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Because of its proven analytical virtues, the inductively coupled

plasma is now widely used. However, despite this proven utility, the

development of ICP techniques is still in its infancy, hindered by a lack

of understanding of excitation processes and the existence of unexplained

interference effects. Because many of these interferences are them-

selves believed to involve excitation, a clearer understanding of excitation

processes in the plasma is being sought by a number of workers.

It is now reasonably well established that excitation throughout the

ICP is not accomplished by a completely thermal process (1-4). In particular,

a number of studies (1-4) have shown that the analytical region of the plasma

is not in complete local thermodynamic equilibrium (LTE). For example,

Boumans and de Boer (5) have found emission intensities for some elements

to be from one to three orders of magnitude greater than that predicted

by LTE considerations.

Complicating any attempt to explain excitation in the ICP is the fact

that the plasma is spatially inhomogeneous. Blades and Horlick (6) have

found that LTE calculations could be applied successfully to the region

from 0-15 rrin above the load coil to predict spatial behavior of analyte

atom emission; however, above this region the theory could not be applied.

The effect of concomitants on ICP emission underscores the importance

of understanding better the excitation processes. For example, the effect

of easily ionizable elements on analyte emission can be studied empirically

(7) but even such detailed observations have not yet yielded a rational

interpretation. Similarly, the addition of even small amounts of foreign

gases (e.g. N2, He, or 02) can cause dramatic changes in the emission

characteristics and spatial behavior of analyte species (8). This behavior
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is almost certainly caused by changes in excitation conditions within the

plasma gas.

Most excitation models which have been offered invoke argon metastable

atoms as an important participant. A non-LTE mechanism for ionizing atoms

and populating excited states in the ICP has been offered by Mermet (9) and

is based on excitation transfer from metastable argon atoms. In this

mechanism, metastable atoms play a role in excitation and ionization through

a Penning process. Boumans and de Boer (5) offered a mathematical model

whereby metastable argon acts as both a an ionizer and an ionizant and

thus performs as a buffer species. On the surface, these explanations

seem intuitively reasonable. The 43P0 and 43P 2 states of argon ordinarily

have long lifetimes because transitions between them and the ground state

are forbidden. Because of this long lifetime, approximately

1.3 seconds (10), these states might serve as energy storage sites and

thereby influence excitation in the ICP. Moreover, because these states

are quite energetic (11.5-11.7 eV above the ground state), they would be

capable of ionizing and/or exciting a large fraction of analyte species

introduced into the plasma. Even the admixture of cold, sample-aerosol-

containing argon to the hot plasma gases might then not diminish greatly

the population density of the argon metastable species, thereby creating

an argon metastable concentration far in excess of what would be predicted

at temperatures in the analytical zone.

However reasonable the arguments involving metastable argon atoms,

the foregoing models are incapable of explaining a number of observations.

Although the metastable states are sufficiently energetic to excite many

of the most sensitive analyte lines, a number of strong emission lines have
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been observed which are above 11.7 eV. For example, Cd II (226.5 nm and

214.4 nm) and Zn II (202.5 nm) have higher energies. Alternative explanations

must be proposed for excitation of these species, for example a two-step

process involving ionization and subsequent excitation. Also arguing against

a metastable-dominated excitation process is the likelihood that metastable

-atoms are readily converted to radiating species by collisions with other

argon atoms (11, 12). The two metastable levels are intercalated by two

radiative states 43P, and 41P1, the former 0.06 eV above the 4
3P2 level

and the latter 0.1 eV above the 43P0 state. At typical plasma temperatures

(l0 4K), the collision frequency (fc) between argon atoms at atmospheric

pressure can be calculated from the following relationship.

f 7/1 Acceso n - I

where v, the rms velocity of the atom, is

v= (3kT/m) /2' " Eq. 2
"yL: L

and 1, the mean free path of the atom, is

1 = [vT (nird)] "1  Eq. 3

In equations (2) and (3), k is the Boltzmann constant, T is temperature in

K, m is the atomic weight of the colliding atoms, n is their number density,

and d their effective collision diameter. From these relationships, the

collision frequency of metastable atoms would be approximately 10 per
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second, suggesting the -apid interconversion of metastable to radiating

states. Because the lifetimes of the radiating states are approximately

10-' sec (13), it would seem unlikely that either the metastable levels

or their radiating counterparts would achieve an appreciable overpopulation

compared to what would be predicted from the Boltzmann expression. Simi-

larly, it would be surprising that such short-lived species could be carried

intact from their point of production near the load coils to the analytical

zone some 15-20 num away.

