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1. INTRODUCTION

We consider least squares model fitting tasks that can be formulated
as constrained minimization problems. In general, the constraints, i.e.,
the model equations, are implicit nonlinear relations between observables
and parameters. The solution of such problems can be found by the Lagrange
multiplier technique which provides a system of coupled nonlinear normal
equations. The equations can be used to analyze the sensitivity of the
solution to data perturbations, and to obtain numerical values of optimal
residuals and parameters. However, the numerical solution of the system
is not necessarily trivial, because the size of the system is proportional
to the number of data. Because of the potentially very large size of
the equation system, a partitioning, if possible, has many algorithmic
advantages. Fortunately, many typical least squares model fitting prob-
lems have such a norm.' equation structure that a partitioning of the
equation system can be achieved by proper manipulations of the model
equations. Particularly effective can be a manipulation of parameters,
e.g., an introduction of new parameters and/or a formal elimination of
some parameters. We will consider the effects of such manipulations
and derive partitionability conditions which can be used as a basis for
a rational choice of model equation formulation, and for a rational
planning of experiments.

In Section 2 we will give a formal definition of the least squares
model fitting problem, and establish the normal equations. Algorithms
for the numerical solution of the equations will be outlined in Section 3,
where also the sensitivity of the solution to data perturbations is
investigated. Partitionability of the normal equations and corresponding
parameter manipulation are discussed in Sections 4 and 5, repectively.
Section 6 brings an example for partitioning of normal equations arising
in the adjustment of a planimetric traverse.

2. THE MODEL FITTING PROBLEM

Let the mathematical model of an observable event be formulated by
a set of r independent equations, say,

F (x, t) =0 (2.1)

where F e R savco ucin nrepresents potential observations,
and t e RP is a vector of free parameters. Eqs. (2.1) may be prescribed
by a theory of the event, or chosen by other considerations. Regardless
of their source, the equations are considered as a given description of
the event. A model fitting problem arises when one seeks to determine
the validity of the mathematical description by testing Eqs. (2.1) with
experimental data. In such tests, typical magnitudes of the dimensions
p, r, and n are 10, 100, and 1000, respectively. We assume that the
dimensions satisfy the inequalities

5



0 < p < n, (2.2)

which assure that the optimization problem has sufficient degrees of
freedom.

We restrict our considerations to model functions F that are twice
differentiable with respect to all its n + p arguments. Differentiability
of model functions is typical for many problems in engiaeering, physics
and other fields of application. For the present analysis, it has to be
assumed only within a neighborhood of the adjusted observations x and of
the optimal parameter t.

Let X e Rn be the vector of the actual observations. Because X
contains observational inaccuracies one cannot expect that the theoret-
ical description of the event, i.e., Eq. (2.1), is satisfied at x = X.
Instead, one needs corrections (residuals) c which are added to the
observations so that Eq. (2.1) is replaced by

F(X + c,t) = 0 . (2.3)

Eq. (2.3) means that we expect the theoretical relations between observ-
ables and parameters to be satisfied at a vicinity X + c of the actual

observations X.

The mathematical goal of model fitting is to find residuals c and
parameters t that are optimal in some sense. We do not put any restric-
tions on t, b~ir 3bviously would like the residuals c to be as small as
possible. Hence, a general model fitting problem can be formulated as
the following constrained minimization task

llcH = min. , (2.4a)

F(X + c,t) = 0 . (2.4b)

The solution of this problem, of course, depends on the definition of
the norm 11cil. In this article we consider only elliptic vector norms,
defined by

lcil - , (2.5)
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where M is a positive definite norm matrix. One reasonable choice of M
is a diagonal matrix where the elements are proportional to the inverse2
squares of estimated standard errors of the observed components of X.
With this choice, the norm 1Ic l becomes dimensionless and the corres-
pondling minimization problem is called "weighted least squares." A
more general choice for M is the inverse of an estimated variance-covar-
iance matrix R of the observations X.3 94 If the observational errors
of X are normally distributed, then the use of this norm, i.e., of

Ilcil T (2.6)

in Eq. (2.4a) produces a maximum likelihood result. 5 The norm (2.6) is,
of course, also dimensionless, and it includes the weighted least squares
norm as a special case.

