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Research initiated under contract N00014-78-C-0889 is most conveniently

summarized in the form of four appendices. First, in Appendix I, the five

different areas of research on water waves are briefly summarized. In two of

these areas (evolution of long internal waves and evolution of envelope solitons)

work has not been completed; some results to date are described. In the remaining

three areas, final manuscripts have been completed and are presented in Appendices

II, III, and IV. In particular, Appendix II is a copy of a paper entitled

"Baroclinic Tsunami Generation" to appear in the Journal of Physical Oceanography,

September 1980; Appendix III is a copy of a paper entitled "Long Waves Generated

by Complex Bottom Motions" to appear in Proceedings, 17th Conference on Coastal

Engineering; and Appendix IV is a copy of lecture notes on small-scale ocean

waves presented at the summer (1980) course "Topics In Ocean Physics" held at

the International School of Physics "Enrico Fermi", Varenna, Italy.
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Research Summary

Research conducted during the past year under Contract No. N00014-78-C-0889

may be conveniently divided into four categories.

I. Baroclinic Tsunami Generation. Utilizing experimental data obtained

previously, a study was completed on the internal waves generated in a stratified

ocean by a vertical motion of the sea floor. Details of this study are presented

in the enclosed manuscript (see Appendix II) which will appear in the Journal of

Physical Oceanography.

II. Evolution of Long Internal Waves. Subsequent to the generation processes

mentioned above, the evolution of long internal waves on a thin pycnoclile has

been examined. Dr. Harvey Segur of Aeronautical Research Associates of Princeton

and I have analyzed the experimental data and prepared a draft manuscript which

examines several model equations for internal wave evolution in the context of

experimental data. This work is ongoing; a copy of our final manuscript will

be forwarded as soon as possible.

III. Long Waves Generated by a Complex Bottom Motion. As a final statement

on barotropic water-wave generation by motions of the sea floor, Professor Frederic

Raichlen (of Cal Tech) and I completed a manuscript (enclosed) which illustrates

a technique for computing wave structure when the time-displacement history of

the sea floor is very complicated. The analytical mode was verified by experiments.

These results were presented at the 17th International Conference on Coastal

Engineering in Sydney, Australia (March 1980), and the manuscript (see Appendix III)

will appear in the meeting proceedings.



IV. Lecture Notes on Small-Scale Ocean Waves. At the invitation

of the Italian Society of Physcis, I presented a series of lectures at their

summer course on "Topics in Ocean Physics" held during 7 July - 19 July 1980 at

the International School of Physics "Enrico Fermi", in Varenna, Italy. These

lectures focused on the nonlinear aspects of water waves including solitons and

resonant-interaction forcing of edge waves. The collection of lecture notes

from the ten invited speakers will be published by the North Holland Publishing

Company. A copy of my notes is presented in Appendix IV.

V. Evolution of Short-Wave (Envelope) Solitons. The first goal of the

experimental research program on short-wave evolution was the direct generation

of an envelope soliton. The best results obtained to date for a wave packet

with a carrier wave period T = 1 sec and water depth h = 1 m are shown in figures

1 abcd. Results at four positions along the (Berkeley) wave tank are presented

with theoretical soliton profiles based on the local amplitude of the wave packet.

The initial data measured at x = 6 m from the wave paddle agree well with the

theoretical soliton profile. During subsequent propagation the packer retains

its compactness and travels with the (predicted) linear group speed of the carrier

wave. However, the measured packet deviates slightly from the predicted soliton

profile; this behavior is especially obvious at the last station (x = 45 m) of

measurement. The front-to-back asymmetry emerging at x = 45 m is similar to that

observed by previous researchers on deep water wave packets. In fact, the

symmetrical measurements prior to the last measurement station are quite exceptional

and have not been reported previously in the literature. (I might add that the

first three wave traces of figure 1 are almost identical to those generated in

the Florida facility; only the added length of the Berkeley wave tank permitted

the distortion to be clearly observed.)
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Below each wave trace in figure 1 I have also presented a histogram

of the node-to-node wave periods through the wave paccket. This rather

crude attempt at complex deuodulation provides some insight into the wave

packet evolution. At the first two ,tat ions, local w;t'e p(-reiods differ

little from the prograiuied period of I sec. fl,,cvcr, at the last two

stations the leading waves are clearly developing periods up to I5' longer

than the 1 sec period of waves near the center of the packet. The origin

of the longer wave content is not clear although its emergence at the

front of the packet is prob;bly re 'pois iebe f or the (hn;rges between meas-

ured and predicted packet piofiles. Tie >est plausibe ..xpl anation for

the unwanted wave centeat of the paclet is that it is a consequence of

imperfect generation by the ave maker. It is an unfortunate (theoretical
1=

and observed) property of hort aave solitons that these nonlinear waves

propagate with the linear group speeds of their carrier waves. Hence,

unlike their long-wave counterparts, short-iave solitons cannot separate

from any background "noise" with the saime frequency. (The background

noise corresponds to the radiation or non-soliton component of the solution

to the nonlinear Schr6dinger equation.) The mergence and slow migration

(at l inear speeds) of the longer wave copi:onents in figure 1 ,;ay hie a

nli f.stat ion of this in;.enon. In this regard it is i::,ortant to note

that the radiation wa;ve compiponents ema in di!spersive even at nonl incar

order and their mplitt ides huld deoay in t i me t with an invi,-cid decay

rate of t Since the invi cid sol it n does not IVcay, ( hen noise is

present oie expects the mea..ured dat a to I iree tl ier with Ihe theoretical

profile with diitance (or ti e) do,.n the Iink. Fxaictly 1he ,pposite



evior i s observed in figure I1; however, it rusj-t be remembered that glow-

ing distortions mnight still occur until the radiation attains its asymp-

totic character.

Altho~igh irvi scid sol ituons do not diecay with time, wat er--wave so i tkens

:I re sob j(oct to Viscous at t en nation of their amiplitude. TJwo mod-Ie is for thle

vi ouill' dz!mp ing of short -wave sol it ons have b)een do ve I ped indmependentliy by

Dr. llarvcy Segur and myself (with consi derable assistance from N. K. Lini,

aa graduate student at Berk'eley). Both models predict similar :iesults evc-n

though the approaches to oddvelIopoent Isere quite different . Fxperi -

ment al ve i f i cat i on of thle :;d s imust be con! sid (Iured li mi ted f or large pro-

pag("It i on d i S til iC es due to0 t he d i zt ort i on d i sc us sed p)re-v iously ; short di stanllce

e~ l u in icdiuto te models i s ve rifi ed by the mieasured data. As

in aill i '-i, ns n:lp i ng models, contamination of the water surface enters as

in- k nI nffi ci ent raniging from zero for no contamninat ion to unity

for ai Iil ll -,!iTl'!ijmated (and immnobile) surface. Theoretical results for

hoeT so I it i g cases are shown in figure 2 with experi mental data for

he wa~i XC evoutiol in fig~ure 1. easu~rements suggest that some surface

Ct;-i:naITit)n is present in the Berkeley data which is expected since water

ins" j111 in 1) b e t ink cenTI i 11i1us11 Iy. Thco ret icalI and experimental resul ts

f or t lie .!!'c i n it ia daI ta oerve-d i n thle f:lori da f aci l i t) are alIso shown

in fig ure 2. In vlorida, well water was pumped to the wave taink imniediately

prior to the experiments; hence, surface contamination should b~e less; this

expectation is veri fied by the data. (Thoenroe ta'nk in Florida leads

to greater wave at tenua t ion wi th di;t ankce of prop aga;t i on).)

it shoul Id alIso be noted that thle vi sc( us dam in kmoel s for eiive lope

sol itons indicate that they, de-cay twice is fast as a linear wave train of
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the same frequency. Unfortunately, water wave trains of sufficiently small

amplitude were not measured to test this prediction. However, measurements

of wave trains with the same degree of nonlinearity as the comparison soli-

ton (prior to the visual onset of Benjamin-Feir instability) indicate that

the solitons decay only one-half as rapidly as the uniform wave train.

The evolution of arbitrary packets of initial data was also investi-

gated. An example of results is shown in figures 3a-b at two measurement

stations; histograms of wave periods are shown in figures 4a-b for each

measurement. The dominant wave packet in the downstream measurement of

figure 3b clearly has evolved a soliton profile. The remaining wave packets

do not have soliton profiles and represent the radiation component in the

initial data. The period histogram of figure 4b clearly shows the linear

dispersive nature of the constituent wave components which are rank ordered

by their group speed. (Also see Appendix IV).

Experiments on the stability of 2-D envelope solitons to 3-D perturba-

tions have proven to be inconclusive. Very small 3-D effects were measured

in some experiments but without a consistency or magnitude sufficient to

infer definitive behavior patterns. The experiments did highlight a defi-

ciency in the analytical studies on this aspect of envelope soliton. All

explicit criteria which provide definitive predictions on the tank (or

crest) widths necessary for instability assume infinite water depths. How-

ever, the nonlinear description of these waves contains terms which decay

algebraically--not exponentially--with depth. Hence, it is dangerous to

apply these criteria to finite depth experiments, even for kh ~ 10.
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Finally, based on the data presented here as well as many other experi-

ments on varying aspects of short-wave solitons, it is clear to me that the

reality of these systems is more difficult to disentangle than that of their

lnng-wave counterparts. flovever, even with the confusion arising from

microscopic observation of these waves, it is also apparent that the macro-

scopic structure predicted by the nonlinear Schr.dinger equation is present.

All of these results emphasize the need for more analytical study coupled

with delicate experiments capable of yielding quantitative measurement of

third order (and higher) parameters.

N i-I,
*1



Appendix II

Baroclinic Tsunami Generation
(To appear in Journal of Physical
Oceanography, September, 1980.)
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Barocinic Tsunami Generation

JOSEPH L. HAMMACK

Department of Civil Engineering, University of California, Berkeley 94720

(Manuscript received 13 August 1979, in final form 2 May 1980i

ABSTRACT

An analytical and experimental study of the baroclinic waves generated b5 a monopole dislocation
of the sea floor is presented. Analytical results are based on a two-dimensional and linearized descripton
of motion using a two-layer approximation for density variation; experiments utilize a stratification
with finite (nonzero) pycnocline thickness. Scaling parameters which characterize the generation process
and the potential role of nonlinear effects are discussed. It is shown that the barotropic modes are
not affected by the small differences in potential density typical of ocean stratifications and all previou,
results for these waves are applicable. The two-layer approximation is found to provide an accurate repre-
sentation of the (long) baroclinic waves typical of tsunamis. Like the barotropic response, baroclinic
generation is impulsive and linear resulting in wave amplitudes proportional to the vertical offset of the
sea floor. Near the generation region barotropic waves have amplitudes of one-half the sea floor displace-
ment while the baroclinic waves are attenuated further by the ratio h/h, where h is the total fluid depth and
h, the upper layer thickness. Although Coriolis effects are not included in either the analytical or experi-
mental models, these effects may often be significant for baroclinic waves. In general, the potential role
of Coriolis forces is both earthquake and site specific. Regardless, the analysis herein remains applicable
for times smaller than the local inertial period.

1. Introduction and major conclusions

Tsunami research to date has generally focused on
the waves at the ocean's surface, ignoring vertical
variations in potential density which typically exist.
Submarine earthquakes which produce significant
surface (barotropic) waves will also generate in-
ternal (baroclinic) tsunamis in stratified regions.
These baroclinic modes were examined first by
Cherkesov (1968) who presented a theoretical in-
vestigation of waves generated by a motion ofthe sea
floor in an ocean with an exponential increase in po-
tential density with depth. Subsequently. Fedo-
senko and Cherkesov (1968) presented similar re-
sults for a two-layer stratification which is more
representative of actual ocean conditions. Solutions
were based on a linearized description of motion for
both two-dimensional and three-dimensional (axi-
symmetric) source regions- Coriolis forces were
neglected. In both presentations. the integral solu-
tions were evaluated only for the far-field at large
distances from the source region. These results
showed that a displacement of the sea floor pro-
duced (fast) barotropjc waves and (slow) baro-
clinic waves which separated with time. Each wave
system induced a coupled motion at the opposite
interface. It was further claimed that the asymp-
totic amplitudes of the internal waves could exceed
those at the free surface by a factor of 25 for
ocean conditions. Neither the relevance of asymp-
totic linear analysis to actual tsunamis nor any
limitation of the results due to omission of Coriolis
forces were discussed by the authors. (Hammack
and Segur (1978) have shown that linear asymp-
totic solutions never become applicable for baro-
tropic tsunamis.]
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2. Tsunamigenic earthquakes and the proposed
model

Most large tsunamis are associated with sub-
oceanic earthquakes, centered near plate margins,
during which significant vertical offset of the sea
floor occurs. In order to determine the waves
generated by mechanisms of this type, a knowledge
of the water .depths, stratification and latitude at
the source site as well as the spatial and tem-
poral distributions of the sea floor dislocation is
required. Since the objective herein is to delineate
fundamental relations between the generation

, JPO-3720(Sept) Gal 138 mechanism and wave structLre, we seek a tractable
model which embodies essential source parameters

