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Abstract

This report represents the fourth year of research performed under the

auspices of the Joint Services Electronics Program at Texas Tech University.

The program is concentrated in the "information electronics" area and in-

cludes researchers from both the departments of Electrical Engineering and

Mathematics. Specific work units deal with Feedback System Design, Nonlinear

Control, Nonlinear Fault Analysis, Detection and Estimation in Imagery, Multi-

dimensional System Theory, and Pointing and Tracking.

Each work unit is represented in the report by a summary of the work

performed during the past year, a list of publications and activities in the

area, reprints of a7l papers which have been published during the past year,

and abstracts of pending papers. In addition, the report includes lists of

all grants and contracts administered by JSEP personnel, the department of

Electrical Engineering and the Department of Mathematics; and a list of

all publications prepared by JSEP personnel.



Contents

Significant Accomplishments Report ....................................... 1

1. Feedback System Design, R. Saeks ..................................... 5

Reprint of "Feedback System Design: The Fractional Representation
Approach to Analysis and Synthesis" .... ............................ 7

Reprint of "A Fractional Representation Approach to Adaptive
Control" .......... ................................................. 23

Reprint of "Feedback System Design: The Fractional Representation

Approach to Analysis and Synthesis .... ........................... 27

Abstracts of Pending Publications .................................... 35

2. Nonlinear Control, L.R. Hunt ......................................... 39

Reprint of "Control Theory for Nonlinear Systems in Two Dimensions".. 41

Reprint of "Reachable Sets for Nonlinear Systems in the Phase Plane". 59

Reprint of "Controllability and Stabilizability" ..................... 65

Abstracts of Pending Publications .................................... 71

3. Nonlinear Fault Analysis, R. Saeks ................................... 87

Abst;-acts of Pending Publications .................................... 89

4. Multidimensional System Theory, J. Murray ............................ 109

Reprint of "A Design Method for 2-D Recursive Digital Filters" ..... ill

Abstracts of Pending Publication ..................................... 117

5. Detection and Estimation in Imagery, J. Walkup ....................... 133

Abstracts of Pending Publications .................................... 135

6. Pointing and Tracking, T. Newman ..................................... 147

Reprint of "Lie Theoretic Methods in V4deo Tracking" ................. 149

Abstracts of Pending Publications .................................... 161

7. Image Processing Systems, J.F. Wal ,jp ................................ 173



8. Director's Discretionary Fund, R. Saeks ............................ 175

Reprint of "Numerical Implementation of a Continuation Algorithm
for Eigenvalue Problem" ........ .................................. 177

Reprint of "Continuation Algorithms for the Eigenvalue Problem"....183

Abstracts of Pending Publications .................................. 187

Grants and Contracts Administered by JSEP Personnel ................ 191

Grants and Contracts in Electrical Engineering ..................... 193

Grants and Contracts in Mathematics ................................ 197

Publications by JSEP Personnel ..................................... 199



Significant Accomplishments Report

A. Nonlinear Fault Analysis

During the past year we have made a major change in the direction of

our research in the nonlinear fault analysis area which, we believe, will

open up the way for a whole new approach to the subject. Hitherto, our

research had been directed towards the development of multiple test vector

simulation-after-test algorithms. Although such algorithms work well in the

linear case they require too much on-line computer time to be effective in

the nonlinear case. As such, we have turned our attention toward simulation-

before-test algorithms and single test vector simulation-after-test algorithms

during the past year with considerable success in both areas.

The basic problem with simulation-before-test algorithms is the large

amount of off-line computer time required to generate the fault dictionary

which underlies the technique. Although this is also a problem in digital

testing it is greatly exaggerated in the analog case by the continuous nature

of the failure phenomena, tolerance problems, modeling problems, and the high

cost of analog simulation. As such, we have developed a new differential-

interpolative approach to the simulation-before-test concept which allows one

to locate a failure which lies between the simulated faults and/or failures

which have been perturbed by tolerance effects. This, in turn, allows the

number of entries in the fault dictionary to be reduced with a commensurate

reduction in computer costs.

Our second approach is a single test vector simulation-after-test

algorithm which uses a "restricted number of failures" assumption to reduce

the number of test points employed. Historically, single test vector

1
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simulation-after-test algorithms have always been highly attractive in

that they are simple and easy to use and have minimal on-line and off-line

computational requirements. Unfortunately, the applicability of these

algorithms has been limited by the large number of test points which they

require. By taking advantage of the fact that at most three or four com-

ponents will ever fail simultaneously, however, we have been able to decrease

the test point requirements for the algorithm while retaining its other

positive attributes.

B. Detection and Estimation in Imagery

During the past year we have completed a study of the detection and

estimation problem in imagery. Although the mathematics for such a problem

is similar to that encountered in the more classical communications problem

the problem is greatly complicated by the nonlinear character of the noise

phenomena and the high data rates encountered. In this endeavor we have

developed an optimal estimation theory and compared it with various approximate

and sub-optimal approaches. In particular, it was shown that one could not

approximate the nonlinear noise phenomena by a linear term but one could

develop sub-optimal nonlinear algorithms whose performance approximated that

of the optimal algorithm while achieving a cost reduction. Indeed, from a

practical point of view the sub-optimal algorithms were actually superior to

the optimal algorithms because of their greater robustness to modeling

errors. Moreover, unlike the optimal algorithms they may be implemented in

"real time" at video data rates.

C. Pointing and Tracking

Much of our research in this area during the past year has been devoted

to the development of efficient computer algorithms for the implementation of

2
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our Lie theoretic pointing and tracking theory developed previously.

Specific emphasis has been placed on the development of algorithms which

are insensitive to the noise phenomena encountered in video imagery and

in algorithms which have the potential for real time implementation.

Several of these algorithms have now been experimentally implemented while

we are waiting for the delivery of our image processing system to begin

experimental "real time" implementation of the theory using actual video

tracking data.

3
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6. Summary:

The goal of the work unit is the development of a theory for the

design of general linear feedback systems using ring theoretic techniques.

Thus far we have formulated a complete parameterization for the set of

compensators which stabilize a given plant and/or cause it to track or

reject a prescribed family of inputs. '
3 ,7 This theory has, in turn,

been applied to the problem of designing robust and adaptive control

systems. In particular, we have developed a theory for the simultaneous

stabilization of two distinct plants by a single compensator and we have

laid the foundations for a new theory of adaptive control.
5
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Feedback System Design: The Fractional
Representation Approach to Analysis

and Synthesis
C. A. DESOER, FELLOW, IEEE, RUEY-WEN LIU, JOHN MURRAY, AN RICHARD SAEKS, FELLOW, IEEE

Abs~rc-The problem of designing a feedback system wMt prescribed --------------- I
properties Is attacked vim a fracdoaal representation approach to feedback

sytmanalysandntess. To hlsend welItH denote a rng of u(S v()p
opeators with the prescribed properties mnd model a giveni plant wthe Ucs

rado of two operatrsIn H.bWIn turn, lead to a i-0led toto I

determaine weher or not a feeifteck syems in which that pln k
embedded has the prescribed properties and a complete daaracteritatlon ofI

thome competento which will -place- the feedback systemn In H. This L----------------------------------- J
theory ba formulated axiomaticlly to permit its appication tn a wide Fig.1 i&evrsecnrlsset
variety of system design problem. and Is extremely elementary In nature znl-aaaecnro ytm
requiring no more ta addition, multiplication, subitractio9, and Invrviox
for Its derivation even In the most general settinp. the analysis and synthesis of feedback systems. Here, if

one desires to design a system with prescribed properties

1. INTRODUCT70N the given plant is initially modeled as a quotient of two
operators, each of which has the desired properties. Once

TNTUITIVELY, the linear feedback system design pro- such a model has been specified a similar model may be
Icess may be broken down into three steps: modeling, formulated for the feedback system constructed from that

analysis, and synthesis; each of which may be carried out plant which, in turn, may be used to determine whether or
via a multiplicity of time and frequency domain tech- not the feedback system has the desired properties. More-
niques. In engineering practice, however, the three steps over, the set of compensators which will cause the feed-
are loosely matched to one another. The purpose of the back system to have the prescribed properties may be
present paper is to use fractional representation models to completely characterized in terms of such a model. As

such, by choosing a model for the plant which is matched

Manuscript received April 2, 1979; revised Ocoe 15 99Nae to the design criteria the analysis and synthesis processes
recomtmended by B. Francis. Cbairman of the Linear system Cor- for a feedback system may be greatly simplified.
inittee. Ile work of C. A. Desoer was supported in part by the Joint These ideas are illustrated by the following derivation
Services Electronics Program at the University Of California, Berkeley.
under AFOSR Contract 76-C-0100. The work of L.-w. Liu was sup- of the set of stabilizing compensators for the single variate
ported in pant by ONR Contract 78-C 0444. The work of J. Murray and control system of Fig. 1.
R.Saeks was supported in part by the Joint Services Electronics Pro-

gpram,. Texas Tech University, under ONR Contract 76-C-I 136. We say that a transfer function p(s) is exponentially
C. A. Desoer is with the Department of Elecurical Engineerngs and ntab/c (exp. stable) if p(s) is a proper rational function with

Computer Science, University of California, Berkeley, CA 94720.
R.-W. Liu is with the Depairtment of Electuical Engineering, Univer- poles having negative real parts. Although the plant may

sity of Notre Dame, Notre Dame, IN 46556. naturally be modeled as a quotient of coprime polynomi-
J. Murray and R. Sacks are with the Department of Electrical En-al[6)1]p )-a)/s)ineorltmegalia

gineerlng. Texas Tech University, Lubbock, TX 794M9. &s16,11ps ~~ ~)sneorutmt oli
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stable system we prefer to model p(s) as a quotient of exp. form
stable rational functions

c(s)= x(s) [k(s)u(s) - r(s)d(s)]

p(s)-n()ld(s)-[a(s)lm()][b(s)lm()]-' (1-1) y(s) [k(s);(s)+r(s)n(s)]

where r(s) is strictly Hurwitz polynomial of degree equal - [u(s)- w(s)d(s)] (18)

to the degree of b(s). Moreover, since a(s) and b(s) are [v(s)+ w(s)n(s)]
coprime, the rational functions n(s) and d(s) are coprime where w(s) - r(s)/k(s) ranges over the exp. stable rational
in the sense that there exist exp. stable rational functions functions.
u(s) and v(s) such that A comparison of (1.8) with the class of stabilizing

u(s)n(s) + v(s)d(s) -,1. (1.2) compensators derived by Youla, Bongiorno, and Jabr

[24],125],[29] will reveal that the two results differ only in

Similarly, we assume that our compensator is modeled as that our u(s), v(s), n(s), and d(s) are exp. stable rational

a quotient of exp. stable rational functions, c(s)= functions while theirs are polynomials.2  Unlike their
x(s)/y(s), which are coprime in the above sense. Now, a analytic derivation, however, the above result was ob-
little algebra will reveal that the closed-loop system trans- tained via elementary algebraic operations. Indeed, the

fer function from input u to output y is given by a ratio of only properties of the exp. stable rational functions em-

exp. stable rational functions in the form ployed are their closure under addition and multiplication
together with the fact that the identity is an exp. stable

h,(s)=n(s)[y(s)d(s) +x(s)n(s)]-'x(s). (1.3) rational function, i.e., the exp. stable rational functions
form a ring with identity. As such, if the exp. stable

Moreover, it can be shown' that h.,(s) will be stable if and rational functions of the above derivation were to be
only if replaced by any prescribed ring of single-input single-out-

put systems, (1.8) would yield a complete characterization
[y(s)d(s) + x(s)n(s)] =k(s) (1.4) of the compensators which would "place" the feedback

system in that ring. If one works with a ring of rational
has an exp. stable inverse. Since k(s) is, itself, exp. stable functions with poles in a prescribed region a solution of
this implies that the feedback system will be exp. stable if the pole placement problem is obtained [18], whereas, if
and only if k(s) is nonzero for all Res > 0, including oo. one chooses to work with stable transcendental functions
An exp. stable function with these properties is called a solution to the stabilization problem for distributed
miniphase. As such, the problem of synthesizing an exp. systems is obtained (7],[8] etc. Indeed, with minor modifi-
stable feedback system reduces to the solution of (1.4) for cations the derivation can be extended to noncomnuta-
exp. stable rational functions x(s) and y(s) given exp. tive rings thereby including multivariate and time-varying
stable functions n(s) and d(s) and a miniphase function systems. In each case, a simple solution to a fundamental
k(s). problem of feedback system design is obtained by virtue

By direct substitution one may verify that of choosing a model for the given plant which is matched

to the ultimate goal of the design problem. In particular, if
y*(s)-r(s)n(s) and xh(s) -- r(s)d(s) (1.5) we desire to design a feedback system which lies in a

satisfy the homogeneous equation prescribed ring of operators we model the plant as a
quotient of operators from that ring.

yh(s)d(s)+x'(s)n(s) -0 (1.6) Consistent with the above philosophy the following
section of the paper is devoted to the formulation of an

for all exp. stable rational functions r(s). Moreover, since axiomatic theory of fractional system representation.

n(s) and d(s) are coprime it follows that all exp. stable Here, a given system is modeled as a quotient of two

rational solutions of (1.6) are of this form (15],,18]. On the operators lying in a prescribed ring H. The corresponding

other hand, a particular solution of (1.4) may be obtained feedback system analysis and synthesis problems are then

by multiplying (1.2) by k(s), which yields studied in the succeeding sections. In particular, Section
III is devoted to the problem of determining whether or

yP(s)-k(s)v(s) and xP(s)-k(s)u(s). (1.7) not a feedback system lies in H given that its plant is
represented as a quotient of systems from H while Section

As such, if we let r(s) vary over the set of exp. stable IV is devoted to the problem of characterizing those
rational functions and k(s) vary over the set of miniphase compensators which will "place" the feedback system in
functions we obtain a complete parameterization of the H. The resultant axiomatic theory of feedback system
stabilizing compensators for our feedback system in the design is applicable to multivariate, time-varying, distrib-

iFrom a computational point of view, it is more convenient to repro-
'See the axiomatic derivation of Section III for the details, sent rational functions as ratios of polynomials. a per Youla et al.
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DESOER C1 dl.: FEDBAC K SYSTEM DLSIGN

TABLE!I
ExAmPLEs op ThE Axiomnc SYSTEM(G,.HIU)

G Rhs) R,(s) R(s).. RPM...' Blot i(o)- L.R) BH)

H R(sJ R(a0) Risr" R(on), A. (*a) ] .4*o)- HJ R) h(I)

M # R~sr" M e Risit)' M a k~o.)- m e H.JR)
I R~sJ # 0 (A(to.) S.C. 11A. A-(o,) s.. lit. c.(H)

I MWI) 96 0 1 M(I)IeaR'(44) I fhWsI 4 A(*s) snA 1 -04 1 >0)

ID e R~sJ to K(a.) M 0 RJIJ M#Ro.)-.t. m it A1(o.) Mci_(o4)s.t. M as. RS.
S.L 4A. 1396) # 0 a-'- IM(S)IIR(..) 5at. n(s)OO I MWsI -.4-( 0 -) il mr(jus)II>0 CQHI)

as) COO ran. C0. I M(S)I #0 & IM(,)I V 0 for seC 0  I M(s)I # 0 & mnis outer
for__st_ a; fra C; _________.

Red. 19 31 19 15.13 4,31 6,7.8 12 1115

Rlm) - rational funcions with feel coeficients Rf..) - proper rational functions with real coflcients which are

1.15) = proper rational functions with real coeficiesanC.

X- - n by n mnatrices of elements in R(a.) - proper rational functions with real coefficients which
are analytic in Co. and nonzero at .

A - distbutions of the formolytISAt)here romia" 8(14) - hounded linear operators on a Hilbert Spame H.
integrable function st- oil a 0 for t <&, & as a
sunmable sequence and 0-t. ,t, < ~ CIH) - causal bounded linear operators on a Hilbert space H).

Af a.) - Lapface transforms of istibutions Stuch that gtle tai Celill - cauual boanded linear operators with a bounded innes
is in A for some o,<G. anu aHilbert space H.

_af.) a mnultiplicative subset of .A.fa.) consisting; of elemns CCIH) a cauual boundnd linear operators with acausal bounded
bounded away from zero at. innerse on a Hilbert space H.

0e) - quotients of elements of the form in, where LIII) - esaentially bounded Lehsque measurable functiona
mu A-(*.) and na. A"(o.). definied on 1.

R(s) - polynomials wish real coetficients HJR) - the Hardy Space of essentially bounded Lxbesqse

c'; - complex numbers with real pars greater than or equal to 0. measurable functtons definted on R which han an
analytic extension intoco

uted, and some multidimensional systems and includes elements of H. Note that
the stabilization, pole placement, and feedforward design J l ~ G 23
problems. Several of these applications are illustrated by cf HaG(2)
the examples of Section V. In the final section of the Given the above structure we say that a system g e G
paper a partial generalization of the theory to nonlinear has a right fractional representation ini ( G, H, 1, J) if there
systems is described. This follows the algebraic pattern exist n, E H and d, E- I such that g - n,71. Furthermore,
established in the linear case but is formulated in terms of we say that the pair (n, d,) E H x H is right coprimse if
a left-distributive ring to model the properties of a nonlin- there exist u, and v, in H such that
ear system 1231.in vd 1(24

II. AxomAnc THEORY The right fractional representation n,d' in ({G, H,1,J ) is
said to be right coprime if the pair (n,. d,) is right coprime.

Table I displays several examples of the axiomatic The relationship between our concept of coprimeness
system developed below. Reference to it will help in and the usual common factor criterion for coprimeness
visualizing the breadth and significance of the theory. [28] is given by the following properties.
Additional examples also appear in Section V. Property 1: Let the pair (n., d,) e H x H be right

Let G be a (not necessarily commutative) ring with coprime. Let n, and d, have a common right factor r E H,
identity and let H be a subring of G which includes the i.e., n, - xr, d, -yr for some x, e H and y, E H. Then r
identity. The feedback system and its subsystems will be has a left inverse in H.
represented by operators which are elements of G. The Proof: Substitute the assumed factorizations of n,
compensator will be chosen so that the overall system will and d, into (2.4) and obtain
be represented by an operator in the subring H. n+vd-(u ,o)r-.(25

We define two multiplicative subsets [21,[27] of H, n,+vd (ux+vy)r=.(25

Since H is a ring, ux, + vYr EG H. From (2.5) it follows
I - (h EHjh G) (2.1) that r-L. ux, + vay, is a left-inverse of r. 0

Property 2: Let g - n,' be a right coprime fractional
i.e., I is the set of elements of H which have an inverse in representation of g in (G, H, J,J). Let g -xy,' be a

G; second (not necessarily coprime) right fractional repre-
JiaxhE~h-1H),(2.2) sentation of g in (GHr1,J). Then there exists &n r in H

J-(h H~h'H1, uch that

i.e., J is the subgroup of H consisting of all invertible x, - nr and y, -dr. (2.6)

1-A
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Proof: Given the two factorizations of g, let r- of geG which admit a fractional representation in
d,- y,; hence rEG. Then (GHI,J) will form a subring of G if and only if the Ore

condition' is satisfied while criteria for coprimeness have
-dr (2,7) been formulated in various special cases though no gen-

and, performing calculations in the ring G, we obtain eral theory exists [lJ,141,[26. The standard condition for
the existence of fractional representations which are

x, - gy, - (nd,- ')y, - n,(d, y,) - nr. (2.8) coprime in the sense of (2.4) is that H be a right principal

From (2.7) and (2.8), r is a common right factor of x, and ideal domain.

FrTo show that reH, consider Reference to Table I shows that in applications it is
important to have conditions under which g will be in H

r - d,- (un, + v,d,)d, y,- un,d,- y, + v,, and these conditions should be expressed in terms of its
fractional representation.

- ugy, + oy,- u,x, + vy,E H (2.9) Property 3: Let g - nd,- 1 with n, E H and d, E 1.

a) If d, EJ, then gEH.
where we used the equality g xy," nd,- to derive b) If g - nd,- 1 is a right coprime fractional representa-
(2.9). • tion of g in {G,H,ll), then gEH implies that dEJ.

Although G is, in general, a noncommutative ring, the Proof:
entire theory developed above for right fractional repre- a) We have d, EJ; hence by (2.2), d,-'C H and thus
sentations can be replicated for left fractional representa- n,d,- 1 g E H.
tions. In particular, we say that g E G has a left fractional b) We have g E H. Furthermore, n, - gad, = I d, im-
representation in { G, H, 1,J ) if there exist n, E H and d, E I plies that d, is a right common factor of n, and d,; hence
such that g= d,- nt. Furthermore we say that the pair by Property I, d, has a left inverse in H. But d, I by
(nt, d,) E H x H is left coprime if there exist u, and v t in H assumption, so d,-' exists and is an element of G; thus
such that d,-- d,-LCE H; hence, by (2.2), d, E.

njut+dtv =.m 1. (2.10) Property 3': Let g=d- n, with nEH and dE1.
a) If dEJ, then gEH.

The left fractional representation d,- Int is said to be left b) If g - dj- In, is a left coprime fractional representa-
coprime if the pair (nt, d) is left coprime. With these tion of g in (G,HI,J), then geH implies that dEJ.
definitions the existence of a common left factor for a left Property 4: Let g = n,d - 1n where n,, n1 E H, and d E 1.
fractional representations of g is characterized by the a) If d CJ, then g CH.
following properties. b) Let, in addition, nd-' be a right coprime frac-

Property 1': Let the pair (nt,d,) be left coprime. Let nt  tional representation in (G,H,I,J) and d- n, be a left
and d have a common left factor I in H, i.e., nt - lx, coprime fractional representation in { G,H,I,J }; then gE
d,- l, for some x, E H and yEH. Then 1 has a right H implies that d E J.
inverse E H. Proof..

Property 2': Let g -d,-nt be a left coprime fractional a) By assumption, dGJ; hence d-EH. So g-
representation of g in (G,H,IJ). Let g-y,-x, be a n,d-nC H.
second (not necessarily coprime) left fractional repre- b) Since d -In, is a left copime fractional representa-
sentation of g in (G,H,I,J). Then there exists an I in H tion there exist ut, v, e H such that
such that nu, + dvt - 1, (2.12)

x, -In, and y,".ld. (2.11) thus,

The above properties of a coprime fractional repre- nd -- n,d -'(nju, + dv,) - n td -'nu, + nv, - gu + nvt.
sentation have all been derived under the assumption that (2.13)
such a representation exists. Of course, if G denotes the
rational matrices and H denotes the polynomial matrices Now gC H hence (2.13) gives n,d -e H. By Property 3,
the existence of a coprime representation is implied by n,d-'EH together with the fact that the pair (n,,d) is
classical analysis [16],[191. Indeed, the classical analysis right coprime implies d el. J
readily extends to the case where H is taken to be the exp.
stable rational matrices or the ring of proper rational
matrices with poles in a prescribed region 1181. On the III. ANALYsiS
other hand for multidimensional 1261, distributed 141,[81, To start with consider the feedback system 1, of Fig. 2.
and time-varying systems (111,[151 there is no assurance
that an arbitrary gE G will admit a fractional representa- Suppose that the plant is described by a right coprile
tion nor even that the set of geG which admit such a r , n G,H,I,J). The
representation will be a linear space. Moreover, all g's
which admit a fractional representation may not admnit a 3(G.Hl..) satisfies the Ore condition for right fractional represents-

ticn if. whenevr 8e G admits a left fractional representatIon it also
coprime fractional representation [261. In general, the set admits a right fractional representation and vice versa.

12
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_,.. To describe the feedback system 1: we consider the map
h..:(u,.u,)-*(e,.e2). Simple calculations give

h.[ h,,,, h,, i. (I +pc)-' -p(0 +cp)' ].
Fig. 2. Unity pi neaptive feedback system. h,2& h, c(l+ pc) (IP+)cp)-'

(3.7)

I -t Now let h,.:(u,u2)--(y,y2). Using the summing node
C p-,, equations it is easy to see that

/ . - K(h,, - 1) and h,.- I - Khy. (3.8)

Fig. 3. Feedback system with plant and compensator. where K is the symolectic matrix

closed-loop dynamics of are described by the maps K-[ _- (3.9)

h,,: w-.e; h,,=(l +p)- ,-d,(d,+ n,)-' (3.1) It is well known that in the case of multivariable rational
matrices, one has to consider the four submatrices of h,,

h,.: o-y; h,-=p(l+p)'=n,(d,+n,) - '. (3.2) in (3.8) because examples show that any one of the
submatrices may be unstable while the remaining ones are

Note that stable. (For detailed examples, see 130].) Let us calculate

h I. (3.3) h,..,-(l +pc)- I! -pc(l +pc)-'

We say that 1, is well defined in G, (H, respectively), if -I -p(l +cp)-'c
h,, e G, (H, respectively). - 1 -p[ y-'(yt d, + xtn,)d,-  'c

Note that the pairs (n,, d, + n,) and (d,, d, + n,) are right
coprime; indeed, the right coprimeness of (n,,d,) implies - I - nj(ytd, + xjn,)- tx (3.10)
(2.4), hence

(u, - v,) n, + v,(d, + n,) - 1 (3.4) ,,, - c( 1 +pC) (l+ cp) t c

while - d,(y , + xn,) xI (3.1 l)

(v, - u,)d, + u,(d, + n,) 1. (3.5)

Theorem 1: Consider the feedback system Z,- of Fig. 2. h,,.,-(1 Cp)( +yIxnd, - )-

a) Let p n,d,-' be a fractional representation in =" [y -'(yd, + xtn,)d,-' -
(G,H,I,J) of the elementpE G; then T. is well defined in
G if and only if d, + n,e 1. d,(yid,+x 1n,)'y (3.12)

b) Let p - n,d,-' be a right coprime fractional repre-
sentation in (G, H, I,J) of the element p E G; then 2, is h,, ,--p(1+cp)- , n,(yd,+xtn,) - 'y. (3.13)
well defined in H if and only if d, + n, EJ.

