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PREFACE

This paper was prepared for pr&esntation at the Seventh International

Congress of the International Society for Terrain-Vehicle Systems, 16-20

August 1981, in Calgary, Canada.

The investigation was conducted for tbae Office, Chief of Engineers,

U. S. Army, by personnel of the Geomechanics Division (WD), Structures

Laboratory (SL), U. S. Army Engineer Waterways Experiment Station (WEES),

as a part of Project 4A161102AT22, "Dynamic Soil-Track Interactions Governing

High-Speed Combat Vehicle Performance."

This study was conducted by Drs. Behzad Rohani and George Y. Baladi

during the period October 1980 - January 1981 under the general direction of

Mr. Bryant Mather, Chief, SL; Dr. J. G. Jackson, Jr., Chief, GD; and

Mr. C. J. Nuttall, Jr., Chief, Mobility Systems Division, Geotechnical

Laboratory. The paper was written by Drs. Rohani and Baladi.

LTC David C. Girardot, Jr., CE, was Acting Commander of WES during the

investigation. Mr. F. R. Brown was Acting Director.
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CO•%EATION OF NOBILITY COME INDEX WITH

FUNDAHMENTAL ENGINEERING PROPERTIES OF SOIL

PART I: INTRODUCTION

1. Cons index (CI) has boon used successfully by the U. S. Army

Engineer Waterways Experiment Station (WES) as a descriptor of &oll strength

in establishing empirical soil-vehicle relations for predicting the perform-

ance of ground-crawling vehicles (Reference 1). CI is a measure of the

resistance of the soil to the penetration of a right-circular cone.*

Although used as an undimensioned index, C1 is actually the number of pounds

of force exerted on the handle of the penetrator divided by the area of the

cone base in square inches. The embedding process is usually neglecLed in

practice and the first CI reading is taken when the cone is fully embedded.

For off-the-road mobility applications the depth of interest for CI meanure-

ments seldom exceeds 2 ft. Readings are taken for depth increments of I in.

and are often averaged over the depth of interest in order to describe Lhe

strength of the soil by a single CI number, In cases where CI varies sig-

nificantly with depth (e.g., in the case of dense sand), the data are some-

times displayed graphically, showing the variation of CI with depth of

penetration.

2. Recent developments in analytical modeling of vehicle performanc.

require that the soil be described in terms of its fundamental mechanical

properties such as angle of internal friction, cohesion, density, etc. In

order to utilize the larger CI data base and establish correspondence between

the empirical studies and theoretical mobility models, it is necessary to

correlate CI with the engineering properties of soil.

3. There are several solutions to cone and wedge penetration iuoh1.,es

available in the literature (e.g., References 2 and 3). These solutions are

based on the theory of rigid plasticity and do not account for the stiffnesa

characteristic of the soil. Experimental data, however, indicate that C1
does not depend solely on the shear strength parameters but also depends on
the stiffness characteristic of soil. This paper describes the development

of a simplified mathematical model for the cone penetration process for the

* In practice, the rate of penetration is on the order of 1.2 in./sec.
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correlation of CI with the fundamental engineering properties of soil, taking

into consideration the stiffness characteristic of the material. The basic

premise of the model is the assumption that the cone penetration process in

earth materials can be viewed as the epasion of a series of spherical

cavities (simulating the geometry of the cone) in an elastic-plastic medium.

The normal stress (normal to the surface of the cone) resisting the penetra-

tion of the cone is therefore equivalent to the internal pressure required

for the expansion of a spherical cavity in an elastic-plastic material.

Using this expression for the intern# pressure, the vertical force resisting

the penetration of the cone is computed from the geometry of the cone and

conditions of static equilibrium. In order to demonstrate the application of

the model, analytical predictions are made for the standard WES cone pene-

trometer and the results are compared with experimental data for various

types of soil. Aualysis of cone penetration in layered media is presented in

Appendix A.

L4

L:



PART I: DERIVATION OF THE CONE PENETRATION MODEL

Formulation of the Problem

4. The basic geometry of the problem is depicted in Figure la. A
cone of diameter D , length L , and apex angle 2a is penetrating a rate-

independent isotropic medium, satisfying the Mohr-Coulomb failure condition.

