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PREFACE

The main objective of this study is to develop a two-dimensional

numerical model capable of studying water and sediment movement and

geomorphic changes in alluvial channel reaches with complex geometries. A

description of the governing equations for water and sediment motion in two

dimensions is presented in Part 2 of this report. Part 3 presents a

detailed description of the numerical methods used to discretize the

governing equations so that the solution can be carried out with the aid of

a digital computer. Part 4 of this report presents results of applications

of the model to the prediction of a trench scour and fill, and the

simulation of bed scour around a spur dike.
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U.S. Customary to S.I.-Units Conversion Factors

Multiply

To convert To by

inches (in.) millimeters (mm) 25.4

feet (ft) meters (i) 0.305

yards (yd) meters (i) 0.914

miles (miles) kilometers (kin) 1.61

square inches (sq. in.) square millimeters (mm2) 645

square feet (sq ft) square meters (m2) 0.093

square yards (sq yd) square meters (m2) 0.836

square miles (sq miles) square kilometers (km2) 2.59

acres (acre) hectares (ha) 0.405

cubic inches (cu in.) cubic millimeters (mm3 ) 16,400

cubic feet (cu ft) cubic meters (m3) 0.028

cubic yards (cu yd) cubic meters (m3) 0.765

pounds (ib) mass kilograms (kg) 0.453

tons (ton) mass kilograms (kg) 907

pound force (lbf) newtons (N) 4.45

kilogram force (kgf) newtons (N) 9.81

pounds per square foot (psf) pascals (Pa) 47.9

pounds per square inch (psi) kilopascals (kPa) 6.89

U.S. gallons (gal) liters (L) 3.79

acre-feet (acre-ft) cubic meters (M3) 1,233
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1 INTRODUCTION

The objective of this study is to develop a new methodology for

modeling the phenomenon of sediment movement in irregular alluvial

channels, scouring around obstructions, etc. The basic physical principles

of conservation of mass and momentum are used to describe the fluid flow.

The conservation of mass and semi-empirical equations governing sediment

particle movement are adopted to establish the interaction between the

sediment movement and the fluid flow. The resulting mathematical model is,

unfortunately, highly nonlinear and complex. It is impractical, if not

impossible, to solve it analytically. Therefore, the numerical methods of

finite element and finite difference are used to obtain approximate

solutions of this model.

The application of the finite element method (FEM) to model fluid

flows has progressed rapidly in recent years from the simplest linear

inviscid fluid flow problems (Martin, 1968; Argyris et al., 1969) to slow

viscous flows (Tong, 1969; Atkinson et al., 1969; Oden and Sornogyi, 1969),

and finally to the solution of the full Navier-Stokes equations (Oden,

1970; Skiba, 1970; Olson, 1972; Oden and Wellford, 1972). However, this

latter area represents an extremely large and complex field. As such, the

research, although very active, can only be referred to as being in its

beginning stage (Olson, 1975). A summary of its recent applications to

flows through porous media, shallow water circulation, and two-dimensional

viscous flows had been presented by Connor and Brebbia (1976). Norrie and

de Vries (1978) also presented an excellent survey of the FEM applications

in all branches of fluid mechanics with 218 papers cited. Readers,

desiring to find detailed information on the development of FE Modeling of

Fluid Flows in general, are referenced to these and other similar papers.

A complete review on FE Modeling of Open Channel Flows and directly related

works is presented below.

A variational principle for an ideal fluid flow with a free surface

under gravity was developed by Luke (1967) using potential function

formulation. It was modified using the stream function formulation and the

different expressions of free surface boundary conditions by O'Carroll

(1975), and by O'Carrol et al. (1976). O'Carrol (1975a, 1978) also applied

this FEM to compute the flows by a vertically two-dimensional model and
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over a spillway, etc. Although he only solved the problems without the

effects of side walls; he contributed a great deal to techniques for

handling the moving free surface at least for the ideal fluid flow. Using

the Galerkin's approach of the FEM, Keuning (1976) solved a straight

horizontal channel with a uniform trapezoidal cross section. Although the

problem is only one-dimensional, the equations are kept nonlinear and

unsteady.

A two-dimensional quasi-linear FE Model for Open Channel Flow near

Critical Conditions was reported recently by Katopodes (1980). It

successfully demonstrated the capability of FEM to simulate a supercritical

floodwave. The truly three-dimensional finite element modeling of viscous

flows in an open channel with and without the existance of obstructions was

carried out by Alonso and Wang (1978). Three-dimensional linear

hexahedral, isoparametric elements were used to obtain very slow viscous

laminar flows in open channels of varying cross-section and around an

isolated obstruction. Although results obtained were physically sound and

mathematically reasonable, the requirement of computer storage and

computing time were prohibitive. One of the most effective alternatives is

the depth-averaging scheme. It has been used primarily in the simulation

of currents and water waves in lakes, estuaries and shallow coastal water.

Some typical contributions may be found in Leendertse (1967), Nakayama and

Romero (1971), and Niemeyer (1977). More recently the utilization of the

depth-averaging models in the finite element simulation of flows in open

channels and rivers were reported by Thienpont and Berlamont (1980) and

Wang, Su, and Alonso (1980). Because the distribution of hydrodynamic

properties in the vertical direction of a shallow water flow are usually

better understood, appropriate functions can, thus, be chosen to yield

adequate approximation in this direction. Therefore, the governing

differential equations can be integrated vertically from the channel bed to

the free surface resulting in differential equations, containing vertically

averaged properties, which are only two-dimensional in a horizontal

reference plane. Even if the time derivatives are retained in the

equations to model unsteady flows, the requirement of computer storage as

well as computing time to simulate an open channel flow is greatly reduced.

