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Abstract

This report represents the fourth year of research performed under the
auspices of the Joint Services Electronics Program at Texas Tech University.
The program is concentrated in the "information electronics” area and in-
cludes researchers from both the departments of Electrical Engineering and
Mathematics. Specific work units deal with Feedback System Design, Nonlinear
Control, Nonlinear Fault Analysis, Detection and Estimation in Imagery, Multi-
dimensional System Theory, and Pointing and Tracking.

Each work unit is represented in the report by a summary of the work
performed during the past year, a 1list of publications and activities in the
area, reprints of a'l papers which have been published during the past year,
and abstracts of pending papers. In addition, the report includes lists of
all grants and contracts administered by JSEP personnel, the department of
Electrical Engineering and the Department of Mathematics; and a list of

all publications prepared by JSEP personnel.
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Significant Accomplishments Report

A. Nonlinear Fault Analysis .

During the past year we have made a major change in the direction of
our research in the nonlinear fault analysis area which, we believe, will
open up the way for a whole new approach to the subject. Hitherto, our

research had been directed towards the development of multiple test vector

simulation-after-test algorithms. Although such algcrithms work well in the

linear case they require too much on-line computer time to be effective in
the nonlinear case. As such, we have turned our attention toward simulation-

before-test algorithms and single test vector simulation-after-test algorithms

during the past year with considerable success in both areas.

The basic problem with simulation-before-test algorithms is the large
amount of off-line computer time required to generate the fault dictionary
which underlies the technique. Although this is also a problem in digital
testing it is greatly exaggerated in the analog case by the continuous nature
of the failure phenomena, tolerance problems, modeling problems, and the high
cost of analog simulation. As such, we have developed a new differential-

interpolative approach to the simulation-before-test concept which allows one

to locate a failure which lies between the simulated faults and/or failures
which have been perturbed by tolerance effects. This, in turn, allows the
number of entries in the fault dictionary to be reduced with a comnmensurate
reduction in computer costs.

OQur second approach is a single test vector simulation-after-test

algorithm which uses a “"restricted number of failures" assumption to reduce

the number of test points employed. Historically, single test vector

1




simulation-after-test algorithms have always been highly attractive in

that they are simple and easy to use and have minimal on-line and off-line
computational requirements. Unfortunately, the applicability of these
algorithms has been limited by the large number of test points which they
require. By taking advantage of the fact that at most three or four com-
ponents will ever fail simultaneously, however, we have been able to decrease
the test point requirements for the algorithm while retaining its other
positive attributes.

B. Detection and Estimation in Imagery

During the past year we have completed a study of the detection and
estimation problem in imagery. Although the mathematics for such a problem
is similar to that encountered in the more classical communications problem

the problem is greatly complicated by the nonlinear character of the noise

phenomena and the high data rates encountered. In this endeavor we have

developed an optimal estimation theory and compared it with various approximate
and sub-optimal approaches. In particular, it was shown that one could not
approximate the nonlinear noise phenomena by a linear term but one could

develop sub-optimal nonlinear algorithms whose performance approximated that

of the optimal algorithm while achieving a cost reduction. Indeed, from a
practical point of view the sub-optimal algorithms were actually superior to
the optimal algorithms because of their greater robustness to modeling
errors. Moreover, unlike the optimal algorithms they may be implemented in
“real time" at video data rates.

C. Pointing and Tracking

Much of our research in this area during the past year has been devoted

to the development of efficient computer algorithms for the implementation of
2
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our Lie theoretic pointing and tracking theory developed previously.
Specific emphasis has been placed on the development of algorithms which

are insensitive to the noise phenomena encountered in video imagery and

in algorithms which have the potential for real time implementation.

Several of these algorithms have now been experimentally implemented while
we are waiting for the delivery of our image processing system to begin

experimental "real time" implementation of the theory using actual video

tracking data.
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6. Summary:

The goal of the work unit is the development of a theory for the
design of general linear feedback systems using ring theoretic techniques.
Thus far we have formulated a complete parameterization for the set of
compensators which stabilize a given plant and/or cause it to track or

reject a prescribed family of inputs.2’3’7

This theory has, in turn,
been applied to the problem of designing robust and adaptive control
systems. In particular, we have developed a theory for the simultaneous
stabilization of two distinct p]ants] by a single compensator and we have
laid the foundations for a new theory of adaptive contro].5
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Feedback System Design: The Fractional
Representation Approach to Analysis
and Synthesis

C. A. DESOER, reLLOw, 1E, RUEY-WEN LIU, JOHN MURRAY, anD RICHARD SAEKS, FELLOW, IEEE

Abstract—The problem of designing a feedback system with prescribed
properties fs attacked via a fractionst representstion spproach to feedback
system analysis and synthesis. To this end we let /' denote s ring of
operstors with the prescribed properties and model 3 given plant as the
ratio of two operators in A, This, in turn, leads to a simplified test to
determine whether o not a feedback system in which that plant is
embedded has the prescribed properties and a complete characterization of
those compensators which will “place” the feedback system In H. The
theory is formulated axiomatically to permit its application in a wide
variety of system design problems and Is extremely elementary In nature
requiring bo more than addition, muitiplication, subtraction, and inversion
for its derivation even in the most general settings.

1. INTRODUCTION

NTUITIVELY, the linear feedback system design pro-

cess may be broken down into three steps: modeling,
analysis, and synthesis; each of which may be carried out
via a multiplicity of time and frequency domain tech-
niques. In engineering practice, however, the three steps
are loosely matched to one another. The purpose of the
present paper is to use fractional representation models to

Manuscript received April 2, 1979; revised October 15, 1979. Paper
recommended B. Francis, Chairman of the Linear Systems Com-
mittee. The work of C. A. Desoer was supported in part by the Joint
Services Electronics Program at the University of California, Berkeley,
under AFOSR Contract 76-C-0100. The work of R.-W. Liu was sup-
Eoned in part by ONR Contract 78-C-0444. The work of J. Murray and

. Saeks was supported in part by the Joint Services Electronics Pro-
gam, Texas Tech University, under ONR Contract 76-C-1136.

C. A. Desoer is with the ent of Electrical Engineering and
Computer Science, Univensity of California, Berkel% CA 94720.

R.-W. Liu is with the ent of Electrical Engineering, Univer-

sity of Notre Dame, Notre Dame, IN 46556.
J. Muma
fpoeening,

and R. Saeks are with the artment of Electrical En-
exas Tech University, Lubbock, 79409,

cis}

the analysis and synthesis of feedback systems. Here, if
one desires to design a system with prescribed properties
the given plant is initially modeled as a quotient of two
operators, each of which has the desired properties. Once
such a model has been specified a similar model may be
formulated for the feedback system constructed from that
plant which, in turn, may be used to determine whether or
not the feedback system has the desired properties. More-
over, the set of compensators which will cause the feed-
back system to have the prescribed properties may be
completely characterized in terms of such a model. As
such, by choosing a model for the plant which is matched
to the design criteria the analysis and synthesis processes
for a feedback system may be greatly simplified.

These ideas are illustrated by the following derivation
of the set of stabilizing compensators for the single vanate
control system of Fig. 1.

We say that a transfer function p(s) is exponentially
stable (exp. stable) if p(s) is a proper rational function with
poles baving negative real parts. Although the plant may
naturally be modeled as a quotient of coprime polynomi-
als [16},[19] p(s)= a(s)/ b(s) since our ultimate goal is a

i - . - . - ~ o R
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stable system we prefer 10 model p(s) as a quotient of exp.
stable rational functions

P(s) = n(s)/d(s)=[ a(s)/ m(s)][ b(s)/m(s)] " (L.1)

where m(s) is strictly Hurwitz polynomial of degree equal
to the degree of b(s). Moreover, since a(s) and b(s) are
coprime, the rational functions n(s) and d(s) are coprime
in the sense that there exist exp. stable rational functions
u(s) and v(s) such that

u(s)n(s) + v(s)d(s) = 1. (1.2)

Similarly, we assume that our compensator is modeled as
a quotient of exp. stable rational functions, c(s)=
x(s)/y(s), which are coprime in the above sense. Now, a
little algebra will reveal that the closed-loop system trans-
fer function from input u 10 output y is given by a ratio of
exp. stable rational functions in the form

h(5)=n(s)[ y(s)d(s) + x(s)n(s)] " 'x(s). (1.3)

Moreover, it can be shown! that h,.(s) will be stable if and
only if

[»(s)d(s)+ x(s)n(s)] = k(s) (14)

has an exp. stable inverse. Since k(s) is, itself, exp. stable
this implies that the feedback system will be exp. stable if
and only if k(s) is nonzero for all Res > 0, including oo.
An exp. stable function with these properties is called
miniphase. As such, the problem of synthesizing an exp.
stable feedback system reduces to the solution of (1.4) for
exp. stable rational functions x(s) and y(s) given exp.
stable functions n(s) and d(s) and a miniphase function
k(s).
By direct substitution one may verify that

y*s)=r(s)n(s) and x*(s)=-r(s)d(s) (1.5)
satisfy the homogeneous equation
y*(5)d(s)+ x*(s)n(s) =0 (L.6)

for all exp. stable rational functions r(s). Moreover, since
n(s) and d(s) are coprime it follows that all exp. stable
rational solutions of (1.6) are of this form [15},{18]. On the
other hand, a particular solution of (1.4) may be obtained
by multiplying (1.2) by k(s), which yields

y?P(s)=k(s)v(s) and xP(s)=k(s)u(s). (1.7)

As such, if we let r(s) vary over the set of exp. stable
rational functions and k(s) vary over the set of miniphase
functions we obtain a complete parameterization of the
stabilizing compensators for our feedback system in the

'See the axiomatic derivation of Section III for the details.
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form

x(s) - [k(:)u(:)—r(s)d(:)]
76) - [RG)e) + ()]

_ [u(s) - w(s)d(s)]
[v(s)+ w(s)n(s)]

where w(s) = r(s)/ k(s) ranges over the exp. stable rational
functions.

A comparison of (1.8) with the class of stabilizing
compensators derived by Youla, Bongiorno, and Jabr
[24],(25),[29] will reveal that the two results differ only in
that our u(s), v(s), n(s), and d(s) are exp. stable rational
functions while theirs are polynomials.? Unlike their
analytic derivation, however, the above result was ob-
tained via elementary algebraic operations. Indeed, the
only properties of the exp. stable rational functions em-
ployed are their closure under addition and multiplication
together with the fact that the identity is an exp. stable
rational function, i.e., the exp. stable rational functions
form a ring with identity. As such, if the exp. stable
rational functions of the above derivation were to be
replaced by any prescribed ring of single-input single-out-
put systems, (1.8) wouid yield a complete characterization
of the compensators which would “place” the feedback
system in that ring. If one works with a ring of rational
functions with poles in a prescribed region a solution of
the pole placement problem is obtained [18], whereas, if
one chooses to work with stable transcendental functions
a solution to the stabilization problem for distributed
systems is obtained [7),(8] etc. Indeed, with minor modifi-
cations the derivation can be extended to noncommuta-
tive rings thereby including multivariate and time-varying
systems. In each case, a simple solution to a fundamental
problem of feedback system design is obtained by virtue
of choosing a model for the given plant which is matched
to the ultimate goal of the design problem. In particular, if
we desire to design a feedback system which lies in a
prescribed ring of operators we model the plant as a
quotient of operators from that ring.

Consistent with the above philosophy the following
section of the paper is devoted to the formulation of an
axiomatic theory of fractional system representation.
Here, a given system is modeled as a quotient of iwo
operators lying in a prescribed ring H. The corresponding
feedback system analysis and synthesis problems are then
studied in the succeeding sections. In particular, Section
111 is devoted to the problem of determining whether or
not a feedback system lies in H given that its plant is
represented as a quotient of systems from H while Section
IV is devoted to the problem of characterizing those
compensators which will “place” the feedback system in
H. The resultant axiomatic theory of feedback system
design is applicable to multivariate, time-varying, distrib-

c(s)=

(1.8)

3From a computational point of view, it is more convenient to repre-
sent rational functions as ratios of polynomials, as per Youla er al.

10
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DESOER ¢ al.: FEEDBACK SYSTEM DESIGN

TABLE !
EXAMPLES OF THE AXIOMATIC SYSTEM{ G, M, 1./}
G R(s) R,(s) Ris)™ Ry(s)* Buoo) Boy™ LJR) B(H)
H R(s} R(co) R[s"" Rioo)™* A_(90) A (oo™ HuR) M)
. M ¢RI | M e Rioo)™ . M e A_(o)* | meHAR)
1 R{s] %0 R (00) A%(00) st Co(H)

8.t s.t
IM(s)| » 0 | [M(3)}eR"(as)

5.t
[ M(s)| € A(ae) infl] mGe)| >0

m ¢ Rfs) meR(os) | MeRIT" | MeR0)“s.t. | me A7(0.) |[MeA_(00)"5.t.| m ¢ Ho(R)s.t.
L

3 .. st m(s) #0 st IMGHeR (00) | 5.t. mis}»0 || M)l €A (a0) | inf'| mjw)l| >0 [ CC(H)
m(s)=c 0| forseCpe IM(s)| %0 | &IM(s) %0 | for #C, . [IM)#0 & m is outer
. forse C,. [forseC,. o fornC,.
» ° 9
Ref. 19 Rl 19 15,18 4N 6,7.8 12 1,15
R(s) = 11 with real coefi R{as) = proper rauonal functions with real coficients which are
Ris) = proper i with real coef snalyuc in c’.‘

X™* = n by n matrces of elements n X.

A = distnbutions of the form git)+ }. gAit-1) where g{t)1san
integrable function s.t. gt1) = 0 for 1<0. g 15 »
summable sequence and O=te < L < L K ...

A_{os) = Laplacetransiorms of distributions gsuchthat glt)e o}
1 1n A for some 09:<0s

o;:("o) = muluplicative subset of 1_(0.) consnisuing of elements
bounded away from zero ate.

510.) = Quotients of elements of the lorm m/n where
m e A_(c0) and n e AZ(ge).

e

Ris} = poly Is with resl

C.; = complex numbers with real part greater than or equal to o

uted, and some multidimensional systems and includes
the stabilization, pole placement, and feedforward design
problems. Several of these applications are illustrated by
the examples of Section V. In the final section of the
paper a partial generalization of the theory to nonlinear
systems is described. This follows the algebraic pattern
established in the linear case but is formulated in terms of
a left-distributive ring to model the properties of a nonlin-
ear system [23).

I1. AxioMaTiC THEORY

Table 1 displays several examples of the axiomatic
system developed below. Reference to it will help in
visualizing the breadth and significance of the theory.
Additional examples also appear in Section V.

Let G be a (not necessarily commutative) ring with
identity and let H be a subring of G which includes the
identity. The feedback system and its subsystems will be
represented by operators which are elements of G. The
compensator will be chosen so that the overall system will
be represented by an operator in the subring H.

We define two multiplicative subsets [2],(27] of H,

I={heH|h"'€G), 2.1)

i.e., I is the set of elements of H which have an inverse in
G;

J={heH|h 'eH)}, (2.2)

i.e, J is the subgroup of H consisting of all invertible

R%(0s) = proper rauonal functions with real coefficients which
are snalytx in C,; and nonzero 8t o

B(H) = bounded linear operators on a Hilbert Space H.
C(H) = causal bounded linear operators on a Hilbert space H.

dod

CoH) = causal ded lincar op swithab
on a Hilbert space H.

CC(H) = causal bounded lincar op with a causal b
inverse on & Hilbent space H.

LR) = ily bounded Lebesq ble f
defined oa R.

H_(R) = the Hardy space of ily bounded Leb
measurable functions defined on R which have an
analytc extensian 1ato C&

nverse

elements of H. Note that
JcIcCcHCG. (2.3)

Given the above structure we say that a system g€G
has a right fractional representation in {G,H,I1,J) if there
exist n, € H and d, €I such that g=n,d,~'. Furthermore,
we say that the pair (n,,d)&€ H X H is right coprime if
there exist 4, and v, in H such that

un +vod=1. 24)

The right fractional representation n,d,”" in {G,H,1,J} is
said to be right coprime if the pair (n,,d,) is right coprime.

The relationship between our concept of coprimeness
and the usual common factor criterion for coprimeness
[28] is given by the following properties.

Property 1: Let the pair (n,d)EH X H be right
coprime. Let n, and 4, have a common right factor r€ H,
i.e., n,=x,r, d=y,r for some x,&H and y,€ H. Then r
has a left inverse in H.

Proof- Substitute the assumed factorizations of n,
and d, into (2.4) and obtain

l‘rnr + Drdr - (U,X, + U,J’,)’ - l' (2'5)

Since H is a ring, u,x,+ vy, € H. From (2.5) it follows
that 7= L= u x, + v,y, is a left-inverse of 7. | |

Property 2: Let g=n d~" be a right coprime fractional
representation of g in {G,H,/,J}. Let g=xy ' be a
second (not necessarily coprime) right fractional repre-
sentation of g in {G,H,1,J)}. Then there exists an r in H
such that

x,=nr and y,=dr. (2.6)
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Progf: Given the two factorizations of g, let r=

d,"',; hence r€G. Then

Y, =dr @7

and, performing calculations in the ring G, we obtain

X,=g,= (nrdr- '))', - n,(d’- 5’,) =nr. (2.8)

From (2.7) and (2.8), r is a common right factor of x, and
»,. To show that r& H, consider

rw= dr- &’ - (u'n’+ vid’)dr- &' - u”l’d’_ 5" + o’\y’

=ugy+oy,=ux+oy €H 2.9)

where we used the equality g=x,y,"'=nd "' to derive
2.9)- ]

Although G is, in general, a noncommutative ring, the
entire theory developed above for right fractional repre-
sentations can be replicated for left fractional representa-
tions. In particular, we say that g€ G has a left fractional
representation in {G,H,1,J} if there exist n,€ H and 4/ €/
such that g=d,~'n,. Furthermore we say that the pair
(m,d))E H X H is left coprime if there exist u, and v, in H
such that

(2.10)

The left fractional representation d,”'n, is said to be left
coprime if the pair (n,d;) is left coprime. With these

nu +dy, =1,

definitions the existence of a common left factor for a left -

fractional representations of g is characterized by the
following properties.

Property 1’: Let the pair (n,,d}) be left coprime. Let n
and 4, have a common left factor / in H, ie., n,=Ix,
dy=1ly, for some x,€H and y,€ H. Then ! has a right
inverse € H,

Property 2’: Let g=d,"'n, be a left coprime fractional
representation of g in {G,H,1,J). Let g=y'x, be a
second (not necessarily coprime) left fractional repre-
sentation of g in {G,H,1,J}. Then there exists an / in H
such that

x;=In, and y,=ld. 2.11)

The above properties of a coprime fractional repre-
sentation have all been derived under the assumption that
such a representation exists. Of course, if G denotes the
rational matrices and X denotes the polynomial matrices
the existence of a coprime representation is implied by
classical analysis [16],[19]. Indeed, the classical analysis
readily extends to the case where H is taken to be the exp.
stable rational matrices or the ring of proper rational
matrices with poles in a prescribed region [18]. On the
other hand for multidimensional [26)}, distributed [4],(8],
and time-varying systems [11],{15] there is no assurance
that an arbitrary g € G will admit a fractional representa-
tion nor even that the set of g€ G which admit such a
representation will be a linear space. Moreover, all g's
which admit a fractional representation may not admit a
coprime fractional representation [26]. In general, the set
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of g€G which admit a fractional representation in
{G,H,1,J} will form a subring of G if and only if the Ore
condition® is satisfied while criteria for coprimeness have
been formulated in various special cases though no gen-
eral theory exists [1],[4),[26]). The standard condition for
the existence of fractional representations which are
coprime in the sense of (2.4) is that H be a right principal
ideal domain.

Reference to Table 1 shows that in applications it is
important to have conditions under which g will be in #
and these conditions should be expressed in terms of its
fractional representation.

Property 3: Letg=nd ' withn € Hand d €.

a) fdeJ, theng€e€H.

b) If g=n,d "' is a right coprime fractional representa-
tion of g in {G,H,1,/}, then g € H implies that 4, €J.

Proof:

a) We have 4, €J; hence by (2.2), 4" '€ H and thus
nd '=gEH.

b) We have g € H. Furthermore, n,=gd,, d,= 14, im-
plies that d, is a right common factor of n, and 4,; hence
by Property 1, d, has a left inverse in H. But 4, €/ by
assumption, so d,”! exists and is an element of G; thus
d~'=d '€ H; hence, by (2.2), 4, €J. ]

Property 3': Let g=d,"'n, with n,€ H and 4, € .

a) If €/, then geH.

b) If g=d,~'n, is a left coprime fractional representa-
tion of g in {G,H,1,/}, then g € H implies that 4, € J.

Property 4: Let g=n,d"'n, where n, € H, and dE I

a) IfdeJ, then ge H.

b) Let, in addition, n,d ™' be a right coprime frac-
tional representation in {G,H,/,J} and d "'n, be a left
coprime fractional representation in {G,H,I1,J}; thenge
H implies that d € J.

Proof:

a) By assumption, dE€J; hence d"'€H. So g=
nd~'m€H.

b) Since d ~'n, is a left coprime fractional representa-
tion there exist u;, v, € K such that

. nu +doy=1, (2.12)
thus,
nd~'=nd”(nu+do)=nd 'nu+nc=gu+no,.
(2.13)

Now g € H hence (2.13) gives n,d ~'€ H. By Property 3,
n,d~'€ H together with the fact that the pair (n,,d) is
right coprime implies d € J. n

III. ANALYSIS

To start with consider the feedback system Z, of Fig. 2.
Suppose that the plant is described by a right coprime
fractional representation p=nd,”' in {G,H,1,J}. The

3{G,H,1,J) satisfies the Ore condition for right fractiona) representa-
tions if, whenever §€ G admits a left fractional representation it also
admits & right fractional representation and vice versa?

12
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Fig. 2. Unity gain negative feedback system.

Yy . & 1 Y1 L]

T o ctve'xg
- *

Fig. 3. Feedback system with plant and compensator.
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closed-loop dynamics of £, are described by the maps

hyu-e; h,=(1+p) '=d(d+n)"" (3.1)
hy:u—y;  h,=p(1+p)~'=n(d+n)"". (32)
Note that

he+h,=1. (33)

We say that I, is well defined in G, (H, respectively), if
h,€G, (H, respectively).
Note that the pairs (n,,d, + n,) and (d,,d, + n,) arc right
] coprime; indeed, the right coprimeness of (n,,d)) implies
(2.4), hence

(ur_vr)"r+ur(dr+nr)= l (3'4)

while

(v,—u)d, +uld+n)=1 (3.5)

Theorem 1: Consider the feedback system Z, of Fig. 2.

a) Let p=nd™' be a fractional representation in

(G.H,1,J} of the element p € G; then I, is well defined in
Gifand only if d+n€1.

b) Let p=nd~"' be a right coprime fractional repre-
sentation in {G,H,I,J} of the element p &€ G; then Z, is
well defined in H if and only if 4 +n,€J.

Proof: a) =. h,,€G and d, €1 imply

d"'h,=d~'(1+p) '=d 'd(d,+n) '=(d,+n)"'€C.
5 (3.6)

Now d €/CH and n,€ H, so d,+n, € H. This together
with (3.6) implies d, +n, € 1.

a) e=. d,+n €[ implies (d,+n,)"'€G; hence h =
d(d,+n)"'€G.

b) Follows from Property 3, together with (3.4) and
(3.5). |

Of course, a similar theorem holds for left factoriza-
tions.

We now consider the feedback system = of Fig. 3 where
the plant p is preceded by a compensator ¢; p and ¢
belong to G and are specified by their coprime fractional
; representation in (G,H,1,J) nd™~' and y,"'x, respec-
i tively.

S

——

To describe the feedback system £ we consider the map
h,,: (u,u)—{e, e;). Simple calculations give

h = he‘u, hc,u, - (l+p€)-l
- hc,u. ht,u, C(‘ + PC)- !