Using the norm (2.6) we formulate a general least squares model
fitting problem as follows:

W = I1c,12 _ cTRIc = min. , (2.7a)

F(X + c,t) - . (2.7b)

The unknowns of the problem are the residuals c and the parameter vec-
tor t. Given are the observations X, the model function F and an esti-
mated variance-covariance matrix R. The latter need to be known only

1W.E. Deming, "Statistical Adjustment of Data," John Wiley & Sons, New
York, NY, 1944.

S. Brandt, "Statistical and Computational Methods in Data Analysis,"

North-Holland Publishing Co., Amsterdam, 1970.

3D. Brown, "A Matrix Treatment of Least Squares Considering Correlated
Observations," USA Ballistic Research Laboratories Report No. 937, 1955.
(AD #71209)

4J.M. Tienstra, "Theory of the Adjustment of Normally Distributed Obser-
vations," N.V. Uitgevery "Argus," Amsterdam, 1956.

5M.F. Britt and R.H. Luecke, "The Estimation of Parameters in Nonlinear,
Implicit Models," Technometrics, 15, 233-247, 1973.
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up to a factor, because the inclusion of an arbitrary factor in Eqs. (2.7a)
does not change the minimum condition. Also, the model function F can

be manipulated as long as the result produces a system of equations
mathematically equivalent to Eqs. (2.7b).

Problem (2.7) can be reduced to an unconstrained minimization prob-

lem if the residuals c can be eliminated from Eqs. (2.7a) by using
Eqs. (2.7b). This is the case, e.g., when Eqs. (2.7b) are explicit in

terms of X + c. Many least squares algorithms have been devised to

treat this special problem. In this article, we consider the more gen-

eral situation where F is a general nonlinear function such that a
formal elimination of all or some residuals is either not possible or
not practical.

In order to simplify our notation in the subsequent analysis, we
shall denote derivatives of F by subscripts. Thus, e.g.,

DF(X + c,t) F + Ct)
ax Fx(X

is a rxn matrix, and

a 2(K TF(X + C, t)) (KTF(X + ct)),
axat

where K c Rr , is a nxp matrix.

In addition to the differentiability of F we also assume that in

a neighborhood of the solution (X + ct) the following rank conditions

are satisfied:

rank FX = r (2.8)

and

rank Ft - p . (2.9)

The condition (2.8) insures that the model Eqs. (2.3) are independent.
The conditon (2.9) excludes model formulations with redundant parameters.
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Next, we obtain normal equations for the problem (2.7) using
Lagrange multipliers. Let k c Rr be a vector of correlates (Lagrange
multipliers), and let

1/2 cT R-c - kF (X + c, t) (2.10)

be the modified object function. By setting the derivatives of with
respect to c, t and k equal to zero, we obtain the equations.

5'6' 7' 8 ,9

c- R FXT (X + c, t) k - 0 , (2.11a)

kT F (X + c, t) = 0 , (2.11b)t

F(X + c, t) = 0 . (2.11c)

The normal Eqs. (2.11) generally have more than one solution, and the
solution of the optimization problem (2.7) is one of the several solutions
of Eqs. (2.11). The selection of the proper solution is normally done
by an analysis of problem related background information. We shall not
discuss such analyses in this article, and concentrate instead on the
finding of any numerical solution of Eq. (2.11).

3. ITERATION ALGORITHMS AND EFFECTS OF DATA PERTURBATION

The normal Eqs. (2.11) are nonlinear with respect to the unknowns
c and t. Therefore, their numerical solution will generally require an
iteration. One obtains second order Newton-type iteration equations by
expanding the normal equations at an approximate solution.

6A. Celmi?, "Least Squares Adjustment with Finite Residuals for Non-

Linear Constraints and Partially Correlated Data," USA Ballistic Research
Laboratories Report No. R-1658, 1973. (AD #766283)

7A.F. Pope, "Two Approaches to Nonlinear Least Squares Adjustments,"

The Canadian Surveyor, 28., 663-669, 1974.

8R.M. Passi, "Use of Nonlinear Least Squares in Meteorological Appli-
cations," Journal of Applied Meteorology, 1 828-832, 1977,

and 17, 1579-1580, 1978.

