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PREFACE
The main objective of this study is to develop a two-dimensional
numerical model capable of studying water and sediment movement and
geomorphic changes in alluvial channel reaches with complex geometries. A

description of the governing equations for water and sediment motion in two

dimensions is presented in Part 2 of this report. Part 3 presents a

detailed description of the numerical methods used to discretize the
governing equations so that the solution can be carried out with the aid of
a digital computer. Part 4 of this report presents results of applications
of the model to the prediction of a trench scour and fill, and the

simulation of bed scour around a spur dike.
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INTRODUCTION

The objective of this study is to develop a new methodology for

modeling the phenomenon of sediment movement 1in irregular alluvial
channels, scouring around obstructions, etc. The basic physical principles
of conservation of mass and momentum are used to describe the fluid flow.
The conservation of mass and semi-empirical equations governing sediment
particle movement are adopted to establish the interaction between the
sediment movement and the fluid flow. The resulting mathematical model is,
unfortunately, highly nonlinear and complex. It is impractical, if not
impossible, to solve it analytically. Therefore, the numerical methods of
finite element and finite difference are used to obtain approximate
solutions of this model.

The application of the finite element method (FEM) to model fluid
flows has progressed rapidly in recent years from the simplest linear
inviscid fluid flow problems (Martin, 1968; Argyris et al., 1969) to slow
viscous flows (Tong, 1969; Atkinson et al., 1969; Oden and Sornogyi, 1969),
and finally to the solution of the full Navier-Stokes equations (Oden,
1970; Skiba, 1970; Olson, 1972; Oden and Wellford, 1972). However, this
latter area represents an extremely large and complex field. As such, the
research, although very active, can only be referred to as being in its
beginning stage (Olson, 1975). A summary of its recent applications to
flows through porous media, shallow water circulation, and two-dimensional

viscous flows had been presented by Connor and Brebbia (1976). _Norrie and

de Vries (1978) also presented an excellent survey of the FEM applic&tibhngm

in all branches of fluid mechanics with 218 papers cited. Readers,
desiring to find detailed information on the development of FE Modeling of
Fluid Flows in general, are referenced to these and other similar papers.
A complete review on FE Modeling of Open Channel Flows and directly related
works is presented below.

A variational principle for an ideal fluid flow with a free surface
under gravity was developed by Luke (1967) using potential function
formulation. It was modified using the stream function formulation and the
different expressions of free surface boundary conditions by O0'Carroll
(1975), and by 0'Carrol et al. (1976). O'Carrol (1975a, 1978) also applied

this FEM to compute the flows by a vertically two-dimensional model and
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over a spillway, etc. Although he only solved the problems without the

effects of side walls; he contributed a great deal to techniques for
handling the moving free surface at least for the ideal fluid flow. Using
the Galerkin's approach of the FEM, Keuning (1976) solved a straight
horizontal channel with a uniform trapezoidal cross section. Although the
problem is only one-dimensional, the equations are kept nonlinear and
unsteady.

A two-dimensional quasi-linear FE Model for Open Channel Flow near
Critical Conditions was reported recently by Katopodes (1980). It
successfully demonstrated the capability of FEM to simulate a supercritical
floodwave. The truly three-dimensional finite element modeling of viscous
flows in an open channel with and without the existance of obstructions was
carried out by Alonso and Wang (1978). Three-dimensional linear
hexahedral, isoparametric elements were used to obtain very slow viscous
laminar flows in open channels of varying cross-section and around an
isolated obstruction. Although results obtained were physically sound and
mathematically reasonable, the requirement of computer storage and
computing time were prohibitive. One of the most effective alternatives is
the depth-averaging scheme. It has been used primarily in the simulation

~of currents and water waves in lakes, estuaries and shallow coastal water.
Some typical contributions may be found in Leendertse (1967), Nakayama and
Romerc (1971), and Niemeyer (1977). More recently the utilization of the
depth-averaging models in the finite element simulation of flows in open
channels and rivers were reported by Thienpont and Berlamont (1980) and
Wang, Su, and Alonso (1980). Because the distribution of hydrodynamic
properties in the vertical direction of a shallow water flow are usually
better understood, appropriate functions can, thus, be chosen to yield
adequate approximation in this direction. Therefore, the governing
differential equations can be integrated vertically from the channel bed to
the free surface resulting in differential equations, containing vertically
averaged properties, which are only two-dimensional in a horizontal
reference plane. Even if the time derivatives are retained in the
equations to model unsteady flows, the requirement of computer storage as
well as computing time to simulate an open channel flow is greatly reduced.
Besides, this approach not only gives reasonable results with adequate

accuracy, but allows better resolution in horizontal directions by using
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the computer storage saved from reducing three-dimensional to two-

dimensional formulation to add more nodes on a horizontal plane.
Furthermore, the computer code developed based on this approach has the
potential of wider acceptance by users with limited computing resources.
The simulation of sediment transport is discussed below.

In recent years one-dimensional, mathematical models of sediment
routing, morphological transients, and sediment deposition, etc. were
developed (Cunge and Perdreau, 1973; Mahmood, 1674; Simons et al., 1975;
Lopez, 1978). Although they do not provide the time-varying configuration
of the sand bed in a horizontal plane, these models contribute a great deal
in understanding the basic characteristics of morphological transients as
well as in estimating the sediment discharge at various locations of
waterway system. A large number of contributions in the area of sediment
transport 1in suspension has been published in recent years using the
numerical techniques to solve the sediment convection-diffusion equation in
a vertical plane. Some typical examples may be found in Jobson and Sayre
(1970), Yang and Sayre (1971), and Chen (1971). Smith and O'Connor (1977)
and Kerssens, et al. (1977) presented their findings at the 17th Congress
of IAHR. The former paper described a two-dimensional model in a vertical
plane which gives the velocity, as well as the concentration fields, of an
estuarial type flow with only good agreement with experimental data of the
velocity distribution. The latter paper succeeded in combining the quasi-
steady fluid flow equations, sediment continuity equation, and the
convection-diffusion equation for morphological computations in a vertical
plane of a very wide alluvial channel. Some of its basic assumptions are
adopted from an early work of deVries (1973). Their numerical estimation
of sand bed deformation considering only sediment transport in suspension
compares quite well with their own experimental results. These two models
are based on finite-difference schemes. Leimkuhler et al. (1975), and
Ariathurai et al. (1976) applied the FEM to obtain solution of the sediment
convection-diffusion equation in a vertical plane with some success. Most
recently, Alonso and Wang (1980) presented the results of a study of local
scour and fill in sand bed stream. The bed deformation is verified with
experimental results. This latest model is also a two-dimensional one
applying only to a vertical plane or a case of a very wide channel.