Now let A, :(u,,u))>(y,,y). Using the summing node
equations it is easy to sec that

-p(1+cp)”"
(+ep)™" |
(3.7)

h,=K(h,~1) and h,=1-Kh, (3.8)

where X is the symplectic matrix
=1 0 1 39
k=9, ] (39)

Tt is well known that in the case of multivariable rational
matrices, one has to consider the four submatrices of A,
in (3.8) because examples show that any one of the
submatrices may be unstable while the remaining ones are
stable. (For detailed examples, see [30].) Let us calculate

e =(1+pe) = 1~pc(1+pc)”"
=1-p(1+¢p) ‘e
- l —p[ yi-‘(yldr+xlnr)dr-l]-lc

=1-n{yd +xn)""'% (3.10)
By =c( +pc) '=(1+¢p) e
- dr(yl""r + xlnr)- lxl (3'l l)
- - -1
he,u,-(l+cp) "‘(l+)’, 'X,Il,d, ')
=[y (yd +xn)d ']
=d(yd+xn)"y, 3.12)

how,= =PI+ cp) "= = n(yd +xn)"'y. (3.13)

We say that T is well defined in G, (H. respectively) if and
only if each entry of 4_, defined in (3.8) belongs to G, (H,
respectively).

Theorem 2: Consider the feedback system T of Fig. 3.
Let n,d."! and y,;"'x, be a right and left fractional repre-
sentations of p and c in {G,H,1,J}.

a) If yd, + x;n, €1, then Z is well defined in G.

b) If y,d + x;n, €J, then X is will defined in H.

©) If b, EG, then yd +xn, €1 hence if Z is well
defined in G, then y,d,+ x;n, € 1.

d) Assume, in addition, that n,(y,d,)"" and (yd,) " 'x,
are right coprime and left coprime fractional representa-
tion, respectively; then 4, , € H implies that y,d, + xn, €
J, and hence, if £ is well defined in H, then y,d, + x;n, €J.

Proof: a) and b). If y,d,+x;n, €1, (J, respectively),
then by the definition (2.1) of 7, [(2.2) of J, respectively],
the formulas (3.10)-(3.13), and the closure of the ring G.
(H, respectively), the conclusion follows.

. e — [ g -
- s TR T




¢ Ifh, €EG, thensoisd,~ ',
yi€1. Now,

Y since d €1 and

d "y t=d 1+ o)y
- dr- l(l +yl. lxl"rdr- l)— lyl_ !

=d"! [ ' (nd,+ xn,)d,” ])’l- '=(yd +xn)” !

(3.14)

hence the fact that h,, € G implies that (y,d,+x,n,)"'€
G and thus (yd,+ x;n)E L.

d) First we prove that the pair (n,,y,d, + x,n,) is right
coprime. Since (n,,y,d,) is right coprime, there exists 4,
and ¢, € H such that

gn+oyd=1l; (3.15)
hence
(d@,—~6,x)n,+6,(yd +xn)=1 (3.16)
and the claim is established. Similarly, we show that
(yd, + x;n,,x,) is left coprime. Now consider
h,, =1=n(yd+xn) 'x,. (3.17)

(N

By assumption, h, . € H; then the special assumption of
d) and Property 4 imply that y,d, + x,;n,€J. This com-
pletes the proof. |

Note, the special assumptions used in d) to the effect
that n(y,d)"" is right coprime and (y,d,)”'x, is left
coprime, imply, in some sense, that p and ¢ have no
common factors. More precisely, since J serves as the
group of units in our theory these conditions imply that
any common factors of p and ¢ must lie in J.

1V. DesioN

Consistent with our approach of matching the plant
model to the goal of the given feedback system design
problem the present section is devoted to the problem of
characterizing the set of compensators which will “place”
a feedback system in a prescribed ring H given that both
the plant and compensator are modeled by [ractional
representations in {G,H,1,J.}.

Theorem 3: For the feedback system = of Fig. 3, let the
plant p have a right coprime and a left coprime fractional
representation p=n,d,”'=d,"'n, in {G,H,1,J ). Let u, and
v, both in H be such that (2.4) holds. Then for any we& N
such that wn, + o, € /, the compensator

cm=(wn+0,) (~wd+u)EG (CH))

results in a feedback system £ well defined in H. For such
a compensator, k,, € H?*? and

n(=wdi+u,)
e [d(—wd, “)

—n(wn,+v,)

dwn+oy | @D

Conversely, if T is well defined in A and if the compensa-
tor ¢ =y, 'x, is such that (n,,y,d,) and (y,d, x,) are right
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coprime and left coprime respectively, then ¢ is given by
expression (4.1).
Proof:
Step 1: Choose any kE€J, (hence k'€ H), and
solve for y, and x, € H the equation

yd, +xn,=k. (4.3)
Observe that if (y,,x,) is any solution in H of (4.3), then
k=W yd)+ k™' (xn,)=1 (4.4)
and
(nid )k~ +(xn )k~ =1, (4.5)

hence, (n,.y,d) is right coprime and (yd,x,) is left
coprime. Thus, the assumptions of Theorem 2, part d)
holds for any solution of (4.3).

Step 2: Obtain all solutions of the homogeneous
equation

ylid + x!n =0. (4.6)
Since p=n.d~'=d,~'n, direct calculation shows that for

any r€ H,

x'=-rd, (4.7)

yi=rm

are solutions of (4.6).

It remains to show that all solutions of (4.6) are of the
form (4.7); so we assume that y;' and x/ € H and satisfy
(4.6). Let r=—x/d,""; hence

x{ = rd,. (4.8)
Now using (4.6)
yi=ytdd "=~ x/nd " =~ x/p
= — x'd " 'ny=rn, (4.9)

Equations (4.8) and (4.9) show that any solution of (4.6)
has the form of (4.7); it remains, however, 10 show that
réH,

re—x/d"" = - xd,"\(do,+ nu;)

= —x/o,~ x/d,” 'nuy= - xPo,+ylu, e H. (4.10)

Step 3: Obtain a particular solution of (4.3). From
the right coprimeness condition for (1,.d,),
kv, d, + kun, =k 4.11)
hence
Yl =ko,, xf=ku,. (4.12)
Hence any solution of (4.3) is of the form
N - ml + kD,
x,= —rdy+ku, forsomercH (4.13)

and for any such solution (»,,y,d,) is right coprime and
( _qd,,x,) is left coprime.
4
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Step 4: Consider the condition
r€HandkeJ such that rm,+ kv, €1 (4.14)

or equivalently, if we set w=k~'rEH,

wEH such that wn,+ v, €1/, (4.15)
If (4.15) holds,
cm(wn+0,) (—~wd+u)EG 4.16)

is a compensator in G which can also be written as [see
(4.13)]

c=(rn+kv,)~(—rd,+ ku,). (4.17)

If we let y,=rn + kv, and x, = — rd, + ku,, then, by (4.17),
c=y !x and, by calculation, we verify that (4.3) holds.
Thus for any such compensator, by Theorem 2, the feed-
back system I is well defined in H.

Step 5: Conversely consider a feedback system
well defined in H with a compensator ¢ =y,”'x, such that
(n,.y,d) and (y,d,.x,) are nght coprime and left coprime,
respectively. By Theorem 2, (4.3) holds for some kE€J,
hence by the analysis above, ¢ is also given by (4.1) for
some w &€ H such that wn, + v, € /. The proof is thus com-
plete. |

The theorem yields a complete parameterization of all
possible controllers which will place a plant in A given the
existence of:

1) right and left coprime fractional representations of p
and

2) a win H for which (wn,+v,)is in /.

In the multivariable case where p is a square matrix
whose elements arc proper rational functions it is well
known that p has left and right coprime fractional repre-
sentations [19]. In order to obtain a proper controller one
has to choose w in (4.1) so that det{w(s)n,(s) + v,(5)]#<0 at
infinity. Methods for obtaining such a proper stabilizing
controller have been reported in [32] and [33]). Alterna-
tively, one can verify the existence of such a w in our
algebraic setting by invoking the fact that n, and d, are
right coprime and applying linear algebraic arguments
thereto. Of course, these arguments apply to distributed
systems as well as lumped systems using the formulation
of [7] and [8).

In the most general ring theoretic setting neither right
nor left coprime fractional representations of p, nor a w
such that (wn+v,) is in /, are assured to exist. At present,
the only known counterexample to the latter is, however,
in the ring of integers which is of no system theoretic
interest.

Conditions 1) and 2) have been conjectured to be both
necessary and sufficient conditions for the existence of a
compensator, ¢, which places the feedback system in H
{3]. In fact, if ¢ places the feedback system in M, then
from (3.7) we obtain left and right fractional representa-
tions

4 '( - h'ul'x)(h':"x) - - (hﬁl.) ) |( - ht.u;)' (4 18])5

r—

Note that there is no guarantee that these fractional
representations are coprime. These representations are,
however, coprime when the compensator is in H. Indeed,
in that case they satisfy a stronger condition which com-
pletely characterizes those plants which can be placed in
H by a compensator in H. For an early analogous result,
see [10, pp. 85-87).

Corollary 1: For the feedback system X of Fig. 3 there
exists a ¢ in H which places the feedback system in H if
and only if p admits left and right fractional representa-
tions p=d,"'m,=nd "' such that n, is a right factor of
1—d, and », is a left factor of 1 —4d,.

Proof: If the feedback system is placed in H by a ¢ in
H it admits the fractional representations of (4.18). By
calculation [see (3.7))

Beuy = Cheu, =1 (4.19)
and
Beu, = hc=1 (4.20)

which verifies their coprimeness since ¢ is in 4. Moreover,
upon rearranging the terms in (4.19) and (4.20) the condi-
tions of the corollary follow. Conversely, if fractional
representations exist which satisfy the conditions of the
corollary there exists u, in H such that

un=d =1 (4.21)

(equivalently p=n 4.~ is a right coprime fractional repre-
sentation with v, =1). Now, by using this right fractional
representation in (4.1) (with any left coprime fractional
representation) and w=0 we obtain a compensator c=u,
in H, which places the feedback system in H. [ ]

V. EXAMPLES

Example 1: A Single Variate Servomechanism Problem*

Here G is the ring of proper rational functions and H is
subring of functions analytic in Res > — 1. Consider the
problem of designing a compensator for the unstable
plant p(s)=(s+1)/(s*—4) which will simultaneously
place the poles of the feedback system in the region,
Re(s)< — 1, and cause the system to asymptotically track
a step input. Since our transfer functions are commutative
we may adopt common right and left fractional repre-
sentation for p(s). In particular,

s+ [ (+D |[(=2)]7" -
P(s) (s2-4) [(;+2)’ ][ (:+2)] n(s)d(s)
(5.1)

while
[1_6] (s+1) +[(:+2/3) H (5—2)]
3 s+2p (s+2) (s+2)

=u(s)n(s)+o(s)d(s)=1. (5.2)

“The purpose of this example is merely to Elve a simple illustration of
the theory. In this situation, a much more highly developed theory is
available wn {29].
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Here, each of the four rational functions, n(s), d(s), u(s),

and u(s), lie in the ring of operators with poles in the
region Re(s)< —1 and hence the set of all compensators
which will place the feedback system in this ring is given
by Theorem 3 with w(s) also in the ring. Moreover, for an
arbitrary w(s) the input-output mapping for the resultant
feedback system will take the form

- (s+1)(s-2) 16(s+1)
By (2) (s+2) ]w(’) +[ 3(s+2)

= — n(s)d(s)w(s)+ n(s)u(s). (5.3)

By the final value theorem the feedback system will
asymptotically track a step input if and only if A, , (0)=1
(equivalently ¢(s) has a pole at zero). As such, to simulta-
neously place the poles of the feedback system in the
region, Re(s)< —1, and cause the feedback system to
asymptotically track a step input we must find a w(s) with
poles in this region such that h, , (0)=1. Evaluating (5.3)
at s=0 and setting it equal to one yiclds

B, (0)= % w(0) + % -1, (5.4)
implying that w(0)= —4/3. As such, the simplest w(s)
which will achieve our simultaneous goals is the constant
w(s)= —4/3 whose poles are trivially in the prescribed
region. Adopting this w(s), a little algebra with the expres-
sions of Theorem 3 will reveal that the required com-
pensator takes the form

(205 +24)(s +2)

c(s)= (3s+4)s

(5.5)
while the input-output mapping for the feedback system
takes the form

- (s+1)(20s +24)

5.6
(s +2)° (55)

By o,

Clearly, c(s) has the required pole at zero (for h, , (0)=1),
although it is by no means obvious that this quasi-stable
compensator will transfer the unstable poles of p(s) to the
prescribed region. Indeed, this illustrates the underlying
power of the proposed design technique in that when one
designs the system in terms of w(s) rather than c¢(s) the
pole placement or stabilization process is automatically
resolved by working with a w(s) whose poles lie in the
prescribed region while the remainder of the design pro-
cess is simplified by the affine relationship between w(s)
and the matrices A, and A . Finally, we note that ¢(s) has
a zero at s = —2 which may cancel with the pole of p(s) at
s= —2. This, however, does not contradict the coprime-
ness assumptions of Theorem 3 since the common factors
involved lie in J which serves as the group of units in our
theory. Fortunately, such common factors can never lead
to an erroneous design since by assumption the poles and
zeros of the rational functions in J lie in the prescribed
region. As such, any cancellations which may take place
are benign.
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Since the previous compensator design was achieved
with an especially simple w(s) let us add an additional
constraint to the problem by requiring that A  (s) have
zeros at *; (so that the system will be insensitive to a
noise source at that frequency). Now, from (5.4) it follows
that the above design is the only compensator which will
make &, , (0)=1 with a constant w(s); hence to satisfy this
additional design constraint we will work with the first
order w(s) in the form

as—4
bs+3°
Here, by specifying the zeroth-order coefficients of w(s)
we assure that w(0)= —4/3 while we are left with the
parameters g and b to create the required zeros. Of course,
to achieve our stability condition we must have —-3/b<
— 1. Substituting the w(s) of (5.7) into (5.3) yields

(s+ 1)[ (165 ~3a)s* +(60+6a +32b)s +72]

3(s+2)°(bs+3)

w(s)= (5.7

}52“1(:)
(5.8)
To obtain the desired zeros at s — £, the equation
[(16b—3a)s® +(60+6a+32b)s +72] =k[s*+1]
(5.9)

must be satisfied. Now, this represents three linear equa-
tions in three unknowns and has the unique solution

a=~17, b-f—é, and k=72 (5.10)

Moreover, —3/b=—16/7< —~1; hence this choice of
w(s) will also assure the prescribed degree of stabilization.
As such, we take

—(17s4+4)  —(272s+64)

Qls/16+3) = @ls+ay O

w(s)=

which yields

2 128(s+2)(s*+1)

(752 =565 — 60)s (5-12)

e(s)
and

384(s +1)(s3+1)

(s+2)°(21s +48) (5-13)

}52"!(:) =
satisfying all of our design critenia.

Example 2: A Multivariate Lumped-Distributed
Decoupling Protlem

Consider the multivariate, lumped-distributed plant

e !V (s=1)
psy=| ©¥D (“;') (5.14)
0
16 =D
——— I e
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which we desire to stabilize and simultaneously decouple
by feedback. For most lumped-distributed systems one
can take H 10 be a ring of matrices whose elements lie in
the algebra @_ (o) of stable transfer functions generated
by lumped elements and delays while G is a ring of
matrices whose elements lie in % (o), the algebra of
quotients of elements in @_(o,), as per Table I. In our
case, however, although e~'/* is L,-stable (since it is
analytic on the right half-plane and bounded on the
imaginary axis [10]) it has a “nasty” singularity at s=0
and hence does not lie in @(o4) for any o, < 0. As such, we
take H to be a ring of 22 matrices whose elements are
transfer functions lying in the Hardy space H_(R) of
functions which are (essentially) bounded on the jw axis
and admit an analytic extension into the right half-plane
(thereby making them L,-stable) [12]. Similarly, we let G
be a ring of 2X2 matrices whose entries are transfer
functions lying in the Lebesgue space L _(R) [12]. With
this setup / becomes the set of H,, functions which are
uniformly bounded below on the jw axis while J is the set
of H_ functions whose analytic extension is uniformly
bounded below in the right half-plane (12]. Equivalently, J
is the set of invertible outer functions in H _(R) [12}.

Using these spaces a little algebra will reveal that p(s)
has the right and left coprime fractional representations in
{G,H,1,J} shown below:

et (51 L -1
p(s)= (s+1)  (s+1)
1 (s=1)
| (s+1) (s+1)
=n,(s)d,(s)”" (5.15)
Fl 0 - e’V (s-1)
()= (s+1) (s+1)
(s~1) 0 1
(s+1) (s+1)

=d(s)""'n(s) (5.16)

Upon substitution of these matrices into the expression
for A, , (s) from Theorem 3 one obtains

e'l/l (3—1)2 ]
By (s)=~ (s+1) (.H;l)2 win(s) - wials)
(s+1) wy(s)  wy(s)
1 0 2As—1)°
(s-1) * (1) (5.19)
(s+1) )

which will be stable if and only if the w,(s) are stable.
Now, to decouple the system we require that

(s—1)e~!

l:'(_,)_ (J+ ])z WIZ(S)
=0’ 2As-1)°
+ eIy 2(s)+ o 0 (520)
and
e () = (—5%1-)- wyy(s) =0. (s:21)

Clearly, wy,(s)=0 solves (5.21). On the other band (5.20)
bas numerous solutions none of which are, however, sta-
ble. As such, the system cannot be decoupled and stabi-
lized simultaneously. Note, since our theory guarantees
that all stable feedback systems with plant p(s) take the
form of (5.19) if we cannot find stabie w’s which decouple
(5.19) we are assured that it is impossible to simultaneously
stabilize and decouple p(s) by feedback (using a com-
pensator as specified in Theorem 3) and we need not
consider other formulations.

Since we cannot simultaneously stablize and decouple
p(s) by feedback the best we can do is to try to stabilize
2(s) while preserving its triangularity (which will allow us
to sequentially adjust its various outputs). Formally, this
can be achieved by taking w(s)=0 which yields the in-

where put-output mapping
-i/s -1y EQ__I_):
o of £ L=ty offi o (s+1)
G+ el |, B ()= : (5:22)
i (s-1) —
0 —_— ALY A
2 0 G+ 0o 1]lo0 G+) (s+1)
Unfortunately, the first input has been rendered useless
=u,(s)n,(s) + v,(s)d(s)=1 (5.17) by this compensator and hence the goal of being able to
and sequentially tune the outputs is not achieved. On the other
e (s-1) -2(s—1)
—_— == {0 0 1 0 —_—
(s+1) (s+1 s+1)
: ) + ( = n,(s)uy(s) + di(s)os)=1. (5.18)
0 o 2| [o =Dl 1
(s+1) (s+1)
17
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band, if we take
W(J)-[(') 8]. (5.23)
then
e~V (s—1)?
hu(s)=| TV “;"2 (5:24)
G+1)

which has the desired property is obtained. In particular,
one can tune the second input to control the second
output and then adjust the first input to simultaneously
cancel out the effects of the second input on the first
output and control the first output. Of course, since w(s)
is stable so is &, , (5).

Finally, we note that as we have formulated our theory
one can deal only with square matrices (since rectangular
matrices are not closed under multiplication). The exten-
sion to rectangular matrices is, however, straightforward
[19] and yields an identical theory the details of which are
left to the reader.

Example 3: A Multidimensional Image Restoration Problem

Let
Z,+2zy

—_— 5.25
224 2,2,43 (5:29)

P(z2)=

denote the discrete two-dimensional transfer function for
a device in a digital image processing system. Since this
represents an IIR (infinite impulse response) transfer
function the image processing device will tend to *“smear”
the image with the data observed at any one pixel distort-
ing all other pixels at the output of the device. In an effort
to reduce this “smearing” effect we would like to place the
device in a feedback system whose input—output transfer
function minimizes the *“smearing™ effect. In particular,
that means that the input-output mapping for the feed-
back system should have an FIR (finite impulse response)
transfer function with its “point-spread function” con-
centrated about a single point as closely as possible.

Since the FIR transfer functions are just the polynomi-
als we let H be the ring of polynomials in two variables
and G be the ring of rational functions in two variables
[16]. Once again employing only a singie fractional repre-
sentation since these rings are commutative we obtain the
coprime fractional representation

p(z,,zz)-[z,+x,][zf+z,zz+3]"

=n(z,,2,)d(z,,25) " (5.26)

where
[— %z,][z,-ﬂ-zz]+[%][zf+z,zz+3]
' = u(z,,2,)n(2,,29) + v(z,29)d(z,,2) = 1.
(5.27
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As such, the set of all possible FIR transfer functions
which can be obtained from p(z,,z,) by feedback takes
the form

hu(2)2)= - [:,’+2:,’:2+ 2,23 +3z, +322]
1
-w(z,,zz)—s[zf'i-z,zz] (5.28)

where w(z,,z,) is an arbitrary polynomial in two variables.
Clearly, w(z,,z,) should be low order to keep the “point-
spread function” of h, , (z,,2z,) as concentrated as possi-
ble. Indeed, if we take w(z,,2,) =0 we obtain

B (212)= = %[zf+z,zz] (5.29)
in which the response {rom a given pixel effects only two
adjacent pixels. Note that the fact that these pixels are not
centered around the input point does not cause any diffi-
culty since one can always shift the origin of the raster to
compensate. Taking this w(z,,z,) we obtain the simple
compensator ¢(z,,z,) = — z, which represents a one direc-
tional shift and a 180° phase shift.

An alternative design which also yields a “point-spread
function” which affects only two pixels, although it is
shifted further from the origin, is obtained with w(z,,z,)=
—(1/9)z,. This yields

1
h o (21:22)= 3 [23+22]z,] (5.30)
and
2
2i(z,+25)
c(2,,2,) = —————=— 5.31
(202) 2242,2,+3 (5.31)

Since two-thirds of the output energy in this design is
concentrated at a single point whereas the energy is equ-
ally divided in the previous design it may be argued that
this represents a superior design. On the other hand, the
shift from the origin is greater and the compensator more
complex in this case. Finally, since all FIR transfer func-
tions are stable (in an appropnate sense) the feedback
systems obtained via either choice of w(z|,z,) are stable.
Moreover, both compensators are, themselves, stable as is

P(2y,2) (6}

Example 4: A Time-Varying Differential-Delay
Stochastic Optimal Control Problem

Consider the feedback system of Fig. 4 where the plant
represents a cascade of a time-varying function f with an
ideal predictor e’. The system is driven by a stochastic
process a, which is derived from white noise by passing it
through a miniphase filter with transfer function (s +2)/(s
+1). We desire to choose a compensator which will
stabilize the system and minimize the performance
measure

J=E||b|*+ E|d|* (5.32)

under the constraint of stability. Here, d is the stochastic
prpgess observed at the output of the system, b is the

"
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3+2 . '

Fig. 4. Stochastic control system.

%2

Fig. 5. Open-loop optimization problem.

stochastic process observed at the plant input, and E is
the expected value operator.

Since we have a time-varying component, a rational
component, and a delay component we formulate our
theory in an abstract operator theoretic setting [20] with G
taken to be the bounded operators on the Hilbert space
L,(R) and H taken to be the causal bounded operators
(which correspond to the stable systems in such a setting)
[20],{23]). Note, in this setting we will denote the time-in-
variant operators by their transfer function and the time-
varying multiplication operators by their characteristic
function. Of course, one must be careful with such nota-
tion since the operational calculus associated with the
time-invariant components is only partially valid in such a
setting.

Since the inverse of a predictor is the ideal delay which
is causal one immediately obtains the right and left
coprime fractional representations for p in the form

p=[Nfe ) =[] (1] =nd =4y,
(5.33)
where

(£ ][N+ [0)[e *]=un+vd=1 (534)
and
[l][l]+[e"f"][0]-n,u,+d,v,al. (5.35)

Here, we have assumed that f~' exists and is bounded
(i.., f is bounded away from zero) while f and f~! are
both causal since multiplication by a function of time is a
memoryless operation (20]. From Theorem 3 it now
follows that the input-output and input-plant input map-
pings for our feedback system with compensator defined
by a causal operator w will take the form

R = [ S]] (/7] +1 (5.36)
and
hew==[e*Iw[ e} [F '+ [e][ '] (537)

As such, our optimization problem reduces to choosing
the causal w which minimizes the performance measure of
(SN whare dmh Aandhmh a

It is significant to note that even though we are inter-
ested in designing an optimal closed-loop system by mini-
mizing over the operator w rather than the compensator
we have transformed the problem into the open-loop
optimization problem of Fig. S.

