a standard transmitter and

receiver pair. Even an external MIL-STD-1553 multiplex bus

may be interfaced if one of its remote terminal processors

has a CRMmFCS transceiver.

Laboratory Implementation

In the CRMmFCS laboratory prototype, only two I/O
processors will actually be implemented. This is enough to

demonstrate the concept while minimizing research costs. It

is also enough to allow testing of an extention to the task

assignment chart approach which will be discussed in the

next section.

The two I/O processors which will be constructed in the

laboratory will include an aircraft interface unit and a

pilot interface unit. The aircraft interface processor

(Figure D-la) will be connected to a real time demonstration

of aircraft dynamics and sensor/actuator characteristics.

It will be responsible for sampling simulated sensor outputs

and providing control commands through simulated

digital-to-analog converters connected to simulated aircraft

actuators.

The pilot interface processor (Figure D-lb) will serve

two functions in the CRMmFCS prototype. First, it will

sample a joystick input to allow reseachers to "fly" the

system through a variety of maneuvers. This will allow an

evaluation of system response and provide a certain amount

of 'hands-on" capability for demonstration purposes.

The pilot interface processor will also drive a CRT

disr'ay, performing all the functions necessary to generate

graphic and alphanumeric output. The display will operate

in two modes. The first allows real-time readout of any

combinaton of SIM variables. This is expected to be very

108

Inefc

Pilots

InteRfOaceB a S

Fgr -. Ra ol neraePoesr

109

useful for debugging, testing, and evaluating system

performance during actual operation rather than waiting

until the run is over to study the collected information.

The second display mode will generate a simple vertical

situation display for hands-on demonstration purposes.

I/O ProcsoirSoftwar

Software for the CR11mFCS I/O processors will be managed

in the same manner as for the rest of the system. Tasks

will be divided into millimodules and a separate task

assignment chart (TAC) will be used to schedule them. when

a particular sensor is sampled will depend upon where its

millimodule is placed in the TAC. Actuator and display

updates will also be controlled by TAC scheduling.

Operating system software will change slightly for I/O

processors because continuous reconfiguration will not be

required. Since I/O processors may differ widely in

capability (from powerful minicomputers for complex displays

to simple 4-bit microprocessors for solonoid and relay

control) and since different processors may be connected to

different devices, constant redistribution of tasks among

them will be impractical. For this reason, each processor

will execute only one fixed row of the I/O TAC for each

system MODE.

Of course, it is possible to visualize a system where

every real-world signal is connected to every processing

module (perhaps through a common motherboard). If this were

true, then the control TAC and the I/O TAC could be combined

and any processor in the system could perform absolutely any

task. For now, however, separate task assignment charts and

specialized I/O processors appear to be the more practical

approach.

110

Data Flow Scheduling

The single biggest reason for taking a task assignment

chart approach to I/O processing is to allow control over

the scheduling of data flow on the bus. In Section III-E,

it was shown how a "data flow assignment chart" could be

used to prevent bus overloads and maximize bus utilization

efficiency. It was also shown that there was a definite

bandwidth limitation which allowed a maximum of 88 variables

(in the current four 1 MHz bus configuration) to be placed

on the bus per millisecond. If there is to be a slot on the

bus for every variable generated, then this limit must not

be exceeded. For this reason, I/O processor transmissions

must be included in the overall system data flow assignment

chart. The use of an I/O task assignment chart with

synchronized millifranes greatly simplifies this scheduling

problem.

111

APPENDIX E

DATA COLLECTION CIRCUITS

Introduction

In the design of any laboratory experiment, some means
must be provided for collecting the necessary data. This is

especially true if the experiment is a new micro-electronic

system design where most of the data of interest consists of

voltage levels which change in the sub-microsecond range.

If anything other than the most simple input/output

observations are to be made, some means must be provided for

automatically collecting and processing selected data

wherever it occurs. This appendix describes the provisions

which have been made for data collection in the CRMmFCS

laboratory implementation.