9 W.H. Jefferys, "On the Method of Least Squares," The Astronomical

Journal, 8 177-182, 1980.
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Let C, K and T be approximations to the solution vectors c, k and
t, respectively, and C, K and T be the corresponding corrections. The
linear terms of an expansion of Eq. (2.11) at the approximate solution
produce the following system of Newton-Raphson equations for the cor-
rections7 :

11-R -(KT F) ]. - R-FxT.(K+K) - R-(KT F)xtT = -C

(K TF)tx.C + F tT.(K+K) + (K T F)tt * ffi 0 (3.1)

FX* + FtT f= -F
X t

The arguments of F and of its derivatives in Eq. (3.1) are the approxi-
mations X + C and T.

An iteration based on Eq. (3.1) proceeds by computing the corrections
C, K and T, adding them to the approximations C, K and T, respectively,

and repeating the process. The equatious may be rearranged into a more
convenient form for the iteration. An example of such rearranged iter-
ation equations is given in the Appendix and corresponding computer
programs are described in Reference 10.

An often used variation of the Newton-Raphson equations is obtained

by setting in Eq. (3.1) all second order derivatives of F equal to
zero.1 ,2 , 9 The resulting equations are called Gauss-Newton equations.
Iteration algorithms based on Gauss-Newton 7equations converge only
linearly and may have other disadvantages.

The linear terms of the expansion of the normal equations, i.e.,
the equation system (3.1), also provide a means to obtain estimates of
the effects of data perturbations on the solution. To this end, we
express the normal equations in terms of the corrected observations
x = X + c, obtaining the system

T

x - R.F T(x,t).kff X,
x

kT.Ft (x,t) = 0 , (3.2)

F(x,t) - 0

10A. Celmib, "A Manual for General Least Squares Model Fitting,"
USA Ballistic Research Laboratory Report ARBRL-TR-02167, 1979.

(AD #B040229L)

10

___ _-__ _-_ _.-____ __ __ ___ __ __......____ __ __ - .- - -. •



which we expand at the solution. The linear terms of the expansion
yield the following relation between the differentials of the solution
x, k, t and the differentials of the observations X:

[I-R.(kT.F)xx ] dx - R.Fx Tdk - R.(k TF) xtdt - dX

(k TF) txdx + F tTdk + (kT.F) ttdt - 0 (3.3)

F dx + F tdt = 0

The coefficient matrices in Eq. (3.3) are identical to those in
Eq. (3.1), except that now the functions are evaluated at the solution.
Therefore, differential changes of the solution corresponding to data
perturbations dX can be calculated conveniently by using the iteration
equations of the Appendix. Thus, if one is interested in the changes

dt of the parameters corresponding to the perturbations dX, one can use

the formula

N dt - S dX , (3.4)

where N and S are defined in the Appendix in terms of F and its derivatives.

Eq. (3.4) also can be used to derive a formula for an estimate of
the variance-covariance matrix Vt of the components of the parameter
vector t. The formula is obtained by applying the law of variance pro-
pagation to Eq. (3.4) with the result6 ,7,

1 0

V =N SRS (N- ) . (3.5)

In case the variance-covariance matrix R of the data has been
estimated only up to a factor, the formula must be supplemented by an
estimate of that factor. The usual estimate is

m 2 - - --cTR -c . (3.6)
0 n-p

The square root m of the factor is also called the standard error of
weight one.
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It is clear from the derivation of Eq. (3.5) that the formula for
the variances of t contains first and second order derivatives of the
model function F in spite of the fact that the formula is only a first
order estimate of the variances. (The dependence on the second order
derivatives is shown explicitly in the Appendix.) As noted in Reference 7,
the reason for the presence of second order derivatives in Eq. (3.5) is
the appearance of first order derivatives in the normal Eq. (3.2) which
are perturbed and expanded when Eq. (3.5) is derived. Authors who prefer
Gauss-Newton algorithms for the numerical solution of the normal equations
tend to overlook this fact and present variance estimate formulas without
second order derivatives of the model function FI,2,5,8,9. Such formulas
are less than first order accurate and should not be used without an
estimate of the effect of the neglected terms. One can easily construct
examples where the second order derivative terms contribute signifi-
cantly to Vt either increasing or decreasing the estimated variances.