Recently, a very comprehensive water and sediment routing model based on
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the depth averaging approach has been developed by Simons et al. (1979).
They verified the applicability of an analytic model, supplemented by
empirical relations, for simulating water and sediment movement in a river
system. This model uses a finite-difference numerical scheme.

Both of the previous approaches have been adopted in the present study
to develop two different finite-element schemes. One uses a two-
dimensional vertical domain; the other employs a two-dimensional depth-
averaging solution. Detailed information on Mathematical Formulation,
Numerical Modeling and Solution, and Simulation Results are presented in
Parts 2, 3, and 4, respectively. A complete computer program listing is
given in the addendum 2.

2 FORMULATION OF MATHEMATICAL MODEL
2.1 EQUATIONS OF WATER MOVEMENT

In order to make mathematical modeling a possibility, many basic
assumptions and simplifications are necessary. Since there is no theory
which can include the fluid flow and moving boundary of the sediment
particles 'simultaneously', the flow in an alluvial channel is to be broken
into two physical phenomena and studied in a alternating sequence. That
is, the hydrodynamic characteristics of a fluid flowing along a channel
with an "instantaneously fixed" sand bed of a given geometry are studied
first, and then the deformation of the sand bed is calculated using local
sediment discharge determined from the hydrodynamic characteristics as well
as from the sediment properties. The time-dependent phenomena of fluid
flow and bed deformation are simulated by carrying out these two steps of
solution procedure repeatedly.

In developing the mathematicuil model to describe the flow of water
along a channel with "instantaneously fixed" sand bed boundaries, the
conservalion laws of mass and momentum for incompressible, viscous fluids
are applied. Written in tensor form, they are:

v. . = 0, i=1, 2, 3, (1)

vi+(v].vj)i+(pi-Tij'J’)/O:P' i&j =1, 2,3, (2)

L B¢ ’ 1

Where A is the ith component of the velocity vector; p, p, and v are

pressure, density, and kinematic viscosity of the fluid, respectively;




Iij are components of the stress tensor which represent laminar or

turbulent stresses; Fi is the ith component of the external (gravitational)

body force per unit mass; v j and v represent partial derivatives of the
function v with respect tg the coordinate direction xJ and time, t,
respectively. The summation convention is adopted for repeated indices
throughout this work. For laminar flow, the expression for stress tensor
is

Iij = “(vi,j + vj,i) (3)
In the case of turbulent flow, however, a different closure scheme is used
to complete the mathematical model. It is beyond the scope of this study
to review all existing schemes. Therefore, only those used in the present
work will be discussed whenever they are introduced.

Boundary conditions needed for the fluid flow simulation are that (1)
neither slip nor seepage are allowed at the channel boundaries, where the
pressure is left to be determined by applying the governing equations at
the boundary; (2) on the free surface the pressure is taken as constant;
(3) the shear stresses acting on the free surface are neglected, which
implies that the maximum velocity occurs at the free surface; (4) the flow
is considered to be fully developed or uniform at the upstream end of the
channel, and (5) appropriate boundary conditions are imposed at the
downstream end. Also assumed is that the sand bed will be of uniform
roughness and fixed instantaneousiy. And, although the sand bed has been
assumed flat to start the simulations, any prescribed bed form (not
necessarily flat) can be used as an initial condition without difficulty.
More about bed deformation will be discussed later. Now, the attention is
still centered on the mathematical modeling of the open channel flow with
instantaneously fixed boundaries.

Although realistic mathematical models of flows in natural streams
should be both three-dimensional and time-dependent, the computer storage
capacity required to store the information and the computing time needed to
obtain converged solution is too expensive to justify its use for a
preliminary analysis of basic characteristics of flows 1in an alluvial
channel. Therefore, a more practical alternative is needed. As mentioned
above, two viable alternatives discussed in this report are used to treat

horizontal shallow flows, and vertical flows with negligible variations in

the lateral direction. These two approaches are presented below.




a. Depth-Averaging Model: This appreach has been tound to he both

adequate and efficient for shallow water tiows in which the variation of
the hydrodynamic characteristics is predominantly horizontal. That is,
velocity variations in the horizontal plane are greater than variations in
the vertical, and the pressure distribution along the vertical axis may be
assumed to be hydrostatic. In such cases, an efticient as well as adequate
approximation to the three-dimensional flow problem i1s to treat the
vertically averaged flow properties in o horizontal plane. To derive the
model, let wus, first, represent the bed and frec surtface geometries by
{(x,y,t) and n(x,y,t) respectively as shown in Fig. 1.

Although both the channel bed and free surtace of the flow are, in
general, deformable in time, for the convenience of numerical solution,
they are assumed frozen instantaneously during the solution of flow
properties. But, when the flowtield is solved, the elevations of both
channel bed {(x,y,t) and free surface of the flow n(x,v,t) are replaced by
their new values before the flowfield is solved again for the next time
step. The method to obtain new values of { and n will be given later when
the technique for estimating sediment discharges 1s described.