Besides, this approach not only gives reasonable results with adequate

accuracy, but allows better resolution in horizontal directions by using
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the computer storage saved from reducing three-dimensional to two-

dimensional formulation to add more nodes on a horizontal plane.

Furthermore, the computer code developed based on this approach has the

potential of wider acceptance by users with limited computing resources.

The simulation of sediment transport is discussed below.

In recent years one-dimensional, mathematical models of sediment

routing, morphological transients, and sediment deposition, etc. were

developed (Cunge and Perdreau, 1973; Mahmood, 1974; Simons et al., 1975;

Lopez, 1978). Although they do not provide the time-varying configuration

of the sand bed in a horizontal plane, these models contribute a great deal

in understanding the basic characteristics of morphological transients as

well as in estimating the sediment discharge at various locations of

waterway system. A large number of contributions in the area of sediment

transport in suspension has been published in recent years using the

numerical techniques to solve the sediment convection-diffusion equation in

a vertical plane. Some typical examples may be found in Jobson and Sayre

(1970), Yang and Sayre (1971), and Chen (1971). Smith and O'Connor (1977)

and Kerssens, et al. (1977) presented their findings at the 17th Congress

of IAIIR. The former paper described a two-dimensional model in a vertical

plane which gives the velocity, as well as the concentration fields, of an

estuarial type flow with only good agreement with experimental data of the

velocity distribution. The latter paper succeeded in combining the quasi-

steady fluid flow equations, sediment continuity equation, and the

convection-diffusion equation for morphological computations in a vertical

plane of a very wide alluvial channel. Some of its basic assumptions are

adopted from an early work of deVries (1973). Their numerical estimation

of sand bed deformation considering only sediment transport in suspension

compares quite well with their own experimental results. These two models

are based on finite-difference schemes. Leimkuhler et al. (1975), and

Ariathurai et al. (1976) applied the FEM to obtain solution of the sediment

convection-diffusion equation in a vertical plane with some success. Most

recently, Alonso and Wang (1980) presented the results of a study of local

scour and fill in sand bed stream. The bed deformation is verified with

experimental results. This latest model is also a two-dimensional one

applying only to a vertical plane or a case of a very wide channel.

Recently, a very comprehensive water and sediment routing model based on

K.7



the depth averaging approach has been developed by Simons et al. (1979).

They verified the applicability of an analytic model, supplemented by

empirical relations, for simulating water and sediment movement in a river

system. This model uses a finite-difference numerical scheme.

Both of the previous approaches have been adopted in the present study

to develop two different finite-element schemes. One uses a two-

dimensional vertical domain; the other employs a two-dimensional depth-

averaging solution. Detailed information on Mathematical Formulation,

Numerical Modeling and Solution, and Simulation Results are presented in

Parts 2, 3, and 4, respectively. A complete computer program listing is

given in the addendum 2.

2 FORMULATION OF MATHEMATICAL MODEL

2.1 EQUATIONS OF WATER MOVEMENT

In order to make mathematical modeling a possibility, many basic

assumptions and simplifications are necessary. Since there is no theory

which can include the fluid flow and moving boundary of the sediment

particles 'simultaneously', the flow in an alluvial channel is to be broken

into two physical phenomena and studied in a alternating sequence. That

is, the hydrodynamic characteristics of a fluid flowing along a channel

with an "instantaneously fixed" sand bed of a given geometry are studied

first, and then the deformation of the sand bed is calculated using local

sediment discharge determined from the hydrodynamic characteristics as well

as from the sediment properties. The time-dependent phenomena of fluid

flow and bed deformation are simulated by carrying out these two steps of

solution procedure repeatedly.

In developing the mathematical model to describe the flow of water

along a channel with "instantaneously fixed" sand bed boundaries, the

conservation laws of mass and momentum for incompressible, viscous fluids

are applied. Written in tensor form, they are:

v . = 0, i = I, 2, 3, (1)
i,i

v. + (v. ) + (p - r.. )/p F. i , j , 2, 3, (2)I J , 1J,J I

Where v. is the ith component of the velocity vector; p, p, and v are
1

pressure, density, and kinematic viscosity of the fluid, respectively;
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i.. are components of the stress tensor which represent laminar or

turbulent stresses; F. is the ith component of the external (gravitational)1

body force per unit mass; v and v represent partial derivatives of the

function v with respect to the coordinate direction x. and time, t,
J

respectively. The summation convention is adopted for repeated indices

throughout this work. For laminar flow, the expression for stress tensor

is

T = P(v.3  + v. .) (3)

In the case of turbulent flow, however, a different closure scheme is used

to complete the mathematical model. It is beyond the scope of this study

to review all existing schemes. Therefore, only those used in the present

work will be discussed whenever they are introduced.

Boundary conditions needed for the fluid flow simulation are that (1)

neither slip nor seepage are allowed at the channel boundaries, where the

pressure is left to be determined by applying the governing equations at

the boundary; (2) on the free surface the pressure is taken as constant;

(3) the shear stresses acting on the free surface are neglected, which

implies that the maximum velocity occurs at the free surface; (4) the flow

is considered to be fully developed or uniform at the upstream end of the

channel, and (5) appropriate boundary conditions are imposed at the

downstream end. Also assumed is that the sand bed will be of uniform

roughness and fixed instantaneously. And, although the sand bed has been

assumed flat to start the simulations, any prescribed bed form (not

necessarily flat) can be used as an initial condition without difficulty.

More about bed deformation will be discussed later. Now, the attention is

still centered on the mathematical modeling of the open channel flow with

instantaneously fixed boundaries.