4. PARTITIONABILITY

If the data volume is large, then the numerical solution of the
normal Eqs. (2.11) can be a formidable task. In a typical model fitting
problem the dimension n of the observations is the order 1000 or larger,
and one has to manipulate matrices of the order nxn in the Newton-Raphson
iteration equations. Fortunately, many least squares problems have such
a structure that the large systems of equations can be partitioned into
a set of smaller systems, whereby the manipulation of the large matrices
can be avoided.

We illustrate this partitionability with a curve fitting problem
in the y,z-plane. Let the curve be defined by the implicit equation

f(x;t) = f(y,z;t) - 0 , (4.1)

where x is the coordinate vector in the y,z-plane and t is a parameter
vector. Let the observations Xi, (i - 1,2,...,s) be the coordinates of
s points in the y,z-plane, i.e.,

- (Yi) , i = 1,2,...,s (4.2)

and let the accuracies of the observed points be characterized by corres-
ponding estimated variance-covariance matrices

Ri = , i 1 1,2,...,s iv(4.3)

kViyz % izz
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The correspondences between this problem and the general model fitting

problem are as follows

X (4.4)

R .(4.5)

0 R
S

and

/(X1,t0

F(X,t) = J . (4.6)
f(x , t)/

Using these correspondences, the curve or model fitting problem (2.7)
can be defined in terms of the subsets X i of X, the submatrices R i of R,
and the components f of F as follows:

8

W c T -1C = mi.i--1i

(4.7)

f(Xi+ci,t) - 0, i=1,2,...,s

The normal equations of the optimization problem (4.7) are

c R T (X-+cR=t)k = 0, ifil,2,...,s (4.8a)

kift(Xi+cipt) - 0 (4.8b)

i=l

f(Xi+cit) - 0, i-l,2,...,s (4.8c)

where ki (i-l,2,...,s) are the correlates of the problem.

13



A comparison of Eqs. (4.8) with the general normal Eqs. (2.11)
shows that in the curve fitting problem the large equation system is
partitioned into a set of smaller systems, so that the largest dimension
of matrices to be manipulated is the maximum of 2x2 an4 pxp. Particularly,
Eq. (4.8a) is a set of s systems of two equations, each system depending
only on two residuals, whereas, Eq. (2.11a) is one sy~em of 2s equations
depending on 2s residuals. Likewise, Eq. (4.8e) are s~scalar equations,
each depending on two distinct residuals, whereas the corresponding
Eq. (2.11c) is a system of s coupled equations for all 2s residuals.
Obviously, the numerical treatment of Eqs. (4.8) is much simpler than
that of Eqs. (2.11).

A basic property of the sample problem (4.7) is that the r con-
straints are scalar equations, (hence ri - 1 and r - Zri = s) each
depending on a distinct subset Xi of the observation vector X, and that
the s subsets Xi are not correlated. We call such a problem a standard
least squares problem because of its common occurance and simplicity.
Standard least squares problems are easier to solve numerically than
general problems, because the maximum dimensions of matrices in the normal
equations are independent of the total number of observations. A prob-
lem with the latter property we call totally partitionable. Hence, a
standard least squares problem is totally partitionable. If the data
are not correlated, then any fitting of a hypersurface to points in a
space of observables is a totally partitionable problem. Such a fitting
in a, say, m-dimensional space is also a standard problem if the dimension
of the hypersurface is m-l.

Next, we derive conditions f3r partitionability of the normal
equations by comparing the structires of Eqs. (2.11) and (4.8). First,
we notice that in order to be abla to partition Eq. (2.11c) at all, the
model function F must be transfornable into such a form that subsets of
components of F depend on distinc: subsets of the observations X. This
property can be conveniently expressed by the requirement that the
Jacobian matrix 3F/3X has a stretched block diagonal structure, i.e.,

DF a 0 (4.9)
X

3Fs

aX
$ s

In the sample curve fitting problem (4.7), F has this property, whereby
the submatrices 3Fi/Xi are the two-component vectors 3f/BXi. In more
general situations the submatrices J.ave dimensions rixni and the ri and
ni can be different for different :ndexes i. Because 2F/2X is a rxn
matrix, then obviously Er, M r and 2ni W n.

