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Research initiated under contract N0O0014-78-C-0889 is most conveniently
summarized in the form of four appendices. First, in Appendix I, the five
different areas of research on water waves are briefly summarized. In two of
these areas (evolution of long internal waves and evolution of envelope solitons)
work has not been completed; some results to date are described. In the remaining
three areas, final manuscripts have been completed and are presented in Appendices
II, III, and IV. 1In particular, Appendix II is a copy of a paper entitled
"Baroclinic Tsunami Generation" to appear in the Journal of Physical Oceanography,
September 1980; Appendix III is a copy of a paper entitled "Long Waves Generated
by Complex Bottom Motions" to appear in Proceedings, 17th Conference on Coastal
Engineering; and Appendix IV is a copy of lecture notes on small-scale ocean
waves presented at the summer (1980) course "Topics In Ocean Physics" held at

the International School of Physics "Enrico Fermi", Varenna, Italy.
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Research Summary

Research conducted during the past year under Contract No. N00014-78-C-0889

may be conveniently divided into four categories.

I. Baroclinic Tsunami Generation. Utilizing experimental data obtained

previously, a study was completed on the internal waves generated in a stratified
ocean by a vertical motion of the sea floor. Details of this study are presented
in the enclosed manuscript (see Appendix II) which will appear in the Journal of

Physical Oceanography.

II. Evolution of Long Internal Waves, Subsequent to the generation processes

mentioned above, the evolution of long internal waves on a thin pycnocline has
been examined. Dr. Harvey Segur of Aeronautical Research Associates of Princeton
and I have analyzed the experimental data and prepared a draft manuscript which
examines several model equations for internal wave evolution in the context of
experimental data. This work is ongoing; a copy of our final manuscript will

be forwarded as soon as possible.

III. Long Waves Generated by a Complex Bottom Motion. As a final statement

on barotropic water-wave generation by motions of the sea floor, Professor Frederic
Raichlen (of Cal Tech) and I completed a manuscript (enclosed) which illustrates

a technique for computing wave structure when the time-displacement history of

the sea floor is very complicated. The analytical mode was verified by experiments.
These results were presented at the 17th International Conference on Coastal
Engineering in Sydney, Australia (March 1980), and the manuscript (see Appendix IIT)

will appear in the meeting proceedings.




IV. Lecture Notes on Small-Scale Ocean Waves. At the invitation

of the Italian Society of Physcis, I preseunted a series of lectures at their

summer course on "Topics in dcean Physics" held during 7 July - 19 July 1980 at

the International School of Physics "Enrico Fermi”, in Varenna, Italy. These

lectures focused on the nonlinear aspects of water waves including solitons and
resonant-interaction forcing of edge waves. The collection of lecture notes

i from the ten invited speakers will be published by the North Holland Publishing

J"

Company. A copy of my notes is presented in Appendix IV.

¥

V. Evolution of Short-Wave (Envelope) Solitons. The first goal of the

experimental research program on short-wave evolution was the direct generation

" e
o e s

of an envelope soliton. The best results obtained to date for a wave packet

. with a carrier wave period T = 1 sec and water depth h = 1 m are shown in figures

o

1 abcd. Results at four positions along the (Berkeley) wave tank are presented

with theoretical soliton profiles based on the local amplitude of the wave packet. )

] The initial data measured at x = 6 m from the wave paddleg agree well with the

theoretical soliton profile. During subsequent propagation the packer retains

it b AN i

its compactness and travels with the (predicted) linear group speed of the carrier .
wave. However, the measured packet deviates slightly from the predicted soliton
profile; this behavior is especially obvious at the last station (x = 45 m) of

» measurement. The front-to-back asymmetry emerging at x = 45 m is similar to that

B

observed by previous researchers on deep water wave packets. In fact, the

Caa

‘ symmetrical measurements prior to the last measurement station are quite exceptional

L LA M i

and have not been reported previously in the literature. (I might add that the

first three wave traces of figure 1 are almost identical to those generated in

A A

the Florida facility; only the added length of the Berkeley wave tank permitted

é: the distortion to be clearly observed.)
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Below cach wave trace in figure 1 T have also presented a histogram

i
;‘E of the node-to-node wave periods through the wave packet. This rather
|
| crude attempt at complex demodulation provides some insight into the wave
| packet evolution. At the first two s=tations, local wave periods differ
i little from the programmed period of 1 sec. However, at the last two

’ stations the lcading waves are clearly developing periods up to 15% longer
than the 1 sec period of waves near the center of the packet. The origin
of the longer wave content is not c¢lear although its emergence at the
front of thé packet is probably responsible for the chunges between meas-
ured and prédicted puacket profiles.  The most plausible explanation for
the unwanted wave content of the packet is that it is a conscquence of
imperfect generation by the wave maker. It is an unfortunate (theoretical

and observed) property of short wave solitons that these nonlinear waves

propagate with the lincar group speeds of their carrier waves. Hence, ?
! unlike their long-wave counterparts, cshort-wave solitons cannot scparate
from any background 'moise' with the sume frequency. (The background

&
]
h noise corresponds to the radiation or non-soliton component of the solution

3 (at lincar speeds) of the longer wave components in figure 1 may be a

i- cenifestation of this phencienon.,  In this regard it is important to note
that the radiation wave components remain dispersive cven at nonlinear
order and their amplitudes =hould decay in time t with an inviscid decay

1

i
13
i
H
to the nonlinear Schrodinger equation.) The mergence and slow migration ‘
rate of t . Since the inviscid soliten docs not decay, when noise is ’

present one cxpects the measured data teo apree better with the theoretical

profile with distance (or tine) down the tunk. Txactly the epposite




behavior is observed in figure 1; however, it nust be remembered that grow-

ing distortions might still occur until the radiation attains its asymp-

totic character.
Although inviscid solituns do not Jdecay with time, water-wave solitons

are subject to viscous atteruation of their auplitude. Two models for the
viscous dumping of short-wave solitons have been developed independently by
Dr. Harvey Segur and myself (with considerable assistance from N. K. Lin,

a graduate student at Berkeley). Both models predict similar results even
though the approaches to model development were quite different. Experi-
mental verification of the models must be considered limited for large pro-
pagation distfnccs due to the distortion discussed previously; short distance

evolution aceording to these models is verified by the measured data. As

in all visoous Jdumping models, contamination of the water surface enters as

an ¢ pirical cocefficient ranging from zero for no contamination to unity

for a rully vontaninated (and immobile) surface. Theoretical results for

these two liniting cases are shown in figure 2 with experimental data for

the wave vvolution in figure 1. Mcasurements suggest that some surface

conta-ination is present in the Berkeley data which is expected since water

yomains in the tank continucusly. Theoretical and experimental results

for the <.me initial data observed in the Florida facility are also shown
in figure 2. In Florida, well water was pumped to the wave tank immediately
prior to the experiments; hence, surface contamination chould be less; this

expectation is verified by the data. (The nurrower tunk in Florida leads
to greater wave attenuation with distance of propagation.)

It should also be noted that the viscous damping models for envelope

solitons indicate that they decay twice as fast as a lincar wave train of

i W
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the same frequency. Unfortunately, water wave trains of sufficiently small
amplitude were not measured to test this prediction. However, measurements
of wave trains with the same degree of nonlinearity as the comparison soli-
ton (prior to the visual onset of Benjamin-Feir instability) indicate that

the solitons decay only one-half as rapidly as the uniform wave train.

The evolution of arbitrary packets of initial data was also investi-
gated. An example of results is shown in figures 3a-b at two measurement
stations; histograms of wave periods are shown in figures 4a-b for each
measurement, The dominant wave packet in the downstream measurement of
figure 3b clearly has evolved a soliton profile. The remaining wave packets
do not have soliton profiles and represent the radiation component in the
initial data. The period histogram of figure 4b clearly shows the linear
dispersive nature of the constituent wave components which are rank ordered
by their gréup speed. (Also see Appendix IV).

Experiments on the stability of 2-D envelope solitons to 3-D perturba-
tions have proven to be inconclusive. Very small 3-p effects were measured
in some experiments but without a consistency or magnitude sufficient to
infer definitive behavior patterns. The experiments did highlight a defi-
ciency in the analytical studies on this aspect of envelope soliton. All
explicit criteria which provide definitive predictions on the tank (or
crest) widths necessary for instability assume infinite water depths. How-
ever, the nonlinear description of these waves contains terms which decay
algebraically--not exponentially--with depth. Hence, it is dangerous to

apply these criteria to finite depth experiments, even for kh ~ 10.
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Finally, based on the data presented here as well as many other experi-
ments on varying aspects of short-wave solitons, it is clear to me that the
reality of these systems 1s more difficult to disentangle than that of their
long-wave counterparts. lHowever, even with the confusion arising from
microscopic observation of these waves, it is also apparcnt that the macro-
scopic structure predicted by the nonlinear Schridinger equation is present.

A1l of these results emphasize the need for more analytical study coupled

with delicate experiments capable of yielding quantitative measurement of

third order (and higher) parameters.
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Baroclinic Tsunami Generation

JosepH L. HAMMACK
Depariment of Civil Engineering, University of California, Berkelex 94720
(Manuscript received 13 August 1979, in final form 2 May 1980,

ABSTRACT

An analytical and experimental study of the baroclinic waves generated by a monopole dislocation
of the sea floor is presented. Analytical results are based on a two-dimensional and fineanized description
of motion using a two-layer approximation for density variation: experiments utilize a stratification
with finite (nonzero) pycnocline thickness. Scaling parameters which characterize the generation process
and the potential role of nonlinear effects are discussed. It is shown that the barotropic modes are
not affected by the small differences in potential density typical of ocean stratifications and all previous
results for these waves are applicable. The two-layer approximation is found to provide an accurate repre-
sentation of the (long) baroclinic waves typical of tsunamis. Like the barotropic response, baroclinic
generation is impulsive and linear resulting in wave amplitudes proportional 10 the vertical offset of the
sea floor. Near the generation region barotropic waves have amplitudes of one-half the sea fioor displace-
ment while the baroclinic waves are attenuated further by the ratio &, /k, where k is the total fluid depth and
h, the upper layer thickness. Although Coriolis effects are not included in either the analytical or experi-
mental models, these effects may often be significant for baroclinic waves. In general, the potential role
of Coriolis forces is both earthquake and site specific. Regardless. the analysis herein remains applicable

for times smaller than the local inertial period.

1. Introduction and major conclusions

Tsunami research to date has generally focused on
the waves at the ocean’s surface, ignoring vertical
variations in potential density which typieally exist.
Submarine earthquakes which produce significant
surface (barotropic) waves will also generate in-
ternal (baroclinic) tsunamis in stratified regions.
These baroclinic modes were examined first by
Cherkesov (1968) who presented a theoretical in-
vestigation of waves generated by a motion of the sea
floor in an ocean with an exponential increase in po-
tential density with depth. Subsequently. Fedo-
senko and Cherkesov (1968) presented similar re-
sults for a two-laver stratification which is more
representative of actual ocean conditions. Solutions
were based on a lineanized description of motion for
both two-dimensional and three-dimensional (axi-
symmetric) source regions; Coriolis forces were
neglected. In both presentations. the integral solu-
tions were evaluated only for the far-field at large
distances from the source region. These results
showed that a displacement of the sea floor pro-
duced (fast) barotrop)c waves and (slow) baro-
clinic waves which separated with time. Each wave
system induced a coupled motion at the opposite
interface. It was further claimed that the asymp-
totic amplitudes of the internal waves could exceed
those at the free surface by a factor of 25 for
ocean conditions. Neither the relevance of asymp-
totic linear analysis to actual tsunamis nor any
limitation of the results due to omission of Coriolis
forces were discussed by the authors. [Hammack
and Segur (1978) have shown that linear asymp-
totic solutions never become applicable for baro-
tropic tsunamis. |

.
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The objective of the present paper is to examine
the near-field behavior of baroclinic waves gener-
ated by vertical motions of the sea floor. Both
analytical and experimental results are presented
for a simple model of generation consisting of a
block upthrust (or downthrow) according to a pre-
scribed time-displacement history. Analytical re-
sults are based on a two-layer stratification of
potential density while the experiments utilize a
stratification with finite (nonzero) pycunocline
thickness.

The organization of this paper and some of the
major results are as follows. In Section 2 a brief
description of tsunamigenic earthquakes is pre-
sented and the model to be examined herein is
introduced. Nondimensional parameters which
characterize the generation process are discussed
in Section 3 where it is shown that the generation
process of actual tsunamis is impulsive and linear
for both the barotropic and baroclinic response. In
Section 4 the linear solution for the baroclinic
model is developed and other well-known properties
of long internal waves at the interface of two
liquids are reviewed. In the Boussinesq limit of
small density differences, it is shown that the baro-
tropic response is not affected by the stratification.
In addition. both barotropic and baroclinic tsunamis
have initial shapes similar to the permanent de-
formation of the sea floor. The maximum amplitude
of the surface wave is one-half the vertical dis-
placement of the sea floor while the maximum
amplitude of the internal wave is additionally
attenuated by the ratio of upper fayer depth to tal
depth Experimental equipment and procedures are
described in Section 5 and theoretical results are
compared with the experimental measurements in
Section 6. Results indicate that the maximum
amplitudes of the barotropic and baroclinic waves
near a source region may be represented by a single
{and simple) functional relation over the full range of
their respective generation time scales (see Fig. 10).
The potential role of Coriolis effects for baroclinic
waves is discussed in Section 7, where it is dem-
onstiated that time scales of baroclinic modes can
2+ may often approach the inertial period.
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2. Tsunamigenic earthquakes and the proposed
model

Most large tsunamis are associated with sub-
oceanic earthquakes, centered near plate margins,
during which significant vertical offset of the sea
floor occurs. In order to determine the waves
gqnerated by mechanisms of this type, a knowledge
of the water .depths, stratification and latitude at
the source site as well as the spatial and tem-
poral distributions of the sea fioor dislocation is
required. Since the objective herein is to delineate
tundamental relations between the generation
mechanism and wave structure, we seek a tractable
model which embodies essential source parameters
in a simple way. With this goal in mind we will
assume a uniform depth /1 in the generation re-
gion and adopt a two-layer model to represent
the ambient stratification in potential density. In
addition we will neglect Coriolis forces (and their
latitude dependence); limitations of the results due
to this omission will be discussed a posteriori.
Betore introducing further simpiifications, a brief
description of features common to tsunamigenic
earthquakes and their (dimensional) scales is
presented.