Ttein a simple way. With this goal in mind we will
The objective of the present paper is to examine assume a uniform depth h in the generation re-

the near-field behavior of baroclinic waves gener- gion and adopt a two-layer model to represent
ated by vertical motions of the sea floor. Both the ambient stratification in potential density. In
analytical and experimental results are presented addition we will neglect Coriolis forces (and their
for a simple model of generation consisting of a latitude dependence); limitations of the results due
block upthrust (or. downthrow) according to a pre- to this omission will be discussed a posteriori.
scribed time-displacement history. Analytical re- Before introducing further simpifications, a brief
sults are based on a two-layer stratification of description of features common to tsunamigenic
potential density while the experiments utilize a earthquakes and their (dimensional) scales is
stratification with finite (nonzero) pycnocline presented.
thickness. It is both convenient and appropriate to define the

The organization of this paper and some of the source size of the tsunami (and earthquake) as
major results are as follows. In Section 2 a brief the area affected by aftershocks immediately
description of tsunamigenic earthquakes is pre- following the generative earthquake. This area is

sented and the model to be examined herein is typically elongated and elliptical in shape with the
introduced. Nondimensional parameters which ruptured portion of the fault joining the foci of the
characterize the generation process are discussed ellipse. Early efforts to correlate the source area
in Section 3 where it is shown that the generation S with Richter magnitude M, proved unsatisfactory
process of actual tsunamis is impulsive and linear due to the marked scatter in the data. Kanamori
for both the barotropic and baroclinic response. In and Anderson (1975) inter alios have shown that
Section 4 the linear solution for the baroclinic definitive correlations exist between S (kin2 ) and
model is developed and other well-known properties the seismic moment M, (dyn cm). Representative
of long internal waves at the interface of two values based on their results for interplate earth-
liquids are reviewed. In the Boussinesq limit of quakes are shown in Table I. In order to provide
small density differences, it is shown that the baro- perspective, it is still desirable to relate the seismic
tropic response is not affected by the stratification, moment to Richter magnitude. As expected, results
In addition, both barotropic and baroclinic tsunamis here are less definitive and no single empirical
have initial shapes similar to the permanent de- relation exists; however, Kanamori and Anderson
formation of the sea floor. The maximum amplitude (1975) do present correlations for three classes of
of the surface wave is one-half the vertical dis- earthquake magnitudes. Approximate values of 1,
placement of the sea floor while the maximum based on their results are shown in Table I. As a
amplitude of the internal wave is additionally first approximation, we may assume that the source
attenuated by the ratio of upper layer depth to total areas of Table I represent regions of monopole
dt-pth Experimental equipment and procedures are vertical offset (upthrust of downthrow), With this
described in Section 5 and theoretical results are simplification the source size can be characterized
compared with the experimental measurements in by a single length dimension L - S"; representative
Section 6. Results indicate that the maximum values are shown in Table I. If we further assume
amplitudes of the barotropic and haroclinic waves the static and seismic moments are equal, mag-
near a source region may be represented by a single nitudes of the average (and permanent) vertical
(and simple) functional relation over the full range of offset ,, can be found by
their respective generation time scales (see Fig. 10).
The potential role of Coriolis effects for baroclinic
waves is discussed in Section 7, where it is dem-
orstiated that time scales of haroclinic modes can

nwm oftenm approach the inertial period.
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3. Scaling the generation process and a comment on
nonlinearity

In order to provide a rational basis for choosing

computational examples, nondimensional param-
eters which characterize generation and typical
magnitudes for tsunamigenic earthquakes are re-
quired. With this objective in mind, a brief review
of results by Hammack (1973) for generation of
barotropic waves is useful. Three nondimensional
parameters are required to characterize barotropic
generation for simple models similar to that dis-

cussed in Section 2: an amplitude scale. L,,/h: a
size scale, h/h; and T = t,.C1 b termed a time-

JPO-3720(Sept) Gal 140 size ratio where C1 = (gh)' 2 is the speed of long
barotropic modes. [Alternatively, T may be con-
sidered an inverse Froude number analogous to that

used by Noda (1970) for landslide-generated waves. I
The generation process may be classified according

where A is the shear modulus (rigidity) of the frac- to the time-size ratio as impulsive for r < 1, creep-
tured medium. Estimates of IC,,,I with L = 5 x 10l ing for r > I and transitional for r 1. The specific
dynes cm 2 are presented in Fable 1. The temporal range of T for each classification is only a weak
history of the sea floor dislocation is characterized function of the size scale with the transitional regime
by a minimum of two time scales: a time t, cor- essentially disappearing for large size scales (b/h
responding to the time required for the vertical > 1). The amplitudes of waves propagating out of
offset to occur at a specific spatial location and a the generation region for an impulsive motion are
time t, representing the period required for the proportional to the bed displacement (77 - 4,,)
rupture to propagate along the fault. Empirical where the constant of proportionality depends
results of Kanamori and Anderson (1975) suggests only on the size scale. For b/h > I, this constant
that t1 - 10t, for tsunamigenic earthquakes (M, attains its maximum value of one-half and the
-- 6.5) with estimates of the rupture time ranging tsunami near the source region is similar in shape to

from t, - 10 s for moderate earthquakes to tR the permanent deformation of the sea floor. For
100 s for earthquakes with fault lengths exceeding creeping bed motions, wave amplitudes are reduced

100 km (based on rupture speeds VA - L/tRh 2-3 in inverse proportion to the magnitude of the time-
km s-'). As suggested previously, vertical offset is size ratio (71 cc 4,/r). Nonlinear effects become
primarily responsible for tsunami generation; hence, signihcant when generation is impulsive and 141//t
the time t, is most relevant for subsequent > 0.2. Assuming depths in the generation region
scaling. of h 200 m on the shelf and h - 4000 m in deep

In light of the above description, we will adopt water, size scales for tsunamigenic earthquakes are
the following simplifications for the generation typically large (based on the lengths L - b given
model. First, the smallness of the linear source in Table 1); hence, energy is concentrated at long
dimensions of Table I relative to the earth's wavelengths. In addition, amplitude scales are small
radius permits a plane-earth approximation. Second, based on values of 14(,J given in Table I. Finally.
for monopole and uniform vertical offset, the using characteristic times up to t, - 10 s, the baro-
elongation of the source dimension suggests that tropic response is typically impulsive (7 < I). Based
initial propagation of waves near the center of the on these characteristic values, the barotropic re-
source region is one-dimensional and normal to the sponse is expected to be linear and the wave struc-
fault. Hence, we arrive at the simple generation ture near the source region should resemble the
model shown in, Fig. I. The actual sea floor dis- permanent deformation of the sea floor with a
placement used in computations is given by 50% attenuation in amplitude. It is noteworthy, and

.)= -I)H( 2 -x
2), (I) fortunate, that the barotropic response is repre-

sented by the simplest possible limiting conditions

where H represents the Heavyside stepfunction. In of the generation parameters.
the dislocation of(1), we have taken 2b L and, for
experimental convenience, we will take

I.II
,. -(2)

Phy,,ically. t, represents the time required for two-
thidN. of the vertical offset to occur.



JPO-3720Sept) Gal 142

An examination of the independent variables
pp,_,h 1 ,h..,b ,t,.,,g) for generation in a two-layer

ocean (see Fig. I) indicates that five nondimen-
sional parameters are required to characterize
generation. A possible parameter choice for small
density differences is

b/h,/h JPO-3720 (Sept)

7, = t,.C b ,.(gh)"-/b , (3)

, C.b = t,(gh 1 .2/h)-/b Hammack- Gal. 143

wAssuming the fluids in each domain to be incom-
4 where It = h, + It., and E (p., - P)/P 2 I. Of pressible and their motion irrotational, velocity

these five parameters, the first four preserve the potentials 0,(x.y,t) and ..(x,y,t) exist for D, and
scaling characteristics of the barotropic mode and D,2 respectively. Conservation of mass requires
indicate the expectation of a similar role for a time- r
size ratio i.,) based on the internal (long) wave V-' , = 0 in D, (4a)
speed C., (see Section 4). Notice that the two 7'(b., = 0 in D.,, (4bj
time-size ratios satisfy r.Jr = O(E'r2 ) hence, bed -4-
motions which are classified creeping for the surface where V2 is the Laplacian operator. Assuming the
response (T'ti

> 1) may be impulsive for the inter- fluids to be inviscid, the kinematic boundary condi-
facial response (r, << 1). Since r < I for prototype tions at each surface are

* tsunamis, the baroclinic response is always impulsive.
The fifth parameter (h1 !h2 ) - 1] is eometric in 'h. = 71, on Y = 0a)

nature; the various roles of this parameter and its , = 72, on y = 0. (5b)
related forms hl/h or h.,/h will appear in Sections ByfurherneglectingsurfaceenergyatSthecondi-
4 and 6. Its specific role as an indicator of the tn for nstancy sure aros and alonih
strength of nonlinear effects during generation can f reesurf is
he established as follows. In a two-layer system, free surface is

nonlinear effects may occur for both the surface 61, + gr/t = 0 on v (6a)
and interfacial motion. For the free motion of long
internal waves in a two-layer system with small (The hydrostatic pressure pgh, has been adsorhed
density differences and uniform depth, it can be into (h,.) Continuity of pressure across S, requires
shown (see Keulegan, 1953) that the appropriate P1
measure of small but finite nonlinearity is 1712(h, 022, + gT1 = 

- (01, + g1) on y = 0. (6b)
- r..2)hh.,j. It will be demonstrated in Section 4 P2
that "). - 40(h,/h) for impulsive generation; hence, The kinematic condition at the solid boundary is
nonlinearity is measured by the parameter knyo/
h0(h'/ih, - 1)1. Since h/h/, < I for typical ocean 6 = t on y = -h.,, (7)
stratifications and (¢o/h) is small, both barotropic where it is assumed that motion of the solid boundary
and haroclinic free motions are linear initially, is not affected by fluid motion.

Combining the kinematic and dynamic boundary
4. Theoretical analysis conditions at S1 and S, yields

We consider a two-dimensional ocean as shown 6,, + gbt = 0 on y (8)

in Fig. I consisting of two fluid domains D, and o
D bounded above by a free surface S, below by a , + + gO + on Y 0. (9)
solid boundary Sb and contacting at a liquid-liquid P2

interface S,. Both fluid regions are unbounded in
the direction x of wave propagation. The upper and Using the Laplace transform in t and the Fourier
lower fluids have densities Pt and p,, respectively, transform in x, Eqs. (4), (8), (9) and (7) become
and are gravitationally stable (p, < P 2). Initially. the 0, - -" = 0 in D,, (10a)
two fluids are at rest with uniform depths i, and -
h1. Subsequently u > 0). the solid boundary S, 2 - , = 0 in D.,, (10b)
is permitted to move in a prescribed manner given s'O + = 0 on v = I, (10c)
by y = -h. + C(x,t), where ,(.rt) is given by (I).
The resulting motion of the free surface m(x.t) and s +g - (s" 1 + g~,) on y = 0, (10d
interface 772(.r,t) are required. Since both motions P2
are probably linear for prototype tsunamis, a first-
order (linear) description of motion is employed , = s on y = -h2- tI0el
from the outset. where the tilde of a functionf(r.t indicate-,
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= 4s4  
,(17a)

0i coshkh, coshkh2

-s + s 2gkT1I. (17b)
1) coshkh2

The transform of the bed motion given by (I) is

JPO-3720 (Sept) sinkb[ a ) . (18)k~s)= 2( s(s + a)I

Hammack-Gal. 144 Substituting (18) into (17), performing the integra-
tion around the Bromwich contour, taking only the
real part and noting that the integrands are even

Il 11lll1ll1l1functions of k, the free surface and interfacial
of -. waves are found to be

j(k.s) = dx e'Ae-'f(x't)dt. (l)

The function f(xt) is recovered from ( 11) by invert- I coshkh , coshkh.,
ing the Laplace and Fourier transforms, i.e., x [e'- BB 4 + B-,B 6]dk, (19a)

I --,l " BB2[ gkT,',_
.. =V (.t) = 2  + -)ea(2 -, - co shkh -, o 2

x lim 2 e-i j e-kr"/(ks)ds , (12) 1 --- B, ] )B 4

using the complex inversion integral for the Laplace kT
transform. The transformed surface and interfacial ' - - BB"1dk. (19b)
waves are with

S-"2 sinkh coskxr
1 = - - on N hi, (13a) B, = s20a)

g nk[ l + ( ,,'p,)T,T,.