The boundary conditions described in the previous section can then be
translated into the mathematical equations. On the instantaneously frozen

channel bed, z = {(x,y), they are:

v, = 0, i =1, 2 and 3} (4)
and at the free surface, z = n(x,y,t), thev are:
= (5)
P =p, (5)
+ v, Y j = 1 and 2 6
nrvin, 3y J (6)
T..,~-T1T..n . =71, i and j = 1 and 2 (7)
i3 I i s
Where P, is the atmospheric pressure and T} is the ith component of the
surface (wind) shear stress. A similar expression may be written for the
bed shear stress, T?. Integrating Fgs. 1 and 2 and using U and V to
represent the vertically averaged properties of Y1 and v, respectively, one
can get
L . d0h ) A(hT
3ChUj . 9(hu¢) | a(huv) on 1 2 p oth xy)
PR S < + - - - + 4 Qh = - o - S -
at Jx Ay 20X ¢ ax P Iy
S L S (8)

P X X
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Fig. 1. The Coordinate System




aéhV) » 2(b0V) L a(hvE) o 8 1 o7y oy

t Ix ay dy p 9x p 9y
p=rp,+pg (nN-2) (10)
an ., o) a,cgfy“’) =0 (11)

where g is the acceleration of gravity, and Tij are effective stresses
i acting on vertical planes. During the integration, the Leibnitz rule,
e.g.

n N 5¢
J f(x, y, x, t) dz = 5t dz
e ¢t

+ f(x’ Yy, N, t) g—? - f(xy Y C’ t)

QJIQ’
-

oL (12)

Jd
ot

! and the boundary conditions (6) and (7) have been applied.

The bed shear stresses are assumed to have the same magnitude as

those in steady uniform flow, and their directions to be the same as

those of the depth-averaged velocity components. Their mathematical
representations are

(ty 5 1) = pEQUHVD)® (U;0) (13)
where f is a dimensionless friction factor defined in terms of either

the Chezy coefficient, C or the Manning's roughness coefficient, n
b4 g k4 b

f)
as given below:

f = g sz or f = g n2(1.49)_2h~ (14)

To enable the model to simulate eddies and circulations in the depth-

1/3

averaged two-dimensional flow, the effective-stress terms have been
taken into account. By analogy with the eddy-viscosity approach used
in some turbulence <closure schemes, an eddy-viscosity, &, is
introduced, so that the effective-stress terms in Eqs. 8 and 9 are

replaced by

9%y 9%y
-gh (5-;(7 + 5‘y—2') (]5)




and,

3%V | 3%
~-th (W + 5;2') (16)

respectively. As a first approximation, the coefficient of eddy viscosity
can be related to the mean flow properties by

e = Eh (U2 + Vz)% (17)
where E is an adjustable eddy-viscosity parameter. Thus, the derivation of

the depth-averaging model has been completed.

b. Two-Dimensional Vertical Flow Model: In this case lateral changes in
flow and bed material properties are neglected. In tracking the bed-
profile evolution, advantage is taken of the fact that the bed deforms at a
rate much slower than the rate of change of free-surface transients. The
water discharge hydrograph is replaced by a piecewise continuous
distribution with time increments smaller than the time scale of the bed
transients. During these time increments the water surface profile is
computed by assuming a one-dimensional spatially varied steady flow. This
permits the uncoupling of the bed profile calculations from the water
routing scheme. Thus, the flow governing equations are the well known
spatially varied flow equations

uu + h + 2
?x g ’x g

box * B u (Gl/c§ h=0 (18)
and
uh=gq (19)
where u is the depth-averaged velocity, h is the flow depth, zy is the bed
elevation, x is the streamwise distance, g is the acceleration of gravity,
Cf is the Chézy friction coefficient, and  is the water discharge per unit
width. Within the context of the one-dimensional flow assumption, the flow
geometry is restricted to situations where no separation occurs and where
nearly parallel flow conditions exist. Under these conditions the vertical
velocity distribution at any section is assumed to follow the logarithmic
law
u, 30 (z-zh)
u=-— ln-— ———- (20)
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in which u, is the local bed shear velocity; K 1s the vou Karman constant,

ks is the equivalent grain roughness, and z denotes the vertical position.
Integrating Eq. 20 over the tlow depth gives
4, = K u [1n(30 b/k ) -1]"! (21)

which permits the estimation c¢f u, from known local flow parameters.
2.2 EQUATIONS OF SEDIMENT MOVEMENT

As discussed in the previous chapter, the sediment transport
phenomenon associated with the flow in an alluvial channel is,
unfortunately, too complex to be described completely by analytical
techniques, because the theories for describing the bed load of sediment as
well as the boundary condition of sediment concentration on the hed surtface
have not yet been developed. The several practical sediment transport
models that have been adopted most often can be classified into three
categories:
1. By assuming that the sediment is being transported predominantly in
suspension, the bed load is included in the suspended load and the sediment

diffusion-convection equation can be solved for the sediment concentration

distribution by analytical or numerical schemes. Then, the sediment
discharge is computed by integrating the mass flux over a cross-section
area normal to the flow direction. The drawbacks of this approach
are: first, the boundary condition for sediment concentration on the
surface of the channel bed 1s still not understood completely. Secondly,
the estimation of sediment discharge may not have sufficient accuracy for
the cases in which the hed load can no longer be neglected.

2. The sediment discharge is estimated by combining the suspended
discharge and the bed discharge. The suspended discharge 1is solved
analytically using the approach similar to that described above in the
category 1. The bed discharge is, however, estimated using one of the
empirical functions which have been developed in recent years. A good
review concerning the capabilities and limitations on those bed load
formilas may be found in Graf (1971). The major drawbacks of these kind of
approaches are that, first, they are more involved than the first category
approach, and second, it is difficult to find an accurate formula for
determining the concentration boundary condition near the surface of the
chiarnel bed. This latter driwhack has to be resolved, before this approach

to he widely adopted.
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3. Without distinguishing the suspeuaded and bed load, one may select one
appropriate empirical formula to compute the total sediment transport load.
The obvious advantage is the simplicity of this approach when it is used to
simulate a particular section of a particular alluvial channel. However, a
different formula may have to be adopted for a different channel or even a
different section of the same channel. This drawback can sometimes be
alleviated by calibrating an adjustable parameter existing in the empirical
function chosen for a particular channel, or even calibrating it from
section to section of a channel, so that an accurate sediment transport
model can be established.