Data Collec~tion R uirements

There are three major requirements for data collection

in the CRImFCS. The first is the ability to monitor what is

going on inside the processing module itself. Some means

must be provided to observe the processor's data and address

lines continuously as it executes instructions and transfers

information to and from memory. This function is provided

by a Tektronix 8002 flicroprocessor Development System which

will be referred to as the "PrI monitor."

A second requirement is some means to monitor traffic

on the global data bus. A major part of the CRMmFCS

research involves the precise timing and scheduling of large

amounts of data on the bus by a great many free-running

independent transmitters. flulti-trace storage oscilloscopes

112

and high speed logic analyzers are helpful for part of this

requirement. They can be used to measure voltage vs. time

relationships and even many bit patterns but they fall short

in one important area. There is a need to be able to record

every bit that appears on the bus over an extended period of

time and then process that information to put it in a form

more usable to the human researcher. To meet this

requirement, a special "bus monitor" circuit was developed.

It will be discussed later in this appendix.

Finally, there is a very important need to be able to

monitor all of the state variables in the system as they

change with time. The state information matrix (SIM) stored

in virtual common memory contains this data which changes

constantly as information surges back and forth across the

global bus. The "SIM monitor" circuit allows the sampling

of any state variable or group of variables over very long

periods of time at a variety of rates. It is data from the

SIM monitor which is used to plot the time response of every

variable in the CRMmFCS.

The PM Monitor

The Tektronix 8002 is a piece of laboratory test

equipment designed to help develop and debug microprocessor-

based systems. It plugs into the system under test using a

ribbon cable in place of the system's own microprocesor chip

and then emulates that chip to the extent that the system is

totally unaware of the replacement. Everything operates as

usual except that now the 8002 ic capable of displaying

every instruction executed and every bit of data manipulated

by the particular module to which it is connected.

The 8002 allows the user to take over complete control

of any processing module in the CRMmFCS system. Data

113

collected may be sent to a CRT screen, to a line printer, or

stored on disk for future reference. Since the 8002 meets

every requirement specified for a PI monitor, no custom

designe6 circuits were necessary for this part of the data

collection system. All that was required was a simple

PS-232 data link to send the collected data to the

post-processor for analysis. The post-processor will also

be discussed later in this appendix.

The Global Dus LonjtpQ

The purpose of the bus monitor is to record every bit

of data appearing on each of the four global busses

implemented in the laboratory design. Figure E-1 shows its

essential features.

Data Co-1cin. The bus monitor consists of four 32K

memory boards (B1, B2, B3, and B4) which are connected to

the four global busses via four custom serial to parallel

conversion circuits (SIPOs). Each circuit collects data

from a bus eight bits at a time and stores it using direct

memory access (DMA) into its corresponding 32K memory bank.

A counter is incremented after each store operaton to point

to the next available location in memory. When it reaches

32K (32768), the counter overflows to zero and the circuit

either stops collecting or continues to count overwriting

previously stored values until it is halted by an external

command. (Which option occurs is user selectable.) In

either case, the net result is that each bank of memory is

loaded with 32768 consecutive eight-bit samples of what

appeared on its corresponding bus during the last run. This

amounts to 262,114 bits of bus data or just over 0.26

seconds worth of transmission time.

114

Sim ,m ARALEL PORT B IB1' B3164
9900TRS-80 1/0 BOARDS

8K
Bus Monitor

SIM
Monitor

STRS-80 :

Figure E-1. Bus and SIM Monitors

115

While on the surface 0.26 seconds does not seem to be

very much time, it actually allows the collection of an

enormous amount of data. During that interval, the CRMmFCS

has completed nearly 9 iterations of its control laws and

has reconfigured over 26 times. This is more than long

enough to determine what the bus monitor was designed to

find out: when and where data appeared on the bus, if any

faulty or incomplete transmissions occurred, and the
efficiency with which the bus is being used.