Here we desire to minimize J= E|le|® over all causal
operators w, where g,, g,, and g, are arbitranily specified
bounded operators. In our case we take

gi={e’][f7"] (5.38)

-1
g’-[—[e-'][/—']] (5.39)

and

N (5.40)

in which case the output of the open-loop system is
e=(d,b) in the product space constructed from two copies
of the (Hilbert) space on which the given system is de-
fined. Now, if we take the a in our open-loop problem to
coincide with the given a in the closed-loop optimization
problem then the Pythogorean law (in Hilbert space)
implies that

J=El|e|*=E|d|*+e|b| (5:41)

As such, our two optimization problems coincide.

Interestingly, an explicit solution has recently been
given for the above open-loop optimization problem [9).
Indeed, the optimal causal w is given by

wo=A"'[A*"'g78,0,810° '] A" (5.42)

where A and @ are causal, causally invertible operators
such that

A*A=g3g, 600°=g,Q,87. (5.43)

Q, is the covariance for the stochastic processes a. ]
denotes the causal part of an operator, and *“«" denotes
the adjoint operator. To apply this general theory to our
example we represent the adjoint operation when applied
to a transfer function by g(s)* =g(—s) which coincides
with the classical adjoint on the jw axis. Of course, the
memoryless multiplication operators, [f] and [f~!), are
self adjoint. Finally, since a is the stochastic process
generated from white noise by passing it through the filter
(s+2)/(s+))

[ (s+2)
% [(.H-l)

First, we calculate A and @ via

'_ (s+2)(s—-2)

(s+D(s=-1" (544)

(s+2)
[(:+l)

.-

ATA'-[—j} e [--I-.-]-ﬁﬂ (5.45)




and

96° = (5+2)(5-2)][f—|][e:]

G+)G-1)

()7
-1 )] G el

(st ]Ez_)(f_z)[f_-‘n],

(s+D(s=-1) (5.46)

Here f_,()=f(t — 1) and we have used the properties of
the delay and predictor to obtain the equalities (e~ *){f "]
={f=!e"*) and [f~'ffe*]=[e’][fZ]. Of course, the ex-
ponential transfer functions commute with the rational
transfer functions allowing the cancellation of the ex-
ponential terms in (5.46). From (5.45) and (5.46) one may
now readily obtain the required causal, causally invertible
A and @ operators in the form

A=A*=\/f7+1 and A"'=A*"'=

5.47)
Nl

while
1l (s+2)
=BT | [(:—l)][f-
- (s+1) -—
o= (:+z)][f"]’ and 077" [f"][(: 2)1

(5.48)

The next step in evaluating (5.42) is to compute the
term in the bracket, i.c.,

A*"'838,0,876° "

JG+D6=D ] iy, 2 5=1)
[(;+1)(:—1)}[f 10¢'] [f"][(s—z)J

—13] (s+2)(s=-2)
[1+7 ][(J+1)(s-|)]

1
\/f‘+1
R

- WA [ e

(5.49)

whose causal part must now be computed. Recalling that
the memoryless term factors through the causal part
bracket [9] it suffices to compute the causal part of the
time-invariant system with transfer function

(.r+2)
(.r+l)

g(s)= (5.50)
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Taking the inverse Laplace transform we obtain the im-
pulse response of this system in the form

g()=8(r+1)+e" " VU(t+1) (5.51)

where § is the Dirac delta function and U is the unit step
function. Now, the causal part of g(¢) is obtained by
setting g(¢) to zero for ¢ less than zero; hence

[ 8()]c= (DU =8+ P U(1) = = e~'U(1) (552)

or equivalently

1
e(s+1)’

[8(9)] = (5.53)

Multiplying through by the memoryless factor from (5.49)
we then obtain

[0 0u20° " =[S VAT s

(5.54)
and finally
wo=A"'[A*"'g32,0,876°"'] 47"
- WL—, e/
Hirn k=
’%[ ](,+2)[f-n] (5.55)

which is surprisingly simple given the complexity of the
derivation.

Substituting the expression of (5.55) into the formula of
Theorem 3 now yields an expression for our optimal
compensator and the input-output mapping for the re-
sultant feedback system in the form

c=ef f2l](s+2)-1 (5.56)
and
By = :(’:—:_% +1 (5.57)

Note that h,, is stable, as required, even though both p
and ¢ are unstable.

V1. NONLINEAR FEEDBACK SYSTEMS

From an algebraic point of view the fundamental dif-
ference between linear and nonlinear systems is the fact
that nonlinear systems fail to satisfy the right-distributive
property, x(y +z)= xy + xz. They do, however, satisfy all
of the other axioms for a ring with identity including the
left-distributive property (y + z)x=yx + zx. As such, one
can attempt to extend the preceding development to non-

20
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linear systems by carrying it out in left-distnbutive nngs,
G and H [23]). Indeed. if we define a right coprnime
fractional representation for a system g in a left-distribu-
uve nng G relative to {G.H,1,J) precisely as we did in
Section Il the fundamental properties 1, 2, and 3 go
through without modification.

Property IN: Let g=nd~' be a right coprime frac-
tional representation of g in {G,H,I,J} where G and H
are left-distributive rings with identity. Let n, and d, have
a common nght factor r€H, ie, n,=x,r, d =y, r for
some x, € H and y, € H. Then r has a left inverse in H.

Property 2N: Let g=nd™~' be a right coprime frac-
tional representation of g in {G,H,I,J} where G and H
are left-distributive rings with identity. Let g=x,y,"' be a
second (not necessarily coprime) right fractional repre-
sentation of g in { G, H,/,J }; then there exists r in H such
that

(6.1)

Property 3N: Let g=nd~' with n €H and d €]
where G and H are left-distributive rings with identity.
a) If d €J, then g€ H.
b) If g==nd,~"is a right coprime fractional representa-
tion of g in {G,H,1,J}, then g€ H implies d, €J.

With the aid of property 3N one can do a complete
analysis of a noniinear feedback system A, =p(1+p)~'=
nd~' where nd ' is a right coprime fractional repre-
sentation of A,. Indeed, 4, is well defined in G if and
only if d. €1 and it is well defined in H if and only if
d €J. Note, however, that we cannot construct our frac-
tional representation for 4, from a fractional representa-
tion for p since the verification that such a representation
is coprime appears to require right-distributivity [see (3.4)
and (3.5)).

The right coprime fractional representation plays a spe-
cial role in the nonlinear case because hyvsp(l+p)"
holds, whereas h,, =(1+p)~'p does not (even though the
latter formula is true for the linear case). As such, those
results on the analysis of feedback systems which assume
2 left coprime fractional representation theory fail as does
the design theorem since it simultaneously employs both
left and right coprime fractional representations. We be-
lieve, however, that these results should hold, at least in
part, for nonlinear systems with an appropriate modifica-
tion of the theory. In particular, since the rings G and H
are asymmetric we believe that asymmetric concepts of
left and right coprimeness will be required to achieve this
end.

x,=nr and y,=dr.

VII. ConcLusioNs

Although several of our examples are characterized by a
deep analytic structure the key to our fractional repre-
sentation approach to feedback system design is the alge-
braic nature of the main results. Indeed, the entirety of
our modeling, analysis, and synthesis theory was derived
with no more sophisticated mathematics than addition,
multiplication, subtraction, and inversion. As such, it ap-
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plies to essentially any class of linear systems and by
proper choice of the rings G and H the results are applica-
ble to a variety of systems problems.

Although we believe that the present work represents
the first attempt at the formulation of an axiomatic frac-
tional representation theory for systems which may be
matched to the feedback system analysis and synthesis
problems of interest the work owes much to a number of
recent results on the input-output theory of linear sys-
tems. The use of a fractional representation theory for
multivariate systems, though implicit in a number of
classical results, was popularized by Rosenbrock’s poly-
nomial matrix fractions [19]. Interestingly, however,
Rosenbrock’s goal was apparently to permit the powerful
analytic and anithmetic theory available for polynomial
matrices to be applied to rational matrices whereas the
present fractional representation theory is motivated by
the desire to formulate a representation theory for systems
which is closed under inversion. Over the years numerous
generalizations of the polynomial matrix fraction concept
have been formulated for distributed systems {4}, [5], [13],
(21], and multidimensional systems [9],{24] while partal
extensions to the time-varying and nonlinear cases have
appeared in a number of unpublished reports [11],[22].

For any type of fractional representation theory to be
meaningful it must be identified with an appropriate
coprimeness concept. Indeed, the key to the present for-
mulation is the use of the algebraic coprimeness concept
of (2.4) in lieu of the more classical common factor
criterion. Such a criterion has previously been applied by
one of the authors in a study of fractional representations
for distributed system [4] and was also shown to be the
strongest of several possible coprimeness criteria for mul-
tidimensional systems by Youla and Gnavi [26]. Of
course, it is well known as one of the several equivalent
criteria for coprimeness in the polynomial matrix fraction
theory [16],[19].

The feedback system analysis theorems of Section III
are motivated by the now classical theorems for determin-
ing the stability of a multivanate feedback system in terms
of its polynomial matrix fraction representation [10].
Moreover, the system synthesis theorem is an outgrowth
of the feedback system stabilization theorem of Youla er
al. [24),{25]). Indeed, the present work began with an
attempt to give a simple proof of this most powerful
analytic theorem and developed through several stages of
generalization and simplification into its present form.
Finally, the optimization theory used in Example 4 repre-
sents the generalization [9] to an operator theoretic setting
of a result onginally developed by Youla e al. in the
frequency domain for use in conjunction with their stabili-
zation theorem [24},(25]).
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The main problem of adaptive control theory {s to
design a system S which is capable of automatically
adjusting the generated control input to the plant P.
Such adjustments may be necessary for a variety of
reasons, such as insufficient knowledge about the
plant, plant perturbations, etc. A multitude of adap-
tive control techniques have been proposed through the
years. A characteristic shared by all of them is the
presence of some means of identifying the unknown or
perturbed plant. Of course, the design of such a
mechanism, termed here the identifier, is an important
question in its own right. The design, however, of an
adaptive controller is heavily influenced by the par-
ticular technique used to generate the control and it
therefore inherits the technigue's features.

A recent advance in control theory is an approach
to feedback control based upon the representation of
the plant as the ratio of two operators, both of which
belong to an operator ring H. (Ref). A brief overview
of the approach is as follows. Consider the following
ring structure R

R = (G,H,1,7 (.n

where G is 3 not necessarily comutative’ ring with
identity representing the general class of systems of
interest. The subring H also contains the identity

and represents the class of systems which in some sense
are stable. I is the set of elements in H which admit
an inverse in G and J the set of elements in H which
acmit an inverse in H. As shown in {Ref),

GoHoID]J (1.2)

A plant P is said to have a doubly coprime
fractional representation if for
(NF'N] .Ur,U-l.Vr,V]): # and (Dr,D])C 1

SV
P-NrDr -D] N] (1.3)
e NV D =1 (1.2)
NjU,#D,Vq =1 (1.5)

The 2im now is to design a system S so that the
system's input-output map h is placed in H. Consider
the system shown in Fig. 1.1 and assume that P has a
doubly coprime fractional representation.

Fig. 1.1. A feedback control system.

For any arbitrary w, let the compensator C be
defined as

-1
Cx (R V)" (w000, ). (1.6)

It was shown that {f weH, then the input-output map h
also belongs to H and

h-Nr(~wO1+Ur). (1v.7)

An important element of the approach is that it
provides a complete characterization of the set of
compensators which place h in the ring H. 1t is there-
fore desirable to investigate the conditions under
which fractionally represented feedback systems can be
adaptively controlled.

Suppose then that either in the limit as t-e, or
for all times t > t., an input-output map H in H is
desired; in other wirds, suppcse that, with the appro-
priate time interpretation, it is required that

h=H, (1.8)

Clearly, there exists a choice of three independem
variables, namely w, U  and V_, to satisfy two linear
equations. The decisibn was Fade to consider w as a
parameter in H. Thus the problem can in general be
stated as seeking the particular coprimeness cperator
pair U.,V. which for a given w in H simultaneously
satisfies tq.s 1.4 and 1.8.

The two main problems to be addressed here are tne
acquisition and the plant-follower. In the former,
the linear, time-invariant plant P is assumed to be
insufficiently specified at the initial time tq. The
intention is to provide a feedback system S which
consists of an identifier 1D and an adaptor AD as
shown in Fig. 1.2. The identifier provides the adaptor
with estimates p(t) of the plant P such that
Tim p(t) = P, Then, using these estimates, the adaptor

tre

ADjp ~ = = = - 4 1D

]

+ v

Fig. 1.2. An adaptive control system.

provides the compensator with an operator pair
(ur(t).vr(t)) such that the required coprimeness pair

+ This research supported in part by the Joint Services Electronics Program of Texas Tech University under

OMR Contract 76-C-1136
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{u,,v,.] s obtained in the limit. The first task is
tQ defineate the class of plants for which such a
system is passible. This can be done by deriving the
necassary and sufficient conditions for a solution to
exist under the assumption of instantaneous identifi-
cation, (f.e., a perfect identifier). Then {t would
remain to show that in the non-ideal case the solution
can be attained adaptively. In other words it would
be required that £q.5 1.4 and 1.8 are satisfied in

the limit.

In the plant-follower problem the linear plant P
is perfectly known at the initial time tg, but it
undergoes perturbations thereafter. The inteation is
to provide the compensator with an operator pair
{Up(t),Ve{t)} such that the systems input-Qutput map
remaing invariant under the plant's perturbations.

In other words £q.s 1.3 °and 1.8 are to be satisfied at
every point in time. Again the class of plants for
which a solution exists is delineated under the per-
fect identifier assumption~ In the non-ideal case it
is desirable to examine the extent to which the input-
autput map is perturbed due to the plant perturbatiors.

As always, stability is a question of paramount
importance. A consequence of the fractional represen-
tation approach is the fact that a system is stable
in the sense of H whenever the system's input-output
map is time-invariant and the coprimeness operators
belong to H. This is exploited in the ideal case of
both problems. But, whereas, in the acquisition prob-
Yem the derived stability conditions are time-inde-
pendent and hence easy to check a priori, in the
plant-follower they are time-dependent and thus the
task of verifying whether they hold or not is consid-
erabley harder. However, the problem is by-passed by
showing that in this cage the question of the coprime-
ness operators belonging to H is equivalent to the
classical question of stability in the sense of # of a
system with time-invariant feedforward path and memory-
less, time-varying feedback path. In the adaptive
case of the plant-follower problem stability is re-
solved by a similar criterion applied to the entire’
adaptive acquisition problem, the fact that the input-
output map converges to a time-iavariant element of H
suggests that the system is stable as long as the map
remains bounded. It is shown that for uniform asymp-
totic stadbitity this is in fact the case as long as a
sufficiently "qgood" identifier is used. (The quality
of the identifier is also shown to be related to the
robustness of the adaptive plant-follower system).

The requirement to control the entire input-
output map restricts the application ta a class of
plants which, for al} practical purposes, is only
slightly larger than the miniphase case. But if a
Jess restrictive requirement is imposed the class be-
comes considerably larger. The point is demonstrated
by the pole positioning problem for plants represented
ay rational functions ?not necessarily proper). It
is shown that the problem s équivalent to solving a
Vinear, algebraic equation. Furthermore, a solution
to the equatfon is shown to exist provided that the
number of poles tao be positioned {s sufficiently large.
In terms of adaptive control, the equation must be
solved repeatedly in time by any of the available
methods, {e.g. a continuation algorithm).
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Summar:

The problem of designing a feedback system with
prescribed properties is attacked via a fractional rep-
resentation approach to feedback system analysis, and
synthesis. To this end we let H denote a ring of oper-
ators with the prescribed properties and model a given
plant as the ratio of two operators in H. This, in
turn, leads to a simplified test to determine whether
or not a feedback system in which that plant is embedd-
ed has the prescribed properties and a complete charac-
terization of those compensators which will “place” the
feedback system in H. The theory is formulated axio-
matically to permit its application in a wide variety
of system design problems and is extremely elementary
in nature requiring no more than addition, multiplica-
tion, subtraction, and inversion for its derivation
even in the most general settings.

I. Introduction

Intuitively, the linear feedback system design
process may be broken down into three steps; modeling,
analysis, and synthesis; each of which may be carried
out via a multiplicity of time and frequency domain
techniques. In engineering practice, however, the
three steps are loosely matched to one another. The
purpose of the present paper is to use fractional repre-
sentation models to the analysis and synthesis of feed-
back systems. Here, if one desires to design a system
with prescribed properties the given plant is initially
modeled as a quotient of two operators, each of which
has the desired properties. Once such a model has been
specified a similar model may be formulated for the
feedback system constructed from that plant which, in
turn, may be used to determine whether or not the feed-
back system has the desired properties. Moreover, the
set of compensators which will cause the feedback system
to have the prescribed properties may be completely
characterized in terms of such a model. As such, by
choosing a model for the plant which is matched to the
design criteria the analysis and synthesis processes
for a feedback system may be greatly simplified.

2 This research supported in part by the Joint
Services Electronics Program at the University of
California at Berkeley under AFOSR Contract
756-C-0100.

22 This reserach supported in part by ONR Contract
78-C-0344,

t22  This research supported in oart by the Joint
Services Electronics Program at Texas Tech Univ.,’
under ONR Contract 76-C-1136,

J. Murraysss
Dept. of EE
Texas Tech Univ., tubbock, TX.

R, Saekszzs

Dept. of EE
Texas Tech Univ., Lubbock, TX

I11. Axiomatic Theory

Let G be a (not-necessarily-commutative) ring with
identity and let H be a subring of G which includes the
identity. The feedback system and its subsystems wil)
be represented by operators which are elements of G.
The compensator will be chosen so that the overall
system will be represented by an operator in the sub-
ring H.

2,27

We define two multiplicative subsets™*"" of H:

1=(hi{nleg

i.e., 1 is the set of elements of H which have an in-
verse in G;

J = (het | hleny

i.e., J is the subgroup of H consisting of all inverti-
ble elements of H.

Note that
Jolc He 6

Given the above structure we say that a system
g ¢ G has a right fractional representation in
{G,H,1,J} if there exist n. ¢ H and dr ¢ | such that
g = nrdr’l. Furthermore, we say that the pair ("r'dr)
cHxH is aight copaime if there exist v, and v in H
such that

Url'lr

+ vrdr =1
The fractional representation "rdr-l in {G,H,I,J} is
said to be night coprime if the pair ("r'dr) is right
coprime.

The relationship between our concept of coprime-
ness and the usual common factor criterion for coprime-

“25528 is given by the following properties.

Property 1: Let the pair ("r'dr) ¢ HxH be right co-
prime. Let n_ and dr have & common right factor r ¢ H,
f.e.,n = x.r,d, =yr for some x_ cHandy, cH.
Then r has a Left inverae in H.

r

Property 2: let g = ﬂ,d;l be a right-coprime fractional
representation of g in {G,H,1,J}). Llet g = ,ry;l be a
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second (not necessarily coprine) rignt fractional rep-
resentation of ¢ in {G,H,1,J}. Then there exists an

r in H such that

x, " n.r and ’r L drr.

Although G is, in genera) a nonconmutative ring,
the entire theory developed above for right fractional
representations can be replicated for left fractional
representations. In particular, we say that g ¢ G has
3 Left fractional represcntation in {G,H,1,J} {f there

exist n, ¢ Hand d, ¢ 1 such that g '21"1' Furthermore
we say that the pair (n,, dl) ¢ HxH is Left coprime if

there exist u, and A in H such that
lg t vyt 1

The left fractional representation ¢-tn is safd to be

Ledt coprime if the pair ("t'dt) is left coprime. With

these definitions the existence of & common Left facton
for a left fractional representations of g is charac-
terized by the following properties.

Property 1°': tet the pair ("t'dt) be Jeft coprime,
tet ny and dl have a common left factor £ in H, {.e.,
Nt Xy, dt = Lyl for some Xp ¢ H and Yp e H. Then
£ has a aight invernse ¢ H.

Property 2*': let g = dzlnt be a left coprime fraction-
al representation of 9 in {G,H,1,J). let g = yzlxc be

3 second (not necessarily coprime) left fractional rep-
resentation of g in {G,K,1,J}. Then there exists an
L in H such that

X, ® Lnl and Y ldl

The above properties of a coprime fractional rep-
resentation have all been derived under the assumption
that such a representation exists. Of course, if G de-
notes the rational matrices and H the polynomial ma-
trices the existence of a coprime representation is im-

plied by classical ana]ysis.ls'l9 Indeed, the classi-
cal analysis readily extends to the case where M is
taken to be the exponcntially stable (exp. stable)
rat‘onal matrices or the ring of proper rational ma-

trices with poles in a prescribed region.18 On the
other hand for l'nu'lt.’idirnens\'or'na'l.26 distributed, 8 and

tlmg-varyinq systemsll'ls there is no assurance that an
arbitrary 9 ¢ G will admit a fractional representation
nor even that the set of g ¢ G which admit such a rep-
resentation will be a linear space. Moreopver, all g's
which admit a fractiona) representation may not admit

2 coprime fractional representation.zs In general, the
set of g ¢ G which admit a fractional representation in
{6,H,1,J) will form a subring of G if and only if the

-
Ore condition fis satisfied while criteria for coprime-
ness have been formulated in various specfal cases

though no general theory exists,l*%+26

Property 3: Let g = nrd;1 with n_ ¢ H and d.cl:

*{6,1,1,J) satisfies the Ore condition for right frac-
tional representations if, whenever g ¢ G admits a left
fractional representation, it also admits a right

fractional representation and vice-versa .

8) 1fd_cJ, thegeH
b) Ifg-= nrd;’ is a wight copadme fractional repue-
sentation of g in {G,H,1,J), then 9 ¢ H implies that
d. ¢,

Property 3': Let g = di’"L with ny, ¢ H and dl c I

a) If dt cJ, then g c H;

by Ifg-= dilnl is a Left coprime fractional represen-
Zation of g in {G,H,1,J), then g ¢ H implies that

dl e J.

Property 4: Llet g = nrd'lnl where n_, n, ¢ H, and dc 1.

a) IfdcJ, then g ¢ K.
b) Let, in addition, n'_d'1 be a right coprime frac-
tional representation in {G,H,1,3} and d'lnt be a left

coprime fractional representation ir. {G,H,1,J); then
g ¢ H implies that d ¢ J.

ITI. Analysis

To start consider the feedback system §_ of
figure 1. ?

—-o.:9~— p= nrd;I -y .

Figure 1: Unity gain negative feedback system.

Suppose that the plant is described by a right coprime
fractional representation p = nrd;1 in {G,H,1,J}. The
closed-loop dynamics of Ep are described by the maps

hgy T U™ € h, = ('I+p)'I = d',(d',*'n,,)'x

. - k 3 -1 = -1
hyy P Uy b, pl1+p) n.(d +n)

Note that:

heu + hyu =1

We say that 29 is well defined in G, (M, resp.), if
hoy € Gy (H, resp.).
Note tinat the pairs ("r' dr’ "r) and (dr' dr""r)

are right ccprime; indeed, the right coprimeness of
("r' d,.) impiies

(v - vpdn ¢ v (d +n) =1
while
(vp - udd, s uld +n) =1
Theorem 1: Consider the feedback system fp of

igure 2. 1
a) Let p = nrdr be a fractional representation

in (G,H,1,J) of the element pc G; then {p




i well defined ir G if and only 4f d_ ¢ n_cl.
b) Letp nrd;1 be a Aight coprime fractional

representation in {6,H,1,J) of the element p ¢ G;

then Ep & well defined <n H {f and only {f
dr AL J.

We now consider the feedback system | of Figure 2

preceded by & compensator c¢; p and ¢ belong to G and
are specified by their coprime fractional representa-

tion in {G,H,1,J) nrd:l and yzlxt. resp.

- -1
p "rdr

[z
B 'yil'L N 4

- +

Figure 2. Feedback system with plant and compensator.

To describe the feedback system we consider the map
Reu (ul.uz) — (el,ez). Simple calculations give

-1 -
h h (1 + pc} -p(1 + cp)
A3 A A U )
Peu ° : 1 1
h h c{1 + pc)™t {1 +cp)
20 B o)

Now let, hyu: (ul.ul) r——>(y1.y2). Using the summing

node equations it fs easy to see that

h, = K(heu - 1) and heu =1~ Kh

yu yu

where X is the symplectic matrix

0 1
-1 0

K=

It 1s we)l known that in the case of multivariable
rationa)l matrices, one has to considar the four sub-
matrices of heu because examples show that any one of

the submatrices may be unstable while the remaining
ones are stable. Llet us calculate:

hey = {1+ pc)d =1 - pe(l ¢ pe)~}
11 i

1-p{1+cp) ¢ .