The tip of the cone is located at a distance Z+L from the surface of the
medium. The state of stress for a finite frustrum of the cone at depth

Z+L-n is shown in Figure lb, ,where a and r are the normal and shear

stresses resisting the motion of the cone, respectively. Integration of
these stresses over the surface of the cone will determine the magnitude of
the vertical force F (Figure Is) that must be exerted on the shaft of the

z
cone in order to penetrate the soil. However, a and T are not known a

priori. In order to make the problem tractable these stresses must be
related and expressed in terms of the fundamental properties of soil.

Stresses Resisting The Motion of the Cone

5. It has been observed in practice that the cone has a tendency to

shear the surrounding material during the penetration process. This indi-
cates that the entire shearing strength of the soil is mobilized in resist-
ing the motion of the cone. The shear stress T can therefore be expressed

as

T - C + a tan (1)

where C - cohesion and * angle of internal friction. As was pointed out

previously, the normal stress a is assumed to be equivalent to the
internal pressure required to expand a spherical cavity in an elastic-

plastic material (Figure J1c). The expression for the internal pressure for
an expanding spherical cavity in an unbounded elastic-plastic medium is

(Reference 4)

4 sin+__ /I \)-sn C+ ~ a •3(l + sin *)
a- 3(q + C cot 1 +s -Ccot (2)(3 sin 0\C + qtan *

5.
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(a) Geometry of the problem

(b) Stresses on a finite frustrum
of the cone

t
/

(c) Analogy between cavity
expansion and cone
penetration process

Figure 1. The cone penetration problem
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According to Reference 4, Equation 2 was obtained for the condition tan 0 >

0 . For cohesive soils, where tan * - 0 , Reference 4 gives the following

expression for o

a C ~ c(i + Ln + q (3)

where q - in situ hydrostatic stress and G - apparent shear modulus which

will be discussed subsequently. The in situ hydrostatic stress correspond-

ing to the depth Z+L-n (Figure 1a) is given as

q - (Z+L-r)y (4)

where y - density. The quantities GI(C + q tan 0) and G/C in Equations

2 and 3 express the ratio of the shear modulus to shear strength of the

material and are referred to as rigidity index. Equations 1 through 3 are

generic expressions for th( stresses resisting the motion of the cone in

terms of the soil parameters C, , y , and G and the depth Z+L--nr

Cone Index Equation

6. From the geometry of the problem (Figure la) and conditions of

static equilibrium, the resistive force F becomesz

"Fz L (a tan a + T)27rr dn (5)

0

where r - n tan a By definition, CI is given as

4F
CI= (6)D2

irD

Combining Equations 1, 2, 5, and 6 and completing the integration for F
z

we obtain the following general expression for CI:

7
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PART III: PARAMETER STUDY OF THE EFFECT OF
SOIL PROPERTIES AND CONE APEX ANGLE ON CI

8. The effects of various soil parameters and the cone apex angle on

CI are studied parametrically in this section. The study is divided into

four parts: (a) clay soil, (b) sand, (c) mixed soil, and (d) effect of cone

apex angle on CI. The standard WES cone (L - 1.48 in. and D - 0.799 in.) is

used for the parameter studies in Parts A through C. In Part D, the length

of the cone was kept constant (i.e., L - 1.48 in.) and the diameter %as

varied to produce different apex angles. For all calculations y f 0.06

lb/in. .

Part A: Clay Soil

9. The variation of cone index with cohesion for clay soils is shown

in Figure 2 for a rigidity index range of 10 to 500. The cone index is

calculated for two different depths (i.e., Z - 2L and Z = 1OL). It is clear

from Figure 2 that for the shallow depths considered in this study CI is

independent of depth. Figure 2 also indicates that the CI does not depend

solely on the cohesion of the material. For a given value of cohesion CI

increases with increasing rigidity index G/C (or shear modulus G). The

dependency of CI on G , however, is relatively weak. For the particular

cone and the depths of interest considered in this study, CI increases from

about 8.5C to 14C due to an increase of a factor of 50 in the value of G .

