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AN ANALYSIS OF A LAMINAR BOUNDARY LAYER

IN HIGH-ENTHALPY NOZZLE FLOWS

Lu Zhi-yun

(Institute of Mechanics, Academia Sinica)

Abstract

This paper presents a simple formula for calculating

the displacement thickness, momentum thickness and physical

thickness of a laminar boundary layer in high-enthalpy flows in

conic nozzles at hypersonic Mach numbers. The inviscid flow

upstream of the throat is assumed to be in chemical and vibra-

ticnal equilibrium, and downstream of the throat the flow is

frozen. The present expressions for S", 0 and 6 are given

as explicit functions of the geometric dimensions of the nozzle

and the parameters of the inviscid flow field at the throat and

at the point considered, instead of an integral expression.

Therefore, it is particularly suitable for the design of this

kind of nozzle. Comparison between the result from the present

formula and published experimental data shows that the agreement

is satisfactory.

Symbols

a speed of sound

A !riss-sectional area of the nozzle

constant in equations (10) and (17)

constant in equations (10) and (17)

C constant in equations (17) and (18)
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D diameter of the nozzle

U velocity component in the x-direction, equation (5)

v velocity component in the y-direction

V velocity component in the Y-direction, equation (5)

x coordinate along the nozzle wall

y coordinate perpendicular to the nozzle wall

X transformed coordinate, equation (2)

E0 constant, equation (14)

1(m., ,) function, equation (15)

I(M., ri) asymptotic function of t(m.,v,)

h static enthalpy

H total enthalpy, H-h+!!

Htr shape factor, H,- -

k constant, equation (3)0

k, kI  constant equation (14)

1 shearing stress parameter, -u,

J M Mach number

n pressure gradient correlation coefficient,

in reference [3]

n pressure gradient correlation coefficient,

equation (7)

N momentum parameter, equation (10)

p static pressure

Pr Prandtl number

r radial distance of a point inside the boundary

layer from the axis nozzle

r* radius of the nozzle at the throat

R curvature factor, equation (5)

s enthalpy function, equation (8)

T static temperature

u velocity component in x-direction

Y transformed coordinate

z compressibility factor
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semi-conical angle of the divergent part of the nozzle
pressure gradient parameter, reference [3]

? specific heat ratio
v., isentropic exponent
* boundary layer thickness
r displacement thickness of the boundary layer

integrated value in Table 1
* momentum thickness

constant, equation (7)
Sutherland's viscosity law coefficient, equation (3)

P viscosity coefficient
P kinematic viscosity coefficient
Pe constant, equation (7)

s area ratio of the nozzle a-4,4"4* - (r ro
. density
v semi-conical angle of the convergent part of the nozzle

P,40) function,equation (20)
P.(.. T,) function, equation (21)
p,(bo, r,) function, equation (22)
-* stream funrtion

Subscripts:

o stagnation value of the inviscid flow
e parameter at the outer edge of the boundary layer
eq value of the equilibrium flow

4 f value of the frozen flow
W value at the nozzle wall
tr(X,Y) value at the coordinates
* value at the throat

* Whenever the coordinate variables x, y, X, Y appear as

subscripts, a partial derivative with respect to that variable is

implied.
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I. INTRODUCTION

For the theoretical analysis of a boundary layer in high-

enthalpy nozzle flow at hypersonic Mach number, only approximation

7 methods are applicable. Until now, only numerical integration for

specified stagnant conditions, geometrical dimensions and wall

temperature could be done by means of sophisticated computers [1,2].

The calculation is complicated, and the results obtained by dif-

ferent approximation methods are usually quite different from each

other [3-8]. Because of the dissimilarity of the problem and the

shortage of satisfactory modifying factors, the computed results

of specific nozzle shape and stagnant parameter F cannot be applied

directly to another nozzle with different parameters. On the other

* hand, the "low density" caused by the "high enthalpy" and "high

Mach number" makes the boundary layer region inside the nozzle

even larger than the inviscid flow region. This means that a

very accurate calculation of the displacement thickness and boundary

layer thickness is absolutely required.