Proof: a) *. h EG and d, E imply We say that X is well defined in G, (H. respectively) if and
only if each entry of h. defined in (3.8) belongs to G, (H,

d,-th=.d,-|(l+p)-;,,d,-td,(d,+n,)-'..(d,+n,)-|eG. respectively).

(3.6) Theorem 2: Consider the feedback system Z of Fig. 3.
Let n,d,-I and y" 1x1 be a right and left fractional repre-

Now d, eICH and n, EH, so d, +n, eH. This together sentations ofp and c in [G,H,I,J).
with (3.6) implies d, + n, E 1. a) If y 1d, + xln, S 1, then I is well defined in G.

a) e-. d,+n, eI implies (d,+n,)-EG; hence h. b) If ytd,+x n,CJ, then 2 is will defined in H.
d,(d, + n,)- IE G. c) If h,, E G, then ytd, + xtn, E I hence if 1 is well

b) Follows from Property 3, together with (3.4) and defined in G, then ytd, + xtn, E I.
(3.5). a d) Assume, in addition, that n,(ytd,)- 1 and (ytd,)- xj

Of course, a similar theorem holds for left factoriza- are right coprime and left coprime fractional representa-
tions. tion, respectively; then h,,., ( H implies that yrd, + xtn, E

We now consider the feedback system 2 of Fig. 3 where J, and hence, if 2 is well defined in H, then yd, + xtn, e J.
the plant p is preceded by a compensator c; p and c Proof. a) and b). If yd,+ xjn, E1, (J, respectively),
belong to G and are specified by their coprime fractional then by the definition (2.1) of 1, [(2.2) of J, respectively],
representation in (G,H,I,J) n,d,-' and y-1x, respec- the formulas (3.10)-(3.13), and the closure of the ring G,
tively. (H, respectively), the conclusion follows.

13
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c) If h,, 2 E G, then so is d,- 1h,,,y - 1 since d, e I and copnme and left coprime respectively, then c is given by
yE I. Now. expression (4.1).

d-'hyl' d,'(1 + cp)' Proof:
-' - d- c-yt Step 1: Choose any kEJ, (hence k-'E H), and

-d,- I(l+yi" Ixin d -')- solve for yj and xEH the equation

d.- yj- (y, + xd-y I- (yid, + xn)y~, + ,,,, - k. (4.3)

(3.14) Observe that if (y,x,) is any solution in H of (4.3), then

hence the fact that h,,2 E G implies that (yld,+ xtn,)-1E k-I(ytd,) + k -(xtn,)-1 (4.4)
G and thus (yld, + xln,) E 1. and

d) First we prove that the pair (n,,yd, + xtn,) is right
coprime. Since (n,,ytd,) is right coprime, there exists a, (yA,)k-'+(xtn,)k - 1, (4.5)
and t, E H such that

hence, (n,,yd,) is right coprime and (yAd,,x,) is left
u,n,+ 6,yid, - 1; (3.15) coprime. Thus, the assumptions of Theorem 2, part d)

hence holds for any solution of (4.3).
Step 2: Obtain all solutions of the homogeneous

(,- 6,x,)n, + t,(y,d, + xn,) - 1 (3.16) equation

and the claim is established. Similarly, we show that yhd, + xkn, = 0. (4.6)
(ytd, + xtn,, x,) is left coprime. Now consider

Since p - n,d,-'= d- 1n1, direct calculation shows that for
h .I = l-n,(ytd,+x n,)-'x,. (3.17) any r EH,

By assumption, h,.,. E H; then the special assumption of y1 A rn, xA - rd, (4.7)
d) and Property 4 imply that ytd, + xtn, E J. This com-
pletes the proof. g are solutions of (4.6).

Note, the special assumptions used in d) to the effect It remains to show that all solutions of (4.6) are of the
that n,(yd,)-' is right coprime and (yd,)~ x is left form (4.7); so we assume that y/h and x,* E H and satisfy
coprime, imply, in some sense, that p and c have no (4.6). Let r xd- I; hence
common factors. More precisely, since J serves as the x r, (4.8)
group of units in our theory these conditions imply that
any common factors of p and c must lie in J. Now using (4.6)

IV. DESIGNi y? = y,d,d,-' = - x~n,d,- - x/'p
IV. DESIGNn =r,.(49

Consistent with our approach of matching the plant - 'n - (4.9)

model to the goal of the given feedback system design Equations (4.8) and (4.9) show that any solution of (4.6)
problem the present section is devoted to the problem of has the form of (4.7); it remains, however, to show that
characterizing the set of compensators which will "place- r r H.
a feedback system in a prescribed ring H given that both xt, - xV _(dvt+nu,)
the plant and compensator are modeled by fractional r- -

representations in (G, H, I,J,). - - xtt- xtdl- 'ntut -- xv + y,"u H. (4.10)
Theorem 3: For the feedback system I of Fig. 3, let the

plantp have a right coprime and a left coprime fractional Step 3: Obtain a particular solution of (4.3). From
representation p-n,d,-' -d-in in { G,H,I,J). Let u, and the right coprimeness condition for (n,,d,),
v, both in H be such that (2.4) holds. Then for any w e H
such that wn + v, 6 I, the compensator kvd, + kun, - k (4.11)

c -(wn,+ -wd,+u,)EG (4.1) hence

results in a feedback system I well defined in H. For such - kc, xf - ku, (4.12)

a compensator, h.. e H 2X2 and Hence any solution of (4.3) is of the form

h. 1 - n,( - "d, + u,) - n,(wn, + ,) (4.2) y n v
d, -d, +u,) d,(wn,+ v,) ( x,--rd, +-ku, for some r H (4.13)

Conversely, if I is well defined in H and if the compensa- and for any such solution (n,,yjd,) is right coprime and
tor c -yi 1xj is such that (n,,ytd,) and (yld,,x,) are right (y d, xt) is left coprime.

.4
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Step 4: Consider the condition Note that there is no guarantee that these fractional
rEHand k GJ such that rn + kv, 1, (4.14) representations are coprime. These representations are,

however, coprime when the compensator is in H. Indeed,

or equivalently, if we set w - k - 'r E H, in that case they satisfy a stronger condition which com-
pletely characterizes those plants which can be placed in

wE H such that wn, + v, E I. (4.15) H by a compensator in H. For an early analogous result,

If (4.15) holds, see [10, pp. 85-87].
Corollary 1: For the feedback system I of Fig. 3 there

c- (wn,+)-(wd+ u,) G (4.16) exists a c in H which places the feedback system in H ifand only if p admits left and right fractional representa-
is a compensator in G which can also be written as [see tions p - d - n - nd,-' such that n, is a right factor of
(4.13)] 1 -d, and n, is a left factor of I -d,

Proof: If the feedback system is placed in H by a c in
c-(rn,+ kv,)-l(-rd,+ku,). (4-17) H it admits the fractional representations of (4.18). By

If we let y, - rn + kv, and x - rd, + ku,, then, by (4.17), calculation [see (3.7))

c -y Ax and, by calculation, we verify that (4.3) holds. h,,,- ch,,.,,- 1 (4.19)

Thus for any such compensator, by Theorem 2, the feed- and
back system Z is well defined in H. h".. - h,,,c - I (4.20)

Step 5: Conversely consider a feedback system
well defined in H with a compensator c -y,- x such that which verifies their coprimeness since c is in H. Moreover,
(n,,yld,) and (yd,,x,) are right coprime and left coprime, upon rearranging the terms in (4.19) and (4.20) the condi-
respectively. By Theorem 2, (4.3) holds for some k EJ, tions of the corollary follow. Conversely, if fractional
hence by the analysis above, c is also given by (4.1) for representations exist which satisfy the conditions of the
some w E H such that wn, + v, E 1. The proof is thus corn- corollary there exists u, in H such that
plete. I un, - d, - 1 (4.21)

The theorem yields a complete parameterization of all
possible controllers which will place a plant in H given the (equivalently p = n,d,- is a right coprime fractional repre-
existence of: sentation with v, = I). Now, by using this right fractional

1) right and left coprime fractional representations of p representation in (4.1) (with any left coprime fractional
and representation) and w - 0 we obtain a compensator c -u,

2) a w in H for which (wn, + v,) is in 1. in H, which places the feedback system in H. U
In the multivariable case where p is a square matrix

whose elements arc proper rational functions it is well V. EXAMPLES
known that p has left and right coprime fractional repre-
sentations [ 19). In order to obtain a proper controller one Example 1: A Single Variate Servomechanism Problem'
has to choose w in (4.1) so that det[w(s)n,(s) + v,(s)]0 at
infinity. Methods for obtaining such a proper stabilizing Here G is the ring of proper rational functions and H iscontroller have been reported in [32] and [33]. Aiterna- subring of functions analytic in Res --I. Consider the
tonlle anver he exsteince f3 su and 33). in ou problem of designing a compensator for the unstabletively, one can verify the existence of such a w in our plant p(s)-(s+ I)/(s 2 -4) which will simultaneouslyalgebraic setting by invoking the fact that n, and d, are place the poles of the feedback system in the region,
right coprime and applying linear algebraic arguments pce -po e the system i track
thereto. Of course, these arguments apply to distributed Re(s)< - 1, and cause the system to asymptotically track
systems as well as lumped systems using the formulation a step input. Since our transfer functions are commutative
of (7] and [8]. we may adopt common right and left fractional repre-of (7 and[8].tation for p(s). In particular,

In the most general ring theoretic setting neither right sen
nor left coprime fractional representations of p, nor a w [[ (s-2)
such that (wn + v,) is in I, are assured to exist. At present, p(s) 4) 2  n(s)d(s)

the only known counterexample to the latter is, however, [ 2.1)
in the ring of integers which is of no system theoretic
interest, while

Conditions I) and 2) have been conjectured to be both 16 (s + 1)+ [ (s+2/3)(s J -2)]
necessary and sufficient conditions for the existence of a (+2), '+2 +
compensator, c, which places the feedback system in H
[3]. In fact, if c places the feedback system in H, then -u(s)n(s) + v(s)d(s)- . (5.2)
from (3.7) we obtain left and right fractional representa-
tions

'The purpose of this example is merely to give a simple illustratio of
P'(-h"")(h I')- -' IS) the theory. In this situation, a much more hily developed theoer is-h . , h,.,). (4.1 available in [29).15 1
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Here, each of the four rational functions, n(s), d(s), u(s), Since the previous compensator design was achieved
and v(s). lie in the ring of operators with poles in the with an especially simple w(s) let us add an additional
region Re(s)< -1 and hence the set of all compensators constraint to the problem by requiring that h,,(s) have
which will place the feedback system in this ring is given zeros at ±j (so that the system will be insensitive to a
by Theorem 3 with w(s) also in the ring. Moreover, for an noise source at that frequency). Now, from (5.4) it follows
arbitrary w(s) the input-output mapping for the resultant that the above design is the only compensator which will
feedback system will take the form make h,,,(0)- I with a constant w(s); hence to satisfy this

additional design constraint we will work with the first
[(3+ 1)(s-) [() 16(s+l) 1 order w() in the form

k O) -I (s +s2)3 I~ ) 1 3(s +2)21WS s 57
- - n(s)d(s)w(s) + n(s)u(s). (5.3) ,(s) - -s+3 (5.7)

By the final value theorem the feedback system will Here, by specifying the zeroth-order coefficients of w(s)
asymptotically track a step input if and only if hy,,(O)- I we assure that w(O)= -4/3 while we are left with the
(equivalently c(s) has a pole at zero). As such, to simulta- parameters a and b to create the required zeros. Of course,
neously place the poles of the feedback system in the to achieve our stability condition we must have -3/b<
region, Re(s)< - 1, and cause the feedback system to - 1. Substituting the w(s) of (5.7) into (5.3) yields
asymptotically track a step input we must find a w(s) with (s + 1) [ ( 6b - 3a)s2 + (60 + 6a + 32b)s + 72]
poles in this region such that hy,,,(O)- 1. Evaluating (5.3) ,,(s)
at s - 0 and setting it equal to one yields 3(s + 2)'(bs +3)

01(0)I w(o) + 4 (5.8)

) - S-1, (5.4) To obtain the desired zeros at s - _j the equation
implying that w(0)--4/3. As such, the simplest w(s) [(16b-3a)s2 +(60+6a+32b)s+72]=k[s,+i]
which will achieve our simultaneous goals is the constant
w(s)- -4/3 whose poles are trivially in the prescribed (5.9)
region. Adopting this w(s), a little algebra with the expres- must be satisfied. Now, this represents three linear equa-
sions of Theorem 3 will reveal that the required corn- tions in three unknowns and has the unique solution
pensator takes the form

21
c(s)- (20s+24)(s+2) (5.5) a- - 17, b- 16, and k-72. (5.10)

(3s+4)s

Moreover, -3/b--16/7<-i; hence this choice of
while the input-output mapping for the feedback system w(s) will also assure the prescribed degree of stabilization.
takes the form As such, we take

(s+ 1)(20s+24) ()-(17s+4) -(272s+64)3(sl +2) (21s/16+3) (21s+4 8 )'" 3(s+2) 3

Clearly, c(s) has the required pole at zero (for h,,,(O) - 1), which yields
although it is by no means obvious that this quasi-stable 128(s + 2)($2 + 1)
compensator will transfer the unstable poles of p(s) to the c(s) - (72 S6s -60)s

prescribed region. Indeed, this illustrates the underlying

power of the proposed design technique in that when one and
designs the system in terms of w(s) rather than c(s) the
pole placement or stabilization process is automatically h,,(s)- 384(s+ 1)(s 2 +) (5.13)
resolved by working with a w(s) whose poles lie in the (s+2)3 (21s+48)
prescribed region while the remainder of the design pro-
cess is simplified by the affine relationship between w(s) satisfying all of our design criteria.
and the matrices h. and I.. Finally, we note that c(s) has Exanple 2: A Multivariate Lumped-Distributed
a zero at s - - 2 which may cancel with the pole of p(s) at Eample Probld
s- -2. This, however, does not contradict the coprime- Decoupling Problem
ness assumptions of Theorem 3 since the common factors Consider the multivariate, lumped-distributed plant
involved lie in J which serves as the group of units in our
theory. Fortunately, such common factors can never lead f e -1 ' (s- 1
to an erroneous design since by assumption the poles and I - -I

zeros of the rational functions in J lie in the prescribed p(s)- (s+ 1) (s+ I) (5.14)
region. As such, any cancellations which may take place 0 (s- 1)
are benign. 16 L J
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which we desire to stabilize and simultaneously decouple Upon substitution of these matrices into the expression
by feedback. For most lumped-distributed systems one for h,,.,(s) from Theorem 3 one obtains
can take H to be a ring of matrices whose elements lie in
the algebra i_ (o0 ) of stable transfer functions generated [e - ' (s-)2 1 )
by lumped elements and delays while G is a ring of (s+l) (s+1)2 l(s) W12)

matrices whose elements lie in 6(a0), the algebra of hy,.,(s)-
quotients of elements in &_(o), as per Table 1. In our 0 W I (S) W220)
case, however, although e- I ' is L2-stable (since it is (s '(
analytic on the right half-plane and bounded on the )2

2 1
imaginary axis [101) it has a "nasty" singularity at s-0 l 0 0 2(s-

and hence does not lie in &(ao) for any 00(0. As such, we (S+ I (5.19)
take H to be a ring of 2x 2 matrices whose elements are • 25]
transfer functions lying in the Hardy space H.(R) of 0 (s-+ -1) 0 + 1)
functions which are (essentially) bounded on the jw axis J J
and admit an analytic extension into the right half-plane which will be stable if and only if the we(s) are stable.
(thereby making them L2-stable) [12]. Similarly, we let G Now, to decouple the system we require that
be a ring of 2X2 matrices whose entries are transfer
functions lying in the Lebesgue space LJ(R) [121. With 12 (s- l)e'/" w, 2(s)
this setup I becomes the set of H,, functions which are , ( (s)

uniformly bounded below on the jw axis while J is the set ( +

of H. functions whose analytic extension is uniformly (s- ) + 2(s- 0 (5.20)
bounded below in the right half-plane [12]. Equivalently, J + ( 1)3 2 (s-1)2

is the set of invertible outer functions in H.(R) [121.
Using these spaces a little algebra will reveal that p(s) and

has the right and left coprime fractional representations in
(G,H,I,J) shown below: -(s) - w10(s)O. (5.21)

I/, (s_ 1)2 Clearly, w21(s)-O solves (5.21). On the other hand (5.20)I) (s + ) (s2+ 1 0 has numerous solutions none of which are, however, sta-AS) - (- J) ble. As such, the system cannot be decoupled and stabi-
0 0 lized simultaneously. Note, since our theory guarantees
(s+ I) 0 (s+ 1) that all stable feedback systems with plant p(s) take the

- n(s)d(s)' (5.15) form of (5.19) if we cannot find stable w's which decouple

(5.19) we are assured that it is inpossible to simultaneously- eI/, (s-l) stabilize and decouple p(s) by feedback (using a cora-
0 pensator as specified in Theorem 3) and we need not

p(s) - ] s-+l) (s-+l consider other formulations.0~) (s-1) 01 Since we cannot simultaneously stablize and decouple
(s+l) 0 (s+l) p(s) by feedback the best we can do is to try to stabilize

p(r) while preserving its triangularity (which will allow us
- d(s)-'n,(s) (5.16) to sequentially adjust its various outputs). Formally, this

can be achieved by taking w(s) O which yields the in-
where put-output mapping

0 (s 1i 1[ 01 0 (S+1)2

(S+0 + hl,,( )- (5.22)0 2

0 2 0 ]0 (-'][0 (3:)1J 0 (s+) J+

Unfortunately, the first input has been rendered useless
-u,(a)n,(s)+ v,(s)d,(s)-1 (5.17) by this compensator and hence the goal of being able to

and sequentially tune the outputs is not achieved. On the other

0 0+ 1 0 11 -2(s- )

+ s l) I)(. +s 1) -SI +,31 ,(s).u(s) + d,(s), ,(s) -1. (5.18)
I 2 (s-I)

(s+l) J (+)

17



IEEE TLANSACfnONS ON ALrOMAnC CON',TROL. VOL. AC-25. No. 3. ,uwi 1980

hand, if we'take As such, the set of all possible FIR transfer functions
which can be obtained from p(zz2) by feedback takes

S0 (5.23) the form
"(", 3 Z2_ 2

then h , + 2 + z,zl +3z, +3z,

1)21 W(ZZ2)_ [z+z2 ] (5.28)e-i1/, 2(s - 3) "w,'l - "3

h,,(s) (s+ 1) (s+ 1)2 (5.24) where w(z,,z,) is an arbitrary polynomial in two variables.
0 2 Clearly, w(z,,z2) should be low order to keep the "point-

(s+ 1) J spread function" of hY.,,(z,,z 2) as concentrated as possi-
ble. Indeed, if we take w(z,,z2)=O we obtain

which has the desired property is obtained. In particular,
one can tune the second input to control the second h (zz 2)= z (5.29)
output and then adjust the first input to simultaneously

cancel out the effects of the second input on the first in which the response from a given pixel effects only two
output and control the first output. Of course, since w(s) adjacent pixels. Note that the fact that these pixels are not
is stable so is k,,(s). centered around the input point does not cause any diffi-

Finally, we note that as we have formulated our theory culty since one can always shift the origin of the raster to
one can deal only with square matrices (since rectangular compensate. Taking this w(z,,z,) we obtain the simple
matrices are not closed under multiplication). The exten- compensator c(z,, 2.) = - z, which represents a one direc-
sion to rectangular matrices is, however, straightforward tional shift and a 1800 phase shift.
[191 and yields an identical theory the details of which are An alternative design which also yields a "point-spread
left to the reader, function" which affects only two pixels, although it is

shifted further from the origin, is obtained with w(z 1,z)-
Example 3: A Multidimensional Image Restoration Problem -(I/9)zl. This yields

Let ,+ Z2  (h (z,,Z2)- 9 1 + 2 z 2] (5.30)
4+,, z,~ + 2 (5.25)

1 + z :2 + 3 and
denote the discrete two-dimensional transfer function for 2(Z' + Z)
a device in a digital image processing system. Since this c(zlZ 2 ) zziz 2  (5.31)
represents an IIR (infinite impulse response) transfer I +2+3

function the image processing device will tend to "smear" Since two-thirds of the output energy in this design is
the image with the data observed at any one pixel distort- concentrated at a single point whereas the energy is equ-
ing all other pixels at the output of the device. In an effort ally divided in the previous design it may be argued that
to reduce this "smearing" effect we would like to place the this represents a superior design. On the other hand, the
device in a feedback system whose input-output transfer shift from the origin is greater and the compensator more
function minimizes the "smearing" effect. In particular, complex in this case. Finally, since all FIR transfer func-
that means that the input-output mapping for the feed- tions are stable (in an appropriate sense) the feedback
back system should have an FIR (finite impulse response) systems obtained via either choice of w(z,,2z) are stable.
transfer function with its "point-spread function" con- Moreover, both compensators are, themselves, stable as is
centrated about a single point as closely as possible.

Since the FIR transfer functions are just the polynomi- p(z1 ,z,) [6].
als we let H be the ring of polynomials in two variables Example 4: A Time- Varying Differential-Delay
and G be the ring of rational functions in two variables Stochastic Optimal Control Problem
[161. Once again employing only a single fractional repre-
sentation since these rings are commutative we obtain the Consider the feedback system of Fig. 4 where the plant
coprime fractional representation represents a cascade of a time-varying function f with an

+ + 3 - ideal predictor e'. The system is driven by a stochastic
process a, which is derived from white noise by passing it

-n(z 1 ,Z2)d(z,z 2)-' (5.26) through a miniphase filter with transfer function (s + 2)/(s

where + i). We desire to choose a compensator which will
stabilize the system and minimize the performance

-!51 .+2]+r1[ 2 2+ ,2+31 measure
3 3 J- EIll 112 + Elldll2  (5.32)

" u(z 1 l, 2 )n(z 1 |,z 2 ) + v (z~t,)d(z1 ,z,) l 1i under the constraint of stability. Here, d is the stochastic
(5.27) process observed at the output of the system, b is the
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b It is significant to note that even though we are inter-
ested in designing an optimal closed-loop system by mini-
mizing over the operator w rather than the compensator
we have transformed the problem into the open-loop

Fig. 4. Stochastic control system. optimization problem of Fig. 5.
Here we desire to minimize J- Ellel 2 over all causal

operators w, where g,, g2, and g3 are arbitrarily specified
.3 bounded operators. In our case we take

1-Ie -'] [f-'] (5.38)

g2 - - - (5.39)

Fig. 5. Open-loop optimization problem. 92'

and

stochastic process observed at the plant input, and E is
the expected value operator. (5.40)

Since we have a time-varying component, a rational [ - ... s. 1
component, and a delay component we formulate our
theory in an abstract operator theoretic setting [20] with G
taken to be the bounded operators on the Hilbert space in which case the output of the open-loop system is
L2(R) and H taken to be the causal bounded operators e (d,b) in the product space constructed from two copies

(which correspond to the stable systems in such a setting) of the (Hilbert) space on which the given system is de-

[20],[23]. Note, in this setting we will denote the time-in- fined. Now, if we take the a in our open-loop problem to
variant operators by their transfer function and the time- coincide with the given a in the closed-loop optimization

varying multiplication operators by their characteristic problem then the Pythogorean law (in Hilbert space)
function. Of course, one must be careful with such nota- implies that
tion since the operational calculus associated with the JElleII 2 ElldII 2 +ellbI1 2  (5.41)
time-invariant components is only partially valid in such a
setting. As such, our two optimization problems coincide.