14
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The stretched block diagonal structure (4.9) of DF/aX suffices to
partition Eq. (2.11c). In order to partition Eq. (2.11a) too, one needs
an additional condition on the variance-covariance matrix R. If R is
diagonal and (4.9) holds, then Eq. (2.11a) is partitionable. However,
for partitionability it is already sufficient if R has a block diagonal
structure

R•, (4.10)

Rs

where the dimensions ni of the submatrices Ri match the dimensions ni
of the submatrices 3Fi/3Xi. Both of these conditions together are suf-
ficient to partition the problem into s parts. Thus, if R and aF/aX
have the indicated structures, Eq. (2.11a) has the form

where the ci are distinct subsets of c with the dimensions ni, and the
ki are correlate vectors with the dimensions r .

In summry, sufficient for the partitionability of a least squares
model fitting problem is that the following two conditions hold:

a. R has a block diagonal structure (4.10), and

b. aF/aX has a matching stretched block diagonal structure (4.9).

In data reduction problems one has no control over the structure of

R, except during the planning stage of an experiment. Once the measure-
hmerts are made, R is part of the given data basis. However, in many

Spractical problems R is diagonal or nearly diagonal with few non-zero
off-diagonal elements. In these cases, the partitionability of the prob-
lem depends on the formulation of the model equations F - 0. By a proper
manipulation of the constraints one can often partition a problem that
was not partitionable in the original formulation. We shall give an

example of such a manipulation in Section 6.
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The algorithmic advantages of partitioning cannot be overemphasized.
In fact, partitionability rather than the special form of the object
function W is the practically important difference between a least squares
problem and a general optimization problem. Most published algorithms
for the solution of least squares problems are restricted to partitionable
cases.

5. MANIPULATION OF PARAMETERS

This section gives an overview of parameter manipulations that can
be used to achieve partitionability of least squares model fitting prob-
lems. First, we express the constraint Eqs. (2.3) in the more convenient
form

F (c,t) = 0 
(5.1)

by including the observed X into the definition of the model function F.
Like Eq. (2.3), Eq. (5.1) is a set of r scalar equations. In general,
each of the r equations depends on different subsets of the components
of c and t. A subset te of the parameter vector t we define as the vec-
tor of essential parameters if all components of te appear in all r
Eqs. (5.1). All other parameters we call non-essential. A constraint
formulation that contains only essential parameters we call a minimal
formulation.

Minimal formulations of constraints are important in the context of
partitionability. To illustrate this, we notice that the numbers and
types of parameters are not intrinsic properties of a model fitting
problem. Parameters can be eliminated and added, within limits, without
changing the solution of the problem. However, from an algorithmic
viewpoint it is not advisable to eliminate essential parameters, i.e.,
to reduce the problem formulation below a minimal formulation.

We illustrate this remark by considering a standard problem with a
diagonal variance-covariance matrix R and only essential parameters.
Let the constraints (5.1) of the problem be, componentwise,

f i (cipt) - 0, i-1,2,...,r •(5.2)

In order to eliminate the parameters we may use the last p Eqs. (5.2)
and express t in terms of the residual subset ce - (cr.p+l, ..., cr).
Substituting this expression into the first r-p equations, one obtains
a system of constraints, equivalent to the original system, but without
parameters, namely,

16



(C) - 0 (5.3)

with the components

T (CiCe) - 0, i-l,...,r-p ,(5.4)

Now, the arguments of the components oi of are not distinct subsets
of c and, therefore, the Jacobian matrix 4/ac has not the necessary
stretched block diagonal form. The problem is not partitionable in this
formulation.

While a problem formulation with fewer constraints than in a mini-
mal formulation certainly is not optimal for a numerical treatment, one
may find, in some cases, that larger than minimal formulations are more
practical. One obtains such formulations by introducing new parameters
into the problem. The total number of parameters that can be added to
a least squares problem is, however, limited by the inequalities (2.2).
Let us assume that for a given problem the inequalities are satisfied,
and let us introduce 0 new parameters into the problem. The corresponding
new equations which define the parameters are added to the set of con-

straint equations. Therefore, the inequality (2.2) for the new problem
formulation is

0 <p + < r < <n . (5.5)

Hence, the number of new parameters that can be introduced into a
problem is limited by the condition

< n - r (5.6)