-1 . p[yi1 (yLdr + ztnr)d;lj c

-1
1- "r(’Ldr + ’L"r) X,
no, oecllepe)t e (1 e o)t

. -1
8 (yd, ¢ =007 "1y

-1
h s {1+ cp) 1. {1+ yzlltnrd;l)

-1 -1,
* yp (8, ¢ xmehy

. -1
d.(ygd + 20 )"0y,
Peyuy « b1 + o)+ nlygdy ¢ xpn )y,

We say that ] is well defined in G, (H, resp.) 1f and
only if each entry of h, belongs to G, (M, resp.).

Theorem 2: Consider the feedback system § of

Figure 3. Let n'_d;l and ’Zl'L be a right and left
fractiona) representations of p and ¢ in (G, H,1,0)

a) If Y8, + xpn, ¢ 1, then | is well defined
in 6.

T b) If yd. + x,n c J, then { fs well defined
in H.
¢) If hezuz € G then y,d_+ x,n_c I hence if !

is well defined in G then ’Lﬁr +xpn ¢ I.

d) Assume, in addition, that "r(’Ldr)-l and
(yldr)'lxl are right coprime and left coprime
factorizatjonal representation, resp.; then

helul ¢ H implies that yldr + xL"r ¢ J, and hence
if [ is well defined in H then y,d_+ x,n_c J.

Mote, the special assumptions used in d) to the effect
- . . -1
that "r(ytdr) 1 is right coprime and (’Ldr X, is left

coprime, imply, in some sense, that p and ¢ have no
common factors. More precisely, since J serves as the
group of units in our theory these conditions imply
that any common factors of p and ¢ must lie in J.

[¥. Oesign

Consistent with our approach of matching the plant

model to the goal of the given feedback system design
problem the present section is devoted to the problem
of characterizing the set of compensators whrich wi}]
“place” a feedback system in a prescribed ring H given
that both the plant and compensator are modeled by
fractional representations in (G,H,1,J).

Theorem 3: For the feedback system § of Figure 2,

Tet the plant p have a right coprime and a left
coprime fractional representation p = nrd; =
dzl"z in (6,H,1,J). Then for any w ¢ H such that
wnL tv.¢ 1, the compensator

c = (wn, ¢ vr)'l(-wdlo ue 6

results in a feedback system [ ;ell-defined in H.
for such a compensator, heu c M x2 and

1-n(-wdy +u) -nwn, +v)
d.(-wd, + u) d(wny + v.)

Conversely, if § is well defined in M and if the
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e e A e

- « g3} c
comnensator € * y, Xp s such that ("r"tdr) and
(’ldr"l) are right conrime and left coprime
resp., then c 15 qiven by the ahove cquation,

Finally, we note that aithough theorem 3 yields a
complete design theory for a feedtack system given
that 1ts olant has both right and left coprime frac-
tional representations in (G,M,1,J) one has no a-
priori assurance that such fractional representations
exfsts (except in some known cases). It has been con-
Jectured, however, that this requirement is a necessary
condition for the existence of a compensator which will

"place” the feedback system §n H.3 Of course, we have
already shown that the requirement of coprimeness s a
sufficient condition for the existence of such & com-
pensator.

V. Conclusions

The key to our fractional representation approach
to feedback system design is the algebraic nature of
the main results, Indeed, the entirety of our model-
ing, analysis, and synthesis theory was derived with
no more sophisticated mathematics than addition, multi-
plication, substraction and inversion. As such, it
applies to essentially any class of linear systems and
by proper choice of the rings G and H the results are
applicadle to a variety of systems problems.

Although we believe that the present work repre-
sents the first attempt at the formulation of an axio-
matic fractional representation theory for systems
which may be matched to the feedback system analysis .
and synthesis problems of interest, the work owes much
to a number of recent results on the input-output
theory of linear systems. The use of a fractional rep-
resentation theory for rultivariate systems, though im-
plicit in a number of classical results, was populariz-

ed by Rosenbrock's polynomial matrix fractions.19
Interestingly, however, Rosenbruuk's goal was apparent-
ly to permit the powerful analytic and arithmetic
theory available for polynomial matrices to be applied
to rational ratrices, whereas, the present fractional
representation theory is motivated by the desire to
formulate a representation theory for systems which is
closed under inversion. Over the years numerous
generalizations of the polynomial matrix fraction con-
cept have been formulated for distributed systems

L} .
35’13'2) and multidimensional systemsg'Z‘ while par-
tial extensions to the time-varying and nonlinear cases

have appeared in a number of unpublished reports.“'22

For any type of fractional representation theory
to be meaningful it must be identified with an appro-*
priate coprimeness concept. Indeed, the key to the
present formulation i$ the use of the algebraic co-
primeness concept in lieu of the more classical common
factgr criterion. Such a criterion has previously been
applied by one of the authors in a study of fractional

representations for distributed systems‘ and was also
shown to be the strongest of several possible coprime-
ness criteria for multidimensional systems by Youla and

26
Gnavi. Of course, it is well known as one of the
several equivalent criteria for coprimeness in the

polynomial matrix fraction theory.ls'19

The feedback system analysis theorems of section
IIT are motivated by the now classical theorems for de-
termining the stability of a myltivariate feedback
system in terms of fis polynomial matrix fraction

representation.lo Moreover, the system synthesis
theorem s an outgrowth of the feedback system stabi-

24,25

lization trecre= of Youla, Borgiorno, and Jadr,
Indeed, the present work Legan with an attempt to give
3 simple proof of this most powerful analytic theorem
and developed through several stages of gereralization
and simplification into its present form,
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Abstract

The problem of designing a compensator for a specified plant
which simultaneously stablizes the resultant feedback system and
causes it to track a prescribed family of inputs and/or reject
prescribed disturbances is considered. A set of Tinear design
equations, in the space of stable systems, is formulated in a
general linear systems setting and an explicit parameterization of
the resultant solution space is obtained for a class of "generalized
multivariate" systems. The theory is illustrated with several

single and multivariate examples.
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Mathematical
Systems Theory

) Global Controllability of Nonlinear Systems in Two Dimensions

L. R. Hunt*
Department of Mathematics, Texas Tech University, Lubbock, Texas 79409

Abstract. Let M be a connected real-analytic 2-dimensional manifold.
Consider the system

2(1) = f(x(1) + u(1)g(x()), x(0) = x, € M,

where f and g are real-analytic vector fields on M which are linearly
independent at some point of M, and u is a real-valued control. Sufficient
conditions on the vector fields f and g are given so that the system is
controllable from x,. Suppose that every nontrivial integral curve of g has a
point p where f and g are linearly dependent, g(p) is nonzero, and that the
Lie bracket [f,g] and g are linearly independent at p. Then the system is
controllable (with the possible exception of a closed, nowhere dense set
which is not reachable) from any point x, such that the vector space
dimension of the Lie algebra L, generated by f,g and successive Lie
brackets is 2 at x,.

J I Introduction

Suppose we have the system

i(1) = f(x(0)) + T u(0)g(x(1)), x(0) = x, € M, - (1.1)

im1
where M is a connected real-analytic n-dimensional manifold, £,g,,...,8, are
real-analytic complete vector fields on M, and u,,...,u,, are real-valued controls.

A theory has recently been developed in [7], (8], and [9] which characterizes the
largest subset of M which is reachable from x, under assumptions on f.g,,...,8&n
and certain Lie algebras generated by these vector fields.

*Research supported in part by the National Science Foundation under NSF Grant MCS76-
05267-A01 and by the Joint Services Electronics Program uander ONR Contract 76-C-1136.
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We are interested in the implementation of these results for the system
(1) = f(x(1)) + u()g(x(1)), x(0) = xo € M, (1.2)

where M is a connected real-analytic 2-dimensional manifold, f and g are
real-analytic vector fields on M, and u is a control. The theory as given in [9)]
suggests that in examining the controllability of the system from x, the
important item to check is the direction of the vector field f along the integral
curves of g. We make the assumptions that f and g are linearly independent at
some point of M (a very natural assumption) and that the Lie algebra L,
generated by f.g and successive Lie brackets has vector space dimension 2 at x,
(in order that an open set of M be reachable from x,).

To find sufficient conditions that the system (1.2) be controllable from x,,
we show that the points of interest are those where f and g are linearly
dependent and g is nonzero. For each such point there is a control which makes
this point an equilibrium point of the system. If every nontrivial integral curve
of g has such a point, and the Lie bracket [ f,g] and g are linearly independent
for at [east one such point on each integral curve, then the system (1.2) is
controllable from any point x, with the vector space dimension of L, at x, being
2. There may be a closed nowhere dense subset of M which is not reachable
from x; e.g. a common equilibrium (zero) point of f and g is certainly not
reachable. Thus controllable means controllable modulo such points. Also
equilibrium points of g must be treated separately using the results from [9].
Many examples are given which explain the important geometry near those
points where f and g are linearly dependent. These examples also illustrate the
ease with which the theory can be implemented.

It is interesting to see the implications of our theory in the linear case.
Suppose we consider the linear system

#(¢) = Ax(1) + u(2) B, x(0) = x, € R?, (1.3)

where A and B are 2 X2 constant matrices. The Lie bracket of the vector fields
Ax and B is the constant vector field AB. Thus if 4B and B are linearly
independent at some point of R? (i.¢., the controllability matrix has rank 2), then
the linear system (1.3) is controllable from any x, € R?,

An interesting expository article giving results on controllability for nonlin-
ear systems is due to Brockett {1]. Related theories can be found in [10), [11),
(12}, and [13]. We must stress the difference between our results and the nice
theory for local controllability along a reference trajectory given by Hermes in
[4), {5], and [6]). If A(s,x4) denotes the set of all points attainable at time ¢ by
solutions of (1.2) corresponding to admissible controls and initiating from x, at
time 0, Hermes [4] examines if the point ¢(s) (the solution to (1.2) at time ¢
starting at x, with control ¥u=0) is an interior point of A(t,x,) or not.

Section 2 of this article contains definitions, examples, and the statement
and proof of our main result. Necessary conditions and other problems concern-
ing global controllability are examined in section 3.
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Gilobal Controllsbility of Nonlinear Sysiems
II. Definitions, Examples, and a Global Result

For the first part of this section we state definitions and a result for an
n-dimensional hypersurface system, but later we restrict our attention to the
2-dimensional system.

If M is a connected-real-analytic n-dimensional manifold, consider the
hypersurface system

a~1
(1) = fix(1)) + .2‘ u(1)gi(x(¢)), x(0) = x, € M, @n

where f,8,,...,8,—, are real-analytic vector fields, and u,,...,u,_, are controls.
By T(M) we denote the tangent bundle of M with fiber (tangent space)
T (M) for xEM.If X is a vector field on M, then a is an integral curve of X if a

maps the closed interval / CR into M so that da(s) = X(a(t)) forallrel. If D

is a subset of T(M), then an integral curve of D is a mapping a from a real
interval [¢,¢'] into M such that there exist f=¢,<t,...1, = and vector fields
X,,...,X, in D with the restriction of a to [#,_,,s;] being an integral curve of X,
for each i=12...,k. Apoint xEM is D-reachable from x, if there is an integral
curve a of D and some T >0 in the interval for a such that a(0)=x, and
a(T)=x. A subset A of M is D-reachable from x, if every point xE A is
reachable from x,.

Since the D under consideration is the subset of T(M) determined by the
vector fields in (2.1), we drop the D from D-reachable. If an open subset of M is
reachable from x,, then the largest open subset U of M which is reachable from
Xq is called the region of reachability from x,. If U= M, we say that the system is
controllable from x4, and controllability from every x,E M gives us a controllable
system.

Let O be an open set in M and let x €30. The vector field f points in the
direction of O (or towards O) at x if there is an open neighborhood W of x in M
such that the integral curve of f starting at x and intersected with W is contained
in O. In addition if 30 is ' near x and f(x) is not tangent to 30 at x, then f
points in the direction of O (or towards O) at x. If f points towards O (or Q) for
all x €90, then f poinis in the direction of O (or O) on 30. Given two C= vector
fields A, and h, on M, the Lie bracket of h, and A, is defined by

dh, 3k,

[Auhy] = =2k ==Lhy,

oh, oh,
where —! and —2 Y 2 denote Jacobian matrices. Of course other Lie brackets like

[h,,[h,,h,]],... can be taken.

By L, we denote the Lie algebra generated by f,g,,...,8,-., and successive
Lie brackets, and by L), we denote the Lie algebra generated by g,,...,2,_, and
successive Lie brackets.

Our first theorem, which characterizes the region of reachability from x, for
the system (2.1) is taken from [9). It is this theorem that we are interested in
implementing for the 2-dimensional case.
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Theorem 2.1. Assume the vector space dimension of L, at x4 is n and that
f:8\+--- 18—y are linearly independent at some point of M. Let U be the smallest
open subset of M with xo€ U satisfving 3U contains the integral manifolds of L,
which intersect it (and which are given by Chow’s Theorem (2)) and f poinis in the
direction of U on 3U. Then U is the region of reachability from x, for the system
2.1).

In the statement of this theorem, we should add the assumption that if
UM, every open neighborhood of any point p €3U contains points from U
and the complement of U. G. Stefani and A. Baccioti have pointed out that the
correct conclusion to the theorem as stated above is U C region of reachability
Cinterior of U. The author wishes to thank Professors Stefani and Baccioti for
their comments.

The set P of points in M where the vector space dimension of L, is less than
n is a closed nowhere dense subset of M if the dimension at one point x, is n
(see [9]. If there is no proper open set U C M with 3U as in the theorem and
with 3U disconnecting M, then the system (2.1) is controllable from x, (as stated
in the introduction, there may be a subset of P, e.g. common equilibrium points
of f and g, which is not reachable). If such a set U exists, then the system is
certainly not controilable.

Unless otherwise noted for the remainder of this paper we restrict our
attention to the 2-dimensional system

: (1) - Hi(x(2) &1(x(1))
=[50 |-t |0l 2]

= f(x(1)) + u(1)g(x(1)),x(0) = x, € M,

where M is our connected 2-dimensional manifold. We assume that the
equilibrium points of the system x(¢)=f(x(#)) are isolated. The set of points
where f and g are linearly dependent are given by the equation f;(x)g,(x)—

fx(x)g (x)=0.

To obtain a perspective on the global controllability of our system (2.2) we
consider a linear and a nonlinear exampie.
Example 2.1. On R? let

-0 o) old]

= f{x(1)) + u(r)g(x(1)) = Ax(t) + u(1)B.

Since the matrix [B,4B] has rank 2, this system is controllable from any point
xo in R2. However, the important fact geometrically is how the vector field f
behaves along the integral curves of g near the points where f and g are linearly
dependent. The set of points (x,,x,) in R? where f and g are dependent are on
the straight line x, =0. We take an arbitrary integral curve of g, say x,=c=
constant, which divides R? into two connected components { xER?:x, >c) and
{xER?:x,<c). Let € be a small positive number. At a point (—¢,c) on x,=¢, f
points towards {x €R?:x;<c}, and at a point (¢,c) on x,=c, f points towards
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X

(—¢.c) (c.c)/

f vectors

X4

Fig. .

{x€R?*:x,>c). Thus the vector field f “turns through” the integral curve of g at
the point on x,=c¢ where f and g are linearly dependent. Since this occurs for
every integral curve of g, we have by Theorem 2.1 that no integral curve of g can
be the boundary of the region of reachabxlxty from any x,€R2 Hence this
system is controllable from every x,€ R,

Since the standard linear methods for proving controllability of a linear
system will not generalize to the nonlinear case, it is the vector field f “turning
through” the integral curves of g at points where f and g are linearly dependent
that becomes the essentiai item in the nonlinear theory. We show later that this
“turning” occurs at points where f and g are linearly dependent and where [/, 2]
and g are lipearly independent.

Example 2.2. Consider

o= 0] -] 7]
= (x(1)) + u()g(x(2)), x(0) = x, € RE.

This example satisfies the hypotheses of Theorem 2.1 since f and g are linearly
dependent if and only if x, =0 and the dimension of L, at every point x, € R? is

2. Every integral curve of g intersects the line x,=0 (note that [ l-‘z] is not
horizontal in the plane). Computing

O M I PR R

and [ f,g] and g are linearly mdependem at points where x,=0.
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Xy

Fig 2

An integral curve of g divides R? into two connected components. Let ¢ be a
small positive number. From the picture we see that the vector field f “turns
through™ the integral curve of g at the point where x,=0. Since this happens for
all such integral curves, the system is controllable on R®. Again, this “turning” is
implied by the computation on [f,g] as we show in our main result, Theorem
2.2

Now we return to our general 2-dimensional system (2.2). Let pEM be a
point where f(p) and g(p) are nonzero and f{ p) and g(p) are linearly dependent.
For a sufficiently small open neighborhood V of p in M, the integral curve of g
through p divides V into two connected open components. We say that f lies on
one side of g near p if the integral curve of f through p (with the point p deleted)
in some small open neighborhood, say ¥, of p is contained in one of the two
connected components of ¥ determined by the integral curve of g through p.

This property of f lying on one side of g near p is of course invariant under
rotations on R? if we are working in R2. Since M is a real-analytic 2-dimensional




CF
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integral curve of g

LA croqra corves of ¢
<8
T D

<\ 1 vectors

Fig 4.

manifold there is an open neighborhood of p in M which is real-analytically
homeomorphic to an open neighborhood of the origin in R Hence there is no

generality loss in assuming that g(p)= (l) and that we are working locally in

some neighborhood of the point p=(0,0) in R2. Then to show that f lies on one
side of g near p we need only show that the integral curve of f through p minus
the integral curve of g through p has a local maximum or local minimum at p. If
this occurs then the flow generated by f through certain points near p must
intersect the integral curve of g through p in such a way that the vector field f
“turns through” the integral curve of g through p.

We now state and prove the main result. In the definition of integral curve
of g we could include an integral curve (where g is nonzero) together with an
equilibrium point of g and another integral curve of g (with g nonzero). For
example, we could call the positive x, axis together with the origin and the

positive x, axis in the system

X, (1 0 1| x 1 0

i = 0 < U+ u(r) 11 on R?

x,(0) 1 0}f x, 0 -1 x,
an integral curve of g. However, we assume that g is nonzero in the statement of
our main result, and in certain examples given after the theorem we show how to
handle equilibrium points of g and common equilibrium points of f and g using
Theorems 2.1 and 2.2 together.

Theorem 2.2. Assume that f and g are linearly independent at some point of M
and that g never vanishes on M. Suppose every integral curve of g which
disconnects M has a point p where f and g are linearly dependent and [ f,g] and g
are linearly independent. Then the system (2.2) is controllable from any point x,
such that the vector space dimension of L, at xq is 2.

0
0

Proof. Suppose that f(p) is nonzero, the case f( p)-[
]. As before, we are working in a

1
0
neighborhood of the point p =(0,0) in R%. We must show that [ f,g] and g being
linearly independent at p (which is invariant under coordinate changes) implies
that the integral curve of f through p minus the integral curve of g through p

] being considered later

in the proof, and assume that g(p)-[
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(both considered as functions of the x, variable) has a local maximum or local
minimum at p. By the discussion preceding the statement of the theorem, this
integral curve of g cannot be the boundary of the region of reachability U from
xo in Theorem 2.1.

Since
20 [ A=) g,(x(1)) N 0 |
[ %,(1) ] [f,(x(,)) ] + u(t)[ 2y(x(1)) ]»g(p) [o},ﬂp) #[ o]

and f(p) and g(p) linearly dependent, we must have f,(p)#0, g,(p)#0 and

JAp)=g(p)=0.
The first derivative of the integral curve of f minus the integral curve of g

with x, considered as a function of x, is given by

S(x(2)) _ g2(x(?)) )
H(x())  &(x(2)

The second derivative is given as

afz(-‘(’))

om0

&(x(N)—S—-N(x()—=—

1
SHi(x())g(x(2)

By the second derivative test we have the desired local maximum or local
minimum provided

8082 - 10 D 0.
Computing
3 2 3 3
] el 52 g2,
8] = - :
3 3 3 3
IO PR

Then [ f,g]} and g are linearly dependent at p if and only if }

9
L g0+ D g,y - B ) - 20D 14y -

at p since g,(p)=0. Because f,(p)=g,(p)=0, [f,g] and g are linearly indepen-
dent at p if and only if

3fy(x) 3Sz(x)

A Bi(0) ~ () %0 :
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at p. Thus we must have the desired local maximum or local minimum from our
assumption on [ f,g] and g.

It remains to consider the case where f(p)= g . Recall that f and g are
linearly dependent at the set of points Si(x)gx) = f(x)g\(x)=0. Again we
assume that g(p)= (1)], implying fo(p)=g,(p)=0. We apply the implicit func-
tion theorem to the set of points where f,(x)g,(x)— Ji(x)g,(x)=0, near p. Since

9 9 3 9
A (x) + 2 - B g 2000
9 9
= —?—iﬂf.(x)— gf:) si(x) atp,
our assumption on [ f,g] and g implies a—gaéi)-j,(p)- -af—;(x’;)g,(p)#o at p. Thus
1 ]

the zero set of fi(x)g,(x)— f,(x)g,(x) defines a real-analytic 1-dimensional
submanifold S of M near p.
Recall that we assumed the equilibrium points of

[ £,(1) J ) [ Sx(@)) }
50 | T | Ax(0)

are isolated. Hence we take all points of S except p to be points at which Ax)is

not equal to {8] We choose an open neighborhood W of p in M such that

() p is only point in W with f(p)= g],

(i) the only points in W where f and g are linearly dependent are those in
Snw,

(i) given any point g€ S N W with g#p, the integral curve of g through ¢
divides W into two connected open components and the vector field f
points in the direction of one component on one side of ¢ in the integral
curve and in the direction of the other component on the other side of ¢ in
the integral curve, and

(iv) [f.g] and g are linearly independent on W.

Part (jii) follows from the first part of this proof since f(q)sig and (ii). The

set W can also be chosen so that the integral curve of g through p divides W two
connected open components. Suppose f points in the direction of the closure of
one of these components along the integral curve of g in W. Since the integral
curves of g vary smoothly (as we move from curve to curve), the only way the
preceding statement can hold in view of (iii) is to have the integral curves of f
and g coincide on one side of p along the integral curve of g through p. But [ f,g]
must vanish along such a set, a contradiction to (iv).

Hence we have that the vector field f must “turn through™ every integral
curve of g which disconnects M at some point in § on each such curve. Since M
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is connected, the only set U satisfying Theorem 2.1 for our x, must be equal to
M itself. Thus the system (2.2) is controllable from any such x,, O
As an easy application of this theory we could prove the known controllabil-
ity theorem for a linear system in R?, but remarks in this direction have already
been made.
We now give several examples of nonlinear systems to illustrate how to
apply Theorem 2.2

Example 2.3. Consider

o=l i)l 7] |
= Fx(0) + u(DB(x(1)), x(0) = 5, € R

The set of points in R? where f and g are linearly dependent is defined by
4— x3 =0, which gives two lines x, =2 and x,= —2. Computing

O M T N M

Thus the vector space dimension of L, at any point x, is 2 and [ f,g] and g are
linearly independent on the straight lines x,=2 and x,= —2. Since every
integral curve of g intersects these lines, we have a controllable system by
Theorem 2.2

Example 2.4. Consider

X x3
x(1) -[ x;zg] =-[ :’} + u(l)[ 12]
= f(x(1)) + u(1)g(x(1)), x(0) = x, € R*.

The set of points in R? where f and g are linearly dependent is defined by
the straight lines x, =0 and x,= 1. Computing

; va=—{2 2 S e

| - Then [f,g] and g are linearly independent on x,=0 and x,=1 and the vector
space dimension of L, is 2 everywhere. Since g has no horizontal tangent
vectors in the plane, all integral curves of g must intersect these lines. Hence this
system is controllable. '

Example 2.5. Let
. x,(1) 0 =1} x 1 0| x,
ool Tl <]
- X X
-[ xl’]+u(t)[ _4;2]
= flx(r)) + u(t)g(x(¢)),
where x(0)=x,ER*—(0,0).
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The origin in R?is a common equilibrium point of f and g. The vector fields
f and g are linearly dependent on the set of points defined by 4x3~x3=0 or
x, ™ *2x,. We have

IR H EAR I R

Thus [f,g] and g are linearly independent on x,=2x, and x,= —2x, except at
the point (0,0). Also the vector space dimension of L, at every point in
R*~(0,0) is 2.