Since the inverse of a predictor is the ideal delay which Interestingly, an explicit solution has recently been
is causal one immediately obtains the right and left given for the above open-loop optimization problem [9].
coprime fractional representations for p in the form Indeed, the optimal causal w is given by

p- [f][e-')-'- [e-!f- - n..,-'- d,-',,(.
w0X- *9g*gQ -~e']CP'' (5.42)

(5.33)
where where X and 0 are causal, causally invertible operators

(53)such that[(-']f]+[][e']=u,,+v,.-I (5.34)suhta

and 9X=gg3  00* =g 1 Q.g . (5.43)

I][ I]+[e-yf-'] [0]nu,+d v,- l. (5.35) Q. is the covariance for the stochastic processes a,[ kc
denotes the causal part of an operator, and "*" denotes

Here, we have assumed that f - exists and is bounded the adjoint operator. To apply this general theory to our
(i.e., f is bounded away from zero) while f and f -' are example we represent the adjoint operation when applied
both causal since multiplication by a function of time is a to a transfer function by g(s)*- g(- s) which coincides
memoryless operation 120]. From Theorem 3 it now with the classical adjoint on the jw axis. Of course, the
follows that the input-output and input-plant input map- memoryless multiplication operators, [f] and [f-I'], are
pings for our feedback system with compensator defined self adjoint. Finally, since a is the stochastic process
by a causal operator w will take the form generated from white noise by passing it through the filter

W[,- -I] w[e-'][f'] + l (5.36) (s + 2)/(s + 1)

and_ ~1 (s+l) J[(5+l) j _ (s-9-l)(s-)and 0_5 -[37)"J ( + ) ]( + 2) J] (S + 1)(3 - 2). (5.44)

First, we calculate A and 0 via
As such, our optimization problem reduces to choosing
the causal w which minimizes the performance measure of A+ (5.45)
1 5 17) whorl. .= h '7 2"d Am, 1 19 "
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and Taking the inverse Laplace transform we obtain the im-
(S+2)(s_2)[ pulse response of this system in the form

Sl[ell g(t)-6(t+l)+ P U(t+l) (5.51)

,rrlrj(s +2)(.s- 2) Iriwhere 8 is the Dirac delta function and UI is the unit step
(s+ 1)(,-j1) ][fZf] function. Now, the causal part of g(i) is obtained by

. [f_] (s+2)(s-2) setting g(t) to zero for i less than zero; hence

(4 (S+1([ g(t)]C-g(t) U(t) -t4+') U(t) I e -'U(t) (5.52)

Here f.()-fAt- 1) and we have used the properties of
the delay and predictor to obtain the equalities (e-'](f -') or equivalently

"/-['e -' and [f -'e']-fe'][f-I]. Of course, the ex- I
ponential transfer functions commute with the rational [g(s)]C=" e(s+ 1) (5.53)
transfer functions allowing the cancellation of the ex-
ponential terms in (5.46). From (5.45) and (5.46) one may Multiplying through by the memoryless factor from (5.49)
now readily obtain the required causal, causally invertible we then obtain
A and # operators in the form

and A '- A '- =  1  (5.47) [( .5)ViT(5.54)

while and finally
0[- ][ 2 ]( s + 1) ]' 1*9_ (-2) ] [If - l ' (si 0of- 

-  _' Q3 g  O c -

e- [= and " [--' (J- 2) 1 2 -+1

(5.48) [ ](+ ]
The next step in evaluating (5.42) is to compute the e s )L

term in the bracket, i.e., - I-,] (5.55)
e~f (s +2)

> _9*-gQ.g[ O' -* which is surprisingly simple given the complexity of the

derivation.
I [ -e ] Substituting the expression of (5.55) into the formula of

V7+ -  e Theorem 3 now yields an expression for our optimal
compensator and the input-output mapping for the re-

(s + 2)(s- 2)[-]e._ (s-2) sultant feedback system in the form
Ic - e[ f.- (s + 2) - 1 (5.56)

I- I ,',[ (s+2)(s-2) ] and

V [(,+-1)(s-) J-S + 1. (5.57)

(-I l) e(s+2)
(s-2) Note that hy.., is stable, as required, even though both p

f -I] f2+'i (s+ ) ell (5.49) and c are unstable.

VI. NoNtwnEA FEEDBACK SYSTEMS

whose causal part must now be computed. Recalling that From an algebraic point of view the fundamental dif-
the memoryless term factors through the causal part ference between linear and nonlinear systems is the fact
bracket [91 it suffices to compute the causal part of the that nonlinear systems fail to satisfy the right-distributive
time-invariant system with transfer function property, x(y + z) - xy + xz. They do, however, satisfy all

of the other axioms for a ring with identity including the
g(s)" (j+2 e. (5.50) left-distributive property (y + z)x -yx + zx. As such, one

can attempt to extend the preceding development to non-
20
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hnear systems by carr-ing it out in left-distributive rings, plies to essentially any class of linear systems and by
G and H [23]. Indeed, if we define a right coprime proper choice of the rings G and H the results are applica-
fractional representation for a system g in a left-distribu- ble to a variety of systems problems.
tive nng G relative to { G. H,1,J) precisely as we did in Although we believe that the present work represents
Section II the fundamental properties I. 2, and 3 go the first attempt at the formulation of an axiomatic frac-
through without modification. tional representation theory for systems which may be

Property IN: Let g - n,d,- ' be a right coprime frac- matched to the feedback system analysis and synthesis
tional representation of g in {G,H,IJ) where G and H problems of interest the work owes much to a number of
are left-distributive rings with identity. Let n, and d, have recent results on the input-output theory of linear sys-
a common right factor rEH, i.e., n,=x,r, d,-yr for tems. The use of a fractional representation theory for
some x, E H andy, E H. Then r has a left inverse in H. multivariate systems, though implicit in a number of

Property 2N: Let g-= nd,-' be a right coprime frac- classical results, was popularized by Rosenbrock's poly-
tional representation of g in {G,H,I,J) where G and H nomial matrix fractions [19]. Interestingly, however,
are left-distributive rings with identity. Let g x,y7 be a Rosenbrock's goal was apparently to permit the powerful
second (not necessarily coprime) right fractional repre- analytic and arithmetic theory available for polynomial
sentation of g in {G,H,I,J}; then there exists r in H such matrices to be applied to rational matrices whereas the
that present fractional representation theory is motivated by

x,, n,r and y, d,,r. (6.1) the desire to formulate a representation theory for systems
which is closed under inversion. Over the years numerous

Property 3N: Let g=nd,- i with nEH and dEI generalizations of the polynomial matrix fraction concept
where G and H are left-distributive rings with identity. have been formulated for distributed systems [4], [51, [13,

a) If dEJ, then gEH. [21], and multidimensional systems [9],[24] while partial
b) If g= n,d,- is a right coprime fractional representa- extensions to the time-varying and nonlinear cases have

tion of g in G, H, 1,J}, then g E H implies d, E J. appeared in a number of unpublished reports [11],[22].
With the aid of property 3N one can do a complete For any type of fractional representation theory to be

analysis of a nonlinear feedback system h., =p( +p)- meaningful it must be identified with an appropriate
n,d,-' where n,d,- is a right coprime fractional repre- coprimeness concept. Indeed, the key to the present for-
sentation of y,.. Indeed, h,. is well defined in G if and mulation is the use of the algebraic coprimeness concept
only if d.EI and it is well defined in H if and only if of (2.4) in lieu of the more classical common factor
d, J. Note, however, that we cannot construct our frac- criterion. Such a criterion has previously been applied by
tional representation for h, from a fractional representa- one of the authors in a study of fractional representations
tion for p since the verification that such a representation for distributed system [4] and was also shown to be the
is coprime appears to require right-distributivity [see (3.4) strongest of several possible coprimeness criteria for mul-
and (3.5)]. tidimensional systems by Youla and Gnavi [26]. Of

The right coprime fractional representation plays a spe- course, it is well known as one of the several equivalent
cial role in the nonlinear case because h,,=p(l+p)- ' criteria for coprimeness in the polynomial matrix fraction
holds, whereas i, =(1 +p)-p does not (even though the theory [16],[19].
latter formula is true for the linear case). As such, those The feedback system analysis theorems of Section III
results on the analysis of feedback systems which assume are motivated by the now classical theorems for determin-
a left coprime fractional representation theory fail as does ing the stability of a multivariate feedback system in terms
the design theorem since it simultaneously employs both of its polynomial matrix fraction representation [10].
left and right coprime fractional representations. We be- Moreover, the system synthesis theorem is an outgrowth
lieve, however, that these results should hold, at least in of the feedback system stabilization theorem of Youla et
part, for nonlinear systems with an appropriate modifica- al. [24],[25]. Indeed, the present work began with an
tion of the theory. In particular, since the rings G and H attempt to give a simple proof of this most powerful
are asymmetric we believe that asymmetric concepts of analytic theorem and developed through several stages of
left and right coprimeness will be required to achieve this generalization and simplification into its presenc form.
end. Finally, the optimization theory used in Example 4 repre-

sents the generalization [9] to an operator theoretic setting
VII. CONCLUSIONS of a result originally developed by Youla et al. in the

frequency domain for use in conjunction with their stabili-
Although several of our examples are characterized by a zation theorem [24],[25].

deep analytic structure the key to our fractional repre-
sentation approach to feedback system design is the alge-
braic nature of the main results. Indeed, the entirety of ACr"JOWLEDGMN r
our modeling, analysis, and synthesis theory was derived
with no more sophisticated mathematics than addition, The authors wish to thank an anonymous reviewer for
multiplication, subtraction, and inversion. As such, it ap- numerous useful and perceptive comments.
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The main problem of adaptive control theory is to For any arbitrary w, let the compensator C be
design a system S which is capable of automatically defined as
adjusting the generated control input to the plant P.
Such adjustnents may be necessary for a variety of C-(wNl+V)'(-wO+U). .6)
reasons, such as insufficient knowledge about the r Ir
plant, plant perturbations. etc. A multitude of adap- It was shown that if wcH. then the input-output map h
tive control techniques have been proposed through the also belongs to H and
years. A characteristic shared by all of them is the
presence of some means of identifying the unknown or h-N r(-wO1+Urd

.  
(1.7)

perturbed plant. Of course, the design of such a
mechanism, termed here the identifier, is an important An important element of the approach is that it
question in its own right. The design, however, of an provides a complete characterization of the set of
adaptive controller is heavily influenced by the par- compensators which place h in the ring H. It is there-
ticular technique used to generate the control and it fore desirable to investigate the conditions under
therefore inherits the technique's features, which fractionally represented feedback systems can be

adaptively controlled.
A recent advance in control theory is an approach

to feedback control based upon the representation of Suppose then that either in the limit as t-, or
the plant as the ratio of two operators, both of which for all times t t t an input-output map H in H is
belong to an operator ring H. (Ref). A brief overview desired; in other w~rds, suppcse that, with the appro-
of the approach is as follows. Consider the following priate time interpretation, it is required that
ring structure R

R - (G,H,I.J) (1.1) h-H. (1.8)

where G is a not necessarily connutative ring with Clearly, there exists a choice of three independert
identity representing the general class of systems of variables, namely w, U and V , to satisfy two linear
interest. The subring H also contains the identity equations. The decisign was Fade to consider w as a
and represents the class of systems which in some sense parameter in H. Thus the problem can in general be
are stable. I is the set of elements in H which admit stated as seeking the particular coprimeness operator
an inverse in G and J the set of elements in H which pair Ur VC which for a given w in H simultaneously
admit an inverse in H. As shown in (Ref), satis ies q.s 1.4 and 

I
.8.

G = H = I ) J (1.2) The two main problems to be addressed here are tne

A plant P is said to have a doubly coprime acquisition and the plant-follower. In the former,
fractional representation if for the linear, time-invariant plant P is assumed to be
(Nr NI,Ur,U,V ,V Ic H and (0 0 )c I insufficiently specified at the initial time to . The

intention is to provide a feedback system S which
P=Nr r l='I N (1.3) consists of an identifier I and an adaptor AD as

shown in Fig. 1.2. The identifier provides the adaptor
with estimates p(t) of the plant P such that

rN r+VrDr (1.4) lim p(t) P. Then, using these estimates, the adaptor

N1U1+ 1V1 l (1.5)

The aim now is to design a system S so that the ID

system's input-output map h is placed in H. Consider
the system shown in Fig. 1.1 and assume that P has a
doubly coprime fractional representation.

x + C - P yC

Fig. 1.2. An adaptive control system.

Fig. 1.1. A feedback control system, provides the compensator with an operator pair

(ur(t),vr(t) such that the required coprimeness pair

t This research supported in part by the Joint Services Electronics Program of Texas Tech University under
OMR Contract 76-C-1136
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(Ur V ) is obtained in the limit. The first task is
to deineate the class of plants for which such a
system is possible. This can be done by deriving the
necessary and sufficient conditions for a solution to
exist under the assumption of instantaneous identifi-
cation, (i.e., a perfect identifier). Then it would
remain to show that in the non-ideal case the solution
can be attained adaptively, In other words it would
be required that Eq.s 1.4 and 1.8 are satisfied in
the limit.

In the plant-follower problem the linear plant P
is perfectly known at the initial time to, but it
undergoes perturbations thereafter. The intention is
to provide the compensator with an operator pair
(Ur(t),Vr(t)) such that the systems input-output map
remains invariant under. the plant's perturbations.
In other words Eq.s 1.4"and 1.8 are to be satisfied at
every point in time. Again the class of plants for
which a solution exists is delineated under the per-
fect identifier assumption,- In the non-ideal case it
is desirable to examine the extent to which the input-
output map is perturbed due to the plant perturbation.

As always, stability is a question of paramount
importance. A consequence of the fractional represen-
tation approach is the fact that a system is stable
in the sense of 0 whenever the system's input-output
map is time-invariant and the coprimeness operators
belong to H. This is exploited in the ideal case of
both problems. But, whereas, in the acquisition prob-
lem the derived stability conditions are time-inde-
pendent and hence easy to check a priori, in the
plant-follower they are time-dependent and thus the
task of verifying whether they hold or not is consid-
erabley harder. However, the problem is by-passed by
showing that in this cae the question of the coprime-
ness operators belonging to H is equivalent to the
classical question of stability in the sense of H of a
system with time-invariant feedforward path and memory-
less, time-varying feedback path. In the adaptive
case of the plant-follower problem stability is re-
solved by a similar criterion applied to the entire
adaptive acquisition problem, the fact that the input-
output map converges to a time-invariant element of H
suggests that the system is stable as long as the map
remains bounded. It is shown that for uniform asymp-
totic stability this is in fact the case as long as a
sufficiently "good" identifier is used. (The quality
of the identifier is also shown to be related to the
robustness of the adaptive plant-follower system).

The requirement to control the entire input-
output map restricts the application to a class of
plants which, for all practical purposes, is only
slightly larger than the miniphase case. But if a
less restrictive requirement is imposed the class be-
comes considerably larger. The point is demonstrated
by the pole positioning problem for plants represented
as rational functions ?not necessarily proper). It
Is shown that the problem is equivalent to solving a
linear, algebraic equation. Furthermore, a solution
to the equation Is shown to exist provided that the
number of poles to be positioned is sufficiently large.
tn terms of adaptive control, the equation must be
solved repeatedly in time by any of the available
methods, (e.g. a continuation algorithm).
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Summary 1I. Axiomatic Theory

The problem of designing a feedback system with Let G be a (not-necessarily-commutative) ring with
prescribed properties is attacked via a fractional rep- identity and let H be a subring of G which includes the
resentation approach to feedback system analysis, and identity. The feedback system and its subsystems will
synthesis. To this end we let H denote a ring of oper- be represented by operators which are elements of G.
ators with the prescribed properties and model a given The compensator will be chosen so that the overall
plant as the ratio of two operators in H. This, in system will be represented by an operator in the sub-
turn, leads to a simplified test to determine whether ring H.
or not a feedback system in which that plant is embedd- 2 27
ed has the prescribed properties and a complete charac- We define two multiplicative subsets 

'  
of H:

terization of those compensators which will "place" the
feedback system in H. The theory is formulated axio- I - (h H I h-1cGI
matically to permit its application in a wide variety
of system design problems and is extremely elementary i.e., I is the set of elements of H which have an in-
in nature requiring no more than addition. multiplica- verse in G;
tion, subtraction, and inversion for its derivation
even in the most general settings. J - (hcH I h'IC}

I. Introduction i.e., J is the jubgoup of H consisting of all inverti-
ble elements of H.

Intuitively, the linear feedback system design
process may be broken down into three steps; modeling, Note that
analysis, and synthesis; each of which may be carried
out via a multiplicity of time and frequency domain J cIC Hc G
techniques. In engineering practice, however, the
three steps are loosely matched to one another. The Given the above structure we say that a system
purpose of the present paper is to use fractional repre- g c G has a A.ght £ Acion.Z epAe.sen.totOon in
sentation models to the analysis and synthesis of feed- (G,H,I,J} if trere exist nr t H and dr c I such that
back systems. Here, if one desires to design a system nrdr-1 that the pair (ndwith prescribed properties the given plant is initially g r Furthermore, we say a t ir r
modeled as a quotient of two operators, each of which EHxH is &.(9t top~iAffl if there exist ur and vr in H
has the desired properties. Once such a model has been such that
specified a similar model may be formulated for the
feedback system constructed from that plant which, in urn + V d I
turn, may be used to determine whether or not the feed-
back system has the desired properties. Moreover, the The fractional representation nrd in (G,HI,J) is
set of compensators which will cause the feedback syste s r
to have the prescribed properties may be completely said to be 'Light Cop'Lime if the pair (nr dr) is right
characterized in terms of such a model. As such, by coprime.
choosing a model for the plant which is matched to the The relationship between our concept of coprime-
design criteria the analysis and synthesis processes
for a feedback system may be greatly simplified. ness and the usual common factor criterion for coprime-

ness 
28 

is given by the following properties.

This research supported in part by the Joint Property 1: Let the pair (n r,d r) c HxH be right co-
Services Electronics Program at the University of Lt n and d have a common right factor r c H
California at Berkeley under AFOSR Contract prime. e r r
76-C-0100. i.e., nr • Xrr. dr • Yrr for some x. C H and yr C H.

2* This reserach supported in part by ONR Contract Then r has & est inveLAe in H.
78-C-0444.

tt This research suoorted in oart by the Joint Property 2: Let g * nrd1 
be a right-coprime fractional

Services Electronics Program at Texas Tech Univ., representation of g in (G,H.I,J). Let 9 Xr=y
l 
be a

under ONR Contract 76-C-1136.
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second (not necessarily coprin-e) right fractional rep- a) If d r c J, the 9LH;
resentation of g in 1G.N.I.J). Then there exists an
r in H such that b) If g • n d is a "ght cc .-u aC.n 'cpLe-

ar ' nrr and Yr ' drr rc.A .ta.on of g in (G,HI,J), then g c H implies that
d r C .

r
Although 6 is, in general a noncommutative ring,

the entire theory developed above for right fractional Property 3': Let g - d- n with n c H and d c 1:
representations can be replicated for left fractional l t h a
representations. In particular, we say that g c G has a) If dt c J, then 2 c H;
a 1tt6 6Aa ,one 4epoteacn.t.aton in (G,H.I,JI if there

exist n, , H and d. c I such that g - n.. Furthermore b) If g dl n. is a te t copkime jactionat AepnA en.-

we say that the pair (n . d ) c HxH is et 4 I ta ton of in {GH,1J). then g c H implies that

there exist u and vt in H such that

n tU4 + dIProperty 4: Let d - nrd'In, where nr, nt c H. and d c I.

In~is  a) If d € J then gc€H.
The left fractional representation dIntis said to be at

ttit com w If the pair (n,,.d ) is left coprime. With b) Let, in addition, nrd be a right coprime frae

these definitions the existence of a connon tei.t 6a. tional representation in (G,H,IJ) and d Ln be a left
for a left fractional representations of g is charac- coprime fractional representation ir. (G,H,I,J); then
terized by the following properties. 9 € H implies that d c J.

Property I: Let the pair (nt.d.) be left coprime. III. Analysis

Let nt and dt have a common left factor t in H, i
.e.. To start consider the feedback system p of

n. I xt. dt - tyL for some xt c H and y4 € H. Then figure 1.

Z has a 4.igkt invne c H.

Property 2': Let g - d_1 nt be a left coprimefrcin +y

al representation of g in (G,H,1,J). Let g - y1 lxt be

a second (not necessarily coprime) left fractional rep-
resentation of g in (G,H,I.J). lhen there exists an
t in H such that Figure 1: Unity gain negative feedback system.

x- tnt and y -"dt Suppose that the plant is described by a right coprime

fractional representation p - nd 1Ii GM,,) hThe above properties of a coprime fractional rep- rdr i (GHI. The
resentation have all been derived under the assumption closed-loop dynamics of lp are described by the maps
that such a representation exists. Of course, if G de-
notes the rational matrices and H the polynomial ma-
trices the existence of a coprime representation is im- heu : u- e ; heu ' (l+p)

-  
dr(d +n F

plied by classical analysis.1
6
'1
9  

Indeed, the classi-

cal analysis readily extends to the case where H is h :uk- y ; h -p(l+p) 1' - n (d + ntaken to be the exponcnti y atabte (exp. stable) yu yu r r
ratonal matrices or the ring of proper rational ma-

trices with poles in a prescribed region.1 8  
Qln the Note that:

other hand for multidimensional, 2
6 distributed, '

8 
and h

time-varying systems 11.1 there is no assurance that an h eu yu
arbitrary g € G will admit a fractional representation We say that is wae de nedi in G, (H, resp.), if
nor even that the set of g c G which admit such a rep- h G, (H, esp.).
resentation will be a linear space. Moreover, all g's eu c
which admit a fractional representation may not admit Note tat the pairs (n r r r r n
a coprime fractional representation.

26  
In general, the r rnr) and (d +n

set of 9 c G which admit a fractional representation in are right ccprime; indeed, the right coprimeness of
(G.M,I,J} will form a subring of G if and only if the Cnr, d) impies
Ore condition* is satisfied while criteria for coprime- u v )n + v Cd + n
ness have been formulated in various special cases r r r r r r

though no general theory exists,
1
'
4 ,26  

while

Property 3: Let g - nrd_1 with n H and d C 1: (vr ur)dr 4 Ur(dr + n)
rr rrrr r r r r

• G,H,IJ) satisfies the Ore condition for right frac- Theorem 1: Consider the feedback system 1p of
tional representations if, whenever 9 C G admits a left figure 2.
fractional representation, it also admits a right a) Let p - nrd; be a fractional representation
fractional representation and vice-versa

2
. in (G,H,IJ) of the element pcG; then IP
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i& v.t de ned it. G if and only if dr + nr C I. , cy-1 (ytdr  xn)d-'

b) Let p I nr dr be a i.ight ~optme fractional

representation in (G,H.IJ} of the element p c G; . dr(Ytdr + xnr I y
then I i a deiedA A H if and only if

r + nr  h J. heIu 2 - -P(1 + Cp)-1 - _nr(Ytdr + xtnr)-ly4

We now consider the feedback system I of Figure 2
preceded by a compensator c; p and c belong to G and We say that I is wet deiJ:ed t G. (H. resp.) if and
are specified by their coprime fractional representa- only if each entry of heu belongs to G, (H. resp.).

tion in (G.H.I,J) nrd;1 and y~ xt. resp.

Theorem 2: Consider the feedback system I of
Figure 3. Let nrd-1 and y_1x, be" right and left

+ fractional representations of p and c in (G.H.I,JI.
uI+ I C

1  
y Y Ie p-n d- Y2  a) If ytdr * xznr c I, then is well defined
- LxL rr in G.

b) If ytd r + xn r c J1 then is well defined

in H.

c) If he2uz 2 G then y dr + xfnr € I hence if

Figure 2. Feedback system with plant and compensator. is well defined in G then yed + xtnr r .

d) Assume, in addition, that nr(Y~dr)
-

an

To describe the feedback system we consider the map rdi) -Aome, ia ndr cr

h: (u,u) - (e,e ), Simple calculations give (Cr xt are right coprime and left coprime

factorizational representation. resp.; then
i pc

)1  "
p(1 + cp

) J  
heu H implies thatY~dr + Xdnr J ." and hence

h h hif 
I Is well defined in H then ytdr + x n r  J.

mh e eU 
1 
- [(1 + pc)

1  
(1 + Cp)I Note, the special assumptions used in d) to the effect

J~u2 that nr(ytdr ) I 
is right coprime and (ytd r- Is left

coprime, imply, in some sense, that p and c have no
Now let, hyu: (ulul) i---- (yl,y2). Using the summing common factors. More precisely, since J serves as the

e ua group of units in our theory these conditions imply
node equations it is easy to see that that any common factors of p and c must lie in J.

hyu " K(heu - 1) and heu - I-hy u  IV. Oesin

where K is the symplectic matrix Consistent with our approach of matching the plant

model to the goal of the given feedback system design
': 1 problem the present section Is devoted to the problem

of characterizing the set of compensators which will

L •l "place" a feedback system in a prescribed ring H given

L J [that both the plant and compensator are modeled by

fractional representations in (G,H.IJ).

It is well known that in the case of multivariable Theorem 3: For the feedback System I of Figure 2,
rational matrices, one has to consid.r the four sub- Tett e plant p have a right coprim a e left
matrices of h because examples show that any one ofeu coprime fractional representation p - nrd r

I

the submatrices may be unstable while the remaining cpime in al, repreTenton p Hs t
ones are stable. Let us calculate:d1

onesare tabl. Le us alcuate din4 in (G,MI,J). Then for any w c H such that

h • (1 + pc)- I 1 - pc(1 + pc)
"  wnt + vr c I. the compensator

u I - p (1 + cp) C c - (w, + Vr)' ('wd'+ ur) G
-l-1 -1

py - (ydr + xtnr)d r c results in a feedback system I well-defined in H.

- nr(y~d r  I xn) 1 For such a compensator. heu c H2
x
2 and

he u c(, pcO )" ( cp)C'1c h ["nr(wd"4 U) - n r(wn, + vd

' dr(ytdr + xtnr)' x u d r('Wd + U) dr(wnt + VrJ

he2u2 - + 0r Conversely, if is well defined in H and if the
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c=.nensator C - y x1 tis such that (ny zdr) and liztion t'ecre- of Youla. P-!-iorno, and 2abr. 24.25
rx are rh crldved, the pre.ent work Lrgan .itn an attempt to give

(yArxt) are right conrire and left coprime a simple proof of this most powerful analytic theorem
resp., then c Is given by the Above equation, and developed through several stages of gereralization

and simplification into its present form.
Finally. we note that although theorem 3 yields a

complete design theory for a feedLack system given
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Abstract

The problem of designing a compensator for a specified plant

which simultaneously stablizes the resultant feedback system and

causes it to track a prescribed family of inputs and/or reject

prescribed disturbances is considered. A set of linear design

equations, in the space of stable systems, is formulated in a

general linear systems setting and an explicit parameterization of

the resultant solution space is obtained for a class of "generalized

multivariate" systems. The theory is illustrated with several

single and multivariate examples.
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Abstract. Let M be a connected real-analytic 2-dimensional manifold.
Consider the system

i(t) = f(x(t)) + u(t)g(x(t)),x(O) - xo EM,

where f and g are real-analytic vector fields on M which are linearly
independent at some point of M, and u is a real-valued control. Sufficient
conditions on the vector fields f and g are given so that the system is
controllable from xo. Suppose that every nontrivial integral curve of g has a
point p where f and g are linearly dependent, g(p) is nonzero, and that the
Lie bracket [fg] and g are linearly independent at p. Then the system is
controllable (with the possible exception of a closed, nowhere dense set
which is not reachable) from any point x0 such that the vector space
dimension of the Lie algebra LA generated by fg and successive Lie
brackets is 2 at x0.