L s a4-

= [(P/P2) - 0.21 on Y = 0. (13b) B, = (20b)Eg (a- 6+ 2 )( + (0.,2)

Solution of (10a,b) yields B w2(a + w.-) ,(20c)

[bk,ys) = A, coshky + A 2 sinhky, (14a) a2(W,
2 - o. )

b,(k.ys) A 3 coshky + A 4 sinhkv, (14b) B4 = cos(ovt + - 2 sinw&t, (20d)

and the coefficients Ai = A,(ks) with i = I, 4 are a
found from Eqs. (10c)-(1Oe) to be w(,2(a2 + W'2)

+ = - (20e)
6, - j s"T, + ,qkl, (15a) (o + o )

Ok coshkh.,
B, = coso.t -- sinw. (20f)

A, = A+ g s:' 7s ', (15b) e
A, coA hkh.. a + si and = 1, 2) are the roots of the dispersion

-s relation

Aa3 = Ok cosh/,I., [s'pT + s'lgk + e(gk ,2 T,1, (15c1 (I + p1p.,TT)oM - gk(T' + T2 )W2

with + (gk)2 T , T2 0, (21)
given by0 = sI+ L-' T, T, + 'V2r (Ti, + r,,q I)T +_ J + T, )2

P2- - 4E(l + p/oP2 TT 2 )T T1 12

zgkk) 2 T , (16a) O 2( - p(I2T,T )(

T, = tanhkh,, i 1. 2. (16b) (Note that w -is in the above analysis.) Eq. (21) is

Finally, the transformed free surface and internal well known for two-layer systems with (u,2 corre

waves are found from (13) to be sponding to the barotropic modes and W,2 corre-
sponding to the baroclinic modes (see e g I a-1,
1932. p 3'7?)
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where 8,, is the coupled motion of the interface due
to a wave N ] at the free surface and /3 is the coupled

JP(-3720 ISept motion of the free surface due to an internal wave
. Here, the waves N, and N represent the inde-

pendent modes at the free surface and interface,
Hammack-Gal. 146 respectively. (Note thatV, Y), and N, = 0k when

the surface and internal waves do not overlap
spatially.) The motion 132 is barotropic and would

Although the Fourier integral solutions given by exist at the interface location even if the fluid was
(19) are algebraically complex and the wave struc- not stratified.
ture is difficult to see, it is easily shown that these In order to see the wave structure in (19), numeri-
solutions contain more familiar results. For ex- cal solutions at x = b for both barotropic and baro-
ample, in the Boussinesq limit of smail density clinic waves propagating from the source region are
differences 6e - 0) we find shown in Fig. 2. Results are presented for impul-

, co kx sinkh & sive response at the free surface and interface
-) (Fig. 2a) and for impulsive interfacial response with

, k coshkh + creeping free surface response (Fig. 2b). Magnitudes
ofthe nondimensional generation parameters used in

, {e " cos(O- sinotdk. (23) computations for Fig. 2a are chosen to be asymp-
totically representative of prototype phenomena:

'gk tanhkh, (24) dimensional quantities correspond to experiments
which will be discussed in Section 5.

%khere "0 is the solution found by Hammack (1973) As expected, the surface waves do not appear to
for a barotropic ocean. Hence. the surface waves vary with layer-depth ratio in Fig. 2. In fact these
in a two-layer system are not affected by the strati- results are identical to those for a homogeneous
tication in the Boussinesq limit. Since density dif- ocean computed by (23) except for a small residual
ferences are typically small for oceans (E 0.002), lowering of the water level which persis4s until the
previous results for surface waves in a barotropic internal wave passes. It should be emphasized that
ocean are applicable to leading order. surface and internal waves overlap spatially in the

It is also useful to approximate specific properties generation region; hence, these results represent a
of the internal and surface waves for long modes linear combination of both the independent (N) and
Such thatinduced motions (/3) at the interface and free

_P surface. The residual lowering of the free surface
E -- = O(kh,) 0(kh.,) <- 1. (25) is the O(E) motion 3, [see Eq. (27b)] induced

P.2 by the internal wave. In fact, this induced motion

Under these conditions the well-known phase differs for each depth ratio; however, the small
speeds of the surfacc and internal waves are found differences are not discernable at figure scale. The
[from Eq. (22)] to be, respectively, impact of the surface wave at the interface,

132, is more pronounced and clearly evidet in Fig.
C 11 - Ih.gI + O(.3) (26a) 2a. This induced motion is easily estimated from

- --h., (E(27a) using the free surface solution [since N, = -q,

+ O(Ef). When 132 is eliminated from the internal

C'2 o,-,, = 4- I 1 +(2)1. (26b) wave computations, N 2 results 'and is also shown in
- - IFig. 2a. The leading waves of the independent

The significant difference in phase speeds for these internal and surface modes are similar to the per-
long waves. C,/C, = 01,E'"), suggests that even manent deformation of the sea floor. The maximum

though the surface and internal waves overlap amplitude of the surface wave is one-half the sea
patiallho near the generation region, they will floor uplift, i.e., (N,),.... = ,/2, as found previously
separate .ipidl, and nonlinear interaction% between for a homogeneous ocean. The maximum amplitude

te i will nd t noler inteactionsto betwen ig-of the independent internal waves (N.) .. for these
the two systns will not have time to become sig- impulsive motions appears to vary with the layer-nificant.

In addition to the phase speeds it is also of interest depth ratio according to

to examine the amplitude of the motion induced by (N,) ..... = (Il /h)(N ),,),, = ( ,/2)(hIh). (28)
each wave system at the opposite interface. Follow-
ing Keulegan (1953), normal-mode analysis sug-
gests that

032 , ,\, (27a)

13, EN. (27b)h "
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This important result and further clarification of the
effects produced by varying the size scale b/h as well
as relative thickness of the upper layer may be estab-
lished in the following manner. Restricting atten-
tion to (mathematically) impulsive bed motions,
the initial (t = 0+ ) amplitudes at x = b can be eval-
uated in closed form to yield in the Boussinesq
limit

(b.) arctan tanh-- h (29)
rc n 2 JPO-3720(Sept) Gal 149

"0.4b .01

I In order to nodel the density stratification of Fig.
arctanlsinhb/h)/cos(----)] . (30) I, freshwater and brine are used. The miscibility

[, 2 IJ of these fluids produces a finite pycnocline thick-

The result for the surface wave (29) is identical to ness 8: thus, this stratification provides a better test
that for a homogeneous ocean (Sells, 1965) and of the two-layer model as a useful approximation for
clearly shows that 1, - N, - Yj - 4,)/2 for b/h > 1. thin pycnocline regions. The tank is stratified by

- Eqs. (29) and (30) are shown in Fig. 3 as a function first introducing a layer of freshwater with a depth
of bih and h/i1 h. [Note that (29) and (30) are equiva- h. Brine is then introduced beneath the fresh-
lent when h,/h --+ 0.] Results for the internal wave water at ports distributed along the tank bed until
are identical to the surface wave for b/h > I a total depth h is attained. The volume of the
regardless of the layer-depth ratio. For b/h < 1, the reservoir used to mix the brine limits the depth h2
internal wave amplitude exceeds that at the free to a maximum of 10 cm. For the experiments

* surface as h1/h increases (e.g., 1it/h > 0.25). In all presented herein, the total depth h is fixed at 15 cm
cases, the amplitudesbecome inversely proportional while the depth of the brine is varied with h., = 5.
to the size scale as b/h decreases. Noting that 7.5 and 10 cm. A density difference of -5% is
.,(b.0) " = "1.(b,0) - 3(b,0+), where P., is given utilized in all experiments. This difference is suf-

by (27a), Eqs. (29) and (30) may be used to deter- ficiently large to provide stability of the stratifica-
mine the behavior of the internal mode with size tion during filling yet sufficiently-small to provide an
scale: the result is adequate test of analytical results based on small

density differences. The length h of the movable bed
N.( b .0( section is constant (61 cm) for all experiments.

sinh(2rb/h) Hence, the experimental size scale, b/h = 4.07, is
- .2I arctan - sufficiently large for results to be typical of the

Scos( rr ,tsunamigenic case. Density stratifications are meas-
2 ured using a conductivity probe at two locations

b ]before and after each series of experiments; typi-X arctan tanht-:- u (31) cal results are presented in Fig. 4 where It, = 5 cm
2 I and h2 = 10 cm. The similarity of initial stratifica-

For bi > 1, Eq. (3 1) yields, in closed form, the tions at both locations demonstrates the uniformity

numerical results found previously for the internal of this stratification along the wave tank. A thick-
wave amplitude given by (28). Hence, even though ness 8 for the pycnocline region is calculated
the free surface and interface are lifted (lowered) based on the definition
the same amount by an impulsive bed motion with dp -l
b/h > I. part of the potential energy gained at the 8 = -A --. ) , (32)
interface is associated with the barotropic motion 14 ma,
/3.. Consequently, the amplitude of the internal yielding initial values of 8, = 0.9 and 1.0 cm and
wave is less (by the factor hrsh) than that of the final values of 5 = 2.1 and 1.8 cm for the upstream
surface wave where all of the potential energy and downstream positions, respectively. Actial
gained, to O(E), is available to the barotropic mode. stratifications are qualitatively similar to theoretical

solutions of the diffusion equation for an initial
5. Experimental equipment and procedure density profile with a simple discontinuity at one

level. Using this solution {p =p, + Ap erfcjy/
A series ofexperiments was conducted in a labora- leve11 With theia dintinuit occuring~~~~(4 Dt)/' wtth initial discontinuity occurring

tory wave tank which is approximately 32 m long, at v = 0, the characteristic thickness S defined by
60 cm deep and 40 cm wide The tank is equipped (3,.) is related to the diffusion coefficient D by
at one extremity with a wave generator consisting of
a movable bed section (piston) whose time-dis- 8 = (47rDt) 2 33)
placement history is controlled by an electro- Hence, an apparent diffusion coefficient can be cal-
hydraulic-servo system. The wave generator can culated for the time interval of the experiments by
accurately model the bed motion described by (I).
Both the wave generator and tank have been I, (5)2- (51,)-
described in detail by Hammack (1972). D = ' (34)

.... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~7 At :_--''z .. ,2. "I II..
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The apparent diffusion coefficients for the measure-
ments of Fig. 4 are D = 2.3 x 10- ' cm'2 s' at the JPO-3720(Sept) Gal 151
upstream position and D = 1.7 x 10- cm 2 s - at the
downstream position. The more intense mixing at
x = b results from the shedding of a vortex at the 6. Comparison of theoretical and experimental
edge of the bed section during its motion (see results
Hammack, 1972). The mixing of the interface at this
position was visually detected by adding blue dye to In order to examine the near-field wae struc-
the brine. At the downstream position the apparent ture, the temporal behavior at the edge of the gen-
diffusion coefficient is only slightly greater than eration region (x = b) is examined. Wave motions
the molecular diffusion coefficient (D,, = 1.5 x 10--5  at this location are primarily free (unforced) and
cm 2 s-') for salt in water. Hence, the shear layer provide the initial condition for propagation models
developed during the passage of internal waves is which may be patched to the generation model.
laminar and does not mix the fluids appreciably. Results are presented for a wide range of time-size
Each series of experiments was stopped when the ratios in order to more clearly delineate the tsunami-
interfacial thickness at x = b reached -2 cm. genic case (impulsive with h, - h., and b/h > 1).

In order to quantitatively measure the internal
waves, a laser-optics detector system is used. A a. Wave profiles
schematic drawing of the internal wave gage is Comparisons of theoretical wave profiles at
shown in Fig. 5. The light beam from a helium- x = b with experimental data are shown in Figs. 6
neon gas laser (wavelength = 632.8 nm with0.5 mW and 7. Results are shown for positive (uplift) andoutput) is aligned perpendicular to the glass side- negative (downthj-ow) bed motions. Linear com-walls of the wave tank. A system of cylindrical putations for the free surface motion agree well with
lenses transforms the circular beam into a sheet of measr e (surface wave aree e

light with a constant vertical dimension of 4.5 cm coincident for the two cases of hed uplift.) Linear

which is directed horizontally across the wave tank. results for the internal waves also agree well with

After traversing the tank, the light is focused onto measurements; however, there are differences

a photodiode which provides an output voltage pro- which require explanation. Measured waves at the

portional to the incident light intensity. By dying the interface exhibit a high-frequency noise of small-

brine dark blue and permitting the interface to inter- amplitude superposed on the main wave. The source

cept the light sheet when the fluids are quiescent, of this high-frequency noise is twofold. First, as

subsequent motions of the interface induce changes mentioned in Section 5, a vortex is shed at the down-

in the output signal of the photodiode which are stream edge of the piston (x = b) during rapid

displayed on an oscillograph recorder. It should be m e e of th ison rx o n apid

noted that the dyed interface seen by the internal motions. The effect of this vortex on the amplittde
wave gage appears in the upper region of the dif- measurement at the interface is most pronounced for

fusesalnit intrfae a indcatd i Fig 4.Thepositive motions with thin lower layers (It., < fI)
fuse salinity interface as indicated in Fig. 4. The and was visually observed to be responsible for
laser, optics and detector system are mounted on a the large depression in amplitude near t(g/h)2 12
continuous frame shaped in an inverted U over the in measurement (d) of Fig. 6. Second, gas bubbles
wave tank; hence, the wave gage is calibrated by formed in the thin gap between the piston and its
raising and lowering the frame differing amounts confining tank walls. These bubbles were freed
during quiescent fluid condition. Calibration curves during bed motion and subsequently those from the
are inherently nonlinear for this measurement sys- gap along x = h penetrated the light sheet of the
tem. Internal waves with maximum heights < 4.5 measurement transducer. (Brine was especially
cm are easily measured; however, large-amplitude prone to bubble formation resulting from aeration
motions are generally avoided during wave measure- during mixing and chemical reactions at unavoid-
ments at x = b due to the vortex-induced mixing able scratches in the anodized aluminum of the
at the position. The vortex generates a high- piston.)
frequency signal at the photodiode which is super-
posed on the signal corresponding to the internal
wave. In addition, the background signal for quies-
cent conditions may change appreciably before and
after an experiment. Surface waves are electroni-
cally recorded using conventional parallel-wire
resistance probes and an oscillograph recorder.
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The time required for the lead wave to propagate
past x = b differs from the linear prediction for
both surface and internal waves in Fig. 6. This
behavior was observed previously for surface waves
by Hammack (1973) and may be partially attributed
to nonlinear effects arising from both finite wave
amplitudes and finite changes in depth in the gen-
eration region. Based on amplitude considerations
alone, differences between linear analysis and
measurements are expected to be maximum when
h, - h., and minimum when h h. This expected
behavior is exhibited in Fig. 6 even though ampli-
tude nonlinearity is too small to account for all of the
observed discrepancy. Another contributing factor
is the eddy shed at x = b during piston motion.
Fluid mixed by the eddy often remains in this re-
gion for some time after the waves had departed.
(Eventually, this fluid spreads into its layer of neutral
buoyancy.) It was confirmed qualitatively by visual
observation that this phenomenon causes an appar-
ent increase in both the wave amplitude near its
leeward portion and the lead wave period similar to JPO-3720(Sept) Gal 153
the behavior observed in measurement (d) of Fig.
6 (where h, > I).