Although all three different approaches have been used in the course

of this research, the mathematical formulations of the first and the third
approaches are described below, because they have produced some good
results.
a. Depth~Averaging Model: In simulating depth-averaged flows
predominantly in a hor.zontal plane the total sediment transport load is
represented by an empirical formula. For example, a model based on a power
function of the mean velocity may be used conveniently to estimate the
total load with its coefficient and exponent being calibrated for
individual cases. This model has been successfully adopted by otuer
researchers (Simons et al., 1979, DeVries, 1973). Therefore, it is applied
to perform a preliminary study on the deformation of sand bed due to
sediment transport by the fluid.

The sediment transport function selected for the present study is of
the form

g, = c_ p v (22)
where 8 is the bed material transport function in the direction of depth-
averaged velocity component Vi’ cg and m are the coefficient and exponent
respectively. For a particular channel geometry and bed material
characteristics, cg and m are estimated or calibrated using experimental
information. After the depth-averaged flow field is solved, the sediment
discharge can be easily computed.

Then, the bed material continuity equation

+ - =
qs,x + qs’y (1 A) zb,t 0 (23)
is used to calculate a new bed elevation z, - And, the complete physical
system has, thus, been represented by a mathematical model. In this

equation A denotes the porosity of the bed material.
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b. Two-Dimensional Vertical Flow Model: The preceding profile

computations are based on the assumption that the local flow transport
capacity does not deviate significantly from equilibrium conditions, and no
distinction is made between bed and suspended transport mode. Such an
approach is justified if either bed-load transport is predominant, or the
sediment is being routed over long reaches. Otherwise, the assumption of
near equilibrium capacity 1is not wvalid because the bed load reacts
immediately to changes in local flow conditions while the suspended load
tends to react more slowly. This slow adaptation of the suspended load can
significantly influence the bed profile evolution over relatively short
reaches (Kerssens et al., 1977); Fredsg¢e, 1978). For this reason, the
present analysis includes the equation governing the dispersion of
suspended sediment, in addition to the bed-material continuity equation.
These equations are simplified by assuming that:
i. Longitudinal dispersion can be neglected in relation to the vertical
dispersion;

ii. The sediment settling velocity, Voo is invariant;
iii. Vertical convection is negligible in a neariy horizontal fiow;
iv. The time rate of change of the sediment cocicentration 1is not
significant (Mahmood, 1975);
v. The bed material is fairly uniform in size, and can be represented by
an effective particle diameter.
The sediment dispersion equation thus yields

u C,x - vsc,Z = (azc’z) 2 (24)
where ¢ is the point volumetric concentration, and €, is the vertical
sediment transfer coefficient. By averaging Eq. 24 over the flow depth the
following bed-material continuity equation is obtained

9 Lt (1-A) 2y ¢ = 0 (25)
in which q is the volumetric discharge of bed material per unit width, A
is the bed porosity, and t is time.

Since Egqs. 18, 19, 20, 24, and 25 describe an evolutionary process,
appropriate initial and boundary conditions need to he specified. They are
the initial bed profile, the upstream bed elevation and inflow of water and
sediment, the downstream flow stage and streamwise concentration gradient,

and vanishing sediment flux across the free surface. These conditions are

represented by




zb(x;O) = zo(x) , 0 L (26)

q(0;t) = g(t) , x 2 (27)

qs(O;t) =r(t) , x (28)

c(0,z;t) = s(z;t), < z (29)

z, +h=H (1), 2 (30)

b

{
=
<

A
N

'
N
WA
=
-~

v

c = [(e gzt v o u, x = > 0, (31)

c S
» X z, s, b

vcte c =0 ,0<x<L,z=2z +h, t=20. (32)
s z ,z

In these equations, 25, 8 T, S, and H are given continuous functions, H
represents the downstream stage, and L is the length of the reach. The
sediment concentration over the wupstream boundary, condition 29, is

determined by solving Eq. 24 for the equilibrium case (c ‘- 0) and by

specifying an appropriate distribution for 82. From regression analysis of
point measurements of the sediment transfer coefficient conducted by
Coleman (1970), Kerssens et al. (1977) obtained the following expression

for the transfer coefficient.

_ 8
- {6 T (1-0)) (33)
where
€ = (z-zb)/h,
_ 2.12
€., = uxh (0,13 4 0.2 (v /u )7

§=1,0<¢ <0.5,
§=0,05<¢f<1.
Using this equation the following equilibrium concentration distribution

results

= huye, 18,/ 1P % (-0 /01P%expi2p(6-1) (2011, (34)

[g]
|

in which

B=h vs/(‘amax

and <, is the concentration at a point §a>0 near the bed. An estimate of

»

the reference value <, is obtained by assuming that most of the sediment is
carried in suspension, and then matching the sediment flux through the

upstream section to a suitable total load formula. That is,
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u cdl (35)

£
1l
NH [

f‘ a

Kerssens et al. (1977) found the following moditied version of the formula

1 developed by Engelund and Hansen (1967) to agree well with their measured

' loads s
! - 1
3 = -1)2 2 ~3
% qg 0.035 u / [d50 (Ss-1)% g Cf] s (36)
i where q is the sediment volumetric discharge in m3/sec.m, d50 is the bed
: material size in meters, and S 1is the sediment specific gravity.
f Substituting Eqs. 20, 34 and 36 into Eq. 35 yields
f _5
' 0.035 K
t uz%sl(‘l-ca)/cajﬁz
hu*dso(s-l) g°Cy
1 BS
<, fﬂn(30§/ks)[(l-§)/§] exp [2B(6-1)(2L-1)]dL (37)
Ea
from which c, can be determined. The integral on the right side is
evaluated using Gaussian guadrature.