Despite the foregoing reasoning, supretheiial excitation appears to

exist in the ICP and metastable atoms have been measured (14, 15) in apparently

high concentration in the analytical zone of the discharge. In this paper,

we attempt to offer an explanation for these observations. In the resulting

model, it; will be argued that argon metastable species are indeed rapidly

equilibrated with closely lying radiating levels. However, radiative de-

activation which would ordinarily reduce the population of those levels

is counteracted in large part by radiation trapping--the repetitive ab-

sorption and reemission of the excitation energy. Because of radiation

trapping, the energy initially captured by the metastable states or by

their radiative counterparts is retained within the plasma volume for

periods as long as 10-3 sec. As a result, Penring ionization and other

processes in which metastable argon formerly figured significantly also

involve radiative levels, not only those lying near the metastable states,

but also those of higher energy. This model, it will be argued, can explain

a number of hitherto poorly understood phenomena in the ICP and points

toward the development of improved plasma sources.
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EXPERIMENTAL

Preliminary experiments were designed to probe the population densities

of metastable argon atoms through use of absorption techniques. A number of

other workers have employed similar procedures (14-16). Such measurements
0

involve determining the absorbance at 8115 A, which corresponds to a transition

from one of the metastable states (43P2) to a higher lying level (cf. Figure 1).

In the present study, these measurements were extended to a number of

other transitions, which are also indicated in Figure 1. These other transitions

correspond to absorption from not only the metastable levels, but from

radiative levels as well. Upper levels involved in each transition cor-

responded in multiplicity to the ones from which the transition originated.

To overcome any artifacts caused by temporal variations in either the primary

source or the ICP itself, absorbances were measured simultaneously, using

a photodiode array spectrometer. Conventional absorption geometry was

employed throughout; a microwave-induced plasma (MIP) served as a source

of argon line emission, which was focused on the ICP discharge and again

onto a 0.35 m monochromator (GCA-McPherson Model 270). A Reticon 1024S

photodiode array served as a detector and was interfaced for readout purposes
0

to a MINC-ll/03 computer. Consequently, lines over a 500 A range were

measured simultaneously.

The MIP was operated at a forward power of 200 watts and supplied

with argon gas at atmospheric pressure at a flow rate of 0.5 liters per

minute. By means of a double stub tuner and microwave isolator, the MIP

was tuned carefully and rendered sufficiently stable for the required ob-

servations.

7A
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To determine the absorbance from either metastable or radiating levels,

three separate measurements were performed and involved the determination

of, respectively, the MIP emission spectrum itself, the ICP background

emission spectrum, and the combined MIP/ICP output, with the MIP radiation

passing through the ICP discharge. By appropriate manipulation of these

three signals, the absorbance of each of the lines detected by the photodiode

array could be readily calculated. Figure 2 is an ICP emission spectrum

of the region studied. The spectrum displayed in Figure 1 was

determined at a height of 20 mmn above the ICP load coils, at

a forward power of 750 watts, a coolant gas flow rate of 15 liters per minute,

a plasma gas flow of <1 liter per minute, and in the absence of nebulizer

gas. Specific transitions corresponding to the lines in Figure 2 can be

found in the diagram of Figure 1. Those lines marked with an * correspond

to those in which the lower level is a metastable state.