Examination of Equation 9 indicates that in general the variation of CI with

cohesion depends on the size of the cone, the depth of penetration, and the

three soil parameters C , G , and y •

Part B: Sand

10. The expression for the cone index for sand is given in Equation 8

with the apparent shear modulus G defined by Equation 10. These equations

are used to study the effect of the angle of internal friction on cone

index. The results of the calculations are shown in Figures 3 and 4 for

Z/L - 2 and Z/L - 10, respectively. Figures 3 and 4 indicate that for

granular materials the cone index does not depend solely on the angle of

internal friction. For a given friction angle * the cone index increases

10
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with increasing rigidity index. The dependency of CI on rigidity index (or

shear modulus), however, is not very strong for low friction angles. As the

friction angle increases this dependency becomes stronger. For example, for

S- 45 degrees, increasing the shear modulus by a factor of 25 would

increase the cone index by approximately a factor of 6. The same increase

in the shear modulus would result in an increase of about a factor of 3 in

the value of CI for * - 20 degrees. The most interesting feature of the

relationships in Figures 3 and 4 is the strong dependency of the cone index

on the angle of internal friction, particularly for the higher values of the

rigidity index. Comparison of Figures 3 and 4 also indicates the strong

dependency of the cone index on depth of penetration for granular materials.

Part C: Mixed Soil

11. The result from a series of calculations for a mixed soil (C =

5 psi , * = 20 degrees) is presented in Figure 5 in terms of cone index

versus normalized depth of penetration Z/L . Also shown in Figure 5 are

corresponding curves for a clay soil (C - 5 psi, * 0 degree) and a

granular material (C - 0 psi, * - 20 degrees). The effect of the coupling

of the cohesion and angle of internal friction on the cone index is clearly

demonstrated in Figure 5. For the depths of interest and the values of C

and 0 considered in this study, Figure 5 indicates that for the mixed soil

the cone index is about 2.5 to 4.5 times the sum of the cone indices for the

C - 5 psi, * - 0 degree and C - 0 psi, * 20 degrees soils. Also, as

expected, the variation of CI with depth for a mixed soil is not as pro-

nounced as that for a granular material.

Part D: Effect of Cone Alex Angle on CI

12. The variation of CI with cone apex angle is shown in Figure 6 for

three different soils at a normalized depth of Z/L - 10. These graphs were

obtained by keeping the length of the cone constant (L - 1.48 in.) and

varying the diameter to produce various apex angles. The apex angle for the

standard WES cone is 2a - 30 degrees. As depicted in Figure 6, C1 increases

with decreasing apex angle for all soils considered. The rate of increase

is very pronounced for apex angles smaller than 30 degrees. This range of

14
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apex angles, however, is not of practical interest. For apex angles greater

than 30 degrees, the variation of CI with apex angle is least pronounced for

clay and most pronounced for mixed soil. For clay soil CI increases by

approximately 50 percent as the apex angle is reduced from 180 to 30 degrees.

For the same change in the apex angle, CI increases by a factor of approxi-

mately 2.5 in the case of mixed soil and a factor of 2 for sand. In general,

however, the variation of CI with the apex angle is not unique and depends

on the depth of penetration and the soil parameters C , , y and G

17
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PART IV: COMPARISON OF PREDICTED AND MEASURED CONE INDEX

13. In order to demonstrate the application of the cone penetration
model, analytical predictions are made for the standard WES cone penetrometer

and the results are compared with experimental data for various types of
soil. Three different soils are considered for the comparison, i.e., clay

soil, mixed soil, and sand. The results are discussed in the following

paragraphs.