Data Analysis. Once a 0.26 second "picture" has been

taken of the bus by the SIPO circuits, some means is

required to access and analyze the data stored in each
memory bank. A Radio Shack TRS-80 microcomputer is used for

this purpose.

Referring again to Figure E-l, each 32K buffer (Bl, B2,

B3, and B4) is memory-mapped into the upper half of the

TRS-80's address space. By storing the appropriate number

in an output port, the TRS-80 can access any buffer in a

bank-select fashion. The information in each buffer may

then be processed, displayed, stored on local five-inch

floppy disks or transferred to a Tektronix 4081
mini-computer for further processing, mass storage, or

high-resolution plotting. This post-processing of data will

be discussed later.

The SIM Monitor

The third major piece of data collection equipment is

also a custom circuit called the SIM monitor. It is

responsible for recording the time histories of selected

system variables over the duration of each test run.

116

The SIM monitor is just a standard processing module

which has been modified to contain two receiver circuits and

no transmitter. Its sole function is to listen to the bus

and transfer variables of interest from the SIM to its own

local memory. Two receivers have been provided so that one

can listen to the bus while the other is being copied into

local memory. Every millisecond, the receivers alternate

functions allowing the local processor that much time to

examine what the contents of the SIM were at the end of the

previous millisecond.

The SIM monitor may be programmed by the TRS-80 to

sample any number of variables in the system at any number

of rates. The only limitation is the number of words a 9900

microprocessor can transfer per millisecond and the size of

its local memory.

The SIM monitor is programmed from the TRS-80 keyboard.

Prior to a run, the operator uses an interactive program

(written in TRS-80 Basic) to select which variables are to

be recorded and the rate at which they are to be sampled.

After a run, the processing module dumps its local memory

through a parallel port to the TRS-80 for processing,

storage, and display. The final section of this appendix

discusses how this data is processed.

Post-Processing

The TRS-80 microcomputer is the heart of the CRMmFCS

data collection system. It is connected to the bus monitor

through memory mapping, to the SIM monitor through a

parallel port, and to the 8002 PM monitor via an RS-232

interface (Figure E-2). Unfortunately, the TRS-80 has only

limited processing, storage, and graphics capability. For

117

IPA
TEAuINAmO

9wo 9900 9w0 0000 0500 ow0 9900 3000 INS- so

I SOFTWARE 800

Figure~DVE RS2 Dt ColcinadPs-Prcssn3Cruir

118CHW

this reason, it was relegated to the role of data

collection system manager and operator interface console.

Through the TRS-80 and its custom designed RS-232 switching

circuit, the entire CRMmFCS laboratory system can be

controlled.

One of the devices connected to the TRS-80 by the

RS-232 circuit is a Tektronix 4081 minicomputer. The 4081

is a stand-alone 32-bit computer with hardware floating

point, hard disk storage, and superb graphics capability.

All data collected in the system is routed to the 4081 for

reduction, storage, and hard copy plot generation. it may

also be routed from there to a CDC Cyber mainFrame computer

for even more processing and the generation of

report-quality Calcomp plots.

Snumay

This appendix has described the major components of the

CRMmFCS data collecton and reduction system. This system

consists of three data collecton devices (including PM, Bus,

and SIM monitors), a TRS-80 system manager, a custom RS-232

switching circuit, and a 4081 post processor. All of these

devices have been integrated into a single system designed

to maximize the amount of information which can be obtained

in the laboratory. Since the main reason for building a

working model of the CRMmFCS was to generate this data, the

development of an effective means to collect and analyze it

is every bit as important as the constcuction of the flight

control system itself.

119

APPENDIX F

STATE INFORMATION MATRIX THEORY

This appendix discusses the state information matrix

(SIM), a concept which is fundamental to the design of the

entire CRMmFCS architecture. The SIM is defined as "an

n-dimensional array containing the current best estimate of

all information available about the state and environment of

an aircraft." It is designed to help manage the wealth of

real time information available to a modern flight control

system.