Although realistic mathematical models of flows in natural streams

should be both three-dimensional and time-dependent, the computer storage

capacity required to store the information and the computing time needed to

obtain converged solution is too expensive to justify its use for a

preliminary analysis of basic characteristics of flows in an alluvial

channel. Therefore, a more practical alternative is needed. As mentioned

above, two viable alternatives discussed in this report are used to treat

horizoiital shallow flows, arid vertical flows with negligible variations in

the lateral direction. These two approaches are presented below.
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a Depth-Ave rag rig Mode I: Th is a pp r- ,-Ih I.as been found to be both

adequate and efficient for shallow water t iows in whihh the variation of

the hydrodynamic characteristics is predominantly horizontal. That is,

velocity variations in the horizontal plane are greater than variations in

the vertical, and the pressure listribtion ilong the vertical ,axis may be

assumed to be hydrostatic. In such (ases, an ef i( i -tt is well is adequate

approximation to the three-d imeit .i on3 t f ow prolb lem is to treat the

vertically averaged flow properties in a horizontal plane. To derive the

model , let. us, first, represent the hed arid free surfa(,. geometries by

((x,y,t) and q(x,y,t) respectively as shown in lig. 1.

Although both the channel bedl and I ree surfa-e of the flow are, in

general, deformable in time, for the convenience of numerical solution,

they are assumed frozen inist antaneous ly during the so lti ion of flow

properties. But, when the flowlield is solved, the elevations of both

channel bed t(x,y,t) and free surface (f the flow nr(x,y,t) are replaced by

their new values before the flowfield is solved again for the next time

step. The method to obtain new values of ( and fl will be given later when

the technique for estimating sediment discharges is described.

The boundary conditions described in the previous section can then be

translated into the mathematical equations. On the instantaneously frozen

channel bed, z = (x,y), they are:

v. = O, i = 1, 2 and 3 (4)

and at. the free surface, z = (x,y,t), thev irre:

P : Po (5)

q + v. r vV j = I and 2 (6)

T i3 Ti. Ti i and j 1 and 2 (7)

Where p is the atmospheri( pressure and T. is the ith component of the

surface (wind) shear stress. A similar express ion may be written for the
b

bed shear stress, T ITtegrat i rig fl's . I ,ard 2 ard using U and V to1

represent the vertically averaged prope rt ies cf v 1 anid v 2 respectively, one

can get

lhU) ) ( fill ( - xx 1 xy

t -4 ' , o Xx f aY
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Fig. 1. The Coordinate System



a(hv +3(hUV) + - + gh M 3 a(hT

at ax ay ay p ax p ay

I~ (Ts - Tb) = 0 (9)
p y y

p = PO + pg (q-z) (10)

Lh a(hU) + MV) 0 (11)
t ax ay

where g is the acceleration of gravity, and T.. are effective stresses
Ij

acting on vertical planes. During the integration, the Leibnitz rule,

e.g.

a ~aff f f(x, y, x, t) dz f - dz

f(, y, , t) - f(x, y, C, t) a (12)

and the boundary conditions (6) and (7) have been applied.

The bed shear stresses are assumed to have the same magnitude as

those in steady uniform flow, and their directions to be the same as

those of the depth-averaged velocity components. Their mathematical

representations are
(b b)= pf(U2+V2)i (U;V) (13)

x y
where f is a dimensionless friction factor defined in terms of either

the Chezy coefficient, Cf, or the Manning's roughness coefficient, n,

as given below:

f = g Cf 2 or f = g n2 (1.49)-2h -1/ 3  (14)
f

To enable the model to simulate eddies and circulations in the depth-

averaged two-dimensional flow, the effective-stress terms have been

taken into account. By analogy with the eddy-viscosity approach used

in some turbulence closure schemes, an eddy-viscosity, e, is

introduced, so that the effective-stress terms in Eqs. 8 and 9 are

replaced by
.azu 32U)

- ih -+ (15)
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and,
(azv azv

-ch (2V + V) (16)

respectively. As a first approximation, the coefficient of eddy viscosity

can be related to the mean flow properties by
= Eh (U2 + V2) (17)

where E is an adjustable eddy-viscosity parameter. Thus, the derivation of

the depth-averaging model has been completed.

b. Two-Dimensional Vertical Flow Model: In this case lateral changes in

flow and bed material properties are neglected. In tracking the bed-

profile evolution, advantage is taken of the fact that the bed deforms at a

rate much slower than the rate of change of free-surface transients. The

water discharge hydrograph is replaced by a piecewise continuous

distribution with time increments smaller than the time scale of the bed

transients. During these time increments the water surface profile is

computed by assuming a one-dimensional spatially varied steady flow. This

permits the uncoupling of the bed profile calculations from the water

routing scheme. Thus, the flow governing equations are the well known

spatially varied flow equations

u u + g h + g zb + g U [ul/C2 h =0 (18

and

u h = q (19)

where u is the depth-averaged velocity, h is the flow depth, zb is the bed

elevation, x is the streamwise distance, g is the acceleration of gravity,

Cf is the Ch~zy friction coefficient, and q is the water discharge per unit

width. Within the context of the one-dimensional flow assumption, the flow

geometry is restricted to situations where no separation occurs and where

nearly parallel flow conditions exist. Under these conditions the vertical

velocity distribution at any section is assumed to follow the logarithmic

law

i1, 30 (z-z b )
i K In --- .h (20)K k

K.] i
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in which u. is the local bed shear veloi ty; K is the von Karman constant

k is the equivalent grain roughness, and z denotes the vertical position.
s
Integrating Eq. 20 over the flow depth gives

u., = K u (ln(30 h/k I -1K (21)

which permits the estimatioh of u., from known local flow parameters.