Absorbance values corresponding to the spectrum of Figure 2 are quanti-

tated and tabulated in Table 1. Clearly, the 8115 A line is not a unique

absorber. In fact, the absorbance from radiating levels are nearly as

great as those from the metastable levels, suggesting comparable populations

of the two kinds. Moreover, consideration of the oscillator strengths of

the various transitions which are tabulated suggests strongly that radiating

levels are populated to approximately the same extent as the metastable

states.
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RESULTS AND DISCUSSION

From the absorbance (A) and oscillator strength (f) values collected

in Table 1, the relative population densities of the closely lying metastable

and radiating states near 11.5 eV can be calculated. Using these values and

Equation 4, it can be shown that the population ratio of metastable (n M) to

radiating (nR levels is approximately 0.6.

nm ~'~~REq. 4
n R ARfm

From this preliminary result, one must conclude that the metastable and

radiating states are rapidly mixed through collisional processes. Consequently,

the overpopulation of metastable levels which has been postulated (5) and

measured (14,15) by others must also a'pply to the radiating states. It remains

then to answer how the radiating levels ordinarily short-lived, do not immedi-

ately deactivate radiatively.

It is our thesis that the radiating levels, like metastable ones, serve

to store energy through a phenomenon known as radiation trapping (17-19). it

is known that noble gas transitions which couple to the ground state absorb

strongly over a wide range of gas pressures (11, 18-19). There-

fore, a quantum of resonance radiation emitted by one atom has a high prob-

ability of being reabsorbed by surrounding gas atoms, leading to a transfer

of excitation from one atom to another. Obviously, at atmospheric pressure

a large number of such emissions and reabsorptions can take place before

radiation can eventually escape from the boundaries of the enclosed gas.I

~Na-
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Hence the radiation is often considered to be "trapped". This radiation

trapping leads to a longer apparent lifetime for the radiating levels and

a consequent storage of the excitation energy in the enclosing gas.

Holstein (18, 19.) treats this phenomenon quite clearly and suggests both

the rapid conversion of metastable energy to radiating energy and the sub-

sequent imprisonment of radiation. Conveniently, the apparent lifetime

of an excited state which undergoes radiation trapping (tap ) can be cal-

culated from the expression (20)

T app ":= / Eq. 5

where T is the natural lifetime of the transition and y is a radiation im-

prisonment factor. For an infinite cylinder of the imprisoning gas having

radius R,

1.6
=koR(wrln koR)UZ q.

where ko is the absorption coefficient at the center of the transition given

by

ko= Xlng2A21  Eq. 787rg I V 0 AT

where X is the wavelength of the transition being imprisoned, n is the number

density of excited states, A21 is the probability of the downward

transition, g, and g2 are the degeneracies of the lower and excited states

in the transition, respectively, and vo is the most probable velocity of

atoms in the ground state.
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For the 1048 A (radiating to ground state; 3Po ISO) transition at

104 K in a conventional plasma of radius 0.8 cm, the ground state number

density can be calculated to be approximately 1016 cm-3 . From these values,

the apparent lifetime of radiating states would be 1.16 x l0-  sec, far

greater than the normal radiative lifetime of approximately 10-8 sec. In

an ICP torch where the linear argon flow is in the range of 30 m/sec, this extended

lifetime would permit radiation to be trapped to a height of approximately 3 cm above

the load coil, corresponding well to the actual height of the ICP emission

plume.

The model suggested by radiation trapping can account for many observations

in the ICP. In this model, metastable and radiating states would both be

created in the same way that metastable levels were postulated to be. However,

collisional equilibration between the two kinds of states would be rapid,

but would result in little loss in excitation energy because of radiation

trapping. Because such trapping would imprison the energy within the plasma

volume for periods as long as 1 msec. sufficient time would exist for such

processes as Penning ionization. Therefore, many of the existing models

which invoke the presence of argon metastable species could be applied

equally well to the new model, but with the provision that radiating levels

be included.