I. Introduction

Suppose we have the system

m

:1) - f(x(t)) + u,(t)gi(x(t)), x(O) x o E M, (1.1)
i-I

where M is a connected real-analytic n-dimensional manifold, fg ..... g,. are
real-analytic complete vector fields on M. and u ..... u,, are real-valued controls.
A theory has recently been developed in [71, [8], and [9] which characterizes the
largest subset of M which is reachable from xo under assumptions on f, g,... 1,9
and certain Lie algebras generated by these vector fields.

"Research supported in part by the National Science Foundation under NSF Grant MCS76-
05267-AOI and by the Joint Services Electronics Program under ONR Contract 76-C-1 136.
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We are interested in the implementation of these results for the system

i(t) - f(x(t)) + u(x)g(x(t)), x(O) - X E M, (1.2)

where M is a connected real-analytic 2-dimensional manifold, f and g are
real-analytic vector fields on M, and u is a control. The theory as given in [9]
suggests that in examining the controllability of the system from xO, the
important item to check is the direction of the vector field f along the integral
curves of g. We make the assumptions that f and g are linearly independent at
some point of M (a very natural assumption) and that the Lie algebra L,
generated by f, g and successive Lie brackets has vector space dimension 2 at x0
(in order that an open set of M be reachable from x0).

To find sufficient conditions that the system (1.2) be controllable from xo,
we show that the points of interest are those where f and g are linearly
dependent and g is nonzero. For each such point there is a control which makes
this point an equilibrium point of the system. If every nontrivial integral curve
of g has such a point, and the Lie bracket [fg] and g are linearly independent
for at least one such point on each integral curve, then the system (1.2) is
controllable from any point x0 with the vector space dimension of L, at xo being
2. There may be a closed nowhere dense subset of M which is not reachable
from x., e.g. a common equilibrium (zero) point of f and g is certainly not
reachable. Thus controllable means controllable modulo such points. Also
equilibrium points of g must be treated separately using the results from 19].
Many examples are given which explain the important geometry near those
points where f and g are linearly dependent. These examples also illustrate the
ease with which the theory can be implemented.

It is interesting to see the implications of our theory in the linear case.
Suppose we consider the linear system

i(t) - Ax(t) + u(t)B, x(O) = x ER2 , (1.3)

where A and B are 2 x 2 constant matrices. The Lie bracket of the vector fields
Ax and B is the constant vector field AB. Thus if AB and B are linearly
independent at some point of R2 (i.e., the controllability matrix has rank 2), then
the linear system (1.3) is controllable from any x0 - R2 .

An interesting expository article giving results on controllability for nonlin-
ear systems is due to Brockett [I]. Related theories can be found in [10], [I 1],
1121, and [13]. We must stress the difference between our results and the nice
theory for local controllability along a reference trajectory given by Hermes in
[4], [51, and [6]. If A(t,x) denotes the set of all points attainable at time t by
solutions of (1.2) corresponding to admissible controls and initiating from xo at
time 0, Hermes [4] examines if the point 0(t) (the solution to (1.2) at time t
starting at x0 with control u-O) is an interior point of A(t,x) or not.

Section 2 of this article contains definitions, examples, and the statement
and proof of our main result. Necessary conditions and other problems concern-
ing global controllability are examined in section 3.

44



Global Conrollabilty of Nonlincar Systems

I. Definitions, Examples, and a Global Result

For the first part of this section we state definitions and a result for an
n-dimensional hypersurface system, but later we restrict our attention to the
2-dimensional system.

If M is a connected-real-anaytic n-dimensional manifold, consider the
hypersurface system

A-I

1(t) - fAx(t)) + . u(t)g,(x(t)), x(O) - x o C M, (2.1)
a-1

where f,g, .... ,g.-. are real-analytic vector fields, and u1 .... u._ are controls.
By T(M) we denote the tangent bundle of M with fiber (tangent space)

T.(M) for x E M. If X is a vector field on M, then a is an integral curve of X if a

maps the closed interval I CR into M so that da() X(a(t)) for all tE. If D
dt

is a subset of T(M), then an integral curve of D is a mapping a from a real
interval [tt'] into M such that there exist t-to<tl ... t,-t' and vector fields
X1,...,Xk in D with the restriction of a to [ti-.,ti] being an integral curve of X,
for each i - 1,2,..., k. A point x EM is D-reachable from xo if there is an integral
curve a of D and some T > 0 in the interval for a such that a(0)-x 0 and
a(T)-x. A subset A of M is D-reachable from x0 if every point xEA is
reachable from x0.

Since the D under consideration is the subset of T(M) determined by the
vector fields in (2.1), we drop the D from D-reachable. If an open subset of M is
reachable from xo, then the largest open subset U of M which is reachable from
xo is called the region of reachability from x0. If U- M, we say that the system is
controllable from x0, and controllability from every xo E M gives us a controllable
system.

Let 0 be an open set in M and let xEE0. The vector field f points in the
direction of 0 (or towards U) at x if there is an open neighborhood W of x in M
such that the integral curve off starting at x and intersected with W is contained
in 0. In addition if ao is 0' near x and f(x) is not tangent to aO at x, then f
points in the direction of 0 (or towards 0).at x. If f points towards 0 (or 0) for
all xE W, then fpoints in the direction of 0 (or 0) on 30. Given two C vector
fields h, and h2 on M, the Lie bracket of h, and h2 is defined by

hjh]-ah2  h h1 2
LAh2 ax ax 2ah h 2  h

where 'h- and -2 denote Jacobian matrices. Of course other Lie brackets like

[h|,[h1,h2J .... can be taken.
By L, we denote the Lie algebra generated by f,g ..... _, and successive

Lie brackets, and by L; we denote the Lie algebra generated by g,, ..... _, and
successive Lie brackets.

Our first theorem, which characterizes the region of reachability from xo for
the system (2.1) is taken from [9]. It is this theorem that we are interested in
implementing for the 2-dimensional case.
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Theorem 2.1. Assume the vector space dimension of LA at xo is n and that
f,g -..... ,- 1 are linearly independent at some point of M. Let U be the smallest
open subset of M with xo E U satisying aU contains the integral manifolds of L"
which intersect it (and which are given by Chow's Theorem [2]) and f points in the
direction of U on a U. Then U is the region of reachability from xo for the system
(2.1).

In the statement of this theorem, we should add the assumption that if
U'M, every open neighborhood of any point p e aU contains points from U
and the complement of U. G. Stefani and A. Baccioti have pointed out that the
correct conclusion to the theorem as stated above is U C region of reachability
C interior of U. The author wishes to thank Professors Stefani and Baccioti for
their comments.

The set P of points in M where the vector space dimension of LA is less than
n is a closed nowhere dense subset of M if the dimension at one point x0 is n
(see [9D. If there is no proper open set UcM with aU as in the theorem and
with 8U disconnecting M, then the system (2.1) is controllable from x0 (as stated
in the introduction, there may be a subset of P, e.g. common equilibrium points
of f and g, which is not reachable). If such a set U exists, then the system is
certainly not controllable.

Unless otherwise noted for the remainder of this paper we restrict our
attention to the 2-dimensional system

1 .r ] + r[ g,(x(t)) 1
xgt) =-if1(') M ,XWt) +u(1) gi I(

[ "20t) j f2 XWt) Ij g2(X()

- f(x(t)) + u(t)g(x(t)),x(O) = x0 E M,

where M is our connected 2-dimensional manifold. We assume that the
equilibrium points of the system i(t)-f(x(t)) are isolated. The set of points
where f and g are linearly dependent are given by the equation f 1(x)g2(x) -
f2(x)g1(x)-O.

To obtain a perspective on the global controllability of our system (2.2) we
consider a linear and a nonlinear example.

Example 2.1. On R2 let

0 I + t ),I

- flx(t)) + u(t)g(x(t)) - Ax(t) + u(t)B.

Since the matrix [B,AB] has rank 2, this system is controllable from any point
xo in R1. However, the important fact geometrically is how the vector field f
behaves along the integral curves of g near the points where f and g are linearly
dependent. The set of points (x1 ,x2) in R2 where f and g are dependent are on
the straight line x, -0. We take an arbitrary integral curve of g, say x2 -c-
constant, which divides R2 into two connected components (x E R2 :x2 >c} and
{xe RA:x 2 <c). Let c be a small positive number. At a point (-c,c) on x 2 -c,f
points towards {xER2 :x 2 <c), and at a point (c,c) on x2-c,f points towards
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X2

0 (t)C-

f vectors

Xt

FI& s

'(x E R: x2 > c). Thus the vector fieldf "turns through" the integral curve of g at
the point on x2 - c where f and g are linearly dependent. Since this occurs for
every integral curve of g, we have by Theorem 2.1 that no integral curve of g can
be the boundary of the region of reachability from any xo0 ER 2. Hence this
system is controllable from every xo E R2.

Since the standard linear methods for proving controllability of a linear
system will not generalize to the nonlinear case, it is the vector field f "turning
through" the integral curves of g at points where f and g are linearly dependent
that becomes the essential item in the nonlinear theory. We show later that this
"turning" occurs at points wheref and g are linearly dependent and where [f,g]
and g are linearly independent.

Example 2.2. Consider

( - Ct(t) X [ 2

- fx(t)) + u(v)g(x(i)), x(O) - xo E R .

This example satisfies the hypotheses of Theorem 2.1 since f and g are linearly

dependent if and only if x2- 0 and the dimension of LA at every point xO ER R2 is

2. Every integral curve of g intersects the line x2 -0 (note that X2 is not

horizontal in the plane). Computing

Ifg] -[ 1 X-2] +[ 0 - I][X2] "2]

and [f,g] and g are linearly independent at points where x2 -0.
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XI

f vector

integral curve of g

F 2.

An integral curve of g divides R2 into two connected components. Let . be a
small positive number. From the picture we see that the vector field f "turns
through" the intepgal curve of Z at the point where x2 -O. Since this happens for
all such integral curves, the system is controllable on R2 . Again, this "turning" is
implied by the computation on [f,g] as we show in our main result, Theorem
2.2.

Now we return to our general 2-dimensional system (2.2). Let p 6 M be a
point where f(p) and g(p) are nonzero and ftp) and g(p) are linearly dependent.
For a sufficiently small open neighborhood V of p in M. the integral curve of g
through p divides V into two connected open components. We say that f lies on
one side of g near p if the integral curve of f through p (with the point p deleted)
in some small open neighborhood. say V, of p is contained in one of the two
connected components of V determined by the integral curve of g through p.

This property of f lying on one side of g near p is of course invariant under
rotations on A2 if we are working in A2. Since M is a real-analytic 2-dimensional

V

P integr" curve Off

inteor" curve of g

ft~ 3.
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- integral curves of
'S P -

integral curve of g

I vectors
ft 4L

manifold there is an open neighborhood of p in M which is real-analytically
homeomorphic to an open neighborhood of the origin in R2. Hence there is no

generality loss in assuming that g(p) =I I ] and that we are working locally in
some neighborhood of the point p -(0, 0) in R2. Then to show that f lies on one
side of g near p we need only show that the integral curve off through p minus
the integral curve of g through p has a local maximum or local minimum atp. If
this occurs then the flow generated by f through certain points near p must
intersect the integral curve of g through p in such a way that the vector field f
"turns through" the integral curve of g through p.

We now state and prove the main result. In the definition of integral curve
of g we could include an integral curve (where g is nonzero) together with an
equilibrium point of g and another integral curve of g (with g nonzero). For
example, we could call the positive x2 axis together with the origin and the
positive x, axis in the system

,- 0+) 0 1 +_0 xD) on R2

an integral curve of g. However, we assume that g is nonzero in the statement of
our main result, and in certain examples given after the theorem we show how to
handle equilibrium points of g and common equilibrium points off and g using
Theorems 2.1 and 2.2 together.

'Theorem 2.2. Assume that f and g are linearly independent at some point of M
and that g never vanishes on M. Suppose every integral curve of g which
disconnects M has a point p where f and g are linearly dependent and [f,g] and g
are linearly independent. Then the system (2.2) is controllable from any point xo
such that the vector space dimension of LA at x o is 2.

Proof Suppose that j(p) is nonzero, the case f(p)-[ 0 being considered later

in the proof, and assume that g(p)-[lJ. As before, we are working in a0"
neighborhood of the point p-(O,0) in R2. We must show that [f,g] and g being
linearly independent at p (which is invariant under coordinate changes) implies
that the integral curve of f through p minus the integral curve of g through p
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(both considered as functions of the x, variable) has a loca maximum or local
minimum at p. By the discussion preceding the statement of the theorem, this
integral curve of g cannot be the boundary of the region of reachability U from
xo in Theorem 2.1.

Since

.i() f2(xOt) J W,(x0 0

and 1(p) and g(p) linearly dependent, we must have f,(p)zO, g,(p)fO and
h2(P)" g2(P)- 0'

The first derivative of the integral curve of f minus the integral curve of g
with x2 considered as a function of x, is given by

2(x(O) 92(x(O)

f,(x(t)) g,(x(Q))

The second derivative is given as

S [ g,(x(j)) f2(x(t)) -g 2(x(t)) ]fl(x(t))gl(x(t) xt) ax= lx2) ax---- -

By the second derivative test we have the desired local maximum or local
minimum provided

Waf2(x) 8 2(x ) g ( a)
g,(x) -- f - ,(x)I Oatp.

Computing

ag,(x) ag,(x) ][( a f,(x) af,(x)]j (x1

[f,g] ag,(x) ag2(x) 2 (x) Jaf(x) 9
ax, ax2  a2X) _xI 8X2

Then (fig] and g are linearly dependent atp if and only if

af2(x) M, af2(x) , , ag(x)f(x ag2(x) x

axglX) a 2 x ax,

at p since g2(p)-0. Because f2(p)- g2(p)-0, [f,g] and g are linearly indepen-
dent at p if and only if

.f2(x) , a (x),, ,
ax,
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at p. Thus we must have the desired local maximum or local minimum from our
assumption on [f,g] and g.

It remains to consider the case where f(p) - [ . Recall thatf and gare

linearly dependent at the set of points f 1(x)g2(x)-f 2(x)gj(x)mO. Again we
assume that g(p)[- ], implying f2(P)' g2(p)-O. We apply the implicit func-

tion theorem to the set of points where fj(x)g2(x)-f 2(x)g(x).O, near p. Since

f,(x) ag2(x) , .(x) . 1 (x)
X_ 2(X)+ 21 _ - 91W 2 (x)ag2x)., aa2(x)

-L: Mx) - g,(X) atp,

our assumption on [fg] and g implies 2 fJ(P )- xj(p)*0 atp. Thus

the zero set of fj(x)g2(x)-f 2(x)g(x) defines a real-analytic I-dimensional
submanifold S of M near p.

Recall that we assumed the equilibrium points of

.i,() A O))
i2 (t) ] [fy2(x(t))

are isolated. Hence we take all points of S except p to be points at which f(x) is
not equal to [0  We choose an open neighborhood W of p in M such that

(i) p is only point in W with f(p)=[-]0
101

(ii) the only points in W where f and g are linearly dependent are those in
Sn W,

(ii) given any point q E S n W with q *p, the integral curve of g through q
divides W into two connected open components and the vector field f
points in the direction of one component on one side of q in the integral
curve and in the direction of the other component on the other side of q in
the integral curve, and

(iv) [f,g] and g are linearly independent on W.

Part (iii) follows from the first part of this proof since f(q) [ 0 ] and (ii). The
set W can also be chosen so that the integral curve of g throug pdivides Wtwo
connected open components. Suppose f points in the direction of the closure of
one of these components along the integral curve of g in W. Since the integral
curves of g vary smoothly (as we move from curve to curve), the only way the
preceding statement can hold in view of (iii) is to have the integral curves of f
and g coincide on one side of p along the integral curve of g through p. But [f,g)
must vanish along such a set, a contradiction to (iv).

Hence we have that the vector field f must "turn through" every integral
curve of g which disconnects M at some point in S on each such curve. Since M
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is connected, the only set U satisfying Theorem 2.1 for our xo must be equal to
M itself. Thus the system (2.2) is controllable from any such xO. 0

As an easy application of this theory we could prove the known controllabil-
ity theorem for a linear system in R2, but remarks in this direction have already
been made.

We now give several examples of nonlinear systems to illustrate how to
apply Theorem 2.2.

Example 2.3. Consider

-[i2(1)] -[X2~~ 1
"f(x(t)) + u()g(x(:)), x(O) - C- R2 .

The set of points in R2 where f and g are linearly dependent is defined by
4- x2 -0, which gives two lines x2 - 2 and x 2 - -2. Computing

[fg]-[ 0]['2]+[ ][ 4 ] -x ]

Thus the vector space dimension of LA at any point x0 is 2 and ffig and g are
linearly independent on the straight lines x2 = 2 and x2 - -2. Since every
integral curve of g intersects these lines, we have a controllable system by
Theorem 2.2.

Example 2.4. Consider

x "20 [.*() 1 1 ~[~

J(x(t)) + U(1)g(x(i)), x(O) xO e R 2 .
The set of points in R 2 where f and g are linearly dependent is defined by

the straight lines x2 - 0 and x2 - I. Computing

[fg]=[ - l0]( [ -+ 2x ][x2> [- 2 X2I

Then [f,g] and g are linearly independent on x2 -0 and x 2 -1 and the vector
space dimension of L, is 2 everywhere. Since g has no horizontal tangent
vectors in the plane, all integral curves of g must intersect these lines. Hence this
system is controllable.

Example 2.5. Let

)i( I 1 0 X 0 4 X2
(t - [o X, ] I + uw 0 [ o

_I[ X2+(j)[_XtJI

- Ax()) + u()g(x()),
where x(O)- xO C R' -(O, 0).
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The origin in R2 is a common equilibrium point off and g. The vector fields
f and g are linearly dependent on the set of points defined by 4x2 - 2-0 orxI - t2x2 . We have

I 0 -4X2 + [- ]
0 -0-0 4 x, X 1

Thus [fg] and g are linearly independent on x, - 2x 2 and x, - -2x 2 except at
the point (0,0). Also the vector space dimension of LA at every point in
R2 - (0, 0) is 2.

Let's apply Theorem 2.2 to the open first quadrant. It is easy to show that
any integral curve of g which starts in the first quadrant intersects the line
x,- 2x 2 (we can move forward and backwara in time along integral curves of g
since it is the vector field we control). By Theorem 2.2 we know the first
quadrant is reachable from any point x0 in the first quadrant. Similar arguments
imply the same result for the remaining three quadrants.

We need to show that R2 -(0,0) is reachable from any point xo in R'2 - (0,0).
The positive x, axis, the positive x 2 axis, the negative x, axis, and the negative x2
axis are all integral curves of g. The vector field f points towards the first
quadrant along the positive x, axis, towards the second quadrant along the
positive x 2 axis, towards the third quadrant along the negative x, axis, and
towards the fourth quadrant along the negative x 2 axis.

Thus we are able to move from one quadrant to the next by using the f
vectors. Since each quadrant is controllable, the system is controllable, ignoring
the point (0,0).

Xt

53f vect

Fig. S.
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Example 2.6. Let

"2)1 F 1 F 1: r0 4 X
0 1x~ ii('[,1 II

[ ] [4x,-[ +ut (t)

-AxQ)) + u()g(x()),

where x(O) - xo ER 2 - (0, 0).

The point (0,0) is a common equilibrium point of f and g. Points where f
and g are linearly dependent are given by x, -2x 2 and x -- 2x 2. As in the
preceding example, each open quadrant is controllable since

However along the positive x, axis (an integral curve of g), f points towards
the first quadrant, and along the positive x2 axis (an integral curve of g),f points
towards the first quadrant also.

Thus once we reach the first quadrant, we cannot leave it by Theorem 2.1.
This system is not globally controllable.

Xt

f vectors

X1
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Example 2.711 ]. Let

-) (t)[(

X2(t - IX 2 X I IjX2 ]+ U(t)[ .X

- f(x(t)) + u(t)g(x(t)),

where x(O) - x0 E R2 - (0, 0).

The point (0,0) is a common equilibrium point off and g. The vector fieldsf
and g are linearly dependent when x +x=0, i.e. at the point (0,0) only.

The positive x, axis and the positive x2 axis are both integral curves of g.
Along the positive x, axis f points toward the first quadrant, and the same is true
for the positive x2 axis. By Theorem 2.1, this system is not controllable. If we
restrict our attention to any one of the open quadrants, we find it also is not
controllable by Theorem 2.1. This occurs because an integral curve of g, say in
the first quadrant, disconnects the first quadrant. Moreover, along such a curvef
points in the direction of one of the components bounded by the integral curve.

The above examples serve to show the practical applications of Theorem 2.2
together with Theorem 2.1.

III. Other Problems

We can of course ask if the sufficient condition concerning [f,g] in Theorem 2.2
for the system (2.2) to be controllable is also necessary. It is known in the linear
case that it is necessary. We show later in this section an example of a nonlinear
system which is controllable but for which the condition on [f,g] and g does not
hold.

First we state some necessary conditions for controllability, which do not
involve computations of [f,g]. For an example of an application of the following
theorem, take the system of Example 2.7 restricted to the open first quadrant in
R2.

Theorem 3.1. Assume that our connected real-analytic 2-dimensional manifold M
is also simply connected. If there exists an integral curve of g which disconnects M
and which does not intersect the set of points where f and g are linearly dependent.
then the system (2.2) is not controllable.

Proof. Suppose this integral curve of g gives us two connected open compo-
nents 0 and 0' in M. Since M is connected and simply connected, if f points in
the direction of 0 at some points along the curve and in the direction of 0' at
other points along the curve, then there must be a point p in this integral curve
where f and g are linearly dependent, a contradiction. By Theorem 2.1, if we
assume f points towards 0 on the integral curve of g, then M is not reachable
from any point x0 in 0. 0
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Returning to our question concerning the necessity of the sufficient condi-
tion in Theorem 2.2, we offer the following three examples. In the first two, [f,g]
is a multiple of g at all points where f and g are linearly dependent and the
systems are not controllable. The third example involves a controllable system in
which If,gJ is a multiple of g at all points where f and g are linearly dependent,
showing our sufficient conditions are not necessary.

Example 3.1. Consider

;'() 1 [ o 2 l] 1 X2~1
X2 I 0 UJt) X1 I u i[ , l~ 2

-f(x(t)) + u(0tg(x(),

x(0) - x0 E R2 - (0, 0).

The set of points in R2 where f and g are linearly dependent are given by
x2 - x, and x2 , -x, Also (0,0) is a common equilibrium point off and g. The
Lie bracket

[f,g] - X241 x] + [ I ]{X2] _[O]1[ X 0oo],
and there is no hope of using Theorem 2.2.

Disregarding the point (0,0) the set of points where x1 Ix 2 is a common
integral curve of f and g (it is this type of behavior that occurs in a noncontrolla-
ble linear system in R2). The set of points in R2 where xI - x 2 disconnects R2

and f points in the direction of this set when x, - x2. By Theorem 2.1, there is no
way of moving from one side of the line x1 = x2 to the other, and we cannot have
controllability.

Example 3.2. Consider the nonlinear system

- i ,t 2] I + u( ) { X2 (x ( )) + ,(t)g(X( ),

x(0) - xo E R2.

We show that this system is not controllable, but the reasons given cannot occur
in the linear case as in Example 3.1.

The line x2 -0 is the set of points where f and g are linearly dependent.
Computing -f;] 0 1 1] 101
which vanishes on x, 0, and Theorem 2.2 is not applicable.
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The integral curve of the system x(t)-g(x(f)) through (0,0) is given by
3x2

-, and the integral curve of the system (:) f(xt)), through (0.0) is given
-24

by x, - - 3  .These integral curves intersect only at the point (0,0) where they
have a common tangent. The integral curve of g through (0, 0) separates R' into

two connected open components, and f points towards only one of these
components along the integral curve near (0, 0) and hence along the entire curve
for g (except at (0,0)). There is one side of this integral curve from which we
cannot move to the other, showing the system is indeed not controllable.

Example 3.3. Let

- 1 - + ut) 1-fwxot) + u(t)gx(f)),

x(O) - xO E R2.

The straight line x2 =0 defines the set of points where f and g are'linearly
dependent. Computing[0 3x2

[ g] - o [ +[ o 3X2][X2 6x22

which is not linearly independent from g when x2 =0. If we take the integral
curve of f and the integral curve of g through any point p on the line x2 -0, we
find the differences of these curves (with x, as a function of x2) has a maximum
at the point p. This is exactly the desired behavior we need for the vector field f
to "turn through" the integral curve of g at such points. Hence along any
integral curve of g the vector field f points in the direction of one component
(given by the integral curve of g) at some points and in the direction of the other
component at different points. Then this system is controllable despite the
relationship of [f,g] and g when x2 -0.