[t is both convenient and appropriate to define the
source size of the tsunami (and earthquake) as
the area affected by aftershocks immediately
following the generative earthquake. This area is
typically elongated and elliptical in shape with the
ruptured portion of the fault joining the foci of the
ellipse. Early efforts to correlate the source area
S with Richter magnitude M, proved unsatisfactory
due to the marked scatter in the data. Kanamori
and Anderson (1975) inter alios have shown that
definitive correlations exist between S (km?) and
the seismic moment M, (dyn cm). Representative
values based on their results for interplate earth-
quiakes are shown in Table 1. In order to provide
perspective, it is still desirable to relate the seismic
moment to Richter magnitude. As expected, results
here are less definitive and no single empirical
relation exists; however, Kanamonr and Anderson
(1975) do present correlations for three classes of
carthquake magnitudes. Approximate values of M,
based on their results are shown in Table 1. As a
first approximation, we may assume that the source
arcas of Table | represent regions of monopole
vprtical offset (upthrust of downthrow). With this
simplification the source size can be characterized
by a single length dimension L ~ $'*; representative
values are shown in Table 1. If we further assume
the static and seismic moments are equal, mag-
nitudes of the average (and permanent) vertical
offset {, can be found by

. L.
C e e ———
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{Cn{ = 1\10/[-"5»

where w is the shear modulus (rigidity) of the frac-
tured medium. Estimates of |{,| with p = 5 x 10"
dynes ¢m ? are presented in Table 1. The temporal
history of the sea floor dislocation is characterized
by a minimum of two time scales: a time /. cor-
responding to the time required for the vertical
offset to occur at a specific spatial location and a
time r, representing the period required for the
rupture to propagate along the fault. Empirical .
results of Kanamori and Anderson (1975) suggests
that ry ~ 10z, for tsunamigenic earthquakes (M,
= 6.5) with estimates of the rupture time ranging
from , ~ 10 s for moderate earthquakes to fg
~ 100 s for earthquakes with fault lengths exceeding
100 km (based on rupture speeds Vz ~ Litg ~ 2-3
km s~!). As suggested previously, vertical offset is
primarily responsible for tsunami generation; hence,
the time . is most relevant for subsequent
scaling.

In light of the above description, we will adopt
the following simplifications for the generation
model. First. the smallness of the linear source
dimensions of Table 1 relative to the earth’'s
radius permits a plane-earth approximation. Second,
for monopole and uniform vertical offset, the
elongation of the source dimension suggests that
initial propagation of waves near the center of the
source region is one-dimensional and normal to the
fault. Hence, we arrive at the simple generation
model shown in, Fig. 1. The actual sea floor dis-
placement used in computations is given by

Ux.t) = Lle™ — DHB? - x?), (n

where H represents the Heavyside stepfunction. In
the dislocation of (1), we have taken 2h = L and, for
experimental convenience. we will take

t. = l__ﬂ . (2)

«a

Physically. . represents the time required for two-
thirds of the vertical offset to occur.
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3. Scaling the generation process and a comment on
nonlinearity

In order to provide a rational basis for choosing
computational examples, nondimensional param-
cters which characterize generation and typical
magnitudes for tsunamigenic earthquakes are re-
quired. With this ohjective in mind, a brief review
of results by Hammack (1973) for generation of
barotropic waves is useful. Three nondimensional
parameters are required to characterize barotropic
generation for simple models similar to that dis-
cussed in Section 2: an amplitude scale. [, |/A: a
size scale, b/h; and v =1.C,/b termed a time-
size ratio where C, = (gh)'* is the speed of long
barotropic modes. [Alternatively, + may be con-
sidered an inverse Froude number analogous to that
used by Noda (1970) for landslide-generated waves. ]
The generation process may be classified according
to the time-size ratio as impulsive for 7+ < 1, creep-
ing for 7 > | and transitional for = = [. The specific
range of 7 for each classification is only a weak
function of the size scale with the transitional regime
essentially disappearing for large size scales (b/h
» ). The amplitudes of waves propagating out of
the generation region for an imptulsive motion are
proportional to the bed displacement (n « ()
where the constant of proportionality depends
only on the size scale. For b/h > 1, this constant
attains its maximum value of one-half and the
tsunami near the source region is similar in shape to
the permanent deformation of the sea floor. For
creeping bed motions, wave amplitudes are reduced
in inverse proportion to the magnitude of the time-
size ratio (n « {y/7). Nonlinear effects become
signiicant when generation is impulsive and ||/
= 0.2. Assuming depths in the generation region
of h = 200 m on the shelf and i = 4000 m in deep
water, size scales for tsunamigenic earthquakes are
typically large (based on the lengths L ~ b given
in Table I): hence, energy is concentrated at long
wavelengths. In addition, amplitude scales are small
based on values of |§0[ given in Table 1. Finally,
using characteristic times up to ¢, ~ 10 s, the baro-
tropic response is typically impulsive (7 < 1). Based
on these characteristic values, the barotropic re-
sponse is expected to be linear and the wave struc-
ture near the source region should resemble the
permanent deformation of the sea floor with a
50% attenuation in amplitude. It is noteworthy, and
fortunate, that the barotropic response is repre-
sented by the simplest possible limiting conditions
of the generation parameters.

:
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An examination of the independent variables
(pepa,liyhe b Gy, g) for generation in a two-layer
ocean (see Fig. 1) indicates that five nondimen-
sional parameters are required to characterize
generation. A possible parameter choice for small
density differences is

bih

Lol /b

= 1.Cylb = t . (gh)' b N (3)
1o = 1.Colh = tLegh halh) #1b E

(hyihy)! .‘

where i = f, + h, and € = (p, — p)Vp, < [. Of
these five parameters, the first four preserve the
scaling characteristics of the barotropic mode and
indicate the expectation of a similar role for a time-
size ratio (r,) based on the internal (long) wave
speed C. (see Section 4). Notice that the two
time-size ratios satisfy r./r, = O(e"?); hence, bed
motions which are classified creeping for the surface
response (7, > |) may be impulsive for the inter-
facial response (r: << 1). Since 7, < 1 for prototype
tsunamis, the baroclinic response is always impulsive.’

The fifth parameter [(f1,/h1,) — 1) is geomelric in
nature; the various roles of this parameter and its
related forms A/t or hy/lt will appear in Sections
4 and 6. Its specific role as an indicator of the
strength of nonlinear effects during generation can
be established as follows. In a two-layer system,
nonlinear effects may occur for both the surface
and interfacial motion. For the free motion of long
internal waves in a two-layer system with small
density differences and uniform depth, it can be
shown (see Keulegan, 1953) that the appropriate
measure of small but finite nonlinearity is fm(h\
— h,)thyhy|. It will be demonstrated in Section 4
that n, « {y(h,/h) for impulsive generation; hence,
nonlinearity is measured by the parameter (({0/
iy ~ 1)), Since hy/hy < | for typical ocean
stratifications and (gy/h) is small, both barotropic
and baroctlinic free motions are linear initially.

4. Theoretical analysis

We consider a two-dimensional ocean as shown
in Fig. 1 consisting of two fluid domains D, and
D, bounded above by a free surface §,, below by a
solid boundary S, and contacting at a liquid-liquid
interface §,. Both fluid regions are unbounded in
the direction x of wave propagation. The upper and
lower fluids have densities p, and p,, respectively,
and are gravitationally stable (p, < p,). Initially, the
two fluids are at rest with uniform depths /i, and
h,. Subsequently (1 > 0), the solid boundary §,
is permitted to move in a prescribed manner given
by v = —~hy + {{x,1), where {(x,!) is given by (1).
The resulting motion of the free surface 7,(x.7) and
interface 7n,(x,t) are required. Since both motions
are probably linear for prototype tsunamis, a first-
order (linear) description of motion is employed
from the outset.
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As§uming the fluids in each domain to be incom-
pressnble and their motion irrotational, velocity
potentials $i(x.y,1) and @u(x,y,1) exist for D, and
D.. respectively. Conservation of mass requires

Vi, =0 in D, (4a)
Vi, =0 in D,, (4b)
where V* is the Laplacian operator. Assuming the

ﬁ_uids to be inviscid, the kinematic boundary condi-
tions at each surface are
b, =m, on y=h, (5a)

v

¢y, =ms, on y =0. (5b)

v
By further neglecting surface energy at S, the condi-
tion for constancy of pressure across and along the
free surface is

b, + gni =0 on ¥ =i, (6a)

gThe hydrosla}ic pressure p,gh, has been adsorbed
into ¢,.) Continuity of pressure across S, requires

o
b2, + g7, = p—' (6, + gm2) on y =0. (6b)
2

The kinematic condition at the solid boundary is
b, =L on y=—h,, 7

where it is assumed that motion of the solid boundary
1s not affeg:ted by fluid motion.

Co.n)blmng the kinematic and dynamic boundary
conditions at §;and S, yields

&, +gd, =0 on y=h,, (8)

“n

&2, + gy, = %(q&,” +gd,) on y =0 (9
Using the Laplace transform in ¢ and the Fourier
transform in x, Eqs. (4), (8), (9) and (7) become

J).w - k*¢, =0 in D,, (10a)
b, — h*h, = 0 in D,, (10b)
P, + gq},v =0ony =1/, (10

s, +g<2)~z, = % (s, + &’d-h,) on y

it

0, (10dy

¢, =slony=-h, (10

where the tilde of a function f(v.0) indicates




o
fn = —
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flhs) = dx ! e e (x 1)dt. (1

The function f(x.1) is recovered from (11) by invert-
ing the Laplace and Fourier transforms. i.e..

"X

dk

-7

J-x

X

l mey .
lim—_J eIk s)ds | L (12)
r—x 2qi wir

using the complex inversion integral for the Laplace
transform. The transformed surface and interfacial
waves are )

ho=—d, on v=h, (13a)
4

M2 = — (prlp)dy — 2] on y = 0. (13b)
€

Solution of (10a,b) yields
by(k.v.s) = A, coshky + A, sinhky, (14a)
ik v.s) = A, coshky + A, sinhky, (14b)

and the coefficients A; = A, (k.s) withi =1, 4 are
found trom Egs. (10c)-(10e) to be

_é‘.:; .
=T e+ k) (15a)
prarsryral
s"é . .
Ay = A, = — 22 st 4 okT)), (15b)

vk coshkh,
-5 . .
Ay = ———[sp, T, + 5%k + elgk)T,}, (15¢c)
"7 W coshin, e fET
with
4 4l .2 :
0 =s*1+ =TT, +s%T, + T))gk
(2]

+ e( k)T T, (16a)
T, = tanhkh,, i =1,2. (16b)

Finally, the transformed free surface and internal
waves are found from (13) to be

JPO—3720 (Sepy)

Hammack—For Gal. 145

éS‘
= R {17a)
# coshkh, coshkh,
fy = S S PN s%gkT,). (17b)
# coshkh,
The transform of the bed motion given by (1) is
. sinkb
ko) = 20, 2 [—_"_— 4 (18)
k s(s + a)

Substituting (18) into (17), performing the integra-
tion around the Bromwich contour. taking only the
real part and noting that the integrands are even
functions of Lk, the free surface and interfacial
waves are found to be

[ BIB.)

1y coshkl, coshkh,

X [e ™ - ByB, + B.,Bgldk, (19a)

mixvuag) =

mlxa) = | B8, [(1 + 8KT, )e“"
b, coshkh. ot

A
-1 - ﬂ)&&

wy

-

- - QLT_,_')BSBSJM. (19b)
W=
with
B, = ~2l, sinkh cos:k.r ' (20a)
7k[1 + {p)/p)T\Ts)

a-l

B, = - . (20b)
(@ + wiNa® + w?)

By = ole T o) (200)

Aw? — w,®)
w, .
B, = cosw,t + — sinw,t, 20d)

B, = wa? + w?) (20¢)

A(w? + w?)

Wae N
By = cosw.t + — sinw.t, (200)
a

and o7 (i = 1, 2) are the roots of the dispersion
relation

(I + pi/p:T\To)w* — gh(T, + Ty)e*

+ e(ghVT, T, = 0, (2))
given by

ATy + Ty} = (T, + T, s
2 = de(1 + p/p,T,\T)T\T,]'?
wia = gk . e
21 + pipT\T,)
(Note that w = ~{s in the above analysis.) Eq. (21)1s
well known for two-layer systems with w,? corre
sponding to the barotropic modes and w,® corre-
sponding to the baroclinic modes (see e g | aml
1932, p 377)
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Although the Fourier integral solutions given by
(19) are algebraically complex and the wave struc-
ture is difficult to see, it is easily shown that these
solutions contain more tamiliar results. For ex-
ample. in the Boussinesq limit of smail density
differences (e — 0) we find

C " coshx sinkb o )
_T: Yo k coshkh o+ w*

[ w .
x (c al - coswt — — Sinwt }((k. (23
[44 B

w,? ~ w' = gk tanhkh, 24

where 7 is the solution found by Hammack (1973)
for a barotropic ocean. Hence, the surface waves
in a two-layer system are not affected by the strati-
tication in the Boussinesq limit. Since density dif-
ferences are typically small for oceans (e = 0.002),
previous results for surface waves in a barotropic
ocean are applicable to leading order. .

It is also useful to approximate specific properties
of the internal and surface waves for long modes
such that

Ap
€ = — = O(l\h‘) = O(/\h;) < 1. (25)
22
Under these conditions the well-known phase
speeds of the surface and internal waves are found
[from Eq. (22)] to be, respectively,

hha,

1.