Let’s apply Theorem 2.2 to the open first quadrant. It is easy to show that
any integral curve of g which starts in the first quadrant intersects the line
x;=2x, (we can move forward and backward in time along integral curves of g
since it is the vector field we control). By Theorem 2.2 we know the first
quadrant is reachable from any point x, in the first quadrant. Similar arguments
imply the same resuit for the remaining three quadrants.

We need to show that R?—(0,0) is reachable from any point x, in R?—(0,0).
The positive x, axis, the positive x, axis, the negative x, axis, and the negative x,
axis are all integral curves of g. The vector field f points towards the first
quadrant along the positive x, axis, towards the second quadrant along the
positive x, axis, towards the third quadrant along the negative x, axis, and
towards the fourth quadrant along the negative x, axis.

Thus we are able to move from one quadrant to the next by using the f
vectors. Since each quadrant is controllable, the system is controllable, ignoring
the point (0,0).

Xa
- f vectors _
— t[
l ‘ N X+
g S.
53




Example 2.6. Let

] x(0 0 1| =x 1 0} x
i U R H

-[xz]-i-u(l)

Xy

Xy
4x,
= f(x(1)) + u(2)g(x(1)).

where x(0) = x,€R?—(0,0).

The point (0,0) is a common equilibrium point of f and g. Points where f
and g are linearly dependent are given by x;=2x, and x,=—2x,. As in the
preceding example, each open quadrant is controllable since

[£8] = '[? 5][41]*“ 2][2] '3[ ‘x:']'

However along the positive x, axis (an integral curve of g), f points towards
the first quadrant, and along the positive x, axis (an integral curve of g), f points
towards the first quadrant also.

Thus once we reach the first quadrant, we cannot leave it by Theorem 2.1.
This system is not globally controllable.

X2

= { vectors

?

X

Fig. 6
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Global Conptrollability of Nonlinear Systems

Example 2.7]1). Let

| %2 X,
)l 5
= fx(0)) + u(n)g(x(2)),

where x(0)= x,€ R?~(0,0).

The point (0,0) is 2 common equilibrium point of f and g. The vector fieids f
and g are linearly dependent when x?+ x2=0, i.c. at the point (0,0) only.

The positive x, axis and the positive x, axis are both integral curves of g.
Along the positive x, axis f points toward the first quadrant, and the same is true
for the positive x, axis. By Theorem 2.1, this system is not controllable. If we
restrict our attention to any one of the open quadrants, we find it also is not
controllable by Theorem 2.1. This occurs because an integral curve of g, say in
the first quadrant, disconnects the first quadrant. Moreover, along such a curve f
points in the direction of one of the components bounded by the integral curve.

The above examples serve to show the practical applications of Theorem 2.2
together with Theorem 2.1.

II1. Other Problems

We can of course ask if the sufficient condition concerning [ f,g} in Theorem 2.2
for the system (2.2) to be controllable is also necessary. It is known in the linear
case that it is necessary. We show later in this section an example of a nonlinear
system which is controllable but for which the condition on {f,g] and g does not
hold.

First we state some necessary conditions for controllability, which do not
involve computations of [ f,g]. For an example of an application of the following
thzeorem. take the system of Example 2.7 restricted to the open first quadrant in
R

Theorem 3.1. Assume that our connected real-analytic 2-dimensional manifold M

is also simply connected. If there exists an integral curve of g which disconnects M

and which does not intersect the set of points where f and g are linearly dependent.
. then the system (2.2) is not controllable.

Proof. Suppose this integral curve of g gives us two connected open compo-
nents O and O’ in M. Since M is connected and simply connected, if f points in
the direction of O at some points along the curve and in the direction of O’ at
other points along the curve, then there must be a point p in this integral curve
where f and g are linearly dependent, a contradiction. By Theorem 2.1, if we
assume f points towards O on the integral curve of g, then M is not reachable
from any point x, in O. a
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Returning to our question concerning the necessity of the sufficient condi-
tion in Theorem 2.2, we offer the following three examples. In the first two, [ f,g]
is a multiple of g at all points where f and g are linearly dependent and the
systems are not controllable. The third example involves a controllable system in
which [ £,g] is a multiple of g at all points where f and g are linearly dependent,
showing our sufficient conditions are not necessary.

Example 3.1. Consider

50 [0 1] x 1 0] x
wo 10 o] els ]
+u(l)[ x,]
1 X2
= f(x(2)) + u(2)g(x(1)),
x(0) = xy, € R? - (0,0).

x(1) =[

X2

The set of points in R? where f and g are linearly dependent are given by
xy=x, and x,= — x,. Also (0,0) is a common equilibrium point of f and g. The
Lie bracket

=10 1]|1% 1 OH *2| {0

ORI FE P MEH!
and there is no hope of using Theorem 2.2.

Disregarding the point (0,0) the set of points where x,=x, is a common
integral curve of f and g (it is this type of behavior that occurs in a noncontrolla-
ble linear system in R?). The set of points in R? where x, = x, disconnects R?
and f points in the direction of this set when x, = x,. By Theorem 2.1, there is no

way of moving from one side of the line x| = x, to the other, and we cannot have
controllability.

Example 3.2. Consider the nonlinear system
x,(1) -2x}
x45(1) I
x(0) = x, € R2,

+ u(1)

x(1) -[

xl
lz ] = fix(0)) + u()g(x(1)),

We show that this system is not controllable, but the reasons given cannot occur
in the linear case as in Example 3.1.
The line x,=0 is the set of points where f and g are linearly dependent.

Computing
0 2x,|j =2x3 | | —6x,
0 0 1 o |

2
[_f,g] - _[0 —4x2H x3 | 4
which vanishes on x,=0, and Theorem 2.2 is not applicable.

0 0 1
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Thf integral curve of the system x(f)=g(x(f)) through (0,0) is given by

x,= % and the integral curve of the system x(¢) = f(x(¢)), through (0,0) is given
3
-2x3

by x, = . These integral curves intersect only at the point (0,0) where they
have a common tangent. The integral curve of g through (0,0) separates R? into
two connected open components, and f points towards only one of these
components along the integral curve near (0,0) and hence along the entire curve
for g (except at (0,0)). There is one side of this integral curve from which we
cannot move to the other, showing the system is indeed not controllable.

Example 3.3. Let

. x,(1) x3
=30

x(0) = x, € R%

The straight line x,=0 defines the set of points where f and g are linearly
dependent. Computing

[/g] = _[o 3x§H —x;]+[o —3:@][;:;] _[6):3}’

0 0 1 0 0 1 0
which is not linearly independent from g when x,=0. If we take the integral
curve of f and the integral curve of g through any point p on the line x, =0, we
find the differences of these curves (with x, as a function of x,) has a maximum
at the point p. This is exactly the desired behavior we need for the vector field f
to “turn through” the integral curve of g at such points. Hence along any
integral curve of g the vector field f points in the direction of one component
(given by the integral curve of g) at some points and in the direction of the other
component at different points. Then this system is controllable despite the
relationship of [f,g] and g when x, =0.

This last example suggests the existence of some “higher order™ sufficient
conditions for controllability which may also be necessary. Hermes [4] has
“higher order” conditions for the local controilability problem. Two other
immediate problems are suggested. Find a Theorem 2.2 which implements
Theorem 2.1 for hypersurface systems in the case where the dimension of the
manifold M is greater than two. Find a Theorem 2.2 to implement the controlla-
bility theory in [7] and [8] for general nonlinear systems of the form (see (1.1))

|
+ u(r)[ l"’ ] = fx(1)) + u(Dg(x(1)),

X(0) = fx(0) + 3 u(ax(0). x(0) = 20 € M.

Professor D. L. Elliott has pointed out to the author a paper of Y. Gerbier

(3]. Gerbier shows that controllable systems of two vector fields in R? without

equilibria are tosaologically equivalent (in a sense defined in his paper) to
Gl

(&= 5]
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Abstract

Consider the system

2

x(e) = f(x(t)) +ul(t)g(x(t)), x(0) =x_eR",

0

where f and g are real-analytic vector fields on R2
which are linearly independent at some point of Rz, and
u is a real-valued control. Sufficient conditions on f
and g are known so that this system is controllable
from x.. The purpose of this article is to implement
these conditions in the bilinear case

. 2

x(t) = Ax(t) +u(t)Bx(t), x(D) = xocR R
where A and B are constant 2 x 2 matrices. The process
involves finding the set of points where Ax and Bx are
linearly dependent and computing the Lie bracket [Ax,
Bx] at all such points. This is a generalization of
the well known controllability results for a linear
svstem on R<,

1. Introduction

We are interested in the system

*x(t) = E(x(r)) +ule)gx(t)), %x(0) = x M, (1)

0
where M is a connected real-analytic 2-dimensional man-
ifold, f and g are real-analvtic vector fields on M,
and y is a control. In examining the controllability
of this system from x,, the important item to check is
the directign of the Vector field f along the integral
curves of g.° We assume that f and g are linearly in-
dependent at some point of M and that the Lie algebra
L; generated by f,g and successive Lie brackets has
vector space dimension 2 at x.. The points of interest
are those where f and g are linearly dependent and g is
nonzero. If every integral curve of g which is non-
trivial has such a point, and the Lie bracket [f,g] and
g are linearly independent for at least one such point
on each integral curve, then the system (1) is control-
lable from any point x, with the vector space dimension
of L, at x,being 2. ere may be a closed nowhere

dense subset of M which is not reachable from x,, and
controllable means controllable modulo such points.

We restrict our attention to the bilinear system

%(0) = Ax(c) +u(t)Bx(t), x(0) = x_ €ER>, )

0
where A and B are constant 2x 2 matrices. First we
compute the set of points S where Ax and Bx are lin-
early dependent, If there exists an integral curve of
Bx which disconnects & and which does not intersect
S, then the system (2) is not controllable. Next we
compute the Lie bracket [Ax,Bx] at all points where Ax
and Bx are linearly dependent except the origin. This
computation ylelds a constant (along each mamnifold
part of an algebraic variety) which if nonzero can in-
dicate we have controllability. ,It remains only to
check the direction of the vector field Ax on the in-
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tegral curves of Bx that approach the origin.

We 1llustrate our method by applying it to several
examples. Results on controllability are useful in the
study of the problem of stabilization.l

2. Definitions and Resultrs

If X is a vector field on Rz, then a is an 1nte§ral
curve of X if a maps the closed interval ICR into R so

that Q%%El = X(a(t)) for all tel. If D is a set of

vector fields on RZ, then an integral curve of D is a
mapping @ from a real interval [t,t'] into R¢ such that
there exist t = ¢ <t.<...<¢t, = t' and vector fields
X;+...,X, in D with the restriction of a to Iti_l.ti]
being an integral curve of X ,, for each i=1,2,...,k. The
set D we consider is the one determined by the vector
fields in the bilinear system (2).

n
A point x€R" is reachable from 5N if there is an

integral curve a of D and some T 2 0 in the interval for

a such that a(Q) = Xy and a(T) = x. A subset of R¢ is
reachable from X4 if every point in this set is reach-

able from x,.

g

We shall make assumptions so that an open

subset of R° 1s reachable from x,. for (2), and the lar-

0
gest open subset U of R2 which is reachable from x . is
called the region of reachability from Xq- If U = Rz,
we say that the system is controllable from Xy and con-

trollability from every point x ERZ gives us a control-

lable svstem. 0

Let O be an open subset of Rz and let_x€30. The

0, at x if there is an open neighborhood W of x in R¢

such that the integral curve of f_starting at x and in-
tersected with W is contained in O. 1In addition if 350

is C& near x and f(x) is not tangent to o0 at x, then f
1f f

are &~ vector fields on Rz. the Lie
is defined by

If h1 and h
bracket of h

2

1 and h2

3h
(hyshyl = 5hy -

ah
1y
ax 2°

ahl 3h

where Ix and ?S% denote Jacobian matrices. Of course

other Lie brackets like [hl'[hl'hZ]]"" can be taken.

The Lie algebra generated by Ax, Bx, and successive
Lie brackets is denoted by LA.

Our first result concems the region of reachabil-
ity of our system (2). It is proved for a hypersurface




syscem of dimension n.2

Theorem 1.

Assume the vector space dimension of LA at

1 X, is 2 and that Ax and Bx are linearly independent at
3 some point of RZ. Let U be the smallest open subset of
Rz with x €U satisfying 3U contains the integral

0
curves of Bx which intersect it and Ax points in the
direction of U on U. Then U is the regioa of reach-
ability from g for our systeam (2).

It is our goal to {mplement the following theorem,
which has been proved for a general nonlinear system in

A
two dimensions.” Here V is a domain in Rz, and the
statement {s for our bilinear system. ’

Theorem 2. Assume that Ax and Bx are linearly indepen-
dent at some point in V. Suppose every integral curve
of Bx which disconnects V(V- {(0,0)} if (0,0) is {an V)
contains a point where Ax and Bx are linearly dependent
E and [Ax,Bx] and Bx are linearly independent. Then the
| system (2) is controllable on V from any point x eV

such that the vector space dimension of LA at x, is 2.

3. Computation of Lie Brackets

3 We compute [Ax,Bx) at all points (except (0,0))
where Ax and Bx are linearly dependent. Let
fa))

a b b
A s ‘a 1‘1.2 and B = bll b12 ,
1721 22 21 22
Then Ax and Bx are linearly dependent on the algebraic
variety given by
1171

[210%1 * 4%
[321%2% 321%0 P2y* *P

b, .x, + blzxz]

x| " 0.
22%2)

det
a b, -a,.b )x2+(a
1% " 2% 1%
2501 )% %2 % (815, -
'; 174t

Sy 0127808 7 S

t.e. ( b

217 b2
Let

11%22% 312

2
lrslz)x2 = 0.

322
!
3,122 %2125

b c

: 212522 7 %2012 7 oy
Then we have no nonzero real solutions (xl,xz) tf and
only tf

i Thus we assume that this determinant {s < 0.

If S cz- c]-O. then Ax and Bx are linearly de-

pendent everywhere, contrary to our assumptions of
Theotems | and 2. If c1-0 and ac least oane of <y and

cJﬂO. then Ax and Bx are linearly dependent on the
lines xz-O and cle+c3x2-0. Similacly, {f cs-O
ad ac least one of o and czfo. then Ax and Bx are
linearly dependent on the lines xl-O and c1x1+c2x2-0.
If boch ¢ and c3-0 and czv‘o. then Ax and Bx are
linearly dependenc when xl-o and xz-O. Finally, tf
< and c)fO, then Ax and Bx are linearly dependent
when

1 3c . Hence there are four cases we

must consider.

Comput ing we find

]
(241 ‘12}‘{1’11"1”’12"2}‘.{"11 "12)[“11"1“”12"2]

la'll a,, b, x.+b b21 b22 a . x +a

[Ax ,Bx] = -
21%17722%2) 2151

22%2

351011%17221P12%2% 22221 %1 "1 P2 X T 212 % "2 0 |

.. ["’11"12"2*"12"21"1*312"22"2‘*12"11"2"21"12"1"22"11‘2]
We are given
X, +b..x]

B =TT 012720
b21%1 ¥ Bp0%,

Let

fa x,+a, b, x,+a,,b

1101252421 2021 %1731 2P 29%2 7312011 %5725 %1 5%

X.~a
d=de b, x,+a . b. . x +a b : b b
221%11%17 2112527222 1 ¥ 17211 P *1 " 412 1™y

“22%12%2 "11"1""12“2]
“a1P22%1 1% TPy
Case 1. cl-O and at least one of ¢, ad c3#0.
Plug xz-O into d and factor out X, to get a con-
¢ c
1 - 3 x. 2
stant d_, and plug x, -c;xz if cz#o {ot x, c—;‘l if
c3#0) into d and factor out X, (ot xl) to get a con-
stant d_.
Case 2. ¢;=0 and at least one of ¢, and CZ#O.
Plug xl-O into d and facror out X, to get a con-
2 <, e
stant d_, and plug X "= E—;xz if clﬁo (or X, == E;xl

if CZ#O) into d and factor out %, (or xl) to get a

constant d_.

Case 3. cl-c3-0 and cz#O.

1-0 into d and factor out X,

stant di, and plug xz-o into d and factor out :t;1 to

Plug x to get a com-
3
get a constant d_.

Case 4. ¢, and c3#0.

x
2 4.1[ 2.
Plug x .2°1( € <, Aclcs) inco : and factor out

4 2
X, to get a constant d+, and plug X" 2°1 (-cz-
ch-aclcj) into d and factor out Xy to get a constant
dA.

Jur aext result t’aliovs directly from Theorem 2.
Again V 13 a domain in R“,

Theorem 3. Suppose Ax and Bx are linearly independent
at some point in V. Assume that every integral curve
of Bx which disconnects V(V - {(0,0)} 1f (0,0) is in V)
contains a point where Ax and Bx are linearly dependent
and that d: and df are both nonzero if we are under
case 1, { = 1,..,,4, Then the syatem (2) {s control-
lable on V from any point X, ¢ V such that the vector

space dimension of LA at X, s 2.
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4, Ewamples
We apply Theorems 1, 2 and 3 to the foll
three examples.

Example 1. Let
I% fx x

1 _fo 1)1 + u(t) 1 0
x L ol"z 0-1)Ix

[

x(t) =

= ax(c) +u(t)Bx(t), x(0) = xoellz- {(0,0

The vector fields Ax and Bx are linearly

2
only on the set S defined by xlﬁ-xg =0, {.e.
origin (0,0). Any integral curve of Bx in th
first quadrant disconnects R and does not in
By a statement in the introduction (which fol

2,3

Theorem 1 ), this system {s not controllabl

every x cR?- {(0,0)}, even though the vector

0

mension of LA at each such X is 2.

Example 2. Let
%, (t) [o 1] x \ [1 o]
. 1 1
x(t) = |, - + u(t)
[xz(t)} 10 x2J 0 4

= ax(t) +Bx(t), x(0) = x,cR%~{(0,0)}

0
The set S of points where Ax and Bx are

dependent is given by xl- 2x2 and xl- -sz an

A b - - =
in case 4, We find d+ 24 on X 2x2 and d

on x, = -2x2. Applying Theorem 3 with V equa

negative xl-axis, and the negative xz-au!s are all in-

tegral curves of Bx. The vector field Ax points towards
the first quadrant along the rositive xl-!xil. towards

the second quadrant along the positive xz-axis. towards

owing

the third quadrant along the negative x, -axis, and to-

1
1 wards the fourth quadrant along the negative xz-axis.
2 Thus we are able to move from one.quadrant to the next,
) and our system is controllable on R? -{(0,0)}.
dependent References
at the 1. H. Hermes, Controlled stability, Annali de Matema-
tica pura ed applicata 114(1977), 103-119.
e open
;::se;:oi. 2. L. R. Hunt, Controllability of nonlinear hypersur~
s Ir face systems, submitted.
e from
3. L. R. Hunt, Global controllability of nonlinear
space di-

systems in the phase plane, submitted.
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linearly
d we are
ba2

1 to the

open first quadrant in Rz shows that this quadrant is
controllable for the system. The same is also tr%e for

the second, third, and fourth open quadrants

Since the positive xl-axis and the posit

in R€,

ive Xy

axis are integral curves of Bx, and since Ax points to-
ward the open first quadrant along these two curves and
is zero at the origin, Theorem 1 implies that our sys-
tem is not controllable for RZ2- {(0,0)}. Once we are
in the open first quadrant, it is impossible to leave
ic.

2 Even in this example which is not controllable on
R° - {(0,0)}, our theory and technique give us much in-
sight into the behavior of the system under controls,

Example 3. Let
%, (t) fo -1) x 1o‘x]
. 1 1 1
x(e) = [iz(:)} N ll o] {xz] + “m{o -a][x”

- Ax(t) +u(e)Bx(t), x(0) = x_eR>-{(0,0)}.

Q
The set S where Ax and Bx are linearly dependent

is given by xlt 2x2 and X --2x2. Also the vector

space dimension of LA at each point of Rz- {(0,0)} is
2.

We apply Theorem 3 to the open first quadrant.
Any integral curve of Bx which starts in the first
quadrant intersects the line x = 2x2. Since d+--+60

on x, = 2:2, the first quadrant is controllable from

1
any x4 in it. Similar arguments show that each of the

other three quadrants is also controllable.

The positive x -axis, the positive xz-;xis, the

1
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ABSTRACT

Consider the system
X(6) = £(x(e)) +u()g(x(1)) . x(0) = x €&,

ugere f and g are real-analytic vector fields on
If this is a controllable linear system, then

it is well known the system is stabilizable by

linear feedback. We want to consider a similar
problem for nonlinear systems, with emphasis on
bilinear svstems. Sufficient conditions for the
above system to be controllable have been found,
and implementation for bilinear systems has been
discussed. If a bilinear system is controllable
under these conditions, we show that we can move

from any point x,¢€ R? - {(0,0)} to the origin.

1. INTRODUCTION

If the system
%(6) = E(x() +u(D)g(x(6)), x(0) = xR, (1)

where f and g are real-analytic vector fields on

Rz, is a linear system, then the relationship be-
tween controllability and stabilizability are known
{l14]. For nonlinear systems there are some results
on "controlled stability" ([2]. Recently, theorems
giving sufficient conditions for the system (1) to
be controllable have been proved [9] and imple-
mented in the bilinear case [10].

For the bilinear system
X(2) = Ax(£) + u(O)Bx(E), x(0) = xg €&’ - (0,0}, (2)

where A and B are constant 2 * 2 matrices, we show
that these sufficient conditions for controlla-
bility imply that we can choose controls to drive
from the point X towards the origin along the

solution curves corresponding to these controls.
Since we are presently interested in only qualita-
tive results, we assume that it is possible to move
along the integral curves of the vector field Bx

if necessary.

Two examples are used to illustrate our method.
2. RESULTS

We give the following definitions, where f and
g are the vector fields from system (1).

Let O be an open subset of Rz and let x e 30,

at x if there exists an open neishborhood d W of x

in R2 such that the integral curve of f starting
at x and intersected with % is contained,in

0. Here O denotes the closure of O in R™. In
addition if 30 is C! near x and f(x) is not tan-
gent to 30 at x, then f points in the direction
of 0, or toward 0, at x. If f points toward O
(or 0) for all x¢ 30, then f points in the direc-
tion of 0 (or 0) on 30.

The Lie bracket of the vector fields f and g
is defined by

3 3f
(£,8] = 38 - 553,

where %é and %& denote Jacobian matrices. Other
Lie brackees [£,[f,g}l), [g,[f,g}),... can also be
taken. The Lie algebra generated by f, g, and
successive Lie brackets of f and g is denoted by
L,.

A

In system (2) we set

(A (x) a;; 3,]0x
and
A (x) 2,500 1%,
B, (x)) [bll b, xI]
Bx = I .
By,(x)j  (by by, xZJ

If V is a domain in R2, then the following
results have been proved [9].

Theorem 1. Assume that Ax and Bx are linearly
independent at some point in V. Suppose every
integral curve of Bx which disconnects V(V - {(0,0)}
if (0,0) is in V) contains a point p where Ax and
Bx are linearly dependent and [Ax,Bx] and Bx are
linearly independent. Then the system (2) is

controllable on V from any point xo € V such that

the vector space dimension of LA at X, is 2.
Thus under, the above assumptions we can reach
any point in V(V-{(0,0)} {f (0,0) is in V) from
by choosing a finite number of controls and
fgllowing the solution curves of the corresponding
differential equations.

Let us understand the geometric meaning of
the Lie bracket {Ax,Bx] and the vector field Bx
being linearly independent at p [9]. There 1s an
open neighborhood W of p in V such that the inte-
gral curve of Bx through p divides W into open

connected components wl and Hz and f points
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toward W, at all points in this integral curve on
‘one side of p and toward W, at all points in this
curve on the other side of p. In other words, the
vector field f "turns through” the integral curve
of Bx through p at p.