Comparison with Clay Soil

14. The results of a number of cone penetration tests for a lean clay
and a heavy clay classified (according to the Unified Soil Classification

System) as CL and CH, respectively, are documented in Reference 6. These

tests were conduzted in the laboratory under controlled conditions and
provide an excellent means for evaluating the accuracy and range of applica-

tion of the proposed cone index model. A summary of the test res,.lts is
given in Table 1. The data provided in Reference 6 for each test consist of
the values of cohesion, density, water content, and the average measured

cone index. For each test bed five penetrations were made to a depth of
about 5 in. and the results were averaged to obtain the cone index. The

shear modulus of the soils used in the experiments was not measured. This
parameter, however, is required for the theoretical prediction of CI. A

literature search was conducted to determine typical values of shear modulus
for materials similar to the clays tested in Reference 6. Based on the

literature study a shear wave velocity of V5 - iGg/y - 2100 in./sec (g2
gravitational acceleration - 386.4 in./sec ) was selected for the clay soils
from which the shear moduli given in Table I were calculated. These volue

of shear moduli are consistent with the values of Young's moduli obtained
from results of triaxial tests conducted on lean clay from one of the test
beds. The values of Young's moduli fall within the range of about 1200 to
2400 lb/in. 2 . Furthermore, as was indicated in Figure 2, CI is not sensi-
tive to G and reasonable uncertainties in G do not greatly affect the

predicted value of CI.

18

4 2 -,



Table 1
Cone Index Data for Clay (*q 0 Degree)

$hear
TeatWate Measured Prdce

Test Cohesion Density Modulus Water redicted
No. 2 3  2 Content CI CI

Z lb/in.2  in. 2
1 3.7 0.066 755 30.4 40 452 2.0 0.065 740 32.5 26 26
3 3.2 0.066 755 30,5 41 404 2.1 0.065 740 32.1 26 27
5 3.0 0.065 740 30.1 38 38
6 2.3 0.061 695 40.9 30 29
7 1.4 0.060 685 45.0 18 198 2.6 0.062 710 39.6 34 33
9 1.9 0.060 685 43.3 20 2510 3.9 0.063 720 36.5 49 4711 4.4 0.064 730 36.5 55 5312 5.0 0.067 765 28.1 61 60

13 5.5 0.068 775 27.4 68 6414 5.1 0.062 710 32.6 65 6015 3.6 0.062 710 36.7 46 44

19•,,• • .... ...., . . .. •j



15. The values of cohesion, density, and shear modulus from Table 1

were used in Equation 9 for predicting CI for the clay soils. The results

of the calculations are given in the last column of Table 1 and are also

plotted against the measured CI in Figure 7. As shown in Figure 7, the

predicted and measured values of CI are in excellent agreement.

Comparison with Mixed Soil

16. The results of cone penetration tests from Reference 6 for clays

with small values of friction angles are given in Table 2. Similar to Table

1, the shear moduli given in Table 2 were obtained from a shear wave

velocity of 175 ft/sec. The soil data in Table 2 were used in Equation 7

for predicting Ci for this test series. The predicted results are given in

the last column of Table 2 and are also plotted in Figure 8 against the

measured values of CL. Again, the agreement between the predicted and

measured CI is very good, although for the majority of the tests the pre-

dicted values are somewhat higher than the experimental data.

Comparison with Sand

17. The results of a series of laboratory cone penetration tests

using the standard WES cone and three cohesionless soils are documented in

Reference 7. The purpose of these tests was to establish empirical rela-

tions between cone penetration resistance and relative density. Therefore,

for each sand, penetration tests were conducted at different relative

densities and the results were presented in terms of CI versus depth of

penetration. The results of these experiments provide a means for testing

the validity of the concept of free-surface effect (Equation 10) and for

evaluating the accuracy of the CI equation (Equation 8) for granular mate-

rials. Data for two sands at two different relative densities were selected

for the-study. The following tabulation shows the pertinent information for

each test:
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Table 2

Cone Index Data for Mixed Soil

Shear Measured PredictedCoeinFriction Water
Test Cohesion Angle Density Modulus Content CI CI