+ O(e®) ] . (26a)

C = wk*=ghil — ¢

o,

1

(1 + OteM)]. (26b)

Co = wh* = ge
The significant difference in phase speeds for these
long waves., C,/C, = Ote'?), suggests that even
though the surface and internal waves overlap
spatially near the generation region, they will
separate 1pidly and nonlinear interactions betwcgn
the two systzms will not have time to become sig-
nificant.

In addition to the phase speeds it is also of interest
to examine the amplitude of the motion induced by
each wave system at the opposite interface. Follow-
ing Keulegan (1953), normal-mode analysis sug-

gests that
.,

B = — N (27a)
) h
h-g . 5
[3, = ‘(-*-1\/-_, (-7b)
h

A .
B Mtiae aa v
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where 8, is the coupled motion of the interface due
to awave NV, at the free surface and 8, is the coupled
motion of the free surface due to an internal wave
N.. Here, the waves N, and V, represent the inde-
pendent modes at the free surface and interface,
respectively. (Note that NV, = 5, and N, = 5, when
the surface and internal waves do not overlap
spatially.) The motion B, is barotropic and would
exist at the interface location even if the fluid was
not stratified.

In order to see the wave structure in (19), numeri-
cal solutions at x = b for both barotropic and baro-
clinic waves propagating from the source region are
shown in Fig. 2. Results are presented for impul-
sive response at the free surface and interface
(Fig. 2a) and for impulsive interfacial response with
creeping free surface response (Fig. 2b). Magnitudes
ot the nondimensional generation parameters used in
computations for Fig. 2a are chosen to be asvmp-
totically representative of prototype phenomena:
dimensional quantities correspond to experiments
which will be discussed in Section 5.

As expected, the surface waves do not appear to
vary with layer-depth ratio in Fig. 2. In fact these
results are identical to those for a homogeneous
ocean computed by (23) except for a small residual
lowering of the water level which persisss until the
internal wave passes. It should be emphasized that
surface and internal waves overlap spatially in the
generation region; hence, these results represent a
linear combination of both the independent (N) and

“induced motions (B8) at the interface and free

surface. The residual lowering of the free surface
is the O(e) motion B, [see Eq. (27b)] induced
by the internal wave. In fact, this induced motion
differs for each depth ratio; however, the small
differences are not discernable at figure scale. The
impact of the surface wave at the interface,
B, is more pronounced and clearly evident in Fig.
2a. This induced motion is easily estimated from
(27a) using the free surface solution [since N, = »,
+ O(e)]. When B, is eliminated from the internal
wave computations, NV, results and is also shown in
Fig. 2a. The leading waves of the independent
internal and surface modes are similar to the per-
manent deformation of the sea floor. The maximum
amplitude of the surface wave is one-half the sea
floor uplift, i.e., (N )nay = L/2. as found previously
for a homogeneous ocean. The maximum amplitude
of the independent internal waves (N,)n.. for these
impulsive motions appears to vary with the layer-
depth ratio according to

("V‘.')mu.\ = (hl/h)(/v|)ma\ = (Co/z)(/h/h) (28)
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This important result and further clarification of the
effects produced by varying the size scale b/l as well
as relative thickness of the upper layer may be estab-
lished in the following manner. Restricting atten-
tion to (mathematically) impulsive bed motions,
the initial (+ = 0*) amplitudes at x = b can be eval-
uated in closed form to vield in the Boussinesq
limit

oy b |9

T
nibh.0") = 7 drctan(tanh —2—7

n.(h.0%)
T/
= & arctan sinh(rrb/lz)/cos(l—l—‘)} . (30)
L : 2 A

The result for the surface wave (29) is identical to
that for a homogeneous ocean (Sells, 1965) and

- clearly shows that n, ~ N, ~ n ~ {,/2 for b/h > 1.

Eqgs. (29) and (30) are shown in Fig. 3 as a function
of b/l and i /h. [Note that (29) and (30) are equiva-
lent when h,/h — 0.] Results for the internal wave
are identical to the surface wave for b/h > 1
regardless of the layer-depth ratio. For b/h < 1, the
internal wave amplitude exceeds that at the free
surface as h,/h increases (e.g., 1,/ > 0.25). In all
cases, the amplitudes become inversely proportional
to the size scale as b/h decreases. Noting that
N.(h.07) = (b ,07) — B:(b,0%), where B, is given
by (27a), Egs. (29) and (30) may be used to deter-
mine the behavior of the internal mode with size
scale: the result is

1\'3(/7.0')
Lo i sinh(zh/it) "‘(lzg)
= = :arctan [ ————— —
7 T h, h
C cos(——-—)
\ 2 h ;
|
i h
x z\rclan{tanh(; TJ] ll . (3D
2 h

For b/h > 1, Eq. (31) yields, in closed form, the
numerical results found previously for the internal
wave amplitude given by (28). Hence, even though
the free surface and interface are lifted (lowered)
the same amount by an impulsive bed motion with
b/l > 1, part of the potential energy gained at the
interface is associated with the barotropic motion
B:. Consequently, the amplitude of the internal
wave Is less (by the factor /i,/it) than that of the
surface wave where all of the potential energy
gained, to Ote), is available to the barotropic mode.

5. Experimental equiptnent and procedure

A series of experiments was conducted in alabora-
tory wave tank which is approximately 32 m long,
60 cm deep and 40 cm wide The tank is equipped
at one extremity with a wave generator consisting of
a movable bed section (piston) whose time-dis-
placement history is controlled by an electro-
hydraulic-servo system. The wave generator can
accurately model the bed motion described by (1).
Both the wave generator and tank have been
described in detm! by Hammack (1972).
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In order te odel the density stratification of Fig.
1, freshwater and brine are used. The miscibility
of these fluids produces a finite pycnocline thick-
ness &: thus, this stratification provides a better test
of the two-layer model as a useful approximation for
thin pycnocline regions. The tank is stratified by
first introducing a layer of freshwater with a depth
/1,. Brine is then introduced beneath the fresh-
water at ports distributed along the tank bed until
a total depth /i is attained. The volume of the
reservoir used to mix the brine limits the depth h,
to a maximum of 10 cm. For the experiments
presented herein, the total depth 4 is fixed at 15 ¢m
while the depth of the brine is varied with h, = §,
7.5 and 10 cm. A density difference of ~5% is
utilized in all experiments. This difference is suf-
ficiently large to provide stability of the stratifica-
tion during filling yet sufficientlyssmall to provide an
adequate test of analytica! results based on small
density differences. The length b of the movable bed
section is constant (61 ¢m) for all experiments.
Hence, the experimental size scale, b/h = 4.07, is
sufficiently large for results to be typical of the
tsunamigenic case. Density stratifications are meas-
ured using a conductivity probe at two locations
before and after each series of experiments; typi-
cal results are presented in Fig. 4 where 4, = 5 ¢cm
and /1, = 10 cm. The similarity of initial stratifica-
tions at both locations demonstrates the uniformity
of this stratification along the wave tank. A thick-
ness & for the pycnocline region is calculated
based on the definition

-1
5 = ~Ap("i) , (32)
‘/," max

yielding initial values of 8, = 0.9 and 1.0 ¢m and
final values of 3, = 2.1 and 1.8 ¢m for the upstream
and downstream positions, respectively. Actual
stratifications are qualitatively similar to theoretical
solutions of the diffusion equation for an initial
density profile with a simple discontinuity at one
level. Using this solution {p = p, + Ap erfc[y/
(4Dr)#]} with the initial discontinuity occurring
at y = 0, the characteristic thickness & defined by
(32) is related to the diffusion coefficient D by

8 = @dmwDn2 33
Hence, an apparent diffusion coefficient can be cal-
culated for the time interval of the experiments by

D = _l_ (8,)* ~ (8)° .

= (34)
4 Ar
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The apparent ditfusion coefticients for the measure-
ments of Fig. 4 are D = 2.3 x 1073 ¢cm?® s™! at the
upstream positionand D = 1.7 x 107*¢m* s 'at the
downstream position. The more intense mixing at

x = b results from the shedding of a vortex at the

edge of the bed section during its motion (see
Hammack, 1972). The mixing of the interface at this
position was visually detected by adding blue dye to
the brine. At the downstream position the apparent
diffusion coefficient is only slightly greater than
the molecular diffusion coefficient (D,, = 1.5 x 1073
cm® 37') for salt in water. Hence, the shear layer
developed during the passage of internal waves is
laminar and does not mix the fluids appreciably.
Each series of experiments was stopped when the
interfacial thickness at x = b reached ~2 cm.

In order to quantitatively measure the internal
waves, a laser-optics detector system is used. A
schematic drawing of the internal wave gage is
shown in Fig. 5. The light beam from a helium-
neon gas laser (wavelength = 632.8nm with (0.5 mW
output) is aligned perpendicular to the glass side-
walls of the wave tank. A system of cylindrical
lenses transforms the circular beam into a sheet of
light with a constant vertical dimension of 4.5 ¢cm
which is directed horizontally across the wave tank.
After traversing the tank, the light is focused onto
a photodiode which provides an output voltage pro-
portional to the incident light intensity. By dying the
brire dark blue and permitting the interface to inter-
cept the light sheet when the fluids are quiescent,
subsequent motions of the interface induce changes
in the output signal of the photodiode which are
displayed on an oscillograph recorder. It should be
noted that the dyed interface seen by the internal
wave gage appears in the upper region of the dif-
fuse salinity interface as indicated in Fig. 4. The
faser, optics and detector system are mounted on a
continuous frame shaped in an inverted U over the
wave tank: hence, the wave gage is calibrated by
raising and lowering the frame differing amounts
during quiescent fluid condition. Calibration curves
are inherently nonlinear for this measurement sys-
tem. Internal waves with maximum heights < 4.5
cm are easily measured; however, large-amplitude
motions are generally avoided during wave measure-
ments at x = b due to the vortex-induced mixing
at the position, The vortex generates a high-
frequency signal at the photodiode which is super-
posed on the signal corresponding to the internal
wave. In addition, the background signal for quies-
cent conditions may change appreciably before and
after an experiment. Surface waves are electroni-
cally recorded using conventional parailel-wire
resistance probes and an coscillograph recorder.
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6. Comparison of theoretical and experimental
results

In order to examine the near-field wave struc-
ture, the temporal behavior at the edge of the gen-
eration region (x = b) is examined. Wave motions
at this location are primarily free (unforced) and
provide the initial condition for propagation models
which may be patched to the generation model.
Results are presented for a wide range of time-size
ratios in order to more clearly delineate the tsunami-
genic case (impulsive with 1, < h, and b/h > 1).

a. Wave profiles

Comparisons of theoretical wave profiles at
x = b with experimental data are shown in Figs. 6
and 7. Results are shown for positive (uplift) and
negative (downthyow) bed motions. Linear com-
putations for the free surface motion agree well with
measurements. (Surface wave measurements are
coincident for the two cases of bed uplift.) Linear
results for the internal waves also agree well with
measurements; however, there are differences
which require explanation. Measured waves at the
interface exhibit a high-frequency noise of small-
amplitude superposed on the main wave. The source
of this high-frequency noise is twofold. First, as
mentioned in Section 5, a vortex is shed at the down-
stream edge of the piston (x = b) during rapid
motions. The effect of this vortex on the amplitude
measurement at the interface is most pronounced for
positive motions with thin lower layers (h, < h,)
and was visually observed to be responsible for
the large depression in amplitude near t(g/h)!'? = |2
in measurement {(d) of Fig. 6. Second, gas bubbles
formed in the thin gap between the piston and its
confining tank walls. These bubbles were freed
during bed motion and subsequently those from the
gap along v = b penetrated the light sheet of the
measurement transducer. (Brine was especially
prone to bubble formation resulting from aeration
during mixing and chemical reactions at unavoid-
able scratches in the anodized aluminum of the
piston.)

e . ——
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The time required for the lead wave to propagate
past x = b differs from the linear prediction for
both surface and internal waves in Fig. 6. This
behavior was observed previously for surface waves
by Hammack (1973) and may be partially attributed
to nonlinear effects arising from both finite wave
amplitudes and finite changes in depth in the gen-
eration region. Based on amplitude considerations
alone, differences between linear analysis and
measurements are expected to be maximum when
h, Z h, and minimum when 4, = h,. This expected
behavior is exhibited in Fig. 6 even though ampli-
tude nonlinearity is too small to account for all of the
observed discrepancy. Another contributing factor
is the eddy shed at x = b during piston motion.
Fluid mixed by the eddy often remains in this re-
gion for some time after the waves had departed.
(Eventually, this fluid spreads into its layer of neutral
buoyancy.) It was confirmed qualitatively by visual
observation that this phenomenon causes an appar-
ent increase in both the wave amplitude near its
leeward portion and the lead wave period similar to
the behavior observed in measurement (d) of Fig.
6 (where /1, > h,).

Mode separation and motions induced at the op-
posite interface are more clearly demonstrated by
the downstream (x = b + 20h) results shown in
Fig. 8. Both experimental measurements and linear
computations are presented for an impulsive bed
motionwith {, = 1.5cm,h, = Scmand /i, = 10cm.
The surface wave arrives first at the downstream
station at Hg/l'* = 20 corresponding to the speed
C, given by (26a); the induced motion B, at the
surface is clearly evident. Observed and predicted
behavior of the surface wave and its induced mo-
tion agree well. Both the interface and free surface
become quiescent prior to the arrival of the in-
ternal wave. Predicted and measured shapes of the
internal wave are similar; however, the maximum
amplitude of the measured wave is 205 less than
predicted. In addition, the time required by the
observed wave to reach the downstream station
corresponds to an average speed which is 10% less
than the linear prediction for C,. These discrep-
ancies probably result from the viscous and non-
linear effects present in the experiments.

b. Maximum amplitudes

It is instructive to examine the variation in lead
wave amplitude with the time-size ratio of the bed
motion. In fact, results of this type provide the
basis for classification of the generation process
(impulsive, creeping and transitional). Fig. 9 shows
experimental and theoretical results at v = b tor
both the surface and internal waves. The maximum
amplitudes of the independent modes (N, and V,)
are shown as a function of their respective time-
size ratio and layer-depth ratio. Experimental meas-
urements for both positive and negative bed motions
are presented. (Nonlinear effects for all experiments
shown in Fig. 9 are expected to be smalil based
on the discussion in Section 3.) The time-size
ratio for the surface response (r,) spans the
classitication range of impulsive to creeping while
the internal response (r,) ranges from impulsive
t- 'V\nli(\"wl
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Surface wave amplitudes in Fig. 9 are identical for
each layer-depth ratio (since the size scale b/l is
constant) and equivalent to that found for a homo-
geneous ocean. Both experimental and analytical
results in Fig. 9 demonstrate that (N ). = /2 for
impulsive motions while (N )pnw & /7, in the
creeping regime; previous results indicate that this
behavior i¥ independent of size scale when b/h > 1.
The theoretical and experimental results for the
internal wave amplitudes agree well. In addition. the
variation of (N )./ with 7. is similar to that of the
surface waves except for an amplitude reduction by
the factor h,/h which appears to be valid even for
time-size ratios exceeding the impulsive regime.
This behavior permits the barotropic and baroclinic
results to be coilapsed into a single curve as shown
in Fig. 10 for the full range of 7, and 7, (when the
size scale satisfies b/h > 1). The weak dependence
(narrowing) of the transitional regime with larger
size scales b/ > 1) is also indicated in Fig. 10.