2.2 EQUATIONS OF SEDIMENT MOVEMENT

As discussed in the previous chapter, the sediment transport

phenomenon associated with the flow in an alluvial channel is,

unfortunately, too complex to be described completely by analytical

techniques, because the theories for describing the bed load of sedimcnt as

well as the boundary condition of sediment concentration on the bed surface

have not yet been developed. The several practical sediment transport

models that have been adopted most often can be classified into three

categories:

1. By assuming that the sediment is being transported predominantly in

suspension, the bed load is included in the suspended load and the sediment

diffusion-convection equation can be solved for the sediment concentration

distribution by analytical or numerical schemes. Then, the sediment

discharge is computed by integrating the mass flux over a cross-section

area normal to the flow direction. The drawbacks of this approach

are: first, the boundary condition for sediment concentration on the

surface of the channel bed is still riot understood completely. Secondly,

the estimation of sediment discharge may not have sufficient accuracy for

the cases in which the bed load can no longer he neglected.

2. The sediment discharge is estimated by combining the suspended

discharge and the bed discharge. The suspended discharge is solved

analytically using the approach similar to that described above in the

category I. The bed discharge is, however, estimated using one of the

empirical functions which have beei developed in recent years. A good

review concerning the capabilities and limitations on those bed load

forinilas may be found in Graf (1971). The major drawbacks of these kind of

approaches are that, first, they a;re more involved than the first category

approach, and second, it is difficult to find an accurate formula for

determining the concentration boundary condition near the surface of the

cl.in.l bed. 'rhis latter dr 'b,;tck has to he resolved, before this approach

be widely adopted.
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3. Without distinguishing the suspe.aded and bed load, one may select one

appropriate empirical formula to compute the total sediment transport load.

The obvious advantage is the simplicity of this approach when it is used to

simulate a particular section of a particular alluvial channel. However, a

different formula may have to be adopted for a different channel or even a

different section of the same channel. This drawback can sometimes be

alleviated by calibrating an adjustable parameter existing in the empirical

function chosen for a particular channel, or even calibrating it from

section to section of a channel, so that an accurate sediment transport

model can be established.

Although all three different approaches have been used in the course

of this research, the mathematical formulations of the first and the third

approaches are described below, because they have produced some good

results.

a. Depth-Averaging Model: In simulating depth-averaged flows

predominantly in a horLzontal plane the total sediment transport load is

represented by an empirical formula. For example, a model based on a power

function of the mean velocity may be used conveniently to estimate the

total load with its coefficient and exponent being calibrated for

individual cases. This model has been successfully adopted by ottier

researchers (Simons et al., 1979, DeVries, 1973). Therefore, it is applied

to perform a preliminary study on the deformation of sand bed due to

sediment transport by the fluid.

The sediment transport function selected for the present study is of

the form

g. = Cg p V (22)
g 1

where gi is the bed material transport function in the direction of depth-

averaged velocity component Vi, c and m are the coefficient and exponent1 g
respectively. For a particular channel geometry and bed material

characteristics, c and m are estimated or calibrated using experimentalg

information. After the depth-averaged flow field is solved, the sediment

discharge can be easily computed.

Then, the bed material continuity equation

+ ,yqs + (1 - ) zbt = 0 (23)

is used to calculate a new bed elevation zb. And, the complete physical

system has, thus, been represented by a mathematical model. In this

equation A denotes the porosity of the bed material.

K. 15



b. Two-Dimensional Vertical Flow Model: The preceding profile

computations are based on the assumption that the local flow transport

capacity does not deviate significantly from equilibrium conditions, and no

distinction is made between bed and suspended transport mode. Such an

approach is justified if either bed-load transport is predominant, or the

sediment is being routed over long reaches. Otherwise, the assumption of

near equilibrium capacity is not valid because the bed load reacts

immediately to changes in local flow conditions while the suspended load

tends to react more slowly. This slow adaptation of the suspended load can

significantly influence the bed profile evolution over relatively short

reaches (Kerssens et al., 1977); Fredsoe, 1978). For this reason, the

present analysis includes the equation governing the dispersion of

suspended sediment, in addition to the bed-material continuity equation.

These equations are simplified by assuming that:

i. Longitudinal dispersion can be neglected in relation to the vertical

dispersion;

ii. The sediment settling velocity, v is invariant;

iii. Vertical convection is negligible in a nearly horizontal fiow;

iv. The time rate of change of the sediment coacentration is not

significant (Mahmood, 1975);

v. The bed material is fairly uniform in size, and can be represented by

an effective particle diameter.

The sediment dispersion equation thus yields

uC v c = c ) (24)
,x S ,Z z ,z ,z

where c is the point volumetric concentration, and F is the verticalz

sediment transfer coefficient. By averaging Eq. 24 over the flow depth the

following bed-material continuity equation is obtained

qs,× + (1-X) Zb,t = 0 (25)

in which qs is the volumetric discharge of bed material per unit width, A

is the bed porosity, and t is time.

Since Eqs. 18, 19, 20, 24, and 25 describe an evolutionary process,

appropriate initial and boundary conditions need to be specified. They are

the initial bed profile, the upstrem bed elevation arid inflow of water and

sediment, the downstream flow stage and streamwise concentration gradient,

and vanishing sediment flux across the free surface. These conditions are

represented by

K.16



zb(x;O) = z0 (X) , 0 I x S L, t = 0 (26)

q(O;t) = g(t) , x 0 O, t ? 0 (27)

qs (O;t) = r(t) , x = 0, t 0, (28)

c(Oz;t) = s(z;t), x = 0, 0 : z - zb h, t 0 (29)

zb + h = H (t) , x = L, t ; 0, (30)

c = C ),z + v c z/u, x L, 0 <= z - z s h, t > 0, (31)
,x z , z s , zb

V c + C c = 0 , 0 x ! L, z z b + h, t > 0. (32)

In these equations, zo, g, r, s, and H are given continuous functions, H

represents the downstream stage, and L is the length of the reach. The

sediment concentration over the upstream boundary, condition 29, is

determined by solving Eq. 24 for the equilibrium case (c = 0) and by,x
specifying an appropriate distribution for z . From regression analysis of

point measurements of the sediment transfer coefficient conducted by

Coleman (1970), Kerssens et al. (1977) obtained the following expression

for the transfer coefficient.