The set of points where Ax and Bx are linearly
dependeant is the algebraic variety S defined by
f
A0 3 (0)

det | = 0.
Az(x) Bz(x)J

! The intaresting case occurs when we have an alge-
braic variety consisting of two straight lines that
| incarsect at the origin. It is shown that the
bracket [Ax,Bx] and the vector field Bx are lin-
earlv independent on one of these straight lines if
and only if a computable constant (depending on the
line) is nonzero {[10]. However, we do nocr use
those computations here for the sake of brevity.

;
i we want to apply our results on controllabilicy
to prove that we can move from point Xq in Rz to
the origin in Rz.
2. Assume that Ax and 3x are linearly in-

| depencdent at some point in R and that the vector
space dimension of LA 1s 2 ac every point in

1
1
f Theorenm 2I.

RZ - {(0,0)}. Suppose every integral curve of Bx
(or -3x) either approaches the origin or discon-

2
neces R™ and contains a point p in the set
s - {(0,0)} where [Ax,Bx] and Bx are linearly inde-

pendent. For any xosl{z - {(0,0)} we can choose

controls to drive from x. to (0,0) along the solu~
tion curves corresponding to these controls.

) Procof. As mentioned previously, we assume that we
can move along the integral curves of 3x. 1If x is
contained in one of these curves which approach the

yf origin, then we certainly can move along this curve

(either in forward or backward time since we can

concrol Bx) to (0,0). Thus if all integral curves

. of 3x approach the origin we are through. Other-
wise, we have that the algebraic variety $ defined
by

t Al(x) Bl(x)

L det =0

| Az(x) Bz(x)

consists of two scraight lines intersecting at the
origin.

Suppose x, is contained in an integral curve C
0

of Bx which disconnects Rz and intersects the set
of points S. By moving along this integral curve
in forward or backward time, we can reach a point
peS. This curve C divides R2 1nto two open con-
nected components U1 and UZ' one of which, say Ul,

contains the origin. The point p divides C into

two components Cl and CZ' By our geometric inter-

_

pretation of the linear independence of [Ax,Bx]
a%d Bx, there is an open neighborhood W of p in
R such that Ax points toward Ul on Wn C1 and
U, on WncC,.

2 2

Take a line L through the origin and a point

PLE Wf\Cl of slope m. We can reach Py by moving
along the integral curve C (if X is in W ﬂCl,
there {s no need in driving from x, to a point
like pl). We wish to move from 131 to the origin

along the straight line L. We can choose the
slope m so that
i) the line L is not in the set S,

ii) mBl(x) - B,(x) #0onlL.

Condition i) is obvious but condition ii) requires
justification. The set of points defined by
mBl(x) - Bz(x) = 0 is a straight line through the

origin and therefore either intersects L only at
(0,0) or coincides with L. If these two lines
coincide then L is an integral curve of Bx which
intersects C, another integral curve of Bx, trans-
versally at Py @ contradiction.

It remains to take the control u in our sys-
tem (2) to move from pl to (0,0) along L. Thus

= mx. or Az(x)+-u82(x) = mAl(X)

2 1
Solving for u we have

we must have X
+ mual(x).
AZ(X) - mAl(x)

U = e
mBl(x) - Bz(x)

, and mﬁl(x) - Bz(x) # 0 on L.

If we substitute this u into (2) we have

.
Al(x) Bl(x)
- det
LAZ(X) Bz(")
(:'cl mBl(x) - BZ(K)
%, ’Al(x) B, (x)
-mdet
Az(x) Bz(x{
mﬂl(x) -Bz(x)

Since LnS = (0,0) and S is defined by

Al(x) Bl(x)

det =0,
A, (x) B, (x)

this control will push us from p, to (0,0). Hence
we can move from x, toward (0,0) by moving along C
to 124 (1f necessary) and along L from pl to the

origin. Q.E.D.
3. EXAMPLES

It {3 well known that all controllable linear
systems on R are stabilizable by linear feedback
{l4]. Our first example is a coatrollable linear
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system x = Ax + uB In RZ. We use the,ideas of
this paper to move from a point x.eR“{(0,0)} to
the origin along an integral curve of B (if ne-
cessary) and then along a straight line to the
origin, It is interesting that the control u we
choose to move along the straight line is a linear
feedback control.

Example 1.
% 0 1 X 0
- +ul | =Ax+uB, x . eR, - {(0,0)].
. 02
X, 10 Xy 1

The integral curves of B are vertical lines in
the (xl,xz) phase plane., The set § where Ax and

B are linearly dependent is given by Xy " 0.

Since the controllability matrix { B,AR} has rank
2 (this is equivalent to the Lie bracket {Ax,B]
and the vector field B being linearly independent)
our system is controllable. This implies that Ax
turns through an integral curve of B at the point
where B intersects S.

If x, is in the integral curve of B through
(0,0), we simply move alcng this curve to (0,0)
If x, is in the open first quadrant or the posi-
tive x, axis we drive along the integral curve of
B through x, until we reach the open fourth quad-
rant. Then we choose a lire L of slope m and the

A (x) -~ mAl(x)
control u = —“——_1———-—— , where

AI(X) Ol

{
|
Ax = } and B = [ J,
AZ(X)) 1

to approach the origin. Since Az(x) =% and

Al(x) = Xy, U T exy + mx, is simply linear feed-

back.

If x, is the second or fourth quadrants we
simply take such a straight line L and then find
our control u. If x, is in the third quadrant or
in the negative x, axXis we first move to the se-
cond quadrant and then choose our line.

X
2
Ax vef:tors /\'__’ AXx vectors
(D .

L
T\ N
>

integral curves
_——of B

pp—
Our next example is a bilinear system.

Example 2. Let

1 1
- 4+ u
x 1 OJ xz 0 -IOJ Xz

* 0o -1(x 1 o] xl\

« Ax+uBx, x(0) = x, €R%-{(0,0)}.

0
The set S of points where Ax and Bx are de-

pendent is defined by the straight lines X" 2x2

and X = —2x2. The Lie bracket [Ax,Bx] and the

vector field Bx are lipearly independent at all
points in S -{ (0,0)}, and this is a controllable
system [(9]. The vector space dimension of LA at

all points of g% - {(0,0)} is 2. Also the integral
curves of Bx that approach the origin are the pos-
itive and negative xl and %y axes. All other in-

tegral curves of Bx intersect the set S and Theorem
2 applies.

1f X is not contained in the x1 axis or the

x. axis, then we move along an integral curve of
Bx to the 'correct side of S" (if necessary) and
choose our line L of slope m through the origin.

+
Xl mxz

mxl + sz

and with it we can move toward the origin.

In this case our control is given by

The results of this paper for bilinear sys-
tems in two dimensions should generalize to more
complicated systems in higher dimensions. Of
course instead of moving along straight lines we
probably will want to move along certain smooth
surfaces. The development of a theory for higher
dimensional problems has begun [6],{7],[8]. Sev-
eral important papers on nonlinear controllability
{11,0371,0647,{5),[111,{12},[{13] contain results
which may prove useful in this theory.
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Abstract

Consider the nonlinear system

i=1

where M is a connected real-analytic n-dimensional manifold, f,g1,...,g

are real-analytic vector fields on M, and u,,...u , are real-valued controls.

n-1

We are interested in characterizing the largest open subset U of M, if any,
which is reachable from Xo and which we call the region of reachability of
our system from Xo" If the Lie algebra LA generated by f,g],...,gn_] and
successive Lie brackets has vector space dimension n at Xy and if 95975
9,-1 are linearly independent at some point in M, we find the region of
reachability from Xo Suppose U is the smallest open subset of M with xos:U
so that 3U contains the integral manifolds of the Lie algebra L'A generated
by 9qys-e99,1 that intersect it and f assigns vectors on U which point in
the direction of U. Then U is the region of reachability from Xo for our

system. Much of the work is involved in proving a similar result in the more

are linearly

general C” case under the stronger assumption that f,g],...,gn_]

independent on the connected C~ n-dimensional manifold M.
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Abstract

Let M be a connected real-analytic n-dimensional manifold, f,g],...gn_]
be complete real-analytic vector fields on M which are linearly independent
at some point of M, and u;,...,u. , be real-valued controls. Consider the

controllability of the system

. n-1
x(t) = f(x(t)) + 1 u,(t)g;(x(t)), x(0) = xqeM.
i=1

Necessary and sufficient conditions are given so that this system is con-
trollable on any simply connected domain D contained in M on which
9qs---»9,_ 1 Are linearly independent. These conditions depend on the
computation of Lie brackets at those points where f,g1,...,gn_1 are linearly

dependent.
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SUFFICIENT CONDITIONS FOR CONTROLLABILITY
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Abstract

The problem is to find sufficient conditions for the system

3

x(£) = F(x(t)) + (D90 x(0) = xy M
to be controllable. Here M is a connected C* n dimensional manifold,
f,g1,...,gm are complete vector fields C” vector fields on M, and Ups oo eslip
are real-valued controls. Ifm=n-1,M, f, 9ys--+59, 1 Are real-analytic,
M is simply connected, and 915023, q are linearly independent on M, then
necessary and sufficient conditions are known. For the case of our c”
system with general m, we assume that the Lie algebra LA generated by
f, 9ys-e -9y and successive Lie brackets has constant dimension p on M and
the algebra LA generated by 9qs-- 29y and successive Lie brackets has constant
dimension p' < p on M. If p' = p, Chow's Theorem implies controllability for
a p-dimensional submanifold of M containing Xg If p' < p, sufficient
conditions are found involving the computation of certain Lie brackets at
points where the vector field f is tangent to the integral manifolds of LA.
Here we assume that every integral manifold of LA contains such a point. In
many cases it is impossible for every integral manifold of LA to contain a
point where f is tangent to it. Therefore, we illustrate a method which can

yield controllability results if this occurs.
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CONTROLLABILITY AND TRANSVERSALITY

L. R. Hunt




Abstract

Consider the system

u.(t)g.(x(t)), x(0) = Xy € M,

where M is a C” real n-dimensional manifold, f,g], .ees g are ¢” vector ;
fields on M, and Upsenes Up are real-valued controls. For linear systems,

it is known that the controllable systems are dense in the set of all

systems on R". Ifm=1 and our system is nonlinear, this is not true, but

it is shown that the set of systems whose reachable sets contain open

subsets of M is dense in the set of systems. If m > 2, then the systems which

are controllable from any point Xg € M form a dense set, for the proper topol-

ogy, in the set of all such systems. The technique used to prove the last
two statements involves the use of Thom Tranversality Theory.

These results have the obvious effect in applications. In modeling by
a system or in numerically solving a system, it is important to know if slight
variations in a system or approximations of a system by other systems can
radically change the controllability properties of the given system. In the

literature these types of problems are found in the study of structural

stability.
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Summary:

The objective of the research program is the formulation of commutation-

ally efficient algorithms for fault diagnosis in nonlinear electronic circuits.

The resultant algorithm will be implemented in the form of two software

packages: an automatic test program generator (ATPG) which runs in a main-

frame computer and a fault diagnosis system (FDS) which runs in an appropriate

minicomputer based automatic test set. From an algorithmic point of view

the primary factor underlying the design of the fault analysis package is

that the ATPG is used only once for each type of circuit in inventory while

the FDS is used each time a circuit of that type fails. As such, one can

justify a complex and long running ATPG but the FDS must use both computer

time and storage efficiently. The goal of the proposed research program is,

therefore, the formulation of fault diagnosis algorithms which can be run

efficiently in this dual mode environment rather than simply the solution

of the problem.
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A Differential-Interpolative Approach to
Analog Fault Simulation

C.~c. Wu, A. Sangiovani-Vencentelli, and R. Saeks

Abstract

After a half century of neglect by the circuits and systems community the
past decade has witnessed the emergence of a research effort in the analog
circuit maintenance area. The various algorithms which have been thus far
proposed for the analog fault diagnosis problem may naturally be subdivided
into two classes termed "simulation-before-test" and "simulation-after-test".
The former are commonly used in digital system test algorithms and require
an automatic test program generator (ATPG) which simulates the responses of
"all possibie" failures. This is typically done at a maintenance depot with
the simulated responses being recorded and shipped to the field where the
response of the unit under test (UUT) is compared with the simulated responses
to determine the failure. The major advantage of simulation-before-test is
that it is ideally matched to the depot/field maintenance environment with the
largest part of the computation done only once. As such, the technigue is
ideally suited for digital testing where the binary nature of the problem
keeps the number of failures to be simulated within bounds and eliminates
tolerence problems. Unfortunately, in the analog prob]em'we must cope with
a continuum of possible failures and si:n ‘neously deal with good components
which are in tolerance but not nomi+ .. Aa. ‘uch, a tremendous number of simu-
lations are required by a simulation-before-test algorithm, while some type
of decision algorithm is required to cope with the tolerance effects.
The purpose of the present paper is to describe a research effort directed at
alleviating some of the difficulties in developing a simulation-before-test

algorithm for analog fault diagnoéis.
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Fault Diagnosis in Electronic Circuits

R. Saeks and R.-w.Liu

Abstract

The state-of-the-art in analog fault diagnosis is surveyed. The specific
economic criteria which must be met by a viable fault diagnosis algorithm
are discussed and the various fault diagnosis algorithms which have been

proposed are reviewed in the context of these economic constraints.
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Post-Test Fault Simulation with Failure Limitations

C.-c. Wu, K. Nakajima, and R. Saeks

Abstract

Although numerous algorithms have been proposed for fault diagnosis in

analog circuits and systems they may naturally be subdivided into three classes:
j) Simulation-before-test

iji) Simulation-after-test using a sfng1e test vector

iii) Simulation-after-test using multiple test vectors
At the present time none of the three approaches has been shown to yjeld satis-
factory performance. Simulation-before-test requires an extremely costly ATPG
and some type of decision algorithm to compensate for the discretization of
component parameters and tolerance effects. Simulation-after-test using a
single test vector circumvents these problems but requires too many points
while one must solve an extremely complex set of nonlinear equations to im-
plement a simulation-after-test algorithm using multiple test vectors.

Unlike the simulation-before-test algorithms, simulation-after-test al-
gorithms do not expioit any type of fajlure Timitation assﬁmption restricting
the number of simultaneous failures. For instance, if a system contains 100
components, but it is assumed that no more than 3 fail simultaneously, such
an assumption can, at least conceptually, reduce auTOO dimensional problem to
a 3 dimensional problem. The open question is to findAtraFkable methods by which
to exploit such an assumption.

The purpose of the present paper is to describe a new single test vector

simulation-after-test algorithm which exploits a failure limitation assumption
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: to bring the test point requirements into line without significantly in-
creasing its computational complexity. The procedure:
j) is applicable to both linear and nonlinear systems
ii) tests a system up to any specified shop replacable assembly
iii) can be applied to a sub-system in-situe

iv) and is computationally efficient both with respect to ATPG and

on-line requirements.
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A Data Base for Symbolic Network Analysis
C.-C. Wu and R. Saeks

Abstract

Historically, symbolic network analysis has been motivated by the prob-
lems of circuit design and, as such, the emphasis has been placed on
quickly and efficiently obtaining a symbolic transfer function from a
given set of circuit specifications. In an operational or maintenance
environment, however, one is typically given a prescribed nominal circuit
and desires determine the effect of various (possibly large) perturbations
thereon. This is the case in a power system where one is given a fixed
network and desires to determine the effect of proposed modifications thereto.
Alternatively, in the problem of analog circuit fault diagnosis one desires
to simulate the effect of a number of alternative failures to compare the
simulated data with the observed failure data.

In such an operational or maintenance environment numerous perturbations
of the nominal circuit are studied and, as such, significant computational
efficiencies can be obtained if one first generates a data base in terms
of the nominal circuit parameters and then extracts the appropriate symbolic
transfer function from the data base each time a different symbolic transfer
is required. Of course the benefit to be achieved via such an approach is
dependent on the size of the data base and the ease with which a symbolic

transfer function may be retrieved therefrom.
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The obvious manner in which to generate such a data base is to simply
pre-compute the coefficients of all required symbolic transfer functions
and store them in the data base. Retreival from such a data base is, of
course, immediate but the data base may become overly large. Indeed, the
number of transfer functions which must be stored is 0(kP) where k is the
total number of potentially variable circuit parameters and p is the maximum
number of circuit parameters which may vary simultaneously. An alternative
approach is to store the nominal transfer function information and then use
Householder's formula to compute the required symbolic transfer functions.
In such a data base we need only store O(g?) transfer functions where n is
the total number of component output terminals but retreival requires
0(g;+p3) multiplications where p is the actual number of circuit parameters
which vary simultaneously. Since, in practice, n >> p the retreival process
requires approximately O(Q?) multiplications and is dominated by the large
dimensional matrix mulitiplication required by Householder's formula rather
than the low dimensional inverse.

In the present paper we will formulate an alternative data base for
the symbolic transfer functions which also requires O(Q?f entries, but for

which retreival requires only 0(p3) multiplications. Since p is typically

small this is tantamount to immediate retreival.
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Multitest Diagnosibility of Nonlinear Circuits and Systems

A. Sangiovanni-Vencentelli and R. Saeks

Abstract

During the past decade a considerable research effort has been devoted
to the analog fault diagnosis problem wherein one desires to locate faulty
circuit components given the averall circuit response to one or more test
vectors. Conceptually the process may be described by a nonlinear
equation

Yy - f(a,u)

where y represents the measured response to the test vector u given the

faulty parameter vector, . Since us is know and y is a measureable

quantity the fault diagnosis problem may be resolved by simply solving the

above equation for a given u and y. Unfortunately, in practice, the

dimension of y is limited by the number of accessible test points in the ;
circuit and is typically smaller than the dimension of the parameter vector

thereby precluding direct solution of the above equation. To alleviate

this difficulty a set of test vectors; {u].uz, ven ,un}; is employed

yielding the set of simultaneous equations

.Yi = f(a’ui) s i=1,2, .. .M

Since the parameter vector, a, is independent of the choice of test vector

this process effectively increases the number of available equations

without increasing the number of unknowns. More concisely, if we let

y = col(yi) and F (a) = col f( ’ui) the "muiti-test vector" fault diagnosis

problem reduces to the solution of ;

Yy =F (a)
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Needless to say once this equation has been formulated its solution
is amenable to standard algorithms. The problem, however, is to determine
whether or not there exists a set of test vectors {u],uz, . ,um} such that
equation is solvable in an appropriate sense. To this end we will formulate
a diagnosibility criterion directly in terms of the function f which determines
the degree to which the equation y = F(a) will be solvable given an "optimal"
choice of the test vectors. Since this c¢riterion is a property of the
circuit rather than the test algorithm it can therefore be used as a design

aid with which to choose test points and/or to aid in designing "testable

circuits".
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6. Summary:

The objective of the work unit is the formulation and exploitation of a
one dimensional scanning model for the digital image processing problem. For
a system with an n-point raster width the resultant model is periodically
time-varying and is characterized by an n-by-n matrix of rational functions in
one variabie rather than the ciassical two variable image processing model.

The scanning model includes edge effects and distortion phenomena inherent in

the physical scanning process. Moreover, it is amenable to the standard
analytic design technigues which have been developed for multivariate systems.
The major difficulty to be overcome in the approach is that one must work

with large matrices (n is typically a power of two between 64 and 1024).

; Fortunately, these matrices are also quite degenerate and, as such, our main
effort has been directed at the development of techniques for working with
these large but degenerate matrices. If the matrix is degenerate is its in-
verse also degenerate? its spectral factors? etc.?

7. Publications and Activities

A. Refereed Journal Articles

1. Murray, J., "Some Comments on Lumped-Distributed Networks and
Differential-Delay Systems", in Applications of Algebra and
Algebraic Geometry to Linear System Theory, Providence, AMS,
(to appear).

109




Conference Papers and Abstracts

1. Murray, J., "A Design Method for 2-D Recursive Digital Filters",
Proc. of the 13th Asilomar Conf. on Circuits, Systems, and
Computers, Pacific Grove, CA., Nov. 1979, pp. 104-107.

2. Murray, J., "A New Approach to 2-D Digital Filtering”, Proc. of
the 24th Midwest Symp. on Circuits and Systems, Univ. of New
Mexico, Albuquergue, (to appear).

Preprints

1. Murray, J., "A Design Method for Two-Dimensional Recursive Digital
Filters", submitted for publication.

Theses
1. Chen, S~H, M.S. Thesis (in preparation).
Conferences and Symposia

1. Murray, J., 13th Asilomar Conf. on Circuits, Systems, and Computers,
Pacific Grove, CA., Nov. 1979,

2. Murray, J., Workshop on Multidimensional System Theory, Berkeley,
CA., Nov. 1979.
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Abstract

A method is described for the design of two-dimensional half-plane recursive

digital filters,
of second order in the

ily high order in the other direction.

in the form of a cascade connection of filters which are
{principal) direction of recursion, and of arbitrar-

The filters thus derived are shown

to be automatically stable, but yield poor responses in the vicinity of

very wide or very narrow bandwidths.

Some techniques for tackling these

difficulties are discussed, and the results of applying these design proced-

ures are shown.
2. INTRODUCTION

Although several excellent design procedures
for two-dimensional recursive digital filters
are known, the experience of classical one-
dimensional filtering (becth digital and ana-
log) strongly suggests that no one technique
is best for all problems likely to be encount-
ered. In particular, it appears that a design
procedure which sacrifices accuracy or imple-
mentation efficiency to simplicity of design
would be of value. This is especially the
case in some image processing applications,
where the classical design objectives of low
ripple, narrow transition bands, etc., can be
sacrificed to some extent without significant
loss of performance. In a continuation of
some previous wdrk [1]), such a procedure is
presented here. We will assume that the
filter specification is given in the form of
a frequency response to be approximated on the
square {-w%,r]x{-7,n], and that this response
has quadrantal symmetry. The design will be

in the form of a cascade of recursive, sym-

113

metric half-plane filters.

2. SYMMETRIC HALF-PLANE FILTERS
Although the idea of a nonrecursive symmetric
half-plane filter has been known for a con-
siderable length of time [2], and has recent-
ly been used as the basis for a very success-
ful design’'algorithm [3]j, we will confine our-
selves here to recursively implementable sym-
metric half-plane filters. The most general
such filter has a denominator of the form

M N

AlZ,2)) =1+ mzl nZ_Namnz?zg
The price paid for restricting the denominator
in this way is that one can not approximate an
arbitrary magnitude specification using such
denominators alone; one must also use a one-
dimensional "compensating” filter in the zz-
direction.
We further restrict our denominators by re-
quiring that they be products of second-order

factors in zl; thus our "elementary” filters

are of the form




PR

1 .
T .
1+p(ez)zl + q(ez)z1

H(Z,,2,;) = cees. (D)

i9,
where Z_ = e
2
ometric polynomials of order N and have real
coefficients (because of the assumption of
quadrantal symmetry).
For recursive symmetric half-plane filters,
the stability conditions are given by
A(2,.2,) # 0 for [z ]<|,|2,] = 1.

In the second-order case this is equivalent

to (in the notation in (1))

lp(62)1< 1+ qf 2, . ¥ 8yuinnnn. (2)

This is the stability condition with which
we will work.

3. THE DESIGN PROCEDURE
We assume that a frequency specification
h(el.ez) is given; we want to desigﬁ\aa§§able
filter whose denominator is a product of 7
factors of the form (l). (We will actually
take the numerators to be of this form also).
We proceed as follows:

a) For each value of 95, we get a one-

dimensional frequency specification in 9y

haz(el) = h(el, 8,)
b) For each value of 92, we use any of

the design procedures available in one dimen-

sion to design a stable, one-dimensional re-

cursive filter, in the form of a cascade of

second-order sections, to approximate the

specification he (91). A single gection
2

would look like:

, and p(9) and q(6)are trigon

unfortunately, however, it is transcendental
as a function of Z,. Thus the final step in
the design procedure is the following:

d} Approximate r(Gz) and s(ez) by trigono-
metric polynomials, and approximate 9(92) and
q(ez) by frigonometric polynomials in such a
way that the ineéualities (2) continue to
hold. (Since the one-dimensional filters de-
signed in step b) are stable, the transcen-
dental functions p(Gz)and q(ez) obtained in
step b) satisfy the inequalities (2) automat-
ically).