The SIM contains information about traditional state

variables (rates, velocities, positions), cockpit switch

settings, target states, air data, telemetry data, aircraft

model parameters, and raw sensor data. It also includes a

sufficient number of their past values to implement any

required difference equations.

The state information matrix may be visualized as a set

of post office "pigeon holes." As shown in Figure F-l,

there is a separate cell for every piece of information

known about the aircraft and its environment. Some cells

contain only static information which never changes (such as

aircraft dimensions and numerical constants). Others

contain discrete information which only changes when a

switch is thrown or a new mode is selected. Still others

contain information that is continuously updated at a

variety of rates.

There is nothing particularly revolutionary about the

state information matrix. The concept of a state vector has

been around for a long time. The state information matrix

simply extends the concept of state (traditionally reserved

120

u v w p q r 0 0

0 0 0 0 0 0 0 0 0
'a V v p q r 6

0 0 0
aX a a2&

CM % Cmq CM6 Cfl CflB C 6a

C , C, C1 C, Cis C,
Ca C q 8e r s 6a MODE MODE M40DE

X y z
NAV NAY NAY

y(k) yck-1) y(k-2) DIS DIS DIS DIS
X1 Yj X2 Y2

z(k) z(k-1. z(k-2) z(k-3) z(k-4) z(k-5)

Figure F-i. The State Information Matrix

121

for positions, rates, and accelerations) to include all

information about the system. It also extends the

dimensionality of the representation from a one-dimensional

vector to an n-dimensional array.

A special case of the SIM, called the state-time form,

is useful for introducing the concept. The state-time form

is just a two-dimensional array of past and present state

vectors. Figure F-2 is a generic example of the state-time

form.

In the figure, the vertical axis contains each state

variable of interest and the horizontal axis contains the

oast n values of each variable. Conceptually, this matrix

is of infinite dimension along both axes. However, due to

hardware limitations and actual requirements, it is

necessary to implement only enough of it to keep track of

variables of practical interest.

Processing the State Information Matrix

Now that all available information has been collected

in one conceptual place, all that is necessary is to develop

an effective way to process, distribute, and use it. This

is the topic to be addressed next.

The processing which is required for a typical flight

control system may be broken down into three general types:

Type 1: Processing raw sensor signals to obtain

usable input data. (Signal conditioning,

scaling, filtering, etc.)

Type 2: Processing current input data and past

state information to obtain a best

estimate of current state information.

122

&Mt a~t-1) a(t-2) a(t-3) a(t-4) a(t-5) a~t-6) a(t-7) a(t-8) a(t-9) J(t-10)J

b(t) b(t-1) b(t-2) b(t-3) b(t-4) b(t-5) b(t-6) b(t-7)lb(t-8) b(t-9)j

- I I- I-

c(t) cOt-i) c(t-2) c(t-3) c(t-4) cOt-5) c~t-6) c(t-7)

-~t d - d- - - --

e~t) e(t-1) e(t-2) e(t-3) e(t-4)

h(tlo h(t-11 h(t-2)

i(t) i(t-11 jtt-2)

k(t) k(t-1

Figure F-2. The State-Tim~e Form

123

(Estimation, parameter identification,

analytic redundancy, observers, etc.)

Type 3: Processing past and present state information

to obtain the required control signals for

all onboard systems. (Aero surfaces,

displays, telemetry, etc.)

This partition divides the required processing into

three sets of independent functions that (1) obtain data

from all available sources, (2) squeeze all possible

information out of that data, and (3) use this information

to generate the "best possible" control signal for every

onboard system. If these functions are shown in their

relationship to the state information matrix, what results

is a processing structure of the form shown in Figure J-3.