= [4 t (1-())6 (33)z max
where

= (Z-zb)/h, 2 12

= u.h 10.13 + 0.2 (v /u,.) 2

max s
6 = 1, 0 < 0.5,

6 = 0 , 0.5 < t I.

Using this equation the following equilibrium concentration distribution

results

c = hu,c aa/(I-(a)]P x [(1-()/(] 6 exp20(6-1)(2l1)lj, (34)

in which

0 = h vs/4cm x
s max

and ca is the concentration at a point >0 near the bed. An estimate of

the reference value c is obtained by assuming that most of the sediment isa
carried in suspension, and then matching the sediment flux through the

upstream section to a suitable total load formula. That is,

K.17



qs f u c'dt, (35)

Kerssens et al. (1977) found the following modified version of the formula

developed by Engelund and Hansen (1967) to agree well with their measured

loads
-5

qs = 0.035 u / [d50 (S-1)2 C3
1 , (36)

50 f
where q is the sediment volumetric discharge in m 3/sec.m, d is the bed

S 50
material size in meters, and S is the sediment specific gravity.

Substituting Eqs. 20, 34 and 36 into Eq. 35 yields

-5

0.035 K U [(1 - a)/ a1  =

hu ,d (S-1)2 gC3
~50 9f

afgn(30 !k s)[(0-0/0] exp [20(6-1)(2t-1)]d (37)

from which ca can be determined. The integral on the right side is

evaluated using Gaassian quadrature.
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3 NUMERICAL SOLUTIONS

3.1 DEPTH-AVERAGING MODEL

A typical finite element system used to discretize a continuous

horizontal domain is shown in Fig. 2.

Isoparametric interpolation functions are used to relate the

properties at any point within an element to those at nodal points of the

same element. For linear cases, they are of the form:

(U;V;h) = an (Un; Vn; hn) (38)

where: an = k (l+cn C) (l+qnq), n = 1, 2, 3, and 4 (39)

The transformation between the global (x,y) and the local (t,n) coordinate

systems is specified by

(X; Y) = an (Xn, Yn). (40)

To reduce the degree of nonlinearity, the hydraulic depth, h, in the

momentum equations at all nodes are estimated initially and corrected

during the iterative solution procedure. Due to the fact that the bed

deforms at a rate much slower than the rate of change in hydrodynamic

properties, the hydrodynamic equations and the bed form model are

decoupled. And, since the bed form can be considered being instantaneously

fixed during the solution of hydrodynamic equations, the assumption of

quasi-steady flow should give satisfactory solution. Therefore, the fluid

flow equations are simplified into the iollowing form:

U LU "33U 32U) 4  ai

2 U- + + U + g = 0 (41)

a a3 a2v a2v. - _(4 2)

a V- + -- W& + V + g 0 (42)

h L + h 3 + U h + V L = 0 (43)

where W_ = (U*
2 + V*2)

Applying the Method of Weighted Residual (MWR) after Galerkin, the

finite element equations for each and every element are formulated.
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Fig. 2. A typical finite element grid using quadrilateral elements
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AnmUkUm + BnmVPUm + C U + Di U + E h - H = 0 (44)n~~~ mm rm m nmrn nm m n

An9mUkVm + BnkmV 9Vm + C V + D V + F h - G = 0 (45)nmm nmm mum nmm nmm n

AnmhkUm  Bnm hkVm + An9mU hm + Bnkm Vkhi =0 (46)

where A a dA
nkm = n 2 m,x

A

B = fa ay dABn~m A n 2 m,y

Cn =fr(an'am' i- a ( )dA

p = 1 f dA

D nm = ~*fun um d
f A

E gfaa { dA

Enm A n m,x

F = gfoat dAFnm A n m,y

= fea (U n + U n )d£ - g 3 fu dAHn n ,x x ,y y 8x A n

G= fra (V n + V n )d- g a t f a dA
n k n ,xx gy y y An

All sets of finite element equations, one set for each element, are

assembled into the following global set. The actual assembling process is

carried out by a computer program simultaneously with the evaluation of the

coefficients of local element equations.

I1 = A ijkU,U k + B ijkVU k + C ikk + E ih. - H.1 (47)

12 = A ijkUV k + B ijkVV k + CikVk + F ih. - G. (48)

I =A h U i-B h V i-A Ub i-+B Vh (93 ijk j k ijk j k ijk i k ijk jhk (49)

This global set is solved iteratively by the Newton-Raphson technique

to yield the flow field properties.

Then the sediment transport function, Eq. 22, is used to estimate the

bed material discharge at each node. The sediment continuity equation is
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discretized by the FEM, using the same element system, and interpolation

functions. The resulting global equations are:

L. .AZ. = K.. (50)

Substituting the sediment discharge results into this equation the new bed

elevations at every node are obtained. Thus, the discretization of the

mathematical model of the sediment transport phenomenon has been completed.