7. A comment on Coriolis effects and the two-layer
approximation

It is customary and appropriate to neglect Coriolis
effects for barotropic tsunamis since their energy is
concentrated at periods (say, r, = 30-60 min) small
compared to possible inertial periods. (Alterna-
tively, the length scale L of the barotropic mode
is small compared to the Kelvin-Rossby radius of
deformation.) However, the sluggishness of the
baroclinic response indicated by C,/C, ~ €'* = 0.04
immediately suggests the possibility of mesoscale
periods for these modes. Since the length scale L
for both barotropic and baroclinic modes is the
same and fixed by the source mechanism, a first
estimate of the dominant baroclinic period is

to ~ — 1, ~ € "%, ~ 251,.
2
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Whent, is of order or greater than one inertial period
[t; = 12 h (sin®)"! where ® is the source latitude]
the baroclinic modes must be considered as inertio-
gravity waves. In fact, Coriolis effects will limit the
period of these inertio-gravity waves to 1., < 1,
with t, > 1, as L — = (e.g., see Kraus, 1972, p.
215). Neither the results of the preceding analysis
nor the waveguide (one-dimensional propagation)
approximation are applicable for describing the
long-term (an inertial period on greater) dynamics
of these waves. However, the preceding results
still remains applicable for propagation times much
less than an inertial period. In either case, the
variability of both source lengths for tsunamigenic
earthquakes and the inertial period (with latitude)
suggest that the potential role of Coriolis effects
is earthquake and site specific.

Finally, it should be noted that the two-layer
stratification adopted herein permits an unbounded
frequency spectrum for the baroclinic modes. In
actuality, the continuous stratification of oceans
will limit free baroclinic oscillations to frequencies
less than the maximum Brunt-Vaisala frequency,
say V,,. (As noted by Kraus (1972, p. 218), the two-
layer model is equivalent to the first baroclinic
mode of a continuous stratification with equivalent
phase speeds.] For a typical ocean stratification
with NV, = 0.01 57!, baroclinic wave energy will be
restricted to periods ¢, > 10 min. As already im-
plied, energy generally will be concentrated at pe-
riods much greater than this lower bound.
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FI_G. 1. Fluid domain and sea floor dislocation model:
(a) spatial, (b) temporal.

F1G. 2. Theoretical wave profilesatx = b = 6l cmfore = 0.0Sand it = 15¢m:
(——1) free surface waves (all h/h), broken curves represent internal waves:

(— =) hyjh = 23 (— = =) Iyth = U2 (— ~ = —) hyh = U3 (--eme ) N, (a)
=01, 7, =001:(b)r, =52, 7, =0.5

FiG. 3. Theoretical variation of maximum wave amplitudes with source size
scale A/l at x = b for impulsive resporse: (solid line), (1,)nas/lo: dashed line,

(M2 D/ G-

F1G. 4. Experimental density protiles for &, = S cm and h, = 10 cm: line with
open circles, initial profile; line with closed circles. final profile. (a) v = b, At
=205 mip; (b) x =b + 1201, Ar = 185 min. S, indicates elevation of ob-

served (dyed) interface.

FIG. 5. Schematic drawing of internal wave gage.

FiG. 6. Theoretical and experimental waves atx = 5 = 61 ¢cm
with t = 15 ¢cm and € = 0.05: solid line, theory; dashed line.
experiment. (a) Free surface; (b) interface: h, = Scm. ¢, = 1.00
cm. 7, = 0.{3, 7, = G.0(4; (¢} interface: 1, = 7.5cm. o = —1.00
cm, 7, = 0.25, v, = 0.027: (d) interface: i, = 10 ¢cm. {, = 1.08

cm, 7, = 0.12, 7, = 0.012.

F1G6. 7. Theoretical and experimental waves atv = b = 61 cm
with & = 15 cm and ¢ = 0.05: solid line, theory, dashed hne.
experiment. (a) Free surface: (bl interface &, = Scm. § = —1.00
cm, 7, = 5.13, r, = 0.53, (¢) interface. h, = 7.5 cm, {, = -0.97
cm, 7, = 4.53, v, = 0.50; (d) interface: /i, = 10 cm, {, = 2.00
cm, 7, = 4.87, 1, = 0.50.
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FiG. 8. Thevretical and experimental waves at x = b + 204
h =15 c¢cm, hy =5 cm, b =61 cm, € = 0.05, {, = 1.5 cm.
7, = 0.12, 7, = 0.012: solid line, free surface: dashed line. inter-
face. ta) Linear theory: (b) experiment.

Fi. 9. Vanauon of (N )/ with 7, and (Na)pa/do with 7o at 4 = b = 61 cm for h = 15 cm.
€ = 0.05. Solid curve represents surface wave calculation (for ali &,/) using linear theory. Vertical

slash indicates experimental data for surface waves

Fi1G. 10. Theoretical variaion of (N )uay/Zo with 7, and [(Na)ma /G /W1, ] with 7, at x = b. Dashed
curve indicates asvmntotic results for b’ 3 1
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LONG WAVES GENERATED BY COMPLEX BOTTOM MOTIONS

J. L. Hammack
Associate Professor of Civil Engineering
University of California, Berkeley, U.S.A.

and
F. Raichlen

Professor of Civil Engineering
California Institute of Technology, Pasadena, U.S.A.

1. Introduction

Studies of tsunami generation often employ simple models of the sea
floor dislocations to permit tractable analytical solutions. Although
these solutions provide basic insight into the generation process, they
are incapable of producing explicit results for prototype events where
both the spatial and temporal distributions of the sea floor dislocation
may be quite complicated. Herein we exploit the apparent linearity of
the generation process and demonstrate both the use and validity of the
superposition principle to construct solutions for complex bed motions.
Analytical and experimental results are presented for a monopolar dis-
location (block upthrust or downthrow) with a complex time-displacement
history. The time history used in the computations is obtained from an
integrated accelerogram recorded at Pacoima Dam, near Los Angeles,
during the earthquake of February 9, 1971. A complex spatial deforma-
tion is not used in order to enable experimental verification of the
analytical results. This is unfortunate since it appears that the
details of the time-displacement history are not important for proto-
type phenomena where the motion may be considered instantaneous. How-
ever, it is important to note that the analysis treats both space and
time variations in an identical manner; hence, confirmation of this
approach for complex time variations strongly suggests analogous behav-
jor for complex spatial variations.

Finally, we examine and compare several alternative time-displacement
histories for the mean motion. It is shown that the results for each mean
motion can be unified by introducing a velocity as a descriptive param-
eter which is based on the kinetic energy input of the moving bottom to

the overlying fluid.

2. Time-Displacement History

To define a complicated time-displacement history with relevance to
earthquake-induced ground motions, we have chosen an accelerogram for
the vertical component of motion recorded at Pacoima Dam (near Los
Angeles) during the earthquake of February 9, 1971. The accelerogram
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shown in Figure 1 may be integrated numerically using appropriate pre-
cautions (e.g., see Nigam and Jennings, 1968), to yield a time history
of the vertical ground displacement. Results of the integration pro-
cess for the "smoothed" velocity history and the corresponding ground
displacement history are shown below the accelerogram in Figure 1.

An analytical representation of the algebraically complex time-
displacement history of Figure 1 over a finite record interval,
0 <t <T, may be constructed using a Fourier series of the form:

N
rft) = Co + nil Cn sin (Knt + Bn). (1)

In (1) C, are the amplitudes of the Fourier components with C_ repre-
senting the mean (permanent) ground displacment, K, are the component
wave frequencies, and B, are the component phasc angles. The accuracy
of (1) in representing the integrated displacement of Figure 1 is
determined by the number of components N retained in the Fourier sum.
Results of computations with N = 18 are illustrated in Figure 2; this
truncated sum will be adopted in the subsequent analysis.

It should be emphasized that both the instrument characteristics
and the numerical integration techniques used to obtain ground dis-
placements from acceleration measurements necessarily distort (filter)
information in long period components. In particular, the mean (and
permanent) displacement of the integrated motion shown in Figure 1 (and,
of course, its Fourier representation in Figure 2) is not expected to
accurately model the actual permanent deformation. To compensate for
this distortion, we may again exploit the superposition principle and
add a nonsinusoidal component to the Fourier series representation of
(1). As an example of this approach, consider the ramp motion in time

of the form:

g.(t) = ¢ t/T (2)

during the time interval 0 < t < T; other choices for the mean motion
are discussed and compared in section S. In practice, the sum of the
mean component resulting from the Fourier synthesis, C,, and the addi-
tional component z, from (2) should be chosen to equal the actual per-
manent ground offset. Hence, a general representation for a complicated

time-displacement history becomes:

N
z(t) = Co + cot/T + n§1 Cn sin (Knt + Bn). (3)

3. Solutions of the Water Wave Problem

Consider a two-dimensional (x,y) and incompressible ocean of uniform
depth h initially in equilibrium with the earth's gravitational field g
which acts in the negative y direction. At time t = 0 a section of the

i
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sea floor begins to deform vertically with a time and spatial variation
given by Z(x,t). We seek the inviscid, irrotational, and barotropic
deviations n(x,t) of the ocean free surface from its equilibrium posi-
tion. With the coordinate system at the equilibrium position of the
free surface, the linearized description of motion in terms of a veloc-
ity potential ¢ = ¢(x,y,t) is:

¢ (Xy,t) + Oy (Xsy,t) = 0 (4)
o, (x,-h,t) = g (x,1) (3)
¢y(x,0,t) = n.(x,t) (6)
¢, (x,0,t) = -gn(x,t) (7N

where subscripted variables indicate partial differentiation. It is
convenient to eliminate n(x,t) in (6) and (7) by combining to yield a
single condition for the velocity potential:

¢tt(x,0,t) + g¢y(x,0,t) = 0 (8)

Using the Laplace transform in t and the Fourier transform in x, equa-
tions (4), (5) and (8) become:

_ o i
¢yy(k,y,5) ¢(k,y,s) 0 9)

5&(k,-h,5) = sz(k,s) (10)
b (k.0 2 30k.0 = 0 (11
¢y( > ’S) ?¢( 3 ,S) = )

where the overbar of a function f(x,t) indicates:

T(k,s) = f dx fm eIkX o-St £y tydt. (12)

-ro ~00

Solving (9), (10), and (11) for ¢(k,y,s) and noting from (7) that
nlk,s) = - (s/g)$(k,0,s) (13)

we find:

’

n(k,s) = s2 7(k,s)/(s? + w?2) cosh kh (14)

where w2 = gk tanh kh. Inverting the Laplace and Fourier transforms
yields:

nix,t) = >

[0 2Mi

1 f“){lim 1 I“*ir s2 o 1KX St Fiy ds} dk (15)
- p-iT

(s? + w?) cosh kh
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Again, the final integration over wavenumber k must he evaluated numeri-
cally.

4. Comparison of Theory and Experiment

As noted earlier, the simple block deformation of the sea floor was
chosen to enable experimental verification of the analytical model
developed for complicated time-displacement histories. The experimental
facility used in these tests has been described in detail by Hammack .
(1972, 1973). Basically, the wave-maker consists of a rectangular
piston in the bottom of a wave tank (and spanning its width) whose
motion is controlled by an electro-hydraulic-servo system. The servo
system converts a time-voltage command signal into a proportional verti-
cal displacement of the piston. For the experiments reported herein,
the piston length in the direction of wave motion is b = 61 cm while the
quiescent water depth above the piston is h = 10 cm. Before presenting
results of the tests, we describe the motivation for choosing other
experimental scales.

A "global' time scale for the forcing of the overlying ocean by the
sea floor is the period T. The appropriate time scale for the gravita-
tional response of the long barotropic wave modes is b/(gh)? which cor-
responds to the time required for waves to escape the generation
region. For prototypical earthquakes the ratio of the forcing and
response time scales, T = T(gh)%/b, termed the time-size ratio, is small
so that details of the time-displacement history generally are not
important. However, our interests herein require that the details of
the temporal motion have a significant impact on the generated wave
structure. Hence, the period T for the experimental tests must be
scaled so that T exceeds unity; in fact, for the experiments a period
T = 4 secs was chosen which yields T = 6.5. Previous experiments by
Hammack (1973) also indicate that the generation process for proto-
typical tsunamis is linear and that nonlinearity remains insignificant
for vertical displacements which do not exceed about 20% of the over-
lying ocean depth. This criterion is adhered to in the experiments by
restricting the instantaneous displacement of the piston to less than
2 cm.