In the figure, I is a set of vector functions of

Type 1. These functions process row sensor data to generate

the elements, s, of the SIM that are functions of current

sensor

inputs only. The set of functions, h, (of Type 2) generate
the remaining variable elements, x, of the SIM as functions

of s and past values of x. The entire SIM is then used by

a set of Type 3 functions, U, to generate the control

output signals required by all aircraft systems.

This simple partition is important because it allows
the separation of all processing into functions that are

independent of each other and that require only simple

interactions with the state information matrix. Using this

approach, all functions in each of the three sets are (by

construction) completely decoupled and may be designed

independently by experts in each area. For example, sensor

designers can be asigned the task of developing the

individual I functions for each particular sensor subject

124

-- - -control outputs

sensor data %I

Intermediate results

Figure F-3. State Information Matrix Processing

125

compatible with the SIM. Similarly, control experts can

design their algorithms knowing that the best possible

estimate of every required state variable is readily

available at a well-defined location in the state

information matrix.

This approach can also have a high payoff in terms of

maintenance and modification throughout the life cycle of

the system. If a new and better estimation algorithm is

developed, for example, it can simply replace the old

algorithm and use the same inputs (or any other information

in the SIM for that matter) to generate the same outputs for

deposit to the same locations in the SIM. No other

functions are affected or even notice the change, except

that now some of the variables they are getting from the SIM

are of higher quality.

This modularity, as always, is the key to conquering

any large-scale design task. Modularity of software is a

well-known and proven concept. Partitioning of processing

into t, _q, and h functions operating on a common set of

data may enable a designer to take advantage of this fact.

Distributing the State Information Matrix

Up to this point it has more or less been assumed that

the state information matrix is a set of "pigeon holes"

somewhere with a label for every piece of information and

the j, _, and h functions busily updating the contents of

every hole. This is strictly true only for a standard

uni-processor architecture where a section of memory may be

set aside for exactly this purpose. For multi-processor

architectures like the CRMmFCS, some other approach is

necessary. The following paragraphs discuss some of the

ideas that were evaluated in the development of the CRMmFCS

architecture.

126

Single Copy / Multi-Access. It is possible to

implement a multiprocessor architecture in which all

processors share a common memory which contains the state

information matrix (Figure F-4). While this approach may be

the most straightforward, it has serious problems in terms

of bus contention and throughput. This is because only one

processor can access the memory at any one time.

Multi-Copy / Multi-Access. A brute force solution

is to replace the single common memory with n common

memories where any memory can be used by any processor

(Figure F-5). This solves the contention problem and even

provides a measure of inherent redundancy. However, it

introduces the new problem of how to ensure that all

memories contain the same current information. The cost,

weight, and complexity of this method are also large.

Distributed Data Shared on Request. This is a common

method used in many existing multiprocessor systems. Each

processor has a portion of the SIM stored in its own local

memory (Figure F-6). If a processor requires a piece of

information not in its own memory, it simply asks for it and

receives it over the bus a short time later. This method is

simple and works well for many applications, but it runs

into difficulty when large numbers of processors make bus

contention a problem.

Broadcast Da __V_ . Using this technique, the

entire state information matrix is transiritted, one value at

a time in a specific order, over the bus at periodic

intervals (Figure F-7). Processors listening to the bus

collect the variables they need as they come by and store

them in local memory for use when needed. This makes

maximum use of the bus bandwidth because no variable names

need to be transmitted. Each variable is identified simply

by its order of occurrence in the transmission.

127

Virtual Memory Emulation. This architecture is the

one which eventually evolved into the CRMmFCS design. Each

processor is given its own copy of the SIM which it accesses

for all required data (Figure F-8). When a processor needs

to update the SIM with a new value, it does not store it to

the SIM directly. Instead, it broadcasts the value onto the
global bus where it is received simultaneously by all SIM

copies (including its own). Thus, storing to one SIM is the

same as storing to all of them and reading from a local copy

is the same as reading from any SIM (because they all

contain the same data). This means that, as far as any one
processor is concerned, there is only one SIM that is being

transparently accessed by every processor in the system.