3.2 TWO-DIMENSIONAL VERTICAL FLOW MODEL

The Galerkin integral approximation within the Method of Weighted

Residuals is used to derive the finite element equations. The first step

of the solution involves dividng the continuous solution domain, (, into a

set of nonoverlapping subdomains, 0 e) or finite elements, such that

E
QUF= UQ

e=1 e

where F is the boundary of the solution domain, and E denotes the total

number of elements. The one-dimensional domain of Eq. 18 is discretized as

shown in Fig. 3(a). In Fig. 3(b) the two-dimensional domain of Eq. 24 is

divided into a series of isoparametric elements. The finite element grid

is designed so as to provide greater resolution near the stream bed where

high velocity and concentration gradients exist. Within each subdomain the

unknown variables are interpolated in terms of their nodal values as

f e(X;t) = On n(t) x F _e, (51)

where f stands for the interpolated values of all variables, F denotese n

values at a node n, and Cn represents the interpolating functions. This

study uses linear isoparametric functions, which have the advantage of

satisfying the basic convergence criteria of completeness and continuity,

and serve at the same time as coordinate transformation equations. For

instance, for the two-dimensional elements

On = k (l+Cn )(+qn  q) (52)

where the isoparametric coordinates are related to the global coordinates

such that the corner point (x., zi , i = 1, 2, 3, 4) of a quadrilateral

element are transformed into the four points (1,1), (1,-), (-1,-I), (-1,1)

in the (t,q) space. The approximate solutions are of the form

E
t(x;t) tJ t 1- , (53)

e.l

K .2 2



x Hx x +

z (meters) zc zz ozc

0.700

0.135 4

II r

o 3 5 7 9 15 meters

Figure 3. Sketch of finite element grid at t 0

K.21



in which 0 n are linear functions of the spatial domain. When the solutions
are substituted into the Eqs. 18, 19, and 24 approximation errors, or

residuals, are introduced. The expansion coefficients F are determined by

rendering these residuals orthogonal to the respective interpolation

functions. This yields

f [g-q 2 /h 3 )h + g(Z + q1iC2h ) ] n d Q  0 (54)

Qx b± f~z n e1 / ~ 3 J Q 0( 4e

.ff -u (v + L ) c -: c J dQ 1) (.55)
Q X s z Z . z Z ,ZZ

e

The integrand in Eq. 54 results from combining equations 18 and 19. After

substituting the interpolation functions, applying the Green-Gauss theorem

to the last term in Eq. 5.5, or integrating by parts, the preceding

equations yield

L H , Mn ) (56)nmm n

Pn~mU)Cm + Qn Cm = R , (57)

where k, m, n = 1, 2,..., ne (ne = total number of element nodes), and

L = f (g-q/h) n n dm,xd e) (58a)

e

_f g(z b  + q2 /C 2 13 ) ( dQe (58b)
n b,x n e'

e

PnPm {f Onu U m'x dQ e (58c)

e

(0 f - D zdo (58d)
n Q zm ,z Zz n mz e

e

R n f. F_ $' ' n zdi e (58e)

e

Here ni is the z-component of the unit vector normal to the elementZ

boundary F , and h, c repre;ent either initial or iterated values. The

coefficients (58) are evaluated iin the (t., q) space. Since all elements

are identical in this coordinate syst em, once the formulas for those

coefficients are devel,, ped for one element the same formula is used for all

the other elements. Eq. t58,-) yields, for instance,
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Pn.m = 4 On4 m,xde

e

+1

= ff Onof (0m,t111 + Cm,l12) [J] dtdq (59)
-1

in which [J] is the determinant of the transformation Jacobian, and J.. are

elements of the inverse Jacobian. In all cases the integrals are evaluated

using a Gaussian quadrature subroutine.

Once evaluated, the coefficients of equations 56 and 57 are assembled

into the corresponding global matrices. After introducing the

Dirichlet-type boundary conditions, the global equations reduce to

Lk. H = k , (60)

Tke C = Rk  (61)

where T kk = P km Uk + Qkm' and k, £ = 1, 2,..., N. Here N is the total

number of node points containing unknown values. The nonlinear equations

60 and 61 are solved iteratively using a subroutine developed for banded

matrices. After the global nodal values H are determined, Eq. 19 is used

to obtain the corresponding velocities U .

For convenience, the sediment continuity Equation 25 is discretized

using the following explicit finite-difference scheme:

i+1 ,j i-Il,j

i,j+l - ij At q s qs (62)Zb b (1-A) xi+ 1 - xi_(

where xi+1 and x_ 1 are defined in Figure l(a), and At = t - t. is the
i1j+1 j

time increment. Equations 60 through 62 constitute the numerical algorithm

used in the present case.
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4 PRESENTATION AND EXAMINATION OF RESULTS

4.1 FLOW AROUND A SPUR DIKE IN A STRAIGHT CHANNEL WITH A SAND BED

A thin spur dike is placed in a straight alluvial channel with

dimensions shown in Fig. 4. The variation of the flow field hydrodynamic

behavior due to bed form changes in time is simulated using the depth-

averaging model developed in the present study. The boundary as well as

initial conditions used in this case are no slip on the solid walls, almost

uniform flow at the entrance, parallel flow are left to be determined by

the governing differential equations at the exit, no shear on the free

surface of the water, bed material particles having uniform properties, and

the bed being flat when the flow simulation is started. The computer

simulated bed form and velocity distribution in the flow field after 5, 10,

and 15 hours are shown in Figs. 5 through 10 for an average velocity =

0.110 ft/sec; water depth = 0.38 ft; channel width = 6 ft; dike opening = 4

ft; and the time step for sediment routing was t = 3000 sec. The velocity

of flow accelerates locally increasing the carrying capacity, which can be

seen in the area around the nose of dike in Figs. 7 and 10. When the flow

decelerates downstream from the dike and loses carrying capacity, the

deposition of sediment occurred. At the downstream end, the flow recovers

equilibrium, and the carrying capacity is equivalent to the amount of

sediment deposition. Therefore, the bed form essentially does not change.