It was not until 1969 that Petrie [9] did some experimental

investigations on high enthalpy laminar boundary layer and presented

a systematic evaluation to decide which theoretical method is the

most desirable. He utilized electro-beams and pressure probes to

investigage the boundary layer profile inside a nozzle flow of air

with stagnant parameters Po = 1 atmosphere, To = 5000 K, and dis-

covered that all theoretically computed values for 6* are higher

than the experimentally monitored value. The Cohen-Reshotko [3]

method was found to have the slightest deviation, sometimes only

4% higher. Since then, this method has been more widely applied

for the computation of a high enthalpy laminar boundary layer with

specified nozzle parameters [14]. However, it is very difficult to

apply the method in the practical design of high enthalpy nozzles.

This is because the integral factor in the equation is expressed

in terms of the integral form of the inviscid flow parameters of

the entire nozzle flow: to calculate n, the outer edge parameter

of the boundary layer must be integrated numerically from the

stagnation point at the nozzle entrance to all the points at the

..- *4
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I I) considered cross-section of the nozzle, and, In the course of the

design, all calculations have to be repeated along with more than

five iterations for a single variation of any of the nozzle inlet

parameters pc, H or geometrical parameters q.ar.,1g

and A/A*.

Utilizing the fact that high-enthalpy nozzle flow at

hypersonic Mach numbers is generally characterized by an inviscid

flow in equilibrium upstream of the throat and a chemically and

vibrationally frozen flow downstream of the throat, starting

from the momentum integral equation for an axial-symmetric

boundary layer, modifying the definition for R downstream of

the throat, applying the linearized approximation of favorable

pressure gradient universal relation similar to those in [3],

[9], [11] and [12], employing the Mach number M as the integra-

tion variable, using a continuous function, partial asymptotic

approach method for the integral function, and specifying the

condition that the "cold wall" (being a high-enthalpy ground

simulation wind tunnel) has universality, much simpler expressions

for R, e, 6* and 6 are derived in this paper.

These expressions contain explicit functional forms of

the geometric variables of the nozzle, parameters at the throat

and at the cross section. Hence, tedious numerical integration

is avoided.

II. GOVERNING EQUATIONS AND BASIC ASSUMPTIONS

The region downstream of the throat is axi-symmetric,

steady frozen gas flow. The boundary layer equations are written

in the form suggested by Probstein, et al [13]:

__ (par) + 0 r
an O .9- ' 11 (1)

OP x +P 5- 7- ~+7 - rT

as Oy Oyv Pr y &P0 Ij
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II

u2
in which H = h + Introducing the Stewartson [14] and Mangler

[15) transformation:

X I,,, (2)

where X is determined by the viscosity law:

% g T.o

* , The stream function is defined by:

PO Po

The following relations are also introduced:

a, \r / rv (5)

Substituting equations (2) to (5) into (1) and simplifying,

Ux + Vy - 0

4 uu, + u'v - u,u,X ,'1/2+a'/(r-) /+ ,,o ; L- (RUo),/ To(6)
(u4/2+a4/(Y,-i) p. p To (6

UH, + VH,- I -- (u,), + (RH,),
Pr do pe o" Pr pPTo J

Now the following basic assumptions are made:

(a) The flow inside the boundary layer is also chemically

vibrationally frozen. According to experimental

results for the air medium, the N2 vibrational relaxa-

tion phenomenon inside the boundary layer is extremely

4 6
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weak. Hence, it can be assumed that the chemical

combination is even weaker.

b) The second order effect of the lateral curvature

effect is neglected. This is because the lateral

curvature effect has an apparent influence on the

velocity profile and the friction drag but very

little influence on 6*. Hence, R * 1 can be taken

for granted.

c) Pr , 1. Since the condition of a strong, favorable

pressure gradient flow at a hypersonic Mach number

outside an isothermal wall is involved here, Pr = I

is almost valid. Petrie [9] analyzed the velocity

and temperature profiles at different Pr under the

condition of large B values. The observed results

by means of an electron gun show that the assumption

of P 1 is valid.

d) The pressure gradient correlation coefficient is

redefined as:

-- F,., " "