However, a number of other ramifications of the new model exist. For

example, Penning ionization need not arise only through a collision with

excited argon species, but a similar process could also occur through interception

of a photon imprisoned in the plasma volume. Similarly, the effect of foreign

gases (e.g. 02, N2, etc.) could be explained by collision with excited argon

species or by absorption of an imprisoned photon. Because the new model sug-

gests high population of additional states and suggests the presence of im-
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prisoned radiation, such ionization or deactivation processes should be rendered

much more efficient, explaining even better the influence of foreign gases

or the high excitation efficiency of the ICP.

The new model also provides an explanation for the unusually high ex-

citation capability of the ICP. Although the predominantly trapped radiation

would be that corresponding to the lowest radiating to ground state transition,

other radiation trapping pathways exist. For example, the resonance transi-
0 0 0 0

tions at 879.9 A and 869.8 A (cf. Figure 1) and 876.1 A and 866.8 A are also

capable of trapping radiation. Moreover, although the probability of radiation

trapping depends upon a substantial population in the lower level of the tran-

sition in question, it might exist for transitions between the lowest radiating

or metastable states and higher ones (20-22), further contributing to the excitation

of upper levels. As a result, one might expect that overpopulation of a

number of excited levels would occur, leading to unusually high excitation

energies that seem to be present in the plasma.

The new model also suggests new experimental directions to take with

the ICP. Because radiation trapping is most efficient in a high-density

medium, it would be most prevalent in high-pressure plasmas. In fact,

operating an ICP at pressures above atmospheric might enhance radiation

trapping and thereby contribute even more to the high excitation capability

of the plasma. Conversely, at low pressures, radiation trapping would be

minimized. However, at low pressures collisional equilibration between

the metastable and radiating levels would be minimized and metastable ex-

citation would become more important. Similarly, one would expect that

larger plasmas would exhibit greater radiation trapping, because of their

lower surface-to-volume ratio. Conversely, smaller plasmas might be less

efficient in trapping radiation and thereby exhibit less excitation capability.

This hypothesis might suggest a limit to how small ICPs can be made (23).



Obviously, the arguments presented in this paper must be considered

somewhat speculative and are based on meager experimental evidence. However,

the model we have offered agrees well with existing experimental evidence

and previous (literature) findings. To prove or disprove the hypothesis,

several additional experiments must be performed. First, it will be nec-

essary to determine the time scale on which metastable and radiating states

are equilibrated. Laser-based time-resolution experiments to determine

this time scale are currently underway in our laboratory. In addition,

it will be necessary to ascertain the presence of radiation trapping.

Ordinarily, the existence of radiation trapping can be confirmed simply

by monitoring the lifetime of the upper state involved in the transition.

Unfortunately, the transition involved in the proposed model is in the
0

far ultraviolet (1048 or 1067 A) and cannot simply be examined. Other

measurements to test the presence of radiation trapping might be those

involving the influence of gas pressure in the ICP or the determination

of the state lifetime through absolute absorption measurements. These

experiments are also underway in our laboratory.
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Table 1: Wavelengths, term symbols, absorbances, and oscillator

strengths for lines used in absorbance measurements.

Wavelength Transition Absorbance f

7273 4s[3/2] - 4p'[1/2] 0.171 0.0159

7384 4s[3/2]° - 4p'[3/2] 0.116 0.119

7504 4s'[1/2]0 - 4p'[1/2] 0.122 0.133

7515 4s[3/2] ° - 4p'[1/2] 0.126 0.121

7635 4s[3/2]0 - 4p[3/2] 0.146 0.239

7948 4s'E1/2]0 - 4p'[3/2] 0.088 0.56

8006 4s[3/2]0 - 4p[3/2] 0.108 0.075

8014 4s[3/2] ° - 4p[3/2] 0.095 0.092

8104 4s[3/2]o - 4p[3/2] 0.091 0.273

8115 4s[3/2]0 - 4p[5/2] 0.115 0.51



Figure Legends

Figure 1. Partial term diagram for Ar I. Wavelength values in A0 .

0 0

Figure 2. Emission spectrum of ICP in the region 7200 A to 8200 A.

Asterisks mark transitions whose lower level is metastable.
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