No. i n2 deg lb/in. 3  2 2n2
No._ _______deglb/in lb/in. % b/in.2 ib/in.2

1 5.0 17.5 0.062 710 22.0 206 217

2 5.6 13.0 0.063 720 22.7 183 174

3 4.5 9.5 0.063 720 24.5 126 115

4 3.5 10.0 0.066 755 26.9 100 100

5 5.5 7.0 0.064 730 25.9 86 il1

6 6.8 17.5 0.065 740 22.3 236 269

7 7.0 11.5 0.067 765 24.1 172 187

8 7.5 15.5 0.067. 765 22.3 270 256

9 5.5 8.5 0.059 675 29.4 98 122

10 6.8 12.5 0.058 660 24.9 161 188

11 5.5 10.0 0.065 740 30.2 127 140

12 9.5 11.0 0.065 740 25.1 188 224

13 10.2 12.5 0.064 730 25.4 222 258
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Shear
Relative Friction S hodulus*

Test Density Angle D

No. Sand Z degrees lb/in.3 lb/in. 2

1 Yuma 21.5 35 0.052 20
(loose)

2 Yuma 87.5 40 0.058 1000
(Very Dense)

3 Mortar 15.8 30 0.054 30
(loose)

4 Mortar 90.8 36 0.06 6800
(Very Dense)

* Etimated.

Yuma and mortar sands are uniformly graded fine sands and are classified

(according to the Unified Soil Classification System) as SP-SM and SP,

respectively. The actual CI versus depth relations for the four tests are

shown in Figures 9 and 10. Figures 9 and 10 depict the strong dependency of

C1 on the initial state of compaction of sand. Also, in the case of dense

sand, it is observed that CI is strongly dependent on the depth of penetra-

tion, In order to test the validity of the concept of free-surface effect,

Equations 8 and 10 were first used to simulate the result of one of the

tests and thus obtain the numerical values of the three constants A , B

uand 0 in Equation 10. Using these constants, predictions were then made

for the remaining three tests. The predicted CI versus depth relations are

also plotted in Figures 9 and 10 for comparison with the experimental data.

As observed from theme figures the predicted and experimental curves compare

very favorably, supporting the concept of free-surface effect. It should be

pointed out that the shear moduli used for the calculations were obtained

from literature and are considered as best estimate values for the materials

of interest.
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PART V: SUMMARY AND RECOMMENDATIONS

18. A simplified cone penetration model based on spherical cavity
expansion theory for an elaatic-plastic medium has been developed and
validated for the standard WES cone. In addition to the cone geometry
(i.e., cone length and diameter) four material constants (i.e., cohesion,
angle of internal friction, density, and shear modulus) are needed to
completely define a problem. This is an improvement over the existing cone
penetration models that treat the soil as a rigid plastic medium considering

only the shear strength of the material and neglecting its stiffness charac-

teristics. Experimental data indicate that cone index does not depend
solely on shear strength of the soil but also depends on the stiffness

characteristics of the material (particularly for sand). The concept of
free-surface effect for granular materials has been advanced and quantified
for the WES cone.

19. It is recommended that a series of laboratory-controlled tests
using cones of various apex angles and base areas be conducted in order to
(a) evaluate the range of application of the model and (b) determine the
feasibility of obtaining the engineering properties of soil (such as C
4, G , and y) from results of cone penetrometer measurements.
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APPENDIX A: TREATMENT OF LAYERED SOIL

1. The cone penetration model can be readily extended to predict cone

index (CI) in a layered system with each layer possessing distinct material

properties. In principle it is feasible to develop an expression for C! in

a multilayered system where the cone may be in contact with several layers

at the same time. However, because of the size of the cone (i.e., being

small in comparison with the thickness of typical soil layers encountered in

nature), it is reasonable to assume that the cone may not be in contact with

more than two distinct layers at the same time. This indicates that the

thickness of each layer must be equal to or greater than the length of the

cone. Figure Al depicts the geometry of the problem where the cone is in

contact with two distinct layers, n and n+l . The expressions for CI for

the layered system in Figure Al are similar to Equations 7 through 9. The

material properties C , , G , and y , however, must be properly

indexed to reflect the location of the cone in the layered system. Whenever
the cone is in contact with one layer (e.g., the generic layer i in Figure