This last example suggests the existence of some "higher order" sufficient
conditions for controllability which may also be necessary. Hermes [4] has
"higher order" conditions for the local controllability problem. Two other
immediate problems are suggested. Find a Theorem 2.2 which implements
Theorem 2.1 for hypersurface systems in the case where the dimension of the
manifold M is greater than two. Find a Theorem 2.2 to implement the controlla-
bility theory in [71 and [8] for general nonlinear systems of the form (see (1.1))

-(t) A x(t)) + U , 1(t)g,(x(t)), x(O) - XO E M.

Professor D. L. Elliott has pointed out to the author a paper of Y. Gerbier
[3]. Gerbier shows that controllable systems of two vector fields in R2 without
equilibria are toologically equivalent (in a sense defined in his paper) to

- -+x-
8' a 3x ayJ'
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Abstract tegral curves of Bx that approach the origin.

Consider the system We illustrate our method by applying it to several

2 examples. Results on controllability are useful in the
i(t) 

= 
f(x(t)) +u(t)g(x(t)), x(0)- =x C t 2 ,  study of the problem of stabilization.

1

where f and g are real-analytic vector fields on R
2  2. Definitions and Results

which are linearly independent at some point of R
2
, and If X is a vector field on A

2
, then C is an interal

u is a real-valued control. Sufficient conditions on f curve of X if a maps the closed interval ICR into R- so
and g are known so that this system is controllable da(t) t
from x. The purpose of this article is to implement dt 2

these conditions in the bilinear case vector fields on R , then an integral curve of D is a

2 mapping a from a real interval [t,t'] into IR
2
-such that

k(t) - Ax(t)+u(t)Bx(t), x(O) - x0 E I, there exist t - tO < t- ... < tk - t' and vector fields

where A and B are constant 2 x 2 matrices. The process X ... Xk in D with the restriction of a to It il,tiI

involves finding the set of points where Ax and Bx are being an integral curve of X for each i - 1,2 ..... k. The
linearly dependent and computing the Lie bracket [Ax, set D we consider is the one determined by the vector
Bx] at all such points. This is a generalization of fields in the bilinear system (2).
the well known controllability results for a linear
system on 12. A point xe is reachable from x if there is an

1. Introduction integral curve a of D and some T 0 in the interval for

a such that a(0) - x0 and a(T) - x. A subset of R2 is

We are interested in the system reachable from O if every point in this set is reach-

i(t) - f(x(t)) +u(t)g(x(t)), x(O) = x0 tM, (1) able from x . We shall make assumptions so that an open

where M is a connected real-analytic 2-dimensional man- subset of 2R is reachable from x0 for (2) and the lar

ifold, f and g are real-analytic vector fields on M, gest open subset U of (2 which is reachable from x0 is
and u is a control. In examining the controllability 02
of this system from x , the important item to check is called the region of reachability from if U - A

the directtqv of the vector field f along the integral we say that the system is controllable from x , and con-
curves of g.- We assume that f and g are linearly in- f2
dependent at some point of M and that the Lie algebra trollability from every point x0 tA gives us a control-lable system.
L. generated by f,g and successive Lie brackets has
vector space dimension 2 at x0 . The points of interest 2
are those where f and g are linearly dependent and g is Let 0 be an opnn subset of R and letx , or. The

nonzero. If every integral curve of g which is non- vector field f points in the direction of 0, or towards

trivial has such a point, and the Lie bracket [f,gJ and
g are linearly independent for at least one such point such that the integral curve of f starting at x and in-" tersected with W is contained in 0. In addition if ;O
on each integral curve, then the system (1) is control-
lable from any point x with the vector space dimension is & near x and f(x) is not tangent to ;0 at x, then f
of LA at x0 being 2.

3 
There may be a closed nowhere points in the direction of 0, or towards 0, at x. If f

dense subset of M which is nor reachable from x, points in the direction of 0 (or 0) for all x cO. then

controllable means controllable modulo such points. f points in the direction of -or 0) on O.

We restrict our attention to the bilinear system If hl and h2 are(:- vector fields on R2 the Lie

i(t) - Ax(t)+u(t)Bx(t), x(O) = x0 CR
2
, (2) bracket of hi and is defined by

3h 2 3h

where A and B are constant 2x 2 matrices. First we [h-h -ix hl!!-h
compute the set of points S where Ax and Bx are lin- 2  ax 2

early dependent. If there exists an integral curve of 3h !h
Bx which disconnects R

2 
and which does not intersect where 2 and 2 denote Jacobian matrices. Of course

S, then the system (2) is not controllable.
3 

Next we oh a

comoute the Lie bracket [Ax,Bx] at all points where Ax other Lie brackets like [hh 1 ,h2 ],... can be taken.

and Bx are linearly dependent except the origin. This
comptaton iels a onsant(alng ech anioldThe Lie algebra generated by Ax, Bx, and successivecomputation yields a constant (along each manifold

part of an algebraic variety) which if nonzero can in- Lie brackets is denoted by LA.
dicate we have controllability. .It remains only to
check the direction of the vector field Ax on the in- Our first result concerns the region of reachabil-

ity of our system (2). It is proved for a hypersurface
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system of dimension n.
2  

-c2x2 _x2c; 4 l )

Theorem 1. Assume the vector space dimension of LA at 2c 1  Hence there are four cases we

X0 is 2 and that Ax and Bx are linearly independent at must consider.

some point of R 
2
. Let U be the smallest open subset of Computing we find

2 w U satisfying U contains the intgr ax . J l l : 2 bj1 l 1 x 2J bl b1 l x

curves of Bx which intersect it and Ax points in the [a21  2 2 Jib 2 1xl4b 2 2 2 ) "b 21 b22  l 2 1 x1 + 22x2}
direction of U on U. Then U is the region of reach-
ability from x0  for our system (2). a 12 2+e12 b 21xa 2b22 2_12 b , 2_-21b 12'1-22 b, 2

It is our goal to implement the following theorem, -a 21b lix+a 2 1b12x,+az2 b21x'aIlb2.x,-a1 2b21x2a2 lb 2 J%
which has been proved for a general nonlinear system in1 R2,
two dimensions." Here V is a domain in R , and the We are given

statement is for our bilinear system. Bx b lb1x +bl2x2 j .

Theorem 2. Assume that Ax and Bx are linearly indepen- 2 1 b 22 2

dent at some point in V. Suppose every integral curve Let

of Bx which disconnects V(V- (0,0)} if (0,0) is in V) fa b x +a b x +a b x-a blx2-a2b2X
contains a point where Ax and Sx are linearly dependent d-de 11 12 2 12 21 1 12 22 Z 12 2 22

and [Ax,Bx] and Bx are linearly independent. Then the a21b lx+a 21b 1x 2 +a2 2b 2 l-alb 21xl-a 12b 21xl
system (2) is controllable on V from any point x0 EV
such that the vector space dimension of LA at x0 is 2. -a 22b 2x2 b lx +b 12x 2

3. Computation of Lie Brackets -a 2 1b 2 2 xl b2 1 x1 + b 22'2)

We compute [Ax,Bx] at all points (except (0,0)) Case I. cl1 0 and at least one of c 2 and c3 #0.
where Ax and Bx are linearly dependent. Let

(a2b 1 Plug x 2 .0 into d and factor out x 1 to get a con-
a11  a12  fb 1b 121-c3 ifc00(rx z f

a =andS" 1 0ox " i i
A a 2 a nd b21 221 stant d+, and plug x-- ifc 2 c 3 f

Then Ax and Bx are linearly dependent on the algebraic c 3 #0) into d and factor out x 2 (or x1 ) to get a con-

variety given by stant d
I

la 11x I+ 1 2X 2  bllxl I b1 2 x 2 . Case 2. c 3 -0 and at least one of cI and c2 00.
det ax2 

2  
b2x +b I

'2 x2 +" 21  21x 1 b 22) Plug x 1- 0 Into d and factor out x2 to get a con-

2+ 2 - C2 c 5  (rx -  c
i.e. (ab 21 - a21b )X I  (a 1 1b 2 2 +a 1 2b2 1 -a 2 1 b 1 2  stant d+, ad plug x if c (o

211 21 + c 2 1 2 c 1

'22' 11 1x2 + a12b 2 '2212x2 .. Let if c 2 00) into d and factor out x 2 (or x I) to getsa
2

b "c constant d2 .al-2111 = 1

ab122+a12 b21_ '21b12_ a22b 1 c2 Case 3. cl - c 3 -0 and c #0.

a12b22- 822b12 " c3, Plug xI -0 into d and factor out x2 to get a con-

Then we have no nonzero real solutions N ) if and d, and plug x2 -0 into d and factor out x to

only if 12 get a constant d- .

e 21 Case 4. c1 and c3  .

X, 2c 2 -02.1
lc2  9 X Plug - - c2  into d and factor out12 4 2x12 3 x 2 to get a constant d 4, and plug xX2 ( c -

Thus we assume that this determinant is <0. c + a p 1  2

f 4then Ax and Sx are linearly de- jc 2 -4clc 3 ) into d and factor out x 2 to get a constantIf c - c 2 
= C3 = 0  the - x 4n xaelna e 2

pendent everywhere, contrary to our assumptions of d.
Theorems I and 2. If cliO and at least one of c2 and Our noxt result folJows directly from Theorem 2.

c 03 0, then Ax and Bx are linearly dependent on the Again V is a domain in R 
.

lines x - 0 and cx +c x 2 -0. Similarly, if c 0 Theorem .. Suppose Ax and Bx are linearly independent
2 2 3 at some point in V. Assume that every integral curve

and at least one of c1 and c2 #0, then Ax and Bx are of Bx which disconnects V(V-QO,0)} if (0,0) is in V)

linearly dependent on the lines x1 -0 and clX1 + c2 x 2 "O, contains a point where Ax and Bx are linearly dependent
i and di

If both cI and c3 -0 and c2 #0, then Ax and Bx are and that d and d_ are both nonzero if we are under

linearly dependent when x,=0 and x2-0. Finally, if case i, i - 1,...,4. Then the system (2) is control-
Sand c 3  O, then Ax and 2x are linearly dependent lable on V from any point xoi V such that the vector

space dimension of LA at x 0 is 2.
when
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. E-:a7p. 1es negative x1 -Mts, and the negative x2- axis re all in-

tegral curves of Bx. The vector field Ax points towards
We apply Theorems 1, 2 and 3 to the following the first quadrant along the rositive x 1-Ads , towards

three examples.
the second quadrant along 'he positive x -axvis, towards

2
Example 1. Letl, f l 1 j the third quadrant along the negative xl-sxis, aid to-

iu(t) " i] " + u(t) wards the fourth quadrant along the negative x2 -axis.
J1x2J -0 ~ x 2  Thus we are able to move from one,quadrant to the next,

Ax~t)+ u(t)Bx(t), x(0) - x 0 2and our system is controllable on R 2-{(0,0).= Ax~)+u~tBx~t) x( 0 -x c R -((0,0)).

The vector fi-lds Ax and Bx are linearly dependent References

only on the set S defined by x2+x 2 . 0, i.e. at the 1. H. Hermes, Controlled stability, Annali de Hatems-
1 2 tica pura ed applicata 114(1977). 103-119.origin (0,0). Any integral curve of Bx in the open

first quadrant disconnects R and does not intersect S. 2. L. R. Hunt, Controllability of nonlinear hypersur-
By a statement in the introduction (which follows from face systems, submitted.

Theorem 1 23), this system is not controllable from
2 3. L. R. Hunt, Global controllability of nonlinear

every x CR U0.0)), even though the vector space di- systems in the phase plane, submitted.
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= Ax(t)+Bx(t), x(O) X eC2 - {(0,0))}.

The set S of points where Ax and Bx are linearly
dependent is given by 4xI  2x2 and xl  -2x2 and we are

in case 4. We find d + - -24 on xI = 2x 2 and d 
- 

-24

on x, . -2x Applying Theorem 3 with V equal to the

open first quadrant in R 2 shows that this quadrant is
controllable for the system. The same is also trie for
the second, third, and fourth open quadrants in IR .

Since the positive xl-aXis and the positive x 2-

axis are integral curves of Bx, and since Ax points to-
ward the open first quadrant along these two curves and
is zero at the origin, Theorem 1 implies that our sys-
tem is not controllable for R2 -{(o,o)}. Once we are
in the open first quadrant, it is impossible to leave

it.

2 Even in this example which is not controllable on
I

- 
{(0,0)}, our theory and technique give us much in-

sight into the behavior of the system under controls.

Example 3. Let

[1(t) (0 -1 xx L
) = + u(t -4

- Ax(t)+u(t)Bx(t), x(O) - xc lR 2 - { (0,0)}.

The set S where Ax and Bx are linearly dependent
is given by x, 2x and x l - -2x Also the vector

2 1 * 2_
space dimension of LA at each point of R- ((0,0)} is
2.

We apply Theorem 3 to the open first quadrant.
Any integral curve of Bx which starts in the first
quadrant intersects the line x, . 2x . Since d+ -+40

on xI - 2x2, the first quadrant is controllable from

any x0 in it. Similar arguments show that each of the

other three quadrants is also controllable.

The positive x -axis, the positive x -axis, the
1 2
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ABSTRACT in R
2 

such that the integral curve of f starting
at x and intersected with 4 is contained in

Consider the system 0. Here 0 denotes the closure of 0 in R'. In
(t) =f(x(t))+u(t)g(x(t)) x(O) = 0 cR

2  
addition if aO is C

1 
near x and f(x) is not tan-

gent to a0 at x, then f points in the direction
fields on of 0, or toward 0, at x. If f points toward 0w~ere f and g are real-analytic vector -ieldson .. .

R 
.  

If this is a controllable linear system, then (or 0) for all xE 3O, then f points in the direc-

it is well known the system is stabilizable by tion of 0 (or 0) on a0.

linear feedback. We want to consider a similar The Lie bracket of the vector fields f and g
problem for nonlinear systems, with emphasis on
bilinear systems. Sufficient conditions for the is defined by
above system to be controllable have been found, [f,g] - - -xg
and implementation for bilinear systems has been a cobian matrices. Other
discussed. If a bilinear system is controllable where - and xdenote Ja
under these conditions, we show that we can move ac an

2 Lie brackets (f.(f,g]], [g,[f,g), ... can also be
from any point x CR - {(0,0)1 to the origin, taken. The Lie algebra generated by f, g, and

0 successive Lie brackets of f and g is denoted by

1. INTRODUCTION LA.

If the system In system (2) we set

i(t) f(x(t)) +u(t)g(x(t)) , x(O) x0 cR
2
, (1) (A (x) (a l1 al2 X I

where f and g are real-analytic vector fields on Ax A (x) and2A 2~ a21 ;22j x2
R , is a linear system, then the relationship be-

tween controllability and stabilizability are known Bl(X), b b
[14]. For nonlinear systems there are some results 11x1
on "controlled stability" (2]. Recently, theorems Bx -.

giving sufficient conditions for the system (1) to {B 2 (x)j (b21 b 22fx2J

be controllable have been proved [91 and imple-
mented in the bilinear case [10]. 2

If V is a domain in R, then the following

For the bilinear system results have been proved (9].

i(t) -Ax(t) +u(t)Bx(t), x(O) - x0 tR
2
- {(0,0)1, (2) Theorem 1. Assume that Ax and Bx are linearly

where A and B are constant 2 x 2 matrices, we show independent at some point in V. Suppose every
that these sufficient conditions for controlla- integral curve of Bx which disconnects V(V- ((0,0))

bility imply that we can choose controls to drive if (0,0) is in V) contains a point p where Ax and
frBx are linearly dependent and [Ax,Bx] and Bx are

from the point x0 towards the origin along the linearly independent. Then the system (2) is
solution curves corresponding to these controls, controllable on V from any point x0 V such that
Since we are presently interested in only qualita-

tive results, we assume that it is possible to move the vector space dimension of LA at x0 is 2.

along the integral curves of the vector field Bx Thus under, the above assumptions we can reach
if necessary.

any point in V(V- {(0,0)} if (0,0) is in V) from

Two examples are used to illustrate our method. xn by choosing a finite number of controls and
lowing the solution curves of the corresponding

2. RESULTS differential equations.

Let us understand the geometric meaning of
We give the following definitions, where f and the Lie bracket [Ax,Bx] and the vector field ax

g are the vector fields from system (1). being linearly independent at p (9]. There is an

Let 0 be an open subset of R
2 

and let x £ 30. open neighborhood W of p In V such that the inte-

Then f points in the direction of 0, or toward , gral curve of Bx through p divides W into open
axhep- - connected components W, and W and f points

at x If there exists an open neighborhood W of x 2
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toward WI at all points in this integral curve on pretation of the linear independence of [Ax,Bx]

one side of p and toward Wz at all points in this and Bx, there is an open neighborhood W of p in
curve on the other side of p. In other words, the R

2 
such that Ax points toward U, on Wn C, and

vector field f "turns through" the integral curve U2 on Wn C 2 1
of Bx through p at p.

Take a line L through the origin and a point

The set of points where Ax and Bx are linearly Pi e WAC 1 of slope m. We can reach p1 by moving
dependent is the algebraic variety S defined by along the integral curve C (if x0 is in W11C,

A I(x) BI(X) there is no need in driving from x0 to a point

det A 0. like p1 ). We wish to move from p1 to the origin

.) along the straight line L. We can choose the
slope m so that

The interesting case occurs when we have an alge- i) the line L is not in the set S,
braic variety consisting of two straight lines that ii) B (x) - B(x) A 0 on L.

intersect at the origin. It is shown chat the I 2
field Bx are lin- Condition i) is obvious but condition ii) requires

sai gt r n Justification. The set of points defined by
earl: independent on one of these straight lines if 0 is a straight line through theand only if a computable constant (depending an the 1~ ~ 2 xt  Oi tagtln

line-) is nonzero [10. However, we do not use origin and therefore either intersects L only at
these computations here for the sake of brevity. (0,0) or coincides with L. If these two lines

coincide then L is an integral curve of Sx which
',e want to apply our results on controllability intersects C, another integral curve of Bx, trans-

to prove that we can move from point x0 in R2 to versally at p,1 a contradiction.

the origin in 2 . It remains to take the control u in our sys-
tem (2) to move from p1 to (0,0) along L. Thus

Theorem 2. Assume that Ax and Rx are linearly in-
dependent at some point in R

2 and that the vector we must have 2, . mx1 or A2(x) +uB2(x) - mA 1 W

space dimension of LA is 2 at every point in + muB (x). Solving for u we have

R - (O,O)1. Suppose every integral curve of Bx A2 (x) - mAI(x)
(or -Bx) either approaches the origin or discon- u m x•-B2) and i - 8 0 on L.

nects R- and contains a point p in the set
S - ((O,0)} where (Ax,Bx] and Bx are linearly inde-

pedet.Fo ay O  
2 - (,) ecnIf we substitute this u into (2) we have

pendent. For any x0 r R _ ((0,0)l we can choose

controls to drive from x0 to (0,0) along the solu-f 1 Bl(x)l
tion curves corresponding to these controls. - det A

?roof. As mentioned previously, we assume that we
can move along the integral curves of Bx. If x0 is 

I  mBl(x) -B(x)

contained in one of these curves which approach the
origin, then we certainly can move along this curve x2j AlCx) B Cx)]
(either in forward or backward time since we can 1detA
control Bx) to (0,0). Thus if all integral curves i-met
of 3x approach the origin we are through. Other- 2
wise, we have that the algebraic variety S defined mBW(x) - B(x)
by 

2

(A1Cx) B1 X) =Since LAS = (0,0) and S is defined by

de ti
(x 2 (x W B(WA Ix) B lCx)

det 0
consists of two straight lines intersecting at the AlA2 (x) B2 x)J
origin.

Suppose xO is contained in an integral curve C this control will push us from p1 to (0,0). Hence

2 we can move from xO toward (0,0) by moving along C
of Bx which disconnects R and intersects the set to p1 (if necessary) and along L from p1 to the
of points S. By moving along this integral curve origin. Q.E.D.

in forward or backward time, we can reach a point
p e S. This curve C divides R2 into two open con-
nected components Ul and U2' one of which, say U, 3. EXAMPLES

contains the origin. The point p divides C into It is well known that all controllable linear
two components CI and C2. By our geometric inter- systems on Rn are stabilizable by linear feedback

(141. Our first example is a controllable linear
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sytmx-Ax + uB in R 2.We use the2lIdeas of 0 -1)l' 1 U 0i x1 1
this paper to move from a point xEt {(O,0)) to +
the origin along an integral curve of B (if ne- _4 1x2 |

cessary) and then along a straight line to the 2j 1 2 0 4x 2 l
origin. It is interesting that the control u we 2

choose to move along the straight line is a linear - Ax+ uBx, x(O) - x CR -(O,O)1.
feedback control.

The set S of points where Ax and Bx are de-

Example 1. pendent is defined by the straight lines x1 - 2x2

and x1  - _2x The Lie bracket [Ax,Bx] and the
'1l + u 0- Ax + uB, x0  (,). vector field Bx are linearly independent at all

0j x2  1 -0 2points in S -{ (0,0)}, and this is a controllable

system [9]. The vector space dimension of LA at

The integral curves of B are vertical lines in all points of 2 - {(0,0)) is 2. Also the integral

the (x ) phase p The set S where Ax and curves of Bx that approach the origin are the pos-
itive and negative x and x axes. All other in-

Sare linearly dependent is given by x2 - .
tegral curves of Bx intersect the set S and Theorem

Since the controllability matrix {B,AEI has rank 2 applies.
2 (this is equivalent to the Lie bracket (Ax,B]
and the vector field B being linearly independent) If x0 is not contained in the x1 axis or the
our system is controllable. This implies that Ax

turns through an integral curve of B at the point x2 axis, then we move along an integral curve of
Bx to the "correct side of 5" (if necessary) and

where B intersects S. choose our line L of slope m through the origin.

If x is in the integral curve of B through Xl + mx 2

(0.0), we simply move alcng this curve to (0,0) In this case our control is given by mx1 + 4x 2
If x0 is in the open first quadrant or the posi-
tive x axis we drive along the integral curve of and with it we can move toward the origin.
B through x0 until we reach theThe results of this paper for bilinear sys-
rant. Then we choose a line L of slope m and the

A,(x) - mA (x) tems in two dimensions should generalize to more

control u - " , where complicated systems in higher dimensions. Of
-1 course instead of moving along straight lines we

probably will want to move along certain smooth
AI(x)] (01 surfaces. The development of a theory for higher

Ax = ) and B = |, dimensional problems has begun [6],f7],[8]. Sev-
A (x' ieral important papers on nonlinear controllability

2  l[1],[3],[4J,[5],[l] ,112],[13] contain results
which may prove useful in this theory.

to approach the origin. Since A 2(x) = x and
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Abstract

Consider the nonlinear system

n-l
x(t) = f(x(t)) + ui(t)gi(x(t)),x(o) = x Mi~l o

where M is a connected real-analytic n-dimensional manifold, fgl,..gn_1

are real-analytic vector fields on M, and ul,... Unl are real-valued controls.

We are interested in characterizing the largest open subset U of M, if any,

which is reachable from x and which we call the region of reachability of

our system from xo. If the Lie algebra LA generated by f,gl,...,gn1 and

successive Lie brackets has vector space dimension n at xo, and if g'gl'....

gn- 1are linearly independent at some point in M, we find the region of

reachability from xo. Suppose U is the smallest open subset of M with xo U

so that 3U contains the integral manifolds of the Lie algebra L A generated

by gl'...gn-I that intersect it and f assigns vectors on U which point in

the direction of U. Then U is the region of reachability from x for our

system. Much of the work is involqed in proving a similar result in the more

general C case under the stronger assumption that f'gl " 'gn-I are linearly

independent on the connected C® n-dimensional manifold M.
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Abstract

Let M be a connected real-analytic n-dimensional manifold, f,g,...gn-l

be complete real-analytic vector fields on r which are linearly independent

at some point of M, and ul,.. .,Unl be real-valued controls. Consider the

controllability of the system

n-l
x(t) = f(x(t)) + I ui(t)gi(x(t)), x(O) = XoEM.

i=l

Necessary and sufficient conditions are given so that this system is con-

trollable on any simply connected domain D contained in M on which

gl,... ,gn_ are linearly independent. These conditions depend on the

computation of Lie brackets at those points where f,gl,...gn-l are linearly

dependent.
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Abstract

The problem is to find sufficient conditions for the system

m
x(t) = f(x(t)) + u.tgi(x(t)), x(O) = x0  M

to be controllable. Here M is a connected C= n dimensional manifold,

f,gl,...,g m are complete vector fields C vector fields on M, and Ul,...,um

are real-valued controls. If m = n - 1, M, f, gl,..gn-l are real-analytic,

Mi is simply connected, and gl,..."'n-l are linearly independent on M, then

necessary and sufficient conditions are known. For the case of our CO

system with general m, we assume that the Lie algebra LA generated by

f, gl,-99m and successive Lie brackets has constant dimension p on M and

the algebra LA generated by gl,...,g m and successive Lie brackets has constant

dimension p' < p on M. If p' = p, Chow's Theorem implies controllability for

a p-dimensional submanifold of M containing xO. If p' < p, sufficient

conditions are found involving the computation of certain Lie brackets at

points where the vector field f is tangent to the integral manifolds of LA.