3 NUMERICAL SOLUTIONS
3.1 DEPTH-AVERAGING MODEL

A typical finite element system used to discretize a continuous

horizontal domain is shown in Fig. 2.

Isoparametric interpolation functions are wused to relate the
properties at any point within an element to those at nodal points of the
same element. For linear cases, they are of the form:

(U;vsh) = (U 5 V5 h) (38)

n n

where: a = 3y (l+§n§) (1+nnn), n=1, 2, 3, and 4 (39)

The transformation between the global (x,y) and the local ({,n) coordinate
systems is specified by
X; Y) = a (Xn, Yn). (40)
To reduce the degree of nonlinearity, the hydraulic depth, h, in the
momentum equations at all nodes are estimated initially and corrected
during the iterative solution procedure. Due to the fact that the bed
deforms at a rate much slower than the rate of change in hydrodynamic
properties, the hydrodynamic equations and the bed form model are
decoupled. And, since the bed form can be considered being instantaneously
fixed during the solution of hydrodynamic equations, the assumptijon of
quasi-steady flow should give satisfactory solution. Therefore, the fluid

flow equations are simplified into the tollowing form:

U g% +V g% - € (g;g + g;g) + E%%; U+g g% =0 (41)

U g% +V g% - (ggg + g;¥) + Eg%; V+g gg =0 (42)

h g% +h g¥ + U g% +V g% =0 (43)
where Wk = (U%Z + yi2)?

Applying the Method of Weighted Residual (MWR) after Galerkin, the

finite element equations for each and every element are formulated.




Fig. 2. A typical finite element grid using quadrilateral elements
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'l--an-:----:nzlulll--r~— SIS et .

AanUEUm * Bnﬂmvﬂum * CnmUm ¥ DnmUm * Enmhm B Hn =0 (44)
An,QmURVm * Bnﬂmvﬁvm * Cnmvm * Dnmvm * anhm B Gn =0 (45)
AnﬂthUm * Bnﬂmhzvm * AanUth * Bnﬂmvﬂhm =0 (46)
where Anﬂm = ianaza ’ dA
anm = {unaﬂam‘ydA
c = fe(a _a +0d d )dA
nm A n,x m,x n,y m,y
_ _gwr
Do = Egﬁg ! auda
f A
Em = g{unum’ dA
an = gfanam’ da
A
H = fea (U n_ + U n)dl-eagfu dA
n n' ,x X Y Y = 9x n
2 A
G = fea (V n_ +V n)dR—gQ-gf(x dA
n p 0 ,X X YV Y oy A D

All sets of finite element equations, one set for each element, are
assembled into the following global set. The actual assembling process is
carried out by a computer program simultaneously with the evaluation of the

coefficients of local element equations.

= / -
I1 AiijjUk BiJ.k\/J.Uk + CikUk + Eijhj Hi (47)
12 = Aiijij + Bijkvjvk + Cika + Fijhj - Gi (48)
I, = U.h (49)

= + +
37 A% T B Vie oAtk BV P

This global set is solved iteratively by the Newton-Raphson technique
to yield the flow field properties.

Then the sediment transport function, Eq. 22, is used to estimate the
bed material discharge at eacnh node. The sediment continuity equation is
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discretized by the FEM, using the same element system, and interpolation

functions. The resulting global equations are:

LijAZj = Ki' (50)
Substituting the sediment discharge results into this equation the new bed
elevations at every node are obtained. Thus, the discretization of the
mathematical model of the sediment transport phenomenon has been completed.
3.2 TWO-DIMENSIONAL VERTICAL FLOW MODEL

The Galerkin integral approximation within the Method of Weighted
Residuals is used to derive the finite element equations. The first step
of the solution involves dividng the continuous solution domain, Q, into a
set of nonoverlapping subdomains, Qe’ or finite elements, such that

E
QUT = UQ
e

e=]

where [ is the boundary of the solution domain, and E denotes the total
number of elements. The one-dimensional domain of Eq. 18 is discretized as
shown in Fig. 3(a). 1In Fig. 3(b) the two-dimersional domain of Eq. 24 is
divided into a series of isoparametric elements. The finite element grid
is designed so as to provide greater resolution near the stream bed where
high velocity and concentration gradients exist. Within each subdomain the
unknown variables are interpolated in terms of their nodal values as

fe(Z;t) = ¢n(2) F (), X & Q. (51)

where fe stands for the interpolated values of all variables, Fn denotes
values at a node n, and ¢n represents the interpolating functions. This
study uses linear isoparametric functions, which have the advantage of
satisfying the basic convergence criteria of completeness and continuity,
and serve at the same time as coordinate transformation equations. For
instance, for the two-dimensional elements
o, = % 1+ D(+n_ n) (52)
where the isoparametric coordinates are related to the global coordinates
such that the corner point (xi, Z5 i = 1, 2, 3, 4) of a quadrilateral
element are transformed into the four points (1,1), (1,-1), (-1,-1), (-1,1)
in the ({,n) space. The approximate solutions are of the form
Y E .
f(x;t) = Ut =0 F |, xe0Q, (53)

(34 nn

e=]
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Figure 3. Sketch of finite element grid at t = 0




in which ¢n are linear functions of the spatial domain. When the solutions

t are substituted into the Eys. 18, 19, and 24 approximation errors, or
residuals, are introduced. The expansion coefficients Fn are determined by
rendering these residuals orthogonal to the respective interpolation

functions. This yields

f lg-q%/h3)h < g(zb <t qz/C?h’)]¢ndQe =0 (54)
Q b b -

e
éf [uc’x - (vS + 52’2) C,z —azc’ZZJ ¢non =0 (55)