Al) the material properties C , , and G would correspond to Ci

Sand Gi . respectively. The subscript i denotes the properties of

layer i. The density y , which represents the effect of the in situ hydro-

static stress (see Equation 4) on penetration resistance, can be replaced by

an effective density accounting for the unit weight of all the layers above

the tip of the cone

i-I i-l
Zy -Tj+ + Z- Z T, Yi
Jl L+Z (Al)

In Equation Al, T and y denote the thickness and the density of the

jth layer, respectively. When the cone crosses an interface (e.g., going
from layer n to layer n+l (Figure Al)), the material constants C ,

G, and y take the following forms

n
L+Z- E TjIC Z I T4  Z+z( - j=1 J)L-+l + _C- (A2
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n Tj) #nl + n j-Z•
÷. ]-I J~l A3)

L+ Z-E Tj h z OnI
(= j=1 -1lL (A3)

TI +( n
(L + Z z £ n~ J~ Tj Z) GA

j= Tl j n]

(A5A
Z yj Tj + + Z - E Tj Yn+1

Y = J -i J ) (A.)L+Z

It is noted from Equations A2 through A5 that the material properties C

* , G , ard y are not constant but vary with depth as the cone crosses the

interface and becomes fully embedded in layer n+l . When the cone is fully

embedded in layer n+l , C, * ,and G reduce to Cn~l ' n+l ,and

G n respectively, and y becomes the effective density consistent with
n4-l
Equation Al.

2. In order to demonstrate the application of Equations Al through A5

in predicting CI in a layered system two example problems are given in this

appendix using the standard WES cone. In the first example a layered clay

soil consisting of five layers having the properties given in Table Al is

considered. It is noted from Table Al that the material properties con-

sistently increase with depth. The second example considers a layered soil

consisting of three layers with the properties given in Table A2.

3. The result of the CI calculation for example problem 1 is shown in

Figure A2 in terms of CI versus depth of penetration Z . As indicated in

Figure A2, the depth of penetration Z is measured from the base of the

cone (consistent with experimental measurements). Consistent with the

properties given in Table Al, Figure A2 indicates that CI increases with the

depth of penetration as the cone perforates each layer. Within each layer,

aowever, CI is constant for a distance equivalent to the thickness of the

layer minus the length of the cone. As the cone crosses an interface, the

value of CI changes with depth until the base of the cone touches the inter-

fdLe. Figure A3 depicts the result of the CI calculation for example

problem 2. The CI versus depth of penetration relation in Figure A3 is

A3



Table Al

Soil Properties for ExMle Problem 1

Shear
Lay Cohesion Density ModulusLayer Thicknae~aa

No. in. lb/in. 2 lb/in. 3 lb/in. 2

I 3 1 0.055 700

II 3 3 0.058 1000

III 4 5 0.060 2000

IV 5 7 0.063 2500

V 5 9 0.066 3000

Table A2

Soil Properties for Example Problem 2

Shear
.Layer Cohesion Friction Density Modulus

Layer Thickness 2Angle2

No. in. lb/in. 2 del ib/in. 3

1 5 1 30 0.060 1000

II 5 5 35 0.065 2500

I11 10 0.5 25 0.060 700
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consistent with the properties given in Table A2. The value of CI increases

as the cone crosses the interface between layers I and II (i.e., crossing

from a soft layer to a hard layer). In layer II, CI is constant up to a

depth of 8.52 in. and then decreases as the cone crosses the interface

between layers II and III (i.e., crossing from a hard layer to a soft layer).
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APPENDIX B: NOTATION

The following symbols are used in this paper:

A - coefficient related to free-surface effect

B - coefficient related to free-surface effect

C - cohesion

CI = cone index

D - diameter of the cone

F z vertical force resisting the penetration of the cone
z

g = gravitational acceleration

S= apparent shear modulus

G - elastic shear modulus

L = length of the cone

q = in situ hydrostatic stress

Vs = shear wave velocity

Z = depth of penetration

2a = apex angle of the cone

-• coefficient related to the free-surface effect

y = density

a = normal stress

T - shear stress

S= angle of internal friction
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