In the first test we examine experimental and theoretical results
for the time-displacement history shown in Figure 2 using experimental
parameters T = 4 secs and a chosen permanent (mean) displacement of
Co = 0.38 cm, with the amplitudes C, and frequencies K, of the eighteen
Fourier components used in Figure 2 scaled appropriately. (In Figure 2
the corresponding parameters of the actual ground displacement are
T = 40 secs and C, = 7.63 cm.) The scaled Fourier components are then
summed and the result is converted to an analogue (time-voltage)
signal which is used to command the wavemaker. The resulting wave
motion at the leading edge of the piston (x = b) is measured, and the
results are shown in Figure 3. Theoretical results at x = b are
evaluated for each of the eighteen (scaled) Fourier components accord-

ing to (17) and summed to yield
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e = v I om0 (25)

the results also are shown in Figure 3. The excellent agreement between
the predicted and measured data is self-evident.

i Similar results are shown in Figure 4 where a ramp mean motion with
an amplitude of Zo = 1.33 cm is added to the Fourier synthesis of Figure
‘ 2. The total permanent displacement of the piston is g = Cq + Lo =
1.71 cm which has been used to normalize the measured and theoretical
wave amplitudes. The theoretical result is equivalent to (25) with an
added component for the ramp computed from (24). Again, the agreement
A between measured and computed data is excellent with the wave structure
o clearly showing the added volume (mass) resulting from the enhanced mean
displacement.

5. A Comment on Mean Motions

. In previous studies (Hammack, 1972, 1973) two additional models for
. the mean displacement of a block section of the sea floor have been
‘ examined. These time histories are:

a. exponential: Z,(t)

- Zoll - exp (-1.1t/T)]
{ b. half-sine: g, (t)

co[(l - cos nt/Ts)H(Ts-t)/z + H(t-TS)]

and we repeat for completeness the mean motion introduced here:

i ¢c. Tramp: Cr(t) = Co[tH(Tr-t)/Tr + H(t-Tr)].

The three mean motions listed above span a wide range of displacement
characteristics. We note that the choice of characteristic time scales
Te, Tg and Tr are, in fact, arbitrary to a certain extent even though
"natural' choices are apparent. (This flexibility is most obvious for
the exponential motion where Te was chosen for experimental convenience
to represent the time for two-thirds of the displacement to occur.) It
has been found that the properties of waves generated by these motions
‘ correlated strongly with the time-size ratio T based on these time
4 scales. For example, the maximum wave amplitude, say ng, occurring at
' x = b when normalized by the permanent displacement [, exhibits a simple
and similar functional dependence on T for each bed motion. With the
size scale b/h of the dislocation fixed and for 1<<1, the normalized
amplitude, ny/%,, reaches a maximum value of one-half for all size scales
, exceeding unity. Bed motions with T<<1 are termed impulsive. For T
very large, termed creeping generation, ng/f, decreases at a rate which
is inversely proportional to T. The constant of proportionality for
creeping generation varies with the specific choice of the characteris-
tic time scale for the mean motion. Since it is unlikely that any of
these mean motion models is '"correct" from a geophysical point of view,
there is a need to seek a unification of results by generalizing the
concept of characteristic time scale. One generalization which closely




where the complex inversion integral for the Laplace transform has been
used. In (15) w is the wave frequency (w = is) and k is the wavenumber.
Explicit results for specific deformationsof the sea floor Z(x,t) will
be developed now.

3.1 Solution for a single Fourier component

Consider a block section of the sea floor of length 2b whose time-
displacement history corresponds to a single Fourier component of (1).
With the coordinate system centered above the block section, we have

g (x,t) = C H(b? - x?) [sin(K T+ B JH(T-t) + sin(K t+B JH(t-T)] (16)

where H( } is the Heaviside step function. Finding the transform of
(16), substituting into (15), performing the integration around the
Bromwich contour, taking only the real part of the resulting integral,
and noting that the integrand is an even function of k, we find:

2C_ 4o .

n, (x,t) = == f cos Xx sin Kb {A+B-—H(t—T)[C+D+E]} dk (17)
o]
where
A = sin Bn[(u)2 sin ot - an sin Kn'c)/((;o2 - an )] (18)
= : : 2

B =K cosB [(wsinwt - K sin Knt)/(m2 - k2)] (19)
C = sin(K T + Bn){[w2 cos w(t-T) - gf cos Kn(t—T)]/(wz-K;Z)} (20)
D = Kncos(KnT+Bn){[w sin w(t-T) - K sin Kn(t-T)]/(w?-ng)} 2n
E = - sin (KnT + Bn) cos w(t-T). (22)

The final integration over wavenumber k in (17) is obtained by numerical
quadratures.

3.2 Solution for ramp mean motion

The ramp time-displacement history of (2) for the block deformation
is described by

t(x,t) = g H(b2 - x?) [tH(T - t)/T + H(t - T)]. (23)

Following the same procedure outline in section 3.1, we obtain (again
after considerable algebra) the water surface motion n. due to the ramp

2 o R
) cos kx sin kb (1 . .
nr(x,t) = = [ cosh ki &ET}[sln wt - H(t - T)sin w(t-T)]dk. (24)
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: produces the desired unification is the following. Consider a velocity
| V, where V2 is the kinetic energy imparted to the fluid by the sea floor
‘ divided by one-half the total mass of fluid displaced during bed moticn
(seb,); then V is given by:
%o
g V=—1~f £ 2 dg (26)
z t
o

. and a corresponding time scale T = go/V. In terms of this time scale :
T the time-size ratio becomes :

o= T = g (gh)¥/bv (27)

4 The variation of n,/t, at x = b for b/h = 6.1 with t* is shown in Figure
‘ 5 for each of the mean motions; both theoretical and experimental
results are presented. For all of the experimental data we have taken
To/h < 0.2 to avoid significant nonlinear effects. The collapse of
results for such a wide range of mean motion characteristics shown in
Figure 5 is good although a small spread still exists.

6. Conclusions

We have demonstrated both the application and validity of a strategy
which employs multiple uses of the superposition principle to develop
theoretical solutions for waves generated by sea floor motions with com-
! plicated time-displacement histories. Although a more useful test for

prototypical phenomena would utilize complicated spatial distributions
for the sea floor dislocation, the tests herein were restricted to
simple block dislocations due to experimental limitations. However, it
is emphasized that the scolution method does not distinguish between
space and time, and the validity established herein strongly suggests
that the methods could be extended to complicated spatial deformations. |
Finally, we have demonstrated that wave properties (in particular the
maximum amplitude of waves escaping the generation region) for a wide
range of mean motion characteristics may be (almost) collapsed into a
single functional relationship in terms of a time-size ratio based on an
average vertical velocity of the sea floor obtained from energy consid-

erations.
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I. — Introduction. 4
Presented below are three lectures on various aspects and types of ocean

waves. In all cases we are concerned with small-scale waves for which gravi-

tation provides the dominant restoring force. The relevant length and time

scales of these waves are small compared to the Kelvin-Rossby radius of defor- 4

mation and inertial period, respectively, and Coriolis effects may be

neglected. 1In addition, the small length scales (relative to Earth's radius)
pexrmit us to ignore the curvature of the ocean surface and adopt a plane-

earth approximation. Various other approximations will be adopted as
appropriate in order to obtain model equations which are ﬁractable analytically.
(Fortunately, these tractable models appear to remain relevant for geophysical
phenomena.) In particular, we are interested in weakly nonlinear systems in
which the nonlinear effects manifest slowly; both nonlinear self-interacting
and resonant-triad systems are considered.

An outline of these lectures is as follows. In Part II we examine two
nonlinear model equations for the evolution of gravity waves: the Korteweg-
deVries (KdV) =~quation for long barotropic and baroclinic waves and the
nonlinear Schr&dinger (NLS) equation for short barotropic waves. After a
brief review of the asymptotic (large time) solution of these equations by
inverse scattering theory, experimental data are presented which demonstrate

the reality of soliton predictions--at least on laboratory scales. In Part III
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we exploit the exact solution of the KdV equation and its linear approximations
in order to derive rather precise criteria for modelling the evolution of
long-wave initial data on geophysical or laboratory scales. The modelling
criteria of Part II are then applied to a typical oceanic tsunami in order
to choose relevant model equations for propagating the (barotropic) wav. from
its generation region to specific target sites. PFinally, in Part IV we
examine the nonlinear excitation of "edge" waves nearshore by linear wave
trains incident from deep water. Both theoretical and experimental results
are presented which document the excitation of two progressive edge-wave modes
through a nonlinear resonant-triad interaction with the wave reflected after
normal incidence from offshore.

Much of the material in Parts II and III has appeared previously in
the literature. Hence, many of the details concerning experimental equipment,
procedures, and analysis is omitted; a thorough discussion may be found in
the cited references. The material presented in Part IV on edge waves is
recent and not presently available in the literature. For clarity, a more
detailed discussion of this material is presented. We also note here that

the notation between Parts II, III, and IV is not necessarily consistent.

II. — Water Wave Solitons.

1. — Long Gravity Waves

Consider two fluid layers with uniform densities p < 02 resting in a

1

gravitationally stable configuration (see Figure 1) on.a horizontal and

impermeable bed of infinite lateral extent. The upper layer possesses a

free surface Sf along which pressure is constant; surface energy effects on




Sf and the .fluid-fluid interface Si are negligible. Required are the two-
dimensional, inviscid, irrotational motions which are bounded everywhere and
evolve from given initial distribution of velocities, free surface deformation,
and interfacial deformation--the classical water wave problem. In particular,
we are interested in the barotropic displacement nl of Sf from its static

equilibrium position and the baroclinic displacement nz of Si from its
equilibrium position. To derive the KdV equation as the appropriate model

for both Jdisplacements from the governing equations, the following assumptions
are necessary. First, characteristic wave lengths k-l (an inverse wave
number) must be long relative to the total fluid depth; i.e., (kh)2 << 1,

so that dispersive effects are weak. Second, characteristic wave amplitudes
a are small relative to the total depth; i.e., a/h << 1, so that nonlinearity
is weak. Third, both weak eifects of dispersion and nonlinearity are approxi-
mately equal; i.e., € = a/h ~ (kh)z. For simplicity, we will further assume
at the outset that density differences in our two-layer ocean are small {(as in
its geophysical counterpart) so that A = (02 - ol)/p2 << 1. Expanding the
dependent parameters in the governing equations in a power series in € and

=t, t, = €t, . . ., one finds at

introducing the multiple time scales t 1

0
leading order that the evolution equations for the initial wave are hyperbolic
(nondispersive) and linear. At this order, which corresponds to the fast time
scale to, an initial disturbance decomposes into four modes consisting of

left- and right-running, barotropic and baroclinic modes. The phase speeds

Cl and C2 of these modes are




(la) Barotropic (surface) waves: C, = gh

2
1
(1b) Baroclinic (interfacial) waves: Cg

]
g hlhz/h
where we have invoked the Boussinesq limit A -+ O with gA = g' << g remaining
finite. All wave modes propagate with permanent form and do not interact
with each other or themselves; the baroclinic modes propagate much slower,

i/

O(e 2), than the barotropic modes.,
At the next order (82) weak nonlinear effects and dispersion occur.

Each wave mode experiences a self-interaction on the slow time scale t. = €¢t,

1
but no interactions between modes occur due to their rapid separation by the
phase speed differences of (l1). The self-interaction of the right-running
barotropic mode is governed by a dimensional equation of the form
3
(2) npoFCny + 36
t X X XXX

A more convenient choice of nondimensional variables for describing these

waves are

X = (x-cti/m, = %(g/h)l/zt

(3) 3
fix,1) = Eﬂ(x,t)/h

In terms of these variables, (2) reduces to the KdV equation with the common

form

(4) f +6ff + f = 0
T X XXX

In a similar manner, the dimensional equation governing the self-

interaction of the right-running baroclinic waves is

L
19
i3
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. 3.1 1 1 ~
3 (3) Ny *CMy TS GT TR, ESN M, =0
t x 2 1 X XXX :
i
b Introducing the normalized variables !
r ( |
Lo : _ _ 1/2 '
- x = (x Czt)/(hlhz) ¥
1 1/2 '
6) < T = =(g'/h) /2y 1
3.1 1
f = Z(—-=)n
1
+ 2 h2 h]

N

equation (5) reduces to the KdV equation given by (4).

The asymptotic solution of the KAV equation for arbitrary initial data
f(x,0) = fo by inverse scattering theory has been described in detail by .
L ‘ Segurl inter alios. Here, we briefly list features of the asymptotic solution

N to be illustrated in the laboratory experiments.
i) An initial disturbance evolves into a finite number of permanent
waves (solitons) ordered by their amplitude. When the solitons are

well separated, the local shape of each is given by

/2(

(7 £ = ozsechz{(m/Z):L X = X - 207) }

i where a and XO are constants. The rank ordered solitons are !

’ followed by a dispersive train (radiation) of oscillatory waves.

A o A st e h o i

Q‘ ii) The number N of solitons evolving from initial data of finite

extent, say £f. = 0 for x < Xl and x > )(2, is equivalent to the number

0

‘ of zeros of ¢ for x > Xl where ¢ satisfies

» 2
i d—-g-+f(x)¢=0
. 0

dx

(8)

— d¢ Ry =
20q)= 1,8 o) = 0.
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! iii) When the net volume V (or mass) in the initial wave is finite and

positive, i.e.,

o

(9) v = f fo(x)dx >0

-l

at least one soliton emerges.

?“j iv) When fo < 0 everywhere, no solitons emerge and the asymptotic
solution consists (only) of the radiation components.

v) Two other important classes of data are those for which V < 0 with
f0é§ 0 for all x and those for which V = 0. No general statements

- regarding the asymptotic solution for these cases is provided

theoretically. Experiments demonstrate that the evolution of

e O S VOV RS

T solitons depends on the detailed structure of the initial data.

1.1 Experimental Procedures In order to illustrate the applicability

cf the KAV equation as a model for long water waves, a series of experiments
is conducted in a laboratory wave tank 31.6 m long, 61 cm deep, and 39.4 cm
wide. For studying the barotropic motions in a system with small density
differences, the density stratification plays no role; hence, in these

experiments a uniform density fluid of depth h is used. A detailed descrip-

p . . . 2
" tion of these experiments is given by Hammack and Segur. In order to study

the evolution of baroclinic waves, the tank is stratified with fresh water

and brine. Details of these experiments can be found in Hammack~ as well as

Hammack and Segur.

e e SV VU Y

In the long wave experiments reported here, the wavemaker consists of

a rectangular piston located in the tank bottom adjacent to an upstream

end-wall. The piston spans the tank width and has a length b in the direction




of wave motion (see Figure 2); lengths of b = 30.5 cm and 61 cm are used.