Mode separation and motions induced at the op- Surface wave amplitudes in Fig. 9 are identical for
posite interface are more clearly demonstrated by each layer-depth ratio (since the size scale b/h is
the downstream (x = b + 20h) results shown in constant) and equivalent to that found for a homo-
Fig. 8. Both experimental measurements and linear geneous ocean. Both experimental and analytical
computations are presented for an impulsive bed results in Fig. 9 demonstrate that (N,),,. = 4,,/2 for
motion with C0 = 1.5cm.h, = 5cmandha = 10cm. impulsive motions while (NI)m, - 4olr, in the
The surface wave arrives first at the downstream creeping regime: previous results indicate that this

" station at (g/~j), 2 - 20 corresponding to the speed behavior ig independent of size scale when b/h > I.
C, given by (26a); the induced motion [3, at the The theoretical and experimental results for the
surface is clearly evident. Observed and predicted internal wave amplitudes agree well. In addition, the
behavior of the surface wave and its induced mo- variation of (N,na, 0 with r. is similar to that of the
tion agree well. Both the interface and free surface surface waves except for an amplitude reduction by
become quiescent prior to the arrival of the in- the factor h/h which appears to be valid even for
ternal wave. Predicted and measured shapes of the time-size ratios exceeding the impulsive regime.
internal wave are similar: however, the maximum This behavior permits the barotropic and baroclinic
amplitude of the measured wave is 20% less than results to be collapsed into a single curve as shown
predicted. In addition, the time required by the in Fig. 10 for the full range of T, and r2 (when the
observed wave to reach the downstream station size scale satisfies b/h > I). The weak dependence
corresponds to an average speed which is 10% less (narrowing) of the transitional regime with larger
than the linear prediction for C,. These discrep- size scales ('b//h > 1) is also indicated in Fig. 10.
ancies probably result from the viscous and non-
linear effects present in the experiments. 7. A comment on Coriolis effects and the two-layer

approximation
b. Maxinnm amplitudes It is customary and appropriate to neglect Coriolis

It is instructive to examine the variation in lead effects for barotropic tsunamis since their energy is
wave amplitude with the time-size ratio of the bed concentrated at periods (say, t, - 30-60 min) small
motion. In fact, results of this type provide the compared to possible inertial periods. (Alterna-
basis for classification of the generation process tively, the length scale L of the barotropic mode
(impulsive, creeping and transitional). Fig. 9 shows is small compared to the Kelvin-Rossby radius of
experimental and theoretical results at % = h lo1 deformation.) However, the sluggishness of the
both the surface and internal waves. The maximum baroclinic response indicated by C./C - 0.04
amplitudes of the independent modes (N, and N.2) immediately suggests the possibility of mesoscale
are shown as a function of their respective time- periods for these modes. Since the length scale L
size ratio and layer-depth ratio. Experimental meas- for both barotropic and baroclinic modes is the
urements for both positive and negative bed motions same and fixed by the source mechanism, a first
are presented. (Nonlinear effects for all experiments estimate of the dominant baroclinic period is
shown in Fig. 9 are expected to be small based C L I ,t
on the discussion in Section 3.) The time-size 2- - I - 25t,.
ratio for the surface response (r) spans the C2
classiftication range of impulsive to creeping while
the internal response (r 2 ) ranges from impulsive
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Fi-,. 8. Theoretical and experimental waves at x = b + 20:

It 15 cm. h, = 5 cm. b = 61 cm, e = 0.05. (o =1.5 cm.

r, 0.12. r2 = 0.012: solid line. free surface: dashed line. inter-

f;ce. a Linear theory: (bN experiment.

Fio, 9. Variation of t. ,l ,,i4, with T, and (N ),,i,, with T at t = b = 61 cm for h = 15 cm.

= 0.05. Solid curve represents surface wave calculation (for all hi/i, using linear theory Vertical

slash indicates experimental data for surface waves

F(,. 10. Theoretical variation of wNi ) t,/_I4 with r, and [k \.-fl ,/,1I I v. th "r.. at x b. Dashed
curve indicates asvmntolic reqilts for hi', I
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-ammack. Table I

IABLI I. Characteristic source area of sunamigenic earth-

quakes al a function of seismic moment .1, based on Kanamort

and Anderson (1975).

At,. LM,, (km) (M)

(dyn cm) (kni-) ------ m--- m

10' 185 6 14 0.21 1 - 3t 7 4.1 0.7,

6 10' X 0 8 233 4.0
I 10" 54 000 -
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LONG WAVES GENERATED BY COMPLEX BOTTOM MOTIONS

J. L. Hammack

Associate Professor of Civil Engineering
University of California, Berkeley, U.S.A.

and

F. Raichlen

Professor of Civil Engineering
California Institute of Technology, Pasadena, U.S.A.

1. Introduction

Studies of tsunami generation often employ simple models of the sea
floor dislocations to permit tractable analytical solutions. Although
these solutions provide basic insight into the generation process, they
are incapable of producing explicit results for prototype events where
both the spatial and temporal distributions of the sea floor dislocation

may be quite complicated. Herein we exploit the apparent linearity of
the generation process and demonstrate both the use and validity of the
superposition principle to construct solutions for complex bed motions.
Analytical and experimental results are presented for a monopolar dis-
location (block upthrust or downthrow) with a complex time-displacement

history. The time history used in the computations is obtained from an
integrated accelerogram recorded at Pacoima Dam, near Los Angeles,
during the earthquake of February 9, 1971. A complex spatial deforma-

tion is not used in order to enable experimental verification of the
analytical results. This is unfortunate since it appears that the

details of the time-displacement history are not important for proto-
type phenomena where the motion may be considered instantaneous. How-
ever, it is important to note that the analysis treats both space and
time variations in an identical manner; hence, confirmation of this

approach for complex time variations strongly suggests analogous behav-

ior for complex spatial variations.

Finally, we examine and compare several alternative time-displacement
histories for the mean motion. It is shown that the results for each mean
motion can be unified by introducing a velocity as a descriptive param-
eter which is based on the kinetic energy input of the moving bottom to

the overlying fluid.

2. Time-Displacement History

To define a complicated time-displacement history with relevance to
earthquake-induced ground motions, we have chosen an accelerogram for

the vertical component of motion recorded at Pacoima Dam (near Los

Angeles) during the earthquake of February 9, 1971. The accelerogram

I
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shown in Figure 1 may be integrateo numerically using appropriate pre-
cautions (e.g., see Nigam and Jennings, 1968), to yield a time history
of the vertical ground displacement. Results of the integration pro-
cess for the "smoothed" velocity history and the corresponding ground
displacement history are shown below the accelerogram in Figure 1.

An analytical representation of the algebraically complex time-
displacement history of Figure 1 over a finite record interval,
0 < t < T, may be constructed using a Fourier series of the form:

N
((t) = C + Z C sin (K t + $n). (1)

n=1

In (1) Cn are the amplitudes of the Fourier components with C0 repre-
senting the mean (permanent) ground displacment, Kn are the component
wave frequencies, and n are the component phase angles. The accuracy
of (1) in representing the integrated displacement of Figure 1 is
determined by the number of components N retained in the Fourier sum.
Results of computations with N = 18 are illustrated in Figure 2; this
truncated sum will be adopted in the subsequent analysis.

It should be emphasized that both the instrument characteristics
and the numerical integration techniques used to obtain ground dis-
placements from acceleration measurements necessarily distort (filter)

information in long period components. In particular, the mean (and
permanent) displacement of the integrated motion shown in Figure 1 (and,
of course, its Fourier representation in Figure 2) is not expected to
accurately model the actual permanent deformation. To compensate for
this distortion, we may again exploit the superposition principle and
add a nonsinusoidal component to the Fourier series representation of
(1). As an example of this approach, consider the ramp motion in time
of the form:

Cr(t) = ot/T (2)

during the time interval 0 < t < T; other choices for the mean motion
are discussed and compared in section S. In practice, the sum of the
mean component resulting from the Fourier synthesis, Co, and the addi-
tional component Co from (2) should be chosen to equal the actual per-
manent ground offset. Hence, a general representation for a complicated
time-displacement history becomes:

N

(o C t/T + E C sin (K t + Bn). (3)
o 0 n=l n n n

3. Solutions of the Water Wave Problem

Consider a two-dimensional (x,y) and incompressible ocean of uniform
depth h initially in equilibrium with the earth's gravitational field g
which acts in the negative y direction. At time t = 0 a section of the

3
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sea floor begins to deform vertically with a time and spatial variation
given by C(x,t). We seek the inviscid, irrotational, and barotropic
deviations fl(x,t) of the ocean free surface from its equilibrium posi-
tion. With the coordinate system at the equilibrium position of the
free surface, the linearized description of motion in terms of a veloc-
ity potential ( = (x,y,t) is:

Sxx(X,y,t) + 4 yy (X,y,t) = (4)

y (x,-h,t) = C (x,t) (S)

y (x,O,t) = n (x,t) (6)
y t

t (x,O,t) =- gn(x,t) (7)

where subscripted variables indicate partial differentiation. It is
convenient to eliminate n(x,t) in (6) and (7) by combining to yield a
single condition for the velocity potential:

,tt(xOt) + g (X,O,t) = 0 (8)

Using the Laplace transform in t and the Fourier transform in x, equa-
tions (4), (5) and (8) become:

yy (k,y,s) - k2 (k,y,s) = 0 (9)

y (k,-h,s) = s (k,s) (10)
2

y(k,O,s) + -! T(k,O,s) = 0 (11)

where the overbar of a function f(x,t) indicates:

f(k,s) = f dx eikx e-st f(x,t)dt. (12)

Solving (9), (10), and (11) for (k,y,s) and noting from (7) that

_j(k,s) = - (s/g)_-(k,O,s) (13)

we find:
(k,s) =s2 ?(k,s)/(s 2 + W2) cosh kh (14)

where w2 = gk tanh kh. Inverting the Laplace and Fourier transforms
yields:

1 0lm -ikx st -
fl(x,t) = 2_ r iL_ m IS e e C(k S) dsA (is)f l2 2 ) cosh kh d

5



Again, the final integration over wavenumber k must be evaluated numeri-
cally.

4. Comparison of Theory and Experiment

As noted earlier, the simple block deformation of the sea floor was
chosen to enable experimental verification of the analytical model
developed for complicated time-displacement histories. The experimental
facility used in these tests has been described in detail by Hammack
(1972, 1973). Basically, the wave-maker consists of a rectangular
piston in the bottom of a wave tank (and spanning its width) whose
motion is controlled by an electro-hydraulic-servo system. The servo
system converts a time-voltage command signal into a proportional verti-
cal displacement of the piston. For the experiments reported herein,
the piston length in the direction of wave motion is b = 61 cm while the
quiescent water depth above the piston is h = 10 cm. Before presenting
results of the tests, we describe the motivation for choosing other
experimental scales.

A "global" time scale for the forcing of the overlying ocean by the
sea floor is the period T. The appropriate time scale for the gravita-

tional response of the long barotropic wave modes is b/(gh)) which cor-
responds to the time required for waves to escape the generation
region. For prototypical earthquakes the ratio of the forcing and
response time scales, T = T(gh) /b, termed the time-size ratio, is small
so that details of the time-displacement history generally are not
important. However, our interests herein require that the details of
the temporal motion have a significant impact on the generated wave
structure. Hence, the period T for the experimental tests must be
scaled so that T exceeds unity; in fact, for the experiments a period
T = 4 secs was chosen which yields T = 6.5. Previous experiments by

Hammack (1973) also indicate that the generation process for proto-
typical tsunamis is linear and that nonlinearity remains insignificant
for vertical displacements which do not exceed about 20% of the over-
lying ocean depth. This criterion is adhered to in the experiments by
restricting the instantaneous displacement of the piston to less than
2 cm.

In the first test we examine experimental and theoretical results
for the time-displacement history shown in Figure 2 using experimental
parameters T = 4 secs and a chosen permanent (mean) displacement of
Co = 0.38 cm, with the amplitudes Cn and frequencies Kn of the eighteen
Fourier components used in Figure 2 scaled appropriately. (In Figure 2
the corresponding parameters of the actual ground displacement are
T = 40 secs and Co = 7.63 cm.) The scaled Fourier components are then
summed and the result is converted to an analogue (time-voltage)
signal which is used to command the wavemaker. The resulting wave
motion at the leading edge of the piston (x = b) is measured, and the
results are shown in Figure 3. Theoretical results at x = b are
evaluated for each of the eighteen (scaled) Fourier components accord-
ing to (17) and summed to yield

7
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n(b,t) •C + E n (bt); (25)

n=1

the results also are shown in Figure 3. The excellent agreement between

the predicted and measured data is self-evident.

Similar results are shown in Figure 4 where a ramp mean motion with
an amplitude of Co = 1.33 cm is added to the Fourier synthesis of Figure
2. The total permanent displacement of the piston is C = Co + Co
1.71 cm which has been used to normalize the measured and theoretical

wave amplitudes. The theoretical result is equivalent to (25) with an
added component for the ramp computed from (24). Again, the agreement
between measured and computed data is excellent with the wave structure
clearly showing the added volume (mass) resulting from the enhanced mean
displacement.