Approximating r(sz) and s(Gz) is easy, since
in these cases the approximation is uncon-
strained. In order to approximate p(az) and
q(az) while preserving stability, we proceed
as follows:

Pick any trigonometric polynomial P(3) of

order N with the following properties:

. i) P 20, Wa

1 ™
ii) 5=f P(o)de =1
-
iii) P(@) is a good approximation to §(9)
(Dirac Delta).

Then the functions

. "

p(8) = %;I P(e-3)p(d) As
and =T

. 1 .7

q(e) = 3=[ P(e~e)q(s) Qo

-r

can be seen to satisfy the inequalities (2)
(by using the properties i) and ii) above,
and the fact that p(@) and q(0) satisfy (2)).

Further, ﬁ(e) and &(e) are trigonometric poly-

nomials of order N, since P(9) is, and by

.

2 . -
L+ r(92)21 * “92’21 property iii), p(e) and q(e) should be good

KDY

H(Z,,8,) = k(8,)

.
.

2
1+ p(92)21 + q(ez)zl approximations to p(8) and q(@), respectively,

¢) If we now ignore the factor k‘ez’ In more familiar terms, this procedure con-

1 : (which goes to form the one-dimensional com- sists of truncating the Fourier series for

pensating filter), what we have is a two- p(e) and q(0) and windowing with the Fourier

dimensional symmetric half-plane filter;:

114coefficients of P(8). The simplest choice of




window function whose Fourier transform satis-
fies i), ii) and i1i) is probably the triangu-

lar window, whose coefficients are given by

'n|
UN(n) = 1 - Ty fn] <« N
0 in} > N.

In this case P(0) is the Fejer kernel.

When the weighting and windowing procedure
was applied in practice (with a triangular
window) the amplitude response of the result-
ing filters was found to deviate enormously
from the desired response at points where the
bandwidth was close to 0 or close to n. This
deviation took the form of immensely under-
damped response. Further analysis showed that
this could be cured by a variation of the a-
bove procedure. This consisted of applying

the truncation and windowing procedure to the

functions
T+qg+p
and /T + q - p

to obtain two trigonometric polynomials a and
8.
The functions p(9) and g(9) are then calculat-

ed from

#
~
o

e
+
m
~
[}
[

p(o)

~
~N

NN
~
[+
|
mw

and é(@) =
It is easy to see that the é and é given by
this procedure are again stable, and as shown
in the next section, they yield quite satis-
factory responses. However, this procedure
does have the disadvantage of doubling the
order of the filter in Z,.

4. EXAMPLES
In order to make the above more concrete, an
example consisting of a 90° fan filter will be
presented. For simplicity, we will design our
one~dimensional filters in 2 y a8 Butterworth

¢i1lters, and will develop only the case of a

second-order Butterworth filter in detail.
(Hicher-order sections are virtually identi-
cal; only a single constant needs to be
changed.)
Our ideal response is given by

1 Jeyl < o,

h(el,ez) =

0o |e le

1‘ > 21

For each fixed Py this gives a one-dimension-
al lowpass filter in el, with cutoff fregquency
equal to[ez} The bilinear transform of a
second-order lowpass Butterworth filter is

2 2
Wc(l+Zl)

5 ‘ > — 5 eeeeee (3)
wc*./iwc+1+2(wc-1)zl+(wc—12wc+1)z1

and in order to make the cutoff frequency of
this filter equal to 85, the usual frequency
warping relationship indicates that we must

take

wo= | tan %%2(........... (4)

Now (3) can be written in the form

N . 2
l+r(w2)zl+s(02)21
2

1

k(Cz)
l*p(02)21+q(62)z
where
2
k(OZ) =
WE+vIW +1
c c
r(@z) = 2
s(ez) = 1
2
o(s,) = 2(WS-1)
——
wc+/7wc+l
W2 /TW_+1
and N < c
q(e,y) = —5——=r
wc+/7wc+l

and wc is given by (4) in all of the above

formulas.
Thus, in order to design a filter which is of
order 2 in zl and order N in zz, it is neces-

sary only to find the first N Fourier
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coefficients of each of the functions

W
Mg = .
Sl /T 41
(o] (o]
and /I+g-p = 2
/wcz»f/fwcﬂ

and to window these coefficients with a tri-
angular window. The polynomials 5(9) and
&(e) may then be easily calculated by use of
the formulas in section 3. The one-dimension-
al compensating filter can be designed using
any standard one-dimensional design procedure.
The amplitude response of a second-order fil-
ter with N=8 is shown in Fig. 1, and that of
an eighth-order filter with N=20 is shown in
Fig. 2. 1In each of these filters, the one-
dimensional compensating filter is a FIR fil-
ter of order N.

S. CONCLUSIONS
A gquick, simple method for designing a class
of two-dimensional recursive digital filters
has been presented. Although the designs
achieved using this method are not optimal,
they are guaranteed to be stable (apart from
possible numerical error), and can vield
respectable results for sufficiently high
orders. The computation time required is
somewhat greater than that required for the
Calculation of (M+1l) (N+1l) Fourier coefficieACS,
where M is the order of the filter in Zy. and

N is the order in zz.
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Abstract

A new approach to two-dimensional digital filtering is presented. It
is based on a periodically time-varying model which accurately refiects
the scanning process inherent in most recursive multidimensional signal
processing. Such models are essentially equivalent to multi-input, multi-
output, one-dimensional time-invariant systems, and therefore permit the
application of classical techniques to design and analysis problems. Two
further advantages of this approach are its flexibility and the fact that

it by-passes the problem of boundary conditions.
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Abstract

A method is described for the design of two-dimensional half-plane
recursive digital filters, in the form of a cascade connection of filters
which are of second order in the {principal) direction of recursion, and
of arbitrarily high order in the other direction. The filters thus derived
are shown to be automatically stable, but yield poor responses in the
vicinity of very wide or very narrow bandwidths. Some techniques for
tackling these difficulties are discussed, and the results of applying

these design procedures are shown.
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Abstract of

A DESIGN METHOD FOR TWO-DIMENSIONAL
RECURSIVE DIGITAL FILTERS
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Abstract

A method for designing two-dimensional, symmetric half-plane recursive
digital filters is presented: a filter is tirst designed as a parameterized
family of one-dimensional filters; a simple approximation is then used to
find a rational, stable two-dimensional filter. Some advantages and

disadvantages of the method are discussed, and several examples are given.
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Abstract
An analytic approach to the similarities and differences between

Tumped-distributed networks and differential-delay systems is presented.

This approach is based on the calculation of the spectrum of a commutative
Banach Algebra of appropriate convolution operators; it is shown that this
calculation naturally involves the two complex variables approach of
lumped-distributed circuit theory, and thus gives a link between this and

the convolution approach. Further, when this spectrum is drawn, it gives
some intuition for the systems in question; for example, it becomes clear
that the passive synthesis problem is two-dimensional, while the stability
problem is one-dimensional, uniess delays of arbitrary length are considered.

It also shows that the analog of the Nyquist criterion in this situation

involves two "winding numbers".
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Texas Tech University Institute for Electronic Science

Joint Services Electronics Program Research Unit: 5

1. Title of Investigation: Detection and Estimation in Imagery

Senior Investigator: Telephone: (806) 742-3500
JSEP Funds: Current $24,650

SN

Other Funds:

5. Total Number of Professionals: PI's 2 (1 mo.) RA's 1 (1/2 time)

6. Scientific Objective:

Although the estimation problem in image processing is conceptually
similar to the estimation problem which arises in a communications context,
in reality the two problems have little in common. In particular, the optical
noise phenomena encountered in image processing are highly nonlinear while
the immense quantity of data associated with an image (typically ranging ﬂ
from 1/4 Megabyte to 16 Megabytes per frame) precludes the use of many
classical detection and estimation algorithms. The purpose of the present
work unit is to develop an alternative class of estimation algorithms designed
to cope with the reality of the image processing problem.

7. Publications and Activities

A. Conference Papers and Abstracts
1. Froehlich, G., Walkup, J., and T.F. Krile, "Some Effects of
Signal-Dependent Noise on Estimator Structures”, 1980 OSA Meeting,
Chicago, Oct. 1980.
B. Preprints

1. Froehlich, G., Walkup, J., and T. Krile, "Estimation in Signal
Dependent Film-Grain Noise", submitted for publication.
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2. Froehlich, G., Walkup, J., and T. Krile, "Multiple Parameter
Estimation in Signal-Dependent Noise" submitted for publication.
€. Theses
1. Froehlich, G., "Estimation in Signal Dependent Noise", Ph.D.
Dissertation, Texas Tech Univ., 1980.
2. Kasturi, R., Ph.D. Thesis, (in preparation).

D. Conferences and Symposia

1.

Walkup, J.F., Krile, T., Froehlich, G., and R. Kasturi, 1980 N
0SA Conf., Chicago, Oct. 1980.

Walkup, J.F., and T.F. Krile, "Gordon REsearch Conf. on
Holography and Optical Information Processing", Ventura, CA.,
June 1980.
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ABSTRACT OF

SOME EFFECTS OF SIGNAL-DEPENDENT NGISE ON ESTIMATOR STRUCTURES

Gary K. Froehlich, John F. Walkup and Thomas F. Krile




Abstract

Optimal estimators are derived for a very general measurement model
which can be made to include (or exclude) a signal-dependent noise term.
The estimators include minimum mean-square error (MMSE), maximum
a posteriond (MAP), and maximum likelihood (ML) estimators. Then, for the
specific case of photographic film-grain noise, the sensitivity of the
estimators' structures to the strength of the signal-dependent noise term
is described. In addition, the performance of each estimator is found by
simulation, and compared with the performance under various mismatched
conditions wherein certain a pricil assumptions about the signal statistics

are violated.
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ABSTRACT OF

ESTIMATION IN SIGNAL-DEPENDENT FILM-GRAIN NOISE

G. Froehlich, J. Walkup and T. Krile




Abstract

Optimal estimators are derived for a signal-dependent film grain noise
model, and the effect of signal-dependence on the estimators' structures
is investigated. Due to the mathematical complexity of these optimal
estimators, various suboptimal estimators are proposed. Computer simulations
are then presented which compare the optimal and suboptimal estimators with
regard to mean-square estimation error, sensitivity to signal-dependence,

and robustness (with respect to the a prioni probability density of signal).
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ABSTRACT OF

MULTIPLE PARAMETER ESTIMATION IN SIGNAL-DEPENDENT NOISE

G. Froehlich, J. Walkup, and 7. Krile




Abstract

A general model incorporating signal-dependence noise is introauced.
Joint maximum a posterioni (MAP) and joint maximum likelihood (ML) estimators
are derived, followed by a discussion of the effects of statistical coupling
between adjacent measurements and nonstationarity on the part of the signal.

An alternate approach, using state-space methods, is also discussed.
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Senior Investigator: Thomas G. Newman Telephone: (806) 742-2571

JSEP Funds: Current $24,650

B~ SR V% B AN

Other Funds: Current $19,983*

5. Total Number of Professionals: PI's 1 (1 mo.) RA's 1 (1/2 time)

6. Summary:

The goal of the program is the formulation of a group theoretic
approach to the pointing and tracking problem. Typically, one is given a
scene containing several objects moving in different directions and at
different velocities; say an airplane, a missile, and a cloud, all in front
of a fixed background. The solution of the pointing and tracking problem
requires that we distinguish between the various objects and simultaneously
track the motion of a prescribed object.

Although the motion of an object as seen in the plane of a camera (radar,
sonor, etc.) can clearly be characterized by a pair of Cartesian coordinates,
this results in an extremely complex equation of motion for the image of a
rigid body which is, in fact, moving with six degrees of freedom in three
space. Rather, we choose to model the motion of the image by a Lie group
(of tr.islations, rotations, magnifications) which results in a greatly

simplified equation of motion.

*ARQO Contract for a study of the numerical problems associated with the
extraction of multiple moving paterms from imagery.
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7. Publications and Activities

A. Conference Papers and Abstracts
1. Newman, T;G., and D.A. Davis, "Lie Theoretic Methods in Video
Tracking”, Proc. of the MICOM Workshop on Imaging Trackers and
Autonomous Acquisition Applications for Missle Guidance, Redstone
Arsenal, Mov. 1979, pp. 166-174 (GACIAC-PR-80-01).
B. Preprints

1. Newman, T.G., "Lie Groups and Lie Algebras in Video Tracking",
submitted for publication.

2. Fredricks, G.A., and T.G. Newman, "Method in Differential Geometry
with Application to Video Tracking", submitted for publication.

3. Fredricks, G.A., "“Canonical Forms for Nondegenerate Second Order
Linear Partial Differential Operators and Equations” submitted
for publication.

C. Theses

1. Zlobec, L. "Pattern Matching by Means of Adaptive Control”,
M.S. Thesis, Texas Tech Univ., May 1980.

2. Demus, D.A., M.S. Thesis, Texas Tech Univ., (in preparation).
A D. Conferences and Symposia

‘ 1. Newman, T.G., Inter. Symp. on I11-Posed Problems: Theory and
| Practice, Univ., of Delaware, Oct. 1979.

2. Newman, T.G., Workshop on Imaging Trackers and Autonomous
Acquisition Applications for Missle Guidance, Redstone Arsenal,
Nov. 1979.
E. Lectures

1. Newman, T.G., "An Inverse Problem Related to Video Tracking",
Univ. of Delaware, Oct. 1979.

.f 2. Newman, T.G., "Application of Lie Theory to Viedo Tracking",
! Invited Address at the Advanced Technology Center, Voight Corp.,
Dec. 1979.
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LIE THEORETIC METHODS IN VIDEO TRACKING

Thomas G. Newman and David A. Demus
Department of Mathematics
Texas Tech University
Lutbock, Texas 79409

ABSTRACT

Consider a 2-dimensional image in which objects are in motion
through trajectories describable by translation (both horizontal and
vertical), rotation, and magnification. The trajectory of such an object
can be completely described by a 4-vector of parameters A(t)=(Ay,An,23,2,)
which determine the velocities with respect to the four possible motions.
If the data at time t and position x in the view plane is written as
F(t,x), then we can show that

4
JF Z

= = A (O)X,F,
Jt i=1 i i

where Xl, X2, X3 and X, are certain (known) differential operators asso-
ciated with the group of motions.

The derivatives appearing above may be evaluated numerically at
various points in a given time slice to produce a system of linear
equations which may be solved for the motion parameters. Evaluation
at points within a meving rigid body leads to a vector of motion param-
eters unique to that particular body. 1In principle, at least, this
technique permits application to tracking as well as segmentation of
images based on relative motion of various objects.

The paper concludes by presenting the results of having implemented
the above method on digitized video images.

INTRODUCTION

A complex three dimensioral scene may contain an arbitrary number
of objects, each cf which is in motion relative to a stationary background.
The trajectories of the various objects may or may not be the same. When
such a scene is projected on a viewing plane (for example, through the use
of a television camera), the various objects appear as moving regions which
vary in time in a complex fashion as a result of their actual trajectories
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in space. Variations due to certain trajcctories, szucth as roration about
a line parallel to the image plane, are not readily predictable. Pre-
viously unseen patches of the surface of an object may be brought into
view for the first time, while others may disappear. In addition, a
near object may pass between the camera and a distant object, occluding
all or part of the latter.

The situation is further complicated in case mobility is provided
at the camera. Motion of the camera results in an opposing change in
the apparent motion of all of the objects in the scene, including back-
ground. In many applications camera mobility is desirable or even
necessary. For instance, in tracking applications the motion of the
camera is required to stabilize a particular portion of the scene within
the viewing field. Although this may in general be impossible, as with
the rotating objects mentioned above, a fair degree of stabilization
with respect to position, size, and orientation can be achieved.

In the following sections we present a model for describing motion
in images which is valid in a large number of practical applications and
which is a reasonable approximation in many others. A novel feature is
that camera moticn and relative motion of objects within a scene are
both descrited within the model.

THEORETICAL MODEL

Let G be a Lie group of transformations on an analytic manifold M.
Suppose G has dimension n while M has dimension m. Let x and y denote
the coordinates of elements f and g in G, respectively, in a patch con-
taining the identity element e of G. Alsoc, let p denote coordinates of
an element u of M in some patch in M. We may then express the coordinates
z of the product h = fg and the coordinates q of the =2lement v = gu,
relative to suitable patches, by means of analytic functions

z = J(x,y) 1)
q = K{y,p) (2)
K and J are vector-valued, having values in n-dimensional space Rn
or C® and m-dimensional space R™® or C®. Hereafter we shall assume that

these underlving spaces are real. We denote the ith component of J by
J4 and the jth component of K by Kj.

In order to define the Lie algebra of G we first introduce real-
valued maps on G by

3J

i
Pij(x) = Wj(x,y) Iy=e’ (3)
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where 1 and j each range from 1 to n. The cross-section Py, which con-
sists of the Py: as 1 ranges from 1 to n, and i is fixed, may be thought

of as a vector Pield in R®, Such a vector field uttaches to & point x

tha vector Px:(x). As such, P*l'P*Z"'--?*n form a basis for the tangent
space at the point x [1,2]. Ia view of the correspondence between elements
f in G and the coordinates in RP, the tangent vectnrs are implicitly
attached to the elements of G.

In terms of the above vector fields we may express the infinitesimal
transformations of G by defining, for each j = 1,2,...,n,

n
3y o= 1

9
P,.(x)v— . (4)
i ij 3xi

1

The differential operators so defined are to be considered as linear
operators on the space of analytic functions or G, or, more generally, on
the space of differentiable functions on G. The Lie algebra of G is simply
the n-dimensional vector space consisting of all linear combinations of
these operators, and will be denoted by L(G) [2].

Now it is a surprising and useful fact that the Lie algebra of G
may be defined in terms of its actions on the manifold M. Analogous to
(3) we define

3K
&

. _a '
o P) 33’3 (y,p) ly=e (%)

for a = 1,2,...,m and j = 1,2,...,n. Finally, as in (4) above we set

m
7 q,, =
a=1 o(J dpa

X! (6)
b

The operators Xj,...,X) span a Lie algebra L'(G) which is also of dimension
n. Note that these operators act on functions defined on the manifold M.

Many interesting relationships may be shown to hold between the two
representations of the Lie algebra of G as given abcve. However, the
following property is of i{immediate interest to our application:

Theorem 1: Let f£: M*R be differentiable and define F: GXM+R, in terms

of coordinates by
F(x,p) = f(K(x,p)). €)]
Then for each j = 1,2,...,n we have

= X'F. 8
ij ij (8)
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Proof: First we shall show that for each j = 1,2,...,n we Lave

XjK = XjK. &)

We rote that from the action of G on M we obtain

K(J(x,y),p) = X(x,K(y,p)) (10)
for all x,y and p in suitable coordinate patches. Application of the
operator

9

dy, 'y=e

to both sides of (10) gives

BK,Q(J(x,y),p)| _ n BJk(x,y) . 3Ka(x,p) )
dvy y=e k=1 ¥y y=e %
Ii BKG(XaP)
P . (x)——— = X,K (x,p)
k=1 K Ixy o
for the left hand side and
Bka(x,K(y,p)) i ? BKS(y,p)' BKa(x:Ez N
%y yre  gap ¥y ¥ Bpg
H m 3K (x,p)
- = '
821 Qg (P55 XK, (x,9)

on the right hand side. From this it follows that XK = XjK as desired.
Now setting q = K(x,p) and performing a computation similar to tha:t above,
we find that

k- 3f(q)
| XjF(x,P) = agl XJKG(X’P) ¢ aqa

and that

‘ T 9£(q)
X!F(x, = XK s :
JFGx,P) azl FaloP) B

The result of the theorem follows immediately from this and our preliminary
result.




Now let us consider a curve t-g(t) in G ratisfying 5(0) = e. In
terms of a ccordinate patch at e, g(t) may be describhed bv a curve x(t)
in R? satisiying x(0) = 0. We shall consider the case in which x(t) is
given as the solutlon of an avolution equation of the form

n
k() = ] A (0P, (x(e)), x(0) = 0, (11)
i=1

where Pxj,...,Px, are cross-sections of the array of functions given by
(3), and the control functions A1(t), ..., A (t) are suitable continuous
functions. The latter are the parameters of motion, and have the char-
acrveristics associated with velocity, thereby providing a basis for the
continuity assumption.

Now let p denote the coordinates of a point u in some coordinate
vatch, For a differentiable map £f: M*R we may define H: R*MR by setting

H(t,p) = f(g(t)u). (12)
We recognize that H(t,p) = F(x(t),p) where F is the extension of f to
G*M as in Theorem 1 above. From the point of view of application, if we

regard f: M+R as an image, then H(t,p) represents the moving image obtained
by translatioa due to the curve g(t). We may now present our main result.

Theorem 2: 1In the context described above we have

3H 2 "
Erlli iﬁl Ai(c)xid. (13)
Proof: We have
- n N
Bty = EEOD L § g 0o, -
j=1 3
7T a 1) (x () ,p)
()P, (x(£)))5—(x(t),p} =
551 qmp 4 31 axj

n n
L Al e

3F
(x())5——(x(t),p) =
1=1 j=1 2 oxy

n
T A, ()X F(x(t),p)-
g=1 L1
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By Theorem 1 we have XiF = x;r. But clearly Xi?(x(t).p) = XiH(c.p), so that

By = T A (OXIECED)
Bt ’p i i ’.D H]

i=1
as dgsired.

We should observe that the results above are presented as local
properties which hold in suitable neighborhoods and appear to be highly
coordinate dependent. As a matter of fact, though we shali not attempt
to prove it here, the underlying vector filelds continue glotally through-
cut both G and M to give corresponding global analogues of these theorems.

The primary importance of Equation (13) lies in the fact that it
gives a linear equation in the control parameters Ay,...,Ap wWith coeffi-
clents that are in principle observable, since the values H(t,p) constitute
the data.

In the next section this result will be applied to the problem of
tracking spatial objects througn the use of two-dimensional projections.

APPLICATIONS TO VIDEO TRACKING

The control system for the Real-Time Videotheodolite (RTV) pernits
four basic motions of the camera {3]. These are azimuth, elevation,
electronic rotation of the view plane, and lens zoom. Whan the effects
of these motions on the viewing plane are scrutinized, we see that they
correspond, respectively, to horizontal translacion, vertical tramslation,
rotation, and magnification - at least to a satisfactcry degree of approx-
imacion. Mcreover, inspection of a number of real images reveals that a
surprisingly large number (but not all) motions of spatial objects, when
projected on the viewing plane, are likewise well approximated by these
four moticns in the plane.

Thus with only a mild apology we restrict our attention in what
follows to the group G generated by horizontal and vertical translations,
rotation, and magnification. The corresponding generators for the Lie
algebra of G are as follows:

Y
A1 T 3 (14a)
]
XZ = 'a—; (14b)
R
3 = My T Ve (18e)
X, = ij + yé— (144d)
4 9% 3y
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In these equations we are usinrg x and v as coordinates in the view plane
M = RxR and have represented the infinitesimal transformzticns as they
act on M.

Let us note that in the theorems of the previous section it was
assumed that the trajectories of all of the points of M were derived
from the same evolution equations. However, for complex scenes we find
that various objects may be present which have di{ferent trajectories,
A little reflection reveals, nevertheless, that the conclusions of Theorem
2 remains valid as long as we avoid the boundaries Letween objects or
regions having different trajectories. In the present context, we may
paraphrase the results of Theorem 2 as follows:

Theorem 3: Let H{t,x,y) be a time varying two dimensional image. Within
the interior of each object in the image which is moving along a G-
trajectory, we have

w
o
It~

)\i(t)xiﬂ, (15)

where Aj,....A; are continuous functions and X1,...,X4 are given in (14).

Upon evaluation of the various derivatives appearing in (15) at
each point of a suitable grid, within a given time slice, we obtain a
system of linear equations which may be solved for the parameters of
moticn, Aj,...,A4. In the example to be presented, a 3 X 3 grid was used.

A sequence of digitized video images showing the launch of a Hawk
missile were obtained from the U.S. Army White Sands Missile Range. The
images were trimmed to 128 x 128 pixels from full frame interlaced video
in which each raster line was sampled 512 times.

Cne of the frames is shown in the upper left of the illustration
below. Of noteworthy interest, we mention the "cold plume' region (lower
left) which can be seen billowing out behind the missiie. Although hardly
éiscernible, the foreground contains scveral buildings and other grouad
cluctter.