A "natural," application oriented, formulation of a model fitting
problem is not necessarily the most advantageous one for numerical treat-
ment, and may even be sub-minimal, as in the following example. Suppose
that some effect y of an explosion has been observed at different sta-
tions as a function of time t. Then the data basis consists of an obser-
vation To of the time to of the explosion and of a series of pairs (T,Y),
providing the observed effects Y at times T. Let the theoretical model
equation of the observed effect at station j be

y- f (t - to; a, 8, y) (5.7)

17



where a, 3, and y are essential model parameters. Then the corresponding
constraint equations are

Yi + cyi - fi(Ti + CTi - (To + CTo); a, 8, y)-O, (i - l, 2, ..., r)

(5.8)

The formulation (5.8) is minimal, because all parameters are essen-
tial. However, the problem is not partitionable even when all observa-
tions are uncorrelated, because all constraint equations contain the
same observation T

0

A partitioning of this problem can be easily achieved by int aducing
the starting time of the explosion as a fourth parameter 6. The cor-
respondingly modified set of constraint Eqs. (5.8) is

Y i + cyi f(Ti + CTi - 6; o, 8, Y) - 0 , (i 1, ..., r),

(5.9)

T + - 6 =0.o CTo

Now we have r + 1 constraints, four parameters and (m + 1) • r + 1
observations, where m = dimY. The inequalities (5.5) are in this case

0 < 4 < r + 1 < (m + l)-r + 1 , (5.10)

indicating, that one needs at least four observation sets (T,Y) to have
a regular adjustment problem.

The problem formulation (5.9) is not minimal, because the param-
eters a, 1, and y are not essential. However, because they appear in
all but one of the constraint equations, their elimination would not
simplify the problem. If the data are not correlated, then in the form-
ulation (5.9) the problem is totally partitionable. It is, in fact, a
standard problem, if the observed effects Yi are scalar, i.e., if m = 1.

The goal of manipulation of the model equations is to obtain an
equation system with a stretched block diagonal Jacobian matrix. If the
model equations are linear, then this can be achieved by algebraic man-
ipulations. For problems with nonlinear implicit model equations, the
probably most effective approach is through parameter manipulation, such
as shown in the previous example. A numerical example of another prob-
lem will be given in the next section.

18



6. EXAMPLE

We present as a numerical example a least squares model fitting
problem arising from the adjustment of a planimetric net. The measure-
ments in such a net have to satisfy net closure conditions, i.e., con-
straints without any parameters. The constraints form a set of simul-
taneous nonlinear equations involving all corrections, and net adjustment
problems are not partitionable in this formulation. However, by intro-
ducing station coordinates as parameters net adjustment problems always
can be partitioned.

A simple specific example is the planimetric traverse shown in
Figure 1. Let the observations be the distances ri between the stations
and the corresponding azimuths 4i. The constraints for the closed
polygon of Figure 1 are obtained from the model equations (closure con-
ditions)

5
Z risin~i = 0

i=1

and (6.1)

5
E ricOsOi = 0
i=l

by substituting in them the corrected ri + cri and 0i + c~i for the
observed ri and 0i, respectively. Hence, the problem has two nonlinear
scalar model equations (r=2), ten observations (n-l0), and no param-
eters (p-0). For simplicity, we assume that the observations are not
correlated, i.e., that the estimated variance-covariance matrix R is
diagonal. Nevertheless, the adjustment problem is not partitionable
in this formulation.

Next, we introduce, as parameters, the coordinates of the stations
1, 2, 3, and 4 relative to the reference station A. With these eight
parameters, the two original model Eqs. (6.1) can be expressed equiva-
lently by the following five sets of two equations each:
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f(x +r-2 sinO2  X2 ) _ ()

Yl + r2 cos 2  Y2 0

Y2 + r3 cs 3  Y3

f 4 = ( 3 + r 4sil4 4 x 4) _ =
Y3 + r 4 cOsO 4 -Y40

f 5= x4+ r 5 sinP) (:)
Y4 + r5 cos 5

The corresponding constraint equations are obtained by substituting in
Eq. (6.2) the corrected distances and angles for the observed ones. Now,
we have s-5, r=lO, n-1O, and p-8. According to Eq. (5.2) no additional
parameters can be introduced. In this formulation, the Jacobian matrix
of the model function has the block diagonal form