5. A Comment on Mean Motions

In previous studies (Hammack, 1972, 1973) two additional models for
the mean displacement of a block section of the sea floor have been
examined. These time histories are:

a. exponential: e(t) = o[i - exp (-l.lt/Te)]

b. half-sine: Cs(t) = C [(1 - cos Trt/T )H(T -t)/2 + H(t-Ts)]

and we repeat for completeness the mean motion introduced here:

c. ramp: Cr(t) = o [tH(T r-t)/T r + H(t-T r)].

The three mean motions listed above span a wide range of displacement
characteristics. We note that the choice of characteristic time scales
Te, Ts and T are, in fact, arbitrary to a certain extent even thoughr.
"natural" choices are apparent. (This flexibility is most obvious for
the exponential motion where Te was chosen for experimental convenience
to represent the time for two-thirds of the displacement to occur.) It
has been found that the properties of waves generated by these motions
correlated strongly with the time-size ratio T based on these time
scales. For example, the maximum wave amplitude, say no, occurring at
x = b when normalized by the permanent displacement Co exhibits a simple
and similar functional dependence on T for each bed motion. With the
size scale b/h of the dislocation fixed and for T<<l, the normalized
amplitude, no/Co, reaches a maximum value of one-half for all size scales
exceeding unity. Bed motions with T<<l are termed impulsive. For T
very large, termed creeping generation, qo/ o decreases at a rate which
is inversely proportional to T. The constant of proportionality for
creeping generation varies with the specific choice of the characteris-
tic time scale for the mean motion. Since it is unlikely that any of
these mean motion models is "correct" from a geophysical point of view,
there is a need to seek a unification of results by generalizing the
concept of characteristic time scale. One generalization which closely

8



where the complex inversion integral for the Laplace transform has been
used. In (15) w is the wave frequency (w = is) and k is the wavenumber.
Explicit results for specific deformationsof the sea floor (x,t) will
be developed now.

3.1 Solution for a single Fourier component

Consider a block section of the sea floor of length 2b whose time-
displacement history corresponds to a single Fourier component of (1).
With the coordinate system centered above the block section, we have

nn n n n nn(x,t) C CH(b 2 -. x2 )[sin(Kn T n )H(T- t) + sin(Kn t+Sn)H(t-T)] (16)

where H( ) is the Heaviside step function. Finding the transform of
(16), substituting into (15), performing the integration around the
Bromwich contour, taking only the real part of the resulting integral,

a( and noting that the integrand is an even function of k, we find:

" (xt) = Cn cos kx sin kb A+B -H(t-T)[C+D+E] dk (17)
nJT k cosh k ABHtT[++]

0

where

A = sin B [(W 2 sin wt - K 2 sin K t)/(02 - K2)] (18)
n n n n

B = K cOS n[(w sin wt - K sin Krt)/(w2 - K2)] (19)

C = sin(KnT + Bn ){[W2 cos w(t-T) - K2 cos K (tT)](W2-Kn2 (20)

n n ) ~ ~ sn K ntT](2K)

D = Kncos(KnT+n sin w(t-T)- Kn sin Kn(t-T)/ Kj2 (21)

E = - sin (K nT + Bn) cos w(t-T). (22)

The final integration over wavenumber k in (17) is obtained by numerical
quadratures.

3.2 Solution for ramp mean motion

The ramp time-displacement history of (2) for the block deformation
is described by

4(x,t) = 0 H(b 2 
- x2 ) [tH(T - t)/T + H(t - T)]. (23)

Following the same procedure outline in section 3.1, we obtain (again
after considerable algebra) the water surface motion r due to the ramp

2 f o-/cos kx sin kb ( /~in )-HtTsn otT]k(4
r (x't) =Tk cosh kh -isi tHtT inwt)]k(4
rr

_~1~x t . . . .cosh. ,kN -- ITT) . ...

*1 0

6
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produces the desired unification is the following. Consider a velocity
V, where V2 is the kinetic energy imparted to the fluid by the sea floor
divided by one-half the total mass of fluid displaced during bed motion
( ibro); then V is given by:

- 2 d (26)

0

and a corresponding time scale T C0/V. In terms of this time scale
the time-size ratio becomes

T = T(gh) /b = C (gh) /bV (27)

The variation of no/ o at x = b for b/h = 6.1 with T* is shown in Figure
S for each of the mean motions; both theoretical and experimental
results are presented. For all of the experimental data we have taken
o/h < 0.2 to avoid significant nonlinear effects. The collapse of
results for such a wide range of mean motion characteristics shown in
Figure 5 is good although a small spread still exists.

6. Conclusions

We have demonstrated both the application and validity of a strategy
which employs multiple uses of the superposition principle to develop
theoretical solutions for waves generated by sea floor motions with com-
plicated time-displacement histories. Although a more useful test for
prototypical phenomena would utilize complicated spatial distributions
for the sea floor dislocation, the tests herein were restricted to
simple block dislocations due to experimental limitations. However, it
is emphasized that the solution method does not distinguish between
space and time, and the validity established herein strongly suggests
that the methods could be extended to complicated spatial deformations.
Finally, we have demonstrated that wave properties (in particular the
maximum amplitude of waves escaping the generation region) for a wide
range of mean motion characteristics may be (almost) collapsed into a
single functional relationship in terms of a time-size ratio based on an
average vertical velocity of the sea floor obtained from energy consid-
erations.
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SMALL-SCALE OCEAN WAVES

J. L. Hammack

Department of Civil Engineering, University of California - Berkeley, California

I. - Introduction.

Presented below are three lectures on various aspects and types of ocean

waves. In all cases we are concerned with small-scale waves for which gravi-

tation prcvides the dominant restoring force. The relevant length and time

scales of these waves are small compared to the Kelvin-Rossby radius of defor-

mation and inertial period, respectively, and Coriolis effects may be

neglected. In addition, the small length scales (relative to Earth's radius)

permit us to ignore the curvature of the ocean surface and adopt a plane-

earth approximation. Various other approximations will be adopted as

appropriate in order to obtain model equations which are tractable analytically.

(Fortunately, these tractable models appear to remain relevant for geophysical

phenomena!) In particular, we are interested in weakly nonlinear systems in

which the nonlinear effects manifest slowly; both nonlinear self-interacting

and resonant-triad systems are considered.

An outline of these lectures is as follows. In Part II we examine two

nonlinear model equations for the evolution of gravity waves: the Korteweg-

deVries (KdV) zquation for long barotropic and baroclinic waves and the

nonlinear Schr~dinger (NLS) equation for short barotropic waves. After a

brief review of the asymptotic (large time) solution of these equations by

inverse scattering theory, experimental data are presented which demonstrate

the reality of soliton predictions--at least on laboratory scales. In Part III
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we exploit the exact solution of the KdV equation and its linear approximations

in order to derive rather precise criteria for modelling the evolution of

long-wave initial data on geophysical or laboratory scales. The modelling

criteria of Part II are then applied to a typical oceanic tsunami in order

to choose relevant model equations for propagating the (barotropic) wav: from

its generation region to specific target sites. Finally, in Part IV we

examine the nonlinear excitation of "edge" waves nearshore by linear wave

trains incident from deep water. Both theoretical and experimental results

are presented which document the excitation of two progressive edge-wave modes

through a nonlinear resonant-triad interaction with the wave reflected after

normal incidence from offshore.

Much of the material in Parts IT and III has appeared previously in

the literature. Hence, many of the details concerning experimental equipment,

procedures, and analysis is omitted; a thorough discussion may be found in

the cited references. The material presented in Part IV on edge waves is

recent and not presently available in the literature. For clarity, a more

detailed discussion of this material is presented. We also note here that

the notation between Parts II, III, and IV is not necessarily consistent.

II. - Water Wave Solitons.

1. - Long Gravity Waves

Consider two fluid layers with uniform densities p1 < P 2 resting in a

gravitationally stable configuration (see Figure 1) on .a horizontal and

impermeable bed of infinite lateral extent. The upper layer possesses a

free surface Sf along which pressure is constant; surface energy effects on
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Sf and the .fluid-fluid interface Si are negligible. Required are the two-

dimensional, inviscid, irrotational motions which are bounded everywhere and

evolve from given initial distribution of velocities, free surface deformation,

and interfacial deformation--the classical water wave problem. In particular,

we are interested in the barotropic displacement q of Sf from its static

equilibrium position and the baroclinic displacement 2 of S. from its

equilibrium position. To derive the KdV equation as the appropriate model

for both d_ splacements from the governing equations, the following assumptions

are necessary. First, characteristic wave lengths k (an inverse wave

number) must be long relative to the total fluid depth; i.e., (kh)2 << J,

so that dispersive effects are weak. Second, characteristic wave amplitudes

a are small relative to the total depth; i.e., a/h << 1, so that nonlinearity

is weak. Third, both weak effects of dispersion and nonlinearity are approxi-

2mately equal; i.e., c H a/h v (kh) . For simplicity, we will further assume

at the outset that density differences in our two-layer ocean are small (as in

its geophysical counterpart) so that A =_ (p2 - Pl)/P2 << 1. Expanding the

dependent parameters in the governing equations in a power series in e and

introducing the multiple time scales to = t, tI = Et, ., one finds at

leading order that the evolution equations for the initial wave are hyperbolic

(nondispersive) and linear. At this order, which corresponds to the fast time

scale to, an initial disturbance decomposes into four modes consisting of

left- and right-running, barotropic and baroclinic modes. The phase speeds

C1 and C2 of these modes are
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(la) Barotropic (surface) waves: C2 = gh

(ib) Baroclinic (interfacial) waves: C2 = 91h 1h2/h

where we have invoked the Boussinesq limit A - 0 with gA E g' << g remaining

finite. All wave modes propagate with permanent form and do not interact

with each other or themselves; the baroclinic modes propagate much slower,

O(E 1/ 2 ), than the barotropic modes.

2At the next order (E ) weak nonlinear effects and dispersion occur.

Each wave mode experiences a self-interaction on the slow time scale tI = et,

but no interactions between modes occur due to their rapid separation by the

phase speed differences of (l). The self-interaction of the right-running

barotropic mode is governed by a dimensional equation of the form

3 1 2
(2) t + CII + C-inln + -C h n 0

t x x xxx

A more convenient choice of nondimensional variables for describing these

waves are

X =  (x -Ct)/h, T = 1(g/h)1/2t
1 6

f(X,T) 2 h

In terms of these variables, (2) reduces to the KdV equation with the common

form

(4) f + 6ff + f = 0

In a similar manner, the dimensional equation governing the self-

interaction of the right-running baroclinic waves is
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3 (1_ 1i q 1
(5) 2t + C 2 +- h + Chh 2 =0

t x2 1 x xxx

Introducing the normalized variables

1/2
x = (x - C t)/(hlh

2 1 2

(6) T 1 1(g/h)2

6

f 3(12 1
2 h h

2

equation (5) reduces to the KdV equation given by (4).

The asymptotic solution of the KdV equation for arbitrary initial data

f(xO) E f 0 by inverse scattering theory has been described in detail by

1
Segur inter alios. Here, we briefly list features of the asymptotic solution

to be illustrated in the laboratory experiments.

i) An initial disturbance evolves into a finite number of permanent

waves (solitons) ordered by their amplitude. When the solitons are

well separated, the local shape of each is given by

(7) f = asech2 {(a/2) /2( X - X0 - 2a)

where a and X0 are constants. The rank ordered solitons are

followed by a dispersive train (radiation) of oscillatory waves.

ii) The number N of solitons evolving from initial data of finite

extent, say f0 = 0 for X < X1 and X > X2, is equivalent to the number

of zeros of for X > X1 where @ satisfies

dX2

(8)

(l)= 1, (1 =0.

,d)
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iii) When the net volume V (or mass) in the initial wave is finite and

positive, i.e.,

0

(9) V = f f 0 (x)dX > 0
-0

at least one soliton emerges.

iv) When f < 0 everywhere, no solitons emerge and the asymptotic
0 -

solution consists (only) of the radiation components.

v) Two other important classes of data are those for which V < 0 with

f0 0 for all X and those for which V = 0. No general statements

regarding the asymptotic solution for these cases is provided

theoretically. Experiments demonstrate that the evolution of

solitons depends on the detailed structure of the initial data.

1.1 Experimental Procedures In order to illustrate the applicability

of the KdV equation as a model for long water waves, a series of experiments

is conducted in a laboratory wave tank 31.6 m long, 61 cm deep, and 39.4 cm

wide. For studying the barotropic motions in a system with small density

differences, the density stratification plays no role; hence, in these

experiments a uniform density fluid of depth h is used. A detailed descrip-

2
tion of these experiments is given by Hammack and Segur. In order to study

the evolution of baroclinic waves, the tank is stratified with fresh waterii 3
and brine. Details of these experiments can be found in Hammack as well as

4
Hammack and Segur.

In the long wave experiments reported here, the wavemaker consists of

a rectangular piston located in the tank bottom adjacent to an upstream

end-wall. The piston spans the tank width and has a length b in the direction
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of wave motion (see Figure 2); lengths of b = 30.5 cm and 61 cm are used.

The vertical motion of the piston is controlled by an electro-hydraulic-servo

system and completely user specified. In a typical experiment, the piston

is moved for a finite time interval. Differences between the initial and

final position of the piston permit the net volume V in the generated wave

train to be calculated. Various initial data are generated by varying the

time-displacement history of the piston.