The integrand in Eq. 54 results from combining equations 18 and 19. After
substituting the interpolation functions, applying the Green-Gauss theorem
to the last term in Eq. 55, or integrating by parts, the preceding

equations yield

H = M, (56)
nm m n
Pn,QmUJZCm * QnmCm - Rn’ (57)
where £, m, n = 1, 2,..., n, (ne = total number of element nodes), and
= -q%/h3
Lo é (g-q®/h%) o 0, 42, (58a)
e
- - 2/02 |3
M é 8z, o * a®/Cp P o dq , (58b)
e
Poom = éf ¢n¢20m,dee , (58¢)
e
Qnm - é &, (Qn,z¢m,z ) az,z¢n®mmz) due (584)
e
R = £ (¢ & ) n dl . (58e)
Zz'n Z e

n g z,z ,
e

Here ﬁy is the =z-component of the unit vector normal to the element

boundary re, and E, ¢ represent either initial or iterated values. The
coefficients (58) are evaluated in the ({, n) space. Since all elements
are identical in this coordinate system, once the formulas for those
coefficients are developed for one element the same formula is used for all

the other elements. Eq. (58¢) yields, for instance,
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la )
1

nfm

=4 ¢n¢2¢m dee
Q ’

+1 _ ~

in which [J] is the determinant of the transformation Jacobian, and Jij are
elements of the inverse Jacobian. In all cases the integrals are eva.uated
using a Gaussian quadrature subroutine.

Once evaluated, the coefficients of equations 56 and 57 are assembled
into the corresponding global matrices. After introducing the

Dirichlet-type boundary conditions, the global equations reduce to

Lkﬂ H2 = Mk , (60)
Tkﬁ CE = Rk , (61)
where TkQ = Pkﬂm U2 + ka, and k, £ =1, 2,..., N. Here N is the total

number of node points containing unknown values. The nonlinear equations

60 and 61 are solved iteratively using a subroutine developed for banded

matrices. After the global nodal values HQ are determined, Eq. 19 is used

to obtain the corresponding velocities UR'

For convenience, the sediment continuity Equation 25 is discretized
using the following explicit finite-difference scheme:
Ch1 s L

, Led*1 i, L ot qs1 - qs1 b (62)

=z - ,
b b (1-A) Xip1 T %o

where X1 and x,_, are defined in Figure 1(a), and At = tj+l - tj is the

time increment. Eguations 60 through 62 constitute the numerical algorithm

used in the present case.




PRESENTATION AND EXAMINATION OF RESULTS
4.1 FLOW AROUND A SPUR DIKE IN A STRAIGHT CHANNEL WITH A SAND BED
A thin spur dike is placed in a straight alluvial channel with

dimensions shown in Fig. 4. The variation of the flow field hydrodynamic

behavior due to bed form changes in time is simulated using the depth-
averaging model developed in the present study. The boundary as well as
initial conditions used in this case are no slip on the solid walls, almost
uniform flow at the entrance, parallel flow are left to be determined by
the governing differential equations at the exit, no shear on the free
surface of the water, bed material particles having uniform properties, and
the bed being flat when the flow simulation is started. The computer
simulated bed form and velocity distribution in the flow field after 5, 10,
and 15 hours are shown in Figs. 5 through 10 for an average velocity =
0.110 ft/sec; water depth = (.38 ft; chanael width = 6 ft; dike opening = 4
ft; and the time step for sediment routing was t = 3000 sec. The velocity
of flow accelerates locally increasing the carrying capacity, which can be
seen in the area around the nose of dike in Figs. 7 and 10. When the flow
decelerates downstream from the dike and loses carrying capacity, the
deposition of sediment occurred. Ar the downstream end, the flow recovers

equilibrium, and the carrying capacity is equivalent to the amount of

sediment deposition. Therefore, the bed form essentially does not change.
This test is a simulation of the bed scour around a spur dike measured by
Zaghloul and McCorquodale (1975). They reported the geometry of the scour-
hole developed around a dike mounted perpendicular to the flow direction in
a laboratory flume with a movable bed. The maximum scour depth was
observed right at the nose of the spur dike. The scour hole upstream of
the dike was conical in shape, whereas downstream was elongated and had a
shaliower slope. No sediment deposition was reported. However, similar
measurements conducted by Ahmad (1953) and by Garde et al. (1961) have
shown that a4 deposition bar is formed adjacent to the spur dike on the
dowistream ~i1de. The simulated depth-average flow pattern and bed geometry
obtained after 15 (real time) hours exhibit qualitative agreement with the
shapes of the measured hole. However, the locations of the deepest point

f an:l deposition bar are incorrect. The reason is twofold: (i) the model

d.en not reproduce the f{low separation created by the stagnation region

vistream of the dike. The result is an excessive flow component parallel




Fig. 4 Dimensions of Straight Channel with Spur Dike




..... 4 G 1933e a1p Inds punoie uoringiiasip Aj1d01ap € 813

T 1
T o1

l
|

v 17
rTT‘




..... oy 01 1231je 31p Inds punoie UOTINQIIISIPp AJTd0]ap 9 3and1jg

— — ¢ (———F6— — —
4
— — « w T~ — e
— « e~ . L4 L “— —
- “« . > » - « - «




.....

133)e 3y1p ands punole uoIINQIIISIP AITD0]aA L 813

[

I

.

1

|

¢ 111

fr.TT

.30




R
‘,\ \\ : é‘,\)

‘0’0’0 8K
u‘,: G o,o,;,

0 KR

,Iouu o’o
NN
QR0

OOKS 0 X
X0 ’:’? ‘:"00’0.‘
u o .o,u oo wo X0\

’Q’o’n

NS
’u’u X% o
. """ f;'
X 6“’ 0 “‘ ""

AN
XX n
N 0 B8
o,o’o’ Io, %o, ,,:, ,m
A“ ””’ ’.’: ‘ .:: .”"
ooooooo 0
O ’0,0 0‘ X0 o”:/

"

'o ‘é,o ::::0.0,0
' c:o’o E\

/
A X

Bed deformation around spur dike after 5 hours.