Summary

Regardless of how the state information matrix is

distributed, it is important that it remain transparent to

the application software. As far as anything but the

operating system is concerned, the SIM is simply stored in a

virtual common memory somewhere and accessed directly by a

specific address or variable name (Figure F-9). This makes
programming applications software very simple and allows the

power of modular top-down programming techniques to be

employed. It may be seen from the discussion above that the

SIM concept is applicable in any application from

conventional to the most exotic.

128

S.d

Ua)
.IJ

U

U)
Co
4)
U
U

4J
-I

0
_____________ U

U)
'-4

-'.4

U)
5.4

rz.~

129

- - 7'

I T -1

I T)

0

L4

r4

130

44

U

.HJ

0

41

s-Ia

'U

n a)
44

'Im

131

rnQ)

4

44)

-132

44 4J

0

133

4-I

>1

'-4

4I

-'4

44

134

APPENDIX G

MULTI-RATE MILLIMODULE DESIGN

In Section IV-B of this report the concept of the task

assignment chart (TAC) was introduced and it was shown how

tasks could be scheduled to execute at a variety of rates.

This appendix provides further elaboration on how this is

done.

For the task assignment chart to be generally useful,

it should allow millimodules to be executed at any arbitrary

repetition rate. Since execution of the TAC repeats after

every pass through it, every millimodule in the chart is

guaranteed to repeat at the major frame rate of the system.

If the major frame is only one minor frame long (10

milliframes), then a given millimodule in the chart will

repeat once every 10 milliframes (a rate of 100 Hz in the

CRMmFCS architecture).

Figure 17 showed how faster rates could be achieved by

placing the same millimodule (kl) in the chart more than

once a periodic intervals. Unfortunately, there is only a

limited number of rates for which this will work. Figure

G-1 illustrates the problem.

In the figure, millimodule timing over a period of 30

milliseconds is shown for the case where a major frame is

only 10 milliframes long. Every 10 milliseconds the entire

process repeats as the system makes three passes through the

TAC. Ten millimodules labeled A through J are shown

repeating at intervals ranging from every millisecond for

module A to every 10 milliseconds for module J. Inspection

of the chart will also show that only modules A, B, E, and J

135

I S

b, lw -4

t j i_ S

_= N
C-4

I: E-

M $4

e 4 1 to

~4.0 - d

(edO
El

136 E4

E-

2
(O) IB ORl -e

136

Li

execute at uniform rates over the entire 30 millisecond

period. This is because only the periods of 1, 2, 5, and 10

milliseconds divide into the major frame period of 10

milliseconds evenly. All other rates do not divide evenly

and therefore lose synchronization at every major frame

boundry.

For example, module C correctly executes in milliframes

1, 4, 7, and 10. However, when the second pass through the

chart begins at milliframe 11, module C is forced to execute

immediately (because it is always located in the first

column of the chart) and fails to execute at its correct

time during milliframe 13. A similar problem exists for

modules D, F, G, H, and I. Thus, in a 10 milliframe TAC,

only rates of 1, 2, 5, and 10 can be scheduled (without

resorting to the compound millimodule approach discussed

later).

If the major frame length is increased to 20

milliframes, a larger number of rates are made possible.

These rates include 1, 2, 4, 5, 10, and 20 milliseconds all

of which divide into the major frame rate evenly.

Similarly, for a 30 milliframe TAC rates of 1, 2, 3, 5, 6,

10, 15, and 30 are allowed. A 40 milliframe TAC allows 1,

2, 4, 5, 8, 10, 20, and 40 millisecond iteration rates, and

so on. A 30 milliframe TAC was chosen for the CRI&mFCS

architecture because it provided the greatest number of

rates while minimizing the size of the required task

assignment tables. This 30 millisecond chart was then

divided into three 10 millisecond minor frames for

reconfiguration purposes. Processors volunteer for one

minor frame at a time and complete a single pass through the

TAC every three minor frames.