Both surface and internal wave amplitudes are measured at fixed loca-

tions (stations) along the tank. We note here that differences between the

temporal variation in wave amplitude at a fixed spatial position and the

spatial variation and wave amplitude at a corresponding fixed time are small,

0(), and neglected in all calculations.

1.2 Results for Barotropic Wave Evolution

1.2.1 Initial data with V > 0.

Figures 3 and 4 illustrate the evolution of two barotropic waves with

a net positive volume. Normalized wave amplitudes are presented at four

succeeding stations along the tank in a coordinate system which moves with

the linear (nondispersive) speed C1 . Note that the leading portion of the

wave system appears at the left in these figures. Shifts of the waves to the

left (right) at succeeding stations indicate phase speeds greater (less) than

Cl in this coordinate system.

The initial wave at (x - b)/h = 0 in Figure 3 is rectangular and positive

and appears to sort itself into three positive waves identified by separate

crests (local maxima) during propagation. These three waves are rank ordered

by amplitude and are followed by a weak train of dispersive waves whose speed

m
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is much less than C 1. In order to examine the local shape of the leading two

waves, theoretical soliton profiles defined by (7) have been superposed on

the measured data at the last measurement station (using the measured wave

amplitudes for specifying the parameter a). These profiles are not extended

into regions where the two waves are still interacting strongly with adjacent

wave structure. Clearly, the measured waves appear to be locally KdV solitons.

Further evidence that the three lead waves at the last measurement station

are solitons is provided by numerically integrating (8) using the wave profile

at (x - b)/h = 0 as the initial data f0 " Computations indicate that N = 3

solitons should evolve in agreement with the observed pattern of evolution.

The evolution of a more complicated initial wave with V > 0 is shown

in Figure 4 where a leading negative wave is followed by a (larger) positive

wave. After only twenty depths of propagation, the positive wave has

separated into three separate crests while the negative wave remains essen-

tially unchanged. During subsequent propagation the three labelled crests

of the positive wave appear to retain their integrity as they progress thro,

the leading negative wave and emerge at the front of the wave train. At the

last measurement station, labelled waves 1 and 2 clearly resemble KdV

solitons. The third wave is still interacting with the once-leading negative

wave at the last station and cannot be unmistakably identified as a soliton.

However, computations with (8) using the wave at (x - b)/h = 0 as f0 yield

N = 3 strongly suggesting the third wave is indeed a soliton. We note that

other experiments also indicate that solitons evolve from the positive waves

in the initial wave and can be identified long before asymptotic conditions

are achieved.
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1.2.2 Initial waves with V < 0

Results for the evolution of two barotropic wave systems with V < 0 are

shown in Figures 5 and 6. The initial wave in Figure 5 is the negative counter-

part of the experiment shown in Figure 3 where three solitons appeared to

evolve. Over similar distances of propagation, no solitons appear to evolve

in Figure 5 -- just as expected for initial data with f0 < 0 for all X.

Instead, a negative wave evolves whose frontal slope decreases and lengthens

with time. This lead wave is followed by a train of strongly dispersive

waves with phase speeds much less than C1 . In fact, the wave structure of

Figure 5 represents the radiation solution of the KdV equation as shown with

quantitative tests by Hammack and Segur.
5

Further evidence for the evolution of complicated waves with V < 0 is

shown in Figure 6. In this case the lead positive wave evolves into one or

possibly two waves while the negative wave evolves in a manner similar to

that observed in Figure 5. Computations using the initial wave in (8) indicate

that one soliton should develop asymptotically. Hence, the second labeled

wave is expected to eventually disappear as it appears to be doing.

1.2.3 Initial waves with V = 0

Figure 7 illustrates the evolution of initial data with V = 0 consisting

of a positive wave preceded and followed by negative waves. Applications of

(8) to the initial wave suggest that two solitons should evolve. The large

positive wave in the initial data quickly separates into two crests which

appear to migrate through the lead negative wave during subsequent propagation.

At the last station, labeled wave 1 has progressed to the front and clearly

has the shape of a soliton everywhere. The second labeled wave still appears
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to be interacting with the frontal slope of the once leading negative wave.

A trailing grain of dispersive waves similar to that of Figure 5 also evolves.

1.3 Results for Baroclinic Wave Evolution The evolution of baroclinic

long waves at the interface of a stratified fluid with h I = 45 cm, h = 5 cm,
1 2

and A = 0.05 is shown in Figure 8. Wave amplitudes recorded at seven

stations along the tank in a coordinate system that moves with the linear

speed C are presented. The initial wave is positive, and according to
2

calculations by (8), should evolve two solitons. The observed evolution is

in agreement with this prediction. (A strongly damped train of oscillatory

waves has been omitted in Figure 8.) A more quantitative comparison of the

lead wave profile with the theoretical shape (7) at the last four stations of

measurements is shown in Figure 9. The agreement with the measured data in

Figure 9 is excellent. Further results for baroclinic wave evolution are

4
presented in Hammack and Segur.

2. - Short Gravity Waves

We now turn our attention to the evolution of short gravity waves; i.e.,

waves whose characteristic length k -  is comparable to or greater than the

local ocean depth; only barotropic modes are considered. In fact, our

interest in solitons requires kh > 1.36 which we adopt as the definition of

the short-wave regime herein. In order to derive the nonlinear Schr6dinger

(NLS) equation as an evolution model, we consider a wave train with a

dominant and identifiable (mean) wave number k0. As for long waves, we require

weak nonlinearity, which is now characterized by the wave steepness E E ak0 << 1.

The wave system is permitted to have weak modulations such that the variation

in wave number 6k is small; i.e., 6k/k 0  1. In other words, we are concerned
0
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with "narrow-band" wave systems that are weakly nonlinear. Thirdly, we

postulate a balance of both small effects so that e = ak0  S 5k/k Multiple

scale analysis of the governing equations again yields a heirarchy of

problems at different orders of E. At lowest order we recover the linear

dispersive waves of Stokes6 with an amplitude a that is constant. At the

next time scale, tI = Et, the wave amplitude is modulated, and we find that

the amplitude modulations propagate with the linear group speed Ca g

Continuing to the third order with a time scale t2 = c2 t, one finds that the

complex amplitude modulation a must satisfy the NLS equation. Defining non-

dimensional coordinates as

X = Ek 0 (X - Cgt)

(10) T = 2 (gk0) 112t

A = k0 2 (gk 0 )-a/2a

the NLS equation takes the form

(11) iA + AA +vIA12A = 0

where A and v are known functions of the water depth h, gravitation g, and

carrier wave number k0 (or frequency w0 ) . Details of the derivation for

finite depth can be found in Hasimoto and Ono 7 inter alios.

Like the KdV equation, the NLS equation can be solved exactly for

arbitrary initial data by inverse scattering theory. When k 0h > 1.36,

envelope solitons can occur; the one-soliton solution of (11) is
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(12) A = ci sech{aX}exp{ila2 T

where a is an arbitrary constant related to the envelope amplitude. In general,

initial data of finite extent will evolve a finite number of envelope solitons,

rank ordered by the group velocities of their dominant carrier waves and

embedded in a dispersive train (radiation) of oscillatory waves which decays

in amplitude with time. It is important to note that the speeds of both the

solitons and the radiation components are not impacted by nonlinearity at this

order. Hence, unlike their long wave counterparts of the KdV equation, these

solitons and radiation components do not separate with time. This suggests

that in order to observe clearly the evolution of envelope solitons even in

a contrived laboratory experiment, one must design the initial data such that

the wave content of the radiation spectrum at the dominant frequency of the

soliton carrier waves is small. Alternatively, one must observe evolution

until the inviscid decay of the radiation (by frequency dispersion) combined

with viscous decay has progressed sufficiently.

Although a quantitative comparison of theory and experiment for the

NLS equation analygous to that of the KdV equation has not been performed,

qualitative tests by Yuen et al8 provide evidence for its applicability to

narrow band systems. We present in Figure 10 an (unpublished) experiment

which illustrates the evolution of an initial wave packet whose envelope

amplitude and carrier wave frequency are modulated; the mean wave frequency

is = 0.6 sec. The experiment is conducted in a tank approximately

50 m long, 2.5 m wide, and a water depth of h = 1 m. After 45 m of propaga-

tion, the initial packet evolves into a collection of wave groups which are
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ordered by the group speed of their dominant carrier wave. Energy is concen-
-l

trated in the group with carrier waves at the dominant period w 1 0.6 sec of

the initial data. The envelope of this group clearly has the shape of the

soliton profile (12) shown superposed on the measured wave. The envelopes

for the other wave groups do not agree with (12), and apparently these groups

represent the radiation components in the initial data.

Although testing of the NLS equation is not complete, there is growing

9evidence (see Yuen and Lake ) that the dynamics of short-water waves is much

more complicated than that of long waves,and more complicated models are

required. The restriction of the NLS equation to narrow band systems and its

probable) instability to transverse perturbations appear especially severe for

many geophysical applications.

III. - Modelling Criteria for Long Water Waves.

Even with all the assumptions implicit in the classical water-wave

problem introduced in Part II, the general equations remain intractable analyt-

ically. Hence, we resort to further approximations such as those required to

yield the KdV and NLS equations. Generally, approximations are formalized by

perturbation expansions in terms of a small parameter(s). In application of

these approximate models, questions naturally arise as to when the inequalities

used in ordering the physics are actually satisfied; i.e., how small is small?

For evolution models, the relevant question distills into "during what time

interval does a particular approximation correctly represent the general

solution?" Closely related to this topic are questions of similitude between

laboratory models and their geophysical-scale counterparts. The answers to all
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of these questions involve determination of nondimensional parameters which

characterize the phenomenon in question. In practice these parameters are

often deduced through the ingenious use of dimensional analysis, by examina-

tion of the governing equations, or using the most preferred but least available

method, examination of exact solutions of the general and approximate model

equations. Here we examine the KdV equation and exploit exact solutions of its

various approximations in order to develop rather precise criteria for

modelling the propagation of long water waves. These criteria are then applied

to the problem of tsunami propagation across ocean basins--the topic which

precipitated the analysis. Further details are presented by Hammack and Segur.10

1. - Analysis.

In order to obtain definitive results, we adopt the following point of

view. If the initial wave f is sufficiently smooth and localized, and if
02

1 a/h and F2 = (kh) based on the initial data are both small, then the

KdV equation (4) will be the approximate model eventually. (In fact, we know

that (4) is appropriate when e1 = O( 2).) If C1 and c 2 are not the same

order of magnitude initially, then simpler forms of the KdV equation may be

applicable for some time interval, e.g.,

(13) f = 0 (linear, nondispersive model)

(14) f + f = 0 (linear, dispersive model)xxx

(15) f + ff = 0 (nonlinear, nondispersive model)T X

Ursell showed that the nondimensional parameter

(16) U = I/E ak- 2/h 3

12
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which we shall call the Ursell number, is an important indicator to determine

which of these models is appropriate. One should use (14), (4), or (15),

depending on whether U << 1, U = 0(l), or U >> 1, respectively. Ursell also

provided evidence that U is time dependent and will tend to an order-one

limit so that all waves in this category eventually propagate according to

(4) as postulated previously. Although there is general agreement with

Ursell's results, there is disagreement on how to interpret "order unity" and

-I
how to define the relevant length scale k for the evolving waves, To make

his criteria more precise, we examine here initial data for which Ei << '2< 1

initially so that the linearized models (13) and (14) are the relevant approx-

* -1
imations of (4). The dimensional length scale k0  for the initial data is

defined as its overall length and the dimensional amplitude scale is a 0 .

Further, we will focus on criteria for modelling the leading wave only.

Results for the trailing wave structure and the nonlinear approximation (15)

are given in Hammack and Segur. 1 0

1.1 Linear Dispersive Theory Since nonlinearity is small for the

postulated initial data, we assume a small parameter u << 1 exists and seek a

formal series solution of the KdV equation (4) in the form

(17) f = f + P 2f2 + O(I 3)

(The required definition of i will come out of the analysis.) Substituting

(17) into (4) yields a heirarchy of problems.

(18) (f ) + (f ) = 0,Uf (X,0) = f(f) 1 XXX0
+ lx-6f1 0f(×O

(19) (f2) (f2)XX (fl X f2 (X,) 0

etc.
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The solution of (18), which is equivalent to (14), is well known:

(20) If f 0.. (K)exp[i(KX + K T)]dK
2 0

where

(21) f 0 (K) = f0 (X) exp (-iKx) dx

is the Fourier transform of the initial data. For practical reasons, we are

most interested in the asymptotic form (T ) of the solutions for both the

linear and nonlinear models. As T -* with IXI/t - 0 in order to remain at the

wave front, the asymptotic form of (20) is

(2 f-1/3 Ai q-2/(22) fl(X,T) = f (0) (3T)- Ai( ) - if'(0) (3T) - 3 Ai' (6)00

1 -l -4/3
20-f0(0) (3T) Ai"( ) + 0[(3T) -  ]

where X/(3T)I/ 3 and Ai(t)is the Airy function. The coefficients in (22)

have simple interpretations:

(23a) f(0) = d V

00

(23b) -if' (0) fxf 0 dX = SlU 0

-CO

02

1^ 2 fd(23c) - f" (0) I X f0d X  202 jX X = B2V-

-00

where V is the nondimensional volume of the initial wave, U is an Ursell
0

number for the initial wave, and 81. 8 are constants that depend on the
2

details of the initial wave. Thus (22) becomes



(24) lif (x, T) =VC3T) / {Ai (E) + (.L-T) -13Ai' (C)

U 2 D3T)-
2 /3 Ai"(Q) + ...