-- .. - -- , (7)o poTo

e) The enthalpy function is defined as:

- '/2+a'/(v-I) -

and it is assumed that:

,' 1(8)]

7
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III. THE SIMPLIFICATION AND SOLUTION FOR THE RELATION FOR

Under the above basic assumptions, the boundary layer

momentum equation can be integrated along the Y-axis from 0 to

and a momentum integral relation of exactly the same form as

those given by the references [3], [9], [11] and [12] is ob-

tained:

-U, U,-2[;(H,, + 2) + ,] (9)
Z)+I (9)

The universality of this kind of differential equation for

favorable pressure gradient under the condition of incompres-

sible flow was first proved by Thwaites [11]. Later, Kochin-

Loytsyanskiy [12] and Cohen-Reshotko [3] also adopted the uni-

versal relation of this form. After linear approximation,

4equation (9) becomes:

N(s, ii) - 2[;(H,, + 2) +] -ft + BW (10)

Integrating, the expression for R downstream of the throat is:

1-J UIXUdX - -=--- (11)T" AU&xU,"-

For the region upstream of the throat, if an isentropic

flow of a perfect gas of r.< 1.400 is assumed to be equivalent

to the isentropic equilibrium flow, the following expression is

obtained:

- ~ -(12)

Modifying (12) by the factor substituting into
p , To

8; r
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(11), and transforming back to the (x,y) coordinates plane,

the following is obtained:

+ Mo- 'W, 1

where:

3r , - 1 3 -r -- I d N 1 (14 )
2.7M y,, 2 j ES ;i(1)4

For various Yes upstream of the throat, the calcu-

lated values of the first integral in equation (13) are shown in

Table 1. When ambient pressure p0 is varied in the range 1-5

atmospheres and He in the range 2000-5000 kcal/kg, the values of

Yes at the points upstream of the throat vary from 1.22-1.35

correspondingly. Based on Table 1, the variation of the integral

is less than 2.6%. Also froh an order analysis, the second in-

tegral inequation (13) is one order of magnitude higher than the

first integral at hypersonic Mach number. Hence, the error of

due to variation of the value of the first integral, induced by

taking different Yes , is generally less than 0.35%. There-

fore, any flow of perfect gas with yes between 1.22 and 1.35

can be used to simulate the equilibrium flow and calculate the

value for n. Downstream of the throat, the integration variable

x of the second integral in equation (14) can be transformed into

I - \. , by replacing the isentropic relation for a

perfect gas with the isentropic relation for the chemically and

vibrationally frozen flow, and by replacing the relation for the

nozzle flow of perfect gas with the relation between the correspon-

ding area ratio A/A* and Me. Transforming into Me, the fol-

lowing is obtained:

9



2 a .~ sin 7
I~ a t (15 )

f-"

I + bc) (m!5)M

Taking = 2.50, the first term in equation (15) can be integrated

for any yf . For the second integral function:

I(M1., r)- +

" -1.400 is taken as the left end point, and different AM,. Art

are expanded and asymptotically approached between r-1.400

and 1.5. In doing so, the asymptotic function for I(M,, r) at

different Mach numbers can be obtained:

1.080 - 0.167[l + 4.49(rt - 1.400)1 (1 < M, < 2.5)

M " _.."--' 0.016[11 + 6.25(r, - 1.400)] (2.5 < M, 10) ( 16)

0 (K. > 10)

It can be proved that when 1 <.M,<2.5 , the asymptotic

error (-f)/1<2%. For 2.5<M<5 , (1-)/i 4.4 %

fbwever, the value of f has little contribution to the

integral in equation (15) when 2.5 < Me< 5. -nce

it can be shown that the error of integration is still

within 2%.