137

Coi-aoound i'lliiii-QiWLLs

Up to this point it has been shown how repetition

intervals of 1, 2, 3, 5, 10, 15, and 30 can be obtained by

simple placement of millimodules in a 30 milliframe TAC.

This section briefly discusses how absolutely any repetition

rate can be achieved using the technique of "compound

millimodules."

A compound millimodule is simply a module which does

not execute every time it is called. A modulo-2

millimodule, for example, executes only every other time it

is called. Modulo-3 modules execute every third call, and

so on. By placing a compound millimodule in the chart at

some legal repetition interval and adjusting its modulus

appropriately, absolutely any repetition rate can be

achieved.

For example, if a repetition rate of six milliseconds

is desired for a particular millimodule, it may be placed in

the TAC every 3 milliseconds and given a modulus of two. It

will then execute every second time it is called at the

desired six millisecond rate. Alternatively, the module

could have been scheduled every 2 milliseconds with a

modulus of 3 or a modulo-6 module could be scheduled every

millisecond. In general, it is desirable to minimize the

modulus of every millimodule because each time a module is

called but not executed an entire millisecond is wasted in

the chart. A modulo-19 module wastes 18 milliseconds for

every 1 millisecond of productive execution time.

Constructing Compound Millimodules

Once it has been decided to create a compound

millimodule in order to achieve some special repetition

rate, some method is needed to tell the module that it is

138

compound. This may be accomplished through the use of a
"modulus count variable" (ICV). There is a separate HCV

associated with every compound millimodule. This variable

tells the module how many times it has been called since the

last time it executed its low-rate task. It is located in

the SIM where it can be accessed by whichever processor is

responsible for executing the module during a given minor

frame.

When a compound millimodule is executed, it first checks

to see if its MCV has reached its maximum count (the modulus

of that module). If it has reached maximum, the module

resets it to zero (by broadcasting on the bus) and then

executes its assigned low-rate task. If it has not, then

the module increments it one count (by broadcasting on the

bus) and marks time without doing anything until the

millisecond is over. The net result is that the assigned

task is executed once every M calls where M is the modulus
of the millimodule.

Another variation to the compound millimodule design

attempts to make use of the M-1 milliseconds in each

low-rate iteration during which the module only marks time.

This approach interlaces 11 diffferent low-rate tasks so that

one of them (depending upon the HICV) gets executed every

time the module is called. While this method may be used in

special circumstances, it is not recommended because it

makes the task assignment chart less readable and introduces

complexities that are contrary to the goal of very simple

software.

139

REFERENCES

1. S. J. Larimer and S. L. Maher, "A Solution to Bus
Contention in a System of Autonomous Microprocessors,"
Proceedings of the IEEE 1981 National Aerospace and
Electronics Conference, May 1981, pp. 309-317.

2. S. L. Maher and S. J. Larimer, "Continuous
Reconfiguration in a Multi-Microprocessor Flight Control
System," AGARD Avionics Panel on Tactical Airborne
Distributed Computing and Networks, June 1981.

3. W. A. Crossgrove and L. A. Smith, "Distributed Systems:
The Next Integration Method," AIAA 2nd Digital Avionics
Systems Confergn, November 1977.

4. Integrated Computer Systems, Inc., "Distributed
Processing and Computer Networks," 1978 Course Notes.

5. J. A. White, et al, A Multi-Microprocessor Flight
Control System, Honeywell Interim Report, August 1980.

6. S. J. Larimer, "Managing Software in a Continuously
Reconfiguring Multi-Microprocessor System," ProceedinU
of the 1981 Joint Automatic Control Conference, June
1981.

140
U.S.Government Printing Office: 1981 - 757-002/574

2 2 ... L _2. S_ -

MAW