__fl__ 0

a x fi. ( 6 . 3 )

0 aff5

a(r 5,05 )

with 2 x 2 matrices in the diagonal. Hence, the problem partitions

into five subsets.
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We note in passing that in this example the reformulation of tae
model equations has only slightly reduced the size of the problem. In
the original formulation, we would have to deal with 10 x 10 matrices in
the normal equations, corresponding to the ten observations. The par-
titioning has reduced this part of the formulation to five 2 x 2 matrices,
which can be handled much easier. However, we have also introduced
eight parameters and corresponding 8 x 8 matrices in the normal equations.
Hence, the reduction of matrix sizes is only from 10 x 10 to 8 x 8. If
numerical efficiency were important in this example, then one would in-
troduce fewer than eight parameters, e.g., only the coordinates of
Stations I and 3. In that formulation, the largest matri,. to be handled
would be only 4 x 4.

Numerical values of the observations are given in Table 1, together
with the results of the adjustments which were calculated with the com-
puter program COLSMU of Reference 10. The parameter values, i.e., t1'e
station coordinates are listed in Table 2, and Table 3 provides the cor-
relation coefficients between the station coordinates. The correlation
coefficient matrix C is defined in terms of the variance-covariance
matrix V by

t

C = D-1/ 2 Vt D
-I/ 2  (6.4)

where

D = diag V .
(6.5)

TABLE 1. OBSERVATIONS AND ADJUSTMENTS

Nr r(km) e c r+c e c__+

1 10.5 0.47 0.356 10.856 77.0 1.0 0.33 76.67

2 2.9 0.25 -0.148 2.752 202.0 1.0 -0.01 201.99

3 4.6 0.32 -0.107 4.493 273.0 1.0 0.17 273.17

4 7.0 0.40 -0.199 6.801 151.0 1.0 -0.24 150.76

5 10.1 0.46 0.045 10.145 304.0 1.0 0.42 304.42
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TABLE 2. ADJUSTED COORDINATES OF STATIONS WITH ESTIMATED STANDARD ERRORS

Nr x (km) e (km) y (km) e y(km)

1 10.563 0.324 2.503 0.183

2 9.533 0.306 -0.049 0.228

3 5.047 0.286 0.199 0.237

4 8.369 0.310 -5.735 0.242

Weighted sum of correction squares W = 1.665 635 46

Standard error with weight one m 0 = 0.912 589

The factor m 0is not included in the standard errors
of station 'coordinates.

TABLE 3. CORRELATION MATRIX OF ADJUSTED STATION COORDINATES

xl 1 __ _ 2 3T2  x4 ___3_ 14 ___4_

x 1.0000 0.2080 0.9572 -0.1477 0.5516 -0.1303 0.4494 -0.1801

Yi 0.2080 1.0000 0.1332 0.5161 -0.0594 0.4872 0.0394 0.1454

x2 0.9572 0.1332 1.0000 0.0053 0.5358 0.0141 0.4626 -0.1375

2- 0.1477 0.5161 0.0053 1.0000 -0.2509 0.9417 -0.0407 0.3170

1 3 0.5516 -0.0594 0.5358 -0.2509 1.0000 -0.3059 0.8018 -0.3450

3- 0.1303 0.4872 0.0141 0.9417 -0.3059 1.0000 -0.0771 0.3470

x 0.4494 0.0394 0.4626 -0.0407 0.8018 -0.0771 1.000 -0.6092

Y4-0.1801 0.1454 -0.1375 0.3170 -0.3450 0.3470 -0.6092 1.0000
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Both matrices, C and Vt, were calculated by the cited utility rou-
tine which uses Eq. (3.5) for the calculation of Vt .

The adjusted positions of the stations are shown in Figure 1
together with corresponding two standard error ellipses indicating the
accuracies of the positions.