By evaluation of Equation (15) at each point of a 3 X 3 neighborheod
of each pixel, nine equations in the four parameters 1j,...,A; wera obtained.
In the upper right frame of the illustration, we see the results of scaling
the horizontal translation component, A; for display. The effect of inage
noise and truncation error is apparent from the rapid transition from
white to black in this view. This component of the velocity profile was
passed through a median filter to obtain the image shown in the lcower
left of the illustration. Finally, in the lower right we see the resuits
of thresholding, about A7 = 0. 1In this image the dark region indicates
points which are at rest relative to the camera (which was apparently
successfully fracking the missile), while the white ri:gions appear to be
moving with respect to the camera.
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It is Interesting to ncte that the cold repfon of the plume tLas
1 been correctly classified with the background, while the hot regior of
3 the plure appears to be moving with the missile.

P
TR
L ade

Figure 1. Processing the launch of a Hawk missile.

Similar results were obtained with other parameters and with other
images. These results are encouraging, although the numerical methods
employed are clearly too susceptible to noise and truncation. Better
computational procedures are being explored, including ona technique
which is based on integration rather than differentiation.

i SUMMARY AND CONCLUSIONS

We have developed a fundamental equation satisfied by moving images
which uses Lie theory to determine the trajectories of various objects
within an image. The theory has been implemented on real data with some
success. While the implementation suffers from the effects of random
noise and truncation errors, the results obtained have shcwn sufficient
success as to be encouraging. We feel that the computations can be
greatly improved by the incorporation of better numerical methods.
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Abstract

Motion of objects in time-varying images can sometimes be described
by the action of a group of transformations on the image plane, regarded
as a manifold. Moreover, the transformation groups occurring in applications
can generally be described analytically in terms of a finite number of
parameters; that is to say, they are Lie groups. In this situation we
show that that data satisfies a linear part.al differential equation in
which the parameters of motion appear as linear coefficients. More or less
standard numerical methods permit these parameters to be determined.

The parameters of motion determined as indicated above may be regarded
as a velocity profile. This profile has the useful property of being
spatially constant for each moving object in the image. In principle,
at least, this permits detection and tracking of various objects having
difverent trajectories.

Following development of the appropriate theory, the paper concludes by
presenting the results of applying the technique to a number of real images

in the form of digitized video.
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Abstract

We present some results concerning the interplay between various
vector fields arising from the action of a Lie group on a smooth manifold.
Although the proofs are elementary, the results are both surprising and
applicable. In the last section we show that the fundamental partial
differential equation in the main theorem is at the mathematical foundation

of video tracking.
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Abstract

The classical canonical forms theorems for second order linear
partial differential operators and equations in two variables are
generalized to n variables for nondegenerate operators. These general-
izations are geometric, involving the Riemann curvature tensor and the
conformal curvature tensor of Weyl and Schouten. A Sylvester Theorem

for symmetric matrices with smooth entries is also proved.




Texas Tech University Institute for Electronic Science

Joint Services Electronics Program Research Unit: 7

1. Title of Investigation: Image Processing System

2. Senior Investigator: John F. Walkup Telephone: (806) 742-3500

w

JSEP Funds: Current $33,025"

4. Other Funds: Current $10,000*

5. Total Number of Professionals: None#
6. Summary:

The purpose of the work unit is to partially fund the purchase of an
image processing system to be used in support of the research associated
with work units 4, 5, and 6. Each of these work units deals with an aspect
of the image processing problem and in each case experimental validation
of the various theoretical investigations is required.

i. Budget: Total funding for the purchase of the image processing
system will be approximately $247,000 derived over the three year contract
using capital equipment funds derived from this work unit, work units 4, 5,
and 6 together with College of Engineering and University matching funds.
We have also negotiated an agreement with the university for financing the
system with the equipment being ordered at the beginning of the contract
period but billed to ONR in three separate federal fiscal years as required

by the contract.

*State of Texas matching funds for this work unit.

#This work unit represents a request for capital equipment funds. Personnel
using the equipment will be supnorted by work units 4,5, and 6.

*In addition to this supplemental, capital equipment funds from regular work

units 4,5, and 6 will be used for the purchase of the image processing
system in the amount of $31,000 for the year.
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ii. Host Computer: We have recently completed the purchasing process

for the host computer for the image processing system and submitted a
purchase order to Digital Equipment Corp. for a "Unibus VAX". This is
essentially a VAX 11/780 CPU with PDP 11/70 peripherals. As such, we
obtain the power and expandability of the VAX CPU at a price close to that
of the PDP 11/70. The VAX CPU will have a 1 1/4 MB of random access memory,
two 28MB disks, and a 1600 bpi tape drive.

iii. Image Display/Array Processor: A Comtal/3M Vision 120 display

system has been ordered. The system includes memory for 3 image displays
and four graphics planes, full arithmetic capability and a high level
firmware operating system as well as interfaces to the VAX 11/780.

jv. Delivery: Both the computer and display are scheduled for
delivery in the late spring or early summer of 1981 and, as such, we expect
to have the system up and operating during the summer of 1981.

7. Publications and Activities:

A. Conferences and Symposia

1. Saeks, R., 1980 ACM Computer Graphics Conference (SIGGRAPH/80),
Seattle, July, 1980.
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Texas Tech University Institute for Electronic Science

Joint Services Llectronics Program Research Unit: 8

1. Title of Irvestigation: Director's Discreticnary Fund

Senior Investigator: R. Saeks Telephone: (806) 742-3528

W

JSEP Funds: Current $19,075
4. Qther Funds:

5. Total Number of Professionals: To be Determined

6. Summary:

During the past year the directors discretionary fund has been used
to complete work on a large scale systems work unit from the 1978/79 JSEP
program {mainly running examples of the theory which was developed previous-
1y and preparing publications), to initiate work on a new approach to
integrated circuit design, and to begin a preliminary investigation of the
potential for parallel processing in system theory.

7. Publications and Activities:

A. Refereed Journal Articles

1. Karmokolias, C., Portnoy, W., and R. Saeks, "Optimal Selection
of IC Fabrication Parameters", Inter. Jour. of Circuit Theory
and its Applications (to appear).

B. Conference Papers and Abstracts

1. Green, B., Saeks, R., and K.S. Chao, "Continuation Algorithms
for the Eigenvalue Problem", Proc. of the 1980 IEEE Inter.
Symp. on Circuits and Systems, Houston, May 1980, p. 775,
(abstract only).

2. lIyer, A., and R. Saeks, "Numerical Implementation of a Continua-
tion Algorithm for the Eigenvalue Problem", 1980 IEEE Inter.
Conf. on Circuits and Computers, Port Chester, Oct. 1980, pp.
437-440.
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C. Preprints

1. Green, B., Saeks, R., Chao, K.S., and A. Iyer, "Continuation
Algorithms for the Eigenvalue Problem", subjitted for publication.

D. Theses

1. Iyer, A., "Numerical Implementation of a Continuation Algorithm
for the Eigenvalue Problem", M.S. Thesis, Texas Tech Univ., 1980.

E. Conferences and Symposia

1. Saeks, R., 1980 IEEE Inter. Symp. on Circuits and Systems,
Houston, May 1980.

2. lyer, A., and R. Saeks, 1980 IEEE Inter. Conf. on Circuits and
Computers, Port Chester, Oct. 1980.
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HUMERICAL [MPLEMENTATION OF A CONTINUATION
ALGORITHM FOR THE EIGENVALUE PROBLEM

A. lyer and R. Saeks
Department of Electrical Engineering
Texas Tech University

Lubbock, Texas 79409

ABSTRACT: An algorithm for the solution of the
eigenvalue problem for a continuous parameterized
family of sparse matrices is presented. A con-
tinuous LU (or LR) algorithm is implemented re-
cursively. The sparsity of the given matrices is
preserved throughout the numerical process.

I. Introduction

In recent years a number of stability tests
for linear systems have been proposed which re-
quire the evaluation of the eigenvalues of a con-
tinuously parameterized family of sparse matrices
for their implementation. Most notably of these
are the multivariate Nyquist test of MacFarlane,
et al.,” the application of the multivariate
Nyquist test in an interconnected systems con-
text,3 and a "root locus like" formulation for
interconnected systems.2** Typically, one employs
a classical eigenvalue package at a sequence of
parameter values, possibly with special software
to exploit the common sparsity pattern of the
various matrices. Alternatively, one can compute
the eigenvalues at an initial parameter value and
“continue the result" by integrating an appropri-
ate differential equation whose trajectors define
the eigenvalue loci of the given family of
matrices. The most common such differential
equation’ for a continuously parameterized family
of matrices, M(r)(=M), takes the form

<—Ee f. >
d, “artivy (1.1)
ar - ey

dM

de; . g r:_ﬁfL;ilfi-;- e (1.2)
dr g;. Ai-lj < ej, j > j

1

dM

a5 - 7 ;g"—:d—?eali £ (1.3)

J=1 (a.-r.)c f.,e. > J

EPTERNLIRE M A

where Ay is the ith eigenvalue of M, e, is the
corresponding eigenvector, Xj is the c&mples con-
Jugate of A;, and f; is the eigenvector of the
matrix M+ associateé with the eigenvalue T; of M*.
Here, all vectors and matrices nat be complex,

< , > denotes the complex {nner product, "*“
denotes the complex conjugate/transpose, and the
set of differential equations 1.1 through 1.3 are
well defined whenever M has distinct eigenvalues.5

. The major difficulty with the above described
continuation algorithm" is that the array of
eigenvectors for a sparse matrix is typically non-

“‘llll.....!!f—f—::- - ' e

sparse.'9 As such, the computational benefits of
working with the sparse matrix M will be lost if
one attempts to integrate equations 1.1 through
1.3. This is mostly readily illustrated by lettimg

S = col(f]) be the n by n matrix whose rows are
defined by the eigenvectors of M*. Then, assuming
that the eigenvectors are properly normalized

S L row(e;) is an n by n matrix whose columns
are the eigenvectors of M, allowing us to trans-
form the simultanecus differential equations 1.1
through 1.3 into a matrix differential equation’
in the form .

1

S = wesMs™!, sMsTl3s (1.9)

T = sus™! (1.5)

where W[ , ] is in an appropriate matrix valued
function of two matrix valued variables (which
defines the coefficients of 1.3) and T is a diag-
onal matrix of eigenvalues. As such, the simuyl-
taneous differential equations 1.1 through 1.3 may
be viewed as a differential equation in the simi-
larity transformation which diagonalizes M. Un-
fortunately, this similarity transformation is
typically non-soarse, even when M is sparse and
therefore fails tu yield a computationally viable
contiruation algcrithm, 10 :

This difficul:zy is alleviated in the present
paper by formulating a continuation algorithm
around similarity transformations which triangu-
larizes, rather than diagonalizes, M. Such simi-
larity transformations preserve the sparseness of
M while the eigenvalues of M are given by the
diagonal entries of the resultant triangular
matrix. In the following section we formulate a
continuation algorithm, which may be viewed as a
continuous LU algorithm.? This algorithm employs
a unit upper triangular matrix to transform M into
a lower triangular form,

In the continuation algorithm, the required
differential equation takes the form of 1.4 where
WL , 1 is the solution of an appropriate
triangular commutant equation

Ytk) =YL TW-WT] (1.6)

Here K = SMS'1, T = SMS". and Y[ 1 is the operator
which zeros out 211 entries on or below the diaga-
nal of a matrix. This solution of the resultant
triangular comutant equation is discussed in
section II1. An analytic expression for the
solution is given which is amenable to a simple
recursive computational procedure which preserves
the sparseness of the given matrices. Several ex-
amples of the continuous LU algorithm are discussed
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in section 1V,

I1. Continuation Algorithm

We are interested in a decomposition of the

form R
T = SMS (2.1)

where 1 (=M(r)) is our given parameterized family
of matrices S (=S(r)) is an approprfate family of
similarity transformations, and T (=T(r)) is lower

triangylar. In this case Y(T] = 0 which together
with the matrix equality

(s71) = -5
-
1

Tgs? (2.2)
yields

sis™! - T = _sms
.

-sn(s“)
= sns7lss™! - ossTlousT) . TW - T

where H = SS”1, Finally, since Y(T] = 0 this re-
duces to the desired triangular commutant equation

(2.3)

Ursis=ly = YrTW - uT3
S = WS

A Continuous LU Algorithm: In the classical
LU {or LR) algorithm for computing the eigenvalues
of a single sparse matrix, a unit upper triangular
similarity transformation, U, which triangularizes
the given, N, via

L= oy (2.4)

is computed. As such, the triangular equation

reduces to
Uty = YELx - xu)

U = Xu (2.5)
where X = UU'] is strictly upper triangular (since

U is strictly upper triangular and U™’ is upper

triangular). Since X is strictly upper triangular
the above triangular commutant equation represents
n{n-1)/2 equations in n{n-1)/2 unknowns which must

be solved to compute X = xcumu™! oo™y and U, of
course, once U is known, any standard numerical in-
tegration technique can be used to compute U(r)

and L(r) = U(r)M(r)U"(r) given appropriate con-
ditions (which may be obtained via the classical
LU algorithm).

ITI. Solution of the Triangular Commutant Equations

The key to the viability of the continuation
algorithm described in the preceeding section is
the existence of an easily computed solution to

the triangular cormutant equation. For this
algorithm we must solve
“to3 = YrLx - w3 (2.5)

for a strictly upper triangular X given D = u™!
and a Tower triangular L = UMU™'. Although no
matrix algebraic solution to 2.5 is apparent, a
recursive algorithm for the solution of 2.5 may be
obtained by expanding the i-j entry on both sides
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of the equality. Since Y[ ] zeros out all entries
on or below the diagonal, it suffices to consider
the case 1 < {1 < j, Upon invoking the fact that

X is strictly upper triangular and L is lower
triangular we then obtain

i n
P55 " L, Lacfks - kZJ Yidtug

-1
= (xi-xj)xij + k§1 L1kxkj

n

T<ic] (3.1)

S R P
ke3-1 ik"kJ
Here we have used the fact that diagonal entries

of L are the eigenvalues of M, i.e., Lij = 5.
Assuming distinct eigenvalues, this equation may
be solved for X;j yielding

n

i ) toij +k=§+l

/(A'l-xj);l:"j

1.1
X Xixtej © kZ] Lik*xsd

(3.2)

The resultant xij is clearly linear and continuous
in Dij' Horeover, the equation can be solved re-

cursively by starting with i = 1 and j = n to
compute X]n. Then X1 n-1 may be computed in terms

of Xyn and the given matrices. This information
is then used to compt ‘e X] n-2° etc. In general,

we may compute xij in terms of L where r < i =i

and s > j. As such, xij’ 1<ic<j, my be com-

puted recursively by increasing i and decreasing

Jj. Of course, since X is strictly upper triangular
xij =0, Jj<i<n (3.3)

vhile the formula of equation 3.2 is readily im-

plemented in a sparse matrix algorithm and pre-

servi. . the sparsity of the given matrices.

THEOREM 1: Let M have distinct eigenvalues and

L = UMU”' be lower trianquiar. Then the tri-
angular comutant equation

Y01 = Yitx - xL3
admits a unique strictly upper triangular

solution which may be computed recursively via
eqiatopms 3.2 amd 3.3. O

Finally, we note that the above triangular
comutant equation is a special case of the gereral
equation

C=AX + XB (3.4)

A}
Because of the triangular nature of our arrays,
however, the above described recursive formula for
the triangular cormutant equation is far simpler
than the various algorithms which have been pro-
posed for the solution of the general equation.
See for instance the paper by Bartels and Stewart?




Iv. Examples :

families of matrices.

To illustrate the numerical accuracy of the
continuation algorithms presented, the LU algo-
rithm was employed to compute the eigenvalues of

and

and

-

A ® i(1+r+/r )

t=1,2, ..., n

EXAMPLE 1:

whose elements

The given matrix M,

M) = Ten(r)T(r)!
where T(r) and (r) are n dimensional matrices

are given by

AU = 0 elsewhere.

‘r' was allowed to vary from 0 to 1. Table }
illustrates the results for various matrix
dimensions. In general, as the dimension of the
matrix increased, the step size decreased.

¥ Tiiﬂ i=1,2,...,n.
3 : .
T 21 i=1.2 n/2 Table 2 compares step sizes. PR was varied
2i 3 cees . from 0 to 0.01 in ) step, 10 steps and 100 steps.
To = The numerical error resulting from these computa-
Tn tions seem to decrease linearly with step size.
Tij = 0 elsewhere.
TABLE)
EIGENVALUES COMPUTED AT R=] FOU EXANPLE 1
ORDER 22 14 10 [] ACTUAL
Srep SIZE€ ¢.00¢ 0.0} 0.0 0.01 YALUES
LTERAT IONS 1000 100 o 100
Ay 2.940442989930 2.99924128)978 2.952493168139 2.999999999651 3.000000000000
1Y 6.003J4A248312 5.9980644538837 5.991798281765 5.999999999302 6 . 000000000000
(% 9.004497671515 $.000000003725 9.00N00N003725 9.0000000013725 9000000000000
' 12.006644267240  11.963118391580  12.11190906973C  11.999999998660  12.000:000000000
Ay 15.007499404500  15.0000000002%  15.000000000290  15.000000000230  15.000GO0000000
iy 18.008997333150  [6.000000067450 18 GOOGUOG0245C  18.000000007450  18. DODO0CID0000
iy 21.010499287510  21.000000015480  21.000000015480 21.000000000000
1y 26.6QIONZB69990 24 052962127460  2).C87992529200 24.000000000000 1
iy 27.013498917220  26.999979998950  26.999999998950 27 000000000000
Lo 10.014998809200  30.000000G00SRO 30, 00000NNO0SE0 10.000000000000
Ay 1).01649R73320Q0  33.000000005700 31. 000000000000
iy 16.017798636270  16.000000014900 36 . 000000000000
i Yy 39.01949863€810 19, 000002022350 39 . o0o000000300
Ay 42.7¢0998975030  42.000000030970 42.000000000000
! Ayg 45.022498482140 45.000000000000
] 1378 47 .3974566558030 48, 000000000000 i
Y] $1.025497915480 $1.000000000060 !
'™ 54.026997834440 4 . 000000000000 !
Ay 57.020497742720 §7 000000000000 i
i iye §0.079997618100 £0. 000000000000
! in 63.031497519700 61. 000000000000
V12 66.012997466390 6000000000000
3 TARLE_2.
STEPSIZE COMPARISON AT 3=0.01 FOR EXAMPLE )
OROER 14 “ 14 ACTUAL
STEP SIIE 0.c10 .00t .0001
JTERATIOMS t 10 1co YALUES
1
! " 1.1099999) 1.10999988 1.1)000000 1. 11000000 i
b 2.22000210 222000098 2.22000108 2.22000000
'y 3 1711000000 333000000 31000000 '
Ay 4.450%39493 4, 440808749 4,44007098 4, 44000000 1
Ay - 58h00000 455000000 555000100 555000000 ;
| IS 4.66000000 §. 66000000 . 66000000 66000000
L iy 1. 77000000 7.77000N00 7.71000000 1.77000000
3 §.86946893 8.87911281 8.8799290) 858000000
1y 9.95000000 9.99000000 ~99000000 999000000
Ao 11. 10000000 11.10000000 11, 10000000 11.10000000
Ay 12.21000000 12.21000000 12. 21000000 12.21000000
A2 13. 12000000 1332000000 13. 32000000 13, 32000000
Ay 14. 43000000 1443000000 14. 43000000 1443000000
. Me 15. 54000000 15. 54000000 15. 54000000 1554000000
: -
,
i
1
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EXAMPLE 2: The matrix M{r) is given by
Mii = 1 i=131,2, ..., n.
H{¢],i =1 §=1,2, ..., n-1.
H?n =r,
“13 = ) elsewhere.

Table 3 compares the results for different
dinension matrices with the eigenvalues calculat-
ed by solving the characteristic eguation of the
matrix at r = 1,

TaBLE £

EI0NALUES (GHPUTED AT Re2.1 FIPF EXAWPLE 2
gaoer g acruAL
TEp S1E 0.91 oL
12ERAT oS 120 .
1 ) 24Fe3s75 1.00893038
a 1 82951692 183901523
i 173929430 Y 27523418
i 3788375 31,7667 340
™ $.93593028 € 0a8essly
) 3 -,
3P S12E 2.9 ACTUAL
1772471008 12 MEs
3 1.0000263932 T .0000 728531
i 1.99999882 1.33530165¢3
i 20007158108 33026048891
A 1.9938344303 3.59863214%4
-y 5.0017435088 5.0017356740
i $.998608¢€449 59356708814
Ay 7.000634521% 7.3%04935¢027
i 79398203076 7.3938016263
. 9.0005225404 90029267850
oangR 18
STEP SIZE 0.91
BRI 100
N 1.60630000001 27242
a 1, 9PE9056068290¢ 35
P 1,0090CE09°0731078
iy 3.9959992367522932
I $.000000C 1 15050053
- 5.9930999770283221
N4 7.0000090144 455057
2 7. 9p989POsCE) ;i B2
. $.0007900344883222
i §.9599999770253607
Ay 110000030011 482214
i 11.5659599795824687
) 13.00000C0001C4381 6
ia 13.9999929900£30409
Ay 12.600009000001 438

V. Contlysion

Although continuation algorithms have histor~
ically proven their usefuiness in the solution of
"smali” numerical probiems the classical differ-
ential equations modeling the various numerical
processes are not compatible with soarse matrix
techniques. The present work coupled with a pre-
vious paper in which a continuation algorithm for
the inversion of sparse matrices is forrwlated,
however, fndicate that the concept can be made
compatible with sparse matrix techniques.®:6
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CONTINUATION ALGORITHMS FOR THE EIGENVALUE'PROBLEM‘

B. Green, R. Saeks and X.-S. Chao
Department of Electrical Engineering
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Abstract

The eigenvalue problem for a continuously parameterized family of sparse matrices, M(r}, often
artses in stability analysis. Typically, one employs a classical eigenvalue package at a sequence of
parameter values, possibly with special software to expolit the common sparsity pattern of the various
matrices. Alternatively, one can compute the eigenvalues at an initial parameter value and "continue
the result” by integrating an appropriate differential equation whose trajectories define the eigen-
value loci of the given family of matrices. The most common such differential equation for this pur-
pose, nawever, employs the eigenvectors as an auxiliary variable which destroys the sparseness of the
prablem since the array of eigenvectors for a sparse matrix is typically non-sparse. As such, the
comoutational benefits of working with the sparse matrix M will be lost if one attempts to integrate
such an equatian,

This difficulty is alleviated in the present paper by formulating continuation algorithms around
a family of similarity transformations, S{r), which triangularize M{r). Such similarity transforma-
tions preserve the sparseness of M while the eigenvalues of M are given by the diagonal entries of the
resultant family of triangular matrices, T(r). We formulate three such continuation algorithms. The
first, which may be viewed as a continuous LU (or LR) algorithm, employs a unit upper triangular
matrix, S to transform M into lower triangular form. The second, which may be viewed as a continuous
QR algorithm, uses a unitary matrix to transform M into lower triangular form. Finally, our third al-
gorithm uses an upper triangular matrix to transform M into Tower Hessenberg form.

In each of the three continuation algorithms the required differential equation takes the form

ds -1

)
a? = W(SFS
1

. sms7ys

T = SMS™
where W4f , 1 is the solution of an appropriate triangulan commutant equation

sgsly = YesmsTw - wsus™T

and YT ] is the operator which zeros out all entries on or below the diagonal of a matrix. In each
case an analytic expression for the solution of the required triangular commutant equation is given .
which is amenable to a simple recursive computational procedure which preserves the sparseness of the
given matrices.

* This research supported in part by the Joint Services Electronics Program at Texas Tech University,
under ONR Contract 76-C-1176.
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Abstract

A procedure is described in which the output characteristics of an
integrated circuit are optimized with respect to a set of variable
fabrication parameters. A simple RC coupied audio amplifier is used as
an example. The gain-bandwidth product is obtained as a function of
oxidation and diffusion times and temperatures, and the optimization is
performed by way of a line search using these variables as the parameters
of the optimization. The values established for the process parameters
are consistent with those employed for conventional fabrication, and desired
changes in performance can be obtained, in general, by a straightforward
readjustment of the values of the process variables. Although limited
by certain assumptions and a relatively primitive circuit, the results

demonstrate the validity of the procedure.
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