This test is a simulation of the bed scour around a spur dike measured by

Zaghloul and McCorquodale (1975). They reported the geometry of the scour-

hole developed around a dike mounted perpendicular to the flow direction in

a laboratory flume with a movable bed. The maximum scour depth was

observed right at the nose of the spur dike. The scour hole upstream of

the dike was conical in shape, whereas downstream was elongated and had a

shaiiower slope. No sediment deposition was reported. However, similar

measurements conducted by Ahmad (1953) and by Garde et al. (1961) have

shown that a deposition bar is formed adjacent to the spur dike on the

dowiltream .. id-. The simulated depth-,iverage flow pattern and bed geometry

obtained after 15 (real time) hours exhibit qualitative agreement with the

shapes of the measured hole. However, the locations of the deepest point

,n] deposition bar are incorrect. The reason is twofold: (i) the model

,, ut reproduce the flow separation created by the stagnation region

,t -tr.am of the dike. The result is an excessive flow component parallel
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to the dike that forces the region of maximum velocity away from the dike-

nose; (ii) the low velocities predicted along the shear layer emanating'

from the dike induce a backflow circulation that is too weak to transport

bed-load material from the primary stream to the downstream side of the

dike. The results point out a deficiency in the model when simulating

situations dominated by regions of flow separation. Further research is

needed to correct this deficiency. The CPU time required for this

simulation was ten minutes per each hour of real time.

4.2 LOCAL SCOUR AND FILL OF A TRENCH IN A SAND BED STREAM

The natural backfilling of a trench dredged across an alluvial

streambed is also studied using the two-dimensional model in a vertical

plane. This simplification is valid provided that both the stream and the

trench are wide enough to neglect the variation of properties in the

lateral direction of the flow. The computer program developed for this

simulation is basically similar to the depth-averaged model in a horizontal

plane, so that it is not necessary to present it here.

The schematics of the finite element system and initial bed form and

flow conditions are shown in Fig. 3. The dynamic behavior of the finite

element system is clearly seen from Fig. 11, which represents the condition

of the flow and deformed sand bed as well as free surface at a later time

(t > 0). The coordinate, or position, of each node is adjusted at each

time step whenever the bed and/or surface elevation change during the time

interval. By doing this the computing scheme is more stable and efficient

than the one with fixed interior nodes and moving boundary nodes.

The computer simulated bed and free surface profiles at 7 and 14 hours

after the numerical experiment is turned on are shown in Fig. 12. It is

very obvious that the computer simulation can indeed produce reasonable

results, which are verified by data obtained from physical experiment.

This case was studied for the purpose of verification with a set of data

collected at the de Voorst Hydraulic Laboratory, The Netherlands, by

Kerssens, et a]. (1977). In that experiment, a trench having the geometry

shown in Fig. 3 was formed in a 0.127 mm sand bed in a laboratory flume.

Water was circulated over the bed at a steady rate of 0.195 m/sec-m, while

the downstream stage was maintained at a constant level. Sediment was

supplied at a constant rate of 0.041 kg/sec-m, and most of the load was

carried in suspension. Due to hydraiul ic sorting the d50 of the suspended
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Fig. 11. Sketch of finite element grid at t > 0.

K. 35



bed material approached a value of 0.110 ui with a settling velocity of

O.Olm/sec. During the run ripples formed on the bed and the Nikuradse sand

roughness was estimated at 0.025 m. The Chezy friction coefficient,

corrected for side-wall effects, was about 36 m2 /sec on the reach upstream

of the trench.

The bed profile was measured after 7 and 14 hours of continuous flow.

These profiles are shown in Figure 15 along with the simulated free-surface

and bed elevations. A refeience concentration level equal to 0.015 m, or

slightly over half the ripple neight, was used in the simulation. The

comparison between the observed and simulated bed profiles is satisfactory.

The largest shape discrepancy occurs on the converging sideslope of the

trench. This may have been caused by the failure of the assumed velocity

profiles to account for the increase in velocity gradients near the bed

induced by the flow acceleration. The water-surface profiles correctly

reproduce the surface rise over the trench. As the trench is filled up the

water crest diminishes and moves downstream with the trench, as expected.

Fig. 13 depicts the distribution ot suspended sediment throughout the

flow domain after 7 hours. The contours of constant concentration were

drawn from computed results. This plot illustrates the deposition of

sediment occurring on the downstream side of the trench as the stream

decelerates and loses carrying capaciLy. As the flow regains velocity,

sediment is entrained along the upstream side and diffused upwards. The

suspended material leaving the trench area gradually approaches a new

equilibrium distribution. The CPU time was approximately four minutes per

hour of real time. The computer memory required by the codes used in the

tests presented above was 100,000 words.
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5 CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS

1. A two-dimensional numerical model has been developed to predict water

and sediment movement and water surface and bed-elevation changes in

channel reaches with complex boundary geometry.

2. The model is based on the conservation laws of water and sediment

continuity, and momentum equations. The water continuity and momentum

equations are solved first. The predicted flow variables are then

introduced into transport formulas and the sediment continuity

equation to compute sediment load rates and changes in bed elevation,

respectively. The equations of motion are solved using a finite-

element scheme.

3. The model has been validated by simulating laboratory data obtained

from a trench scour and fill study. The model predicts satisfactorily

the evolution of the water surface and bed elevations. In another

test the model was used to simulate bed scour around a spur dike. The

shape of the predicted scour hole is in qLalitative agreement with

observations reported in the literature. Hou.-ver, the deviations

observed in the predicted locations of maximum scour and deposition

point out : limitation in the model when simulating situations

dominated by regions of flow separation. Further research is needed

to correct this deficiency.