Here we assume that every integral manifold of LA contains such a point. In

many cases it is impossible for every integral manifold of LA to contain a

point where f is tangent to it. Therefore, we illustrate a method which can

yield controllability results if this occurs.
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Abstract

Consider the system

m
x(t) = f(x(t)) + ui(t)gi(x(t)), x(O) = E M,

where M is a C real n-dimensional manifold, fgl , gm are CO vector

fields on M, and ul,..., um are real-valued controls. For linear systems,

it is known that the controllable systems are dense in the set of all

systems on n. If m = l and our system is nonlinear, this is not true, but

it is shown that the set of systems whose reachable sets contain open

subsets of M is dense in the set of systems. If m > 2, then the systems which

are controllable from any point x0 e M form a dense set, for the proper topol-

ogy, in the set of all such systems. The technique used to prove the last

two statements involves the use of Thom Tranversality Theory.

These results have the obvious effect in applications. In modeling by

a system or in numerically solving a system, it is important to know if slight

v~riations in a system or approximations of a system by other systems can

radically change the controllability properties of the given system. In the

literature these types of problems are found in the study of structural

stability.
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3. JSEP Funds: Current $24,650

4. Other Funds:

5. Total Number of Professionals: PI's 2 (3 mo.) RA's

6. Summary:

The objective of the research program is the formulation of commutation-

ally efficient algorithms for fault diagnosis in nonlinear electronic circuits.

The resultant algorithm will be implemented in the form of two software

packages: an automatic test program generator (ATPG) which runs in a main-

frame computer and a fault diagnosis system (FDS) which runs in an appropriate

minicomputer based automatic test set. From an algorithmic point of view

the primary factor underlying the design of the fault analysis package is

that the ATPG is used only once for each type of circuit in inventory while

the FDS is used each time a circuit of that type fails. As such, one can

justify a complex and long running ATPG but the FDS must use both computer

time and storage efficiently. The goal of the proposed research program is,

therefore, the formulation of fault diagnosis algorithms which can be run

efficiently in this dual mode environment rather than simply the solution

of the problem.

7. Publications and Activities:

A. Refereed Journal Articles

1. Saeks, R., and R.-w. Liu, "Fault Diagnosis in Electronic Circuits",
Japan Jour. of Electrical Engineering, (to appear).
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1. Hsieh, M., "A Fault Diagnosis Algorithm for Nonlinear Circuits
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Saeks, R., "Fault Diagnosis - The Missing Circuit Theory", Duke
Univ., May 1980.
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A Differential-Interpolative Approach to
Analog Fault Simulation

C.-c. Wu, A. Sangiovani-Vencentelli, and R. Saeks

Abstract

After a half century of neglect by the circuits and systems community the

past decade has witnessed the emergence of a research effort in the analog

circuit maintenance area. The various algorithms which have been thus far

proposed for the analog fault diagnosis problem may naturally be subdivided

into two classes termed "simulation-before-test" and "simulation-after-test".

The former are commonly used in digital system test algorithms and require

an automatic test program generator (ATPG) which simulates the responses of

"all possible" failures. This is typically done at a maintenance depot with

the simulated responses being recorded and shipped to the field where the

response of the unit under test (UUT) is compared with the simulated responses

to determine the failure. The major advantage of simulation-before-test is

that it is ideally matched to the depot/field maintenance environment with the

largest part of the computation done only once. As such, the technique is

ideally suited for digital testing where the binary nature of the problem

keeps the number of failures to be simulated within bounds and eliminates

tolerence problems. Unfortunately, in the analog problem we must cope with

a continuum of possible failures and sin !neously deal with good components

which are in tolerance but not nomi" ;_ A. 'u.h, a tremendous number of simu-

lations are required by a simulatior,-before-test algorithm, while some type

of decision algorithm is required to cope with the tolerance effects.

The purpose of the present paper is to describe a research effort directed at

alleviating some of the difficulties in developing a simulation-before-test

algorithm for analog fault diagnosis.
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Fault Diagnosis in Electronic Circuits

R. Saeks and R.-w.Liu

Abstract

The state-of-the-art in analog fault diagnosis is surveyed, The specific

economic criteria which must be met by a viable fault diagnosis algorithm

are discussed and the various fault diagnosis algorithms which have been

proposed are reviewed in the context of these economic constraints.
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Post-Test Fault Simulation with Failure Limitations

C.-c. Wu, K. Nakajima, and R. Saeks

Abstract

Although numerous algorithms have been proposed for fault diagnosis in

analog circuits and systems they may naturally be subdivided into three classes:

i) Simulation-before-test

ii) Simulation-after-test using a single test vector

iii) Simulation-after-test using multiple test vectors

At the present time none of the three approaches has been shown to yield satis-

factory performance. Simulation-before-test requires an extremely costly ATPG

and some type of decision algorithm to compensate for the discretization of

component parameters and tolerance effects. Simulation-after-test using a

single test vector circumvents these problems but requires too many points

while one must solve an extremely complex set of nonlinear equations to im-

plement a simulation-after-test algorithm using multiple test vectors.

Unlike the simulation-before-test algorithms, simulation-after-test al-

gorithms do not exploit any type of failure limitation assumption restricting

the number of simultaneous failures. For instance, if a system contains 100

components, but it is assumed that no more than 3 fail simultaneously, such

an assumption can, at least conceptually, reduce a 100 dimensional problem to

a 3 dimensional problem. The open question is to find trackable methods by which

to exploit such an assumption.

The purpose of the present paper is to describe a new single test vector

simulation-after-test algorithm which exploits a failure limitation assumption
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to bring the test point requirements into line without significantly in-

creasing its computational complexity. The procedure:

i) is applicable to both linear and nonlinear systems

ii) tests a system up to any specified shop replacable assembly

iii) can be appl-ied to a sub-system in-situe

iv) and is computationally efficient both with respect to ATPG and

on-line requirements.

99



Abstract of

A Data Base for SymboibOc Network Analysis

C.-c. Wu and R. Saeks



A Data Base for Symbolic Network Analysis

C.-C. Wu and R. Saeks

Abstract

Historically, symbolic network analysis has been motivated by the prob-

lems of circuit design and, as such, the emphasis has been placed' on

quickly and efficiently obtaining a symbolic transfer function from a

given set of circuit specifications. In an operational or maintenance

environment, however, one is typically given a prescribed nominal circuit

and desires determine the effect of various (possibly large) perturbations

thereon. This is the case in a power system where one is given a fixed

network and desires to determine the effect of proposed modifications thereto.

Alternatively, in the problem of analog circuit fault diagnosis one desires

to simulate the effect of a number of alternative failures to compare the

simulated data with the observed failure data.

In such an operational or maintenance environment numerous perturbations

of the nominal circuit are studied and, as such, significant computational

efficiencies can be obtained if one first generates a data base in terms

of the nominal circuit parameters and then extracts the appropriate symbolic

transfer function from the data base each time a different symbolic transfer

is required. Of course the benefit to be achieved via such an approach is

dependent on the size of the data base and the ease with which a symbolic

transfer function may be retrieved therefrom.
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The obvious manner in which to generate such a data base is to simply

pre-compute the coefficients of all required symbolic transfer functions

and store them in the data base. Retreival from such a data base is, of

course, immediate but the data base may become overly large. Indeed, the

number of transfer functions which must be stored is O(kR) where k is the

total number of potentially variable circuit parameters and p is the maximum

number of circuit parameters which may vary simultaneously. An alternative

approach is to store the nominal transfer function information and then use

Householder's formula to compute the required symbolic transfer functions.

In such a data base we need only store O(n 2 ) transfer functions where n is

the total number of component output terminals but retreival requires

O(n 3+p3 ) multiplications where p is the actual number of circuit parameters

which vary simultaneously. Since, in practice, n >> p the retreival process

requires approximately O(n3 ) multiplications and is dominated by the large

dimensional matrix multiplication required by Householder's formula rather

than the low dimensional inverse.

In the present paper we will formulate an alternative data base for

the symbolic transfer functions which also requires O(n 2) entries, but for

which retreival requires only O(p3 ) multiplications. Since p is typically

small this is tantamount to innediate retreival.
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Multitest Diagnosibility of Nonlinear Circuits and Systems

A. Sangiovanni-Vencentelli and R. Saeks

Abstract

During the past decade a considerable research effort has been devoted

to the analog fault diagnosis problem wherein one desires to locate faulty

circuit components given the overall circuit response to one or more test

vectors. Conceptually the process may be described by a nonlinear

equation

y - f(au)

where y represents the measured response to the test vector u given the

faulty parameter vector, . Since us is know and y is a measureable

quantity the fault diagnosis problem may be resolved by simply solving the

above equation for a given u and y. Unfortunately, in practice, the

dimension of y is limited by the number of accessible test points in the

circuit and is typically smaller than the dimension of the parameter vector

thereby precluding direct solution of the ahove equation. To alleviate

this difficulty a set of test vectors; {ul,u 2, ... ,un}; is employed

yielding the set of simultaneous equations

Yi =  f(c±,ui) ; i=l,2, ... m

Since the parameter vector, a, is independent of the choice of test vector

this process effectively increases the number of available equations

without increasing the number of unknowns. More concisely, if we let

y = col(y i) and F (a) = col f( ,ui) the "multi-test vector" fault diagnosis

problem reduces to the solution of

= F
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Needless to say once this equation has been formulated its solution

is amenable to standard algorithms. The problem, however, is to determine

whether or not there exists a set of test vectors {ul,u 2 , ... ,um} such that

equation is solvable in an appropriate sense. To this end we will formulate

a diagnosibility criterion directly in terms of the function f which determines

the degree to which the equation y = F(c) will be solvable given an "optimal"

choice of the test vectors. Since this criterion is a property of the

circuit rather than the test algorithm it can therefore be used as a design

aid with which to choose test points and/or to aid in designing "testable

circuits".
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2. Senior Investigator: John J. Murray Telephone: (806) 742-3506
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4. Other Funds:
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6. Summary:

The objective 3f the work unit is the formulation and exploitation of a

one dimensional scanning model for the digital image processing problem. For

a system with an n-point raster width the resultant model is periodically

time-varying and is characterized by an n-by-n matrix of rational functions in

one variable rather than the classical two variable image processing model.

The scanning model includes edge effects and distortion phenomena inherent in

the physical scanning process. Moreover, it is amenable to the standard

analytic design techniques which have been developed for multivariate systems.

The major difficulty to be overcome in the approach is that one must work

with large matrices (n is typically a power of two between 64 and 1024).

Fortunately, these matrices are also quite degenerate and, as such, our main

effort has been directed at the development of techniques for working with

these large but degenerate matrices. If the matrix is degenerate is its in-

verse also degenerate? its spectral factors? etc.?

7. Publications and Activities

A. Refereed Journal Articles

1. Murray, J., "Some Comments on Lumped-Distributed Networks and
Differential-Delay Systems", in Applications of Algebra and
Algebraic Geometry to Linear System Theory, Providence, AMS,
(to appear).
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B. Conference Papers and Abstracts

1. Murray, J., "A Design Method for 2-D Recursive Digital Filters",
Proc. of the 13th Asilomar Conf. on Circuits, Systems, and
Computers, Pacific Grove, CA., Nov. 1979, pp. 104-107.

2. Murray, J., "A New Approach to 2-D Digital Filtering", Proc. of
the 24th Midwest Symp. on Circuits and Systems, Univ. of New
Mexico, Albuquerque, (to appear).

C. Preprints

1. Murray, J., "A Design Method for Two-Dimensional Recursive Digital
Filters", submitted for publication.

D. Theses

1. Chen, S-H, M.S. Thesis (in preparation).

E. Conferences and Symposia

1. Murray, J., 13th Asilomar Conf. on Circuits, Systems, and Computers,
Pacific Grove, CA., Nov. 1979.
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A DESIGN METHOD FOR 2-D RECURSIVE DIGITAL FILTERS

John Murray

Electrical Engineering Department

Texas Tech University

Lubbock, Texas 79409

Abstract

A method is described for the design of two-dimensional half-plane recursive

digital filters, in the form of a cascade connection of filters which are

of second order in the (principal) direction of recursion, and of arbitrar-

ily high order in the other direction. The filters thus derived are shown

to be automatically stable, but yield poor responses in the vicinity of

very wide or very narrow bandwidths. Some techniques for tackling these

difficulties are discussed, and the results of applying these design proced-

ures are shown.

2. INTRODUCTION metric half-plane filters.

Although several excellent design procedures 2. SYMMETRIC HALF-PLANE FILTERS

for two-dimensional recursive digital filters Although the idea of a nonrecursive symmetric

are known, the experience of classical one- half-plane filter has been known for a con-

dimensional filtering (both digital and ana- siderable length of time [2], and has recent-

log) strongly suggests that no one technique ly been used as the basis for a very success-

is best for all problems likely to be encount- ful design'algorithm [3j, we will confine our-

ered. In particular, it appears that a design selves here to recursively implementable sym-

procedure which sacrifices accuracy or imple- metric half-plane filters. The most general

mentation efficiency to simplicity of design such filter has a denominator of the form

would be of value. This is especially the M N m n
A(ZI,Z 2) + I an 1 2

case in some image processing applications, m=l n=-N

where the classical design objectives of low The price paid for restricting the denominator

ripple, narrow transition bands, etc., can be in this way is that one can not approximate an

sacrificed to some extent without significant arbitrary magnitude specification using such

loss of performance. In a continuation of denominators alone; one must also use a one-

some previous wdrk [l], such a procedure is dimensional "compensating" filter in the Z2 -

presented here. We will assume that the direction.

filter specification is given in the form of we further restrict our denominators by re-

a frequency response to be approximated on the quiring that they be products of second-order

square (-ws]x[-,,), and that this response factors in Zl; thus our "elementary" filters

has quadrantal symmetry. The design will be are of the form

in the form of a cascade of recursive, sym-
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H(Z 1,Z2) ......... unfortunately, however, it is transcendental
l+P(0 2)Z1  q(G 2)Z1 as a function of Z2. Thus the final step in

JC2 ,

where Z= e , and p(e) and q(e)are trigon- the design procedure is the following:

ometric polynomials of order N and have real d) Approximate r(0 2 ) and s(C2 ) by trigono-

coefficients (because of the assumption of metric polynomials, and approximate p(02 ) and

quadrantal symmetry). q(G2 ) by trigonometric polynomials in such a

For recursive symmetric half-plane filters, way that the inequalities (2) continue to

the stability conditions are given by hold. (Since the one-dimensional filters de-

signed in step b) are stable, the transcen-A(z1,z2) 0 for Ii<L,jz 21 = 1.
dental functions p(32) and q(®2 ) obtained in

In the second-order case this is equivalent step b) satisfy the inequalities (2) automat-

to (in the notation in M) ically).

Ip(E 2) I< 1 + q1 .2,. 2V 2*...... (2) Approximating r(9 2 ) and s(02) is easy, since

This is the stability condition with which in these cases the approximation is uncon-

we will work. strained. In order to approximate p(G 2 ) and

3. THE DESIGN PROCEDURE q(32 ) while preserving stability, we proceed

We assume that a frequency specification as follows:

h (192) is given; we want to design a stable Pick any trigonometric polynomial P(,) of

filter whose denominator is a product of order N with the following properties:

factors of the form (i). (We will actually i) P(a) ?. o V a
take the numerators to be of this form also). ii) 1Wf P(O)de = 1

We proceed as follows: iii) P(O) is a good approximation to 6(a)

a) For each value of 32' we get a one- (Dirac Delta).

dimensional frequency specification in 9l: Then the functions

h2( ) = h(Ol, a p(e) = - P(e-*)p(o) do
2an

b) For each value of C2, we use any of and

the design procedures available in one dimen- q(C) = 1-fP(e-o)q(s) do

sion to design a stable, one-dimensional re- can be seen to satisfy the inequalities (2)

cursive filter, in the form of a cascade of (by using the properties i) and ii) above,

second-order sections, to approximate the and the fact that p(G) and q() satisfy (2)).
specification h (0 ). A single section

i2  1 Further, P(W) and q(e) are trigonometric poly-
would look like:

nomials of order N, since P(e) is, and by
. 1 + r(e )z 1  + SOe)z z2

(zlez) - k(e 2 1  2 1  property iii), p(e) and q(9) should be good
"1 + p( 2 )Z1  q(e 2 )21  approximations to p() and q(),respectively.

c) If we now ignore the factor k(8 2) In more familiar terms, this procedure con-

(which goes to form the one-dimensional com- sists of truncating the Fourier series for

pensating filter), what we have is a two- pe and q(G) and windowing with the Fourier

dimensional symmetric half-plane filter; 14 coefficients of P(). The simplest choice of



window function whose Fourier transform satis- second-order Butterworth filter in detail.

ties i), ii) and iii) is probably the trianou- (Hi<her-order sections are virtually identi-

lar window, whose coefficients are given by cal; only a single constant needs to be

wN(n) n1 In l l N changed.)
N 0 nl > N.

Our ideal response 
is given by

In this case P(o) is the Fejer kernel. h(e1 'o2) 1 l 11 ' 192 1

When the weighting and windowing procedure 0 e11 > le21

was applied in practice (with a triangular For each fixed 0 2, this gives a one-dimension-

window) the amplitude response of the result- with cutoff frequencyal lowpass filter in C1 ,wihutffrqey

ing filters was found to deviate enormously equal to 1 21 The bilinear transform of a

from the desired response at points where the second-order lowpass Butterworth filter is

bandwidth was close to 0 or close to w. This 2 2W(I+Zl )

deviation took the form of immensely under- W c2 ...... (3)

damped response. Further analysis showed that c cl cl I c

this could be cured by a variation of the a- and in order to make the cutoff frequency of

bove procedure. This consisted of applying this filter equal to e2 , the usual frequency

the truncation and windowing procedure to the warping relationship indicates that we must

functions take

/I + q + p W c  = I tan 0 '21 ........... (4)

and i1 + q- p Now (3) can be written in the form
to obtain two trigonometric polynomials a and l2r(O2)zl S(O2)z2

k(C2 2 Z1 s 2 1

2  l+p(0 2 )Zlq( 2)Z2

The finctions p(O) and q(O) are then calculat-

ed from where
12 22

p(o) = (a
2 

+ 8
2
) -1 k ( 2) c

and q () 1 2 - 2 c c

It is easy to see that the p and q given by r(i2) = 2

this procedure are again stable, and as shown s(O2 ) = 1
in the next section, they yield quite satis- 2(W2-1)

factory responses. However, this procedure W2 +1(O 2i
c c

does have the disadvantage of doubling the a 2_/7W+1

order of the filter in Z2 . and q(e2) = -

4. EXAMPLES W c

In order to make the above more concrete, an and cis given by (4) in all of the above

example consisting of a 900 fan filter will be formulas.

presented. For simplicity, -e will design our Thus, in order to design a filter which is of

one-dimensional filters in Z I as Butterworth order 2 in Z1 and order N in Z2, it is neces-

#1ters, and will develop only the case of a sary only to find the first N Fourier
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coefficients of each of the functions
2W

il+q+p = c

c c

/W -+ _wc+l  ' 61.

and to window these coefficients with a tri- ', \' :% , i,\

angular window. The polynomials p(9) and

q(0) may then be easily calculated by use of

the formulas in section 3. The one-dimension-

al compensating filter can be designed using

any standard one-dimensional design procedure. . . ..

The amplitude response of a second-order fil-

ter with N=8 is shown in Fig. 1, and that of

an eighth-order filter with N=20 is shown in

Fig. 2. In each of these filters, the one-

dimensional compensating filter is a FIR fil-

ter of order N.

S. CONCLUSIONS

A quick, simple method for designing a class

of two-dimensional recursive digital filters

has been presented. Although the designs

achieved using this method are not optimal,

they are guaranteed to be stable (apart from

possible numerical error), and can yield

respectable results for sufficiently high

orders. The computation time required is

Somewhat greater than that required for the Fig. 2. M =8; N = 20

calculation of (M+l) (N+l) Fourier coefficients,

where M is the order of the filter in Z1 , and

N is the order in Z2 .
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Abstract of

A NEW APPROACH TO 2-D DIGITAL FILTERING

John Murray



Abstract

A new approach to two-dimensional digital filtering is presented. It

is based on a periodically time-varying model which accurately roflects

the scanning process inherent in most recursive multidimensional signal

processing. Such models are essentially equivalent to multi-input, multi-

output, one-dimensional time-invariant systems, and therefore permit the

application of classical techniques to design and analysis problems. Two

further advantages of this approach are its flexibility and the fact that

it by-passes the problem of boundary conditions.
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Abstract of

A DESIGN METHOD FOR 2-D RECURSIVE DIGITAL FILTERS

John Murray



Abstract

A method is described for the design of two-dimensional half-plane

recursive digital filters, in the form of a cascade connection of filters

which are of second order in the (principal) direction of recursion, and

of arbitrarily high order in the other direction. The filters thus derived

are shown to be automatically stable, but yield poor responses in the

vicinity of very wide or very narrow bandwidths. Some techniques for

tackling these difficulties are discussed, and the results of applying

these design procedures are shown.

123

• ' ' % I..
. . ... .. . . r ' 

-
, , , ,



Abstract of

A DESIGN METHOD FOR TWO-DIMENSIONAL

RECURSIVE DIGITAL FILTERS

J. Murray

MOM-
MEN" -



Abstract

A method for designing two-dimensional, symmetric half-plane recursive

digital filters is presented: a filter is tirst designed as a parameterized

family of one-dimensional filters; a simple approximation is then used to

find a rational, stable two-dimensional filter. Some advantages and

disadvantages of the method are discussed, and several examples are given.

I
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Abstract of

SOME COMMENTS ON LUMPED-DISTRIBUTED NETWORKS

AND DIFFERENTIAL-DELAY SYSTEMS

J. Murray



Abstract

An analytic approach to the similarities and differences between

lumped-distributed networks and differential-delay systems is presented.

This approach is based on the calculation of the spectrum of a commutative

Banach Algebra of appropriate convolution operators; it is shown that this

calculation naturally involves the two complex variables approach of

lumped-distributed circuit theory, and thus gives a link between this and

the convolution approach. Further, when this spectrum is drawn, it gives

some intuition for the systems in question; for example, it becomes clear

that the passive synthesis problem is two-dimensional, while the stability

problem is one-dimensional, unless delays of arbitrary length are considered.

It also shows that the analog of the Nyquist criterion in this situation

involves two "winding numbers".
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Texas Tech University Institute for Electronic Science

Joint Services Electronics Program Research Unit: 5

1. Title of Investigation: Detection and Estimation in Imagery

2. Senior Investigator: Telephone: (806) 742-3500

3. JSEP Funds: Current $24,650

4. Other Funds:

5. Total Number of Professionals: PI's 2 (1 mo.) RA's 1 (1/2 time)

6. Scientific Objective:

Although the estimation problem in image processing is conceptually

similar to the estimation problem which arises in a communications context,

in reality the two problems have little in common. In particular, the optical

noise phenomena encountered in image processing are highly nonlinear while

the immense quantity of data associated with an image (typically ranging

from 1/4 Megabyte to 16 Megabytes per frame) precludes the use of many

classical detection and estimation algorithms. The purpose of the present

work unit is to develop an alternative class of estimation algorithms designed

to cope with the reality of the image processing problem.

7. Publications and Activities

A. Conference Papers and Abstracts

1. Froehlich, G., Walkup, J., and T.F. Krile, "Some Effects of
Signal-Dependent Noise on Estimator Structures", 1980 OSA Meeting,
Chicago, Oct. 1980.

B. Preprints

1. Froehlich, G., Walkup, J., and T. Krile, "Estimation in Signal
Dependent Film-Grain Noise", submitted for publication.
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2. Froehlich, G., Walkup, J., and T. Krile, "Multiple Parameter

Estimation in Signal-Dependent Noise" submitted for publication.

C. Theses

1. Froehlich, G., "Estimation in Signal Dependent Noise", Ph.D.
Dissertation, Texas Tech Univ., 1980.

2. Kasturi, R., Ph.D. Thesis, (in preparation).

D. Conferences and Symposia

1. Walkup, J.F., Krile, T., Froehlich, G., and R. Kasturi, 1980
OSA Conf., Chicago, Oct. 1980.

2. Walkup, J.F., and T.F. Krile, "Gordon REsearch Conf. on
Holography and Optical Information Processing", Ventura, CA.,
June 1980.
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ABSTRACT OF

SOME EFFECTS OF SIGNAL-DEPENDENT NOISE ON ESTIMATOR STRUCTURES

Gary K. Froehlich, John F. Walkup and Thomas F. Krile



Abstract

Optimal estimators are derived for a very general measurement model

which can be made to include (or exclude) a signal-dependent noise term.

The estimators include minimum mean-square error (MMSE), maximum

a poste,Lou (MAP), and maximum likelihood (ML) estimators. Then, for the

specific case of photographic film-grain noise, the sensitivity of the

estimators' structures to the strength of the signal-dependent noise term

is described. In addition, the performance of each estimator is found by

simulation, and compared with the performance under various mismatched

conditions wherein certain a pziotL assumptions about the signal statistics

are violated.
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ABSTRACT OF

ESTIMATION IN SIGNAL-DEPENDENT FILM-GRAIN NOISE

G. Froehlich, J. Walkup and T. Krile



Abstract

Optimal estimators are derived for a signal-dependent film grain noise

model, and the effect of signal-dependence on the estimators' structures

is investigated. Due to the mathematical complexity of these optimal

estimators, various suboptimal estimators are proposed. Computer simulations

are then presented which compare the optimal and suboptimal estimators with

regard to mean-square estimation error, sensitivity to signal-dependence,

and robustness (with respect to the a puLo Li probability density of signal).
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ABSTRACT OF

MULTIPLE PARAMETER ESTIMATION IN SIGNAL-DEPENDENT NOISE

G. Froehlich, J. Walkup, and T. Krile



Abstract

A general model incorporating signal-dependence noise is introouced.