From (24) it follows that the time required for this representation to become

4 i asymptotic (second term smaller than first, etc.) is at least

(25) (3-0) 1/3 U 0/Mv

A particular solution of (19) is

P2 fXXT 2
(26) 2p = f p 1 (z,r)dz)

and defining

(27) O(X) = I f 0 (z)dz}

the homogeneous solution of (19) is

2 2 fX 2 -

(28) pI f h(X,T) = v Ai (z) dz + L JG{(K)- (iK)-

exp[i(KX + K 3T)]dK

Thus, as T -- , IxI/r + 0

22 12(29) pf 2(xT) = V f-I Ai(z)dz] + Ai(z)dz +..
-CO -40

Comparing (24) and (29), the appropriate definition of pi is found to be simply

(30) p=V
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In other words, linear dispersive theory along with its large-time asymptotics

requires the dimensionless wave volume V to be small. (Note that V is independent

of time.) Since the solution of (29) remains 0(l) as T + , the series (17)

cannot remain asymptotic after

(31) (3T)I 1/3 - IVi- I

Thus, if the initial wave has a dimensionless volume V (assumed # 0) and

Ursell number U0 based on its initial (given) dimensions, asymptotic linear

dispersive theory is valid in an interval no longer than

(32) U0/!VI 1 (3T) I/3 << /IVI.

1.2 Nondispersive Linear Theory. Since our initial wave is postulated

to be linear, then U0 << 1 and necessarily fVy <<< 1, as well. The derivation

of the KdV equation outlined in Part II indicated that linear nondispersive

theory (13) occurs on the first time scale of evolution. Hence we may write

(33) 3T << E 2 = (k0h) 2 = (Uo/V) 2

for (13) to be applicable.

2. Sumary and Application of Criteria to Tsunamic Propagation

In summary, we have examined the evolution of long-wave initial data which

is parameterized by an initial Ursell number U0  << 1 and volume (or mass)

V <<< 1. We may model the evolution of this initial data using linear nondispersive

theory (f = 0) during a time interval



(34) 0 < 3T < rI = (U012

The next relevant model is linear dispersive theory (f + f = 0)
T XXX

which is valid during

(35) T << 3T T2 = U0 3

with its asymptotics becoming valid during

1

(36) 2  << 3T << T3  = V2.

Subsequently, we must use the KdV equation (f + 6ff + f = 0) for
T X XXX

(37) 3T >> T3

(The question of the time scale for applicability of KdV asymptotics is discussed

10by Hammack and Segurl.) As an example of the application of these results,

consider the dimensional scales adopted by Carrier 12 for major tsunamis which

4 -1 5impact entire ocean basins: a0  10 ft., h = 1.5 * 10 ft., k = 2 10 ft.

Then U0 % 0.1 and V I 0.01 and linear nondispersive theory is valid for times

corresponding to propagation distances (using C1  gh) of

0 < x << 600 miles.

Linear dispersive theory is appropriate for

600 miles << x << 6,000 miles

indicating that dispersion may affect this wave over much of typical ocean

.... . • , : ...... ,. . .... . . - ..... , ,, . .. ,. ; ..,,,, ,. - _,L ' ..=' - "2 . . ,A
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trajectories. Even so, linear asymptotics do not apply until x >> 6,000 miles,

which exceeds the length of realistic trajectories. Hence, linear dispersive

asymptotics and the KdV equation are not required for describing the lead wave

of the tsunami discussed here. (The KdV equation may be used, but it is

unnecessarily complicated.) Of course, other factors may be required to

accurately model long-term tsunami propagation (such as the variable bathymetry

along trajectories and three-dimensional spreading of wave energy); the intent

of the analysis here is only to develop insight into the relative importance

of dispersion and nonlinearity.

IV. - Excitation of Standing Edge Waves on Beaches

1. - Introduction

In recent years considerable attention has been focused on the occurrence

of ocean waves which become trapped and capable of concentrating energy in

localized regions (wave guides). Wave trapping can occur whenever gradients

exist in a parameter which affects the wave's phase speed, e.g., Coriolis parameter,

.. .. .. 13
Brunt-Vaisala frequency, current speeds, and water depth. Stokes provided

the first theoretical evidence of trapping for surface (gravity) waves near the

shoreline of a plane sloping beach. Stokes found a normal mode solution for the

(barotropic) departure n of the water surface from its static equilibrium position

(see figure lla) of the form

(38) nm(X,y,t) = a sin 6 exp (-ky cos 6) cos k x sin wmt

where -tan 6 is the beach slope, x points in the longshore direction, and

y points offshore. The (linear) dispersion relation for the various longshore

mode number m = 1,2, ... is

4i



- 19 -

(34) 0 < 3T << T = U02

The next relevant model is linear dispersive theory (f + f = 0)

which is valid during

(35) T 1 << 3t << =

with its asymptotics becoming valid during

1
(36) T2 << 3 T << = V 2 .

Subsequently, we must use the KdV equation (f T + 6ff + f = 0) for

(37) 3r >> T

(The question of the time scale for applicability of KdV asymptotics is discussed

by Hammack and Segurl0 .) As an example of the application of these results,

consider the dimensional scales adopted by Carrier 12 for major tsunamis which

impact entire ocean basins: a0 = 10 ft., h = 1.5 104 ft., ko1 = 2 • 105 ft.

Then U0 1 0.1 and V "1 0.01 and linear nondispersive theory is valid for times

corresponding to propagation distances (using C1  gh) of

0 < x << 600 miles.

Linear dispersive theory is appropriate for

600 miles << x << 6,000 miles

indicating that dispersion may affect this wave over much of typical ocean
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2(39) W g sin a2 = gkm~

where k = mn/b is fixed by the beach width b. Note that the Stokes' mode
m

of (38) is periodic in the longshore direction with crests pointing offshore

which decay in amplitude with an e-folding distance ye = (k cos B)-1

The crest amplitude is maximum at the shoreline with a magnitude a sin 6

where a is referred to as the run-up amplitude. (Of course, run-up phenomena

cannot be represented by linear solutions; however, the reality of run-up is

acknowledged since a is the up-beach length of the horizontal projection of the

vertical shoreline amplitude.) Ursell14 demonstrated that the Stokes' mode

is only the lowest (j = 0) of a discrete set j = -0, .... J of trapped modes

-where J is the greatest integer satisfying

(40) (2J + 1) 6 < 2

These higher discrete modes are algebraically complicated but retain longshore

periodic behavior. Their crest amplitude is maximum at the shoreline but

oscillates in the offshore direction with j nodes while decaying exponentially

15(see figure llb). To complete the set of normal modes, Hanson showed that

there exists a continuous spectrum of waves with wave-number magnitude k

2
satisfying w > gk. These modes are even more complicated to describe

algebraically but resemble simple deep-water wave trains far offshore. An

example of one of these modes with crests parallel to the shoreline is shown

in figure llb. We emphasize here that the continuous spectrum modes are not

trapped like the discrete modes.

.4__ _
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Oceanographic interest in edge waves appears to have originated in

Isaacs et a.16 suggestion that these waves might be responsible for "surf beat"

phenomena. Since then, edge waves have been indicted as a potential mechanism

17
for numerous features of coastal dynamics such as beach cusps (Guza and Inman)

crescentic bars (Bowen and Inman) 1 8 , and rip currents (Bowen and Inman) 19 . The

lack of direct observational evidence of edge wave modes on beaches (i.e., wave

crests pointing offshore!) naturally raises questions as to how and if these modes

can be excited. The most important mechanism for extensive generation opportunities

20
of edge waves was provided by Guza and Davis who demonstrated theoretically

that Stokes' modes could be excited by simple wave trains normally incident onto

a perfectly reflecting beach from deep water. Basically, the nonlinear coupling

between the incident/reflected wave of frequency W and background edge wave

"noise" of subharmonic frequency w = W/2 leads to a resonant interaction and

growth of the edge wave noise. Eventually other nonlinear processes develop

to limit growth; however, at steady state the edge wave amplitude exceeds that

of the incident/reflected wave. The entire evolution of the edge wave has been

21investigated theoretically by Guza and Bowen (hereafter referred to as G-B),

Minzoni and Whitman
2 2 (hereafter referred to as M-W), and Rockliff

2 3

Herein we present quantitative experimental measurements on edge wave

excitation by normally incident wave trains. Some of the predictions of G-B and

M-W are tested and necessary modifications for imperfectly reflecting beaches are

presented. An outline of the presentation is as follows. In Sect. 2 we review

the theoretical results with emphasis on the prediction which can be explicitly

tested by the experiments. In Sect. 3 a brief description of the experimental
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facilities and data analysis techniques are discussed. A comparison of measured

and predicted data appears in Sect. 4 followed by a summary of the major results in

Sect. 5. More details of each aspect of this note may be found in Lin and Hammack.24

2. - Review of the Theories

The first description of both edge wave excitation and subsequent evolution

21
was developed by Guza and Bowen using the shallow-water equations; hence, their

results are limited to small beach angles (B << 1). With clever but intuitive

reasoning, G-B isolate several processes, analyze each separately, and combine

23
linearly to yield a complete evolution model. (More recently, Rockliff has

reproduced some of the G-B results relying more formally on the governing

shallow-water equations.) Minzoni and Whithan22 use the full equations and provide

the most formal (mathematically) description of the edge wave evolution process;

their results remain valid for arbitrary beach slopes B < 7/2. The greater

formality of the M-W formulation permits more justifiable ordering of different

processes. Hence, the outline below of edge wave evolution is based primarily

on their formalism. Following the qualitative description, a quantitative listing

of relevant parameters predicted by both M-W and G-B will be presented.

The classical water-wave problem for the inviscid, irrotational, barotropic

motions of an incompressible ocean in the wedge-shaped region of figure lla may

be formulated in terms of a complex velocity potential 0. Initially, we have a

linear wave train normally incident onto the beach from deep water; the incident

wave amplitude far offshore is a.. We also take the incident wave to be perfectly

reflected from the beach. (The reflection coefficient is R = a r/ai = 1 where a

is reflected wave amplitude.) Hence, the forcing for the onshore edge wave noise

is a standing wave mode which is a member of the continuous spectrum of normal modes
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discussed in Sect. 1. To simplify (somewhat) the standing wave description,

it is further assumed that the beach slopes are a member of the denumerably

infinite set B = n/2N with N = 1,2, .... The complex potential for the

standing wave may be written as Os exp(iWt), and we note that << .

In addition to the primary standing wave, we assume three-dimensional perturbations

by Stokes edge wave with complex potential e exp(iwt) where 'e'<< C << 1

initially. On a very short time scale (stage 1), nonlinear interactions between

the primary wave and the edge wave noise are negligible. However, on a longer

time scale (stage 2), quadratic interactions arise as a consequence of the nonlinear

boundary condition at the free surface and become significant. Assuming the edge

wave noise that satisfies the resonance condition w = W/2 to dominate, quadratic

interactions *s e* (where * denotes complex conjugate) give rise to terms of

the form exp(iWt/ 2) and contribute to the growth of the subharmonic edge wave

noise. This interaction between the linear standing wave and linear edge wave

noise produces exponential growth of the form a exp(yt) where a is the (real)

edge wave amplitude at any crest location (i.e., a - a(x,y,t), and we take

a(x,O,t) = A(x,t) as the shoreline amplitude) and y is the initial growth rate.

The edge wave noise grows until a later time scale (stage 3) is reached where

its finite amplitude leads to the development of processes which limit further

growth. First, quadratic self-interactions of the edge wave with the form

e Oe exp(iWt) contribute to the offshore standing wave; this is termed

radiation by G-B and corresponds to the fact that nonlinear (even second order)

standing edge waves leak energy at frequency 2w to deep water. Since I s~

for the disturbed standing wave in stage 3, radiation feedback suggests that

a steady state may be reached when 1e , i.e., the edge wave becomes larger

locally than the forcing wave. Second, cubic self-interaction terms of the form
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@e @e e * ~ exp(iWt/2) contribute further to edge wave nonlinearity by modifying

-1 its dispersion relation. Hence, the system is retuned and the resonant frequency

is shifted. If the forcing was perfectly resonant initially, it will now be off

resonance and an effective reduction of the on-resonance growth rate y will occur.

(Of course, if the initial forcing is slightly off-resonance, a similar modification

in y is required.) When combined, all of these processes lead to an evolution

for (inviscid) edge waves of the form

dA 2 2 3
(41) =(y K) A- p A

where y is the initial on-resonance growth rate, K is a measure of the reduction

in forcing efficiency due to nonlinear retunina, and V is a feedback coefficient

due to both radiation and retuning. (Note that in (41) we tacitly assume that

the edge wave phase remains constant through stage 3. Theoretically, this

assumption is invalid; however, the experimental data support its applicability.)