Figure 8.




oé?
e /f % ” o
o 0 %
’ ’ 'm 0 0‘00.
0)0‘0‘
’0 0‘

o‘
’0 X0
%.:"o

AL ',l\ V!
I £
3
\

>

."

Bed deformation around spur dike after 10 hours.

(=,
&0

o~

[¢9)

o
n
0‘&

‘0,’:’ ’0 .0,0"

’nn

\ 0 ’e\

\




A

DY
. X n‘-)
IRV Nx :
ISR V%, A
. )&) K’y)ﬁ %.“. ’ ‘)r'_;\l‘\

4 0 ")}:‘,-.,A fla /'\'

OO0 L7 A OO

%”::::’:‘::':"&’ o R
‘“Aﬁééfe'xzf.' OSSN

Bed deformation around spur dike after 15 hours.

|
RO
(AROOOO0
OROAS
OO
OO
OB
OBAIE

h%

OBEAS

(XPXX 0
%&4&&9%?

"‘:“::’ ’:o«'unu‘u":”
%y ﬂﬂ&ﬁﬁ%ﬁﬁf’
QA

¢
Q 'o‘:;..o‘o‘o K
OO0

41‘|il.%¢w“’
s

?ﬂﬁﬂﬂg"

10.

SO

()

Fig.

A




‘_4,,,,,v-“-.,_,..,._.,_..__‘._.-<

S -

——

to the dike that forces the region of maximum velocity away from the dike-

nose; (ii) the low velocities predicted along the shear layer emanating
from the dike induce a backflow circulation that is too weak to transport
bed-load material from the primary stream to the downstream side of the
dike. The results point out a deficiency in the model when simulating
situations dominated by regions of flow separation. Further research is
needed to correct this deficiency. The CPU time required for this
simulation was ten minutes per each hour of real time.

4.2 LOCAL SCOUR AND FILL OF A TRENCH IN A SAND BED STREAM

The natural backfilling of a trench dredged across an alluvial
streambed is also studied using the two-dimensional model in a vertical
plane. This simplification is valid provided that both the stream and the
trench are wide enough to aneglect the variation of properties in the
lateral direction of the flow. The computer program developed for this
simulation is basically similar to the depth-averaged model in a horizontal
plane, so that it is not necessary to present it here.

The schematics of the finite element system and initial bed form and
flow conditions are shown in Fig. 3. The dynamic behavior of the finite
element system is clearly seen from Fig. 11, which represents the condition
of the flow and deformed sand bed as well as free surface at a later time
(t > 0). The coordinate, or position, of each node is adjusted at each
time step whenever the bed and/or surface elevation change during the time
interval. By doing this the computing scheme is more stable and efficient
than the one with fixed interior nodes and moving boundary nodes.

The computer simulated bed and free surface profiles at 7 and 14 hours
after the numerical experiment is turned on are shown in Fig. 12. It is
very obvious that the computer simulation can indeed produce reasonable
results, which are verified by data obtained from physical experiment.
This case was studied for the purpose of verification with a set of data
collected at the de Voorst Hydraulic Laboratory, The Netherlands, by
Kerssens, et al. (1977). In that experimeut, a trench having the geometry
shown in Fig. 3 was formed in a 0.127 mm sand bed in a laboratory flume.
Water was circulated over the bed at a steady rate of 0.195 m*/sec-m, while
the downstream stage was maintained 4t a constant level. Sediment was
supplied at a constant rate of 0.041 kg/sec-m, and most of the load was

carried in suspension. Due to hydraulic sorting the d of the suspended

50
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Sketch of finite element grid at t > 0.
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bed material approached a value of 0.110 mm with a settling velocity of

0.0lm/sec. During the run rippies formed on the bed and the Nikuradse sand
roughness was estimated at 0.025 m. The Chezy friction coefficient,
corrected for side-wall effects, was about 36 m?/sec on the reach upstream
of the trench.

The bed profile was measured after 7 and 14 hours of continuous flow.
These profiles are shown in Figure 15 along with the simulated free-surface
and bed elevations. A reference concentration level cqual to 0.015 m, or
slightly over half the ripple height, was used in the simulation. The
comparison between the observed and simulated bed profiles is satisfactory.
The largest shape discrepancy occurs on the converging sideslope of the
trench. This mav have been caused by the fazilure of the assumed velocity
profiles to account for the increase in velocity gradients near the bed
induced by the flow acceleration. The water-surface profiles correctly
reproduce the surface rise over the trench. As the trench is filled up the
water crest diminishes and moves downstream with the trench, as expected.

Fig. 13 depicts the distribution ot suspended sediment throughout the
flow domain after 7 hours. The contours of constant concentration were
drawn from computed results. This plot illustrates the deposition of
sediment occurring on the downstream side of the trench as the stream
decelerates and loses carrying capacity. As the flow regains velocity,
sediment is entrained along the upstream side and diffused upwards. The
suspended material leaving the trench area gradually approaches a new
equilibrium distribution. The CPU time was approximately four minutes per
hour of real time. The computer memory required by the codes used in the

tests presented above was 100,000 words.
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CONCLUSIONS AND RECOMMENDATIONS
CONCLUSIONS

A two-dimensional numerical model has been developed to predict water

and sediment movement and water surface and bed-elevation changes in
channel reaches with complex boundary geometry.
The model is based on the conservation laws of water and sediment
continuity, and momentum equations. The water continuity and momentum
equations are solved first. The predicted flow variables are then
introduced into transport formulas and the sediment continuity
equation to compute sediment load rates and changes in bed elevation,
respectively. The equations of motion are solved using a finite-
element scheme.
The model has been validated by simulating laboratory data obtained
from a trench scour and fill study. The model predicts satisfactorily
the evolution of the water surface and bed elevations. In another
test the model was used to simulate bed scour around a spur dike. The
shape of the predicted scour hole is in qualitative agreement with
observations reported in the literature. How~ver, the deviations
observed in the predicted locations of maximum scour and deposition
point out & limitation in the model when simulating situations
dominated by regions of flow separation. Further research is needed
to correct this deficiency.