The vertical motion of the piston is controlled by an electro-hydraulic-servo
system and completely user specified. In a typical experiment, the piston

is moved for a finite time interval. Differences between the initial and
final position of the piston permit the net volume V in the generated wave
train to be calculated. Various initial data are generated by varying the
time-displacement history of the piston.

Both surface and internal wave amplitudes are measured at fixed loca-
tions (stations) along the tank. We note here that differences between the
temporal variation in wave amplitude at a fixed spatial position and the
spatial variation and wave amplitude at a corresponding fixed time are small, i

0(e), and neglected in all calculations. '

1.2 Results for Barotropic Wave Evolution

1.2.1 1Initial data with v > 0.
Figures 3 and 4 illustrate the evolution of two barotropic waves with
a net positive volume. Normalized wave amplitudes are presented at four
succeeding stations along the tank in a coordinate system which moves with

the linear (nondispersive) speed C Note that the leading portion of the

1

wave system appears at the left in these figures. Shifts of the waves to the

left (right) at succeeding stations indicate phase speeds greater (less) than
Cl in this coordinate system.

The initial wave at (x - b)/h = 0 in Figure 3 is rectangular and positive
and appears to sort itself into three positive waves identified by separate

crests (local maxima) during propagation. These three waves are rank ordered

by amplitude and are followed by a weak train of dispersive waves whose speed
\
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is much less than Cl' In order to examine the local shape of the leading two
waves, theoretical soliton profiles defined by (7) have been superposed on
the measured data at the last measurement station (using the measured wave
amplitudes for specifying the parameter a). These profiles are not extended
into regions where the two waves are still interacting strongly with adjacent
wave structure. Clearly, the measured waves appear to be locally KAV solitons.
Further evidence that the three lead waves at the last measurement station
are solitons is provided by numerically integrating (8) using the wave profile
at (x - b)/h = 0 as the initial data fo. Computations indicate that N = 3
solitons should evolve in agreement with the observed pattern of evolution.
The evolution of a more complicated initial wave with V > 0 is shown
in Figure 4 where a leading negative wave is followed by a (larger) positive
wave. After only twenty depths of propagation, the positive wave has
separated into three separate crests while the negative wave remains essen-
tially unchanged. During subsequent propagation the three labelled crests
of the positive wave appear to retain their integrity as they progress thro’
the leading negative wave and emerge at the front of tbe wave train. At the
last measurement station, labelled waves 1 and 2 clearly resemble K4V
solitons. The third wave is still interacting with the once-leading negative
wave at the last station and cannot be unmistakably identified as a soliton.

However, computations with (8) using the wave at (x - b)/h = 0 as f. yield

0
N = 3 strongly suggesting the third wave is indeed a soliton. We note that
other experiments also indicate that solitons evolve from the positive waves

in the initial wave and can be identified long before asymptotic conditions

are achieved.




.

-

e m - —— i~

1.2.2 Initial waves with V < 0

Results for the evolution of two barotropic wave systems with V < 0 are
shown in Figures 5 and 6. The initial wave in Figure 5 is the negative counter-
part of the experiment shown in Figure 3 where three solitons appeared to
evolve. Over similar distances of propagation, no solitons appear to evolve
in Figure 5 -- just as expected for initial data with fo < 0 for all (.
Instead, a negative wave evolves whose frontal slope decreases and lengthens
with time. This lead wave is followed by a train of strongly dispersive
waves with phase speeds much less than Cl. In fact, the wave structure of
figure S represents the radiation solution of the KdV equation as shown with
quantitative tests by Hammack and Segur.S

Further evidence for the evolution of complicated waves with V < 0 is
shown in Figure 6. In this case the lead positive wave evolves into one or
possibly two waves while the negative wave evolves in a manner similar to
that observed in Figure 5. Computations using the initial wave in (8) indicate
that one soliton should develop asymptotically. Hence, the second labeled
wave is expected to eventually disappear as it appears to be doing.

1.2.3 Initial waves with V = 0

Figure 7 illustrates the evolution of initial data with V = 0 consisting
of a positive wave preceded and followed by negative waves. Applications of
(8) to the initial wave suggest that two solitons should evolve. The large
positive wave in the initial data quickly separates into two crests which
appear to migrate through the lead negative wave during subsequent propagatinn.

At the last station, labeled wave 1 has progressed to the front and clearly

has the shape of a soliton everywhere. The second labeled wave still appears

e 2,
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to be interacting with the frontal slope of the once leading negative wave.
A trailing grain of dispersive waves similar to that of Figure 5 also evolves.

1.3 Results for Baroclinic Wave Evolution The evolution of baroclinic

=45 cm, h, = 5 cm,

long waves at the interface of a stratified fluid with h 5

1
and A = 0.05 is shown in Figure 8. Wave amplitudes recorded at seven
stations along the tank in a coordinate system that moves with the linear

speed C_, are presented. The initial wave is positive, and according to

2
calculations by (8), should evolve two solitons. The observed evolution is
in agreement with this prediction. (A strongly damped train of oscillatory
waves has been omitted in Figure 8.) A more quantitative comparison of the
lead wave profile with the theoretical shape (7) at the last four stations of
measurements is shown in Figure 9. The agreement with the measured data in
Figure 9 is excellent. Further results for baroclinic wave evolution are
presented in Hammack and Segur.4

2. — Short Gravity Waves

We now turn our attention to the evolution of short gravity waves; i.e.,
waves whose characteristic length k-l is comparable to or greater than the
local ocean depth; only barotropic modes are considered. 1In fact, our
interest in solitons requires kh > 1.36 which we adopt as the definition of
the short-wave regime herein. 1In order to derive the nonlinear Schr&dinger
(NLS) equation as an evolution model, we consider a wave train with a
dominant and identifiable (mean) wave number ko. As for long waves, we require
weak nonlinearity, which is now characterized by the wave steepness ¢ = ako << 1,

The wave system is permitted to have weak modulations such that the variation

in wave number 8k is small; i.e., Gk/ko << 1. 1In other words. we are concerned
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with "narrow-band" wave systems that are weakly nonlinear. Thirdly, we
postulate a balance of both small effects so that € = ako ~ Gk/ko. Multipie
scale analysis of the governing equations again yields a heirarchy of
problems at different orders of €. At lowest order we recover the linear
dispersive waves of Stokes6 with an amplitude a that is constant. At the
next time scale, tl = ¢t, the wave amplitude is modulated, and we find that
the amplitude modulations propagate with the linear group speed Cg.
Continuing to the third order with a time scale t2 = €2t, one finds that the

complex amplitude modulation a must satisfy the NLS equation. Defining non-

dimensional ccordinates as

/
X = eko(x - Cgt)
) { T = ez(gko)l/zt
2 -1/2
\ A = kS 2(gky)

the NLS equation takes the form
. 2
(11) iA_ + AA__ +v|a|“a = o
T XX

where A and v are known func®ions of the water depth h, gravitation g, and
carrier wave number kO (or frequency mo). Details of the derivation for
finite depth‘can be found in Hasimoto and Ono7 inter alios.

Like the KdV equation, the NLS equation can be solved exactly for
arbitrary initial data by inverse scattering theory. Wwhen koh > 1,36,

envelope solitons can occur; the one-soliton solution of (11) is

crpem g
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2 1/2
(12) A = o ‘
v

sech{ax}exp{ikazr}

where o is an arbitrary constant related to the envelope amplitude. 1In general,
initial data of finite extent will evolve a finite number of envelope solitons,
rank ordered by the group velocities of their dominant carrier waves and
embedded in a dispersive train (radiation) of oscillatory waves which decays
in amplitude with time. It is important to note that the speeds of both the
solitons and the radiation components are not impacted by nonlinearity at this
order. Hence, unlike their long wave counterparts of the KdV equation, these
solitons and radiation components do not separate with time. This suggests
that in order to observe clearly the evolution of envelope solitons even in
a contrived laboratory experiment, one must design the initial data such that
the wave content of the radiation spectrum at the dominant frequency of the
soliton carrier waves is small. Alternatively, one must observe evolution
until the inviscid decay of the radiation (by frequency dispersion) combined
with viscous decay has progressed sufficiently.

Although a quantitative comparison of theory and experiment for the
NLS equation analygous to that of the KAV equation has not been performed,
gualitative tests by Yuen_s}_g}a provide evidence for its applicability to
narrow band systems. We present in Figqure 10 an (unpublished) experiment
which illustrates the evolution of an initial wave packet whose envelope
amplitude and carrier wave frequency are modulated; the mean wave frequency
is ugl = 0.6 sec. The experiment is conducted in a tank approximately

50 m long, 2.5 m wide, and a water depth of h = 1 m. After 45 m of propaga-

tion, the initial packet evolves into a collection of wave groups which are

i
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ordered by the group speed of their dominant carrier wave. Energy is concen-
trated in the group with carrier waves at the dominant period w-l = 0.6 sec of
the initial data. The envelope of this group clearly has the shape of the
soliton profile (12) shown superposed on the measured wave. The envelopes
for the other wave groups do not agree with (12), and apparently these groups
represent the radiation components in the initial data.

Although testing of the NLS equation is not complete, there is growing
evidence (see Yuen and Lakeg) that the dynamics of short-water waves is much
more complicated than that of long waves,and more complicated models are
required. The restriction of the NLS equation to narrow band systems and its
{probable) instability to transverse perturbations appear especially severe for

many geophysical applications.

III. — Modelling Criteria for Long Water Waves.

Even with all the assumptions implicit in the classical water-wave
problem introduced in Part II, the general equations remain intractable analyt-
ically. Hence, we resort to further approximations such as those reguired to
yield the KAV and NLS equations. Generally, approximations are formalized by
perturbation expansions in terms of a small parameter(s). 1In application of
these approximate models, questions naturally arise as to when the inequalities
used in ordering the physics are actually satisfied; i.e., how small is small?
For evolution models, the relevant question distills into "during what time
interval does a paiticular approximation correctly represent the general
solution?" Closely related to this topic are questions of similitude between

laboratory models and their geophysical-scale counterparts. The answers to all




[ A S

",_.
Fmn

W

-5

 apieil

- 14 -

of these questions involve determination of nondimensional parameters which
characterize the phenomenon in question. In practice these parameters are
often deduced through the ingenious use of dimensional analysis, by examina-
tion of the governing equations, or using the most preferred but least available
method, examination of exact solutions of the general and approximate model
equations. Here we examine the KdV equation and exploit exact solutions of its
various approximations in order to develop rather precise criteria for
modelling the propagation of long water waves. These criteria are then applied
to the problem of tsunami propagation across ocean basins--the topic which
precipitated the analysis. Further details are presented by Hammack and Segur.lo

1. — BAnalysis.

In order to obtain definitive results, we adopt the following point of
view. If the initial wave f_  is sufficiently smooth and localized, and if

0

el = a/h and 62 = (kh)2 based on the initial data are both small, then the

KAV equation (4) will be the approximate model eventually. (In fact, we know

that (4) is appropriate when €, = 0(62).) If €. and €, are not the same

1 1 2

order of magnitude initially, then simpler forms of the K4V equation may be

applicable for some time interval, e.g.,

(13) fT = 0 (linear, nondispersive model)
(14) f + £ = 0 linear, dispersive model)

T XXX ( ’ pe
(15) fT + ffX = 0 (nonlinear, nondispersive model)

Ursellll showed that the nondimensional parameter

(16) U = € /¢ = ak “/h

——————y
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which we shall call the Ursell number, is an important indicator to determine
which of these models is appropriate. One should use (14), (4), or (15),
depending on whether U << 1, U = 0(1), or U >> 1, respectively. Ursell also
provided evidence that U is time dependent and will tend to an order-one
limit so that all waves in this category eventually propagate according to

(4) as postulated previously. Although there is general agreement with
Ursell's results, there is disagreement on how to interpret "order unity" and
how to define the relevant length scale k-l for the evolving waves, To make
his criteria more precise, we examine here initial data for which € << €,y <<
initially so that the linearized models (13) and (14) are the relevant approx-~
imations of (4). The dimensional length scale kO-l for the initial data is
defined as its overall length, and the dimensional amplitude scale is ao.
Further, we will focus on criteria for modelling the leading wave only.
Results for the trailing wave structure and the nonlinear approximation (15)
are given in Hammack and Segur.lO

1.1 Linear Dispersive Theory Since nonlinearity is small for the

postulated initial data, we assume a small parametexr u << 1 exists and seek a

formal series solution of the KAV equation (4) in the form

3
(17) £ = ufl + u2f2 + O(u)

(The required definition of p will come out of the analysis.) Substituting

(17) into (4) yields a heirarchy of problems.