At the risk of misquoting G-B and M-W and possibly introducing numerical

errors, we now list quantitative expressions distilled from their studies for

the parameters appearing in (41). The initial (on-resonance) growth rate predicted

for the edge waves is

0.0424 a. 
W 3

(42a) G-B: y = 1
gVB- B2

0.0426 a. W3

(42b) M-W = gg ,V- tan2 B

where the M-W result is accurate to within 3% for B < 7/4. These predictions

are in agreement in the shallow-water limit (B + 0). Modification of the
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initial growth rate by nonlinear retuning in steady state may be conveniently

written to the same order of small parameter e = a k (where a is the
0 0 0

steady-state run-up amplitude of the edge wave) as

(2(2 ) (0)(43) K = W -

with w and w representing the nonlinear and linear natural frequencies

of the edge wave, respectively. The shallow-water limits for w(2) given

explicitly by G-B and inferred from the presentation of M-W are

(44a) G-B: W (2 (0) .5 0
(44b) M-W: (2) (0) [1 + 0.012 2];

0

(0)
W = (g k 8) in both cases. The different results of (44a) and (44b) do

not appear reconciliable. Predictions for the feedback coefficient p in the

shallow-water limit also differ at the same order of approximation according to

(45a) G-B: p = 0.001795 W
2 4

5

(45b) N-W: u = 0.002323 2 W4

Finally, we note that the steady-state amplitude of the edge wave at the

shoreline is found from (41) to be

(46a) Ao = 2 -
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3. - Experimental Facilities and Procedures

A set of five experiments are conducted to study the excitation of

standing edge waves on a beach by waves normally incident from offshore.

Experiments are performed in a laboratory basin 1.83 m wide, 4.0 m long

and 30 cm deep as sketched in figure 12. The tank is equipped with a

mechanical wave generator and a smooth beach whose slope can be varied. An

actual beach width of b = 1.60 m was used in the experiments by incorporating

internal sidewalls over the beach section as indicated in figure 12. This

enables the offshore tank section of uniform depth to be surrounded by

energy-absorbing material to minimize unwanted reflections and simulate

open-ocean conditions. Extensive precautions were taken to insure that the

shoreline and wavemaker were parallel and to prevent beach "pumping" during

actual experiments.

An offshore water depth of h = 25.4 cm was used in all five experiments

while the beach slope was varied from 8 = 15° (N = 6) to 8 = 22.50 (N = 4);

one experiment, run 4, was conducted at 8 = 200 which does not correspond to

a slope of n/2N for any integer N. It is immediately apparent that the

offshore uniform depth region does not conform to the (unrerlistic) mathematical

model where the water depth increases linearly offshn,. A .ver, the offshore

distance over the sloping beach section always exceeded three e-folding distances

(> 95% decay) for the edge wave modes excited (assuming Stokes' modes). Based

on Minzoni,2 5 it is not expected that the edge wave dispersion relation is

affected by the uniform depth offshore in any of the experiments.

In all experiments wave amplitudes are measured at three locations; one

gage onshore over the sloping beach and two gages offshore in the uniform

depth region. The onshore gage is always positioned at a longshore location
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corresponding to an edge wave antinode. The reality of edge waves very

near the shoreline requires that they deviate from the profile predicted

by (38); hence, the onshore gage is located approximately one e-folding

distance away from the shoreline and always outside of the surf zone.

The procedures adopted for each of the five experimental runs are

as follows. First, the frequency w of the desired edge wave is calculated

based on the beach width b = 1.6 m; the offshore wavemaker is then adjusted

to a frequency W = 2w. The incident and reflected wave amplitudes (ai and ar

of the partial standing wave systems are then determined from simultaneous

measurements at the offshore gages in the absence of edge wave excitation. Edge

wave excitation is suppressed by inserting a thin plate perpendicular to the

shoreline which penetrates the surf zone; the plate introduces boundary

conditions which destroy the resonance condition necessary for rapid edge wave

growth. The thin plate is then removed permitting the evolution of the edge

wave. Once the edge wave attains a steady state the wavemaker is stopped and

the (unforced) decay of the edge wave over the sloping beach is measured. Hence,

each experiment produces a time series of the water surface elevation onshore

and offshore containing stage 1, stage 2, stage 3, and additional stage 4 where

edge wave forcing is terminated and viscous damping forces dominate.

4. - Comparison of Experiment and Theory

Table 1 summarizes the measured data for the partial standing waves

generated by the wavemaker/beach system in the absence of edge waves. The

incident and reflected wave amplitudes are presented along with the respective

reflection coefficients which range from 2 = 0.134 to R = 0.500. (Recall that
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theoretical results assume perfect reflection with R = 1.) It should be

noted that wave breaking near the shoreline was observed in each experiment

and was especially strong in run 1.

A typical time series (run 2) taken onshore and offshore during edge

wave excitation, evolution, and eventual damping is shown in figure 13. The

onshore record clearly shows the effect of edge wave growth as it alternates

between construction and destructive interference with successive crests of

the incident/reflected wave system. (This behavior is a direct consequence of

subharmonic excitation with W = 2w.) A periodogram computed using the Fast

Fourier Transform of the onshore wave record for run 2 is shown in figure 14.

The first peak in the spectrum corresponds to the excited edge wave mode while

] the second peak corresponds to the standing wave generated from offshore.

The equally spaced peaks at higher frequencies represent the superharmonics of

both the edge wave and standing wave. The centering of wave content about

well-separated and narrow bands with identifiable dominant frequencies (w, 2w, 3w, ... )

such as that exhibited in figure 14 permits the use of complex demodulation

techniques to view the real time evolution of both the amplitude and phase of

each dominant wave component (see Bloomfield 26). using the periodogram, an

initial guess, say w , for the dominant frequency in a band of interest is

determined. The time series is then multiplied by exp(-iw t) to shift the

desired wave content to zero frequency. This demodulated signal is then

low-pass filtered in time to yield the instantaneous phase and amplitude of the

signal component with frequency w . If the estimated frequency w is in error,g g

a linear change in instantaneous phase with time will be observed; the slope of

the linear change represents the error in w . In this manner the dominant
g
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frequency of each narrow band in the periodogram may be determined very

accurately as well as its instantaneous amplitude and phase. (More details

on the application of complex demodulation technique including a discussion

of the low-pass filter properties may be found in Lin and Hammack. 24 ) The

edge wave frequencies in each experiment were determined using this technique

and are summarized in table 2. Figures 15 and 16 show the instantaneous

amplitude and phase, respectively, of the edge wave harmonic at the onshore

gage in run 2. Both parameters oscillate rather wildly during the initial

time t < 25 secs; this behavior is a characteristic result when the signal-to-noise

ratio is small. (Note that during this period this instantaneous amplitude

of the edge wave is less than 0.07 cm;) The edge wave amplitude in figure 15

then begins to grown in an exponential manner while the edge wave phase in

figure 16 becomes constant. As time continues to increase, edge wave growth

slows and a steady state is achieved for t > 70 secs; the gage-site amplitude

of the edge wave at steady-state is a = 0.754 cm. The measured growth rates
0

Ym and steady-state amplitudes a are shown in table 2. The inferred shoreline
0

amplitude A based on the measured a at gage-site is easily calculated; the0 0

ratio of A /a. ranges from 3-6 in all experiments in agreement with the0 1

theoretical prediction that steady-state amplitudes of the edge wave should

exceed those of the offshore standing wave. It is important to note that

measured growth rates are significantly influenced by viscous and turbulent

damping forces which must be clarified before a legitimate comparison with

inviscid and irrotational theoretical models. The viscous damping rate is

easily measured in the laboratory model simply by turning off the wavemaker

and monitoring the damping of the edge wave harmonic with time. Typical

4" . . .. . '" - " " iJ...i
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results are shown in figure 17 which corresponds to run 2. As expected,

exponential decay occurs when the edge wave becomes sufficiently small (and

linear theory is applicable). The measured decay rates 6 in the exponential

stage for each experiment are presented in table 2. As noted by Guza and

Bowen,27 the damping of edge waves in the presence of breaking incident waves

is likely to be dominated by turbulent exchange mechanisms rather than (laminar)

viscosity. Viscous effects are enhanced by laboratory model scales and should

play an important role; however, based on the results to follow, turbulent

exchange mechanisms also appear to be important at laboratory scales. Ignoring

the effects on laboratory damping of edge waves due to incident wave breaking,

a measured "inviscid" estimate of the initial growth rate may be calculated

by y = Yj + 6. Results for Y are tabulated in table 2 along with them

theoretical predictions for the growth rate according to 42a. It is evident

that large discrepancies still exist; however, it should also be remembered that

the theoretical predictions assume a perfectly reflecting beach. To examine the

potential effect of the imperfect reflection in the experiments we have plotted

the ratio of ym' /y versus the reflection coefficient R in figure 18. Note that

excellent correlation exists (data lie on 450 line) suggesting that the growth

rates should be calculated using the reflected wave amplitude a instead of ther

incident wave amplitude a., i.e., we should replace y by yR. Theoretical estimates1

of yR are listed in table 2. It is important to emphasize that this behavior

of the measured data clearly demonstrates that it is the reflected wave component

of the offshore standing wave which drives the edge waves. It further supports

the observation (Guza and Inman 17 ) that edge waves do not occur on dissipative

beaches which produce little reflection.
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In order to compute the theoretical amplitude of the edge waves in

steady state, the results above suggest that we should modify the theoretical

growth rate in (46) to the form

(46b) A = R(y 2

The theoretical amplitude at a specific gage site then becomes

(47) a0 =A0 cos km exp(-kmycos 8);

results of computations for the predictions of both G-B and M-W are shown

in table 2. Except for run 4, theoretical results exceed measured data by

factors of 1.18 to 1.91. This behavior pattern is expected since the turbulent

damping of the edge waves in the presence of breaking incident waves has been

neglected. Also consistent with this hypothesis is the fact that agreement

between experiment and prediction is best in run 5 where the least wave breaking

was observed. Run 4 is anomolous as the measured amplitude exceeds theoretical

prediction. (Interestingly, absolute agreement between measured and predicted

0 data is best for run 4!) There is also the following evidence that run 4 is

unusual re. ive to the other experiments. Note from table 1 that the offshore

-inina wave changes little between runs 3 and 4 while the steady-state amplitude

t-,, w,rov in table 2 doubles! In other words, a major difference in

............ r een t]oucih the forcing remains approximately constant.

. ,:-wr,(en runs 3 and 4 is the slightly greater
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beach slope (20) in run 4 which no longer corresponds to one of the set

i/2N required by the theoretical models. Based on this limited datum, it

does appear that the predictions for steady-state response on beach with

slopes satisfying 8 = r/2N cannot be extrapolated to intermediate slopes.

(However, extrapolation for the initial growth rates does appear permissible

with the modifications due to partial reflection described earlier.)

5. - Conclusions

Based on the experiments described herein, the following major conslusions

may be stated regarding edge wave excitation on beacnes by normally incident

waves from offshore.

i) The theoretical growth rates calculated for perfectly reflecting beaches

may be generalized to beaches with imperfect reflection simply by

reducing the growth rates in direct proportion to the reflection

coefficient of the beach. This result suggests that the reflected wave

is indeed the driving force for edge wave response and absolutely

necessary in order to excite these modes.

ii) Growth rates modified for partial reflection effects may be extrapolated

to beaches with slopes not satisfying 6 - 7/2N.

iii) No change in the edge wave phase occurs once the exponential growth

stage is encountered. Hence, the evolution equation for the real

amplitude of the edge wave is applicable.

iv) There is limited evidence that the steady-state amplitudes of edge

waves on beaches with 6 n i/2N are significantly larger than those

for nearby beach slopes with 6 = n/2N.
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43

v) Damping effects on edge waves are significantly influenced by turbulent

exchange mechanisms resulting from breaking incident waves, even on the

laboratory scale.
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Run W a a R

r

(rad (cm) (cm)
Isec)

1 150 9.98 0.82 0.11 0.134

2 150 7.54 0.62 0.31 0.500

3 180 9.82 0.87 0.30 0.345

4 200 10.65 0.90 0.32 0.356

5 22.50 10.86 0.63 0.29 0.460

Table 1. Beach and offshore standing wave properties
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FIGURE CAPTIONS

Figure 1. Definition sketch of the fluid domain.

Figure 2. Schematic drawing of the wave generator.

2
Figure 3. Surface wave evolution: h = 5 cm, b = 61 cm, V 30.5 cm

N = 3. ,measured profiles; 0 soliton profiles
computed using (7).

2
j Figure 4. Surface wave evolution: h 5 cm, b 30.5 cm, V 30.5 cm

N = 3. - , measured profiles; 0 , soliton profiles

computed using (7).

2
Figure 5. Surface wave evolution: h = 5 cm, b = 61 cm, V = 30.5 cm 2

, N = 0.

* 2Figure 6. Surface wave evolution: h =5 cm, b = 30.5 cm, V = -30.5 cm ,N = 1.

2
Figure 7. Surface wave evolution: h = 5 cm, b = 30.5 cm , V = 0, N = 2.

measured profiles; 0 , soliton profiles computed using (7).

Figure 8. Internal wave evolution: h, = 45 cm, h2 = 5 cm,

b = 61 cm, A = 0.05

Figure 9. Comparison of leading wave profiles with theoretical

(internal) KdV soliton.

Figure 10. Evolution of a narrow-banded wave packet. - , measured

profiles; 0 , soliton profile computed using (12).

Figure lla) Definition sketch of fluid domain and Stoke's edge-wave mode.

b) Sample offshore profiles of higher edge-wave modes: -

discrete spectrum (trapped) mode; --- , continuous spectrum

(untrapped) mode.
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Figure 12. Schematic drawing of wave basin plan view.

Figure 13. Time-series of water surface elevations onshore and offshore.

Figure 14. Periodogram of onshore time series.

Figure 15. Amplitude evolution of subharmonic edge wave for run 2.

4 Figure 16. Phase evolution of subharmonic edge wave in run 2.

Figure 17. Viscous damping of subharmonic edge wave in run 2.

Figure 18. Correlation of measured and theoretica- "inviscid" growth

rates with beach reflection coefficient.
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