Substituting expression (16) into equation (15), and sub-

stituting the 1 value corresponding to yes = 1.25 along with

equation (15) into (13), and applying the speed of sound relation,

the differential form of Euler's equation of motion and the energy
equation under chemically and vibrationally frozen flow, the fol-

lowing can be obtained after simplification:

- I M; sin e +(17)

+ 9,(M., r,) - q,,(M,, r,)}

-I10
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J:here

+ .-  (18)
J* Po2 at")

C,, ( 2 ) ( ,, 1.25 04, C, 2.21) (19)

, - 0.0163 + 0.4512 In go + 0.08S," (20)

~p2 M,,~ [(1L + r~I-+ ~ 2 ~-I (21)5 - 3 , N 2 at'/ J( 1
W,,(M,, r) - 1.080 In 2.5 + (0.883 - 0.75 r,) 2.5 -

+ 0.507 (2 .5 _2. r,., )
1.166

(22)
+ (0.124 - 0.ltr) (M -2

Further manipulation gives the solution for momenturm thickness

a , displacement thickness 6* and boundary layer thickness

T " 4Lu/l
ix 2 -O ,

- [H,,. + 2 2 I + HO (24)

/ - , + r- Ml( I + (..22 (25)

In the above expressions, Htr and o,,/e,, can be obtained by

the similarity profile solution of the Falkner-Skan tyDe flow
given in reference [4]; 8Z is determined by 8,*,- l (- - -- +i)'Y ;

0,, is determined by the expression -R dY

81, is the -Y +I _U value corresponding to the in-

compressible plane when U/Ue = 0.995, and n0 is the value of n at

ii
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which N(sw,i)-o , corresponding to the intersection point

of 8 - 1 ands - constant.

In general, water-cooled copper walls are used for high-

enthalpy flow nozzles in simulation wind tunnels on the ground.

The wall temperature satisfies Twv400K • When the stagnation

temperature T is between 2000 K and 8000 K, -0.95<1--I<
t r0 T,
-0.80, that is, the following relation is also satisfied:

- <i SW-0.80 (26)

Now from the universal relation curve, the corresponding value of

is found to satisfy:

2.36 < F 4 2.53 (27)

From equation (11), it can be observed that the 1 index inside the

integral sign is cancelled by the B index preceding the integral

sign. Hence, it is regarded that the variation of 9 will not

cause a large scale variation in i. Table 2 shows the difference

in n, 0 and 5* caused by taking 9 as 2.5 and 2.3, with the

same nozzle parameters. Under the practical condition of a high-

enthalpy cold wall, as discussed in this paper, the value of B is

closer to the higher extreme of the inequality. Therefore, the

true error of e, 0 and 6" caused by taking =2.5 is far

smaller than those in Table 2. Besides, analyzing the data from

the numerical integration of the similarity solution for the

4 momentum integral equation, it is found that the increase in 9 also

causes an increase of A, which in turn reduces the variation of the

value of i. Hence, it is reasonable to take = 2.50.

IV. CONCLUSION

In the present effort, the inviscid region of the high-

enthalpy nozzle flow at hypersonic Mach number upstream of the

. 12
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throat is assumed to be equilibrium flow, while the region down-

stream of the throat is assumed to be chemically and vibrationally

frozen flow. The flow within the boundary layer is also treated

as chemically and vibrationally frozen flow, on the basis of a

monitored data analysis of the N2 vibrational temperature relaxa-

tion. The isentropic relation under the frozen flow condition is

utilized for the outer edge of the boundary layer. The modifi-

cation factor is introduced to modify the pres-

sure gradient correlation coefficient. A linear approximation

method for the favorable pressure gradient universal relation

is applied, and the cold wall condition S is treated as single-

valued. Under all these conditions and employing order of mag-

nitude analysis, integral transformation, dimensionless Mach

number and partial asymptotic approach method for the integral

function, the explicit functional expressions for R, 6* and

6 are derived.

The present investigation shows that when p0 is between

1-5 atmospheres and He between 2000 and 5000 kcal/kg or varies

within an even greater range, the calculation of the pressure

gradient correlation number R upstream of the throat can be done

using Yes = 1.25, or the "equivalence" of the perfect gas flow

of the corresponding isentropic exponent. Although the calcula-

tion of R downstream of the throat is off by approximately 2%

due to the asymptotic method for the integral function, the

results at the nozzle exit calculated by the formulae presented

here are still close to the experimental data after modification

of the isentropic relation. For example, for air at To = 5000 K,

p0 = 1.16 atmosphere, and at the section D/D* = 9 downstream of

the throat, the deviated values of e and 6* are corrected

by 4.2% with a modification of the isentropic relation only.