(18) (fl)T + (fl)XXX = Olufl(X,O) = £,

(19) (f2)T + (fz)xxx = -6fl(fl)x.f2(X.0) = 0

etc.

brrAPY
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The solution of (18), which is equivalent to (14), is well known:

S S - . 3
(20) ufl = 57 f fO(K)exP[l-(KX + K1) Ak
where
L+ +]
(21) fO(K) = f fo(x)exp(-in)dx

-0
is the Fourier transform of the initial data. For practical reasons, we are
most interested in the asymptotic form (1 > ®) of the solutions for both the

linear and nonlinear models. As T = © with [x'/r + 0 in order to remain at the

wave front, the asymptotic form of (20) is

(22) WE| (XoT) £(0) (31) 31 (g) - L£} (0) (1) "% 3ai (8)

4/3

- %{3(0) (31) " taim(g) + or(3n) 43

where £ = )(/(31)1/3 and Ai(f)is the Airy function. The coefficients in (22)

have simple interpretations:

K

(23a) £(0) = f £4 =V
(23b) -if'(0) = f xfqdx = B8,U
w 2
. u
1 " = 2 = ._o.
(23¢) Zf (0) J X fodx BZV
-l

where V is the nondimensional volume of the initial wave, U0 is an Ursell

number for the initial wave, and Bl, 82 are constants that depend on the

details of the initial wave. Thus (22) becomes
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u
(24) MELOGT) = V(3D) Y3t + 61[59}(3T)'1/3Ai-(g>

U2
+ 32(39} (30) "2 31 E) + . . L}

From (24) it follows that the time required for this representation to become

asymptotic (second term smaller than first, etc.) is at least

(25) 0Y3 > v /v

A particular solution of (19) is

X
2 o 2
(26) u fzp(x,r) = {f ufl(z,T)dz}

-0

and defining

-0

X
(27) o = S ([ g (z)az)
v

the homogeneous solution of (19) is

X 2 = -
v [ ai(zaz + = [ {ot0) - (1) 7MY -

2
(28) u fzh(x.r) e

-0 o0

expli(xx + K3T)]dK

Thus, as T +> =, lxI/T -+ 0

2 2 & 2 &
(29) W Gm = V- [ [ Ai(z)a2]° + [ Ai(z)dz + . . .}

- -0

Comparing (24) and (29), the appropriate definition of u is found to be simply

(30) w o= Vv
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! In other words, linear dispersive theory along with its large-time asymptotics
requires the dimensionless wave volume V to be small. (Note that V is independent
of time.) Since the solution of (29) remains 0(l) as T »+ », the series (17)

! cannot remain asymptotic after

(31) 303 A |v|_l

Thus, if the initial wave has a dimensionless volume V (assumed # C) and
' Ursell number Yo based on its initial (given) dimensions, asymptotic linear

dispersive theory is wvalid in an interval no longer than

(32) v/ 1vl << 303 << /vl

1.2 Nondispersive Linear Theory. Since our initial wave is postulated
k" to be linear, then UO << 1 and necessarily [V| <<< 1, as well. The derivation
of the KdV equation outlined in Part II indicated that linear nondispersive

theory (13) occurs on the first time scale of evolution. Hence we may write

2 2
33 = =
(33) 3t << €, (koh) = (UO/V)

for (13) to be applicable.

!. 2. Summary and Application of Criteria to Tsunamic Propagation

h‘ In summary, we have examined the evolution of long-wave initial data which

is parameterized by an initial Ursell number UO << 1 and volume (or mass)

*’ V <<< 1, We may model the evolution of this initial data using linear nondispersive i

theory (fT = 0) during a time interval




L (34) 0< 3t<<t] =170

The next relevant model is linear dispersive theory (fT + fXXX

which is valid dQuring

(35) T] << 31 << 19 = UO 3

v
J

with its asymptotics becoming valid during
1
(36) Tp << 3T << T, = g2,

Subsequently, we must use the KAV equation (fr + 6ffx + fXXX =

(37) 3t >> T,

E; (The question of the time scale for applicability of KAV asympt
10

by Hammack and Segur
consider the dimensional scales adopted by Carrier12 for major
impact entire ocean basins: ao = j0 ft., h = 1.5 ° lO4 ft., ko

Then Uo v 0.1 and V v 0.01 and linear nondispersive theory is v

corresponding to propagation distances (using C2 = gh) of

. 1
0 < x << 600 miles.

Linear dispersive theory is appropriate for

600 miles << x << 6,000 miles

=O)

0) for

otics is discussed

.) As an example of the application of these results,

tsunamis which

-1 5

=2 . 107 ft.

alid for times

]
! indicating that dispersion may affect this wave over much of typical ocean

"
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trajectories. Even so, linear asymptotics do not apply until x >> 6,000 miles,
which exceeds the length of realistic trajectories. Hence, linear dispersive
asymptotics and the KAV equation are not required for describing the lead wave

of the tsunami discussed here. (The KAV egquation may be used, but it is

unnecessarily complicated.) Of course, other factors may be required to

accurately model long-term tsunami propagation (such as the variable bathymetry
along trajectories and three-dimensional spreading of wave energy); the intent
of the analysis here is only to develop insight into the relative importance

of dispersion and nonlinearity.

IV. — Excitation of Standing Edge Waves on Beaches

1. — Introduction

In recent years considerable attention has been focused on the ocCurrence
of ocean waves which become trapped and capable of concentrating energy in
localized regions (wave guides). Wave trapping can occur whenever gradients
exist in a parameter which affects the wave's phase speed, e.g., Coriolis parameter,
Brunt-V;is;l; frequency, current speeds, and water depth. Stokesl3 provided
the first theoretical evidence of trapping for surface (gravity) waves near the
shoreline of a plane sloping beach. Stokes found a normal mode solution for the

(barotropic) departure n of the water surface from its static equilibrium position

(see figure lla) of the form
(38) nm(x,y,t) = a sin B exp (-kmy cos B) cos kmx sin u t

where -tan B8 is the beach slope, x points in the longshore direction, and
y points offshore. The (linear) dispersion relation for the various longshore

mode number m = 1,2, ... is

B i i Ama e

P
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2
(34) 0< 3t<<t =%
v .
é
The next relevant model is linear dispersive theory (fT + fXXX = 0)
1
;
which is valid during !
(35) T)] << 31 << 15 = EQ 3 E
V i
with its asymptotics becoming valid during
L
(36) T, << 371 << 1, = V2.
Subsequently, we must use the KAV equation (fT + 6ffX + fXXX = 0) for
(37 3t > 1,

(The question of the time scale for applicability of KAV asymptotics is discussed

by Hammack and Segurlo.) As an example of the application of these results,

consider the dimensional scales adopted by Carrier12 for major tsunamis which

impact entire ocean basins: ao =~ 10 ft., h = 1.5 ° 104 ft., kgl =2 . 10S ft.

Then U0 “ 0.1 and V ~ 0.01 and linear nondispersive theory is valid for times

corresponding to propagation distances (using Ci = gh) of
0 < x << 600 miles.

Linear dispersive theory is appropriate for

600 miles << x << 6,000 miles

P

indicating that dispersion may affect this wave over much of typical ocean
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2
(39) w_ =gk sin B
m m

where km = mn/b is fixed by the beach width b. Note that the Stokes' mode
of (38) is periodic in the longshore direction with crests pointing offshore
which decay in amplitude with an e-folding distance Y, = (km cos 8)-1.

The crest amplitude is maximum at the shoreline with a magnitude a sin 8

where a is referred to as the run-up amplitude. (Of course, run-up phenomena
cannot be represented by linear solutions; however, the reality of run-up is
acknowledged since o is the up-beach length of the horizontal projection of the
vertical shoreline amplitude.) Ursell14 demonstrated that the Stokes' mode

is only the lowest (j = 0) of a discrete set j =0,1 ..., J of trapped modes

where J is the greatest integer satisfying .
s
(40) (23 +1) B < 2.

These higher discrete modes are algebraically complicated but retain longshore
periodic behavior. Their crest amplitude is maximum at the shoreline but
oscillates in the offshore direction with j nodes while decaying exponentially
(see figure 11b). To complete the set of normal modes, Hanson15 showed that
there exists a continuous spectrum of waves with wave-number magnitude k
satisfying mz > gk. These modes are even more complicated to describe
algebraically but resemble simple deep-water wave trains far offshore. An
example of one of these modes with crests parallel to the shoreline is shown
in figure llb. We emphasize here that the continuous spectrum modes are not

trapped like the discrete modes.
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Oceanographic interest in edge waves appears to have originated in
16 . . .
Isaacs ¢t al. suggestion that these waves might be responsible for "surf beat"”

phenomena. Since then, edge waves have been indicted as a potential mechanism

for numerous features of coastal dynamics such as beach cusps (Guza and Inman)17,

. 18 .
crescentic bars (Bowen and Imman) , and rip currents (Bowen and Inman)lg. The

lack of direct observational evidence of edge wave modes on beaches (i.e., wave

crests pointing offshore!) naturally raises questions as to how and if these modes

can be excited. The most important mechanism for extensive generation opportunities

of edge waves was provided by Guza and Davis20 who demonstrated theoretically
that Stokes’ modes could be excited by simple wave trains normally incident onto
a perfectly reflecting beach from deep water. Basically, the nonlinear coupling
between the incident/reflected wave of frequency W and background edge wave
"noise" of subharmonic frequency w = W/2 leads to a resonant interaction and
growth of the edge wave noise. Eventually other nonlinear processes develop

to limit growth; however, at steady state the edge wave amplitude exceeds that
of the incident/reflected wave. The entire evolution of the edge wave has been

investigated theoretically by Guza and Bowen21 (hereafter referred to as G-B),

Minzoni and Whitman22 (hereafter referred to as M-W), and Rockliff23.

Herein we present quantitative experimental measurements on edge wave
excitation by normally incident wave trains. Some of the predictions of G-B and
M-W are tested and necessary modifications for imperfectly reflecting beaches are
presented. An outline of the presentation is as follows. In Sect. 2 we review

the theoretical results with emphasis on the prediction which can be explicitly

tested by the experiments. In Sect. 3 a brief description of the experimental




facilities and data analysis techniques are discussed. A comparison of measured

and predicted data appears in Sect. 4 followed by a summary of the major results in

24

Sect. 5. More details of each aspect of this note may be found in Lin and Hammack.

2. — Review of the Theories

The first description of both edge wave excitation and subsequent evolution
was developed by Guza and Bowen21 using the shallow-water equations; hence, their
results are limited to small beach angles (B << 1l). With clever but intuitive
reasoning, G-B isolate several processes, analyze each separately, and combine
linearly to yield a complete evolution model. (More recently, Rockliff23 has
reproduced some of the G-B results relying more formally on the governing
shallow-water equations.) Minzoni and Whitham22 use the full equations and provide
the most formal (mathematically) description of the edge wave evolution process;
their results remain valid for arbitrary beach slopes B < m/2. The greater
formality of the M-W formulation permits more justifiable ordering of different
processes. Hence, the outline below of edge wave evolution is based primarily
on their formalism. Following the qualitative description, a quantitative listing
of relevant parameters predicted by both M-W and G-B will be presented.

The classical water-wave problem for the inviscid, irrotational, barotropic
motions of an incompressible ocean in the wedge-shaped region of figure lla may
be formulated in terms of a complex velocity potential ¢. Initially, we have a
linear wave train normally incident onto the beach from deep water; the inéident
wave amplitude far offshore is a, - We also take the incident wave to be perfectly

reflected from the beach. (The reflection coefficient is R = ar/ai = 1 where ar

is reflected wave amplitude.) Hence, the forcing for the onshore edge wave noise

is a standing wave mode which is a member of the continuous spectrum of normal modes

e e e b
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discussed in Sect. 1. To simplify (somewhat) the standing wave description,
it is further assumed that the beach slopes are a member of the denumerably
infinite set B = 7/2N with N = 1,2, ... . The complex potential for the

standing wave may be written as ¢s ~ exp(iwWt), and we note that [¢Sl ~ g << 1.

In addition to the primary standing wave, we assume three-dimensional perturbations

by Stokes edge wave with complex potential ¢e ~ exp(iwt) where |¢el << g << 1
initially. On a very short time scale (stage 1), nonlinear interactions between

the primary wave and the edge wave noise are negligible. However, on a longer

time scale (stage 2), quadratic interactions arise as a consequence of the nonlinear
boundary condition at the free surface and become significant. Assuming the edge

wave noise that satisfies the resonance condition w = W/2 to dominate, quadratic

interactions ¢s ¢é* (where * denotes complex conjugate) give rise to terms of
the form exp(iWt/2) and contribute to the growth of the subharmonic edge wave
noise. This interaction between the linear standing wave and linear edge wave
noise produces exponential growth of the form a ~ exp(yt) where a is the (real)
edge wave amplitude at any crest location (i.e., a = a(x,y,t), and we take
a(x,0,t) = A(x,t) as the shoreline amplitude) and y is the initial growth rate.
The edge wave noise grows until a later time scale (stage 3) is reached where
its finite amplitude leads to the development of processes which limit further
growth. First, quadratic self -interactions of the edge wave with the form

¢ ¢ ~ exp(iWt) contribute to the offshore standing wave; this is termed

radiation by G-B and corresponds to the fact that nonlinear (even second order)

e

standing edge waves leak energy at frequency 2w to deep water. Since |¢sl >

for the disturbed standing wave in stage 3, radiation feedback suggests that
b

a steady state may be reached when |¢e| >

locally than the forcing wave. Second, cubic self-interaction terms of the form

, i.e., the edge wave becomes larger

e e e -
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¢e ¢e ¢e* ~ exp(iWt/2) contribute further to edge wave nonlinearity by modifying
its dispersion relation. Hence, the system is retuned and the resonant frequency

is shifted. 1If the forcing was perfectly resonant initially, it will now be off

Al e .

resonance and an effective reduction of the on-resonance growth rate Yy will occur.
" (0f course, if the initial forcing is slightly off~resonance, a similar modification
L

H in vy is required.) When combined, all of these processes lead to an evolution

- for (inviscid) edge waves of the form

- N
’ dA 2 2
(41) ET (v" - k™) A~y A3

where y is the initial on-resonance growth rate, k is a measure of the reduction

in forcing efficiency due to nonlinear retuning, and u is a feedback coefficient

due to both radiation and retuning. (Note that in (41) we tacitly assume that

! the edge wave phase remains constant through stage 3. Theoretically, this

assumption is invalid; however, the experimental data support its applicability.)
At the risk of misquoting G-B and M-W and possibly introducing numerical

errors, we now list quantitative expressions distilled from their studies for

the parameters appearing in (41). The initial (on-resonance) growth rate predicted

E | for the edge waves is

0.0424 a, w3

(42a) G-B: Y = ————7—'
g/ 8
3

0.0426 a, W .
(42b) M-W Y = —————————5———' !

g/g— tan B
where the M-W result is accurate to within 3% for 8 < w/4. These predictions

are in agreement in the shallow-water limit (B + O). Modification of the i
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initial growth rate by nonlinear retuning in steady state may be conveniently
written to the same order of small parameter ¢ = a k (where o is the
0 0 0

steady-state run-up amplitude of the edge wave) as
(43) K = -w

with m(z) and w(o) representing the nonlinear and linear natural frequencies

of the edge wave, respectively. The shallow-water limits for m(2) given
explicitly by G-B and inferred from the presentation of M-W are
" (44a) G~B: w(z) = w(o) [1 + 0.055 802]

(44b) wew: o2 = 0% 1+ 0l012 502];

w(o) = (g k B)% in both cases. The different results of (44a) and (44b) do

not appear reconciliable. Predictions for the feedback coefficient u in the

shallow-water limit also differ at the same order of approximation according to

w5
(45a) G-B: u = 0,001795 > 1
g 8
5
(45b) N-W:  u = 0.002323 —%
gz X

Finally, we note that the steady-state amplitude of the edge wave at the

shoreline is found from (41) to be

Y

(46a) A, = (Y2 - Kz)%

u
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3. — Experimental Facilities and Procedures

A set of five experiments are conducted to study the excitation of
standing edge waves on a beach by waves normally incident from offshore.
Experiments are performed in a laboratory basin 1.83 m wide, 4.0 m long
and 30 cm deep as sketched in figure 12. The tank is equipped with a
mechanical wave generator and a smooth beach whose slope can be varied. An
actual beach width of b = 1.60 m was used in the experiments by incorporating
internal sidewalls over the beach section as indicated in figure 12, This
enables the offshore tank section of uniform depth to be surrounded by
energy-absorbing material to minimize unwanted reflections and simulate
open-ocean conditions. Extensive precautions were taken to insure that the
shoreline and wavemaker were parallel and to prevent beach "pumping" during
actual experiments.