5.2 RECOMMENDATIONS

1. It is recommended that the model hr further developed and tested on

real systems to ensure its accuracy and credibility. Work should

continue on the computer code to improve its flexibility and

efficiency. Carefully designed laboratory experiments should be

conducted to investigate the accuracy and range of applicability of

transport algorithms used in the model (i.e., turbulence closure

schemes, two-dimensional sediment transport functions, etc.). Two-

dimensional models have a great potential to study in detail sediment

related problems in irregular stream reaches with significant flow

components in more than one direction.
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2. Verification and validation of two-dimensional models require data

with a degree of detail and spatial resolution that is practically

nonexistent. It is thus recommended that laboratory data be collected

in scaled down physical models reproducing conditions observed in the

field. Laboratory studies can provide, at a reasonable cost,

velocity, sediment transport, and cross sectional data with the high

degree of resolution needed in model validation. Then, a few

carefully selected prototype measurements in the field will suffice

for model verification.

3. It is recommended that hypothetical situations be used to confirm that

the model responds in a realistic manner. To this effect, the two-

dimensional model can be linked to one-dimensional channel and

sediment yield models to investigate the dynamic response of local

bank stabilization structures to changes in upstream land management

practices, and to series of intense storm events. These consolidated

models could be used, for instance, to look at (a) bed and bank

response in the vicinity of toe armor, hard points, fences, etc.; (b)

degree of bank destabilization caused by proximity of point bar; etc.
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ADDENDUM 1: DERIVATION OF TWO-DIMENSIONAL DEPTH-AVERAGED FLOW EQUATIONS

The fluid flow in a natural stream is always turbulent, three-

dimensional and time-dependent. In many instances, however, the flow is

predominantly horizontal. That is, the flow velocity in both the

longitudinal and transverse directions are comparable and much larger than

the vertical velocity component. In such cases, an expedient approximation

to the three-dimensional flow problem is to assume bidimensionality along

the two perpendicular horizontal directions, averaging flow properties in

the vertical direction. The pressure distribution along the vertical is

assumed hydrostatic, only time-averaged turbulent flow notions are

considered, and the effects of small-scale velocity fluctuations are

aggregated into the shear stress terms.

Continuity equation of water and Navier-Stokes Equation are written

au +awn + 8 + 8 + 8T
at 3x ay 3z p ax i ax 3y 3z

a ap a2 ax a0
+ +wV +- - X + C + + :) 0 (1.2)at 'ax a '3z P ay P a y

+ pg = (1.3)az

au av + 8W 0 (1.4)
ax ' y az

where x, y are longitudinal and transverse horizontal coordinates, z is the

vertical coordinate measured upwards from arbitrary datum, t is time, u, v,

and w are time-averaged velocity components in x, y, z directions, p is

density, p is time-averaged pressure, g is acceleration of gravity, and I..ii
is the time-averaged shear s~ress in the jth-direction on a plane normal to

the ith-axies.

The assumed boundary conditions are

1. the pressure on the free surface is taken as constant.

2. the free surface shear stress is neglected.

3. the fully developed flow is imposed at the upstream.

4. no slip, no seepage on the channel wall and bed.

Then they can be translated into the mathematical formulations,

K.45



z = p(x,y), u = v = w = 0 on the bottom (1.5)

z = q(x,y), p = po on the free surface (1.6)

- M--- N -S

Ixx ax xy ay xy Tx (1.7)

xy 5x yy ay yz y

-s -s
where Tx, T are the surface wind stresses. Similar expression holds fory

bed shear stresses.

Eqn. 1.3 yields:

f a dz - pgdz

from which:

p = PO + pg(n-z) (1.8)

Applying vertical integration, using the Leibnitz's rule, and Eqn.

1.8, the Navier-Stoke's equations can be transformed into Eqns. 1.9-1.12

shown below.

The x-momentum equation becomes

3<u> u(x,y,n,tI) 1 + U(Xly t) at +<u> - [u(xynt)] 12at "at + uxyL,)-[+ax "''ax

+ [u(x,y,,t)]2 a + a <uv> (x.y,,t v (xyqL)
ax ay

+ u(x,y,,t) v (x,y,(,t) q + u(x,y,rt) w (x,y,flt) -
ay

u(x,yItt) w (x y,&,t) + g < M > _ 1 3  -xx _
.x p 3x

(x,y,rt) x + T (X9('U) +Dy•x5 xx a... x 3

Dr

t (x,y,r,t) ay + Txy (x,y, ,t) 5y- + < .... .> 0 (1.9)
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a(hU) + a(hU2) + a(huJV) _ W 9+un)f V +
t- ax ay ufat +ur)ax vr)ay1

atP[ ax(P + v(p) M.P + u(fl) WWq - u(p) w(p)

at ax ay

+ ghn - I Tx 01 ) - f r) - I W Nax P ax P ay P xy xy a

() MI+ IT I (P) - T (P)P T (P) ~l=0

Imposing the boundary conditions, Eqns. 1.5-1.7, we havre

a(hU) + a(hU2) + + -) a(hT ) I(MT x
at ax ay ax p ax P ay

I (IS - I b) 0 (1.10)p x x

In a similar fashion the Y-momentum equation yields

aB(hv) + ahUV + a(hV2) + gh 2  1 a(hT XX) I a(hT y
at ax ay ay P a x P ay

p y y

Finally, the continuity equation yields

au>at va
ax -ur)ax ( ax ay -vf)ay a( y

+ WWfl - W(O = 0

a(hU) + a(V + [w(rj) _ u(rj) ax-v(q) E1 w(t)

(Uat - v() )91 -o

a(hU) + a (hV)~f + at _

-x ay at at 0

3(hU) + a(hv) +ah (112
ax ay at 0( 2
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ADDENDUM 2

COMPUTER PROGIZAI OF DEPTH-AVERAGED FLOW MODEL
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