Joint maximum a postmLoti (MAP) and joint maximum likelihood (ML) estimators

are derived, followed by a discussion of the effects of statistical coupling

between adjacent measurements and nonstationarity on the part of the signal.

An alternate approach, using state-space methods, is also discussed.
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Texas Tech University Institute for Electronic Science

Joint Services Electronics Program Research Unit: 6

1. Title of Investigation: Pointing and Tracking

2. Senior Investigator: Thomas G. Newman Telephone: (806) 742-2571

3. JSEP Funds: Current $24,650

4. Other Funds: Current $19,983*

5. Total Number of Professionals: PI's 1 (1 mo.) RA's 1 (1/2 time)

6. Summary:

The goal of the program is the formulation of a group theoretic

approach to the pointing and tracking problem. Typically, one is given a

scene containing several objects moving in different directions and at

different velocities; say an airplane, a missile, and a cloud, all in front

of a fixed background. The solution of the pointing and tracking problem

requires that we distinguish between the various objects and simultaneously

track the motion of a prescribed object.

Although the motion of an object as seen in the plane of a camera (radar,

sonor, etc.) can clearly be characterized by a pair of Cartesian coordinates,

this results in an extremely complex equation of motion for the image of a

rigid body which is, in fact, moving with six degrees of freedom in three

space. Rather, we choose to model the motion of the image by a Lie group

(of tr..slations, rotations, magnifications) which results in a greatly

simplified equation of motion.

*ARO Contract for a study of the numerical problems associated with the
extraction of multiple moving paterms from imagery.
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7. Publications and Activities

A. Conference Papers and Abstracts

1. Newman, T.G., and D.A. Davis, "Lie Theoretic Methods in Video
Tracking", Proc. of the MICOM Workshop on Imaging Trackers and
Autonomous Acquisition Applications for Missle Guidance, Redstone
Arsenal, Nov. 1979, pp. 166-174 (GACIAC-PR-80-OI).

B. Preprints

1. Newman, T.G., "Lie Groups and Lie Algebras in Video Tracking",
submitted for publication.

2. Fredricks, G.A., and T.G. Newman, "Method in Differential Geometry
with Application to Video Tracking", submitted for publication.

3. Fredricks, G.A., "Canonical Forms for Nondegenerate Second Order
Linear Partial Differential Operators and Equations" submitted
for publication.

C. Theses

1. Zlobec, L. "Pattern Matching by Means of Adaptive Control",
M.S. Thesis, Texas Tech Univ., May 1980.

2. Demus, D.A., M.S. Thesis, Texas Tech Univ., (in preparation).

D. Conferences and Symposia

1. Newman, T.G., Inter. Symp. on Ill-Posed Problems: Theory and
Practice, Univ. of Delaware, Oct. 1979.

2. Newman, T.G., Workshop on Imaging Trackers and Autonomous
Acquisition Applications for Missle Guidance, Redstone Arsenal,
Nov. 1979.

E. Lectures

1. Newman, T.G., "An Inverse Problem Related to Video Tracking",
Univ. of Delaware, Oct. 1979.

2. Newman, T.G., "Application of Lie Theory to Viedo Tracking",
Invited Address at the Advanced Technology Center, Voight Corp.,
Dec. 1979.
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LIE THEORETIC METHODS IN VIDEO TRACKING

Thomas G. Newman and David A. Demus
Department of Mathematics

Texas Tech University
Lubbock, Texas 79409

ABSTRACT

Consider a 2-dimensional image in which objects are in motion
through trajectories describable by translation (both horizontal and
vertical), rotation, and magnification. The trajectory of such an object
can be completely described by a 4-vector of parameters (t)'(XlX 2 ,A3,X4)
which determine the velocities with respect to the four possible motions.
If the data at time t and position x in the view plane is written as
F(t,x), then we can show that

3F 
4

at W i()XiF,i=l

where X1 , X2 , X3 and X4 are certain (known) differential operators asso-
ciated with the group of motions.

The derivatives appearing above may be evaluated numerically at
various points in a given time slice to produce a system of linear
equations which may be solved for the motion parameters. Evaluation
at points within a moving rigid body leads to a vector of motion param-
eters unique to that particular body. In principle, at least, this
technique permits application to tracking as well as segmentation of
images based on relative motion of various objects.

The paper concludes by presenting the results of having implemented
the above method on digitized video images.

INTRODUCTION

A complex three dimensioral scene may contain an arbitrary number
of objects, each of which is in motion relative to a stationary background.
The trajectories of the various objects may or may not be the same. When
such a scene is projected on a viewing plane (for example, through the use
of a television camera), the various objects appear as moving regions which
vary in time in a complex fashion as a result of their actual trajectories
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in space. Variations due to certain trajectories, Tuh as rotation about
a line parallel to the image plane, are not readily predictable. Pre-
viously unseen patches of the surface of an object may be brougnt into
view for the first time, while others may disappear. in addition, a
near object may pass between the camera and a distant object, occluding
all or part of the latter.

The situation is further complicated in case mobility is provided
at the camera. Motion of the camera results in an opposing change in
the apparent motion of all of the objects in the scene, including back-
ground. In many applications camera mobility is desirable or even
necessary. For instance, in tracking applications the motion of the
camera is required to stabilize a particular portion of the scene within
the viewing field. Although this may in general be impossible, as with
the rotating objects mentioned above, a fair degree of stabilization
with respect to position, size, and orientation can be achieved.

In the following sections we present a model for describing motion
in images which is valid in a large number of practical applications Rnd
which is a reasonable approximation in many others. A novel feature is
that camera motion and relative motion of objects within a scene are
both described within the model.

THEORETICAL MODEL

Let G be a Lie group of transformations on an analytic manifold M.
Suppose G has dimension n while M has dimension m. Let x and y denote
the coordinates of elements f and g in G, respectively, in a patch con-
taining the identity element e of G. Also, let p denote coordinates of
an element u of M in some patch in M. We may then express the coordinates
z of the product h = fg and the coordinates q of the element v = gu,
relative to suitable patches, by means of analytic functions

z - J(x,y) (1)

q - K(yp) (2)

K and J are vector-valued, having values in n-dimensional space Rn

or Cn and m-dimensional space Rm or Cm . Hereafter we shall assume that
these underlying spaces are real. We denote the ith component of J by
Ji and the jth component of K by Kj.

In order to define the Lie algebra of G we first introduce real-
valued maps on G by

P (x) = (xy)l (3)
ij 3*y*(XY)y=e~
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where i and j each range from 1 to n. rhe cross-section P*j . which con-
sists of the Pi4 as i ranges from 1 to n, and i Is fixed, may be thought
of as a vector lield in Rn. Such a vector field attaches to a point x
the vector P*j(x). As such, P*1 ,P*2 ,...,P*n form a basis for the tangent

space at the point x [1,2]. In view of the correspondence between elements
f in G and the coordinates in Rn, the tangent vectors are implicitly
attached to the elements of G.

In terms of the above vector fields we may express the infinitesimal
transformations of G by defining, for each j = 1,2,...,n,

n a (4)X j = i I P ij (x) axi  * 4

The differential operators so defined are to be considered as linear
operators on the space of analytic functions on G, or, more generally, on
the space of differentiable functions on G. The Lie algebra of G is simply
the n-dimensional vector space consisting of all linear combinations of
these operators, and will be denoted by L(G) [2].

Now it is a surprising and useful fact that the Lie algebra of G
may be defined in terms of its actions on the manifold M. Analogous to
(3) we define

3Kf:a< p  - (Y' p ) i~e (5)

for a = 1,2,..., m and j = 1,2,..., n. Finally, as in (4) above we set

m Q B (6)

The operators X .... X span a Lie algebra L'(G) which is also of dimension
n. Note that these operators act on functions defined on the manifold M.

Many interesting relationships may be shown to hold between the two
representations of the Lie algebra of G as given abeve. However, the
following property is of immediate interest to our application:

Theorem 1: Let f: M-R be differentiable and define F: GxM.-R, in terms
of coordinates by

F(x,p) - f(K(x,p)). (7)

Then for each j = 1,2,..., n we have

X F - X'F. (8)
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Proof: First we shall show that for each j 1,2,... , we i,ave

X - X'K. (9)
j j

We note that from the action of G on M we obtain

K(J(xy),p) -K(x,K(y,p)) (10)

for all x,y and p in suitable coordinate patches. Application of the
operator

Dy i ly=e

to both sides of (10) gives

aKa (J(x,y),p) n aJk(X,y) 3K (x,p)
aYi lY=e -- 1 aY y=e ax -ye k=l a~l ax

n 3K (x,p)
P()ax = X K (x,p)

k= 1

for the left hand side and

;K Ot(x,K(y,p)) m a (y.p) ;K O(x,p)

y e z 3 I  ;P6

m K (x,p)
Z ( - = X'K (xp)

$=I ( P )  apa
3=1

on the right hand side. From this it follows that XjK = XjK as desired.
Now setting q = K(x,p) and performing a computation similar to that above,
we find that

m
X. F(x,p) = X K (x,p) 3f(q)

a=l aq a

and that
m

X'F(x,p) I X!K (x,p) "f(g)J a=l ja 8c

The result of the theorem follows immediately from this and our preliminary
result.
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Now let us consider a curve t- g(t) in G catisfying g(O) = e. In
terms of a coordinate patch at e, g(t) may be descri'ed by a curve x(t)
in Rn satisfying x(O) - 0. We shall consider the case in which x(t) is

given as tLe solution of an evolution equation of the form

n

i(t) = xi(t)P*i(x(t)), x(O) -, (11)
i=1

where P*,,... ,P*n are cross-sections of the array of functions given by
(3), and the control functions Xl(t),....,X(t) dre suitable continuous
functions. The latter are the parameters of motion, and have the char-
acceristics associated with velocity, thereby providing a basis for the

continuity assumption.

Now let p denote the coordinates of a point u in some coordinate

patch. For a differentiable map f: M-R we may define H: RxM-R by setting

H(t,p) = f(g(t)u). (12)

We recognize that H(t,p) = F(x(t),p) where F is the extension of f to
GYM as in Theorem 1 above. From the point of view of application, if we
regard f: !-P as an image, then H(t,p) represents the moving image obtained
by translation due to the curve g(t). We may now present our main result.

Theorem 2: In the context described above we have

;H n

at n ) (t)X!H. (13)

Proof: We have

H IkaF(x(t),p) n
- tx. j=l

n n
A( X (t)P ji (x(t,)))a-- (x(t)', =

j =i _ i ~ X

n n )F

(t)(= P i(x(t)) (x(t),p) =

n

Si(t)XiF(x(t),P).

i=l
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By Theorem I we have X iF XI'L'. But clearly Xj7(x(t),p) = XjH(t,p), so that

i=l1

as desired.

We should observe that the results above are presented as local
properties which hold in suitable neighborhoods and appear to be highly
coordinate dependent. As a matter of fact, though we shall not attempt
to prove it here, the underlying vector fields continue globally through-
out both G and M to give corresponding global analogues of these theorems.

The primary importance of Equation (13) lies in the fact that it
gives a linear equation in the control parameters '!,. .. ,Xn with coeffi-
cients that are in principle observable, since the values U(t,p) constitute
the data.

In the next section this result will be applied to the problem of
tracking spatial objects through the use of two-dimensional projections.

APPLICATIONS TO VIDEO TRACKING

The control system for the Real-Time Videotheodolite (RTV) pemnits
four basic motions of the camera [3]. These are azimuth, elevation,
electronic rotation of the view plane, and lens zoom. When the effects
of these motions on the viewing plane are scrutinized, we see that they
correspond, respectively, to horizontal translation, vertical translation,
rotation, and magnification - at least to a satisfactory degree of approx-
imation. Moreover, inspection of a number of real images reveals that a
surprisingly large number (but not all) motions of spatial objects, when
projected on the viewing plane, are likewise well approximated by these
four motions in the plane.

Thus with only a mild apology we restrict our attention in what
follows to the group G generated by horizontal and vertical translations,
rotation, and magnification. The corresponding generators for the Lie
algebra of G are as follows:

x =- (14a)

x (14b)

X3 = ,c-- a (14c)

a + (14d)
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In these equations we are using x and y -is coordinates in the vlew plane
M - RxR and have represented the infinitesimal tranfer:ticns as they
act on M.

Let us note that in the theorems of the previous section it was
assumed that the trajectories of all of the points of M were derived
from the same evolution equations. However, for complex scenes we find
that various objects may be present which have different trajectories.
A little reflection reveals, nevertheless, that the conclusions of Theorem
2 remains valid as long as we avoid the boundaries between objects or
regions having different trajectories. In the present context, we may
paraphrase the results of Theorem 2 as follows:

Theorem 3: Let H(t,x,y) be a time varying two dimensional Lmage. Within
the interior of each object in the image which is moving along a C-
trajectory, we have

H 4
-  I X (t)xiH ,  (15)

i=l1

where Ai.  4 are continuous functions and X1 ,...,X 4 are given in (14).

Upon evaluation of the various derivatives appearing in (15) at
each point of a suitable grid, within a given time slice, we obtain a
system of linear equations which may be solved for the parameters of
motion, A1 ,...,A 4 . In the example to be presented, a 3 Y 3 grid was used.

A sequence of digitized viieo images showing the launch of a Fawk
missile were obtained from the U.S. Armv White Sands Missile Range. The
images were trimmed to 128 x 128 pixels from full frame interlaced video
in which each raster line was sampled 512 times.

One of the frames is shown in the upper left of the illustration
below. Of noteworthy interest, we mention the "cold plume" region (lwer
left) which can be seen billowing out behind the missile. Although hardly
discernible, the foreground contains several buildings .nd other ground
clutter.

By evaluation of Equation (15) at each point of a 3 x 3 neighborhood
of each pixel, nine equations in the four parameters l,...,, 4 were obtained.
In the upper right frame of the illustration, we see the results of scaling
the horizontal translation component, X, for display. The effecL of image
noise and truncation error is apparent from the rapid transition from
white to black in this view. This component of the velocity profile was
passed through a median filter to obtain the image shown in the lIrwer
left of the illustration. Finally, in the lower right we see the results
of thresholding, about X1 = 0. In this image the dark region indicates
points which are at rest relative to the camera (which was apparently
successfully tracking the missile), while the .:hite rcgons appear to be
moving with respect to the camera.
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It is interesting to note that the cold rLgoon oF the plume l.as

been correctly classified with the background, ,hile the h>t regior of
the plume appears to be moving with the missile.

Ti

(011 -

-.

Figure 1. Processing the launch of a Hawk missile.

Similar results were obtained %.ith other parimeters and with otrier

images. These results are encouraging, although the numerical methods

employed are clearly too susceptible to noise and truncation. Better

computational procedures are being explored, including one technique

which is based on integration rather than differentiation.

SUMkRY AND CONCLUSIONS

We have developed a fundamental equation satisfied by moving images

which uses Lie theory to determine the trajectories of various objects

within an image. The theory has been implemented on real data with some

success. 'While the implementation suffers from the effects of random

noise and truncation errors, the results obtained have shown sufficient

success as to be encouraging. We feel that the computations can be

greatly improved by the incorporation of better numerical methods.
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Abstract

Motion of objects in time-varying images can sometinies be described

by the action of a group of transformations on the image plane, regarded

as a manifold. Moreover, the transformation groups occurring in applications

can generally be described analytically in terms of a finite number of

parameters; that is to say, they are Lie groups. In this situation we

show that that data satisfies a linear partial differential equation in

which the parameters of motion appear as linear coefficients. More or less

standard numerical methods permit these parameters to be determined.

The parameters of motion determined as indicated above may be regarded

as a velocity profile. This profile has the useful property of being

spatially constant for each moving object in the image. In principle,

at least, this permits detection and tracking of various objects having

different trajectories.

Following development of the appropriate theory, the paper concludes by

presenting the results of applying the technique to a number of real images

in the form of digitized video.
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Abstiract

We present some results concerning the interplay between various

vector fields arising from the action of a Lie group on a smooth manifold.

Although the proofs are elementary, the results are both surprising and

applicable. In the last section we show that the fundamental partial

differential equation in the main theorem is at the mathematical foundation

of video tracking.

I
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ABSTRACT OF
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LINEAR PARTIAL DIFFERENTIAL OPERATORS AND EQUATIONS
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Abstract

The classical canonical forms theorems for second order linear

partial differential operators and equations in two variables are

generalized to n variables for nondegenerate operators. These general-

izations are geometric, involving the Riemann curvature tensor and the

conformal curvature tensor of Weyl and Schouten. A Sylvester Theorem

for symmetric matrices with smooth entries is also proved.

1

I
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Texas Tech University Institute for Electronic Science

Joint Services Electronics Program Research Unit: 7

1. Title of Investigation: Image Processing System

2. Senior Investigator: John F. Walkup Telephone: (806) 742-3500

3. JSEP Funds: Current $33,025
+

4. Other Funds: Current $I0,000*

5. Total Number of Professionals: None#

6. Summary:

The purpose of the work unit is to partially fund the purchase of an

image processing system to be used in support of the research associated

with work units 4, 5, and 6. Each of these work units deals with an aspect

of the image processing problem and in each case experimental validation

of the various theoretical investigations is required.

i. Budget: Total funding for the purchase of the image processing

system will be approximately $247,000 derived over the three year contract

using capital equipment funds derived from this work unit, work units 4, 5,

and 6 together with College of Engineering and University matching funds.

We have also negotiated an agreement with the university for financing the

system with the equipment being ordered at the beginning of the contract

period but billed to ONR in three separate federal fiscal years as required

by the contract.

*State of Texas matching funds for this work unit.

#This work unit represents a request for capital equipment funds. Personnel

using the equipment will be supported by work units 4,5, and 6.

+In addition to this supplemental, capital equipment funds from regular work
units 4,5, and 6 will be used for the purchase of the image processing
system in the amount of $31,000 for the year.
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ii. Host Computer: We have recently completed the purchasing process

for the host computer for the image processing system and submitted a

purchase order to Digital Equipment Corp. for a "Unibus VAX". This is

essentially a VAX 11/780 CPU with PDP 11/70 peripherals. As such, we

obtain the power and expandability of the VAX CPU at a price close to that

of the PDP 11/70. The VAX CPU will have a 1 1/4 MB of random access memory,

two 28MB disks, and a 1600 bpi tape drive.

iii. Image Display/Array Processor: A Comtal/3M Vision 120 display

system has been ordered. The system includes memory for 3 image displays

and four graphics planes, full arithmetic capability and a high level

firmware operating system as well as interfaces to the VAX 11/780.

iv. Delivery: Both the computer and display are scheduled for

delivery in the late spring or early summer of 1981 and, as such, we expect

to have the system up and operating during the summer of 1981.

7. Publications and Activities:

A. Conferences and Symposia

1. Saeks, R., 1980 ACM Computer Graphics Conference (SIGGRAPH/80),

Seattle, July, 1980.
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Texas Tech University Institute for Electronic Science

Joint Services Zlectronics Program Research Unit: 8

1. Title of Irvestigation: Director's Discretionary Fund

2. Senior Investigator: R. Saeks Telephone: (806) 742-3528

3. JSEP Funds: Current $19,075

4. Other Funds:

5. Total Number of Professionals: To be Determined

6. Summary:

During the past year the directors discretionary fund has been used

to complete work on a large scale systems work unit from the 1978/79 JSEP

program (mainly running examples of the theory which was developed previous-

ly and preparing publications), to initiate work on a new approach to

integrated circuit design, and to begin a preliminary investigation of the

potential for parallel processing in system theory.

7. Publications and Activities:

A. Refereed Journal Articles

1. Karmokolias, C., Portnoy, W., and R. Saeks, "Optimal Selection
of IC Fabrication Parameters", Inter. Jour. of Circuit Theory
and its Applications (to appear).

B. Conference Papers and Abstracts

1. Green, B., Saeks, R., and K.S. Chao, "Continuation Algorithms
for the Eigenvalue Problem", Proc. of the 1980 IEEE Inter.
Symp. on Circuits and Systems, Houston, May 1980, p. 775,
(abstract only).

2. Iyer, A., and R. Saeks, "Numerical Implementation of a Continua-
tion Algorithm for the Eigenvalue Problem", 1980 IEEE Inter.
Conf. on Circuits and Computers, Port Chester, Oct. 1980, pp.
437-440.
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C. Preprints

1. Green, B., Saeks, R., Chao, K.S., and A. Iyer, "Continuation

Algorithms for the Eigenvalue Problem", subjitted for publication.

D. Theses

1. Iyer, A., "Numerical Implementation of a Continuation Algorithm
for the Eigenvalue Problem", M.S. Thesis, Texas Tech Univ., 1980.

E. Conferences and Symposia

1. Saeks, R., 1980 IEEE Inter. Symp. on Circuits and Systems,
Houston, May 1980.

2. Iyer, A., and R. Saeks, 1980 IEEE Inter. Conf. on Circuits and
Computers, Port Chester, Oct. 1980.
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IJUMERICAL IMIPLEMENTATION OF A CONTINUATION
ALGORITHM FOR THE EIGENVALUE PROBLEM

A. Iyer and R. Saeks
Department of Electrical Engineering

Texas Tech University
Lubbock, Texas 79409

ABSTRACT: An algorithm for the solution of the sparse. 10 As such, the computational benefits of
einaue problem for a continuous parameterized working with the sparse matrix M will be lost if
family of sparse matrices is presented. A con- one attempts to integrate equations 1.1 through
tinuous LU (or LR) algorithm is implemented re- 1.3. This is mostly readily illustrated by letting
cursively. The sparsity of the given matrices i S col(f) be the n by n matrix whose rows are
preserved throughout the numerical process.te y ati woe os rdefined by the eigenvectors of M*. Then, assuming

I. Introduction that the eigenvectors are properly normalized

S- = row(ei) is an n by n matrix whose columns
In recent years a number of stability tests are the eigenvectors of M, allowing us to trans-

for linear systems have been proposed which re- form the simultaneous differential equations 1.1
quire the evaluation of the eigenvalues of a con- through 1.3 into a matrix differential equation s

tinuously parameterized family of sparse matrices in the form
for their implementation. Most notably of these Sl
are the multivariate Nyquist test of MacFarlane, S WESMS . IS (1.4)
et al., 7 the application of the multivariate T = SMS 1  (1.5)
Nyquist test in an interconnected systems con-
text, 3 and a "root locus like" formulation for where WC * I is in an appropriate matrix valued
interconnected systems. 3,' Typically, one employs function of two matrix valued variables (which
a classical eigenvalue package at a sequence of defines the coefficients of 1.3) and T is a diag-
parameter values, possibly with special software onal matrix of eigenvalues. As such, the simul-
totaneous differential equations 1. through 1.3 may
various matrices. Alternatively, one can compute
the eigenvalues at an initial parameter value and be viewed as a differential equation in the simi-
"continue the result" by integrating an appropri- larity transformation which diagonalizes M. Un-
ate differential equation whose trajectors define fortunately, this similarity transformation is
the eigenvalue loci of the given family of typically non-soarse, even when M is sparse and
matrices. The most conmon such differential therefore fails tj yield a conputationally viable

equation s for a continuously parameterized family contiruation algcr'thmi 0

of matrices, Nl(r)(=M), takes the form This difficuly is alleviated in the present

paper by formulating a continuation algorithm
M< f around similarity transformations which triangu-

dr i i i (1.1) larizes, rather than diagonalizes, M. Such simi-
dr < ei,f i  > larity transformations preserve the sparseness of

M while the eigenvalues of M are given by the
dM diagonal entries of the resultant triangular

dei = n < dr ei e (1 matrix. In the following section we formulate a
dr j=i (X A)< ej, e ( continuation algorithm, which may be viewed as a

j#i continuous LU algorithm.
9 This algorithm employs

a unit upper triangular matrix to transform M into

df. n fi dM > a lower triangular form.

dr i fj (1.3) In the continuation algorithm, the requiredj-I i f differential equation takes the form of 1.4 where
WC , ) is the solution of an appropriate

where Ai is the ith eigenvalue of M, e is the triangular commutant equation
corresponding eigenvector, Ji is the c mples con-
jugate of x, and f is the eigenvector of the U[K ] - uE T W - W T J (1.6)
matrix * assoc iate with the eigenvalue T of MI
Here, all vectors and matrices nat be complex, Here K - SMS- l , T - SMS , and uC I is the operator

> denotes the complex inner product, "" which zeros out all entries on or below the diago-
denotes the complex conjugate/transpose, and the nal of a matrix. This solution of the resultant
set of differential equations 1.1 through 1.3 are triangular commutant equation is discussed in
well defined whenever M has distinct eigenvalues.5  section I1. An analytic expression for the

solution is given which is amenable to a simple
The major difficulty with the above described recursive computational procedure which preserves

"continuation algorithm" is that the array of the sparseness of the given matrices. Several ex-
eigenvectors for a sparse matrix is typically non- amples of the continuous LU algorithm are discussed
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in section IV. of the equality. Since u[ I zeros out all entries
on or below the diagonal, it suffices to consider

II. Continuation Algorithm the case 1 I I -c J. Upon invoking the fact that
X is strictly upper triangular and L is lower

We are interested in a decomposition of the triangular we then obtain
form I n

T - S1S"I  (2.1) DIj kI LlkXkj - XikLQ

where 11 (-M(r)) is our given parameterized family W-1
of matrices S (-S(r)) is an appropriate family of i x
similarity transformations, and T (-T(r)) is lower k -i)Xij + I LikXkj
triangular. In this case uCT] - 0 which together n

with the matrix equality - XL ; 1 1(3.1)

(S1 ) . -Sss (2.2) k-i- 1k k

yields Here we have used the fact that diagonal entries
y of L are the eigenvalues of M, i.e., Lii - Xi.