Table 3 lists the actual samples of the nozzle calculation, and

Figure 2 shows a comparison of the results from the present analysis,

the results from other theories and foreign published experimental

data.

13
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Observing the results in Table 3, it is apparent that

the deviation of the calculated results for the points downstream

of the throat from the experimental results is greater. This is
quite natural, because the boundary condition has switched from a

non-slip wall condition to a free jet flow boundary condition.
This portion of the flow field should be calculated by a non-

similarity method of free-shear layer [16]. The methods and the

results given here are no longer applicable.

The formulae given here can be used for the boundary layer

calculation of high-enthalpy hypersonic Mach number, cold constant

temperature wall conical nozzles. Since common integral expressions

are avoided, the calculation is much simplified. Hence, it is

especially suitable for the engineering design of this kind of

nozzle. Common high-enthalpy, low-density electric arc wind

tunnel nozzles and low-density, low-temperature plasma flow

nozzles with a water-cooled copper wall also belong to this

category.

The author would like to express his gratitude toward Mr.

Yang-gwei Bian for his advice and assistance.
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TABLE 1.

rob -h -";'" WHEN = 2.50

1.222 0.0168 + 0.4537 Ino + 0.081

1.250 0 .0163 + 0.4512 In go + 0.081;'

1.286 0.0153 + 0.448
6 
In 1. + 0.08;'

1.$J0 0.0148 + 0.4478 In 0 +- 0.08g4

1.400 0.0114 + 0.4401 In I. + 0.089;4

TABLE 2.

THE EFFECT OF A AND B ON THE RESULTS

DO mm, a 7.. 5', 4p - 2
2
.
5

', r./r- 6, . 4
55

1 2.50 0.361

7 0.902 0.950 0.168

2 2.30 0.3 7

1 2.50 Q.;650.681 0.941 o.,iia

2 2.30 0.327

l 2 .50 0 . 6 1
2.5 840.0 0.916 0.,)46

2 2.30 o.3-'7

.4

1) sequence number;
374

* ""

,6 . -*

Figure 1. Geomtric dimensions of the nozzle.
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n10 2 0 5

pfr T...0WK

Tv - 350-K
r- 1. 455
Z -1.180

Figure 2. The growth of bo'Inmdaryj layer displacement

thickness 6 ~ Experimental data, 1) Pohlhauzen
0

energy integral; 2) Pohihausen mome~ntum integral;

3) Beckwith-Cohen methodi; 4) Cohen-Reshrotko me~thod;

5) modified method, reference E1]; and 6) equations
17 - 25 given here.

DO- tm, a - 7.5,op - 22.5% re/tO -6, r, - 1.455,aw - -0.93

jo xDO 35.1 44.5 50.1 52.4

YF vftBl S 0.245 1.14 1.42 1.72
U - Cohei,-feshurko )Y0 1BM7094 0.903 t.19 1.47 1.55

OR'*) 1-S 1.1- 1..41~ 1.54

I1) Thble 3 Comparison of Final Results With an Exclusion thickness
of &0

2) Exclusion thickness (cm); 3) Experimentally determined values
4) Results with an IBM1 7094 computer using the Cohen-Resnorko method;
5) Formula (16), and so on, as found in this article;

16
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Abstract

This paper presents a s-imple formula for calculating the displacement thickness,

momentum thickness and physical thickness of laminar boundary layer in high enthalpy
flows in conic nozzles at hypersonic Mach numbers. The inviscid flow upstream of
the throat is assumed to be in chemical and vibrational equilibrium and downstream
of the throat the flow is frozen. The present expressions for 0* 0 and 6 are given

as explicit functions of the geometric dimensions of the nozzle and the parameters of
the invicid flow field at the throat and at the point considered, instead of an integral
expression. Therefore it is particularly suitable for the design of this kind of nozzle.

Comparison between the result from the present formula and published experimental
data shows that the agreement is satisfactory.
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