An offshore water depth of h = 25.4 cm was used in all five experiments

° (N =6) to B = 22.5° (N = 4);

while the beach slope was varied from g = 15
one experiment, run 4, was conducted at 8 = 20° which does not correspond to
a slope of /2N for any integer N. It is immediately apparent that the
offshore uniform depth region does not conform to the (unrerlistic) mathematical
model where the water depth increases linearly offshev. . .. 2ver, the offshore
distance over the sloping beach section always exceeded three e-folding distances
(> 95% decay) for the edge wave modes excited (assuming Stokes' modes). Based
on Minzoni,25 it is not expected that the edge wave dispersion relation is
affected by the uniform depth offshore in any of the experiments.

In all experiments wave amplitudes are measured at three locations; one

gagé onshore over the sloping beach and two gages offshore in the uniform

depth region. The onshore gage is always positioned at a longshore location




1
'
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corresponding to an edge wave antinode. The reality of edge waves very
near the shoreline requires that they deviate from the profile predicted
by (38); hence, the onshore gage is located approximately one e-folding
distance away from the shoreline and always outside of the surf zone.

The procedures adopted for each of the five experimental runs are
as follows. First, the frequency w of the desired edge wave is calculated
based on the beach width b = 1.6 m; the offshore wavemaker is then adjusted
to a frequency W = 2w. The incident and reflected wave amplitudes (ai and ar)
of the partial standing wave systems are then determined from simultaneous
measurements at the offshore gages in the absence of edge wave excitation. Edge
wave excitation 1is suppressed by inserting a thin plate perpendicular to the
shoreline which penetrates the surf zone; the plate introduces boundary
conditions which destroy the resonance condition necessary for rapid edge wave
growth. The thin plate is then removed permitting the evolution of the edge
wave. Once the edge wave attains a steady state the wavemaker is stopped and
the (unforced) decay of the edge wave over the sloping beach is measured. Hence,
each experiment produces a time series of the water surface elevation onshore
and offshore containing stage 1, stage 2, stage 3, and additional stage 4 where

edge wave forcing is terminated and viscous damping forces dominate.

4, — Comparison of Experiment and Theory

Table 1 summarizes the measured data for the partial standing waves
generated by the wavemaker/beach system in the absence of edge waves. The
incident and reflected wave amplitudes are presented along with the respective

reflection coefficients which range from 2 = 0,134 to R = 0.500. (Recall that

e




theoretical results assume perfect reflection with R = 1.) It should be

|
I
|
)

noted that wave breaking near the shoreline was observed in each experiment
and was especially strong in run 1.

A typical time series (run 2) taken onshore and offshore during edge
wave excitation, evolution, and eventual damping is shown in figure 13. The
onshore record clearly shows the effect of edge wave growth as it alternates
between construction and destructive interference with successive crests of
the incident/reflected wave system. (This behavior is a direct consequence of
subharmonic excitation with W = 2w.) A periodogram computed using the Fast
Fourier Transform of the onshore wave record for run 2 is shown in figure 14.
The first peak in the spectrum corresponds to ‘the excited edge wave mode while
the second peak corresponds to the standing wave generated from offshore.

The equally spaced peaks at higher frequencies represent the superharmonics of

both the edge wave and standing wave. The centering of wave content about
well-separated and narrow bands with identifiable dominant frequencies (w, 2w, 3w, ...)
such as that exhibited in figure 14 permits the use of complex demodulation

techniques to view the real time evolution of both the amplitude and phase of

each dominant wave component (see Blocmfield26). Using the periodogram, an

initial guess, say mg, for the dominant frequency in a band of interest is

determined. The time series is then multiplied by expLimqt) to shift the

desired wave content to zero frequency. This demodulated signal is then

low-pass filtered in time to vield the instantaneous phase and amplitude of the

signal component with frequency mg. If the estimated frequency wg is in error,

a linear change in instantaneous phase with time will be observed; the slope of

the linear change represents the error in mg. In this manner the dominant




- 30 -

frequency of each narrow band in the periodogram may be determined very
accurately as well as its instantaneous amplitude and phase. {(More details
on the application of complex demodulation technique including a discussion
of the low-pass filter properties may be found in Lin and Hammack.24) The
edge wave frequencies in each experiment were determined using this technique
and are summarized in table 2. Figures 15 and 16 show the instantaneous
amplitude and phase, reséectively, of the edge wave harmonic at the onshore
gage in run 2. Both parameters oscillate rather wildly during the initial
time t < 25 secs; this behavior is a characteristic result when the signal-to-noise
ratio is small. (Note that during this period this instantaneous amplitu.ie
of the edge wave is less than 0.07 cmi) The edge wave amplitude in figure 15
then begins to grown in an exponential manner while the edge wave phase in
figure 16 becomes constant. As time continues to increase, edge wave growth
slows and a steady state is achieved for t > 70 secs; the gage-site amplitude
of the edge wave at steady-state is a, = 0.754 cm. The measured growth rates
Ym and steady-state amplitudes ao are shown in table 2. The inferred shoreline
amplitude AO based on the measured a0 at gage-site is easily calculated; the
ratio of Ao/ai ranges from 3-6 in all experiments in agreement with the
theoretical prediction that steady-state amplitudes of the edge wave should
exceed those of the offshore standing wave. It is important to note that
measured growth rates are significantly influenced by viscous and turbulent
damping forces which must be clarified before a legitimate comparison with
inviscid and irrotational theoretical models. The viscous damping rate is

easily measured in the laboratory model simply by turning off the wavemaker

and monitoring the damping of the edge wave harmonic with time. Typical
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results are shown in figure 17 which corresponds to run 2, As expected,
exponential decay occurs when the edge wave becomes sufficiently small (and
linear theory is applicable). The measured decay rates § in the exponential
stage for each experiment are presented in table 2. As noted by Guza and
Bowen,27 the damping of edge waves in the presence of breaking incident waves

is likely to be dominated by turbulent exchange mechanisms rather than (laminar)
viscosity. Viscous effects are enhanced by laboratory model scales and should
play an important role; however, based on the results to follow, turbulent
exchange mechanisms also appear to be important at laboratory scales. Ignoring
the effects on laboratory damping of edge waves due to incident wave breaking,

a measured "inviscid” estimate of the initial growth rate may be calculated

by y& = Ym + 8. Results for Yé are tabulated in table 2 along with the
theoretical predictions for the growth rate according to 42a. It is evident
that large discrepancies still exist; however, it should also be remembered that
the theoretical predictions assume a perfectly reflecting beach. To examine the
potential effect of the imperfect reflection in the experiments we have plotted
the ratio of Yé /Yy versus the reflection coefficient R in figure 18, Note that
excellent correlation exists (data lie on 45o line) suggesting that the growth
rates should be calculated using the reflected wave amplitude a, instead of the
incident wave amplitude a; i.e., we should replace y by YR. Theoretical estimates
of YR are listed in table 2. It is important to emphasize that this behavior

of the measured data clearly demonstrates that it is the reflected wave component

of the offshore standing wave which drives the edge waves., It further supports

, 1 .. .
the observation (Guza and Inman 7) that edge waves do not occur on dissipative

beaches which produce little reflection.
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In order to compute the theoretical amplitude of the edge waves in
steady state, the results above suggest that we should modify the theoretical

growth rate in (46) to the form

(46b) A

The theoretical amplitude at a specific gage site then becomes

(47 a, = AO cos kmx exp(—kmy cos B):;

results of computations for the predictions of both G-B and M-W are shown
in table 2. Except for run 4, theoretical results exceed measured data by
factors of 1.18 to 1.91. This behavior pattern is expected since the turbulent
damping of the edge waves in the presence of breaking incident waves has been
neglected. Also consistent with this hypothesis is the fact that agreement
between experiment and prediction is best in run 5 where the least wave breaking
was observed. Run 4 is anomolous as the measured amplitude exceeds theoretical
prediction. (Interestingly, absolute agreement between measured and predicted
data is best for run 4!) There is also the following evidence that run 4 is
unusval re. 1ve to the other experiments. Note from table 1 that the offshore
;*anding wave changes little between runs 3 and 4 while the steady-state amplitude
e wave {n table 2 doubles! 1In other words, a major difference in

~ir= even thkouah the forcing remains approximately constant.

crer oo tesween runs 3 and 4 is the slightly greater
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beach slope (20) in run 4 which no longer corresponds to one of the set

m/2N required by the theoretical models. Based on this limited datum, it
does appear that the predictions for steady-state response on beach with
slopes satisfying B = 7/2N cannot be extrapolated to intermediate slopes.
(However, extrapolation for the initial growth rates does appear permissible

with the modifications due to partial reflection described earlier.)

5. — Conclusions

Based on the experiments described herein, the following major conslusions
may be stated regarding edge wave excitation on beaches by normally incident
waves from offshore.

i) The theoretical growth rates calculated for perfectly reflecting beaches
may be generalized to beaches with imperfect reflection simply by
reducing the growth rates in direct proportion to the reflection
coefficient of the beach. This result suggests that the reflected wave
is indeed the driving force for edge wave response and absolutely
necessary in order to excite these modes.

ii) Growth rates modified for partial reflection effects may be extrapoiated
to beaches with slopes not satisfying 8 = 7m/2N,

iii) No change in the edge wave phase occurs once the exponential growth
stage is encountered. Hence, the evolution equation for the real
amplitude of the edge wave is applicable,

iv) fThere is limited evidence that the steady-state amplitudes of edge

waves on beaches with 8 # /2N are significantly larger than those

for nearby beach slopes with 8 = w/2N.

PREE———



- 34 - !
: f
| ‘
‘ i
v) Damping effects on edge waves are significantly influenced by turbulent i
exchange mechanisms resulting from breaking incident waves, even on the
2B laboratory scale.
! * k%
>‘4
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Run B W a, a R i
o 1 r ]
; d ;
> [ra (cm) (cm)
: sec
'é o b
& 1 15 9.98 0.82 0.11 0.134 ,‘
" i
: 2 15° 7.54 0.62 0.31 0.500
Y 3 18° 9.82 0.87 0.30 0.345
4 20° 10.65 0.90 0.32 0.356
: !
" 5 22.5° 10.86 0.63 0.29 0.460 |

Table 1. Beach and offshore standing wave properties
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FIGURE CAPTIONS
i Figure 1. Definition sketch of the fluid domain.
i Figure 2. Schematic drawing of the wave generator.

! Figure 3. Surface wave evolution: h =5 cm, b = 61 cm, V = 30.5 cmz,

N = 3. «mmm——, 6 measured profiles; @ , soliton profiles

computed using (7).

M .

: ,‘ Figure 4. Surface wave evolution: h =5 cm, b = 30.5 cm, V = 30.5 cm2,
¥
‘ N = 3. e , measured profiles; @ , soliton profiles
‘! computed using (7).
, Figure 5. Surface wave evolution: h =5 cm, b = 61 cm, V = 30.5 cmz, N = 0.
.‘ Figure 6. Surface wave evolution: h =5 cm, b = 30.5 cm, V = -30.5 cmz, N = 1.
. 2
Figure 7. Surface wave evolution: h =5cm, b=30.5em , V=20, N= 2.
e , Measured profiles; @ , soliton profiles computed using (7).
1
)
Figure 8. Internal wave evolution: hl = 45 cm, h2 =5 cm,
b =61l cm, A = 0.05
. Figure 9. Comparison of leading wave profiles with theoretical
(internal) K4V soliton.
4

Figure 10. Evolution of a narrow-banded wave packet. — , measured

profiles; @ , soliton profile computed using (12).

Figure 1lla) Definition sketch of fluid domain and Stoke's edge-wave mode.
b) Sample offshore profiles of higher edge-wave modes: —
discrete spectrum (trapped) mode; ==ewa=, continuous spectrum

(untrapped) mode.
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Figure 12.

Figure 13.

Figure 14.

Figure 15.

Figure 16.

Figure 17.

Figure 18.
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Schematic drawing of wave basin -~ plan view.

Time-series of water surface elevations onshore and offshore.

Periodogram of onshore time series.

Amplitude evolution of subharmonic edge wave for run 2.

Phase evolution of subharmonic edge wave in run 2.

Viscous damping of subharmonic edge wave in run 2.

Correlation of measured and theoretica. "inviscid"” growth

rates with beach reflection coefficient,
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