SA1 . T . _SMS -l -SM(S ) Assuming distinct eigenvalues, this equation may
be solved for Xij yielding

gS1SiS_ 1 - SS-'s -1 - TW - 14T n I-1
where W1 - SS" . Finally, since U[iT - 0 this re- X lj = [oij+ Z XikLk - LikXkQ
duces to the desired triangular commutant equation k=3+l kl

u[SIS'I] . uCTW - 01 (2.3) i  ) ; I j (3.2)

S = WS The resultant Xij is clearly linear and continuous
A Continuous LU Algorithm: In the classical in 0... Moreover, the equation can be solved re-

LU (or LR) algorithm for computing the eigenvalues iv
of a single sparse matrix, a unit upper triangular cursively by starting with i - 1 and j - n to
similarity transformation, U, which triangularizes compute Xln* Then X -,n-l may be computed in terms
the given, t, via of Xln and the given matrices. This information

L = UMIU 1  (2.4) is then used to conpi e Xl,n2, etc. In general,

is computed. As such, the triangular equation we may compute Xij in tems of Xrs where r < i -i
reduces to and s > j. As such, Xij, 1 i < j, may be com-

U = - XL puted recursively by increasing i and decreasing
UMU I= uCiX - j. Of course, since X is strictly upper triangular

6 xu = (2.5) X. = 0 i < n (3.3)
where X a UU is strictly upper triangular (since 03

-l while the formula of equation 3.2 is readily im-triangular). Since X is strictly upper triangular plemented in a sparse matrix algorithm and pre-
the above triangular commutant equation represents serw - the sparsity of the given matrices.
n(n-l)/2 equations in n(n-l)/2 unknowns which must-1 -lTHEOREM 1: Let M have distinct eigenvalues and
be solved to compute X = X[UMU ',UMU l] and U. Of
course, once 0 is known, any standard numerical in- L UU be lower triangular. Then the tri-
tegration technique can be used to compute U(r) u u

and L(r) = U(r)M(r)U'l(r) given appropriate con- ED] - u LX - XL]
ditions (which may be obtained via the classical admits a unique strictly upper triangular
LU algorithm). solution which may be computed recursively via

eqiatopms 3.2 amd 3.3. 0
III. Solution of the Triangular Commutant Equations

Finally, we note that the above triangular
The key to the viability of the continuation commutant equation is a special case of the general

algorithm described in the preceeding section is equation
the existence of an easily computed solution to C AX + XB (3.4)
the triangular conmutant equation. For this I
algorithm we must solve Because of the triangular nature of our arrays,

UED] - u[LX - XL) (2.5) however, the above described recursive formula for
* I the triangular cormutant equation is far simpler

for a strictly upper triangular X given D - UMJ than the various algorithms which have been pro-
and a lower triangular L - U11U I. Although no posed for the solution of the general equation.
matrix algebraic solution to 2.5 is apparent, a See for instance the paper by Bartels and Stewart 2

recursive algorithm for the solution of 2.5 may be
obtained by expanding the i-j entry on both sides
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IV. Examples
and

To illustrate the numerical accuracy of the
continuation algorithms presented, the LU algo- i= ~ ~ r ) 1 12
rithm was employed to compute the eigenvalues of il1r/ ) I=1,, . ,n

families of matrices. and

EXAIMPLE 1: The given matrix M, A *0 elsewhere.

whr M)ad (r) ar T dimnsioal)marice Ir was allowed to vary from 0 to 1. Table I
wher T~) ad () ae n imesioal atrcesillustrates the results for various matrix

whose elements are given by dimensions. In general, as the dimension of the

T 1 i 1,2., .. n. matrix increased, the step size decreased.

T I i 1.2, n/2.Table 2 compares step sizes. R was varied
2i ,, .,n2 from 0 to 0.01 in 1 step, 10 steps and 100 steps.

T =r The numerical error resulting from these computa-
In tions seem to decrease linearly with step size.

T *0 elsewhere.

EIGEINALUES WIPUTED AT R-1 F03!: EXFLE 1

ORDER0 22 14 10 6 ACTUAL.
5709 WEL 0.001 0.01 0.01 0.01 VALUES
IICOATIOO 1000 100 101 100

&1 2.94044790"430 2.941253978 2.952493]rA439 2.999"99996S[ 3.O000000000
11 6.00,34A4831? S. 9900A68837 S.993798ZE1765 S. "9999999302 6.000000000000

1, 9.0044976715I5 9.000000003125 9.004300000372i 9.00000000312S 9.OO0000000
1' 1 7.006644267240 I1.963ti8391580 12.1119090699730 11.999999996660 12.0043000000000

I 50.001699404900 15 .000000000290 I .00000000090 IS.000000000290 15.000000000000
A, 18.00899131150 18.000M00004 8 26 00OJ0001450 18.00M0443O 28. 0000000000
A, I.0I0499287S10 21.000UMIS01440 21.000000015IS0 21.000000000000
A, 4.603t.02169990 14.002942127460 23.08799Z29020 24.000000000000
A

9  
7.0134909172z0 Z6.999099895.0 26."999994999 27.00000000000

it, 30.01499M89Z00 30.000001010051' 30.000000000060 30.0000000000000
kI 33.016494733200 33.0000040005700 33.00(J00000000

36.017-,86Z'O 36.000000014900 36.000000000000~, 39.01949063MO1 39.0000000Z?350 39. OoO'0000000
I$. 42.1i0998SYS030 42.0000000309YW 4Z. 0000000000010
is, 45.0224 948Zl40 4S.000000000000O

1.6 41.397461,508030 48.000000000000
All WO.05497935480 . 51000000000000
6
, 54.076997634140 54.0400000000000

A
7

, S7.028497742720 51.000000000000
if* 60.07997618400 60. 000000000000
it, 61.031497S19700 63.0040000000000
11 66.032997446390 66.0000004200000O

IABL-2
STEPSIZE COMIPARISONE AT R-0.01 FOR EXAIMPLE 1

ORDER 14 14 14 ACTUAL.
57) 12. .C10 .1101 .0001

ITCRATII*IS 10 too VALUES5

1. 109"")9 1. 10999M8 1. 110000010 1. 1000000M
2.22000210 2.220011M6 2.22000108 2.220000
3. 3 1430'l00 3.33000000 3.3300010D0 3.313000M

A.4.4SOS9491 4.4408749 0.440010116 4,44000000

A. .6600000 4.66000000 6. 64000000 6.66000000
7.77000000 ?.77000f00 7.7,?0000 7. 170000041
8, 386946891 8,879171M 8.879921003 8.88000000

A,9. 99000000 9.990043000 9.99000000 9.99000000
11.1 11M000 lI.10000000 I.10000000 11.10000040

k,, 12.21000000 12.21000000 12.21000000 12.21000000
A1  13. 300000 13. ]Z0000 14.43000000 14.43000000
Aj 14.4)000000 13.300000 14.43000000 14.32G00000
A,.5400000 1 S. 4000000 15.54000000 ISM 0000

181

A *~ ~t



EXAMPLE 2: The matrix M(r) is given by VT. References

=i I 1 1,2 ... , n. 1. Bodewig. E., Matrix Calculus, Amsterdam, North
Holland, 1959.

M1,2 .... n-1. 2. Bartels, R.H., and G.W. Stewart, "Solution of
the Matrix Equation AXZXB - C". Corm. of the

Mln r. ACM, Vol. 15, pp 820-826 (1972),
3. DeCarlo, R.A., and R. Seeks, Interconnected

- 0 elsewhere. Djnamfc!) Systems, New York, M.arcel Dekker.ij(in press). -

Table 3 compares the results for different 4. OeCarlo, R.A., and A. Seeks, "A Root Locus

diension matrices with the eigenvalues calculat- Technique for Interconnected Systems', IEEE

ed by solving the characteristic equation of the Trans. on Systems. Man, and Cybernetics, Vol.

matrix at r a 1. S;1C-9, pp 53-55, (1979).
5. Faddeev, O.K.. and Y.N. Faddeva, Comeutational

TAILE Ilethods of Lin~ar Algebra, San Francisco.

ET5iEALuES CGPUTED AT P-2.1 A Freema. 1963.
_ ;________5_C___T_____-_.__*______ 26. Green, B.. M.S., Thesis. Texas Tech Univ..1979.

7. Macfarlane, A.G.J.. and I. Postlethwaite, "The
0S.Z CUEAL Generalized Nyquist Stability Criterion and

MIAIS _ _ VAL fultivariable Root Loci", Int. Jour. on Cont..

1 0410373 I.Vol. 25, pp. 81-127 (1977).

, EZ?51692 I .84r)54 S. Saeks, R., "A Continuation Algorithm for Sparse
3.-12.4,34 Matrix Inversion", IEEE Proc. Vol. 67, pp.

A, 3.7E$S; .90;3411~C381~2a682-683. (1979).
9. lewerson, R., Sparse Matrices. New York,

ME( €-- Academic Press, 1973.
SI?! sWS ,,s 10. Wilkenson, J.H., The Algebraic ienvalue

Problem, New York, Oxford Univ. Fress, 965.
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V. Conclusion

Although continuation algorithms have histor-
ically proven their usefulness in the solution of"small" numerical problems the classfcal differ-
ential equations modeling the various numerical
processes are not compatible with sparse matrix
techniques. The present work coupled with a pre-
vious paper in which a continuation algorithm for
the inversion of sparse matrices is formulated,

8

however, indicate that the concept can be made )
compatible with sparse matrix techniques.8 r6
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CONTINUATION ALGORITHMS FOR THE EIGENVALUE PROBLEM*

B. Green, R. Saeks and K.-S. Chao
Department of Electrical Engineering

Texas Tech University
Lubbock, Texas 79409

Abstract

The eigenvalue problem for a continuously parameterized family of sparse matrices, M(r), often

arises in stability analysis. Typically, one employs a classical eigenvalue package at a sequence of

parameter values, possibly with soecial software to expolit the common sparsity pattern of the various

matrices. Alternatively, one can compute the eigenvalues at an initial parameter value and "continue

the result" by integrating an appropriate differential equation whose trajectories define the eigen-

value loci of the given family of matrices. The most common such differential equation for this pur-

Pose, h)wever, employs the eigenvectors as an auxiliary variable which destroys the sparseness of the

problem since the array of eigenvectors for a sparse matrix is typically non-sparse. As such, the

comoutational benefits of working with the sparse matrix M will be lost if one attempts to integrate

such an equation.

This difficulty is alleviated in the present paper by formulating continuation algorithms around

a family of similarity transformations, S(r), which triangularize M(r). Such similarity transforma-

tions preserve the sparseness of M while the eigenvalues of M are given by the diagonal entries of the

resultant family of triangular matrices, T(r). We formulate three such continuation algorithms. The

first, which may be viewed as a continuous LU (or LR) algorithm, employs a unit upper triangular

matrix. S to transform M into lower triangular form. The second, which may be viewed as a continuous
QR algorithm, uses a unitary matrix to transform M into lower triangular form. Finally, our third al-

gorithm uses an upper triangular matrix to transform M into lower Hessenberg form.

In each of the three continuation algorithms the required differential equation takes the form

ds = w[S . SMS-1 s

T - SMS "

where 4 , I is the solution of an appropriate tLangu. .4A commUtant equA.t.Zon

uI SrS-l J = UcSMS-W . WSMS"1 ]

and u r ] is the operator which zeros out all entries on or below the diagonal of a matrix. In each

case an analytic expression for the solution of the required triangular commutant equation is given

which is amenable to a simple recursive computational procedure which preserves the sparseness of the

given matrices.

This research supported in part by the Joint Services Electronics Program at Texas Tech University,
under ONR Contract 76-C-1176.
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Abstract

A procedure is described in which the output characteristics of an

integrated circuit are optimized with respect to a set of variable

fabrication parameters. A simple RC coupled audio amplifier is used as

an example. The gain-bandwidth product is obtained as a function of

oxidation and diffusion times and temperatures, and the optimization is

performed by way of a line search using these variables as the parameters

of the optimization. The values established for the process parameters

are consistent with those employed for conventional fabrication, and desired

changes in performance can be obtained, in general, by a straightforward

readjustment of the values of the process variables. Although limited

by certain assumptions and a relatively primitive circuit, the results

demonstrate the validity of the procedure.
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Stability and Design of Time-Varying Systems", 1 yr., $22,091, SORF
Matching, $500.

Walkup, J.F., and T. Krile, ARO Grant, Optical Signal Processing
Workshop", 1 yr., $11,867.

Saeks, R., ONR Contract, "Joint Services Electronics Program", 3 yrs.,
$630,000, SORF Matching $30,000.

Chao, K.-S., NSF Grant, "Continuation Algorithms in Computer-Aided Design",
2 yrs, $37,421.

Saeks, R., NSF Grant, "Frequency Domain-Like Methods for the Analysis and

Design of Time-Varying and Nonlinear Systems", 3 yrs. $79,240.

Walkup, J.F., AFOSR Grant, $Space Variant Optical Systems", 1 yr., $95,070.

Gustafson, D., and T. Krile, E-Systems Corp. Contract, "Digital and
Optical Signal Processing and Detection", 3/4 yr., $19,988.

Total Annual Funding in Systems, $404,639.

B. Electro-Physics

Hagler, M.O., NSF-Grant, "Investigation of RF Plasma Heating in Toroidal
Geometry", 2 yrs., $110,000.

Portnoy, W.M., DOE Grant, "Deep Traps in AlGaAs Layers at AlGaAs-GaAs
Interfaces", I yr., $37,414, SORF Matching, $9,600.

Portnoy, W.M., NRL Contract, "Reliability Study of Gallium Arsenide
Devices", 1 yr., $21,000.

Williams, P.F., Texas Instruments Contract, "Laser Spectroscopy", 1 yr.,
$10,000.

Trost, T., NASA Grant, "Lightning Sensors and Data Interpretation", 1 yr.,
$50,000.

Portnoy, W.M., Masterie Corp., "Semiconductor Device Physics and
Reliability", 1 yr., $1,401.

Total Annual Funding in Electro-Physics $184,415.
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C. Pulsed Power Research

Kristiansen, M., AFOSR Grant, "Pulsed Power Research Colloquium, 1/2 yr.,
$8,000.

Kunhardt, E., NSWC Contract, "Breakdown at High Voltages", 1/2 yr.,
$41,043.

Kunhardt, E., Hatfield, L. and M. Kristiansen, AFWL Contract, "An Opening
Using a Diverter", 1 yr., $24,968.

Kristiansen, M., AFOSR Contract, "Coordinated Research Program in Pulsed
Power Physics", 1 yr., $666,263.

Kristiansen, M., ARO Contract, "Coordinated REsearch Program in Pulsed
Power Physics", 1 yr., $100,000.

Kristiansen, M., AFOSR Grant, "Special Equipment Grant", 1 yr., $100,000,

SORF Matching, $20,000.

Kristiansen, M., ARO Grant, "Opening Switch Meeting", 1 yr., $10,000.

Total Annual Funding in Pulsed Power $970,274

D. Power Systems

Craig, J.P., Texas Power and Light Co., "Power System Studies", 1 yr.,
$11,438.

Reichert, J.D., DOE Contract, "Crosbyton Solar Power Project", 5/6 yr.,
$950,000.

Total Annual Funding in Power Systems $961,438_.

E. Educational Activities

Williams, P.F., NSF Grant, "Innovative Undergraduate Laboratory Program
in Optical Communications", 2 yrs., $8,700, SORF Matching, $8,700.

Seacat, R., SORF Grant, "Research and Development in Electrical
Engineering", 1 yr., $19,689.

Kunhardt, E., NSF Grant, "Undergraduate Research Participation", 1 yr.,

$19,931.

Walkup, J.F., SPIE Grant, "Optical Engineering Education", 1 yr., $2,000.

Krile, T., NSF Grant, "Fibre Optic Experiments for Undergraduate Engineers",
2 yrs., $21,533, SORF Matching $11,896.

Total Annual Funding of Educational Activities $67,034
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F. Sources of Funding in Electrical Engineering

Air Force............................................. $916,392

Navy ................................................... 262,043

Army.................................................. 121,867

DOE .................................................. 987,414

NASA.................................................. 50,000

SORF.................................................. 70,087

Industry .............................................. 44,827

NSF .................................................. 135,170

Total Annual Funding in Electrical Engineering $2,587,800
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Grants and Contracts in Mathematics

Anderson, R., and W. Ford, SORF Grant, "Fixed Point Formulations of
Porous Media Problems", 1 yr., $8,000.

Barnard, R., NSF Grant, "Some Extremal Problems in Complex Function
Theory", 2 yrs., $16,046.

Ford, W., and R. Anderson, DOE Contract, "Mathematical Methodology for

Evaluating Simulations of Flow in Porous Media", 2 yrs., $141,367.

Ford, W., GURC Grant, "Porous Media Survey", 1 yr., $2,500.

Harris, G., NSF Grant, "Local Function Theory and Geometry of Real
Submanifolds of C ", 2 yrs., $11,642.

Strauss, M., NSF Grant, "Uniqueness and Norm -onvexity in the Cauchy
Problem", 1 yr., $8,832.

Nelson, P., AFOSR Grant, "Applications of Invariant Imbedding", 1 yr.,
$45,021.

Newman, T.G., ARO Grant, "Lie Groups and Lie Algebras in Video Tracking",
1 yr., $19,983.

Hunt, L.R., NASA Grant, "Support of Professor Hunt's Leave of Absence at
NASA/AMES", 3/4 yr., $39,218.

Newman, T.G., SORF Grant, "Synthesis of Digital Filters for Differentiation
of Digitized Images", 1 yr., $700.

i ! Sources of Funding in Mathematics

Air Force ................................................ $45,021

Navy ..................................................... -0 -

Army ..................................................... 19,983

DOE ...................................................... 70,683

NASA ..................................................... 39,218

SORF ..................................................... 8,700

Industry ................................................. 2,500

NSF ...................................................... 22,676

Total Annual Funding in Mathematics $208,781
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Publications by JSEP Personnel*

A. Refereed Journal Articles

Asher, R.B., and J.F. Walkup, "Detection and Estimation in Optics: Basic
Concepts", Optical News, Vol. 5, pp. 4-7 (1979, AFOSR).

DeCarlo, R.A., and R. Saeks, Interconnected Dynamical Systems, New York,
Marcel Dekker, (to appear).

Desoer, C.A., Liu, R.-w., Murray, J., and R. Saeks, "Feedback System
Design: The Fractional Representation Approach to Analysis and Synthesis",
IEEE Trans. on Auto. Cont., Vol. AC-25, pp. 399-412, (1980, JSEP).

Feintuch, A., and R. Saeks, "Extension Spaces and the Resolution Topology",
Int. Jour. on Cont., (to appear, NSF).

Feintuch, A., and R. Saeks, System Theory: A Hilbert Space Approach, New
York Academic Press, (to appear).

Feintu h, A., Saeks, R., and C. Neil, "A New Performance Measure for
Stochastic Optimization", Math. Sys. Thy., (to appear, NSF).

Karmokolias, C., Portnoy, W., and R. Saeks, "Optimal Selection of IC
Fabrication Parameters", Inter. Jour. of Circuit Theory and its Applications
(to appear, JSEP).

Murray, J., "Some Comments on Lumped-Distributed Networks and Differential-
Delay Systems", in Applications of Algebra and Algebraic Geometry to Linear
System Theory, Providence, AMS, (to appear, JSEP).

Olivier, P.D., and R. Saeks, "Nonlinear State Decomposition", IEEE Trans. on
Circuits and Systems, Vol. CAS-25, pp. 1113-1121, (1980, NSF).

Saeks, R., "Review of 'Monotone Operators and Applications in Control and
Network Theory' by Dolezal", Bull. of the AMS, Vol. 2, pp. 369-373, (1980).

Saeks, R., and R.-w. Liu, "Fault Diagnosis in Electronic Circuits", Japan
Jour. of Electrical Engineering, (to appear, JSEP).

Saeks, R., and J. Murray, "Feedback System Design: The Tracking and Disturbance
Rejection Problems", IEEE Trans. on Auto. Cont. (to appear, JSEP).

Walkup, J.F., "Space-Variant Coherent Optical Processing", Optical Engineering,
Vol. 19, pp-339-346, (1980, AFOSR).

Walkup, J.F., Hagler, M.O., and L. Kral, "Corollation Properties of Random
Phase Diffusers for Multiplex Holography", Appl. Optic, Vol. 19, (to appear,
AFOSR).

* Includes all publications by JSEP personnel with sourse of support.
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Walkup, J.F., "Novel Techniques for Optical Information Processing", Appl.
Optics, Vol. 18, pp. 2735-2757, (1979, AFOSR).

Walkup, J.F., Hagler, M.O., Marks, R.J., and E.L. Kral, "Scanning Techniques
for Coherent Processors", Appl. Optics, (to appear, AFOSR).

Walkup, J.F., R. Kasturi, and T.F. Krile, "Space-Variant 20 Processing
Using a Sampled Input/Samples Transfer Function Approach" Proc. of the
Inter. Optical Computing Conf., Washington, April 1980, (to appear, AFOSR).

Walkup, J.F., Kasturi, R., and T.F. Krile, "Multiplex Holography for Space
Variant Processing", Appl. Optics, (to appear, AFOSR).

Walkup, J.F., Williams, P.F., and M. Gundersen, "Optics at Texas Tech
University: Learning by Doing", IEEE Trans on Education, Vol. E-23, pp.
118-124, (1980, NSF).

B. Conference Papers and Abstracts

Desoer, C.A., Liu, R.-w., Murray, J., and R. Saeks, "Feedback System Design:
The Fractional Representation to Analysis and Synthesis", Proc. of the 1979

IEEE Conference on Decision and Control, Ft. Lauderdale, Dec. 1979, pp.
33-37, (JSEP).

Froehlich, G., Walkup, J., and T.F. Krile, "Some Effects of Signal-
Dependent Noise on Estimator Structures", 1980 OSA Meeting, Chicago, Oct.
1980, (JSEP).

Green, B., Saeks, R., and K.S. Chao, "Continuation Algorithms for the Eigen-
value Problem", Proc. of the 1980 IEEE Inter. Symp. on Circuits and Systems,
Houston, May 1980, p. 775, (abstract only, JSEP).

Iyer, A., and R. Saeks, "Numerical Implementation of a Continuation Algorithm
for the Eigenvalue Problem", 1980 IEEE Conference on Circuits and Computers,
Port Chester, Oct. 1980, pp. 437-440, (JSEP).

Karmokolias, C., and R. Saeks, "A Fractional Representation Approach on
Adaptive Control", 1980 IEEE Conference on Decision and Control, Albuquerque,
Dec. 1980. pp. 272-273, (JSEP).

Murray, J., "A Design Method for 2-D Recursive Digital Filters", Proc. of
the 13th Asilomar Conf. on Circuits, Systems, and Computers, Pacific Grove,
CA., Nov. 1979, pp. 104-107, (JSEP).

Murray, J., "A New Approach to 2-D Digital Filtering", Proc. of the 24th
Midwest Symp. on Circuits and Systems, Univ. of New Mexico, Albuquerque,
(to appear, JSEP).
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Newman, T.G., and D.A. Davis, "Lie Theoretic Methods in Video Tracking",
Proc. of the MICOM Workshop on Imaging Trackers and Autonomous Acquisition
Applications for Missile Guidance, Redstone Arsenal, Nov. 1979, pp. 161-174
(GACIAC-PR-80-Ol, JSEP).

Wu, C.-c., Sangiovanni-Vencentelli, A., and R. Saeks, "A Differential-
Interpolative Approach to Analog Fault Diagnosis", Proc. of the 1981 IEEE
Inter. Symp. on Circuits and Systems, (to appear, JSEP).

Wu, C.-c., Nakajima, K., and R. Saeks, "Pos.-Test Fault Simulation with
Failure Limitations", Proc. of the 24th Midwest Symp. on Circuits and Systems,
(to appear, JSEP).

C. Preprints

Fredricks, G.A., "Canonical Forms for Nondegenerate Second Order Linear
Partial Differential Operators and Equations" (submitted for publication,JSEP).

Fredricks, G.A., and T.G. Newman, "Method in Differential Geometry with
Application to Video Tracking", (submitted for publication, JSEP).

Froehlich,G., Walkup, J., and T. Krile, "Multiple Parameter Estimation in
Signal-Dependent Noise" (submitted for publication, JSEP).

Froehlich,G., Walkup, J., and T. Krile, "Estimation in Signal Dependent
Film-Grain Noise", (submitted for publication, JSEP).

Green, B., Saeks, R., Chao, K.S., and A. Iyer, "Continuation Algorithms for
the Eigenvalue Problem", (submitted for publication, JSEP).

Jones, M.I., Walkup, J.F., and M.O. Hagler, "Multiplex Hologram Representations
of Space Variant Optical Systems Using Ground-Glass Encoded Reference Beams",
(submitted for publication, AFOSR).

Newman, T.G., "'ie Groups and Lie Algebras in Video Tracking", (submitted
for publication, JSEP).

Sangiovanni-Vincentelli, A., and R. Saeks, "Multitest Diagnosibility of Non-
linear Circuits and Systems", (submitted for publication, JSEP).

Wu, C.-c., and R. Saeks, "A Data Base for Symbolic Network Analysis,
(submitted for publication, JSEP and ONR).
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