Estimates of variances and covariances of the adjusted survey sta-
tions are important when the stations are used as bases for other mea-
surements. As an example, let us assume that Stations 2 and 3 are used
to determine the position of a target by azimuth measurements. Let

2 and *2 be the azimuths observed from Stations 2 and 3, respectively.
Then the target is given by

xt = x2 ' sin (* 2 x3 - x2
) cos 3 + (Y3 - Y2 ) sin 3

= COS 2n 1 (6.6)

Y Y2 - sin (3 - 2) [x 3 - x2) cos 3 + (Y3 - Y2 ) sinP 3

Estimated variances and covariances of the target coordinates can

be computed from the estimated accuracies of the azimuth observations
and the variances and covariances of the bases' coordinates by applying
the linearized law of variance propagation to Eq. (6.6). The results

are shown in Table 4 and Figure 1. As expected, one obtains different
estimates of the target accuracies, depending whether the correlations
between stations are taken into account or not.
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TABLE 4. TARGET POSITION

OBSERVED AZIMUTHS OF TARGET

2 149.0 + 0.3

*3 - 123.0 + 0.3

COMPUTED COORDINATES OF TARGET

a. All Covariances Considered

xt = 12.159 + 0.437

Yt W -4.419 + 0.337

Correlation coefficient c = -0.667256
xy

b. Covariances Between Stations Neglected

x t = 12.159 + 0.609

Yt = -4.419 + 0.555

Correlation coefficient c f -0.906523
xy

c. All Covariances Neglected

xt = 12.159 + 0.629

Yt = -4.419 + 0.616

Correlation coefficient c - -0.900271
xy
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A r

A'

rr

+ Target

Figure 1. Planimetric Traverse

Y - Reference station

*- original survey station

A - adjusted survey station

+ - target, determined by azimuth measurements from Stations 2 and 3

The difference between Stations A and A' is the closure error of the
traverse. A and At coincide after adjustment. Accuaracies of the adjusted
stations and of the target are indicated by two standard error ellipses.
The larger error ellipse around the target is obtained if correlations
between station coordinates are neglected. (Case (c) in Table 4.) Data
are given in Tables I~ through 4.



APPENDIX A

ITERATION FORMULAS
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We provide a set of iteration formulas that are derived from the
Newton Eqs. (3.1) by algebraic manipulations. First, we define the
following matrices:

G -(F xRF xT -1 (A.1)

A -RF xT GF - I (A.2)

1' =[I + AR(K T F)I-1 (A. 3)

E 0=r F AC -RF xTGF] (A.4)

El= r [RF XT GF t+ AR(KTF) xt] (A.5)

Do (KTF) tx -FT GFXRCKTF)XX (A.6)

D KTFt- F tTGFXR(KTF)X (A.7)

N=F GF - D + DE (A.8)
t. t 1 0 1

The iteration equations are

NT =F T GFC- F) + DE(A.9)
t G(x D0 E0

K + K =G(F xC-F) + GtF t + FXR(KTF)Xt] T -GFXR(K
TF).c (A.10)

eE 0-E 1 (A.11)
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Numerical experiments have shown that the convergence of the iteration
is enhanced if the equations are used in a subiteration mode by iterating
alternatively on the parameters and residuals, respectively. For param-
eter subiteration only Eqs. (A.9) and (A.10) are used, assuming cEO.
For residual subiteration one sets TEO and uses Eqs. (A.10) and (A.11).

In the variance formula (3.5) one uses N, defined by Eq. (A.8) and

S = FtTGFX + DorA . (A.12)

Another equivalent set of Newton-Raphson iteration equations is
given in Reference 7. None of the sets is numerically superior to the
other, and both require subiterations of parameters and residuals for
efficiency.

Gauss-Newton iteration equations can be obtained from Newton-Raphson
iteration equations by setting all second order derivatives equal to
zero. The convergence of Gauss-Newton algorithms is inferior, but in
some applications they have a larger domain of convergence.
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LIST OF SYMBOLS

c, C - residuals

f, F - constraint (model) functions

k, K - Correlates (Lagrange multipliers)

M - norm matrix

n - dim X (total number of observations)

N - coefficient matrix for variance estimation of t

p - dim t (number of parameters)

r - dim F (number of scalar constraint equations)

R - estimated variance-covariance matrix of the observations X

s - number of subsets in a partitionable problem

S - influence matrix for variance estimation of t

t, T - parameters

x, X - observables

V - estimated variance-covariance matrix of t
t

W - object function = c TR7c

- modified object function

E - correction of C

K - correction of K

T - correction of T
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