RECOMMENDAT IONS
It is recommended that the model he further developed and tested on
real systems to ensure its accuracy and credibility. Work should
continue on the computer code to improve its flexibility and
efficiency. Carefully designed laboratory experiments should be
conducted to investigate the accuracy and range of applicability of
transport algorithms used in the model <(i.e., turbulence closure
schemes, two-dimensional sediment transport functions, etc.). Two-
dimensional models have a great potential to study in detail sediment
related problems in irregular stream reaches with significant flow

components in more than one direction.
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Verification and validation of two-dimensional models require data
with a degree of detail and spatial resolution that is practically
nonexistent. It is thus recommended that laboratory data be collected
in scaled down physical models reproducing conditions observed in the
field. Laboratory studies can provide, at a reasonable cost,
velocity, sediment transport, and cross sectional data with the high
degree of resolution needed in model wvalidation. Then, a few
carefully selected prototype measurements in the field will suffice
for model verification.

It is recommended that hypothetical situations be used to confirm that
the model responds in a realistic manner. To this effect, the two-
dimensional mode! <can be linked to one-dimensional channel and
sediment yield models to investigate the dynamic response of local
bank stabilization structures to changes in upstream land management
practices, and to series of intense storm events. These consolidated
models could be used, for instance, to look at (a) bed and bank
response in the vicinity of toe armer, hard points, fences, etc.; (b)

degree of Lank destabilization caused by proximity of point bar; etc.
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ADDENDUM 1: DERIVATION OF TWO-DIMENSIONAL DEPTH-AVERAGED FLOW EQUATIONS

The fluid flow in a natural stream is always turbulent, three-
dimensional and time-dependent. In many instances, however, the flow is
predominantly horizontal. That 1is, the flow velocity in both the
longitudinal and transverse directions are comparable and much larger than
the vertical velocity component. In such cases, an expedient approximation
to the three-dimemsional flow problem is to assume bidimensionality along
the two perpendicular horizontal directions, averaging flow properties in
the vertical direction. The pressure distribution along the vertical is
assumed hydrostatic, only time-averaged turbulent flow notions are
considered, and the effects of small-scale velocity fluctuations are
aggregated into the shear stress terms.

Continuity equation of water and Navier-Stokes Equation are written

3t 91
X

duZ _ dvu , dwu Xy ,

Zy _
= T3 T3z * 5yt ez ) (1.1)

duv . d9v2 . dwv

pg =0 (1.3)

B0 (1.4)
where x, y are longitudinal and transverse horizontal coordinates, z is the
vertical coordinate measured upwards from arbitrary datum, t is time, G, ;,
and w are time-averaged velocity components in x, y, z directioms, p is
density, E is time-averaged pressure, g is acceleration of gravity, and ;ij
is the time-averaged shear s*ress in the jth-direction on a plane normal to
the ith-axies.

The assumed boundary conditions are

1. the pressure on the free surface is taken as constant.

2. the free surface shear stress is neglected.

3. the fully developed flow is imposed at the upstream.

4. no slip, no seepage on the channel wall and bed.

Then they can be translated into the mathematical formulations,




p(x,y), u=v = on the bottom

nix,y), p Eo on the free surface

T - R
XX Ox Xy oy Xy

- I
Xy ox yy 9y yz y

-s =s , L .
where tx’ Iy are the surface wind stresses. Similar expression holds for
bed shear stresses.

Eqn. 1.3 yields:

N o n
P 4, = -
J 52 dz | pgdz
z z
from which:
p = 50 + pg(n-z) (1.8)

Applying vertical integration, using the Leibnitz's rule, and Eqn.
1.8, the Navier-Stoke's equations can be transformed into Eqns. 1.9-1.12
shown below.

The x-momentum equation becomes

B<u> y gy 9L, Akt 2 9
50 - 46y, t)) g ulx,y, L) g+ lulx,y,n,)1% 5

9l | d<uv> , d
+ [U(X,Y,n,t)]z aj: + *8$X# - U(X-y,ﬂ,t) v (X,}'aﬂaL) 5;1

+ U(Xay,c,t) v (X7Ya€st—) g_% + U(X,y,rl»t) w (X,Y,ﬂ,t) -

an L | T xy |
Tex (OYoMt) o+ T Oy, L0 +

= 0 (1.9)
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3(hU) , 8(hUZ) _ B(hUV) _

an an on
Bt % ay . umlgy rulm) 5o e vin) gol o+

w((GE + u(p) T+ v(p) 1 + u(m win) - u(p) wip)

+gn o0 _1 a<txx% 1 ?jfEXi -1 [t (m -1  (n) an
8% 3x p Ox p 3y P xy n’ Xy n dy

Ty M G I ) - T ) 3 ) ) =0

XX Ix p XX

Imposing the boundary conditions, Eqns. 1.5-1.7, we have

B(hy) |, a(hU?) |, awv) , . an _ 1 20T 4 2UT,)
at 9% dy B 5x T p T ox p oy
1 s b, _
"5 (Ix - tx) =0
In a similar fashion the Y-momentum equation yields
a(hv) R 3(hUV) . 9(hv?) . on on 1 3(thx) 1 a(hT )
at Ix dy & dy p 3k p oy

s b
== -1)=0
P ( y y)

Finally, the continuity equation yields

L

<u> - v gg + v(D) g;

a<v>
ox

- um) 30+ @) v 5

+w(n) - w() =0

a(hU) + a(hV)
ax 3y

+ Lwlm) = um) g1 - v(n) 301 - 1) -
u@) 38 - v 31 = o0

a(hu) , da(hv) L on _ 3L
ax dy at ot
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ax dy
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ADDENDUM 2

COMPUTER PROGRAM OF DEPTH-AVERAGED FLOW MODEL
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